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ABSTRACT 

 
 

Nitrosatable drugs react with nitrite in the stomach to form N-nitroso 

compounds, observed in animal models to result in adverse pregnancy 

outcomes such as birth defects and reduced fetal weight. Previous studies 

examining prenatal exposure to medications classified as nitrosatable have 

observed an increased risk of preterm delivery. Vitamin C is a known nitrosation 

inhibitor.  

Using data from mothers (controls) of babies without major birth defects 

from the National Birth Defects Prevention Study, we examined the relation 

between preterm births and: 1) prenatal nitrosatable drug usage; 2) dietary 

intake of nitrates/nitrites; 3) joint exposures to nitrosatable drugs and 

nitrate/nitrite intake; and 4) nitrosatable drugs and vitamin C intake among 496 

case-mothers of preterm infants and 5398 control-mothers who delivered full 

term babies from 1997-2005. 

An increased risk of preterm births was observed with secondary amine 

exposure during the second (adjusted hazard ratio (aHR) 1.37, [95% confidence 

interval (CI) 1.05, 1.79]) and third (aHR 1.34, [95% CI 1.02, 1.76]) trimester. A 

protective effect was detected with high levels of plant nitrites (aHR 0.72, [95% 

CI 0.53, 0.97]). Exposure to secondary amines and high levels of nitrite were 

associated with preterm births, having an increased risk with first (aHR 1.84, 

[95% CI 1.14, 2.98]), second (aHR 1.89, [95% CI 1.17, 3.07]), and third (aHR 
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2.00, [95% CI 1.22, 3.29]) trimester exposure. Lower risk of moderately preterm 

births was observed with second trimester amide exposure in conjunction with 

higher levels of dietary vitamin C (aHR 1.14, [95% CI 0.66, 1.98]) compared to 

<85 mg/day (aHR 2.08, [95% CI 1.25, 3.47]).  

Prenatal exposure to nitrosatable drugs during the second and third 

trimester, particularly secondary amines, might increase risk of preterm delivery. 

In addition, nitrosatable drugs, especially secondary and tertiary amines, and 

higher levels of dietary nitrite (including animal, plant, and total) may increase 

risk of preterm births. However, dietary vitamin C intake ≥85 mg/day may 

attenuate the association between nitrosatable drug use during the second 

trimester and preterm and moderately preterm births. In this study population, 

daily vitamin C supplementation did not appear to confer the same benefits.  
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“All parents believe their children can do the impossible. They thought it the 
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aRR Adjusted relative risk 
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OR Odds ratio 

P1P3 First trimester 

P1P6 First two trimesters 

P1P9 Entire pregnancy 

P4P6 Second trimester 

P7P9 Third trimester 

PM2.5 Particulate matter of aerodynamic ≤2.5 µM 

PM10 Particulate matter of aerodynamic ≤10 µM 

PPROM Preterm premature rupture of the membranes 

RCT Randomized controlled trial 

RERI Relative excess risk due to interaction 

ROS Reactive oxygen species 

RR Relative risk 

SGA Small for gestational age 

SO2 Sulfur dioxide 

sRR Summary relative risk 

SSRI Selective serotonin reuptake inhibitor 

USDA United States Department of Agriculture 

US United States 
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CHAPTER I 

 
INTRODUCTION 

 
 

Prematurity is one of the most important predictors of an infant’s health 

and survival. Infants born less than 37 completed weeks of gestation are 

considered preterm. According to the National Vital Statistics Report for 2006, 

preterm infants are 14.7 times more likely to die during the first year of life 

compared to full term infants.1 They are also at an increased risk of an array of 

infant morbidities, ranging from neurodevelopmental  and respiratory 

impairments to gastrointestinal complications.2 Other complications include 

behavioral, cognitive, hearing, motor, visual, and socio-emotional function.3 

Although assisted ventilation, antenatal corticosteroid usage, and intensive care 

practices have improved the survival rates of premature infants, the prevalence 

of preterm births has increased by 31% in the United States (US) between 1981 

and 2003.4 This rise has been attributed to several factors, including changes in 

obstetric practice5 and the use of assisted reproduction techniques.6 Numerous 

environmental toxicants have been examined for their role in preterm births, of 

which the weight of evidence has only been sufficient for two: lead and tobacco 

smoke.3 No study has examined nitrates, nitrites, and nitrosatable drugs and 

their association with preterm births although exposure through diet and drug  

usage are common.   
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Nitrites and nitrates are ubiquitous in food. Dietary sources are the main 

source of exposure to nitrates and nitrites. The estimates of total nitrite and 

nitrate intake in the U.S. are 0.77 mg and 76 mg per day, respectively.7 Dietary 

consumption of these exposures contribute to nitric oxide levels as five percent 

of dietary nitrate is converted to nitrite and further converted to nitric oxide, a 

free radical found in higher levels in the blood and urine of women with preterm 

labor.8 Nitric oxide may damage the collagen in the chorioamnion, resulting in 

preterm premature rupture of membranes.9   

Approximately one quarter of the control women from the National Birth 

Defects Prevention Study (NBDPS) population reported taking at least one 

medication considered nitrosatable during the first trimester.10 These 

nitrosatable amines or amides react with nitrosating agents like nitrites in the 

stomach to form N-nitroso compounds.11 N-nitroso compounds have been 

observed in animal models to result in adverse pregnancy outcomes, such as 

reduced fetal weight12 and birth defects;13, 14 their effects on gestational age are 

not known as studies of adverse pregnancy outcomes did not focus on this 

aspect. Therefore, possible effects in humans need to be examined.   

The specific objective of this project was to investigate the individual and 

joint associations of nitrosatable drug usage and dietary intake of nitrite/nitrate 

on the risk of preterm deliveries, and whether vitamin C, a known nitrosation 

inhibitor, plays a role in these relationships.  

 



 
 

3 
 

Specific aims included: 

1. To determine whether nitrosatable drug usage during pregnancy 

increases the risk of preterm births (Chapter II) 

2. To estimate the risk of preterm births associated with dietary nitrite/nitrate 

intake (Chapter III) 

3. To examine whether the joint effects of maternal exposures to dietary 

nitrite/nitrate intake and nitrosatable drugs increases the risk of preterm 

deliveries (Chapter III) 

4. To examine whether dietary or supplemental vitamin C plays a role in the 

relationship between nitrosatable drug usage and preterm births (Chapter 

IV) 

 

Literature Review 

Several factors have been associated with an increased risk of preterm 

births. Maternal predictors include intrauterine infections,15-21 previous history of 

preterm births,22-26 multiple pregnancy,27, 28 single marital status,29-36 and low 

socioeconomic status.32, 33, 37-42 In addition, a U-shaped distribution has been 

observed between maternal age and preterm births,43-46 with the highest rates 

occurring in women <20 and >35 years of age.47 Whether this increase in 

preterm births among women <20 is due to a biological immaturity or a higher 

prevalence of other risk factors remains uncertain.   
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Racial ethnic differences have also been reported. The preterm birth rate 

among black women is twice that of white women in the U.S. even after 

controlling for maternal factors,23, 48 with preterm birth rates ranging between 16-

18% compared to 5-9%.2 Reasons for this difference continue to be poorly 

understood as this disparity cannot be explained by the variation in 

socioeconomic status. McGrady et al.49 noted that although the risk of preterm 

births declined with increasing levels of maternal education, the rate of preterm 

births remained higher among black women compared to whites. In addition, 

lower neighborhood socioeconomic status was not associated with preterm 

births in a study of U.S. black women.50 It is suggested that the difference may 

be due to behavioral choices among groups; however, the proportion of black 

women who reported to have continued smoking or consuming alcohol during 

pregnancy is lower or similar to that of white women.51-53 Additionally, among 

women who initiated prenatal care in the first trimester, black women continued 

to have the highest rate of preterm births.3 These behavioral factors cannot fully 

account for the observed disparities.   

Pre-pregnancy and pregnancy nutritional status may contribute to the risk 

of preterm births. Women with a low pre-pregnancy body mass index (BMI) are 

at higher risk of having a premature infant.39, 54-57 However, the association 

between maternal overweight or obesity and preterm births remains uncertain. A 

few studies have reported an increased risk for preterm births in overweight or 

obese women58-62 while others report no excess risk.63-65  
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Substance abuse during pregnancy and its association with preterm 

births is not clear. Several studies have observed no association between 

cocaine use and preterm births,66-69 while others have reported a modest 

increase in risk.70-78 However, results must be interpreted with caution since 

many of the confounding maternal behavioral factors were not controlled for, 

suggesting that the measure of effect may be overestimated. In addition, 

different criteria for exposure assessment have produced discordant results; a 

summary relative risk (sRR) for cocaine use and preterm births based on self-

report data yielded a positive association (sRR 1.8, [95% Confidence Interval 

(CI) 1.2, 2.7], based on 7 studies) while urine screening did not (sRR 1.6, [95% 

CI 0.9, 2.6], based on 4 studies).79        

It is well recognized that heavy prenatal alcohol exposure is harmful to 

the fetus,80 but its relation to preterm births is not conclusive. Several studies 

lend support for excess risk of preterm births among heavy58, 81-83 and moderate 

alcohol users,84 whereas others did not.85-89  Although there is a large body of 

literature on alcohol use and its relation to preterm births, many of the studies 

have methodological weaknesses preventing a definitive conclusion from being 

reached. For instance, several did not control for known confounding factors, 

and those which did had other limitations that prevent the generalizability of the 

results. Differences in study design, timing of exposure, and methods of 

exposure assessment may have contributed to the inconsistent findings.      
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Smoking is considered one of the most significant, modifiable causes of 

adverse pregnancy outcomes. Nicotine and carbon monoxide are two major 

compounds of significance, as these two vasoconstrictors are associated with 

placental damage and decreased uteroplacental blood flow, pathways leading to 

fetal growth restriction and preterm births.2, 90 Serum carbon monoxide levels are 

three times higher in smokers, and fetal concentrations are twice that of 

maternal levels.91 It is widely documented that smoking during pregnancy leads 

to fetal growth impairment,92 causing an average birth weight reduction of 200 

grams and doubling the risk of having a low birth weight baby.93   

However, the association between smoking and preterm births is 

relatively modest,94-100 with a significant dose response relationship observed.95, 

101, 102 Several studies have suggested a stronger association103-106 while others 

report none.107, 108 Environmental tobacco smoke has also been associated with 

a moderate increase in risk for preterm births among studies utilizing self-

reports109, 110 and biomarkers111, 112 as exposure assessment measures, though 

a number of studies negate this conclusion.113-118  

Of the metals and metalloids, lead exposure is the most well-known 

reproductive toxicant, crossing the placenta readily. The correlation between 

maternal and umbilical cord blood lead levels ranges from 0.55 to 0.92.119 

Though few studies report no increased risk of preterm births and umbilical cord 

blood lead levels,120-122 the weight of evidence indicates a significant 

association.123-125 Further, blood lead levels lower than the recommended level 
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of 10 µg/dl have also been reported to be associated with preterm births,126-128 

suggesting that levels below 6 µg/dl are still a concern.  

Airborne particles released as industrial by-products from lead smelters 

are another vehicle of exposure; these aerosols can be absorbed directly in the 

lung, eventually resulting in deposition in the bone and teeth. Areas 

contaminated with high levels of lead have had an increase in frequencies of 

preterm births.129, 130 An 11% increase in risk of preterm births was observed for 

every µg/dl increase in blood lead levels.130 However, Factor-Litvak et al.131 

found no significant relationship after town of residence was included in the 

model, suggesting that there was another difference between the two towns 

besides blood lead levels that would account for the initial increase observed in 

preterm births among residents of the lead smelter community. This finding was 

corroborated in a study comparing births in five towns in Shoshone County to 

the rest of Idaho during three exposure periods: 1) pre-fire; 2) high exposure 

during a lead smelter facility fire; and 3) post-fire.132     

Ambient air pollutants, including sulfur dioxide (SO2), fine particulate 

matter (PM) of aerodynamic diameter ≤2.5 µM (PM2.5) and coarse PM of 

aerodynamic diameter ≤10 µM (PM10), nitrogen dioxide (NO2), and carbon 

monoxide (CO), have been suspected as possible risk factors for preterm births. 

While few studies have reported null findings,133, 134 most examining the relation 

between SO2 and preterm births have found a positive association, with a 27% 

increase in preterm births [95% CI 1.16, 1.39] per 50 µg/m3 increase in SO2 
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concentration noted in a study of women in the Czech Republic135 and a 21% 

[95% CI 1.01, 1.45] increase for each natural log µg/m3 increase in SO2 

concentration in Beijing, China.136 A slight increase in risk was also reported 

among women in the highest quartile of SO2 exposure during the last month of 

pregnancy (adjusted odds ratio (aOR) 1.07, [95% CI 1.01, 1.14])137 and among 

women who were exposed to 45.86-103.96 µg/m3 of SO2 during the first 

trimester (aOR 1.21, [95% CI 1.04, 1.42]).138   

Similarly, PM2.5 and PM10 have also been implicated as potential risk 

factors. PM is emitted from a number of sources, such as residential heating, 

power plants, cars, and wood burning. Its entry into the body can lead to 

oxidative inflammation in the lungs and other organs, including the placenta, 

which increases the susceptibility of preterm labor.139 To examine the relation 

between PM2.5 exposure during pregnancy and preterm births, Kloog et al.140 

used predicted 10×10 km of PM2.5 and residence-specific cumulative traffic 

density to assign exposure estimates. A 6% increase [95% CI 1.01, 1.13] in risk 

for preterm births was observed with every 10 µg/m3 increase in PM2.5. This 

positive association was also corroborated by Wu et al.141 and Huynh et al.,142 

with the latter focusing on the first and last two months of gestation. However, 

several studies have reported no such relation between PM2.5 exposure and 

preterm births.133, 143, 144 

Further, PM10 exposure during the first trimester was associated with 

higher risk of preterm births.138, 145 Although Leem et al.138 found no excess risk 
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with third trimester exposure to PM10 levels between 47.07 and 65.63 µg/m3, 

Suh et al.146 noted an aOR of 1.09 [95% CI 1.03, 1.15] with third trimester levels 

of 16.53 µg/m3. A 19% increase in preterm births per 50 µg increase in ambient 

PM10 levels 6 weeks before birth was also observed among women who 

delivered in Southern California between 1989 and 1993,147 while Sagiv et al.134 

reported null findings.  

The relationship between preterm births and NO2 and CO is less certain. 

An excess risk of preterm births was reported among women with prenatal 

exposure to NO2 levels >46.2 µg/m3.148 Despite a similar finding with first 

trimester exposure levels between 56.22 and 80.58 µg/m3 (aOR 1.24, [95% CI 

1.09, 1.41]),138 others have presented conflicting results; however, these studies 

focused on lower levels of NO2 exposure.133, 143, 145, 149 With regard to CO 

exposure during the first trimester of pregnancy, Leem et al.138 and Wilhelm & 

Ritz150 both noted an increase in risk with levels >1.11 mg/m3. Conversely, other 

studies have reported null findings between levels of CO exposure and preterm 

births.133, 137, 142 Inconsistent conclusions between studies investigating the 

relation between air pollutants and preterm births may be due to the 

heterogeneity of exposure assessment and comparison strategies.   

The causes and mechanisms of preterm delivery are multifactorial and 

are hypothesized to be initiated by numerous mechanisms, including infection, 

inflammation, uterine overdistension, and stress.2 These risk factors are 

believed to interact with one another, resulting in a transition from uterine 
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quiescence to preterm delivery. Obstetric precursors leading to preterm delivery 

include: inducing labor, spontaneous preterm labor with intact membranes, and 

preterm premature rupture of the membranes (PPROM).2 PPROM is defined as 

“rupture of the chorioamniotic membranes before the onset of labor prior to 37 

weeks of gestation”151 and accounts for one third of all preterm deliveries.152, 153 

Although its causes are still not well understood, there have been some 

associations with sexually transmitted infections, vaginal bleeding, and smoking.                  

