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ABSTRACT 

 

Sedimentary formations of east and central Texas contain many Eocene to 

Oligocene volcanic ash beds, with some of the younger ash layers containing hydrated 

but otherwise unaltered glass shards.  This study analyzed samples of 15 volcanic ash 

beds using neutron activation analysis (NAA) of bulk ash and glass shards, inductively 

coupled plasma mass spectrometry (ICPMS) of bulk ash, and electron microprobe 

analysis of both apatite phenocrysts and glass shards to characterize their geochemistry.  

40Ar/39Ar dating of single sanidine phenocrysts gives an age of 30.64 ±0.03 Ma 

for the youngest (Sam Rayburn) sample to 41.79 ±0.02 Ma for the oldest (Hurricane 

Bayou) sample.  The nine radiometric dates obtained by this study serve to better 

constrain the ages of the Claiborne and Jackson Groups and the Catahoula Formation of 

Texas with the Conquista and Hurricane Bayou ash beds being possible calibration 

points for the Eocene/Oligocene and Lutetian/Bartonian boundaries, respectively.   

Geochemical fingerprinting, particularly apatite phenocryst chemistry, supports 

the correlation of the Little Brazos volcanic ash in Brazos County to volcanic ash 

deposits in Houston County, Texas, and provides supporting evidence for equivalence to 

the St. Johns bentonite in Louisiana.  Geochemical fingerprinting also suggests 

equivalence of the Caddell (Koppe Bridge) volcanic ash to deposits within the Gonzales 

County bentonite mines of south-central Texas.     

Major element electron microprobe data from seven samples of volcanic glass 

shards indicate the ash was produced from sub-alkaline rhyolitic volcanism and the 
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trace-element characteristics of all 15 ashes are consistent with subduction-related 

sources.  Rare earth element (REE) data indicates light rare earth element (LREE) 

enrichment with a moderate Europium anomaly.  The Sierra Madre Occidental of 

Mexico is the likely source area, but the Trans-Pecos of Texas and Mogollon-Datil of 

New Mexico cannot be definitively ruled out as possible eruptive source regions.  
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INTRODUCTION  

 

The occurrence of volcanic ash deposits in the Eocene and Oligocene strata of 

the Texas Gulf Coast has been reported by many studies, but little work has been done 

on them to characterize the geochemistry and provide radiometric dating to obtain age 

determination of the formations containing the ash beds (Ledger 1988; Roberson 1964; 

Stenzel 1940; Guillemette and Yancey 1996; Yancey and Guillemette 1998).  Paleocene 

and Early Eocene strata lack recognizable volcanic ash beds, although sands with grains 

of probable volcanic origin, including bipyramidal euhedral quartz crystals and small 

lithic grains, are recognized in latest Paleocene and Eocene sandstones (Callender and 

Folk 1958).  Middle to Late Eocene strata contain many thin or thick volcanic ash 

deposits (Figure 1).  The oldest known coastal plain Eocene volcanic ash occurs in the 

Crockett Formation (Stenzel 1940; Gimbrede 1951).     
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Figure 1.  Location of volcanic ash samples.  

 

This study documents 15 volcanic ash layers within the Eocene Claiborne and 

Jackson Groups and the Oligocene Catahoula Formation of Texas (Figure 2).  Volcanic 

ashes of rhyolitic composition become more common in an upward succession in the 

Middle to Late Eocene and Oligocene stratigraphic section of the Texas coastal plain, 

with volcaniclastic materials forming most of the volume of Oligocene deposits in the 

central and south Texas outcrop belt.  Strata in south Texas are closer to the source of 

the volcanism and therefore contain significantly more volcanic ash deposits than the 

eastern section (Roberson 1964; McBride et al. 1968; Gowan 1985; Grigsby and Dennis 

1991).   



 

3 

 

 

Figure 2.  Stratigraphy for the study location showing the position of the volcanic ash 
beds studied in this report.  Modified from Guillemette and Yancey (1996). 
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Volcanic ash beds can provide numerical age dates of the enclosing strata, be 

used to determine composition of the volcanic source and establish time horizons by 

correlation of geographically separated sections.  An ash bed that can be unambiguously 

identified is usable as a regional marker in the stratigraphic section.  Volcanic ash beds 

occur in Eocene and Oligocene Gulf of Mexico coastal plain deposits as far east as 

Louisiana, Mississippi and Alabama, indicating that volcanic ashes may be correlatable 

throughout the northern Gulf Coast (Obradovich et al. 1993; Grigsby 1999).  An Eocene 

age volcanic ash is also present in North Carolina that may be an eastern extension of the 

northern Gulf volcanic ash bed (Harris and Fullagar 1989).  These volcanic ashes are the 

product of middle Cenozoic explosive rhyolitic volcanism along the southwestern 

margin of North America (Henry et al. 1991; McDowell and Mauger 1994) (Figure 3).  

The location of local eruptive centers producing these volcanic ashes is not determined, 

but the volcanic ash beds probably have multiple sources in the many eruptive centers 

along the subduction-generated volcanic trend of western Mexico (Guillemette and 

Yancey 1996; Grigsby 1999; Michealides 2011). 
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Figure 3.  Silicic volcanism trend running from Mexico into the western United States 

that makes up the Sierra Madre Occidental, Trans-Pecos Volcanic Province and 
Mogollon-Datil Volcanic Field.  (Modified from Henry and Price, 1991) 

 

This study utilizes six different types of analysis to characterize the volcanic ash 

deposits.  Radiometric age dating is obtained by 40Ar/39Ar dating of sanidine phenocrysts 

contained in the ash.  However, radiometric age dates are calculated as an age range (e.g. 

41.79 ±0.02 Ma) and when the ashes are close in age, ash bed geochemistry is needed to 

further constrain the geochronologic framework.  Bulk rock composition of the volcanic 

ash samples is determined by Neutron Activation Analysis (NAA) and by Inductively 
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Coupled Plasma Mass Spectrometry (ICPMS) analysis that includes the full set of rare 

earth elements (REE).  Bulk analysis of volcanic ash is an effective tool for constraining 

the geochemical fingerprint of the ash, but it is more difficult to obtain reliable data 

because alteration of the ash can mobilize elements and alter the elemental composition.  

Elemental analysis of unaltered volcanic glass shards is a more reliable indicator of the 

original ash bed geochemistry, but glass shards are preserved only in younger volcanic 

ash that was deposited in primarily non-marine depositional environments.      

Apatite phenocrysts analyzed by electron microprobe provide data on single 

components of volcanic ash beds where the volcanic glass has been altered to clay.  

Apatite is a stable mineral, has the capacity to include many elements into its crystal 

structure, and has been proven to be a useful correlation tool for highly altered volcanic 

ash beds (Carey et al. 2009; Sell and Samson 2011 and references therein).   
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PALEOGENE VOLCANIC ASH DEPOSITS OF EAST AND CENTRAL TEXAS  

 

Volcanic ash of Eocene and Oligocene age in central and east Texas has a silicic 

composition and originated as vitric ash with small amounts of phenocrysts and few 

lithic grains (Roberson 1964; Senkayi et. al 1984; Ledger 1988).  Phenocrysts consist of 

quartz and lesser amounts of feldspar with accessory minerals biotite, apatite and zircon 

in varying amounts.  From this original composition, three types of volcanic ash beds 

have formed from diagenetic change in different depositional environments.  All 

Paleogene volcanic ash deposited in an open marine environment has total alteration of 

glass shards, producing dark green to black bentonite beds composed of smectite clay 

(Figure 4).  In some deposits like the Alabama Ferry ash, the outlines of shards are 

recognizable in the clay matrix.  When disaggregated, these ash beds yield 

concentrations of phenocrysts that are usually dominated by biotite with apatite present.  

Apatite phenocrysts in the Little Brazos, Alabama Ferry and Hurricane Bayou samples 

are euhedral and are approximately 200 µm in size.  Apatites found in the Lower Little 

Brazos volcanic ash bed are also euhedral, but are approximately 100 µm in size.   

.   
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Figure 4.  Examples of volcanic ash deposits.  A. Claypits volcanic ash outcrop, 

fresh/brackish body of water depositional setting.  B. Easterwood volcanic ash outcrop, 
swamp depositional setting.  C. Little Brazos volcanic ash outcrop, open marine 

depositional setting. 

 

Volcanic ash beds deposited in a non-marine environment (fluvial, lake or land) 

tend to alter to kaolinite or be preserved where the smallest glass shards are altered to 

kaolinite or smectite (Figure 4).  Larger (>50 µm) shards are preserved as hydrated but 

otherwise unaltered glass.  Unaltered glass shards occur in the Late Eocene Manning 

Formation and the Oligocene Catahoula Formation.  Volcanic glass shards are made up 

of mainly bubble wall fragments with some micro-pumice fragments (Guillemette and 

Yancey 1996).  The volcanic glass shard fragments range in size from 400 µm in the 

coarser deposits to 50 µm in the finer deposits.   

Volcanic ash beds deposited in a swamp environment undergo complete 

alteration to kaolinite and it is common for large vermiform crystals of kaolinite to 

develop (Figure 4).  Samples of the Easterwood and Gibbons Creek ash beds are 

dominated by large diameter kaolinite vermiforms that reach lengths of several 
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millimeters.  These develop commonly in tonsteins (a light-colored volcanic ash bed 

contained within a lignite or coal) like the Gibbons Creek ash, but also in ash deposited 

in standing water carbonaceous sediment like that containing the Easterwood ash (Ross 

and Kerr 1930).  Sample locations, depositional setting and mineralogical aspects are 

presented in Table 1.  

 

Ash Bed Location Thickness Aspect Glass 
Accessory 
minerals* 

Secondary 
Minerals* 

Sam Rayburn 
31.062366°,  --

94.108534° 
20-60 cm 

White ash in 
fluvial channel 

Abundant, 
fine size 

Quartz, sanidine, 
zircon, magnetite 

Kaolinite 

South 
Somerville 

30.291262°,  -
96.524058° 

10-20 cm 
White ash in 

lignite (tonstein) 
Abundant, 

coarse 

Quartz, sanidine, 
zircon,  biotite, 

hornblende, 
magnetite 

Kaolinite 

Conquista 
28.876347°,  -

98.101288° 
3 m White ash 

Abundant, 
medium size 

Quartz, sanidine, 
zircon, biotite 

Kaolinite 

Tarball 
Quarry 

30.300803°, 
-96.520110° 

5-10 cm 
White ash in 

lignite (tonstein) 
Abundant, 
fine size 

Quartz, sanidine, 
zircon, hornblende 

Kaolinite 

Somerville 
Soil Zone 

30.317799°, 
-96.517152° 

80 cm 
White ash in soil 

zone 
Common 

Quartz, sanidine, 
zircon, hornblende 

Kaolinite, soil 
minerals 

Gibbons 
Creek 

30.570702°,  -
96.054297° 

20 cm 
White ash in 

lignite (tonstein) 
None 

Quartz, sanidine, 
biotite, zircon 

Kaolinite, 
pyrite 

Seale Ranch 
29.833333°,  -

97.029167° 
1 m White ash 

Abundant, 
fine size 

Quartz, sanidine, 
zircon, hornblende 

Kaolinite, 
sponge spicules 

Claypits 
30.489718°, 
-96.312718° 

1.5 m 
White ash in 

shallow marine 
Abundant, 

medium size 
Quartz, sanidine, 

biotite, zircon 
Kaolinite 

Plum 
29.935115°,  -

96.979841° 
1 m White ash None 

Quartz, sanidine, 
zircon, magnetite 

Kaolinite 

Koppe Bridge 
30.509068°, 
-96.354858° 

12 cm 
White ash in 

shallow marine 
None 

Quartz, sanidine, 
zircon 

Kaolinite 

Graham Road 
30.552001°, 
-96.328746° 

8 cm 
White ash in 

shallow marine 
None 

Quartz, sanidine, 
zircon 

Kaolinite, 
pyrite 

Easterwood 
30.590192°, 
-96.349734° 

15 cm 
White ash in 

shallow marine 
None 

Quartz, sanidine, 
zircon, 

Kaolinite, 
gypsum, 
jarosite 

Hurricane 
Bayou 

31.358546°, 
-95.431536° 

80 cm 
Dark, waxy ash 
in open marine 

(bentonite) 
None 

Quartz, sanidine, 
biotite, apatite, 

zircon, hornblende 
Smectite, pyrite 

Alabama 
Ferry 

31.225576°,  -
95.727310° 

1 m 
Dark, waxy ash 
in open marine 

(bentonite) 
None 

Quartz, sanidine, 
biotite, apatite, 

zircon, hornblende 
Smectite, pyrite 

Little Brazos 
30.642296°, 
-96.520528° 

25 cm 
Dark, waxy ash 
in open marine 

(bentonite) 
None 

Quartz, sanidine, 
biotite, apatite, 

zircon, hornblende 
Smectite, pyrite 

Lower Little 
Brazos 

30.642296°, 
-96.520528° 

6 cm 
Dark, waxy ash 
in open marine 

(bentonite) 
None 

Quartz, sanidine, 
biotite, apatite, 

zircon, hornblende 
Smectite, pyrite 

Table 1.  Characteristics of volcanic ash samples included in this study.  *Minerals 
identified – volcanic ash beds could contain other minerals not noted. 
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Outcrops of a thick volcanic ash occur within the Crockett Formation (Late 

Middle Eocene) in several places between the Little Brazos River and Hurricane Bayou 

near Crockett, Texas.  This is a dark green/black bentonite that thickens from 25 cm at 

Little Brazos to 0.7 m in Leon County (Stenzel 1938; Gimbrede 1951) and 1 m at 

Alabama Ferry on the Trinity River (Stenzel 1940; Gray 1953), and is 0.7 m thick at 

Hurricane Bayou on the east end of the outcrops (Gray 1953).  At the Little Brazos site 

the volcanic ash was measured on a vertical cut through the bed and it has sharp, well 

defined upper and lower boundaries, with minimal bioturbation on the upper boundary. 

A thin (6 cm) volcanic ash layer occurs 1 m below the main volcanic ash bed at Little 

Brazos and extends over the same outcrop belt.  Another thin volcanic ash bed occurs 3 

m above the main bed at Alabama Ferry.  These occur in the so-called Hurricane 

"Lentil" of Stenzel (1940), a lithologic and biostratigraphically distinct zone in the 

Crockett Formation.  Gray (1953) noted the presence of two additional thin volcanic ash 

beds in the underlying Wheelock Member strata.  These five volcanic ash beds occur in 

a 20 m interval of fine-grained marine deposits.  The thickest volcanic ash bed of the 

Crockett Formation has been correlated with volcanic ash deposits in Louisiana (Grigsby 

1999).  The Crockett Formation contains sediments deposited in an open marine 

environment that were deposited during a major marine transgression (Renick 1936; 

Stenzel 1940). 

The Yegua Formation contains two or more volcanic ash beds in Brazos County. 