Higher levels of nitric oxide have been observed in the blood and urine of 

women with preterm labor or PPROM.8 While this compound is necessary for 

implantation, embryo development, and vascular tone in the placenta,154 high 

levels can lead to cell cycle arrest, apoptosis, and senescence.155 As a reactive 

oxygen species (ROS), nitric oxide has been hypothesized to damage the 

collagen in the chorioamnion which would result in PPROM.9 ROS are unstable 

molecules that inflict tissue damage in its attempt to reach a stable state by 

abstracting an electron from nearby molecules to pair with the single electron in 

its outer orbit. Several studies have observed collagen in several tissues to be 

the primary target for ROS damage.9 As a biologically active membrane, the 

chorioamnion’s collagenolytic enzymes are vulnerable to ROS, such as nitric 

oxide, stimulation.156           

Nitric oxide is naturally produced by the body from cells of L-arginine; 

however, a portion is contributed by dietary consumption of nitrates and nitrites 

as five percent of dietary nitrate is converted to nitrite and further converted to 
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nitric oxide.157 The major source of exposure to nitrates and nitrites is through 

food consumption, with vegetables contributing the most to nitrate levels and 

cured meats the most to nitrite.7 Nitrate levels in vegetables vary depending on 

the plant’s metabolic pattern, nitrate content in the soil, fertilizer usage, and 

seasonality. Nitrate intake also contributes to total nitrite levels by a conversion 

of nitrate (5%) to nitrite by bacteria in the mouth.158         

N-nitroso compounds are formed endogenously when nitrosating agents, 

such as nitrites and nitrates, react with nitrosatable amines or amides in an 

acidic environment like the stomach.11 Certain medications, which are classified 

as tertiary amines, secondary amines, or amides, are sources of nitrosatable 

compounds. Nitrosatable drug usage during the first trimester was observed in 

24 percent of NBDPS control mothers.10 Adverse pregnancy outcomes, such as 

birth defects and reduced fetal weight,12-14 have been observed in mice exposed 

to N-nitroso compounds; its effects on gestational age are not known. 

In addition, preterm birth rates have been observed to vary by ethnic 

origin, with non-Hispanic black women having almost twice the rate of non-

Hispanic white women in the U.S., regardless of socioeconomic status.2, 159 For 

the past decade, this racial gap has decreased slightly due to the 22.3% rise in 

preterm birth rates among non-Hispanic white women compared to the 3.6% 

increase observed in non-Hispanic blacks.159 The disproportionate rates of 

preterm births among non-Hispanic blacks and the unexpected rise among non-

Hispanic whites may be partially attributable to the higher prevalence of 
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nitrosatable drug usage, and subsequent higher levels of N-nitroso compounds, 

during early pregnancy among the two groups. The highest prevalence of use 

was observed among non-Hispanic whites, followed by women who described 

themselves as other and non-Hispanic black.10 Ingestion of nitrosatable drugs 

may be a contributing factor in preterm deliveries and could possibly explain the 

preterm birth rates observed by ethnic origin.  

 Although no known study has examined the relation between nitrosatable 

drugs and preterm births, a number have investigated various drugs which have 

been classified as nitrosatable as outlined by Brambilla and Martelli.160 Many of 

these prescription and nonprescription drugs were reported to have been taken 

by NBDPS control women during the first trimester of pregnancy.10 A discussion 

of these medications, categorized by their amine or amide functional groups, is 

provided.          

 

Secondary Amines 

Albuterol 

 Albuterol is a bronchodilator, β2-adrenergic receptor agonist, used to relax 

smooth muscle through the stimulation of cyclic adenosine monophosphate and 

the production of functional antagonism to bronchoconstriction.161 Often used in 

conjunction with an inhaled steroid, albuterol relieves acute symptoms 

commonly associated with asthma, such as bronchospasm. Asthma, one of the 

most common chronic diseases among women in reproductive age, occurs in 
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3.7-8.4% of all pregnancies.162 Asthma medications, such as albuterol, have 

warranted safety considerations with regard to adverse pregnancy outcomes.   

 Utilizing data from a large health maintenance organization in San Diego, 

Schatz et al.163 identified 259 asthmatic women who used inhaled β-agonist 

bronchodilators and 101 asthmatic women who were not using this medication 

to compare perinatal outcomes. No significant difference was observed between 

asthmatic women who used inhaled bronchodilators and those who did not with 

regard to preterm births. A similar finding was observed in a prospective study of 

824 asthmatic patients who were followed from 1978 to 1990.164 In a larger 

cohort consisting of 2,123 asthmatic participants recruited from 16 centers of the 

National Institute of Child Health and Human Development Maternal Fetal 

Medicine Units Network, Schatz et al.165 noted no significant relationship 

between use of inhaled β-agonists and preterm births. These null findings were 

corroborated by Bracken et al.166 in a large prospective study, where no increase 

in risk for preterm births was observed among 529 women exposed to short-

acting β-agonists even after adjusting for numerous factors, including number of 

asthma symptoms (aOR 1.01, [95% CI 1.00, 1.02]). 

 Studies addressing the effects of short-acting β-agonists, such as 

albuterol, do not associate an increased risk of preterm births with maternal 

exposure. This suggests that short-acting β-agonists are generally safe to use 

during pregnancy to treat maternal asthma.   
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Antidiabetic, Biguanides 

 Metformin is an oral hypoglycemic agent that improves insulin sensitivity 

by reducing fasting plasma glucose and insulin concentrations.167 Its use during 

pregnancy among women with gestational diabetes (GDM) has been preferred 

to insulin for several reasons.168, 169 Although insulin is effective, the medication 

requires multiple injections daily, there is an increased risk for hypoglycemia, 

and possible weight gain.167, 168 With the prevalence of GDM increasing,170, 171 it 

is important to concentrate on the safety of prenatal exposure to metformin, one 

of the most commonly used oral hypoglycemics during pregnancy.172 

 Studies comparing pregnancy outcomes in women with GDM treated with 

metformin or insulin have yielded conflicting results. Two studies observed a 

significantly lower frequency of preterm births among women treated with 

metformin compared to insulin.168, 173 However, in one of the largest randomized 

clinical trials, preterm births was found to be more common in the metformin 

treated group (P = 0.04).169 Though no differences in gestational age were noted 

between women treated with metformin or insulin in an open-label randomized 

controlled study conducted in Finland.174 A similar observation was reported by 

Tertti et al.175 

 Previous studies have examined the association between preterm births 

and prenatal exposure to metformin among women with GDM; very few relate 

metformin treatment during pregnancy in women with type 2 diabetes. Utilizing 

the National Women’s Hospital, 214 pregnancies in women with type 2 diabetes 
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were identified to compare pregnancy outcomes between metformin treated and 

non-treated women.176 There was no difference between the two groups in 

terms of preterm births (P = 0.7). A majority of the studies have reported that 

prenatal use of metformin appears to be safe with regard to preterm births.          

 
Beta Blockers 

 Beta blockers, also referred to as beta-adrenergic blocking agents, 

prevent norepinephrine and epinephrine from binding to receptors on nerves, 

thus reducing heart rate and blood pressure. Classified as secondary amines, 

tertiary amines, and amides, these drugs are used for treating a number of 

conditions such as hypertension, heart failure, migraines, and tremors. There is 

contradictory evidence regarding treatment with beta blockers during pregnancy 

and preterm births. 

In a nationwide, population-based cohort study using the Danish Fertility 

Database, over 900,000 births between 1995 and 2008 were obtained to explore 

the effects of prenatal exposure to beta blockers.177 Exposure to beta blockers 

was defined as the redemption of at least two prescriptions between 6 months 

preconception and the 20th week of gestation (one had to have been redeemed 

after conception). An increased risk of preterm births was detected among 

women who were exposed to beta blockers during pregnancy (aOR 2.26, [95% 

CI 2.03, 2.52]). This finding was previously noted in a retrospective cohort of 436 

pregnancies among 318 women attending the Antenatal Hypertension Clinic at 

City Hospital.178 A higher proportion of preterm deliveries was found in women 
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who were in multiple antihypertensive drug regimens (P < 0.001). Mean 

gestational age at delivery in the drug treatment groups (atenolol, labetalol, 

methydopa, multiple drugs) were also significantly earlier compared to infants of 

untreated hypertensive women in a study conducted in England.179     

Conversely, Easterling et al.180 reported that the prematurity rate among 

women treated with atenolol before 18 weeks gestation was similar to the 

normal population. An earlier study of labetalol use, a nonselective beta blocker 

with alpha blocking effects, was examined to determine whether treatment would 

improve pregnancy outcomes. Prenatal use of labetalol was found to be 

associated with a higher frequency of fetal growth retardation, but not preterm 

births.181 In addition, a meta-analysis of randomized trials of prenatal beta 

blocker use, published between 1966 and 1997, yielded a pooled odds ratio of 

1.35 [95% CI 0.51, 3.60] with regard to preterm births.182     

 
Fluoxetine and Paroxetine 

 Use of antidepressant medication among pregnant women has raised 

some concern as exposure has been associated with various adverse 

pregnancy outcomes. The prevalence of depression among pregnant women 

ranges from 10-20%,183 and it is estimated that 4-10% of pregnant women in the 

U.S. and Canada are on medication therapy for depression.184 Selective 

serotonin reuptake inhibitors (SSRIs), which include fluoxetine and paroxetine, 

are considered to be the first line of treatment among most patients with 

depression during pregnancy.185, 186 Within the NBDPS, 2.8% of the control 
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mothers reported using SSRIs from three months preconception to the end of 

pregnancy.187 Numerous studies have investigated prenatal use of SSRIs and 

adverse pregnancy outcomes.  

 Several studies have found a positive association between prenatal SSRI 

use and preterm births.186, 188, 189 In a prospective cohort utilizing data from the 

Swedish Medical Birth Registry from 1995-2001, Kallen observed an increased 

risk for preterm births among mothers who had taken any type of antidepressant 

during pregnancy (aOR 1.96, [95% CI 1.60, 2.41]).188 An even stronger 

relationship was observed with prenatal use of SSRIs (aOR 2.06, [95% CI 1.58, 

2.69]). Further analyses excluding women who had taken other additional drugs, 

such as anticonvulsants and antihypertensives, did not change the overall 

finding (aOR 2.01, [95% CI 1.17, 3.46]). Expanding the data utilized in the 

previous study beyond 2001 to 2007, Reis & Kallen189 identified 14,821 women 

who had been prescribed antidepressants during pregnancy or who had 

reported use of antidepressants early in pregnancy. Women who had delivered 

a preterm infant were 1.46 times more likely to have been prescribed prenatal 

SSRIs [95% CI 1.31, 1.63]. 

 Similar findings were observed in a retrospective cohort study focusing on 

prescription SSRIs dispensed within one year prior to delivery. Using records 

from the Canadian province of Saskatchewan, 972 pregnant women were 

identified who had been given at least one SSRI within the year before delivery 

and 3,878 who had not received any SSRI within the same time frame.186 Risk of 
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preterm births was higher among infants born to mothers receiving SSRI therapy 

(aOR 1.57, [95% CI 1.28, 1.92]).     

 Colvin et al.190 further investigated the relation between SSRIs dispensed 

during pregnancy and pregnancy outcomes by linking data from population-

based health datasets from Western Australia and a national pharmaceutical 

claims dataset. By using record linkage, Colvin et al. were able to obtain a larger 

study size with a rich source of information that not only allowed the examination 

of different types of SSRIs, but also the trimester these medications were 

dispensed. Approximately 4% of 96,968 pregnant women between 2002 and 

2005 had an SSRI dispensed during pregnancy. In addition to confirming 

previous findings of a positive association between prenatal exposure to SSRIs 

and preterm births (aOR 1.43, [95% CI 1.24, 1.65]), Colvin et al. continued to 

observe an association for a number of SSRI drugs, including sertraline (aOR 

1.62, [95% CI 1.30, 2.03]), citalopram (aOR 1.38, [95% CI 1.08, 1.77]), and 

paroxetine (aOR 1.41, [95% CI 1.02, 1.96]). These associations remained 

statistically significant even after refining the exposure window to the first 

trimester, with the greatest increase in risk observed with sertraline (aOR 1.74, 

[95% CI 1.33, 2.27]) and paroxetine (aOR 1.61, [95% CI 1.14, 2.28]). 

Second/third trimester exposure to SSRIs, as well as specific drugs, was not 

associated with preterm births. 

 Conversely, Chambers et al.191 noted significantly higher rates of 

prematurity among mothers exposed to fluoxetine during the third trimester 
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(14.3%) compared to those who had early (first and second trimester) exposure 

(4.1%) and those who did not have any (5.9%) (P = 0.03). Infants whose 

mothers reported third trimester fluoxetine use had higher rates of prematurity 

(adjusted relative risk (aRR) 4.8, [95% CI 1.1, 20.8]) compared to infants whose 

mothers reported early use of fluoxetine. Additionally, in a retrospective cohort 

study of 228,876 singleton pregnancies among women enrolled in the 

Tennessee Medicaid program from 1995 to 2007, SSRI and non-SSRI 

medication use in the second trimester were both independently associated with 

shorter gestational age (P < 0.0001).184 Since findings for SSRIs and non-SSRIs 

were similar with regard to gestational age, overall antidepressant use and its 

relation to gestational age was examined by the number of filled prescriptions 

among a subset of 68,007 nulliparous women. Antidepressant prescription filling 

during the second trimester was significantly associated with shorter gestational 

age, with the filling of 1, 2, or ≥3 prescriptions associated with a shorter 

gestational age of 2.6 [95% CI 1.3, 3.9], 5.8 [95% CI 3.9, 7.8], and 6.6 [95% CI 

4.6, 8.6] days, respectively. However, filling antidepressant prescriptions during 

the third trimester was observed to be associated with longer gestational age, 

particularly among women who filled ≥3 prescriptions (aOR 6.4, [95% CI 5.5, 

7.3]). This finding could have been observed since mothers at risk for preterm 

delivery due to antidepressant use may have already delivered, since refilling 

additional prescriptions in the last trimester would indicate that pregnancy 

continues well into the third trimester.  
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 While many studies have reported an association between prenatal SSRI 

use and preterm births, several have noted no effect.192-195 In addition, rates of 

preterm births among 138 pregnant women treated with SSRIs were lower than 

the national rate.196 Although, this lower rate may have been due to the strict 

exclusion of women who used alcohol, nicotine, and recreational drugs, which 

would have resulted in a healthier population.   

In a Finnish study based on population-based register data, no increased 

risk for preterm or very preterm births (<32 weeks of gestation) was observed 

among women with SSRI purchases in each trimester or during the second and 

third trimesters compared to those who had only first trimester exposure.192 In 

addition, risk of delivering a preterm infant was not elevated among women who 

used SSRIs at the outset of pregnancy, but stopped prior to the end of the first 

trimester (aOR 1.12, [95% CI 0.47, 2.19]) or among those who continued to use 

SSRIs (aOR 1.27, [95% CI 0.59, 2.76]) compared to those without 

antidepressant use two months preconception through delivery.194   

 To control for confounding by depression, Oberlander et al.193 compared 

infants of depressed mothers treated with SSRIs to infants of untreated 

depressed mothers and nonexposed controls. No difference was observed in the 

incidence of preterm births between treated and untreated depressed mothers 

after accounting for maternal illness severity using propensity score matching (P 

= 0.61).   
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 Sit et al.195 prospectively followed 21 mother-infant pairs enrolled in their 

parent study to explore the relationship of cord-maternal antidepressant levels 

and maternal depression with preterm births. Samples of umbilical cord and 

maternal blood were obtained at delivery and analyzed for total drug 

concentrations. In the parent study, Wisner et al.197 concluded that infants who 

were exposed to either SSRIs or untreated maternal depression throughout the 

gestational period were more likely to be born preterm compared to those with 

partial or no exposure. However, Sit et al. did not observe a significant 

association between preterm births and cord-to-maternal parent drug 

concentration ratios (odds ratio (OR) 2.2, [95% CI 0.1, 54.6]) or cord-to-maternal 

metabolite concentration ratios (OR 0.2, [95% CI <0.001, 310.6]).   