The middle Easterwood Member of the Yegua Formation is composed of bentonitic 

clays that produce unstable soils in the county (Berg 1970), indicating a high volcanic 
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ash content in the sediments.  Samples were collected from a 25 cm thick bed in the 

Easterwood Member (Senkayi et al. 1984) and an 8 cm thick ash layer in the upper part 

of the formation.  Both were deposited in standing water environments in during times of 

high rates of sediment deposition. The overlying Caddell Formation  at the base of the 

Jackson Group contains a thin (12 cm) volcanic ash bed, located about 1 m above the 

Yegua-Caddell formation boundary in Brazos County.  The Caddell contains sediments 

deposited in an open marine environment that were deposited during a major marine 

transgression (Atlee et al. 1967).  

Many volcanic ash beds occur in strata of the Jackson group.  Volcanic ash is a 

common component of sediments in the upper part of the Manning Formation and 

occurs as layers of air fall deposit or as redeposited layers of ash.  The Claypits volcanic 

ash bed of Brazos County is a 1.5 m thick unit in lower part of the Manning Formation 

that was mined commercially for kaolin in a series of pits along strike of the ash bed 

(Yancey and Guillemette 1998).  The Somerville spillway section (Guillemette and 

Yancey 1996; Yancey 1997) contains two thick deposits of redeposited volcanic ash and 

a 0.8 m thick ash deposited onto a land surface and weathered in-place to an ash-rich 

soil, as well as two thin tonstein ash layers deposited within lignite beds.  Three of the 

volcanic ash beds sampled for this study are from lignite bed tonsteins in the upper part 

of the Manning Formation.  The South Somerville ash bed, a tonstein deposit at the top 

of the Manning Formation, is distinct from other Manning volcanic ashes in containing 

larger glass shards and phenocrysts than in underlying volcanic ash beds. 
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Volcanic ash is a major component of the Catahoula Formation (Renick 1936) in 

central and east Texas and its lateral equivalent Gueydan Formation in south Texas 

(Bailey 1926; McBride et al. 1968).  Ash deposition occurred on non-marine surfaces 

and is mostly reworked into channels or weathered in-place to ash-rich soils.  The 

Catahoula volcanic ash used in this study was deposited in a small channel filled with 

volcanic ash (Ledger 1988) and similar lenticular masses of ash occur elsewhere in 

Oligocene deposits (McBride et al. 1968).  The Catahoula Formation was deposited 

during a time of major volcanic eruptive activity that spread volcanic ash widely across 

the southern part of North America.  

Volcanic ash in Paleogene strata of central and east Texas was all delivered to 

the area by air fall deposition, but is preserved in variable condition.  Volcanic ash 

deposited in low energy marine environments and in peat swamps is preserved with 

minimal disturbance after the ash fall.  This is the best condition for age dating because 

there is minimal or no admixing with other sediment and all of the ash is from one time 

of ash fall.  Ash beds preserved in standing water environments usually have sharp, well 

defined lower and upper boundaries.  In marine deposits, burrowing may mix some mud 

sediment into the volcanic ash, but these can be recognized and removed before 

preparing the sample for analysis.  In peat swamps where volcanic ash is encased in peat 

(a tonstein), the ash layer usually has more irregular boundaries due to compaction of 

fluid-rich peat and from plant root penetration.  However, mixing is limited to inclusion 

of plant bioclasts and possibly some clay mud.   
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Evidence for transport and reworking of volcanic ash comes from sedimentary 

structures that reveal sediment movement by water currents.  An example of this is the 

presence of cross bedding in the lower parts of the Claypits volcanic ash, an indicator of 

strong wave and sustained current activity at the time of deposition.  The presence of 

good sorting and a minor upward-fining grain size trend in the Conquista ash deposit is 

evidence of transport and redeposition.  In both of these volcanic ash deposits the 

absence of other types of sediment particles is taken as an indication that there was no 

mixing with other sediment in samples collected for study.  The deposits are judged to 

be from a single air fall event.  Volcanic ash beds with extensive cross bedding and/or 

evidence of deposition in shoreline environments are clearly reworked and are less 

suitable for radiometric age dating.  A 1.3 m sand bed composed entirely of volcanic ash 

in the Somerville spillway section is not sampled for this study because of the evidence 

of deposition in a high energy shorezone environment and possibility of mixing with 

other volcanic materials. 
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METHODS 

Samples weighing one to two kilograms were collected from outcrop with a putty 

knife after removing surface zones of weathered and crumbly sediment.  Blocks of 

sample were examined in the field and in the lab to remove sediment crusts present on 

fracture surfaces and where volcanic ash layers contain burrows, the burrow fill was 

removed before preparing the sample for chemical analysis.  Cleaned samples were then 

oven dried for at least 12 hours at 75C.  A 500 gm bulk sample was set aside for later 

analysis and one kilogram was disaggregated and concentrated for phenocrysts 

following procedure outlined in Guillemette and Yancey (1996).  Samples then 

underwent secondary processing, if needed, for different types of analysis. 

40Ar/39Ar Dating 

 For radiometric age dating, samples were disaggregated and the sediment 

fraction < 62 µm was removed.  The magnetic materials of the coarse fraction were 

removed using a hand magnet, and then heavy liquid separation was performed using 

lithium heteropolytungstate (LST) in a separatory funnel to split the heavy and light 

mineral fractions.  The amount of light density minerals (<2.85 g/mL) sent for analysis 

was dependent on the makeup of the volcanic ash.  Clay rich volcanic ashes contained 

the least amount of phenocrysts, so there was less sample available to send.  At least two 

grams (more if available) of the light density separate was sent to the New Mexico 

Bureau of Geology and Mineral Resources geochronology laboratory for 40Ar/39Ar 

radiometric dating.  Radiometric age dates were made on sanidine phenocrysts extracted 
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from the separates. All sanidine separation and laboratory procedures for radiometric 

dating were completed at the New Mexico lab and are detailed in Appendix A. 

Neutron Activation Analysis (NAA) 

 For NAA, a two gram bulk rock split of each volcanic ash sample was powdered 

using a ceramic ring mill.  The samples were powdered to a condition that at least 95 % 

of the powder was 106 µm or less.  After each sample was powdered, the ceramic ring 

mill was cleaned by powdering agate and then washed out to avoid contamination from 

preceding samples.  The powdered samples were submitted to the Elemental Analysis 

Laboratory at Texas A&M University for NAA to obtain trace element and rare earth 

element (REE) data.  For the five volcanic ash deposits with preserved glass shards, 

NAA was also performed on separates of glass shards.  A 50 mg portion of volcanic 

glass shards was hand-picked from the low density fraction of the heavy liquid 

separation and submitted for NAA.   Two grams of sample is preferred, but due to the 

small size of the glass shards the hand-picking process was too extensive to collect over 

50 mg.  The Somerville Soil Zone and Seale Ranch samples did not have adequate glass 

shards for NAA.   

Electron Microprobe Analysis of Volcanic Glass Shards  

 A 50 mg portion of washed glass shards was submitted for electron microprobe 

analysis on a Cameca SX50 electron microprobe at Texas A&M University.  These 

samples supplement previous geochemical characterization of Texas volcanic glass 

shards reported by Guillemette and Yancey (1996) and a portion of the Sam Rayburn 
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(Catahoula) volcanic ash was reanalyzed to calibrate the different times of analysis and 

determine the reproducibility of analyses.  

Electron Microprobe Analysis of Apatite Phenocrysts 

 Apatites from the high density fraction of four Crockett Formation samples were 

selected for elemental characterization, following the procedures of Carey and others 

(2009).  They were analyzed at Texas A&M University on a Cameca SX50 electron 

microprobe.  Quantitative compositional analyses for the elements of F, Ca, P, Cl, Fe, 

Mg, Mn, Sr, La, Ce, Nd and Y were targeted for analysis carried out on a four-

spectrometer Cameca SX50 electron microprobe, using an accelerating voltage of 15 kV 

at beam currents of 20 to 200 nA with a beam size of 20 µm.  Major elements were 

analyzed at 20 nA while minor and trace elements were analyzed 200 nA for improved 

sensitivity.  All quantitative work employed wavelength-dispersive spectrometers 

(WDS).  Analyses were carried out after standardization using very well characterized 

compounds or pure elements (Table 2).  Great care was taken to avoid interfering 

spectral lines from other elements when selecting analytical conditions and off-peak 

background positions.  Qualitative EDS analyses (spectra) were obtained with an Imix 

Princeton Gamma Tech (PGT) energy dispersive system (EDS) using an ultra-thin 

window detector. 

  Typical WDS quantitative accuracy for major elements (> 10 wt %) is about 

equal to ±1 to 2 % of the amount present; the uncertainty at low concentrations increases 

as the concentration decreases, with the uncertainty reaching 100 % at the lower limit of 

detection (LLD).  The lower limit of detection for most elements under typical 
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conditions is about 0.05 to 0.10 wt %, but could be reduced to as low as the 0.001 wt % 

range by using high beam currents and long counting times.  Statistical LLD’s were 

calculated for all analyses. 

 

Element Standard  Standard Description 

Ca 5apatite CMT apatite standard 
P 5apatite CMT apatite standard 
F 5CaF2 CMT fluorite standard 
Cl 5NaCl CMT sodium chloride standard 
Y 6YPO4 NMNH single crystal yttrium phosphate standard (1) 
La 6LaPO4 NMNH single crystal lanthanum phosphate standard (1) 
Ce 6CePO4 NMNH single crystal cerium phosphate standard (1) 
Nd 6NdPO4 NMNH single crystal neodymium phosphate standard (1) 
Sr 3strontia NMNH strontianite standard (2) 
Mg 5olivine CMT olivine standard 
Fe 3siderite NMNH siderite standard (3) 
Mn 5spessart CMT spessartine garnet standard 

Table 2.  Standards used in apatite microprobe analysis.  CMT = Charles M. Taylor 
Corporation, 289 Leota Avenue, Sunnyvale, CA 94086. NMNH: National Museum of 

Natural History (Smithsonian, NIST), Washington, DC, (1) Jarosewich, 1991, (2) 
Jarosewich and White, 1987, (3) Jarosewich and McIntyre, 1983.   

 
 

Inductively Coupled Plasma Mass Spectrometry (ICPMS) Analysis 

For ICPMS analysis, seven gram bulk samples were powdered using a ceramic 

ring mill.  The samples were powdered to a condition that at least 95 % of the powder 

was 106 µm or less.  After each sample was powdered, the ceramic ring mill was 

cleaned by powdering agate and then washed out to avoid contamination from previous 

samples.  Powdered volcanic ash was then submitted to a commercial lab (Actlabs) for 

ICPMS analysis to obtain major element, trace element and REE data.  Each sample was 

fused into a glass disk, then analyzed with a Perkin Elmer Sciex ELAN 6000, 6100 or 
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9000 ICP/MS (Actlabs, personal communication).  Three blanks and five controls (three 

before sample group and two after) were analyzed per group of samples.  Duplicates are 

fused and analyzed every 15 samples and the instrument is recalibrated every 40 

samples. 
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RESULTS 

 

Elemental Chemistry of Volcanic Ash Deposits 

Bulk Volcanic Ash Chemistry 

 Chemical characterization of the volcanic ash beds is documented by analysis of 

bulk volcanic ash samples with Neutron Activation Analysis (NAA) or Inductively 

Coupled Plasma Mass Spectrometry (ICPMS) analysis.  This is used in conjunction with 

mineral composition of the volcanic ash beds to compare volcanic ash layers for 

purposes of identification and correlation of geographically separated occurrences.  Both 

methods provide quantitative abundance data on a wide range of elements, with ICPMS 

reporting major element data as wt % oxides and trace element plus rare earth element 

(REE) in parts per million (ppm).  NAA does not provide data on some elements 

reported in ICPMS analysis and can have lower levels of precision depending upon the 

element.  Both types of analysis have been done in this study to characterize the volcanic 

ash beds and to be able to compare data from these beds to other ashes previously 

analyzed by either method.  Major element, trace element and REE data from ICPMS 

analysis is presented in Table 3.  Trace element and REE data from NAA is presented in 

Table 4.  All plots and tables list the volcanic ash samples in stratigraphic order from 

youngest (Sam Rayburn) to oldest (Lower Little Brazos).  Values reported by the two 

methods are similar, indicating that comparison of composition made by different 

methods will yield useful information. 
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Element DL* 
Sam 

Rayburn 
Conquista 

South 
Somerville 

Tarball 
Quarry 

Somerville 
Soil Zone 

Gibbons 
Creek 

Claypits 

SiO2 0.01 70.12 56.86 70.21 68.02 67.71 55.05 63.38 
Al2O3 0.01 13.7 18.85 11.92 13.98 14.12 26.02 15.41 
Fe2O3(T) 0.01 0.89 1.68 1.19 0.66 2.79 0.66 1.32 
MnO 0.001 0.052 0.02 0.023 0.051 0.036 0.033 0.073 
MgO 0.01 0.34 2.98 0.08 0.18 0.63 0.49 0.76 
CaO 0.01 0.46 2.12 0.35 0.35 0.72 0.71 0.92 
Na2O 0.01 1.25 0.58 0.85 1.17 1.1 0.88 1.63 
K2O 0.01 3.53 0.63 2.76 2.8 2.21 0.92 2.98 
TiO2 0.001 0.114 0.122 0.121 0.13 0.45 0.262 0.147 
P2O5 0.01 0.02 0.02 0.26 0.09 0.02 
LOI 8.46 16.75 12.02 12.84 9.56 14.75 11.58 
Total 0.01 98.93 100.6 99.79 100.3 99.35 99.79 98.19 
Sc 1 5 3 3 4 6 3 5 
Be 20 3 3 4 4 3 1 5 
V 10 8 < 5 9 10 49 11 8 
Cr 30 < 20 < 20 < 20 < 20 20 < 20 < 20 
Co 1 < 1 < 1 < 1 1 4 1 < 1 
Ni 0.5 < 20 < 20 < 20 < 20 < 20 < 20 < 20 
Cu 5 10 < 10 < 10 < 10 < 10 < 10 < 10 
Zn 1 30 50 < 30 40 60 < 30 50 
Ga 2 18 25 12 17 19 37 19 
Ge 0.5 1.7 0.9 1 1.6 1.2 1 1.3 
As 1 5 < 5 6 < 5 < 5 < 5 < 5 
Rb 0.2 212 19 169 207 171 37 165 
Sr 2 54 158 41 36 95 75 65 
Zr 0.1 82 195 129 131 180 131 160 
Nb 1 12.2 38.9 14.3 15.3 18.9 32.2 13.5 
Mo 0.2 2 12 3 < 2 3 2 < 2 
Ag 0.1 0.8 0.8 1.1 1.2 1.6 0.7 0.9 
In 3 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 
Sn 0.05 1 6 < 1 < 1 2 2 2 
Sb 0.05 0.3 0.6 0.3 < 0.2 0.5 2.2 1.1 
Cs 0.01 5.2 0.5 5.3 7.2 8.8 2 4.9 
Ba 0.05 897 15 230 88 296 254 186 
Hf 5 3.6 8.8 6 6.5 5.9 5.5 6 
Ta 0.1 1.06 3.98 2.94 1.4 1.37 4.63 1.6 
W 0.05 < 0.5 < 0.5 < 0.5 < 0.5 0.8 < 0.5 < 0.5 
Tl 0.01 1.1 0.08 1.25 2.36 0.87 0.17 0.46 
Pb 23 30 49 29 20 53 15 
Bi 0.3 2.7 0.8 0.5 1.5 < 0.1 0.6 
Th 16.1 55 14.9 14.9 13 19 25.1 
U 6.27 78.8 6.56 5.9 4.63 7.46 6.27 
La 0.01 33 24.1 44.1 28.6 20 18.1 27.3 
Ce 0.005 64.8 58.7 96 68.4 33.9 33.2 55.4 
Pr 0.01 7.65 6.66 12.5 8.8 3.61 3.21 7.04 
Nd 0.01 27.7 23.2 47.5 33 11.9 10.2 25.6 
Sm 0.01 6.06 5.12 10.8 8.36 2.34 1.57 5.26 
Eu 0.01 0.672 0.207 1.34 1.01 0.329 0.304 0.563 
Gd 0.01 5.97 4.1 9.12 7.18 2.23 1.51 4.89 
Tb 0.005 1.06 0.66 1.43 1.23 0.41 0.27 0.89 
Dy 0.01 6.73 3.49 7.99 7.5 2.63 1.52 5.22 
Ho 0.002 1.4 0.61 1.57 1.51 0.58 0.29 1.01 
Er 0.1 4.22 1.55 4.53 4.56 1.88 0.85 2.99 
Tm 0.01 0.649 0.212 0.691 0.691 0.314 0.134 0.484 
Yb 0.5 4.47 1.37 4.63 4.76 2.23 0.94 3.35 
Lu 0.05 0.73 0.218 0.747 0.78 0.383 0.168 0.608 
Y 0.5 39.1 12.4 36.7 35.7 16.7 7.7 27.3 

Table 3.  Raw ICPMS data from bulk volcanic ash analysis.  Oxides shown in wt % all 
other elements in ppm.  LOI = loss on ignition during fusing to make disc.  *<Number = 

less than detection limit (DL). 
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Table 3 Continued 

Element DL* Plum 
Koppe 
Bridge 

Graham 
Road 

Easter 
wood 

Alabama 
Ferry 

Hurricane 
Bayou 

Little 
Brazos 

Lower 
Little 

Brazos 
SiO2 0.01 60.82 55.34 55.52 52.77 52.47 48.14 50.29 38.52 
Al2O3 0.01 15.08 20.82 18.5 24.79 17.49 16.93 16.06 17.51 
Fe2O3(T) 0.01 1.08 2.5 6.05 1.56 7.85 7.98 7.07 20.98 
MnO 0.001 0.01 0.007 0.022 0.008 0.01 0.008 0.019 0.011 
MgO 0.01 1.46 2 1.68 0.74 3.99 3.52 4.16 3.42 
CaO 0.01 1.59 1.31 0.28 1.26 2.44 2.52 1.76 1.37 
Na2O 0.01 0.05 0.37 0.94 1.02 0.07 0.2 0.07 0.11 
K2O 0.01 0.05 0.25 0.66 1 0.26 0.24 0.16 0.25 
TiO2 0.001 0.359 0.322 0.266 0.364 0.279 0.284 0.251 0.326 
P2O5 0.01 0.02 0.04 0.03 0.02 0.13 0.1 0.1 0.1 
LOI 17.53 16.51 14.98 14.37 14.95 19.22 18.95 17.97 
Total 0.01 98.04 99.48 98.95 97.9 99.94 99.14 98.88 100.6 
Sc 1 8 7 6 5 3 3 3 11 
Be 20 1 < 1 2 3 1 < 1 1 1 
V 10 15 15 27 24 27 19 18 80 
Cr 30 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 
Co 1 < 1 < 1 24 2 3 2 2 9 
Ni 0.5 < 20 < 20 20 40 < 20 < 20 < 20 40 
Cu 5 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 
Zn 1 < 30 < 30 150 40 40 50 30 100 
Ga 2 19 25 24 31 18 17 17 16 
Ge 0.5 < 0.5 < 0.5 < 0.5 1.9 0.7 < 0.5 < 0.5 < 0.5 
As 1 < 5 < 5 34 < 5 < 5 19 < 5 23 
Rb 0.2 3 10 11 21 8 8 5 7 
Sr 2 87 45 49 174 427 152 176 85 
Zr 0.1 228 203 97 187 145 155 149 184 
Nb 1 13 3.1 2 14.6 4.5 6.2 11 3.7 
Mo 0.2 < 2 < 2 23 < 2 < 2 < 2 < 2 < 2 
Ag 0.1 1.7 1.3 < 0.5 1 0.9 1 0.6 1.6 
In 3 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 
Sn 0.05 2 2 3 3 1 < 1 1 3 
Sb 0.05 0.3 1.2 10.3 1.2 < 0.2 1.2 0.5 0.7 
Cs 0.01 0.9 0.4 0.4 0.6 < 0.1 < 0.1 < 0.1 0.2 
Ba 0.05 91 141 259 621 103 123 82 61 
Hf 5 6.9 8.2 4.7 8.1 4.1 4.6 4.7 8.1 
Ta 0.1 1.22 1.67 2.25 2.99 1.59 1.53 1.36 1.78 
W 0.05 < 0.5 < 0.5 0.7 < 0.5 < 0.5 < 0.5 3.3 < 0.5 
Tl 0.01 0.08 < 0.05 0.84 0.07 < 0.05 0.13 < 0.05 < 0.05 
Pb < 5 6 40 17 28 29 14 39 
Bi 0.8 1.7 1.4 1.2 1.4 1.5 1.1 1.7 
Th 18.3 18.8 26.8 21.9 35.3 35.7 34.5 31.1 
U 4.16 2.33 9.56 4.68 9.44 8.33 7.48 3.55 
La 0.01 55.8 36.7 50.1 27.1 36.1 37.5 41.4 32.4 
Ce 0.005 89.6 84.4 115 48.7 69.6 71.2 66.1 77 
Pr 0.01 12.8 9.47 13.5 5.37 6.91 6.97 7.5 8.9 
Nd 0.01 48.5 37.7 47.8 18.6 22.8 24.5 25.2 32.7 
Sm 0.01 9.39 6.59 8.76 3.3 3.94 4.61 4.38 6.41 
Eu 0.01 1.28 1.04 1.71 0.731 0.709 0.742 0.667 1.03 
Gd 0.01 8.6 5.79 7.58 2.91 3.19 4.12 3.28 5.23 
Tb 0.005 1.34 0.87 1.19 0.46 0.52 0.6 0.5 0.81 
Dy 0.01 7.57 4.65 6.45 2.45 2.8 3.26 2.84 4.38 
Ho 0.002 1.43 0.85 1.24 0.47 0.53 0.57 0.54 0.77 
Er 0.1 3.93 2.36 3.62 1.3 1.43 1.55 1.51 2.02 
Tm 0.01 0.553 0.338 0.544 0.193 0.206 0.227 0.23 0.269 
Yb 0.5 3.54 2.27 3.74 1.28 1.33 1.49 1.56 1.64 
Lu 0.05 0.546 0.37 0.636 0.206 0.205 0.238 0.259 0.248 
Y 0.5 36.4 21.8 34.8 12.7 13.9 12.8 14 16.9 



 

22 

 

Element 
Sam 

Rayburn 
South 

Somerville 
Conquista 

Tarball 
Quarry 

Somerville 
Soil Zone 

Gibbons 
Creek 

Claypits Plum 

Na 9608.76 6222.16 4298.16 8909.54 8353.38 6390.81 11643.49 421.01 

Al 71192.12 63773.68 97899.73 71599.28 71252.32 138250.10 82531.97 80832.54 

K 34424.92 27250.80 4922.18 23941.83 0.00 7454.18 23937.26 0.00 

Ca 3051.73 2148.20 15899.54 2716.74 4745.81 3755.14 5904.59 10926.76 

Sc 4.79 3.02 3.00 4.24 5.92 2.45 5.27 8.38 

Ti 801.80 353.53 512.97 787.83 2470.10 1694.50 851.09 2188.29 

V 4.72 3.77 2.31 5.76 2470.10 4.17 0.00 2188.29 

Cr 12.55 1.91 0.00 3.04 18.66 1.60 0.00 0.73 

Mn 392.06 164.04 140.29 372.01 266.48 237.22 549.35 66.08 

Fe 6306.51 10799.54 12190.63 4474.31 18466.12 4788.56 9677.72 7698.63 

Co 0.64 0.95 0.00 1.22 3.96 1.23 0.22 0.10 

Zn 75.66 57.28 92.24 48.47 56.88 35.05 81.29 10.89 

As 5.40 5.37 4.82 5.55 2.19 1.71 3.71 0.00 

Rb 217.59 184.80 16.29 210.39 149.06 33.39 154.56 2.21 

Sr 0.00 0.00 252.69 0.00 71.13 107.09 0.00 99.38 

Zr 161.41 90.30 1077.89 175.44 147.63 209.94 169.50 204.45 

Sb 0.82 0.82 0.62 0.45 0.92 1.41 0.79 0.61 

Cs 5.60 5.88 0.46 7.78 8.58 1.98 5.04 1.02 

Ba 958.91 318.62 918.07 32.06 288.72 282.96 222.04 110.96 

Hf 4.43 6.86 10.67 7.25 6.41 5.32 6.68 8.51 

Ta 1.28 3.31 4.24 1.72 1.55 3.95 1.52 1.13 

Th 16.25 16.51 57.16 14.83 12.15 15.45 25.83 18.81 

U 7.48 6.80 85.95 6.00 0.00 7.12 6.40 0.00 

La 33.69 46.64 26.67 27.87 18.32 14.40 25.30 57.54 

Ce 77.33 120.28 87.97 76.25 32.21 31.99 60.07 91.35 

Nd 19.47 55.54 50.75 19.99 10.49 16.11 25.18 45.07 

Sm 6.58 12.13 10.79 8.45 2.70 2.02 5.49 9.78 

Eu 0.68 1.44 0.20 1.00 0.29 0.28 0.58 1.32 

Tb 0.82 1.23 0.58 0.88 0.37 0.13 0.45 1.42 

Dy 6.05 8.12 3.41 6.85 2.53 0.62 4.42 7.83 

Yb 4.39 4.88 1.42 4.98 0.00 0.90 3.06 0.00 

Lu 0.71 0.76 0.18 0.75 0.39 0.11 0.43 0.60 

Table 4.  Raw NAA data from bulk volcanic ash analysis.  All elements are ppm.  
Detection limits were not given for NAA. 
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Table 4. Continued 

Element 
Koppe 
Bridge 

Graham 
Road 

Easterwood 
Alabama 

Ferry 
Hurricane 

Bayou 
Little 

Brazos 

Lower 
Little 

Brazos 

Na 2847.35 7536.44 7687.80 504.35 534.70 1587.39 835.79 

Al 108310.80 101056.60 132683.80 89588.29 84558.23 89377.84 92336.09 

K 0.00 0.00 7684.31 0.00 0.00 0.00 0.00 

Ca 9453.02 2806.59 9154.15 18209.11 13221.58 18746.19 9534.42 

Sc 6.60 6.20 4.52 3.19 2.89 3.14 11.11 

Ti 2062.45 1622.70 2115.92 1335.78 1263.49 1674.98 2026.16 

V 9.78 23.43 17.97 15.57 11.71 16.14 2026.16 

Cr 4.17 0.00 6.48 2.75 2.24 1.64 5.99 

Mn 42.94 162.36 164.36 45.55 128.04 44.53 60.47 

Fe 17381.83 43164.95 10866.30 56221.45 51382.16 55545.75 146398.30 

Co 0.98 23.94 2.93 2.63 2.17 2.38 9.14 

Zn 21.03 294.94 71.25 75.29 50.10 69.36 98.49 

As 1.99 43.60 1.59 1.25 0.83 18.04 20.11 

Rb 10.29 15.95 19.51 0.00 0.00 0.00 0.00 

Sr 0.00 0.00 339.66 787.54 269.19 173.59 42.27 

Zr 196.81 207.75 266.33 207.81 236.71 143.39 130.68 

Sb 1.20 10.36 0.75 1.05 0.43 0.97 1.12 

Cs 0.18 0.25 0.64 0.00 0.00 0.00 0.00 

Ba 137.72 336.50 652.66 173.48 157.65 213.44 81.18 

Hf 9.41 5.80 8.89 5.95 5.17 5.38 9.31 

Ta 1.41 2.18 2.43 1.42 1.44 1.34 1.90 

Th 17.59 24.57 20.67 35.94 34.67 31.85 31.26 

U 2.29 12.64 4.43 10.03 7.56 8.81 0.00 

La 36.17 56.22 24.91 37.29 39.96 36.63 32.11 

Ce 85.57 124.11 45.18 70.88 73.18 70.32 77.55 

Nd 53.04 62.99 31.62 33.41 41.78 31.24 28.75 

Sm 6.86 9.96 3.50 4.76 4.47 4.74 6.54 

Eu 1.12 1.39 0.67 0.70 0.70 0.71 1.00 

Tb 0.68 0.90 0.29 0.39 0.38 0.23 0.72 

Dy 4.00 6.31 1.95 3.29 2.91 2.62 4.31 

Yb 2.18 3.69 1.27 1.62 1.53 1.34 0.00 

Lu 0.31 0.46 0.16 0.21 0.22 0.19 0.33 
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The bulk volcanic ash ICPMS data was corrected for loss on ignition (LOI) and 

is plotted on a total alkali versus silica (TAS) diagram (Figure 5).  These volcanic ash 

samples show a range of alkali (Na2O + K2O) content and silica (SiO2) content, but the 

composition reflects combined composition of voclanic ash components and alteration 

products.  Voclanic ash composition occurs in two clusters, with one plotting in the 

rhyolite field and the other in the dacite field.   

 

 
Figure 5.  TAS diagram (Le Bas 1986) showing Na2O + K2O versus SiO2 data from the 
ICPMS bulk volcanic ash analysis.  Data is corrected for LOI and is in wt %.  Plotted 

with GCDkit (Janoušek et al. 2006). 
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The ICPMS trace element data is plotted in Figure 6 in a form normalized to 

primitive mantle values of McDonough and Sun (1995).   Trace element compositions 

for all samples are similar with some variation in Rb, Ba, Nb, K, Sr and P.  Elements 

plotted to the left of La are more abundant than those to the right except for Nb.  All of 

the samples are depleted in Nb, P and Ti.  The samples dominated by volcanic glass 

shards, Sam Rayburn, Conquista, South Somerville, Tarball Quarry and Claypits can be 

identified by their lower level (600-800 ppm) of Ti (Table 3).  The Conquista volcanic 

ash stands out with noticeably higher level of U, slightly higher Th and a lower level of 

Ba.   

 

 
Figure 6.  Trace element data from ICPMS analysis of bulk volcanic ash samples.  

Values are in ppm and normalized to the primitive mantle values of McDonough and 
Sun (1995). 
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The REE data was collected from ICPMS analysis of bulk volcanic ash is plotted 

in Figure 7 in a form normalized to chondrite values of McDonough and Sun (1995).  