 No definitive increase in risk of preterm births with prenatal use of SSRIs 

has emerged so far, though the preponderance of evidence does indicate a 

possible association.184, 186, 188-191, 197 Though, a majority of the studies did not 

control for confounding by depression as the condition itself has been 

associated with preterm births.198-201 Failing to account for mental illness severity 

may have attributed preterm births to SSRI exposure. Only two of the 

aforementioned studies have tried to tease out the role of untreated maternal 

depression and/or disease severity, reporting discordant results.193, 197     
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Migraine 

 Triptans are serotonin receptor agonists used to treat migraine symptoms 

by binding to various serotonin receptors thereby causing blood vessel 

constriction and neuronal inhibition.202 Prenatal use of triptans to treat migraines 

are considered to be relatively safe compared to ergotamine and 

dihydroergotamine, which have been labeled with an “X” pregnancy warning in 

the U.S., designating them as contraindicated during pregnancy.203   

Studies of triptan use during pregnancy with regard to preterm births are 

limited and present inconsistent results. Sumatriptan, the first member of its drug 

class, has been available longer than any of the other triptans.204 As such, its 

relation with preterm births has been examined in two of the three studies. In the 

Swedish study, 658 infants whose mothers had used sumatriptan during 

pregnancy were identified and compared to infants exposed to other migraine 

drugs.203 And although infants were slightly more likely to be preterm, the effect 

did not reach statistical significance (aOR 1.29, [95% CI 0.84, 1.97]). Olesen et 

al.205 was able to lend support for this positive association utilizing data from the 

Danish registry. An elevated risk of preterm delivery was reported with prenatal 

sumatriptan exposure in comparison to those who received no treatment for their 

migraines (aOR 6.3, [95% CI 1.2, 32.0]) and healthy controls (aOR 3.3, [95% CI 

1.3, 8.5]). However, these findings may actually be due to disease severity 

rather than actual drug exposure. 
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In the most recent study, Kallen et al.206 broadened their focus to 

migraine drugs in general, including triptans and ergots. An increased risk for 

preterm births was observed among women exposed to migraine medications 

later in pregnancy (aOR 1.50, [95% CI 1.22, 1.84]) compared to mothers who 

were not exposed any time during pregnancy. However, this positive association 

may be driven by ergot exposure. Use of ergots during pregnancy has been 

restricted due to the possible risk of preterm births and hypertonic uterine 

contractions during delivery.203                              

 
Pseudoephedrine 

 Pseudoephedrine, a decongestant, is used to treat symptoms associated 

with upper respiratory infections, allergies, asthma, and rhinitis by narrowing 

blood vessels in the nasal passages. It is also used as a temporary relief of 

sinus congestion and pressure. Decongestants are one of the most commonly 

taken nonprescription drugs during pregnancy.207 Among 7,563 case-mothers 

and control-mothers in the Slone Epidemiology Center Birth Defects Study 

(BDS) and 2,970 control-mothers in the NBDPS, pseudoephedrine was tied with 

ibuprofen as the second most commonly taken product during pregnancy, with 

at least 15% of women exposed.208 In fact, pseudoephedrine use was higher 

during pregnancy than before conception. The prevalence of pseudoephedrine 

use increased from pre-pregnancy to the second trimester, but then dropped 

during the third trimester.208 Despite the common use of decongestants during 

pregnancy, few studies have examined the relationship between its use and 
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preterm births. Of the two which have, both observed a reduced risk of preterm 

births with maternal decongestant use.207, 209   

In the first study, Swedish register data was utilized to obtain information 

regarding maternal drug use and delivery outcomes.209 No association was 

noted between first trimester exposure to decongestants and preterm births, but 

a reduced risk was observed with later pregnancy use (aOR 0.68, [95% CI 0.52, 

0.88]). This inverse association was corroborated in a population-based 

retrospective study of 3,271 Massachusetts live-born births without major 

malformations by Hernandez et al.207 A hazard ratio (HR) of 0.42 [95% CI 0.21, 

0.84] was observed between second or third trimester decongestant use and 

preterm births. Kallen and Olausson209 hypothesized that the protective 

association may be due to confounding by indication, similar to nausea and 

vomiting which have been associated with reduced risk of preterm births,210 

pregnancy rhinitis may also be an indicator of a healthy pregnancy. To explore 

this further, various combinations of asthma and decongestant exposures were 

examined. Non-asthmatic women who took decongestants had lower risk of 

preterm births compared to those unexposed.207 Compared to non-asthmatic, 

non-decongestant exposed mothers, untreated asthmatic women had the 

highest risk (HR 1.8, [95% CI 1.2, 2.6]), whereas asthmatic women who took 

decongestants had no increase in risk (HR 1.0, [95% CI 0.50, 2.0]). Although 

confounding by indication was not supported, this protective association 
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between maternal decongestant use and preterm births requires further 

investigation. 

 
Ranitidine 

 Ranitidine is among a group of drugs known as histamine 2 (H2) 

blockers. These medications are used to treat peptic ulcer and 

gastroesophageal reflux diseases by inhibiting gastric secretion. A handful of 

studies have documented the safety of acid-suppressing drug use during 

pregnancy and preterm births, with most reporting no association.   

 Two studies focused on H2 blocker exposure during the first trimester and 

its relation to preterm births.211, 212 Both reported null findings, observing no 

difference between women exposed to H2 blockers during the first trimester and 

the controls. Matok et al.213 further examined maternal H2 blocker exposure by 

each trimester of pregnancy by linking three databases containing information 

on medications dispensed and hospitalization records of women registered to 

Clait, a health maintenance organization in the Southern District of Israel. No 

increased risk was noted between any trimester of H2 blocker exposure and 

preterm births. Only one study reported contradictory findings. Utilizing data from 

18 Teratology Information Services within the European Network of Teratology 

Information Services, Garbis et al.214 found that the incidence of preterm births 

was higher among mothers who had taken H2 blockers than among those who 

had no exposure (relative risk (RR) 1.67, [95% CI 1.18, 2.35]). However, the 
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weight of evidence appears to suggest that prenatal use of H2 blockers is not 

associated with higher risk of preterm births.       

 
Thiazide Diuretics 

 Thiazide diuretics are considered as secondary amines and amides. This 

medication is often used to treat hypertension and edema. Contradictory results 

were observed between the Danish and Scottish cohort data.215 A positive 

association between prescription thiazide diuretic purchase during pregnancy 

and preterm births was observed in the Danish cohort (aOR 1.9, [95% CI 1.2, 

3.0]). Although an increased risk of preterm births was observed in the Swedish 

cohort, the 95% CI was compatible with the null.   

 

Tertiary Amines 

Antiepileptics 

 Epilepsy is the most common neurological disorder in pregnant 

women,216 with a prevalence ranging from 0.3 to 0.7%.217 Although more than 

90% of pregnancies in epileptic women occur without complications,218 epileptic 

women are considered at high risk. Studies present conflicting results with 

prenatal antiepileptic drug (AED) use (e.g., carbamazepine and valproate) and 

preterm births. 

 A Danish study observed higher risk of preterm births among epileptic 

women treated with AEDs who also smoked (aOR 5.7, [95% CI 2.3, 14.2]) 

compared to nonepileptics, but no such association was observed among their 
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nonsmoking counterparts (aOR 0.5, [95% CI 0.1, 3.5]).219 This positive 

association may have been driven by smoking rather than AEDs since smoking 

has been reported to be associated with infant prematurity.94-100, 103-106 However, 

an increase risk of preterm births was reported with prenatal AED use even after 

adjusting for smoking and other factors by Veiby et al.220 Further, women who 

had delivered a preterm infant were 80% more likely to have been exposed to 

carbamazepine during pregnancy [95% CI 1.4, 2.4]. In addition, an increased 

risk of delivery before 34 weeks of gestation was observed among epileptic 

women using AEDs (aOR 1.6, [95% CI 1.2, 2.1]) compared to nonepileptic 

women in a population-based cohort study utilizing data from the Medical Birth 

Registry of Norway.217 Slightly elevated risk was observed with delivering an 

infant 34-36 weeks of gestation, but the 95% CI was compatible with the null.   

  On the other hand, Fonager et al.221 and Lin et al.222 did not find any 

evidence of an increased risk of preterm births with prenatal AED use in their 

study populations. Likewise were the conclusions of Katz et al.223 and 

Viinikainen et al.,218 despite using untreated epileptic women as their referent 

group to examine gestational age and preterm births, respectively. Although a 

positive association was reported among untreated epileptic women and preterm 

births (aOR 1.35, [95% CI 1.07, 1.71]),222 previous studies report null findings 

between the condition and preterm births.217, 219, 220 
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Antiinfective, Macrolides 

 Macrolides are a group of antibiotics which include drugs such as 

azithromycin, erythromycin, and roxithromycin. These drugs are tertiary amines 

and amides. While the use of antiinfective drugs during pregnancy has 

decreased from 1998 to 2002 (P ≤ 0.05 for trends), macrolides had an 

increasing trend of use.224 Most notable was azithromycin, climbing from 0.04% 

in 1998 to 10.16% in 2002. Studies on prenatal macrolide present inconsistent 

conclusions with regard to preterm births. 

 In a randomized controlled trial (RCT) conducted in Jefferson County, 

Alabama, 624 healthy women who had a previous spontaneous delivery or who 

weighed <50 kg before pregnancy were enrolled to determine whether treatment 

of metronidazole and erythromycin reduces the incidence of preterm births 

among: 1) women at risk for preterm births; and 2) women with bacterial 

vaginosis.225 Women were randomly assigned 2:1 to either antimicrobial therapy 

or an identical-appearing placebo containing lactose filler. A lower incidence of 

preterm births was observed among the treatment group compared to the 

placebo (P = 0.01). In addition, antimicrobial treatment reduced the rates of 

preterm births among women with bacterial vaginosis (P = 0.006). This 

protective association was not observed in a RCT examining the effect of 

antibiotic treatment on fetal fibronectin-positive women.226 No difference was 

observed in preterm births between the antibiotic-treated and placebo-treated 

women (RR 0.99, [95% CI 0.71, 1.38]).   
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 In a large, population-based register study in Norway, 180,120 women 

who were pregnant between 2004 and 2007 were linked to the Norwegian 

prescription database to determine prenatal exposure to several antibiotics 

(erythromycin, penicillin V, amoxicillin). No difference in preterm births was 

observed between the three antibiotic drug exposures and among women who 

had not taken any systemic antibiotics.227 However, a slightly lower odds ratio 

was observed among women with prenatal exposure to erythromycin, but this 

result did not reach statistical significance (aOR 0.96, [95% CI 0.86, 1.07]). 

Kallen et al.228 found similar conclusions, with no excess risk of preterm births 

among infants with fetal exposure to erythromycin.      

 
Antihypertensives 

 Hydralazine and clonidine are antihypertensives that have tertiary amine 

functional groups. Hydralazine is an agent acting on arteriolar smooth muscles, 

decreasing peripheral resistance and lowering blood pressure. Clonidine is a 

centrally acting antiadrenergic agent, providing easier blood flow by decreasing 

the heart rate and relaxing blood vessels. There does not appear to be a study 

which examines the use of these two medications during pregnancy, either 

singly or in conjunction, and its relation to preterm births. However, utilizing the 

Swedish Medical Birth Registry, maternal use of antihypertensive drugs in early 

pregnancy and delivery outcomes were explored.229 A higher risk of preterm 

births was noted among women who reported using antihypertensives during the 

first trimester (aOR 3.33, [95% CI 2.89, 3.84]). Though it is not evident if this 
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relationship does in fact exist between these two specific medications and 

preterm births since antihypertensive drug use also included beta blocking 

agents, calcium channel blockers, angiotensin-converting-enzyme inhibitors, and 

angiotensin II antagonists.         

 
Calcium Channel Blockers 

 Calcium channel blockers are nitrosatable drugs that have been classified 

as tertiary amines and amides. These drugs prevent calcium from entering cells 

in the heart and blood vessel walls, thereby lowering blood pressure. Studies 

regarding its association with preterm births have presented discordant results. 

A significantly lower gestational age and an increase in prematurity were 

observed among women with first trimester exposure to calcium channel 

blockers compared to women who reported taking nonteratogenic 

medications.230 This conclusion differs from that of Gulmezoglu & Hofmeyr’s,231 

where a peto OR of 0.50 [95% CI 0.18, 1.40] was reported for the relation 

between flunarizine exposure and preterm births. The peto OR uses an inverse 

variance approach and is considered an alternative to the Mantel-Haenszel 

method.232 The observed effect size was based on published and unpublished 

data for a clinical trial of 100 women randomly assigned to either the flunarizine 

or placebo group during their second trimester of pregnancy. However, 

nonsmokers were excluded from this clinical trial and preterm births was defined 

as <38 weeks of gestation.   
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Chlorpheniramine, Diphenhydramine, and Promethazine 

 Chlorpheniramine, diphenhydramine, and promethazine are first-

generation antihistamines used to relieve symptoms of allergic reactions. Most 

first-generation antihistamines are generally considered safe to use during 

pregnancy. In an Israeli study conducted between 1995 and 2001, 1,406 

pregnant women were prospectively followed to evaluate the rate of adverse 

pregnancy outcomes.233 The study compared three exposure groups: 1) 

loratadine, a second-generation antihistamine; 2) other antihistamines (OAH), 

such as chlorpheniramine, promethazine, and hydroxyzine; and 3) the control 

group, those exposed to nonteratogenic agents. The rate of preterm births was 

not significantly different between the three groups (P = 0.101).   

 While considered as antihistamines, diphenhydramine and promethazine 

possess antiemetic effects and are often used to treat nausea and vomiting 

during pregnancy. Utilizing data obtained from the Swedish Medical Birth 

Registry, drug use during pregnancy was prospectively ascertained between 

July 1, 1995 to 2002. Focusing on antiemetic drug use, including 

diphenhydramine, metoclopramide, and promethazine, Asker et al.234 compared 

women who had been exposed during pregnancy to those who had given birth 

within the study period. A moderate decrease in risk of preterm births was 

observed with any antiemetic drug use during the first trimester (aOR 0.93, [95% 

CI 0.88, 0.98]). However, measures of effect varied by antiemetic drug use, with 

women who had taken diphenhydramine (aOR 1.18, [95% CI 1.06, 1.32]) and 
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promethiazine (aOR 1.13, [95% CI 1.02, 1.24]) both having higher risk of having 

preterm births. Though overall use of antiemetics during early pregnancy was 

associated with a more favorable outcome, it may not be due to a direct drug 

effect. The presence of nausea and vomiting during pregnancy indicates a well-

functioning placenta, which may increase the likelihood of good pregnancy 

outcomes.234             

 
Nicotine Replacement 

Exposure to tobacco during pregnancy increases the risk of having a 

preterm infant.94-100, 103-106 Approximately 12% of women continue to smoke 

during pregnancy.235 Nicotine replacement therapy (NRT), including nicotine 

gum, patches, and  inhalers, have been shown to be an effective treatment 

option to aid with smoking cessation by controlling nicotine dependency 

symptoms.236, 237 However, the safety of prenatal NRT use with regard to 

preterm births is uncertain.                

Wisborg et al.238 found no difference in the rate of preterm births between 

NRT patch users and the placebo group in a small randomized controlled, 

intention-to-treat trial. Only 11% of the patients, however, completed the full 11-

week course of therapy, which could explain the null findings. According to a 

study utilizing data from the 1988 National Health Interview Survey, cessation of 

smoking during the first trimester was found to reduce the incidence of preterm 

births by 26%.239 Oncken et al.240 corroborated this finding in a randomized, 

double-blinded, controlled trial comparing the use of NRT gum versus a placebo 
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in 194 women ≤26 weeks pregnant who smoked at least one cigarette a day. 

Women were either given a 2 mg NRT gum or an identical placebo for six 

weeks, followed by an additional six week taper period. A lower risk of preterm 

births was observed in the NRT group (P = 0.027).   

Conversely, a higher risk of preterm births was reported among women 

who were either prescribed or recommended NRT in a large sample of U.S. 

women (aOR 2.04, [95% CI 1.14, 3.63]).236 Women who were exposed to NRT 

during the first 27 weeks of pregnancy were also observed to have a slightly 

higher proportion of preterm births compared to non-NRT users in a Danish 

study.241 However, women prescribed NRT may be among the heaviest 

smokers, having the most difficult time with cessation. These individuals may not 

have used the NRT products consistently and could have continued smoking.             

 
Opioids 

 Methadone is an opioid pain reliever used to treat severe ongoing pain 

and addiction to narcotic drugs (e.g., heroine). The treatment of choice for 

management of opiate dependence in pregnant women is methadone;242 as 

such, its relationship with preterm births has been examined by a number of 

studies.   

The rate of preterm births among women confirmed by a urine drug 

screen to have been prenatally exposed to methadone (29.1%) was reported to 

be three times the national average (11.1%).243 This rate may have been inflated 

since women who were also exposed to illicit drugs were included. In an effort to 
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tease out this information, Arlettaz et al.244 found that prenatal use of methadone 

alone resulted in an incidence of preterm births which was twice that of the 

general population. A fourfold higher incidence of prematurity was reported for 

babies born to mothers who used methadone in conjunction with additional 

drugs, such as heroin and cocaine. 

An increased risk of preterm births was reported among women who 

received methadone maintenance treatment for opioid dependence compared to 

non-opioid dependent women.245 In addition, a significant linear relationship was 

reported between maternal methadone dose (no dose, ≤58 mg/day, >58 

mg/day) and preterm births (P = 0.001). Even after controlling for factors 

generally associated with methadone dose, such as socioeconomic status and 

lower educational attainment, it remained a significant predictor of preterm 

delivery. Similar findings were reported in a retrospective cohort at a large 

maternity hospital.242 Not only was methadone exposure associated with an 

increased risk of preterm births (aOR 2.47, [95% CI 1.97, 3.11]), but very 

preterm births as well (aOR 2.4, [95% CI 1.40, 4.34]). However, gestational age 

did not differ between women who continuously took methadone from 

conception to delivery and those that started taking methadone during the 

second/third trimester.246 A longer duration of fetal methadone exposure does 

not appear to be associated with shorter gestational age.   
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Amides 

Amoxicillin 

Amoxicillin is a β-lactam antibiotic, commonly used to treat many different 

types of bacterial infections. It was among the top 10 medications taken during 

pregnancy among women in the BDS database between 1998 and 2004.208 

Although the use of amoxicillin has significantly decreased from 1998 to 2002, 

its use remains the highest in terms of antiinfective prescriptions filled by 

pregnant women based on the Quebec Pregnancy Registry.224 Though a 

number of studies have focused on the safety of amoxicillin use during 

pregnancy and birth defects, few have explored other adverse pregnancy 

outcomes such as preterm births. 

In a population-based study conducted in Denmark, 401 primiparous 

women were identified who had redeemed a prescription for amoxicillin during 

pregnancy.247 Women who did not redeem any prescription three months 

preconception through the end of pregnancy served as the referent group. No 

association was noted between prenatal amoxicillin exposure and preterm births 

after adjusting for maternal age and smoking status (aOR 0.77, [95% CI 0.49, 

1.21]). This finding was similar to two studies that examined the relation between 

pivampicillin and ampicillin (medications closely related to amoxicillin) and 

preterm births.248, 249 No evidence suggests an excess risk of preterm delivery 

among mothers taking amoxicillin during pregnancy.     

 



 
 

36 
 

Benzodiazepine 

 Having both tertiary amine and amide functional groups, benzodiazepines 

are a type of anti-anxiety medication known as tranquilizers. Besides anxiety, 

benzodiazepines are commonly prescribed to treat seizures, insomnia, and 

muscle spasms. Use of prenatal benzodiazepines has been associated with 

preterm births in two studies.   

Utilizing the Swedish Medical Birth Registrar to identify maternal 

characteristics associated with exposure to benzodiazepines or hypnotic 

benzodiazepine receptor agonists (HBRA) during pregnancy, Wikner et al.250 

found that women who were older, smoked, had lower education, and whose 

parity was either one or ≥4 were associated with higher use of either or both 

medications. In addition, an excess of preterm births was noted for women who 

used these medications in late pregnancy (aOR 1.48, [95% CI 1.26, 1.75]). An 

increased risk of preterm birth was also detected with both early and late 

exposure by Wikner et al.251 The measure of effect was higher among neonates 

exposed later in pregnancy (aOR 2.57, [95% CI 1.92, 3.43]) compared to early 

exposure (aOR 1.48, [95% CI 1.26, 1.75]). However, 31% of the women who 

used benzodiazepines and/or HBRA were also taking antidepressants. 

Excluding women who also reported use of antidepressants yielded a lower 

odds ratio for preterm births which was compatible with the null (aOR 1.20, [95% 

CI 0.97, 1.50]).     
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Metoclopramide 

 Metoclopramide, an antiemetic, is widely used for nausea and vomiting 

among pregnant women. By blocking the dopamine receptor in the 

chemoreceptor trigger zone, metoclopramide is able to prevent nausea and 

vomiting normally triggered by most stimuli. Few studies have assessed the 

safety of prenatal metoclopramide use with regard to preterm births, with most 

finding no increase in risk. 

 In a retrospective cohort study in Israel, registered women of Clalit Health 

Services were identified if they had a singleton delivery at Soroka Medical 

Center between January 1998 and March 2007.252 Information regarding 

medications dispensed during pregnancy and pregnancy outcomes were 

obtained by linking three databases. First trimester exposure to metoclopramide 

was not associated with preterm births with an aOR of 1.15 [95% CI 0.99, 1.34]. 

This finding is consistent with previous studies. Berkovitch et al.253 prospectively 

enrolled 126 women who had reported taking metoclopramide during the first 

trimester of pregnancy. These women were then matched by age, smoking 

status, and alcohol use to a control group. No significant difference was 

observed in terms of gestational age at delivery (P = 0.56) and prematurity (P = 

0.70). Not only did Sorensen et al.254 observe similar null results with regard to 

first trimester exposure and preterm births in their study (aOR 1.46, [95% CI 0.8, 

2.5]), but no increase risk in preterm births was observed with any 

metoclopromide exposure during pregnancy (aOR 1.02, [95% CI 0.62, 1.67]).   
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Only one study observed a positive association between early pregnancy 

exposure to metoclopromide and prematurity.255 Expanding on their previous 

study,253 a larger cohort consisting of 175 women were enrolled. Although no 

difference was noted with regard to gestational age (P = 0.099), a significant 

relationship was now observed between early prenatal exposure to 

metoclopromide and preterm births (aRR 3.37, [95% CI 1.12, 10.12]).   

 
Sulfamethoxazole 

 Sulfamethoxazole is an antibiotic once commonly prescribed to treat 

infections such as otitis media, conjunctivitis, and urinary tract infections. With 

the development of bacterial resistance, sulfamethoxazole is now used in 

combination with trimethoprim. This combination has a synergistic action and 

blocks various steps in the bacterial synthesis of dihydrofolic acid, which is 

necessary in DNA formation.256 Although several studies have reported an 

associated between early pregnancy exposure to this medication and congenital 

malformations,257-261 only one examined the risk of preterm births. Approximately 

3.2% of pregnant women in the Canadian province Saskatchewan were 

exposed to trimethoprim/sulfamethoxazole, according to a population-based 

study conducted on a random sample of women giving birth between 1997 to 

2000.256 Utilizing the same population, Yang et al.262 found an increase in risk for 

preterm births among women who were prenatally exposed to 

trimethoprim/sulfamethoxazole compared to those who had no exposure (aOR 

1.51, [95% CI 1.10, 2.08]).                        
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Dietary Intake and Preterm Birth 

Dietary intake of nitrate/nitrite in combination with nitrosatable compounds 

may pose a risk for preterm births. The main source of dietary nitrite consists of 

cured meats, cereals, and baked goods; vegetables contribute the largest 

proportion to daily nitrate intake.7 Previous studies regarding nitrate/nitrite 

exposure and preterm births have only focused on exposure levels from drinking 

water.263-265 Super et al.265 conducted a study in a rural region of southwest 

Africa and found no association between the incidence of preterm births and 

residing in an area with high levels of nitrates (>89 mg/L nitrate as nitrate). 

Conversely, in a population-based case-control study conducted in Prince 

Edward Island, Canada, a significant dose-response association was observed 

between nitrate levels in drinking water and prematurity.263 An OR of 1.83 [95% 

CI 1.25, 2.68] was detected for prematurity with median nitrate levels as low as 

13.7 mg/L nitrate as nitrate, a level which is below the current U.S. maximum 

contaminant level set for drinking water in public water supplies (45 mg/L nitrate 

as nitrate). Joyce et al.264 also noted an increase in the prevalence of PPROM 

with moderate (0.553-1.55 mg/L nitrate as nitrate) (aOR 1.23, [95% CI 1.03, 

1.52]) and high (>1.55 mg/L nitrate as nitrate) water nitrate levels (aOR 1.47, 

[95% CI 1.20, 1.79]).   

Studies regarding dietary intake have focused mainly on different types of 

diets rather than exposures to nitrates and nitrites. A Mediterranean-type diet 

consists of vegetables, fruits, whole grains, nuts, legumes, fish, and use of olive 
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oil. Consumption of red meat, full-fat dairy products, and eggs are limited. While 

Haugen et al.266 noted no association, a significantly lower incidence of preterm 

births was reported among mothers who adopted a Mediterranean-type diet from 

gestational week 17-20 to birth.267 Mikkelsen et al.268 reported a similar finding 

utilizing the Danish National Birth Cohort. In addition, Scholl et al.269 examined 

the association of high-sensitivity C-reactive protein (hsCRP) and preterm births. 

Higher hsCRP concentrations are associated with a Western diet, which 

consists of high quantities of red meat and high cholesterol food items. A 

significant increase in risk for early preterm delivery (<34 weeks) was observed 

with the highest tertile of hsCRP (7.06-137.41 mg/L).   

Vitamin C was examined to determine whether nitrosatable drug users 

with high vitamin C intake have a reduced risk of preterm births than those with 

lower intake. Vitamin C has been shown to inhibit endogenous formation of N-

nitroso compounds. Ascorbic acid inhibits the formation of N-nitroso compounds 

by rapidly reducing nitrite to nitrous oxide, followed by the production of 

dehydroascorbic acid.270 Animal models have further demonstrated vitamin C’s 

ability to inhibit nitrosation as reduced risk for peripheral nervous system tumors 

in the offspring of pregnant mice and hamsters were observed when ascorbic 

acid was given in conjunction with ethylurea and nitrite.271, 272 In a clinical trial of 

human volunteers, increased doses of ascorbic acid, starting from 1.76 mg to 

1,000 mg, were administered along with combined exposures of nitrate and a 

nitrosatable precursor, proline.273 A significant 44% reduction in N-nitroso 
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compound excretion was observed among individuals who were given vitamin C 

in conjunction with nitrate and proline compared to those without concomitant 

administration of vitamin C.273  

In a recent study, Brender et al.274 observed lower odds of anencephalic 

births among women who took daily vitamin C supplementation along with 

tertiary or secondary drug exposures. A reduction in risk was also noted for 

transverse limb deficiency in conjunction with secondary amine drug exposures, 

cleft lip without cleft palate with tertiary amine exposures, and several congenital 

heart defects in conjunction with tertiary amine and amide drug exposures with 

daily use of supplements containing vitamin C.275 In addition, in a prospective 

cohort of pregnant women in North Carolina, total vitamin C intake 

preconceptionally and during the second trimester was examined for its relation 

with preterm births.276 Although no association was noted between women with 

preconception or second trimester total vitamin C intakes of <10th percentile and 

overall preterm births, there was an increased risk of preterm births due to 

PPROM (RR 2.2, [95% CI 1.1, 4.5]) among those with total vitamin C intakes 

less than the 10th percentile preconceptionally. This finding aligns with other 

studies which have also reported a higher incidence of PPROM among women 

with low vitamin C levels.277-279   

However, Steyn et al.280 noted no difference in preterm births between 

women who received 250 mg of vitamin C and women who were given a 

matching placebo daily until 34 weeks gestation. Further, maternal 
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supplementation with vitamin C and E beginning at 9 to 16 weeks gestation did 

not reduce the risk of preterm births among nulliparous women in a RCT.281 If a 

relationship is observed where nitrosatable drug users with high vitamin C intake 

have lower risks of preterm births than those with lower intake, then women who 

may need to take medications that are considered nitrosatable may be advised 

to increase their vitamin C intake. 

 

Methods 

A case-control study design was utilized to examine the relationship 

between prenatal exposures to nitrates, nitrites, and nitrosatable drugs and 

preterm births. Control mothers from the NBDPS, who had delivered infants 

without major congenital malformations, with estimated dates of delivery during 

1997-2005 served as the source for both cases and controls. The NBDPS is an 

ongoing population-based case control study that has been conducted since 

1997. As a collaborative study of the Centers for Disease and Control National 

Center on Birth Defects and Developmental Disabilities and ten birth defect 

surveillance registries including Arkansas, California, Georgia (metropolitan 

Atlanta), Iowa, New Jersey, New York, North Carolina, Massachusetts, Texas, 

and Utah, the NBDPS is the largest population study focused on birth defects in 

the nation.   

NBDPS control-mothers served as the population source, with cases in 

the present study defined as preterm births (those who were born less than 37 
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weeks gestation) and controls as infants delivered at full term. Prescription and 

non-prescription drug use prior to conception and throughout pregnancy have 

been collected with a standardized questionnaire from the NBDPS and was the 

basis for the development of nitrosatable drug usage and classification. 

Nitrosatable drug usage during pregnancy was investigated to determine 

whether there is an increased risk for preterm births. Utilizing the food frequency 

questionnaire from the NBDPS, dietary intake of nitrates and nitrites was 

estimated to assess the risk of preterm births. Lastly, the role of vitamin C was 

examined in the relationship between preterm births and nitrosatable drugs.  

 

Source of Population 

Controls were identified using the NBDPS Data Analysis Tools release 

7.04 that included births with an estimated date of delivery (EDD) from 1997 to 

2005. Control-mothers within the NBDPS were randomly selected from birth 

certificates (Arkansas, for EDDs after 2000; Georgia, for EDDs after 2000; Iowa; 

Massachusetts; New Jersey; North Carolina; and Utah) or hospital records 

(Arkansas, for EDDs prior to 2001; California; Georgia, for EDDs prior to 2001; 

New York; and Texas).282 A systematic random sampling scheme was utilized 

for control selection from hospitals, allowing for the selection to be proportional 

to the number of births in each hospital in the geographic area. Controls were 

unmatched to cases and had an EDD within the same year as cases. Control 

infants were excluded if a major birth defect was present, were not residents of 
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one of the covered geographical areas, were adopted or in foster care, had a 

deceased mother, or were stillborn.   

Only control-mothers who had delivered infants during 1997-2005 without 

major congenital malformations were included in the present study. The study 

population was also restricted to singleton births as multiple births have been 

observed as a major risk factor for preterm deliveries.   

 

Case Definition 

Cases were defined as preterm births, those who were born less than 37 

weeks gestation. Preterm births were be further categorized into very preterm 

(less than 33 weeks) and moderately preterm (33-36 weeks).   