The REE composition is generally the same with all bulk volcanic ash samples, 

exhibiting enrichment in light rare earth elements (LREE) and very similar values for all 

heavy rare earth elements (HREE).  The HREE have a flat or slightly concave-up trace 

on the diagram.  The Conquista ash has a greater Eu anomaly compared to other samples 

and the Gibbons Creek ash has the lowest REE values of all the samples.  

 

 
Figure 7.  REE data from ICPMS analysis of bulk volcanic ash.  All values are in ppm 

and normalized to the chondrite values of McDonough and Sun (1995). 
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La/Yb ratios show the degree of fractionation in the light and heavy REE and can 

be used to characterize the volcanic ash samples.  The glass-dominated Tarball Quarry, 

Sam Rayburn, South Somerville, Claypits, and Somerville Soil Zone samples exhibit 

lower levels of fractionation with La/Yb ratios between 4 and 8, excluding the Conquista 

ash outlier that is closer to 12 (Figure 8).  The Graham Road, Plum, Koppe Bridge, 

Conquista, Gibbons Creek, Easterwood, Lower Little Brazos, Little Brazos, Alabama 

Ferry and Hurricane Bayou samples all have La/Yb ratios from 9 to 19.   

 

 
Figure 8.  Plot of La/Yb versus Yb showing the measure of the degree of REE 

fractionation with changing REE content in bulk volcanic ash data from ICPMS 
analysis.  Glass-dominated samples are circled.  Values are in ppm and normalized to the 

chondrite values of McDonough and Sun (1995). 
 

 

 



 

28 

 

La/Sm ratios can be used to distinguish the volcanic ash samples into two groups 

by the level of LREE fractionation.  The Easterwood, Hurricane Bayou, Alabama Ferry, 

Somerville Soil Zone, and Gibbons Creek samples show higher levels of LREE 

fractionation with La/Sm ratios between 5 and 7.5 (Figure 9).  The South Somerville, 

Tarball Quarry, Plum, Graham Road, Koppe Bridge, Sam Rayburn, Lower Little Brazos, 

Claypits, and Conquista samples exhibit lower levels of LREE fractionation with La/Sm 

ratios from 2 to 4.  

 

 
Figure 9.  Plot of La/Sm versus Sm showing the degree of LREE fractionation with 

changing REE content in bulk volcanic ash from ICPMS analysis.  Values are in ppm 
and normalized to chondrite values of McDonough and Sun (1995). 
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Volcanic Glass Shard Chemistry 

Major element data from microprobe analysis of individual volcanic glass shards 

is available from seven ash beds in the Late Eocene Manning Formation and the Early 

Oligocene Catahoula Formation (Table 5).  All plots and tables list the volcanic ash 

samples in stratigraphic order from youngest (Sam Rayburn) to oldest (Claypits).  

Results from the Claypits, Sam Rayburn and Seale Ranch (Muldoon average) volcanic 

ashes previously analyzed by Yancey and Guillemette (1998) are shown for comparison.  

Analysis of the Sam Rayburn volcanic glass is repeated in this study with the original 

volcanic glass shards used by Yancey and Guillemette (1998) and showed good 

reproducibility between the two analyses.  The South Somerville volcanic glass shard 

sample is equivalent to the Top Jackson volcanic glass shard sample from Yancey and 

Guillemette (1998) and the two analyses also show good reproducibility even though 

they were collected at different times. 

 

Element 
Sam 

Rayburn 
Conquista 

South 
Somerville 

Tarball 
Somerville 
Soil Zone 

Seale 
Ranch 

Claypits 

Number  
Analyses 

63 37 37 20 82 56 33 

SiO2 74.40 (0.50) 72.63 (0.36) 72.05 (0.32) 72.13 (0.29) 73.40 (0.50) 73.95 (0.60) 72.80 (0.30) 

Al2O3 12.00 (0.10) 11.37 (0.10) 11.49 (0.15) 11.77 (0.13) 11.80 (0.10) 11.90 (0.30) 11.60 (0.10) 

K2O 4.30 (0.30) 5.89 (0.09) 6.09 (0.13) 6.27 (0.13) 5.80 (0.40) 4.50 (0.35) 5.20 (0.10) 

CaO 0.39 (0.50) 0.33 (0.02) 0.38 (0.03) 0.36 (0.02) 0.41 (0.06) 0.39 (0.17) 0.30 (0.02) 

Na2O 1.60 (0.08) 2.52 (0.12) 2.32 (0.27) 2.10 (0.12) 2.13 (0.30) 2.10 (0.30) 2.70 (0.10) 

FeO 0.58 (0.12) 0.79 (0.06) 0.93 (0.06)  0.64 (0.05) 0.72 (0.10) 0.83 (0.18) 0.53 (0.05) 

Total wt% 93.48 (0.38) 93.73 (0.57) 93.53 (0.40) 93.55 (0.39) 94.38 (0.96) 93.95 (0.90) 93.36 (0.37) 

Table 5.  Electron microprobe data in wt % from the analysis of individual volcanic 
glass shards.  Data is shown as an average of analyses with total wt % over 93 %.  
Values in parentheses are one standard deviation.  Results from the Claypits, Sam 
Rayburn and Seale Ranch (Muldoon average) volcanic ashes are from Yancey and 

Guillemette (1998). 
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Backscatter electron (BSE) images taken from the volcanic glass shard separates 

prior to analysis show cuspate volcanic glass shards with some shards containing 

bubbles (Figure 10).  Volcanic glass shards within the South Somerville, Conquista and 

Tarball Quarry samples range from 400 to 100 µm with the South Somerville containing 

the coarsest glass shards. 

 

 
Figure 10.  BSE images showing the South Somerville, Conquista and Tarball Quarry 

volcanic glass separates.  Examples of glass are given for each sample. 
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Many of the glass shards give analytical totals substantially below 100 %.  

Following the procedures of Yancey and Guillemette (1998), shards with totals less than 

93 % are considered too altered to be a good representation of the original chemistry and 

are not discussed.  The devitrification of volcanic glass shards is an alteration process 

that involves a loss of the more mobile elements and subsequent hydration.  Na and K 

are more mobile than Ca and Si, with Al and Fe being the least mobile during alteration 

of the major elements.  The lower wt % total corresponds to lower levels of Na and K in 

most of the glass analyses.  This decrease in alkali corresponding with total wt % is 

present in the South Somerville sample, but is more pronounced in the Tarball Quarry 

sample that contains the smallest glass shards (Figure 11).   

 
Figure 11.  Alkali data plotted versus total wt % for the South Somerville and Tarball 
Quarry individual glass shard analyses.  The 93 total wt % cut off from Yancey and 

Guillemette (1998) is shown. 
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Major element data is fairly consistent in the volcanic ash samples with 

preserved glass shards.  The seven samples containing glass shards all carry a 

geochemical fingerprint corresponding to sub-alkaline (<10 % alkali) rhyolitic magma 

on a TAS diagram (Figure 12).  The volcanic glass shards have variable total alkali 

content with samples from the Conquista, South Somerville, Claypits, Tarball Quarry 

and Somerville Soil Zone being comparable to each other in Na, K and Si composition, 

but the Seale Ranch and Sam Rayburn samples have lower alkali content.  The Na2O 

content of the Sam Rayburn volcanic glass shards is significantly lower (72% of the 

average) than other samples, and it also has the highest SiO2 content.  The largest 

variation in the major elements is in FeO content, but FeO is less than one percent in all 

samples.   

Comparison of bulk volcanic ash ICMPS data to the microprobe glass shard data 

from the Sam Rayburn, Conquista, South Somerville, Tarball Quarry, Somerville Soil 

Zone and Claypits samples show differences in the major element values between the 

two data sets.  All of the samples show a loss of Na2O, K2O, and SiO2 with a subsequent 

gain in Al2O3, FeO, and CaO in the bulk volcanic ash data (Table 3; Table 5).   
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Figure 12.  TAS diagram (Le Bas 1986) showing Na2O + K2O versus SiO2 data from the 

seven glass bearing volcanic ashes.  Data is normalized to 100 wt %.  Claypits, 
Somerville Soil Zone and Seale Ranch data are from Guillemette and Yancey (1998). 

Plotted using GCDkit software (Janoušek et al. 2006). 
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Trace element and REE data obtained from NAA of volcanic glass shards is 

presented in Table 6 in ppm.  The Somerville Soil Zone and Seale Ranch volcanic ash 

samples contained enough volcanic glass shards for microprobe analysis, but not enough 

for NAA.   

 

Element 
Sam 

Rayburn 
Conquista 

South 
Somerville 

Tarball Claypits 

Na 8290.19 17887.03 16521.96 11127.32 18729.77 
Al 67526.60 61096.66 60686.55 62608.50 62362.00 
K 32069.54 47644.32 46374.01 29226.15 42926.27 
Ca <3000 <2000 2789.64 2351.86 3278.13 
Sc 5.13 1.85 2.25 3.84 4.49 
Ti <3000 <2000 <2000 <2000 <3000 
V <30 <30 <30 <30 <30 
Cr 12.67 9.60 10.08 11.74 21.11 
Mn 468.09 587.03 394.41 717.74 605.66 
Fe 7198.34 6470.06 7430.28 5151.35 5758.20 
Co 1.54 0.34 0.62 0.81 1.68 
Zn 63.23 46.95 51.73 89.89 76.91 
As 8.77 3.32 2.69 1.93 4.66 
Rb 223.88 267.33 201.89 227.95 218.96 
Zr 138.74 101.87 150.92 118.53 124.11 
Sb 3.18 0.89 1.60 1.73 1.76 
Cs 5.84 9.03 6.99 7.73 6.32 
Ba 672.92 62.48 128.20 89.29 180.72 
Hf 4.38 5.51 5.35 5.91 4.71 
Ta 1.38 2.83 2.15 1.57 1.54 
Th 16.82 34.56 22.18 17.61 23.22 
U 5.56 9.74 5.20 4.05 7.45 
La 22.36 29.68 50.17 25.64 25.41 
Ce 54.60 71.50 102.66 58.32 55.97 
Nd 18.80 22.83 33.43 26.49 23.45 
Sm 6.02 8.02 7.06 5.65 5.40 
Eu 0.41 0.11 0.20 0.60 0.41 
Tb 0.87 1.29 0.89 0.90 1.03 
Dy 6.13 8.27 5.42 4.46 7.25 
Yb 3.63 6.51 4.69 3.83 4.99 
Lu 0.46 1.07 0.63 0.47 0.57 

Table 6.  Raw NAA data of volcanic glass shards. <Number = below detection limit. 
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Trace element compositions of the volcanic glass samples are similar with Ba 

showing the most variation (Figure 13).  Elements plotted to the left of La are more 

abundant than those to the right except for Ba.  All of the samples are depleted in Ba, but 

the Sam Rayburn sample has a significantly higher level of Ba.   

 

 
Figure 13.  Trace element data from NAA of volcanic glass shards.  All values are in 
ppm and normalized to the primitive mantle values of McDonough and Sun (1995). 
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REE compositions for the glass shard analysis are all very similar (Figure 14).  

Gd values were calculated using the slope of Sm to Tb to show the negative Eu anomaly 

and the values are normalized to the chondrite values of Sun and McDonough (1995).  

The samples show LREE enrichment with a moderate to large Eu anomaly and a flat 

HREE pattern.    

 

 
Figure 14.  REE data from NAA of volcanic glass shards.  Values are in ppm and 

normalized to the chondrite values of Sun and McDonough (1995). 
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Apatite Phenocryst Chemistry 

Apatite phenocryst analysis provides an additional tool to support correlations 

identified by bulk volcanic ash analysis.  Individual apatite phenocrysts from the four 

Crockett Formation ash samples were analyzed by electron microprobe (Table 7).  

Apatite analysis provided data on major element, trace element and REE reported in wt 

% oxide.  Elements such as Mg, Cl, Mn, Fe, Ce and Y had sufficient variability to be 

efficient discriminators.   

 

Element Little Brazos 
Alabama 
Ferry 

Hurricane 
Bayou 

Lower Little 
Brazos 

Number Analyses 11 11 11 11 

 F (wt %) 2.502 (0.23) 2.431 (0.15) 2.429 (0.21) 3.287 (0.45) 

MgO 0.113 (0.05) 0.094 (0.04) 0.115 (0.05) 0.186 (0.08) 

P2O5 41.797 (0.38) 41.663 (0.25) 41.795 (0.53) 42.055 (0.31) 

Cl 0.954 (0.11) 0.940 (0.08) 0.915 (0.11) 0.540 (0.10) 

CaO 54.340 (0.25) 54.208 (0.22) 54.220 (0.15) 54.307 (0.23) 

MnO 0.211 (0.02) 0.214 (0.01) 0.201 (0.03) 0.128 (0.04) 

FeO 0.195 (0.05) 0.179 (0.04) 0.205 (0.06) 0.257 (0.07) 

SrO 0.054 (0.01) 0.050 (0.01) 0.055 (0.01) 0.072 (0.02) 

Y2O3 0.114 (0.04) 0.121 (0.03) 0.129 (0.02) 0.165 (0.05) 

La2O3 0.174 (0.06) 0.207 (0.04) 0.209 (0.05) 0.157 (0.05) 

Ce2O3 0.394 (0.11) 0.465 (0.11) 0.474 (0.08) 0.378 (0.12) 

Nd2O3 0.200 (0.06) 0.227 (0.06) 0.224 (0.04) 0.242 (0.07) 

Total (wt %) 100.339 (0.35) 100.146 (0.26) 100.330 (0.58) 100.480 (0.37) 

Table 7.  Raw data shown as average wt % from microprobe analysis of individual 
apatite phenocrysts.  Values in parentheses are one standard deviation. 
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 The Little Brazos, Alabama Ferry and Hurricane Bayou apatite analyses cluster 

closely together on a plot of Cl versus Mg versus Mn (Figure 15).  The Lower Little 

Brazos sample is comparable to the other samples, but has lower levels of Cl and Mn.  

There are two outliers in the dataset, but two definitive groupings are shown in the plot.    

 

 
Figure 15.  Plot of Mg versus Mn versus Cl (wt %) from individual apatite microprobe 

analysis.  Plotted using GCDkit software (Janoušek et al. 2006). 
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40Ar/39Ar Dating 

 Radiometric ages are available from 40Ar/39Ar dating of individual sanidine 

phenocrysts separated from the volcanic ash beds.  Nine volcanic ash beds of the 16 

submitted contained sanidine crystals large enough to be effectively dated using the 

single crystal method of analysis (Table 8).  Detailed results are presented in Appendix 

A. 

 

Sample MSWD n/n Age(Ma) 2σ 
Catahoula 1.5 17/26 30.65 ±0.06 
Conquista 11.1 26/29 34.07 ±0.08 
South Somerville 1.3 19/22 34.10 ±0.02 
Tarball Quarry 1.4 4/17 34.39 ±0.10 
Somerville Soil Zone 0.8 8/28 34.91 ±0.20 
Gibbons Creek 9.0 23/27 34.54 ±0.03 
Graham Road 2.1 7/11 35.83 ±0.13 
Easterwood 0.3 10/19 36.86 ±0.07 
Hurricane Bayou 1.3 9/24 41.79 ±0.02 

Table 8.  Summary table of 40Ar/39Ar dating of individual sanidine phenocrysts.  n/n = 
number grains providing preferred age/number of grains dated.  MSWD = mean square 

of weighted deviates.  All errors at 2σ and include error in J factor.  Error in decay 
constant not included.  

 

Sanidine phenocrysts in the samples are mostly about 125 µm in size, therefore 

yielding a low volume of argon, except for the Gibbons Creek and South Somerville 

sanidines that were significantly coarser at 350 µm.  Each sanidine separate from a 

volcanic ash bed contained a cluster of sanidine grains with similar ages mixed with a 

variable amount of older grain ages.  Weighted mean ages are calculated for the 

dominant age mode, correcting for the skew in age created by older grains.  The 

uncertainty associated with the ages varies greatly, with the South Somerville ash having 
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the lowest uncertainty (±0.02) and the Somerville Soil Zone with the highest uncertainty 

(±0.20) (Figure 16).  All of the determined ages agree with the in stratigraphic order of 

the ash beds except for the Somerville Soil Zone ash, the volcanic ash bed with the 

lowest level of accuracy.   

The group of grain ages used to calculate each ash bed age is based upon culling 

older grains until the mean square of weighted deviates (MSWD) is between one and 

two, indicating that the ages are distributed normally.  The Conquista and Gibbons Creek 

sanidines are two exceptions to this method, with the MSWD values between eight and 

twelve.  The sanidine grains dated for these two samples do not have an obvious cutoff 

for older grains that could have been brought in by reworking or inherited by 

incorporation of older rock or magma at the eruption source, so the majority of grain 

ages were included in calculations to determine the age of eruption that produced the 

volcanic ash bed. 
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Figure 16.  Summary of age probability data presented in stratigraphic order from 

youngest to oldest. 
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DISCUSSION 

 

40Ar/39Ar Dating  

Five of the nine new age dates, from volcanic ash beds in Manning Formation 

strata, group with a published age date of 34.93 ±0.12 Ma for the Claypits ash bed 

(Guillemette and Yancey 1996), ranging in age from 34.93 ±0.12 Ma to 34.07 ±0.08 Ma.  

Four of the age dates come from volcanic ash beds 1 m or more in thickness, indicating a 

time of major eruptive activity with frequent large eruptions.  The Somerville Soil Zone 

ash date of 34.91 ±0.20 is excluded from this discussion because it includes a significant 

population of inherited grains, with some of them as old as 1000 Ma.  This volcanic ash 

bed also contains sponge spicules, small woody particles and rooting from overlying 

lignite that indicate that the ash could have been mixed at the time of deposition.  For 

these reasons the Somerville Soil Zone ash radiometric date is considered invalid.  An 

age date of 34.4 ±0.4 Ma for this same ash bed reported by Guillemette and Yancey 

(1996) and Yancey and Guillemette (1998) is dismissed for the same reason; mixing 

with older sanidines. This problematic condition is revealed with the new dating work. 

Two dates are available for the Yegua Formation, having ages one million years 

older and two million years older than the Manning ages.  This indicates less frequent 

times of major eruptive activity during the time of deposition of the Yegua Formation.  

The Crockett Formation date of 41.79 ±0.02 Ma is five million years older and is the 

oldest major eruptive event recorded in the east Texas section.  Marine strata of the 

Crockett Formation contain at least four other thin volcanic ash beds bracketing the 
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dated ash bed, indicating frequent small scale eruptions but fewer major eruptions than 

during the Late Eocene. 

Correlation of Volcanic Ash Beds 

Plotting of bulk volcanic ash data on a TAS diagram (Figure 5; Figure 12) shows 

that the major element compositions of bulk volcanic ash is controlled primarily by the 

amount of diagenetic alteration the ash bed experiences after deposition.  Therefore, the 

major element composition of volcanic glass shards (determined by microprobe 

analysis) is used to determine the potential for geochemical fingerprinting and 

correlation.  The results obtained in this study are similar to those of Guillemette and 

Yancey (1996) and Yancey and Guillemette (1998) in showing that major element 

composition is very similar among glass shard-rich samples and major element data is of 

little use in correlation of individual volcanic ash beds.  However, Guillemette and 

Yancey (1996) found that FeO levels proved to be an effective discriminator between 

middle and upper Manning Formation volcanic ashes.  The Fe wt % content of glass 

shards is low, but the non-overlap of standard deviation on element abundance shows a 

real difference in composition.  The new data obtained in this study supports that 

determination, except that the Seale Ranch sample has a high standard deviation value 

(0.18) and thus is not a reliable sample for use of the Fe wt % determinations in 

correlation.  Among other Manning Formation samples there is a minor trend of 

changing Fe content through the section.  The trend needs to be validated with sampling 

in other stratigraphic sections.  
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Three of the volcanic ash beds have definite or possible lateral occurrence in the 

Gulf coastal plains section: the Crockett, Caddell and South Somerville.  The South 

Somerville and Plum bulk volcanic ash deposits Inductively Coupled Plasma Mass 

Spectrometry (ICPMS) analyses have similar rare earth element (REE) values (Figure 

17).  The Plum volcanic ash has been thought to be located in the basal Manning 

Formation by correlation of a resistant sandstone that resides below the ash bed (Stenzel 

1953).  Resistant sandstone beds become more common upward in the section, so it is 

possible that these two volcanic ashes are equivalent and located in the Upper Manning.  

Successful radiometric dating of the Plum sample would help test this correlation. 

 

 
Figure 17.  REE data from ICPMS analysis of the South Somerville volcanic ash in 

Brazos County and Plum volcanic ash in Fayette County.  Values are in parts per million 
(ppm) and normalized to chondrite values of McDonough and Sun (1995). 
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Michaelides (2011) reported REE ICPMS data on a Caddell Formation volcanic 

ash that is stratigraphically equivalent to the Koppe Bridge ash (Figure 18).  The McBA 

Gonzales County volcanic ash (of Michaelides 2011) is close in REE composition to the 

Koppe Bridge sample and the two deposits are thought to be stratigraphically equivalent 

(Chen 1968).  It is possible that these two samples are deposits of the same volcanic ash.  

Palynology work on the Gonzales County samples would help to constrain this 

correlation.   

 

 
Figure 18. REE data from ICPMS analysis of the Koppe Bridge volcanic ash sample in 
Brazos County in comparison with the McBA (R5) volcanic ash sample from Gonzales 

County (Michaelides 2011).  Values are in parts ppm and normalized to chondrite values 
of McDonough and Sun (1995). 
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Stratigraphic, paleontologic and mineralogical control indicate that the Little 

Brazos, Alabama Ferry and Hurricane Bayou volcanic ash bed occurrences are lateral 

exposures of the same thick volcanic ash bed.  This conclusion is reinforced by the close 

similarity in elemental composition on bulk rock samples and on the high similarity of 

apatite phenocryst composition.  There is an age date of 41.85 ±0.38 Ma for the Little 

Brazos ash exposure (Guillemette and Yancey 1996; Yancey and Guillemette 1998) and 

an age date of 42.0 ±0.8 Ma (Berggren et al. 1992) for the Alabama Ferry exposure as 

well as an unpublished age date of 41.66 ±0.52 Ma (John Obradovich to T. Yancey 

1997) for the Alabama Ferry exposure.  Although varied, these dates are within the 

assigned uncertainties of each other and the Obradovich dates have not been recalibrated 

to the new Heizler dates (New Mexico Tech).  These are dates from different labs 

following different protocols and all could possibly be equivalent.   

Data from the apatite analysis can be used to discriminate between the Little 

Brazos and Lower Little Brazos Crockett Formation ashes.  Apatite analysis has proven 

to be an efficient method to correlate highly altered volcanic ash beds that are from a 

similar tectonic setting.  The Little Brazos, Alabama Ferry and Hurricane Bayou bulk 

volcanic ash ICPMS data are very close in trace element and REE composition, whereas 

the Lower Little Brazos bulk volcanic ash is similar but slightly different (Figure 19; 

Figure 20).  Minor variance in Rb, Ba, Nb, K, Sr and P could be caused by alteration 

mobilizing these elements.  Studies have found that during the alteration of volcanic 

glass to clay, elements such as Zr, Nb and P can be mobilized (Zielinski 1982, 1985).  

Minor variation in Nb could also be caused by the fractionation of fergusonite or 
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ferrocolumbite in the melt that are known to concentrate Nb (Sheard et. al 2012).  Biotite 

has also been found to fractionate Nb (Pearce and Norry 1979; Stepanov and Hermann 

2013).   

 
Figure 19.  Trace element data from ICPMS analysis of bulk volcanic ash.  All values 

are in ppm and normalized to the primitive mantle values of McDonough and Sun 
(1995). 

 
Figure 20.  REE data from ICPMS analysis of bulk volcanic ash.  Values are in ppm and 

normalized to primitive mantle values of McDonough and Sun (1995). 
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Trace element and REE data from the apatite phenocrysts provide additional 

evidence that the Little Brazos, Alabama Ferry and Hurricane Bayou deposits are part of 

the same volcanic ash bed.  A plot of Mg versus Mn versus Fe shows they have the same 

range in composition.  The Lower Little Brazos is lower in Mn and forms a distinct 

group, although there is some overlap between the two groups (Figure 21).  The plots of 

Fe versus Mg versus Mn provide additional evidence to the plot of Cl versus Mg versus 

Mn (Figure 15) that the two clusters are distinct and apatites of the Lower little Brazos 

ash are compositionally different from the Little Brazos, Alabama Ferry and Hurricane 

Bayou samples. 

 
Figure 21.  Plot of Fe versus Mg versus Mn (wt %) from individual apatite microprobe 

analysis.  Plotted using GCDkit software (Janoušek et al. 2006). 
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The ratio of Ce/Y shows the degree of fractionation in the light rare earth 

elements (LREE) and the heavy rare earth elements (HREE) (Figure 22).  The Little 

Brazos, Alabama Ferry and Hurricane Bayou ash samples are within the same range of 

each other, with the Lower Little Brazos sample being comparable, yet slightly lower in 

Ce content.  The similar slope of the different analyses indicates that the apatites were 

crystallized from a similar source.   

 
Figure 22.  Plot of Ce versus Y (wt %) from microprobe analysis of individual apatite 

phenocrysts.  Plotted using GCDkit software (Janoušek et al. 2006). 
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Grigsby (1999) reported REE data from ICPMS bulk ash analysis of Eocene 

volcanic ash beds located in northern Louisiana.  He found the St. Johns volcanic ash 

bed of the Cook Mountain Formation to be equivalent to the Hurricane Bayou volcanic 

ash deposit.  Data from Grigsby (personal communication) is plotted with data for the 

Hurricane Bayou sample showing the Crockett Formation bulk volcanic ash REE pattern 

is very similar to the St. Johns bentonite of Claiborne Parish, Louisiana (Figure 23).  The 

St. Johns volcanic ash bed is possibly a lateral extension of the same ash deposit located 

in the Crockett Formation.  This correlation to the St. Johns deposit is tentative and 

would be more definitive if there was microprobe apatite data available for the St. Johns 

bentonite.   

 

 
Figure 23. Comparison of ICPMS bulk volcanic ash data of Crockett and Cook 

Mountain Formation (JGIC) ash beds (Jeff Grigsby personal communication).  Values 
are in ppm and normalized to chondrite values of McDonough and Sun (1995).  
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Patterns of Volcanic Ash Alteration  

Comparison of bulk volcanic ash ICPMS data to microprobe-determined glass 

shard data reveal how diagenesis has altered the composition of volcanic ashes.  The 

Chemical Index of Alteration (CIA) is a good measure of the degree of chemical 

alteration the ash has undergone (Nesbitt and Young 1982).  The values can range from 

0-100 with 100 being the most altered.  For example, kaolinite has a CIA of 100, illite 

falls in the range of 75-90 and feldspars are at 50 (Nesbitt and Young 1982; Fedo et al. 

1995).   

CIA = [Al2O3/(Al2O3 + CaO + Na2O + K2O)]*100 

The glass-dominated samples of Sam Rayburn, South Somerville, Tarball 

Quarry, Somerville Soil Zone and Claypits all have lower bulk volcanic ash CIA levels 

with the Conquista being an outlier with approximately 10% higher values (Table 9).  

The Gibbons Creek, Plum, Koppe Bridge, Graham Road, Easterwood, Alabama Ferry, 

Hurricane Bayou, Little Brazos and Lower Little Brazos, which are dominated by 

smectite and kaolinite, show higher levels of alteration.  The glass shard analyses show 

much lower levels of alteration, although Sam Rayburn has a higher CIA than the others.  

The Conquista glass is on trend with the rest of the glass analyses CIA.   
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Sample Bulk ash CIA Glass Shard CIA 
Sam Rayburn 72 66 
Conquista 85 57 
South Somerville 75 57 
Tarball Quarry 76 57 
Somerville Soil Zone 78  
Gibbons Creek 91  
Claypits 74 59 
Plum 90  
Koppe Bridge 92  
Graham Road 91  
Easterwood 88  
Alabama Ferry 86  
Hurricane Bayou 85  
Little Brazos 89  
Lower Little Brazos 91  

Table 9. Chemical Index of Alteration (CIA) values of raw bulk volcanic ash ICPMS 
data and microprobe glass shard analysis (Nesbitt and Young 1982; Fedo et al. 1995). 
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When major elements are plotted on a total alkali versus silica (TAS) diagram the 

loss in Na2O, K2O, and SiO2 is illustrated (Figure 24).  The bulk volcanic ash samples 

have undergone different levels of alteration depending on their depositional setting and 

that is reflected in the mobility of the major elements.  These changes in composition 

increase with greater alteration of the bulk volcanic ash.  The REE profiles of all of the 

volcanic ashes are consistent with rhyolitic volcanism and this supports the interpretation 

that the major element data is showing alteration trends (Figure 7). 

 

 
 

Figure 24.  Total Alkali versus Silica (TAS) diagram (Le Bas 1986) showing Na2O + 
K2O versus SiO2 in wt %.  Volcanic glass shard microprobe data are circled and the bulk 
ICPMS data is plotted for comparison.  The microprobe data is normalized to 100 total 
wt % and the ICPMS data is corrected for loss on ignition (LOI).  Claypits, Somerville 
Soil Zone and Sam Rayburn volcanic glass shard data are from Yancey and Guillemette 

(1998).  Plotted using GCDkit software (Janoušek et al. 2006). 
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When data from NAA of bulk volcanic ash and volcanic glass shards are 

compared, the two data sets show the same general trends but there is either enrichment 

or depletion in some of the elements (Figure 25).  Al, Sc, Fe, Hf and Ta show consistent 

enrichment in the bulk volcanic ash data that could be caused by elements being 

concentrated in an insoluble residue, and Fe is easily incorporated into clay minerals 

(Zielinski 1982; dos Muchangos 2006).  Na, K, Mn, Rb, Cs, and Cr are depleted in the 

bulk volcanic ash data due to the leaching of soluble ions.  Co, Zn, As, Zr and Ba show 

variable behavior between the bulk volcanic ash and volcanic glass shard data.  The REE 

show an inconsistent behavior regarding enrichment and depletion, yet are comparable 

between the two datasets.  The bulk volcanic ash data shows higher levels of Eu, due to 

the bulk volcanic ash containing feldspar phenocrysts that exhibit a positive Eu anomaly 

(Rollinson 1993).  Contamination of foreign grains by reworking could alter the bulk 

volcanic ash data although these volcanic ash beds show no sign of major reworking. 
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Figure 25.  Relative enrichment or depletion of selected elements from NAA in bulk 

volcanic ash compared to volcanic glass shard data.  All values are in ppm. 