 

Control Definition 

Control-births, for the purposes of this study, were NBDPS births with 37-

41 weeks of gestation. Infants who are small for gestational age (SGA) were not 

included as control births since N-nitroso compounds have been observed to 

affect fetal weight.12 Excluding SGA births increases the likelihood of detecting 

any true associations between nitrosatable drugs and preterm births. 

 

Exposure Assessment 

Mothers were contacted by mail with a packet which included an 

introductory letter, a pamphlet of frequently asked questions, a “Rights of 
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Research Subjects” fact sheet, a response list, a calendar covering the duration 

of their pregnancy, and compensation in the form of a $20 money order. Packets 

were sent to mothers six weeks after the infant’s EDD. Mothers were contacted 

approximately ten days after the introductory packets were delivered to answer 

any potential questions, conduct the interview, and/or schedule a more 

convenient time to complete the interview. Interviews were targeted for 

completion within six months of the EDD, but no later than 24 months after.283  

Requiring approximately an hour to complete, interviews were conducted 

in either Spanish or English by female interviewers using a computer-assisted 

telephone interview. Interviews are completed in one session or separate 

sessions if requested by the mothers. Verbal informed consent was obtained 

prior to the interview through a standard script. The interviews covered a variety 

of topics including chemical, infectious, nutritional, physical, and behavioral 

factors. Detailed questions regarding exposures three months preconception to 

the end of pregnancy were collected. Some were open-ended while most are 

structured with pre-coded response lists. Utilizing the calendar sent in the 

introductory packet, mothers were able to respond to questions regarding timing 

of exposures by date, month of pregnancy, or trimester.   

 

Dietary Assessment of Nitrate and Nitrite Intake 

Average food consumption throughout the year before conception was 

inquired during the NBDPS interview using the 58-item food frequency 
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questionnaire (FFQ) that was adapted from the short Willett FFQ. The Willett 

FFQ has been validated and reproduced in other studies and has been indicated 

to provide useful information about nutrient intake in women during 

pregnancy.284 Information regarding cereal intake three months preconception 

through the third trimester was also obtained. Additional dietary questions (e.g., 

avocados, tortillas, etc.) were added to address the diverse diet of the study 

population. 

Nutrient calculations were based on the United States Department of 

Agriculture (USDA) National Nutrient Database for Standard Reference 19. Daily 

intake of each food component was calculated based on the frequency of use 

and serving size. Foods and food groups in the FFQ were assigned codes which 

also correspond to USDA codes. Since estimates of nitrites and nitrates were 

not available in the USDA National Nutrient Database, values were estimated 

based on published literature for each food item/group by Griesenbeck et al.285  

Briefly, estimation of dietary intake of nitrates and nitrites in milligrams per 

day were assigned based on the following procedures: 1) for each food item, 

weighted means (mg/100 g) were calculated based on relevant literature; 2) the 

number of serving sizes were multiplied by the weighted means; 3) values of 

nitrites and nitrates were multiplied by the number of monthly servings; and 4) 

levels of nitrates and nitrites were summed across all food items and divided by 

30. Total dietary nitrite was calculated based on the formula [total nitrite = 

dietary nitrite intake + (0.05 × dietary nitrate intake)].286 Nitrites, nitrates, and 
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total nitrites were further categorized into tertiles based on the control women’s 

distribution that had a total daily caloric intake between 500-5000 kcal.   

 

Assessment of Nitrosatable Drugs 

Information regarding prescription and nonprescription drugs from three 

months preconception to the end of pregnancy was collected. Name of 

medication, dates of use, and frequency of use were obtained. The Slone 

Epidemiology Center Drug Dictionary system was used to link the reported 

medications to their active ingredient.287 Drugs were then classified by their 

nitrosatibility, functional groups, and indications based on methods described by 

Brender et al.10 The methodology for classification included: 1) active ingredients 

for all medications were identified; 2) drugs were cross-referenced with 

comprehensive nitrosatable medicinal compounds lists;160, 288 3) drugs were 

categorized based on the presence of functional groups (e.g., secondary amine, 

tertiary amine, or amide); and 4) drugs were further categorized by its primary 

indication (analgesic, cardiovascular) or therapeutic use (opioid, beta blocker). 

This study focused on exposures by trimester and month of gestation. 

 

Assessment of Vitamin C Intake 

Vitamin C’s potential role in reducing preterm risk in the presence of 

nitrosatable drugs was examined since it is a known nitrosation inhibitor.289, 290 

The NBDPS questionnaire contains questions regarding supplemental vitamin 
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use (single, prenatal, and multivitamins) from three months preconception to the 

end of pregnancy. These questions were used to create variables for the last 

two trimesters, as was done previously for the first trimester of pregnancy, which 

included merging the Centers for Disease Control multivitamin and folic acid file 

to data from the NBDPS Data Analysis Tools release 7.04 on single vitamin and 

other preparations of vitamin C. Dietary intake of vitamin C was also available 

from the FFQ and the NBDPS Database Tools. Estimates were developed for 

supplemental and dietary vitamin C intake based on the FFQ and the nutrient 

database.  

 
 
Data Analyses  

Table 1 displays the minimum detectable odds ratios for preterm births in 

relation to selected exposures (Specific Aims #1-2) based on 500 affected 

controls within the NBDPS. 

 

 
Table 1.  Minimum Detectable Odds Ratio of Preterm Births in relation to 
Selected Exposures in NBDPS Controls 

Outcome1 
Number of 

affected 
controls 

Exposure2 
Odds ratio3 

Power 
80% 90% 

Preterm 
births 500 

Any Nitrosatable Drugs 1.35 1.41 
Secondary Amines 1.45 1.53 
Tertiary Amines 1.45 1.54 
Amides 1.57 1.67 
Dietary Nitrite or Total Nitrite 1.32 1.37 

1 Number of controls (term births at 10th percentile or above birth weight for gestational age) – 5546 
2  Prevalence of exposure in comparison to women (full term, non-SGA deliveries): nitrosatable drugs 
   (23.6%), secondary amines (12.4%), tertiary amines (12.2%), amides (7.6%), dietary nitrite or total 
   nitrite tertiles (33.3%) 
3  Two tailed significance level of 0.05 
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Specific Aims #1-4   

To determine which potential confounding variables to include in the 

models, forward selection was utilized. The following covariates were considered 

based on their potential associations with preterm births and the exposures of 

interest: maternal race/ethnicity (non-Hispanic white, non-Hispanic black, 

Hispanic, Asian/Pacific Islander, Native American, and other); maternal age at 

delivery in years (<18, 18-19, 20-24, 25-29, 30-34, and ≥35); maternal education 

in years (<12, 12, 13-15, ≥16); household income (<$10,000; $10,000-$20,000; 

$20,001-$30,000; $30,001-$40,000; $40,001-$50,000; and >$50,000);  maternal 

active smoking (yes/no); pre-pregnancy body mass index (in kg/m2, categorized 

as <18.5, 18.5-24.9, 25.0-29.9, and ≥30.0); caloric intake (kcal); parity 

(nulliparous, primiparous, and multiparious); maternal hypertension during 

pregnancy (yes/no); pre-pregnancy hypertension (yes/no); pre-pregnancy 

diabetes (yes/no); gestational diabetes (yes/no); infant gender (male/female); 

study site; vitamin use (yes/no); and folate supplementation (yes/no). 

Nonsignificant covariables as well as those that did not change the measure of 

effect by 10% or more were eliminated from the model.   

Regardless of its results, maternal race/ethnicity, education, and study 

center were included in the final model since they have been observed as 

important predictors of nitrosatable drug use and dietary intake of nitrites and 

total nitrites.10 Only cases and controls who had reported a daily caloric intake 

between 500-5000 kcal were included in analyses involving dietary intake. 
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These limits are recommended by Willett291 and are consistent with previous 

dietary studies and those utilizing the NBDPS database.274, 292-294 Complete case 

analyses was used (participants were included for crude and adjusted analyses 

only if complete information was available for all variables included in the final 

models). Complete data on nitrosatable drug use stratified by total nitrite intake 

was available for 1,132 (92.6%) case-mothers and 6,376 (93.7%) controls. 

 
Specific Aims #1-2 

Cox proportional hazards models were used to obtain hazard ratios (HR) 

and 95% CI for preterm births in relation to 1) dietary nitrate, nitrite, and total 

nitrite; 2) any nitrosatable drug use; 3) nitrosatable drug usage based on 

categories: secondary amines, tertiary amines, and amides; and 4) drug 

indication groups. For analyses involving nitrosatable drug usage, women who 

reported no nitrosatable drug usage anytime during pregnancy served as the 

referent group.   

 
Specific Aims #3-4 

To examine the joint effects of nitrosatable drug exposure and dietary 

intake of nitrates/nitrites, nitrosatable drug exposure was stratified by tertiles of 

dietary intake of nitrates/nitrites. Stratum specific HRs and 95% CIs were 

obtained. Nitrosatable drug exposure was stratified by dietary vitamin C (<85 

mg/day or ≥85 mg/day, based on NIH recommendations for pregnant women) 

and supplemental vitamin C (none, <daily, and daily) for each trimester. 
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Multiplicative interaction was assessed by including the various product terms of 

nitrosatable drugs with dietary intake and/or vitamin C. Additive interaction was 

assessed using a program developed by Andersson et al.,295 relying on the 

relative excess risk due to interaction (RERI) and the attributable proportion (AP) 

due to interaction along with the 95% CIs to determine whether additive 

interaction was present.   

 

In the multivariable analyses, the following main effects and interactions were 

considered: 

1.  (nitrosatable drug groups) + (dietary nitrites) + (nitrosatable drugs 
groups) * (dietary nitrites) 

2. (nitrosatable drug groups) + (dietary plant nitrites) + (nitrosatable drugs 
groups) * (dietary plant nitrites) 

3. (nitrosatable drug groups) + (dietary animal nitrites) + (nitrosatable drugs 
groups) * (dietary animal nitrites) 

4. (nitrosatable drug groups) + (total nitrites) + (nitrosatable drugs groups) * 
(total nitrites) 

5. (nitrosatable drug groups) + (vitamin C supplement) + (nitrosatable drug 
groups) * (vitamin C supplement)  

6. (nitrosatable drug groups) + (dietary vitamin C) +  (nitrosatable drug 
groups) * (dietary vitamin C)  

 
 
 
Significance 

This study examined whether nitrosatable drug usage is associated with 

an increased risk of preterm deliveries, which has not been done in any 

epidemiologic study before. Only one identified study has examined nitrosatable 

drugs in relation to low birth weight in humans; however, gestational age was not 

considered.296 Since previous studies have observed a positive association 
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between preterm births and drugs which are considered nitrosatable, it is 

reasonable to consider its possible implications on gestational age.    

Previous studies regarding nitrate/nitrite exposure and preterm births 

have only focused on exposure levels from drinking water.263, 264 Sources of 

dietary nitrate/nitrite have not been considered despite its major contribution to 

the total level of human exposure. Therefore, it is important to examine the 

impact of dietary nitrate and nitrite intake in relation to preterm births. This study 

is the first to examine dietary intake of nitrate/nitrite levels and its risk on preterm 

births using the food frequency data available within the NBDPS.   

The proportion of infants born preterm in the U.S. has gradually been 

increasing.297 It is hypothesized that survival limits for preterm infants has been 

reached using the current methods of neonatal intensive care.298 At this point, 

more research should focus on understanding the etiology of preterm births so 

that we are able to pinpoint and estimate risk factors of preterm births to identify 

women who are more susceptible. Although the causes and mechanisms of 

preterm delivery are not fully understood, PPROM has been connected to one 

third of all cases.151-153 As higher levels of nitric oxide have been observed in the 

blood and urine of women who had preterm births, it is necessary to examine 

dietary nitrate/nitrite intake as a portion is converted to nitric oxide.157 Because 

every individual has some level of nitrate and nitrite exposure, it is pertinent to 

examine and estimate its association with preterm births. Its effects, even if 
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small, could potentially have a high attributable risk as exposure is extremely 

common.  

If an association is observed between nitrosatable drugs and preterm 

births, then women considering over-the-counter nitrosatable drugs during 

pregnancy could be recommended non-nitrosatable drugs with similar 

therapeutic indications as possible alternatives. For women who are prescribed 

nitrosatable drugs, prenatal exposure may be unavoidable (e.g., antiepileptics). 

However, dietary and supplemental vitamin C may attenuate the association 

between nitrosatable drugs and preterm births. If a diminished association is 

observed with high vitamin C intake, then women prenatally exposed to 

nitrosatable drugs would be encouraged to take a daily vitamin C supplement. In 

addition, this research provides information that will allow healthcare providers to 

identify those who are at higher risk. This would allow possible mitigation 

strategies such as the usage of tocolytic agents to delay or arrest the 

progression of preterm labor. Preventing preterm births would not only reduce 

the associated economic costs and improve health outcomes, but it will save 

countless families from the emotional and financial hardships inflicted as a result 

of a preterm delivery.   
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CHAPTER II 

 
NITROSATABLE DRUG EXPOSURE DURING PREGNANCY  

AND PRETERM BIRTHS 

 
 

Overview 

Nitrosatable drugs react with nitrite in the stomach to form N-nitroso 

compounds, observed in animal models to result in adverse pregnancy 

outcomes such as birth defects and reduced fetal weight. Previous studies 

examining prenatal exposure to medications classified as nitrosatable have 

observed an increased risk of preterm delivery.  

Using data from mothers (controls) of babies without major birth defects 

from the National Birth Defects Prevention Study, prenatal nitrosatable drug 

usage by trimester and month of gestation was examined in relation to preterm 

delivery among 496 case-mothers of preterm infants and 5398 control-mothers 

who delivered full term babies from 1997 to 2005.  

Positive associations were observed with nitrosatable drug use following 

the first trimester of pregnancy, with the strongest relationship among exposures 

during the second trimester (adjusted hazard ratio (aHR) 1.37, [95% confidence 

interval (CI) 1.10, 1.70]). Of the nitrosatable functional groups, secondary 

amines were the most notable, with an increased risk observed among women 

who reported exposure during the second (aHR 1.37, [95% CI 1.05, 1.79]) and 
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third (aHR 1.34, [95% CI 1.02, 1.76]) trimester. When we examined nitrosatable 

drug usage by gestational month, the strongest associations were detected with 

usage during the sixth and seventh month of gestation, particularly with 

secondary and tertiary amines. Similar findings were observed with prenatal 

nitrosatable drug use in relation to moderately preterm births.  

Prenatal exposure to nitrosatable drugs during the second and third 

trimester of pregnancy, particularly secondary amines, might increase risk of 

preterm delivery.  

 

Background 

Infants born less than 37 completed weeks of gestation are considered 

preterm. These infants are at higher risk of adverse health outcomes during their 

first year of life, behavioral dysfunctions in childhood, and long-term health 

effects spanning through adulthood.159 Preterm infants also account for 75% of 

perinatal mortality,2 making it the leading cause of perinatal morbidity and 

mortality in industrialized countries. Numerous environmental toxicants have 

been examined for their role in preterm births, of which the weight of evidence 

has only been sufficient for two: lead and tobacco smoke.3   

N-nitroso compounds, including nitrosamines and nitrosamides, are 

formed when nitrosatable amines or amides react with nitrosating agents, such 

as nitrite, in the acidic environment of the stomach.11 Though exogenous 

sources are responsible for some of the exposure to N-nitroso compounds, 



 
 

56 
 

endogenous formation is estimated to account for approximately 45-75% of total 

levels.299 Certain nitrosatable drugs, classified as secondary amines, tertiary 

amines, and amides, contribute to the formation of N-nitroso compounds by 

reacting with nitrosating agents. Within the National Birth Defects Prevention 

Study (NBDPS), nitrosatable drug use during the first trimester of pregnancy 

was observed in 24% of the control mothers.10 In the NBDPS study population, 

prenatal exposure to nitrosatable drugs during the first trimester was associated 

with several birth defects, including neural tube defects, limb deficiencies, cleft 

lip with cleft palate, cleft palate alone, single ventricle heart defects, 

atrioventricular septal defects, and hypoplastic left heart syndrome.274, 294 

Further, in animal models N-nitroso compounds have been observed to result in 

adverse pregnancy outcomes in mice, such as reduced fetal weight12 and birth 

defects.13, 14 Its effects on gestational age are not fully known as studies of 

adverse pregnancy outcomes did not focus on this aspect.  