 

The Conquista sample shows the greatest difference in between the bulk volcanic 

ash and glass shard data with major variation in many of the elements (Figure 25).  

There is not only variation in the more mobile elements (Rb, Ba and K) but there is also 

variation in some elements that are thought to be immobile through low temperature 

alteration (HREE).  The Conquista bulk volcanic ash also stands out with higher levels 

of U and Th in the ICPMS data as well (Figure 6).  The Conquista volcanic ash is 

located in a uranium mine in Karnes County, Texas and has been exposed to U-rich 

groundwater during the U transport process (Fisher et al. 1970).   
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Possible Source of Volcanic Ash  

Previous studies have suggested that the Sierra Madre Occidental of Mexico, the 

Trans-Pecos volcanic province of west Texas, or the Mogollon-Datil volcanic field of 

New Mexico could be the source of these volcanic ash beds (Guillemette and Yancey 

1996, Yancey and Guillemette 1998; Grigsby 1999; Michaelides 2011).  Volcanism 

during the Eocene was related to volcanic intrusion at the continental margin during 

subduction, whereas the Oligocene volcanic activity consists mostly of a large 

outpouring of felsic ash flow tuffs that erupted during a shift in tectonic setting from 

subduction to intraplate extension (Aguirre-Diaz and McDowell 1991).  The Sierra 

Madre Occidental and Trans-Pecos actively erupted rhyolitic volcanics through the 

Eocene and the activity increased into the Oligocene, with a period of high intensity 

volcanism extending from 46 Ma to 27.5 Ma (McDowell and Mauger, 1994).  The Sierra 

Madre Occidental volcanism is mostly calc-alkaline and is dominated by rhyolite (Henry 

et al. 1991; Ferrari et al. 2007).  The Trans-Pecos of west Texas produced strictly 

alkaline volcanism nearly continuously from 48 to 17 Ma, although the degree of 

alkalinity varies (Nelson et al. 1987).  The Mogollon-Datil erupted calc-alkalic rocks 

ranging from basalt to rhyolite with high K content from approximately 40 to 18 Ma 

(Bornhorst 1980).   

Major elements can be useful as a classification method that can help to identify 

possible source regions.  All seven glass shard-bearing volcanic ash samples from the 

Catahoula and Manning Formations have the geochemical signature of sub-alkaline, 

rhyolitic volcanism (Figure 12), and are within TAS diagram ranges of volcanic rocks 



 

57 

 

from the Sierra Madre Occidental and Trans-Pecos reported in Webber and others 

(1994), Ferrari and others (2007) and Parker and White (2008). 

CIPW Norm calculations are done using GDCkit software (Janoušek et al. 2006) 

to calculate the normative mineralogy of the whole rock composition (Table 10).  This 

calculation takes the volcanic glass shard chemistry and estimates what the ideal 

mineralogy of the whole volcanic ash would be based on those values.  The Sam 

Rayburn and Seale Ranch samples have the highest amount of normative quartz.  The 

presence of quartz in the normative mineralogy and no other silica containing minerals, 

such as leucite or sodalite, classifies the ideal whole rock composition as oversaturated 

with silica.  The presence of corundum in the normative mineralogy is from an excess of 

Al2O3.  All samples contain normative corundum, so they are classified as peraluminous.   

 

Mineral 
Sam 

Rayburn 
Conquista 

South 
Somerville 

Tarball 
Quarry 

Somerville 
Soil Zone 

Seale 
Ranch 

Claypits 

Quartz 47.315 34.062 33.655 34.631 37.332 42.983 36.107 

Corundum 4.004 0.249 0.39 0.879 1.272 2.865 0.984 

Orthoclase 25.412 34.808 35.99 37.05 34.276 26.594 30.73 

Albite 13.539 21.324 19.631 17.757 18.023 17.77 22.847 

Anorthite 1.935 1.637 1.885 1.77 2.034 1.935 1.488 

Hypersthene 1.065 1.451 1.708 1.17 1.322 1.524 0.973 

Sum 93.27 93.53 93.26 93.257 94.26 93.67 93.13 

Table 10.  CIPW Norm calculations done using GDCkit software for the volcanic glass 
shard analyses (Janoušek et al. 2006).   
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When major element data is plotted on an Al2O3/CaO+Na2O+K2O versus 

Al2O3/Na2O+K2O (A/CNK-A/NK) plot the levels of Al, Ca, Na and K in the volcanic 

glass shards determined whether the sample is classified as meta/peraluminous or 

peralkaline.  The samples plot in a linear alignment showing increasingly peraluminous 

values on the A/CNK-A/NK plot (Figure 26). 

 

 
Figure 26.  A/CNK-A/NK plot showing Al2O3/CaO+Na2O+K2O versus 

Al2O3/Na2O+K2O (Shand 1943).  Plotted using GCDkit software (Janoušek et al. 2006). 
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When trace element data from bulk volcanic ash and volcanic glass shards are 

normalized to primitive mantle values the elements to the left of La are more abundant 

than those to the right and this indicates that these beds are the product of subduction 

related volcanism (Gill 2010) (Figure 6; Figure 13).  The bulk volcanic ash data also 

shows depletion in Nb, P and Ti values and supports the interpretation that the ashes are 

products of subduction related volcanism.  The enrichment of LREE and moderate Eu 

anomaly exhibited by the bulk volcanic ash data and volcanic glass shard data is 

indicative of rhyolitic volcanism (Gill 2010) (Figure 7; Figure 14).  The negative Eu 

anomaly is caused by fractionation of plagioclase from the melt prior to the eruption of 

the volcanic ash (Rollinson 1993).   

Depletion of the HREE in comparison to the LREE can be caused by the 

fractionation of garnet from the melt.  All of the bulk volcanic ash samples show similar 

REE concentrations and, therefore, they may be derived from a similar source.  The REE 

fractionation shown by the La/Yb ratios displays two trends (Figure 8).  Increasing REE 

fractionation loosely correlates to increasing age of the samples.  Alternatively, 

increasing La/Yb ratios correlate with progressively greater alteration levels in the 

samples from different depositional environments.  La/Yb ratios could either be showing 

a progressive change in magma composition over time, or the trend could be from the 

alteration causing REE fractionation.  It is more likely that the trend is caused by a 

change in magma composition because the REE may undergo some fractionation in 

alteration, but they usually retain close to their original pattern (Zielinski 1982, 1985; 

dos Muchangos 2006).    
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CONCLUSIONS 

 

This study shows that bulk volcanic ash trace element and rare earth element 

(REE) compositions, combined with the existing paleontology and lithostratigraphy, 

supports the idea that the Little Brazos, Alabama Ferry and Hurricane Bayou samples 

are deposits of the same volcanic ash deposit.  The Lower Little Brazos volcanic ash is 

from an earlier eruption of the same source.  The new radiometric date from Hurricane 

Bayou of 41.79 ±0.02 Ma is within the assigned uncertainties of previous age dating and 

supports this correlation.  Correlation of the Little Brazos, Alabama Ferry and Hurricane 

Bayou samples establishes this bed as a regional marker for 120 km along strike.  The 

possible extension of this correlation to the St. Johns volcanic ash would extend this 

marker to over 480 km.  A volcanic ash of the same approximate age as the upper 

Crockett Formation has been reported as far east as North Carolina (Harris and Fullagar 

1987).  This presents the possibility of the upper Crockett Formation volcanic ash being 

a regional marker bed through the United States Gulf Coast and beyond.   The tentative 

correlation of the Caddell Formation volcanic ashes in Gonzales and Brazos Counties of 

Texas could establish a marker bed that over a distance of 120 km.  The correlation of 

the South Somerville and Plum volcanic ashes from Fayette to Brazos County would 

have implications for locating the Plum ash bed higher in the Manning Formation.  

Further radiometric dating and geochemical fingerprinting would test these correlations 

and possibly enable them to be extended further. 
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These volcanic ashes appear to have originated from the same magmatic 

province and some of them possibly even the same volcanic source.  Major element data 

from seven Catahoula and Manning Formation samples indicate that they are the product 

of sub-alkaline rhyolitic volcanism.  CIPW Norm calculations indicate that the glass 

bearing samples are peraluminous.  Trace element data from both the Neutron Activation 

Analysis (NAA) and the Inductively Coupled Plasma Mass Spectrometry (ICPMS) 

analysis indicate that these ashes are deposits of volcanism related to subduction zone 

tectonics.  REE profiles from the NAA and ICPMS analysis are consistent with those of 

felsic rocks.  The timing, frequency and type of volcanic ash deposits make the Sierra 

Madre Occidental of Mexico the likely source, but the Trans-Pecos of Texas and 

Mogollon-Datil of New Mexico cannot be definitively ruled out.  Further radiometric 

dating and geochemical characterization of the source regions would enable the volcanic 

source to be better constrained. 

The nine radiometric dates obtained by this study serve to better constrain the 

ages of the Claiborne and Jackson Groups and the Catahoula Formation of Texas.  The 

Conquista volcanic ash has potential to become a calibration point for the 

Eocene/Oligocene boundary with further analysis and the Hurricane Bayou volcanic ash 

has the potential to become a calibration point for the Lutetian-Bartonian boundary.    
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APPENDIX A  

  

The New Mexico Geochronology Research Laboratory completed 40Ar/39Ar 

radiometric dating of single crystals of sanidine from nine samples from the Crockett, 

Yegua, Manning, and Catahoula Formations.  Dr. Matt Heizler included the following 

report with the raw data from the radiometric dating that provides insight into the dating 

method that will support different interpretations. 
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40Ar/39Ar Analytical Methods and Results 

Of the samples provided, 9 yielded sanidine separates that were typically mixed with 

some inherited K-feldspar grains that are milky in appearance compared to the clear 

sanidine grains. The separates were irradiated for 40 hours at the UGGS TRIGA reactor 

in Denver, CO along with the standard Fish Canyon tuff sanidine as a neutron flux 

monitor. Fish Canyon sanidine is assigned an age of 28.201 Ma using a total 40K decay 

constant of 5.463e-10 /a following the recommendations of Kuiper et al. (2008) and Min 

et al. (2000). Irradiation was conducted in Al-trays with three concentric rings of holes 

with standards and unknowns alternated between every other hole.  In total, 13 monitor 

positions were used to determine fluence values for the 9 unknowns thereby providing 

precise (ca. ±0.003%) and accurate determination of the J-factor. Following irradiation, 

visibly clear individual crystals were loaded into copper trays, evacuated in an ultra-high 

vacuum chamber and baked at 150°C for 2-8 hours before single crystal laser fusion 

(SCLF) analyses (Table A1.) Flux monitor sanidine crystals were also fused in a single 

step using the CO2 laser. All isotope measurements were performed using an ARGUS VI 

mass spectrometer operated in multicollector mode that utilized faraday detectors for 

masses 40-37 and an ion counter for mass 36 (Table A1).  Additional methodology 

specific to this report and summary age data are provided in Table A1 and general 

operational details for the NMGRL can be found at internet site 

http://geoinfo.nmt.edu/publications/openfile/argon/home/html. 

 Twenty-five to 30 individual crystals were dated for each sample and the age 

results are presented on probability diagrams (Figures A1-9) and the isotopic data are 
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compiled in Table A2. Crystals were typically about 125 microns and thus yielded low 

argon concentrations (~1e-15 and 2e-15 moles 39Ar and 40Ar, respectively). However 

because system blanks and backgrounds are exceptionally low (Table A1) measured 

argon intensities were typically 50-100x (40Ar) and 1000x (39Ar) above blank levels. The 

Lower Basal Conquista sample was an exception as it contained relatively coarse 

sanidine (45 mesh) with correspondingly higher argon concentrations (Table A2). 

Analyses that yielded very low and/or non-detectable 39Ar are considered to represent 

quartz or Na-rich plagioclase and these will not be reported or considered further. 

The age distribution diagrams share common features that include a dominant population 

of ages and outliers that skew to ages older than the primary population (Figs. A1-9). 

Weighted mean ages were determined for each dominant population and range between 

30.64±0.03 Ma and 41.79±0.01 Ma with 7 of the 9 samples falling between about 34 and 

37 Ma (Table A1; Figs. A1-9).  Two probability diagrams are shown for each sample; 

figure ‘a’ plots a narrow age range to reveal details of the grains that comprise the ages 

used for weighted mean age determination, whereas figure ‘b’ reports the full 

distribution of ages that were measured for each sample.  In addition K/Ca and 

radiogenic yield diagrams are provided to visually aid in age interpretation. With some 

exception most individual grains have high (>95%) radiogenic argon values and K/Ca 

values were highly variable (~0.1 – 500).  The K/Ca ratio is determined from the 

39Ar/37Ar ratio and when significantly less the 1 it indicates analysis of plagioclase. In 

many cases, 37Ar is not above detection level and this could indicate a grain with 
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exceptionally low Ca (likely an inherited plutonic or metamorphic crystal) or a relatively 

low Ca-content sanidine that is fine-grained that did not produce measureable 37Ar.  

Discussion 

 In general the preferred population of analyses to determine the weighted mean 

ash deposition age was based on deleting relatively old ages until an MSWD value was 

obtained (usually between 1-2) that indicated a normal distribution of ages. This method 

assumes that older grains are not accurate and likely are inherited either at the source of 

the eruption and/or during post-deposition reworking. Samples Lower Basal Conquista 

and Gibbons Creek are exceptions in that weighted mean ages are calculated from 

populations with MSWD values of 11.1 and 8.9, respectively. The age data for these 

samples (Figs. A2; A5) have probability diagrams that do not reveal an obvious 

truncation point for eliminating old (i.e. outlier) points and thus we take a conservative 

approach to age estimation by including the majority of results from each sample to 

obtain an eruption age. 

The assignment of eruption age was conducted without knowledge of 

stratigraphic ordering of the samples and only after reporting the data was the 

stratigraphy revealed. A summary diagram of probability plots arranged in stratigraphic 

order reveals that 8 of the 9 reported eruption ages fall in correct stratigraphic order 

(Figure A10). The stratigraphy-violating sample is Lake Somerville Soil Ash with an 

assigned age of 34.91±0.20 Ma (Figure A6, Table A1). Based on comparison of the 

underlying Gibbons Creek sample (34.54±0.026 Ma) and overlying Tarball Quarry 

sample (34.39±0.10 Ma) the Lake Somerville date is about 400 ka too old.  Detailed 
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scrutiny of the Lake Somerville Soil Ash data and comparison to stratigraphically 

similar samples is shown in Figure A11. The Lake Somerville Soil Ash sample has an 

overall complex dataset that record a significant inherited population (as old as 1000 

Ma) and are the least precise because of very small grain size and low radiogenic yields 

(Figure A11).  Because of the complexity of the Lake Somerville Soil Ash data and the 

inability to objectively assign a stratigraphically acceptable eruption age the argon 

analysis of the individual grains does not best constrain the Lake Somerville Soil Ash 

eruption age.  However, because this sample lies between the Gibbons Creek and Tarball 

Quarry samples it can be inferred to have been deposited between 34.54±0.026 and 

34.39±0.10 Ma and thus indirectly the Lake Somerville Soil Ash can be assigned an 

accurate and precise eruption age.  

 In summary, the 40Ar/39Ar data provide a detailed chronology of volcanism and 

associated ash deposition of samples located along the Texas Coastal Plain.  Results 

span mid Eocene to early Oligocene and are in accord with expected results.  The 

ARGUS VI multicollector mass spectrometer proved uniquely suited to provide precise 

and accurate data that could not have been achieved at this level with older generation 

mass spectrometers such as the MAP-215-50 or VG5400.  A potentially useful sample 

for time scale calibration is Lower Basal Conquista that yielded an age very near the 

Oligocene/Eocene boundary.  If biostratigraphy and/or paleomagnetic data can constrain 

the epoch that this sample is collected from then additional geochronology on this 

sample could prove to be an excellent time scale calibration point. 
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Figure A1. Age, K/Ca and radiogenic yield diagram for single crystal laser fusion 
results.  (a) Diagram with scales chosen to best visualize the population of crystals used 

to determine the preferred ash deposition age. (b) Diagram with scales chosen to 
display the full distribution of results. 
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Figure A2. Age, K/Ca and radiogenic yield diagram for single crystal laser fusion 

results.  (a) Diagram with scales chosen to best visualize the population of crystals used 
to determine the preferred ash deposition age. 
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Figure A3. Age, K/Ca and radiogenic yield diagram for single crystal laser fusion 

results.  (a) Diagram with scales chosen to best visualize the population of crystals used 
to determine the preferred ash deposition age. (b) Diagram with scales chosen to 

display the full distribution of results. 
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Figure A4. Age, K/Ca and radiogenic yield diagram for single crystal laser fusion 

results.  (a) Diagram with scales chosen to best visualize the population of crystals used 
to determine the preferred ash deposition age. (b) Diagram with scales chosen to 

display the full distribution of results. 
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Figure A5. Age, K/Ca and radiogenic yield diagram for single crystal laser fusion 

results.  (a) Diagram with scales chosen to best visualize the population of crystals used 
to determine the preferred ash deposition age. (b) Diagram with scales chosen to 

display the full distribution of results. 
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Figure A6. Age, K/Ca and radiogenic yield diagram for single crystal laser fusion 

results.  (a) Diagram with scales chosen to best visualize the population of crystals used 
to determine the preferred ash deposition age. (b) Diagram with scales chosen to 

display the full distribution of results. 
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Figure A7. Age, K/Ca and radiogenic yield diagram for single crystal laser fusion 
results.  (a) Diagram with scales chosen to best visualize the population of crystals used 

to determine the preferred ash deposition age. (b) Diagram with scales chosen to 
display the full distribution of results. 
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Figure A8. Age, K/Ca and radiogenic yield diagram for single crystal laser fusion 
results.  (a) Diagram with scales chosen to best visualize the population of crystals used 

to determine the preferred ash deposition age. (b) Diagram with scales chosen to 
display the full distribution of results. 
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Figure A9. Age, K/Ca and radiogenic yield diagram for single crystal laser fusion 
results.  (a) Diagram with scales chosen to best visualize the population of crystals used 

to determine the preferred ash deposition age. (b) Diagram with scales chosen to 
display the full distribution of results. 
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Figure A10.  Summary of age probability data presented in stratigraphic order.  All 
samples yield stratigraphically age order with the exception of Lake Somerville Soil 

Ash. 
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Figure A11. Comparison of age results documenting the complexity of Lake Somerville 
Soil Ash with respect to stratigraphically similar samples. The Lake Somerville Soil Ash 
sample is relatively imprecise and significantly less radiogenic. This sample is not ideal 

for dating and perhaps small systematic errors in overall data corrections contribute to an 
apparently inaccurate result. 
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Sample MSWD n/n Age(Ma) 2σ 
Catahoula 1.5 17/26 30.65 ±0.06 
Conquista 11.1 26/29 34.07 ±0.08 
South Somerville 1.3 19/22 34.10 ±0.02 
Tarball Quarry 1.4 4/17 34.39 ±0.10 
Somerville Soil Zone 0.8 8/28 34.91 ±0.20 
Gibbons Creek 9.0 23/27 34.54 ±0.03 
Graham Road 2.1 7/11 35.83 ±0.13 
Easterwood 0.3 10/19 36.86 ±0.07 
Hurricane Bayou 1.3 9/24 41.79 ±0.02 

Table A1.  Summary table of 40Ar/39Ar dating of individual sanidine phenocrysts.  n/n = 
number grains providing preferred age/number of grains dated.  MSWD = mean square 

of weighted deviates.  All errors at 2σ and include error in J factor.  Error in decay 
constant not included.  
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Analytical Methods and Instrumentation 
 
Sample preparation and irradiation: 
Light density fraction provided by Mindi Heintz. Sanidine concentrated by heavy liquid 
and hand-picking. Samples were loaded into machined Al discs and irradiated for 40 
hours, USGS TRIGA Reactor, Denver, CO Neutron flux monitor Fish Canyon Tuff 
sanidine (FC-2). Assigned age = 28.201 Ma (Kuiper et al., 2008). Decay constant 
5.463e-10 /a (Min et al., 2000). 
 
Instrumentation: 
Thermo-Fisher Scientific ARGUS VI mass spectrometer on line with automated all-
metal extraction system. 
System = Jan 
Multi-collector configuration: 40Ar-H1, 39Ar-Ax, 38Ar-L1, 37Ar-L2, 36Ar-L3 
Amplification: H1, L1, L2 all 1E12 Ohm Faraday, AX 1E13 Ohm Faraday, L3 - CDD 
ion counter, deadtime 14 nS. 
Laser single crystal total fusion. 
Samples fused for 30 seconds at 4 W using a 75W Photon-Machines CO2 laser. 
Reactive gases removed by 60 second reaction with 1 SAES NP-10 getter operated at 1.6 
A. 
 
Analytical parameters: 
Mass spectrometer sensitivity = 5E-17 mol/fA 
Typical total system blank and background: 5±2%, 0.08±20%, 0.04±30%, 0.10±15%, 
0.02±5%, x 10-17 moles for masses 40, 39, 38, 37, 36, respectively. 
J-factors determined to a precision of ~± 0.01% by CO2 laser-fusion of 6 single crystals 
from each of 13 radial positions around the irradiation tray. 
Correction factors for interfering nuclear reactions were determined using K-glass and 
CaF2 and are as follows: 
(40Ar/39Ar)K = 0.0072±0.00002; (36Ar/37Ar)Ca = 0.0002724±0.0000002; and 
(39Ar/37Ar)Ca = 0.000690±0.000002. 
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ID 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar*   Age   ±1σ   

        (x 10-3)   
(x 10-15 
mol) 

  (%)   (Ma)   (Ma)   

Lower Catahoula, sanidine J=0.0092432±0.00%, IC=1.05±0.001, NM-258B,  Lab#=61715 

x 21 2.002  -0.0134 0.8432 0.456       - 87.5 29.29  0.15 
x 28 2.016  0.0064 0.8380 0.209 79.3  87.7 29.56  0.32 

03 2.281  0.0656 1.562 0.981 7.8  79.9 30.504 0.090 
14 1.884  0.0276 0.2010 0.538 18.5  97.0 30.53  0.12 
25 1.851  0.0127 0.0830 1.070 40.1  98.7 30.544 0.061 
26 1.864  0.0012 0.1230 0.710 434  98.0 30.550 0.095 
24 1.855  0.0332 0.1003 0.463 15.3  98.5 30.55  0.14 
19 1.851  0.0274 0.0757 0.884 18.6  98.9 30.594 0.075 
06 1.869  -0.0042 0.1260 0.635       - 98.0 30.613 0.100 
17 1.848  0.0068 0.0565 0.688 75.2  99.1 30.616 0.094 
02 1.957  0.0018 0.4174 0.306 287  93.7 30.65  0.21 
23 1.883  0.0061 0.1601 0.909 83.0  97.5 30.684 0.077 
04 1.865  0.0039 0.0934 0.538 129.3  98.5 30.70  0.11 
11 1.868  0.0229 0.1004 1.367 22.3  98.5 30.746 0.050 
27 1.988  0.0305 0.5060 0.943 16.7  92.6 30.770 0.081 
12 1.895  0.0278 0.1787 0.478 18.4  97.3 30.83  0.13 
22 2.185  0.0250 1.127 0.344 20.4  84.8 30.99  0.21 
20 1.903  -0.0039 0.1506 0.288       - 97.6 31.04  0.22 
09 1.908  0.0304 0.1740 0.154 16.8  97.4 31.06  0.42 

x 18 1.957  0.0161 0.3359 0.849 31.6  95.0 31.068 0.083 
x 15 3.052  0.0274 3.962 0.349 18.7  61.6 31.47  0.25 
x 16 2.013  0.0578 0.3899 0.392 8.8  94.5 31.78  0.17 
x 07 1.985  0.0433 0.2912 0.183 11.8  95.8 31.80  0.34 
x 01 2.079  -0.0055 0.3539 0.209       - 94.9 32.99  0.30 
x 05 4.489  0.0007 0.0428 0.785 759  99.7 74.10  0.33 
x 08 29.35   -0.0052 0.1789 0.845       - 99.8 438.5   1.3  

Mean age ± 2 σ n=17 MSWD=1.48    80  ±229  30.654   0.055  
 

Table A2. 40Ar/39Ar analytical data. 

Notes: 

Isotopic ratios corrected for blank, radioactive decay, and mass discrimination, not corrected for interfering reactions. 

Errors quoted for individual analyses include analytical error only, without interfering reaction or J uncertainties. 

Mean age is weighted mean age of Taylor (1982). Mean age error is weighted error 

     of the mean (Taylor, 1982), multiplied by the root of the MSWD where MSWD>1, and also 

     incorporates uncertainty in J factors and irradiation correction uncertainties. 

Isotopic abundances after Steiger and Jäger (1977). 

Decay constants after Min et al. 

x  preceding sample ID denotes analyses excluded from mean age calculations. 

Ages calculated relative to FC-2 Fish Canyon Tuff sanidine interlaboratory standard at  28.201 Ma  

Decay Constant (LambdaK (total)) =  5.543e-10/a 

Correction factors: 

    (39Ar/37Ar)Ca = 0.00069 ± 2e-06 

    (36Ar/37Ar)Ca = 0.0002724 ± 0 

    (38Ar/39Ar)K = 0.01077 

    (40Ar/39Ar)K = 0.0072 ± 2e-05 
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Table A2 Continued 

ID 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar*   Age   ±1σ   

        (x 10-3)   
(x 10-15 
mol) 

  (%)   (Ma)   (Ma)   

Lower Basal Conquista, sanidine, J=0.0091748±0.00%, IC=1.05±0.001, NM-258B,  Lab#=61710 
25 2.041 0.0284 0.0386 1.922 17.9  99.6 33.698 0.035 
27 2.081 0.0181 0.1567 0.612 28.2  97.8 33.77  0.10 
09 2.047 0.0168 0.0342 1.017 30.4  99.6 33.803 0.067 
08 2.054 0.0139 0.0353 1.431 36.8  99.5 33.911 0.048 
03 2.055 0.0187 0.0289 1.042 27.3  99.7 33.957 0.066 
04 2.056 0.0158 0.0240 1.774 32.3  99.7 33.998 0.038 
15 2.128 0.5318 0.4067 0.099 0.96 96.3 34.02  0.65 
16 2.064 0.0097 0.0423 1.377 52.4  99.4 34.032 0.049 
19 2.058 0.0142 0.0213 0.745 35.8  99.7 34.037 0.085 
07 2.057 0.0132 0.0161 1.695 38.8  99.8 34.040 0.040 
18 2.058 0.0031 0.0104 0.780 163.6  99.9 34.078 0.082 
05 2.068 0.0562 0.0583 0.884 9.1  99.4 34.081 0.080 
29 2.062 0.0178 0.0231 0.861 28.7  99.7 34.093 0.073 
20 2.060 0.0154 0.0158 0.861 33.2  99.8 34.097 0.076 
30 2.110 0.0484 0.1932 0.973 10.5  97.5 34.108 0.068 
11 2.063 0.0249 0.0212 0.826 20.5  99.8 34.139 0.081 
24 2.064 0.0206 0.0175 0.721 24.8  99.8 34.156 0.089 
06 2.075 0.0101 0.0494 1.352 50.3  99.3 34.178 0.052 
14 2.071 0.0140 0.0249 2.524 36.5  99.7 34.242 0.027 
23 2.070 0.5017 0.1525 0.251 1.0  99.8 34.25  0.26 
01 2.078 0.0119 0.0311 1.023 42.8  99.6 34.317 0.067 
13 2.101 0.0130 0.1099 0.786 39.2  98.5 34.318 0.084 
10 2.074 0.0155 0.0173 1.409 33.0  99.8 34.323 0.048 
02 2.082 0.0242 0.0389 0.795 21.1  99.5 34.365 0.088 
21 2.095 0.0186 0.0731 0.649 27.5  99.0 34.401 0.099 
22 2.209 0.6611 0.6102 0.071 0.77 94.2 34.53  0.89 

x 28 2.104 0.0092 0.0146 1.213 55.2  99.8 34.818 0.054 
x 17 2.157 1.774  0.5294 0.087 0.29 99.4 35.58  0.75 

x 26 2.292 0.0161 0.0214 1.167 31.7  99.8 37.891 0.056 
Mean age ± 2 σ n=26 MSWD=11.08    32.4  ±60.4   34.072  0.076 
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Table A2 Continued 

ID 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar*   Age   ±1σ   

        (x 10-3)   
(x 10-15 
mol) 

  (%)   (Ma)   (Ma)   

South Somerville, sanidine, J=0.0091943±0.00%, IC=1.05±0.001, NM-258B,  Lab#=61712 
08 2.089  0.3751 0.2545 0.522 1.4  97.8 33.969 0.091 
06 2.049  0.0162 0.0051 1.068 31.5  100.0 34.042 0.041 
05 2.076  0.1681 0.1349 1.053 3.0  98.7 34.058 0.047 
22 2.061  0.0201 0.0439 1.896 25.4  99.5 34.059 0.023 
21 2.076  0.0183 0.0891 4.335 27.8  98.8 34.084 0.013 
15 2.090  0.0191 0.1347 1.803 26.7  98.2 34.087 0.028 
10 2.070  0.0145 0.0625 1.975 35.1  99.2 34.105 0.025 
04 2.060  0.0231 0.0318 1.889 22.1  99.6 34.107 0.026 
18 2.057  0.0228 0.0197 0.833 22.4  99.8 34.112 0.053 
14 2.063  0.0399 0.0449 1.809 12.8  99.5 34.120 0.027 
19 2.199  0.0542 0.5061 1.503 9.4  93.4 34.123 0.040 
13 2.125  0.0199 0.2454 2.472 25.7  96.7 34.131 0.024 
02 2.150  0.0431 0.3324 0.923 11.8  95.6 34.141 0.058 
12 2.078  0.0510 0.0905 1.125 10.0  98.9 34.147 0.041 
09 2.064  0.0307 0.0373 1.938 16.6  99.6 34.154 0.024 
01 2.072  0.0254 0.0599 0.741 20.1  99.2 34.171 0.064 
11 2.080  0.0864 0.1038 0.745 5.9  98.9 34.171 0.061 
07 2.068  0.0303 0.0438 0.873 16.8  99.5 34.179 0.052 
17 2.134  0.0230 0.2586 0.149 22.2  96.5 34.22  0.29 

x 20 2.135  0.0189 0.1960 2.072 27.0  97.4 34.531 0.027 
x 16 2.262  0.0535 0.5495 0.667 9.5  93.0 34.955 0.084 
x 03 3.265  -0.0097 0.2122 0.296       - 98.0 52.99  0.16 