In addition, preterm birth rates have been observed to vary by ethnic 

origin, with non-Hispanic black women having almost twice the rate of non-

Hispanic white women in the United States, regardless of socioeconomic 

status.2, 159 For the past decade, this racial gap has decreased slightly due to the 

22.3% rise in preterm birth rates among non-Hispanic white women compared to 

the 3.6% increase observed in non-Hispanic blacks.159 The disproportionate 

rates of preterm births among non-Hispanic blacks and the unexpected rise 

among non-Hispanic whites may be partially attributable to the higher 
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prevalence of nitrosatable drug usage, and subsequent higher levels of N-

nitroso compounds, during early pregnancy among the two groups. The highest 

prevalence of use was observed among non-Hispanic whites, followed by 

women who described themselves as other and non-Hispanic black.10 Ingestion 

of nitrosatable drugs may be a contributing factor in preterm deliveries and could 

possibly explain the preterm birth rates observed by ethnic origin. 

 Although no known study has examined the relation between nitrosatable 

drugs and preterm births, a number have investigated various drugs which have 

been classified as nitrosatable.160 Many of these prescription and 

nonprescription drugs were reported to have been taken by NBDPS control 

women during the first trimester of pregnancy.10 Several medications within the 

sub-categories of nitrosatable drugs have been indicated as possible risk factors 

of preterm births. For secondary amines, several studies have observed a 

positive association with prenatal use of beta blockers,177-179 anti-

depressants,184, 186, 188-191 thiazide diuretics,215 and migraine203, 205, 206 

medications in relation to preterm births. Tertiary amine drugs, such as 

antiepileptics,219, 220 antihypertensives,229 calcium channel blockers,230 nicotine 

replacement,236, 241 and opioids242-245 have also been implicated. 

Benzodiazepine250, 251 and sulfamethoxazole262 medications, classified amide 

drugs, have also been associated with preterm deliveries. Though evidence 

suggests an association for several nitrosatable drugs, some studies have 

yielded conflicting results.180-182, 192-195, 217, 218, 221-223, 231, 238, 246 
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To our knowledge, no study has examined the relation between prenatal 

use of nitrosatable drugs and risk of preterm births. Given the prevalence of 

nitrosatable drug use and the positive associations observed between preterm 

births and drugs that have been classified as nitrosatable in previous studies, we 

examined the relation between prenatal exposure to nitrosatable drugs by their 

molecular structure (secondary amines, tertiary amines, and amides), focusing 

on usage by trimester and month of gestation, and preterm births. Moderate and 

very preterm births were also examined.   

 

Methods 

Study Population 

 Data from control-mothers of babies without major birth defects within 

NBDPS, an on-going population-based, case-control study of major structural 

birth defects in the United States, were used to examine prenatal use of 

nitrosatable drugs by their molecular structure (secondary amines, tertiary 

amines, and amides) and their relation to preterm births. The NBDPS, which 

began in 1997, is comprised of 10 sites across the nation, including: Arkansas, 

California, Georgia, Iowa, Massachusetts, New York, and Texas (from 1998 to 

present); New Jersey (from 1998 to 2002); and North Carolina and Utah (from 

2003 to present). Case-infants within NBDPS are identified from live births (all 

centers), stillbirths (all centers except New Jersey and New York from 1997 to 

1999), and elective pregnancy terminations (all centers except Massachusetts, 
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New Jersey, and New York before 2000) from birth defect surveillance 

programs.282  

NBDPS control-infants were live born without major birth defects, who 

were delivered in the same time frame and study area as the case births with 

major birth defects. They were randomly sampled from birth certificates 

(Arkansas and Georgia, for estimated delivery dates (EDDs) after 2000; Iowa; 

Massachusetts; New Jersey; North Carolina; and Utah) or hospital records 

(Arkansas, for EDDs before 2001; California; Georgia, for EDDs before 2001; 

New York; and Texas).282 Control-infants were excluded if they were not 

liveborn, had a major birth defect, or were born outside the study area. 

Prospective study participants were further excluded if the infant was either 

adopted or in foster care or if the mother possessed at least one of the following 

characteristics: did not speak English or Spanish, participated in the NBDPS 

previously, was incarcerated, was a donor or a surrogate parent, was unable to 

answer questions, or was deceased. 

For our study, we focused on NBDPS control-infants with EDDs between 

October 1, 1997 and December 31, 2005. We further restricted our analyses to 

singleton births as multiple births have been observed as a major risk factor for 

preterm deliveries. For the purposes of this study, case-infants were defined as 

preterm births, infants who were born less than 37 weeks gestation. Gestational 

age at delivery was taken from study participants’ medical records or birth 

certificates. If these were not available, gestational age was calculated using the 
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EDD reported by the mother in the interview. If the previous methods did not 

provide gestational age, it was calculated using (in order of descending 

preference): ultrasound <14 weeks, last menstrual period, ultrasound >14 

weeks, or standard neonatal exam. Infants with a gestational age between 33 

and 36 weeks were further classified as moderately preterm. Infants with 37-41 

weeks gestation served as control-infants. Infants who are small for gestational 

age (SGA) were excluded since N-nitroso compounds have been observed to 

affect fetal weight.12 The institutional review boards in each state and the 

Centers for Disease Control and Prevention approved the NBDPS study 

protocol, and the institutional review board of Texas A&M University also 

approved this project on nitrosatable drugs and preterm births.  

 

Data Collection 

 Following informed consent, interviews were conducted in either English 

or Spanish by trained female interviewers using a computer-assisted telephone 

interview.283 Interviews were conducted 6 weeks to 24 months after the EDDs 

(or delivery of a full-term infant) and targeted for completion within 6 months of 

the EDD. The interview included detailed questions pertaining to maternal health 

during the index pregnancy (including medication usage), nutrition (food and 

beverage consumption), infections, and behavioral factors.  
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Classification of Nitrosatable Drugs 

During the interview, the NBDPS collected information about prescription 

and non-prescription drug usage from three months prior to the estimated date 

of conception to the end of pregnancy, including medication name, frequency of 

use, and corresponding dates of usage. Reported medications were linked to 

their active ingredient utilizing the Slone Epidemiology Center Drug Dictionary 

system.287 Classification methods used to categorize drugs with regard to their 

nitrosatability, functional groups, and indications have been described in detail 

by Brender et al.10, 274 Briefly, the methodology for classification included: 1) 

identification of active ingredients for all medications; 2) cross-referencing the 

drugs with comprehensive nitrosatable medicinal compounds lists;160, 288 3) drug 

categorization based on the presence of functional groups (e.g., secondary 

amine, tertiary amine, or amide); and 4) further classification by its primary 

indication or therapeutic use and pharmacologic class. This study focuses on 

drugs reported to have been taken during pregnancy, concentrating on periods 

of exposure by trimester and month of gestation. Complete data on nitrosatable 

drug use and covariates were available for 477 (96.2%), 392 (95.8%), and 5194 

(96.2%) mothers of preterm, moderately preterm, and full term infants, 

respectively.   
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Covariates 

Covariate selection was based on factors associated with preterm births 

in previous studies and maternal factors associated with nitrosatable drug 

exposure.10 Potential confounders assessed included maternal race/ethnicity 

(non-Hispanic white, non-Hispanic black, Hispanic, Asian/Pacific Islander, 

other), educational level (<12 years, 12 years, 13-15 years, >15 years), age 

(<18, 18-19, 20-24, 25-29, 30-34, ≥35 years), and smoking status (yes/no); body 

mass index (BMI) based on self-reported height and weight (kg/m2), categorized 

according to NIH guidelines (underweight, normal, overweight, and obese); 

study site; infant gender (male/female); parity (nulliparous, primiparous, and 

multiparous); pre-pregnancy diabetes (yes/no); gestational diabetes (yes/no); 

and pre-pregnancy hypertension (yes/no). Nonsignificant covariates as well as 

those that did not change the hazard ratio by 10% or more were eliminated from 

the final model using forward selection.  

 

Statistical Analysis 

 Descriptive analyses were performed to examine the distribution of 

potentially important covariates among case- and control-mothers. For the main 

analyses, time-to-event methods were employed since preterm delivery is a 

time-based outcome that depends on gestational age. Cox proportional hazards 

model was used to estimate hazard ratios (HR) and corresponding 95% 

confidence intervals (CI) for preterm and moderately preterm births in relation to 
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nitrosatable drug use. Exposure periods of interest were by trimester (first, 

second, and third) and month of gestation (first, second, third, etc.). Gestational 

age at birth, measured in weeks, was used as the underlying time variable in the 

survival analysis. Each woman remained in the risk set of giving birth to a 

preterm infant until delivery or gestational age of 37 weeks, whichever occurred 

first. In other words, women with term or post-term deliveries were censored at 

37 weeks. Women who did not report taking any drugs classified as nitrosatable 

during pregnancy served as the reference group in all analyses. Maternal 

race/ethnicity, educational level, and age; study center; pre-pregnancy diabetes; 

and pre-pregnancy hypertension were included in the regression models as 

possible confounders. The analyses were restricted to singleton pregnancies 

with complete information on all covariates included in the final model. All 

statistical tests were two-sided, and findings were considered statistically 

significant at the 5% level if the CI did not include 1.00. A hazard ratio above 

1.00 represents an increased probability of preterm birth, corresponding to a 

shorter period of gestation. We assessed the fit of the final model using Cox-

Snell residuals analysis, link test, and a global test based on Schoenfeld 

residuals to assess violation of the proportional hazards assumption.300 STATA 

version 12.0 was used for all analyses.         
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Table 2. Selected Maternal Characteristics of Preterm Cases and Controls in the  
National Birth Defects Prevention Study, 1997-2005 

Characteristics of Controlsa (%) Preterm Casesa (%) 
Participants n=5398 n=496 

Race/ethnicity*   
 Non-Hispanic white 3252 (60.2) 277 (55.9)  
 Non-Hispanic black 605 (11.2) 74 (14.9) 
 Hispanic 1180 (21.9) 107 (21.6) 
 Asian/Pacific Islander 155 (2.9) 9 (1.8) 
 All others 206 (3.8) 29 (5.9) 
Education (years)   
 <12 852 (15.8) 91 (18.4) 
 12 1288 (23.9) 137 (27.6) 
 13-15 1462 (27.1) 124 (25.0) 
 >15  1723 (31.9) 136 (27.4) 
 Missing 73 (1.4) 8 (1.6) 
Age at delivery (years)*   
 <18 193 (3.6) 24 (4.8) 
 18-19 370 (6.9) 40 (8.1) 
 20-24 1223 (22.7) 119 (24.0) 
 25-29 1433 (26.6) 142 (28.6) 
 30-34 1459 (27.0) 96 (19.4) 
 >34 720 (13.3) 75 (15.1) 
Study center*   
 Arkansas 650 (12.0) 88 (17.7) 
 California 697 (12.9) 57 (11.5) 
 Georgia 597 (11.1) 44 (8.9) 
 Iowa 607 (11.2) 56 (11.3) 
 Massachusetts 672 (12.5) 58 (11.7) 
 North Carolina 321 (6.0) 34 (6.9) 
 New Jersey 449 (8.3) 32 (6.5) 
 New York 499 (9.2) 33 (6.7) 
 Texas 602 (11.2) 68 (13.7) 
 Utah 304 (5.6) 26 (5.2) 
Body mass index (kg/m2)   
 <18.5 257 (4.8) 29 (5.9) 
 18.5–24.9 2904 (53.8) 268 (54.0) 
 25.0–29.9 1190 (22.1) 99 (20.0) 
 >29.9 847 (15.7) 86 (17.3) 
 Missing 200 (3.7) 14 (2.8) 
Smoking   
 No 4371 (81.0) 382 (77.0) 
 Yes 969 (18.0) 107 (21.6) 
 Missing 58 (1.1) 7 (1.4) 
Pre-pregnancy diabetes*   
 No  5244 (97.2) 475 (95.8) 
 Yes 26 (0.5) 10 (2.0) 
 Missing 128 (2.4) 11 (2.2) 
Pre-pregnancy hypertension*   
 No 4723 (87.5) 393 (79.2) 
 Yes 668 (12.4) 102 (20.6) 
 Missing 7 (0.1) 1 (0.2) 
Infant gender   
 Male 2702 (50.1) 243 (49.0) 
 Female 2696 (49.9) 253 (51.0) 
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Table 2 (continued) 
Characteristics of Controlsa (%) Preterm Casesa (%) 

Participants n=5398 n=496 
Parity   
 Nulliparous 2150 (39.8) 207 (41.7) 
 Primiparous 1816 (33.6) 154 (31.1)  
 Multiparous 1432 (26.5) 135 (27.2) 
a NBDPS control women who gave birth to preterm infants (cases) and women who had  
   full term infants without SGA (controls) 
* Statistically significant differences in the distribution between cases and controls at P < 0.05. 
 
 
 

Results 

 A total of 496 eligible case-mothers who delivered a preterm infant (409 

who delivered a moderately preterm infant) and 5398 control-mothers with an 

EDD from 1997 to 2005 participated in the NBDPS. The maternal participation 

rate among NBDPS controls mothers was 66%. Time to interview was 

consistent between mothers with preterm and full term deliveries, with a 7.7 

month median length of time from the EDD to the interview. Control-mothers 

were significantly more likely than case-mothers to be non-Hispanic white and 

somewhat older at time of delivery, and less likely to have pre-pregnancy 

hypertension, pre-pregnancy diabetes, and live in Arkansas and Texas (Table 

2). 

 Use of secondary amines anytime during pregnancy was associated with 

having a preterm delivery (adjusted hazard ratio (aHR) 1.31, [95% CI 1.05, 

1.63]) (Table 3). Focusing on the first two trimesters of pregnancy, we observed 

that exposure to any nitrosatable drugs was associated with an increased risk of
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Table 3.  Exposure to Nitrosatable Drugs and Preterm Birth by Gestational Period, National Birth Defects 
Prevention Study, 1997-2005  
Gestational 

Period 
 

Type of drug exposure 
Cases Controls Unadjusted 

HRa 
 

95% CI 
Adjusted 

HRb 
 

95% CI No. % No. % 
 

P1P9 
 
No nitrosatable drugs 272 57.0 3216 61.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 205 43.0 1978 38.1 1.21 [1.01, 1.45] 1.20 [0.99, 1.44] 
 Secondary amines 127 31.8 1130 26.0 1.31 [1.06, 1.62] 1.31 [1.05, 1.63] 

    Tertiary amines 104 27.7 1003 23.8 1.21 [0.97, 1.52] 1.18 [0.93, 1.49] 
    Amides 82 23.2 759 19.1 1.25 [0.98, 1.60] 1.21 [0.94, 1.56] 
 

P1P6 
 
No nitrosatable drugs 272 59.9 3216 65.7 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 182 40.1 1682 34.3 1.26 [1.05, 1.52] 1.25 [1.03, 1.51] 
 Secondary amines 107 28.2 953 22.9 1.31 [1.05, 1.64] 1.32 [1.04, 1.66] 

    Tertiary amines 96 26.1 856 21.0 1.31 [1.04, 1.65] 1.26 [0.99, 1.61] 
    Amides 69 20.2 614 16.0 1.30 [1.00, 1.70] 1.27 [0.97, 1.66] 
 

P1P3 
 
No nitrosatable drugs 272 68.3 3216 72.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 126 31.7 1215 27.4 1.22 [0.98, 1.50] 1.19 [0.95, 1.48] 
 Secondary  amines 73 21.2 639 16.6 1.34 [1.03, 1.73] 1.29 [0.99, 1.69] 

    Tertiary amines 60 18.1 642 16.6 1.10 [0.83, 1.46] 1.04 [0.77, 1.39] 
    Amides 46 14.5 389 10.8 1.37 [1.00, 1.87] 1.35 [0.98, 1.86] 
 

P4P6 
 
No nitrosatable drugs 272 67.7 3216 74.3 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 130 32.3 1111 25.7 1.36 [1.10, 1.68] 1.37 [1.10, 1.70] 
 Secondary amines 74 21.4 657 17.0 1.32 [1.02, 1.70] 1.37 [1.05, 1.79] 

    Tertiary amines 63 18.8 513 13.8 1.42 [1.08, 1.87] 1.40 [1.06, 1.86] 
    Amides 42 13.4 340 9.6 1.42 [1.03, 1.97] 1.39 [1.00, 1.93] 
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Table 3  (continued)  
Gestational 

Period 
 

Type of drug exposure 
Cases Controls Unadjusted 

HRa 
 

95% CI 
Adjusted 

HRb 
 

95% CI No. % No. % 
 

P7P9 
 
No nitrosatable drugs 272 71.2 3216 76.4 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 110 28.8 991 23.6 1.29 [1.03, 1.61] 1.26 [1.00, 1.59] 
 Secondary amines 69 20.2 592 15.6 1.35 [1.04, 1.76] 1.34 [1.02, 1.76] 

    Tertiary amines 45 14.2 429 11.8 1.22 [0.89, 1.68] 1.21 [0.87, 1.67] 
    Amides 32 10.5 280 8.0 1.32 [0.91, 1.90] 1.28 [0.88, 1.85] 

Abbreviations: HR, hazard ratio; CI, confidence interval; P1P9, entire pregnancy; P1P6, first two trimesters; P1P3, first trimester; P4P6, 
second trimester; P7P9, third trimester. 
a Crude and adjusted hazard ratios include only cases and controls with complete information for drug exposures and covariates. 
b Adjusted for study center, maternal age, race/ethnicity, education, pre-pregnancy diabetes, and pre-pregnancy hypertension. 
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having a preterm infant (aHR 1.25, [95% CI 1.03, 1.51]) compared to no 

nitrosatable drug use anytime during pregnancy, especially with secondary 

amine usage (aHR 1.32, [95% CI 1.04, 1.66]). Exposure during the first trimester 

of pregnancy to drugs classified as secondary amines was associated with 

preterm births (HR 1.34, [95% CI 1.03, 1.73]). However, after adjusting for a  

number of factors the 95% CI was compatible with the null (aHR 1.29, [95% CI 

0.99, 1.69]). A higher proportion of case-mothers (32.3%) than control-mothers 

(25.7%) reported taking drugs classified as nitrosatable during the second 

trimester of pregnancy (aHR 1.37, [95% CI 1.10, 1.70]), particularly secondary 

(aHR 1.37, [95% CI 1.05, 1.79]) and tertiary amines (aHR 1.40, [95% CI 1.06, 

1.86]). An increased risk of preterm births was detected with third trimester 

exposure to secondary amines (aHR 1.34, [95% CI 1.02, 1.76]).  

Nitrosatable drug exposure was further examined by month of gestation 

(Table 4). Though no significant relationship was observed with regard to 

nitrosatable drug use during the first trimester and preterm births, we did note an 

increased risk among those who reported taking a nitrosatable drug during the 

first month of gestation (aHR 1.33, [95% CI 1.03, 1.72]), especially among amide 

users (aHR 1.70, [95% CI 1.14, 2.55]). Women with secondary amine usage 

during the fourth month of gestation had excess preterm births (aHR 1.40, [95% 

CI 1.03, 1.91]). A similar finding was observed with any nitrosatable use during 
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Table 4.  Exposure to Nitrosatable Drugs and Preterm Birth by Month of Gestation, National Birth Defects 
Prevention Study, 1997-2005  
Gestational 

Month 
 

Type of drug exposure 
Cases Controls Unadjusted 

HRa 
 

95% CI 
Adjusted 

HRb 
 

95% CI No. % No. % 
 

1 
 
No nitrosatable drugs 272 76.8 3216 82.0 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 82 23.2 706 18.0 1.35 [1.05, 1.73] 1.33 [1.03, 1.72] 
 Secondary amines 47 14.7 427 11.7 1.29 [0.94, 1.75] 1.25 [0.91, 1.73] 

    Tertiary amines 33 10.8 343 9.6 1.13 [0.79, 1.62] 1.08 [0.75, 1.57] 
    Amides 27 9.0 183 5.4 1.68 [1.13, 2.50] 1.70 [1.14, 2.55] 
 

2 
 
No nitrosatable drugs 

 
272 

 
78.4 

 
3216 

 
80.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 75 21.6 760 19.1 1.16 [0.90, 1.50] 1.09 [0.84, 1.42] 
 Secondary amines 49 15.3 407 11.2 1.40 [1.04, 1.90] 1.34 [0.97, 1.84] 

    Tertiary amines 34 11.1 383 10.6 1.05 [0.73, 1.50] 0.97 [0.67, 1.41] 
    Amides 14 4.9 197 5.8 0.85 [0.49, 1.45] 0.80 [0.47, 1.38] 
 

3 
 
No nitrosatable drugs 272 76.6 3216 80.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 83 23.4 773 19.4 1.26 [0.99, 1.61] 1.23 [0.95, 1.59] 
 Secondary amines 46 14.5 397 11.0 1.36 [1.00, 1.86] 1.36 [0.98, 1.88] 

    Tertiary amines 41 13.1 396 11.0 1.22 [0.88, 1.70] 1.18 [0.84, 1.66] 
    Amides 21 7.2 202 5.9 1.21 [0.78, 1.89] 1.19 [0.76, 1.87] 
 

4 
 
No nitrosatable drugs 272 76.6 3216 81.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 83 23.4 746 18.8 1.30 [1.02, 1.66] 1.28 [0.99, 1.66] 
 Secondary amines 51 15.8 444 12.1 1.34 [1.00, 1.81] 1.40 [1.03, 1.91] 

    Tertiary amines 37 12.0 361 10.1 1.20 [0.85, 1.69] 1.17 [0.82, 1.67] 
    Amides 23 7.8 190 5.6 1.39 [0.91, 2.13] 1.35 [0.88, 2.08] 
 

5 
 
No nitrosatable drugs 272 76.6 3216 81.7 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 83 23.4 723 18.3 1.34 [1.05, 1.71] 1.33 [1.03, 1.71] 
 Secondary  amines 50 15.5 438 12.0 1.33 [0.99, 1.80] 1.34 [0.99, 1.83] 
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Table 4  (continued)  
Gestational 

Month 
 

Type of drug exposure 
Cases Controls Unadjusted 

HRa 
 

95% CI 
Adjusted 

HRb 
 

95% CI No. % No. % 
    Tertiary amines 40 12.8 320 9.1 1.44 [1.04, 2.01] 1.39 [0.99, 1.96] 
    Amides 21 7.2 184 5.4 1.33 [0.85, 2.07] 1.32 [0.84, 2.08] 
 

6 
 
No nitrosatable drugs 272 74.5 3216 81.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 93 25.5 718 18.2 1.49 [1.18, 1.89] 1.49 [1.17, 1.90] 
 Secondary amines 51 15.8 445 12.2 1.34 [0.99, 1.81] 1.37 [1.00, 1.86] 

    Tertiary amines 44 13.9 322 9.1 1.57 [1.14, 2.16] 1.56 [1.12, 2.16] 
    Amides 26 8.7 163 4.8 1.79 [1.20, 2.68] 1.74 [1.16, 2.61] 
 

7 
 
No nitrosatable drugs 272 73.7 3216 80.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 97 26.3 766 19.2 1.46 [1.16, 1.84] 1.43 [1.13, 1.82] 
 Secondary  amines 57 17.3 476 12.9 1.39 [1.04, 1.85] 1.40 [1.04, 1.87] 

    Tertiary amines 40 12.8 327 9.2 1.41 [1.01, 1.97] 1.39 [0.99, 1.96] 
    Amides 24 8.1 186 5.5 1.48 [0.98, 2.25] 1.42 [0.93, 2.17] 
 

8 
 
No nitrosatable drugs 272 78.2 3216 81.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 76 21.8 716 18.2 1.23 [0.96, 1.59] 1.20 [0.92, 1.57] 
 Secondary amines 54 16.6 455 12.4 1.37 [1.02, 1.83] 1.35 [1.00, 1.82] 

    Tertiary amines 32 10.5 324 9.2 1.16 [0.80, 1.67] 1.13 [0.78, 1.65] 
    Amides 19 6.5 152 4.5 1.42 [0.89, 2.27] 1.40 [0.87, 2.25] 
 

9 
 
No nitrosatable drugs 272 94.1 3216 84.3 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 17 5.9 600 15.7 0.34 [0.21, 0.56] 0.34 [0.21, 0.56] 
 Secondary amines 10 3.6 379 10.5 0.32 [0.17, 0.60] 0.32 [0.17, 0.61] 

    Tertiary amines 6 2.2 268 7.7 0.27 [0.12, 0.61] 0.27 [0.12, 0.60] 
    Amides 4 1.5 122 3.7 0.40 [0.15, 1.07] 0.40 [0.15, 1.06] 

Abbreviations: HR, hazard ratio; CI, confidence interval. 
a Crude and adjusted hazard ratios include only cases and controls with complete information for drug exposures and covariates. 
b Adjusted for study center, maternal age, race/ethnicity, education, pre-pregnancy diabetes, and pre-pregnancy hypertension.



 
 

71 
 

 

 
the fifth month of gestation compared to no prenatal nitrosatable drug use (aHR 

1.33, [95% CI 1.03, 1.71]), though to a lesser extent. The strongest association 

was observed during the sixth month of gestation (aHR 1.49, [95% CI 1.17, 

1.90]), most notably with tertiary amines (aHR 1.56, [95% CI 1.12, 2.16]) and 

amides (aHR 1.74, [95% CI 1.16, 2.61]). Risk of preterm delivery was also 

elevated with nitrosatable drug use during the seventh month (aHR 1.43, [95% 

CI 1.13, 1.82]), as with secondary amines (aHR 1.40, [95% CI 1.04, 1.87]). In 

contrast, nitrosatable drug exposure during the ninth gestational month yielded a 

protective association, suggesting a 66% lower hazard of preterm births (aHR 

0.34, [95% CI 0.21, 0.56]). The strongest reduction in risk appeared with tertiary 

amine exposure (aHR 0.27, [95% CI 0.12, 0.60]) followed by secondary amines 

(aHR 0.32, [95% CI 0.17, 0.61]). 

 Overall, preterm births were associated with drugs classified as 

secondary amines across a broad range of indications, including asthma, 

cardiovascular, decongestants, and antidepressants during the second trimester  

(data not shown; associations reported are restricted to drugs with at least 5 

exposed cases and 5 exposed controls). Use of asthma and cardiovascular 

medications during the second trimester were most strongly associated with 

delivering a preterm infant (aHR 2.15, [95% CI 1.47, 3.14] and aHR 3.04 [95% 

CI 1.40, 6.62], respectively).  

 Women with nitrosatable drug usage anytime during pregnancy had 

higher risk of delivering a moderately preterm infant compared to those with no
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Table 5.  Exposure to Nitrosatable Drugs and Moderately Preterm Birth by Gestational Period, National Birth 
Defects Prevention Study, 1997-2005  
Gestational 

Period 
 

Type of drug exposure 
Cases Controls Unadjusted 

HRa 
 

95% CI 
Adjusted 

HRb 
 

95% CI No. % No. % 
 

P1P9 
 
No nitrosatable drugs 217 55.4 3216 61.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 175 44.6 1978 38.1 1.30 [1.06, 1.58] 1.29 [1.05, 1.58] 
 Secondary amines 109 33.4 1130 26.0 1.41 [1.12, 1.78] 1.40 [1.10, 1.78] 

    Tertiary amines 84 27.9 1003 23.8 1.23 [0.96, 1.58] 1.22 [0.93, 1.58] 
    Amides 72 24.9 759 19.1 1.38 [1.06, 1.80] 1.35 [1.03, 1.77] 
 

P1P6 
 
No nitrosatable drugs 217 58.7 3216 65.7 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 153 41.3 1682 34.3 1.33 [1.08, 1.64] 1.32 [1.07, 1.64] 
 Secondary amines 90 29.3 953 22.9 1.39 [1.08, 1.77] 1.38 [1.07, 1.79] 

    Tertiary amines 77 26.2 856 21.0 1.32 [1.02, 1.71] 1.30 [0.99, 1.71] 
    Amides 59 21.4 614 16.0 1.40 [1.05, 1.86] 1.38 [1.03, 1.85] 
 

P1P3 
 
No nitrosatable drugs 217 67.8 3216 72.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 103 32.2 1215 27.4 1.25 [0.99, 1.58] 1.23 [0.96, 1.57] 
 Secondary  amines 59 21.4 639 16.6 1.36 [1.02, 1.81] 1.30 [0.96, 1.76] 

    Tertiary amines 46 17.5 642 16.6 1.06 [0.77, 1.46] 1.01 [0.73, 1.41] 
    Amides 38 14.9 389 10.8 1.42 [1.01, 2.00] 1.42 [1.00, 2.02] 
 

P4P6 
 
No nitrosatable drugs 217 66.6 3216 74.3 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 109 33.4 1111 25.7 1.43 [1.14, 1.80] 1.45 [1.14, 1.84] 
 Secondary amines 62 22.2 657 17.0 1.39 [1.05, 1.84] 1.44 [1.07, 1.92] 

    Tertiary amines 51 19.0 513 13.8 1.44 [1.06, 1.96] 1.45 [1.06, 1.99] 
    Amides 35 13.9 340 9.6 1.49 [1.04, 2.13] 1.47 [1.03, 2.12] 
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Table 5 (continued)   
Gestational 

Period 
 

Type of drug exposure 
Cases Controls Unadjusted 

HRa 
 

95% CI 
Adjusted 

HRb 
 

95% CI No. % No. % 
 

P7P9 
 
No nitrosatable drugs 217 69.3 3216 76.4 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 96 30.7 991 23.6 1.41 [1.11, 1.80] 1.39 [1.08, 1.78] 
 Secondary amines 61 21.9 592 15.6 1.50 [1.13, 1.99] 1.47 [1.10, 1.98] 

    Tertiary amines 36 14.2 429 11.8 1.23 [0.86, 1.75] 1.22 [0.85, 1.75] 
    Amides 29 11.8 280 8.0 1.50 [1.02, 2.21] 1.47 [0.99, 2.18] 

Abbreviations: HR, hazard ratio; CI, confidence interval; P1P9, entire pregnancy; P1P6, first two trimesters; P1P3, first trimester; P4P6, 
second trimester; P7P9, third trimester. 
a Crude and adjusted hazard ratios include only cases and controls with complete information for drug exposures and covariates. 
b Adjusted for study center, maternal age, race/ethnicity, education, pre-pregnancy diabetes, and pre-pregnancy hypertension. 
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exposure (aHR 1.29, [95% CI 1.05, 1.58]), particularly with secondary amines 

(aHR 1.40, [95% CI 1.10, 1.78]) and amides (aHR 1.35, [95% CI 1.03, 1.77]) 

(Table 5). Similar associations were noted with nitrosatable drug exposure 

during the first two trimesters. Though no significant relationship was detected 

with nitrosatable drugs during the first trimester and moderately preterm 

deliveries, risk was elevated during the second trimester (aHR 1.45, [95% CI 

1.14, 1.84]). In addition, significant associations were observed with every sub-

category of nitrosatable drugs, with the strongest association occurring among 

women with amide exposure (aHR 1.47, [95% CI 1.03, 2.12]). A higher 

proportion of mothers of moderately preterm infants (30.7%) than control-

mothers (23.6%) reported taking drugs identified as nitrosatable during the third 

trimester (aHR 1.39, [95% CI 1.08, 1.78]), particularly secondary amines (aHR 

1.47, [95% CI 1.10, 1.98]).  