Mean age ± 2 σ n=19 MSWD=1.34    18.3  ±19.3   34.103  0.016 
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Table A2 Continued 

ID 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar*   Age   ±1σ  

        (x 10-3)   
(x 10-15 

mol) 
  (%)   (Ma)   (Ma)   

Tarball Quarry, sanidine J=0.0092039±0.00%, IC=1.05±0.001, NM-258B,  Lab#=61720 
04 2.091  0.0232 0.1008 0.606 22.0  98.7 34.311 0.072 
12 2.069  0.0059 0.0142 0.590 85.9  99.8 34.357 0.074 
15 2.142  -0.0093 0.2255 0.327       - 96.8 34.51  0.14 
16 2.075  0.0119 0.0018 0.448 42.9  100.0 34.519 0.092 

x 13 2.093  0.0161 0.0126 0.461 31.7  99.9 34.77  0.10 
x 02 2.145  0.0133 0.1376 0.561 38.3  98.1 35.016 0.086 
x 03 2.240  0.0002 0.4172 0.713 2086  94.5 35.195 0.070 
x 19 2.181  0.1999 0.2199 0.392 2.6  97.7 35.46  0.10 
x 07 2.514  0.0280 1.261 0.119 18.2  85.2 35.65  0.40 
x 05 2.369  1.396  1.052 0.083 0.37 91.6 36.13  0.52 

x 20 2.328  0.4240 0.5504 0.032 1.2  94.4 36.6   1.3  
x 10 2.235  1.474  0.5019 0.103 0.35 98.7 36.70  0.42 
x 14 2.208  0.0011 -0.0212 0.212 471  100.3 36.81  0.21 
x 08 2.456  1.941  1.248 0.047 0.26 91.3 37.34  0.91 
x 01 2.317  0.0777 0.1007 0.529 6.6  99.0 38.120 0.097 
x 17 3.166  0.6762 1.252 0.058 0.75 90.0 47.32  0.77 
x 18 21.65   4.233  63.82  0.014 0.12 14.4 52.0   4.2  

Mean age ± 2 σ n=4 MSWD=1.37    50.3  ±56.5   34.39  0.10 
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Table A2 Continued 

ID 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar*   Age   ±1σ   

        (x 10-3)   
(x 10-15 

mol) 
  (%)   (Ma)   (Ma)   

Lake Somerville, sanidine J=0.009222±0.00%, IC=1.05±0.001, NM-258B,  Lab#=61719 
x 19 27.14   -0.0036 85.53  0.104       - 6.8 31.1   2.1  
x 30 66.80   0.0512 219.5   0.047 10.0  2.9 32.4   4.7  
x 13 72.08   0.0773 237.0   0.064 6.6  2.8 34.2   4.2  

29 3.115  0.0031 3.541 0.409 166  66.3 34.48  0.39 
02 2.267  0.0062 0.6416 0.599 82.4  91.6 34.63  0.25 

x 32 38.32   0.0876 122.6   0.076 5.8  5.4 34.8   2.9  
27 5.485  0.0310 11.50  0.737 16.4  38.0 34.82  0.28 
35 2.585  0.0135 1.676 0.642 37.9  80.8 34.83  0.24 
33 2.466  0.0377 1.261 0.200 13.5  85.0 34.93  0.74 
36 2.187  0.0166 0.3058 0.592 30.7  95.9 34.96  0.25 
21 3.757  0.0101 5.593 0.693 50.4  55.9 35.08  0.25 
20 4.731  0.0172 8.844 0.823 29.7  44.7 35.30  0.25 

x 34 4.172  0.0686 6.769 0.558 7.4  52.1 36.27  0.32 
x 18 27.88   -0.0092 86.97  0.085       - 7.8 36.3   2.4  
x 23 2.251  0.0370 0.2062 0.531 13.8  97.4 36.54  0.28 
x 17 39.35   0.0995 125.5   0.104 5.1  5.7 37.8   2.5  
x 06 7.157  0.1510 15.44  0.293 3.4  36.3 43.35  0.61 
x 25 11.65   1.283  27.46  0.040 0.40 31.2 60.4   7.4  
x 14 6.966  0.0722 8.871 0.668 7.1  62.4 71.89  0.93 

x 05 63.68   0.3212 200.0   0.046 1.6  7.2 76   13  
x 01 237.8   -0.3326 786.0   0.019       - 2.3 91   44  
x 22 29.41   -1.8415 74.80  0.015       - 24.3 117   49  
x 04 8.602  0.0425 3.011 0.773 12.0  89.7 125.72  0.61 
x 03 11.64   0.0410 9.799 0.529 12.4  75.1 141.9   1.3  
x 24 70.96   0.0246 0.1990 0.645 20.7  99.9 920.9   3.6  
x 26 71.51   -0.0192 1.030 1.479       - 99.6 923.9   1.5  
x 15 76.57   -0.0053 0.1085 1.772       - 100.0 977.5   1.8  
x 31 85.99   -0.0072 23.92  0.347       - 91.8 1000.9   6.9  

Mean age ± 2 σ n=8 MSWD=0.81    53.3  ±100.6   34.91   0.20  
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Table A2 Continued 

ID 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar*   Age   ±1 σ   

        (x 10-3)   
(x 10-15 

mol) 
  (%)   (Ma)   (Ma)   

Gibbons Creek Basal, coarse sanidine J=0.0092479±0.00%, IC=1.05±0.001, NM-258B,  Lab#=61717 
01 2.063  0.0099 0.0167 9.248 51.7  99.8 34.408 0.019 
26 2.066  0.0085 0.0214 3.186 59.8  99.7 34.441 0.049 
04 2.072  0.0108 0.0385 7.114 47.3  99.5 34.451 0.024 
09 2.068  0.0144 0.0245 9.618 35.5  99.7 34.455 0.018 
12 2.067  0.0147 0.0173 4.597 34.7  99.8 34.470 0.035 
11 2.066  0.0113 0.0115 6.940 45.0  99.9 34.487 0.024 
24 2.084  0.0108 0.0683 6.483 47.2  99.1 34.499 0.026 
10 2.073  0.0108 0.0315 12.871 47.3  99.6 34.502 0.014 
02 2.075  0.0119 0.0371 14.399 42.7  99.5 34.515 0.013 
05 2.067  0.0098 0.0087 6.827 52.0  99.9 34.518 0.024 
27 2.069  0.0087 0.0120 5.316 58.5  99.9 34.525 0.030 
14 2.069  0.0103 0.0116 6.952 49.6  99.9 34.539 0.024 
08 2.071  0.0233 0.0185 9.878 21.9  99.8 34.550 0.017 
20 2.071  0.0180 0.0182 5.191 28.4  99.8 34.551 0.031 
13 2.081  0.0172 0.0472 2.909 29.6  99.4 34.563 0.055 
07 2.081  0.0124 0.0447 8.138 41.2  99.4 34.572 0.021 

18 2.076  0.0092 0.0248 6.376 55.4  99.7 34.576 0.026 
16 2.075  0.0097 0.0222 13.757 52.6  99.7 34.581 0.013 
22 2.072  0.0102 0.0118 7.623 49.9  99.9 34.581 0.021 
06 2.117  0.0162 0.1624 8.221 31.5  97.8 34.592 0.022 
21 2.074  0.0102 0.0173 10.147 50.1  99.8 34.594 0.017 
28 2.077  0.0188 0.0197 4.072 27.1  99.8 34.637 0.039 
25 2.090  0.0110 0.0566 9.569 46.3  99.2 34.662 0.018 

x 03 2.202  0.0162 0.4233 0.934 31.4  94.4 34.73  0.17 
x 23 2.326  0.0300 0.6583 0.915 17.0  91.7 35.66  0.18 
x 30 13.30   0.9302 38.01  0.407 0.55 16.1 35.84  0.78 
x 19 2.672  0.0340 1.604 1.121 15.0  82.3 36.77  0.16 

Mean age ± 2 σ n=23 MSWD=8.95    43.7  ±21.2   34.536 0.026 
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Table A2 Continued 

ID 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar*   Age   ±1 σ   

        (x 10-3)   
(x 10-15 

mol) 
  (%)   (Ma)   (Ma)   

Graham Rd, sanidine, J=0.0092118±0.00%, IC=1.05±0.001, NM-258B,  Lab#=61713 
x 02 13.89   0.0739 40.89  0.215 6.9  13.0 30.25  0.82 

16 2.817  0.1190 2.486 0.105 4.3  74.2 34.81  0.70 
14 2.224  0.1107 0.3850 0.303 4.6  95.3 35.27  0.23 
18 2.524  0.3061 1.396 0.417 1.7  84.6 35.56  0.20 
19 2.427  0.1084 0.9912 0.436 4.7  88.3 35.67  0.18 
01 2.238  0.0881 0.3019 1.592 5.8  96.3 35.883 0.052 
07 2.136  0.0559 -0.0609 0.212 9.1  101.0 35.92  0.33 
03 2.177  0.1050 0.0560 0.266 4.9  99.6 36.09  0.28 

x 11 2.738  0.1083 1.826 0.233 4.7  80.6 36.73  0.33 
x 08 2.716  -0.0080 1.649 0.356       - 82.0 37.06  0.23 
x 10 12.59   0.3701 32.48  0.017 1.4  24.0 50.2   4.7  

Mean age ± 2 σ n=7 MSWD=2.07    5.0  ±4.4  35.83  0.13 
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Table A2 Continued 

ID 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar*   Age   ±1 σ   

        (x 10-3)   
(x 10-15 

mol) 
  (%)   (Ma)   (Ma)   

Easterwood Lower, sanidine J=0.0092295±0.00%, IC=1.05±0.001, NM-258B,  Lab#=61714 
25 2.272  0.0214 0.2403 0.388 23.9  96.9 36.72  0.35 
05 2.248  0.0151 0.1395 0.566 33.7  98.2 36.81  0.20 
11 2.222  0.0166 0.0507 1.468 30.8  99.4 36.816 0.065 
08 2.228  0.0061 0.0614 1.413 83.3  99.2 36.844 0.072 

20 2.244  0.0107 0.1150 1.032 47.9  98.5 36.85  0.11 
17 2.237  0.0088 0.0914 1.008 57.9  98.8 36.859 0.099 
23 2.232  0.0143 0.0665 0.897 35.8  99.2 36.89  0.14 
21 2.216  0.0099 0.0101 1.023 51.3  99.9 36.90  0.11 
10 2.259  0.0099 0.1532 0.695 51.7  98.0 36.91  0.14 
09 2.237  0.0175 0.0700 0.954 29.1  99.1 36.98  0.10 

x 14 2.271  0.0140 0.1186 0.901 36.5  98.5 37.29  0.11 
x 19 2.318  0.0280 0.2423 0.346 18.3  97.0 37.49  0.30 
x 18 2.555  2.488  1.489 0.053 0.21 90.6 38.6   1.9  
x 13 3.276  7.209  2.909 0.087 0.071 91.4 50.1   1.2  
x 04 10.44   0.0278 0.7890 2.279 18.4  97.8 164.67  0.37 
x 07 25.05   5.063  42.17  0.004 0.10 51.9 208   71  
x 22 44.39   1.760  57.73  0.003 0.29 61.9 414   64  
x 03 57.73   0.0046 0.2116 3.316 111  99.9 781.09  0.71 
x 12 67.08   0.4392 6.716 0.022 1.2  97.1 862   69  

Mean age ± 2 σ n=10 MSWD=0.25    44.5  ±35.6   36.861   0.066  
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Table A2 Continued 

ID 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39ArK K/Ca   40Ar*   Age   ±1 σ   

        (x 10-3)   
(x 10-15 

mol) 
  (%)   (Ma)   (Ma)   

Hurricane Bayou, sanidine J=0.0092498±0.00%, IC=1.05±0.001, NM-258B,  Lab#=61716 
x 18 2.502  0.0072 0.0182 1.778 71.1  99.8 41.681 0.026 

23 2.508  0.0046 0.0273 1.468 110  99.7 41.740 0.032 
04 2.508  0.0001 0.0234 0.926 - 99.7 41.747 0.047 
03 2.512  0.0044 0.0336 1.484 116  99.6 41.765 0.031 
06 2.510  0.0052 0.0233 1.693 98.3  99.7 41.781 0.027 
10 2.510  0.0031 0.0214 1.657 166  99.8 41.792 0.028 
09 2.513  0.0039 0.0301 1.241 131  99.7 41.808 0.036 

21 2.510  0.0027 0.0177 1.722 191  99.8 41.817 0.027 
20 2.510  0.0097 0.0136 1.521 52.6  99.9 41.833 0.030 
17 2.517  0.0041 0.0323 1.260 124  99.6 41.859 0.036 

x 07 2.515  0.0081 0.0197 2.564 63.1  99.8 41.885 0.019 
x 01 2.521  0.0081 0.0402 1.937 63.1  99.6 41.898 0.024 
x 24 2.519  0.0077 0.0275 3.375 66.6  99.7 41.922 0.015 
x 05 2.518  0.0072 0.0213 1.186 71.3  99.8 41.932 0.040 
x 16 2.542  0.0051 0.0818 1.606 101  99.1 42.038 0.030 
x 11 2.567  0.0123 0.1408 0.809 41.5  98.4 42.170 0.056 
x 25 2.536  0.0069 0.0175 2.011 73.9  99.8 42.244 0.022 
x 13 2.590  0.0035 0.1563 0.989 147  98.2 42.452 0.048 
x 14 2.564  0.0115 0.0653 1.329 44.4  99.3 42.478 0.035 
x 02 2.598  0.0033 0.0888 0.441 156  99.0 42.927 0.096 
x 19 2.578  0.0048 0.0126 1.502 107  99.9 42.956 0.032 
x 12 2.627  0.0182 0.0399 1.894 28.0  99.6 43.663 0.026 
x 15 2.812  0.0032 0.0567 0.840 159  99.4 46.619 0.055 
x 22 4.441  0.0176 0.3139 0.205 29.0  97.9 72.09  0.23 

Mean age ± 2 σ n=9 MSWD=1.34    123.6  ±79.0   41.795  0.024 

 