Nitrosatable drug use was also examined by month of gestation in 

relation to moderately preterm births (Table 6). An elevated hazard ratio was 

observed with nitrosatable drug use during the first gestational month (aHR 1.36, 

[95% CI 1.02, 1.81]), especially with amides (aHR 1.70, [95% CI 1.07, 2.68]). 

Risk of delivering a moderately preterm infant was higher with secondary amine 

usage during the fourth month of pregnancy (aHR 1.44, [95% CI 1.02, 2.02]) and 

with overall nitrosatable drug use during the fifth month (aHR 1.36, [95% CI 

1.03, 1.81]). Exposure during the sixth month of gestation was associated with 

moderately preterm births for overall nitrosatable drugs (aHR 1.61, [95% CI 
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Table 6.  Exposure to Nitrosatable Drugs and Moderately Preterm Birth by Month of Gestation, National Birth 
Defects Prevention Study, 1997-2005  
Gestational 

Month 
 

Type of drug exposure 
Cases Controls Unadjusted 

HRa 
 

95% CI 
Adjusted 

HRb 
 

95% CI No. % No. % 
 

1 
 
No nitrosatable drugs 217 76.4 3216 82.0 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 67 23.6 706 18.0 1.38 [1.05, 1.82] 1.36 [1.02, 1.81] 
 Secondary amines 40 15.6 427 11.7 1.38 [0.98, 1.93] 1.32 [0.93, 1.87] 

    Tertiary amines 26 10.7 343 9.6 1.11 [0.74, 1.67] 1.08 [0.71, 1.64] 
    Amides 21 8.8 183 5.4 1.65 [1.05, 2.58] 1.70 [1.07, 2.68] 
 

2 
 
No nitrosatable drugs 217 78.3 3216 80.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 60 21.7 760 19.1 1.17 [0.88, 1.55] 1.10 [0.81, 1.48] 
 Secondary amines 39 15.2 407 11.2 1.41 [1.00, 1.98] 1.32 [0.93, 1.89] 

    Tertiary amines 27 11.1 383 10.6 1.04 [0.70, 1.55] 0.98 [0.65, 1.48] 
    Amides 10 4.4 197 5.8 0.76 [0.40, 1.42] 0.73 [0.38, 1.38] 
 

3 
 
No nitrosatable drugs 217 77.2 3216 80.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 64 22.8 773 19.4 1.22 [0.93, 1.62] 1.20 [0.90, 1.61] 
 Secondary amines 35 13.9 397 11.0 1.31 [0.92, 1.87] 1.30 [0.90, 1.88] 

    Tertiary amines 28 11.4 396 11.0 1.05 [0.71, 1.55] 1.03 [0.69, 1.55] 
    Amides 17 7.3 202 5.9 1.23 [0.75, 2.02] 1.22 [0.74, 2.02] 
 

4 
 
No nitrosatable drugs 217 76.1 3216 81.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 68 23.9 746 18.8 1.34 [1.02, 1.75] 1.32 [0.99, 1.75] 
 Secondary amines 42 16.2 444 12.1 1.39 [1.00, 1.94] 1.44 [1.02, 2.02] 

    Tertiary amines 28 11.4 361 10.1 1.14 [0.77, 1.69] 1.12 [0.75, 1.69] 
    Amides 19 8.1 190 5.6 1.44 [0.90, 2.31] 1.42 [0.88, 2.28] 
 

5 
 
No nitrosatable drugs 217 76.4 3216 81.7 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 67 23.6 723 18.3 1.36 [1.03, 1.78] 1.36 [1.03, 1.81] 
 Secondary  amines 40 15.6 438 12.0 1.34 [0.96, 1.88] 1.35 [0.96, 1.91] 
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Table 6 (continued)  
Gestational 

Month 
 

Type of drug exposure 
Cases Controls Unadjusted 

HRa 
 

95% CI 
Adjusted 

HRb 
 

95% CI No. % No. % 
    Tertiary amines 30 12.2 320 9.1 1.36 [0.93, 1.99] 1.34 [0.90, 1.98] 
    Amides 17 7.3 184 5.4 1.35 [0.83, 2.22] 1.36 [0.83, 2.25] 
 

6 
 
No nitrosatable drugs 217 73.3 3216 81.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 79 26.7 718 18.2 1.60 [1.23, 2.06] 1.61 [1.24, 2.10] 
 Secondary amines 42 16.2 445 12.2 1.39 [1.00, 1.93] 1.41 [1.01, 1.99] 

    Tertiary amines 34 13.6 322 9.1 1.53 [1.06, 2.19] 1.55 [1.07, 2.24] 
    Amides 22 9.2 163 4.8 1.91 [1.23, 2.96] 1.89 [1.21, 2.95] 
 

7 
 
No nitrosatable drugs 217 72.3 3216 80.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 83 27.7 766 19.2 1.57 [1.22, 2.02] 1.55 [1.19, 2.02] 
 Secondary  amines 49 18.4 476 12.9 1.50 [1.10, 2.05] 1.50 [1.09, 2.06] 

    Tertiary amines 31 12.5 327 9.2 1.38 [0.94, 2.01] 1.37 [0.93, 2.01] 
    Amides 21 8.8 186 5.5 1.63 [1.04, 2.55] 1.59 [1.01, 2.50] 
 

8 
 
No nitrosatable drugs 217 75.1 3216 81.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 72 24.9 716 18.2 1.47 [1.12, 1.92] 1.44 [1.09, 1.90] 
 Secondary amines 52 19.3 455 12.4 1.66 [1.22, 2.24] 1.62 [1.19, 2.22] 

    Tertiary amines 28 11.4 324 9.2 1.27 [0.86, 1.88] 1.26 [0.84, 1.88] 
    Amides 18 7.7 152 4.5 1.69 [1.05, 2.74] 1.69 [1.03, 2.76] 
 

9 
 
No nitrosatable drugs 217 92.7 3216 84.3 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

 Any nitrosatable drugs 17 7.3 600 15.7 0.43 [0.26, 0.70] 0.43 [0.26, 0.71] 
 Secondary amines 10 4.4 379 10.5 0.40 [0.21, 0.75] 0.40 [0.21, 0.76] 

    Tertiary amines 6 2.7 268 7.7 0.34 [0.15, 0.76] 0.33 [0.15, 0.76] 
    Amides 4 1.8 122 3.7 0.50 [0.18, 1.33] 0.49 [0.18, 1.32] 

 Abbreviations: HR, hazard ratio; CI, confidence interval. 
a Crude and adjusted hazard ratios include only cases and controls with complete information for drug exposures and covariates. 
b Adjusted for study center, maternal age, race/ethnicity, education, pre-pregnancy diabetes, and pre-pregnancy hypertension. 
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1.24, 2.10]) and across the board for all subtypes. Besides tertiary amines, 

similar associations were observed for the seventh and eighth month of 

gestation. However, a lower risk was detected with nitrosatable drug usage 

during the ninth gestational month (aHR 0.43, [95% CI 0.26, 0.71]), particularly 

with secondary (aHR 0.40, [95% CI 0.21, 0.76]) and tertiary amine use (aHR 

0.33, [95% CI 0.15, 0.76]).         

 We also examined very preterm births, defined as infants with a 

gestational age less than 33 weeks, with respect to nitrosatable drug use by 

trimester and gestational month. A higher risk of delivering a very preterm infant 

was detected with tertiary amine use during the third month of gestation (HR 

1.90, [95% CI 1.04, 3.47]), though the 95% CI was compatible with the null after 

adjustment (aHR 1.76, [95% CI 0.93, 3.32]) (data not shown). Despite some 

elevated point estimates with nitrosatable drug exposure, none were statistically 

significant. All graphical depictions based on the Cox-Snell residual analysis 

yielded results that support a reasonably well-fit model. Additionally, the link test 

and global test based on Schoenfeld residuals suggest no violation of the 

proportional hazards assumption.    

 

Comment 

 In this study based on NBDPS control women with EDDs between 1997 

and 2003, prenatal use of nitrosatable drugs was associated with preterm births. 

Positive associations were observed with exposure after the first trimester of 
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pregnancy, with the strongest relationship detected with second trimester 

exposure. Of the nitrosatable functional groups, secondary amines were the 

most notable, with an increased risk of having a preterm infant observed among 

women who reported secondary amine exposure during the second and third 

trimester of pregnancy. When we further examined exposure by month of 

gestation, the strongest associations were observed during the sixth and 

seventh month. However, a reduction in risk was found with nitrosatable drug 

use during the last month of gestation, particularly with secondary and tertiary 

amines. Since length of gestation was taken into account, we have no 

explanation for why we observed reduced associations between preterm births 

and nitrosatable drug use during the ninth gestational month.    

For moderately preterm births, we observed similar results with 

nitrosatable drug exposure by trimester and month of gestation. However, there 

were stronger associations with moderately preterm births than that observed 

with all preterm births combined. In addition, ten more significant relationships 

were noted. Conversely, when we further examined risk of delivering a very 

preterm infant, no associations were found with prenatal nitrosatable drug use 

by trimester or month of gestation. Aside from: 1) amide exposure during the 

third trimester; 2) amide usage from the second gestational month onward; and 

3) the last two gestational months, we had sufficient numbers to analyze the 

relation between nitrosatable drug use and very preterm births. Hazard ratios 
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were close to 1.00, and 95% CIs were compatible with the null for all remaining 

analyses involving nitrosatable drugs and very preterm births.   

Overall, preterm births were associated with use of drugs classified as 

secondary amines across a broad range of indications, including asthma, 

cardiovascular, decongestants, and antidepressants during the second trimester 

in this study. Previous studies examining albuterol, an asthma medication, 

indicate no increased risk of preterm births with maternal exposure. In a cohort 

consisting of 2,123 asthmatic participants recruited from 16 centers of the 

National Institute of Child Health and Human Development Maternal Fetal 

Medicine Units Network, Schatz et al.165 noted no significant relationship 

between use of inhaled β-agonists and preterm births. These null findings were 

corroborated by Bracken et al.166 in a large prospective study among 529 

women exposed to short-acting β-agonists even after adjusting for numerous 

factors, including number of asthma symptoms (aOR 1.01, [95% CI 1.00, 1.02]). 

There is contradictory evidence regarding treatment with cardiovascular 

drugs, particularly beta blockers, during pregnancy and preterm births. In a 

population-based cohort study using the Danish Fertility Database, exposure to 

beta blockers was defined as the redemption of at least two prescriptions 

between 6 months preconception and the 20th week of gestation. An increased 

risk of preterm births was detected among women exposed to beta blockers 

during pregnancy (aOR 2.26, [95% CI 2.03, 2.52]).177 This finding was previously 

noted in a retrospective cohort where a higher proportion of preterm deliveries 
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was found in women who were in multiple antihypertensive drug regimens (P < 

0.001).178 Conversely, an earlier study of labetalol use found that prenatal 

exposure was associated with a higher frequency of fetal growth retardation, but 

not preterm births.181 In addition, a meta-analysis of randomized trials of prenatal 

beta blocker use, published between 1966 and 1997, yielded a pooled odds ratio 

of 1.35 [95% CI 0.51, 3.60] with regard to preterm births.182 

No definitive increase in risk of preterm births with prenatal use of 

antidepressants has emerged so far, though the preponderance of evidence 

does indicate an association.184, 186, 188-191, 197 In a prospective cohort utilizing 

data from the Swedish Medical Birth Registry from 1995-2001, Kallen188 

observed an increased risk among mothers who had taken any type of 

antidepressant during pregnancy (aOR 1.96, [95% CI 1.60, 2.41]). An even 

stronger relationship was observed with prenatal use of selective serotonin 

reuptake inhibitors (SSRIs) (aOR 2.06, [95% CI 1.58, 2.69]). Excluding women 

who had taken other drugs, such as anticonvulsants and antihypertensives, did 

not change the overall finding (aOR 2.01, [95% CI 1.17, 3.46]). Colvin et al.190 

confirmed previous findings between prenatal exposure to SSRIs and preterm 

births (aOR 1.43, [95% CI 1.24, 1.65]) and also observed an association for a 

number of SSRI drugs, including sertraline (aOR 1.62, [95% CI 1.30, 2.03]), 

citalopram (aOR 1.38, [95% CI 1.08, 1.77]), and paroxetine (aOR 1.41, [95% CI 

1.02, 1.96]). These associations remained statistically significant even after 

refining the exposure window to the first trimester, with the greatest increase in 
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risk observed with sertraline (aOR 1.74, [95% CI 1.33, 2.27]) and paroxetine 

(aOR 1.61, [95% CI 1.14, 2.28]). Second/third trimester exposure to SSRIs, as 

well as specific drugs, was not associated with preterm births. 

While many studies have reported an association between prenatal SSRI 

use and preterm births, several have noted no effect.192-195 In a Finnish study 

based on population-based register data, no increased risk for preterm or very 

preterm births was observed among women with SSRI purchases in each 

trimester or during the second and third trimesters compared to those who had 

only first trimester exposure.192 In addition, risk of delivering a preterm infant was 

not elevated among women who used SSRIs at the outset of pregnancy, but 

stopped prior to the end of the first trimester (aOR 1.12, [95% CI 0.47, 2.19]) or 

among those who continued to use SSRIs (aOR 1.27, [95% CI 0.59, 2.76]) 

compared to those without antidepressant use two months preconception 

through delivery.194 To control for confounding by depression, Oberlander et 

al.193 compared infants of depressed mothers treated with SSRIs to infants of 

untreated depressed mothers and nonexposed controls. No difference was 

observed in the incidence of preterm births between treated and untreated 

depressed mothers after accounting for maternal illness severity using 

propensity score matching (P = 0.61).   

Contrary to the increased risk of preterm births observed with prenatal 

decongestant use in the present study, two previous studies have noted a 

protective effect.207, 209 In the first study, Swedish register data was utilized to 
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obtain information regarding maternal drug use and delivery outcomes.209 No 

association was noted between first trimester exposure to decongestants and 

preterm births, but a reduced risk was observed with later pregnancy use (aOR 

0.68, [95% CI 0.52, 0.88]). This inverse association was corroborated in a 

population-based retrospective study (HR 0.42, [95% CI 0.21, 0.84]) between 

second or third trimester decongestant use and preterm births. This protective 

association may be due to confounding by indication, similar to nausea and 

vomiting which have also been associated with a reduced risk of preterm 

births,210 as pregnancy rhinitis may also be an indicator of a healthy pregnancy. 

To explore this, various combinations of asthma and decongestant exposures 

were examined. Non-asthmatic women who took decongestants had lower risk 

of preterm births compared to those unexposed.207 Compared to non-asthmatic, 

non-decongestant exposed mothers, untreated asthmatic women had the 

highest risk (HR 1.8, [95% CI 1.2, 2.6]) whereas asthmatic women who took 

decongestants had no increase in risk (HR 1.0, [95% CI 0.50, 2.0]).  

Our study has several strengths, including the relatively large sample of 

preterm delivery cases and controls. In addition, our study population came from 

control women within the NBDPS, one of the largest collaborative population-

based studies of birth defects in the United States. Utilizing control data from the 

NBDPS has three main advantages. First, control mothers selected in the 

NBDPS were those who delivered infants without any birth defects. Analyzing 

this population of control mothers eliminates the confounding effects of birth 



     
 

83 
 

defects as infants are more likely to be born preterm if congenital malformations 

are present.301 In addition, an association was observed with nitrosatable drugs 

and dietary nitrite and total nitrite intake with selected birth defects in a two 

previous studies.274, 294 Second, control data from this study has been found to 

be representative of their base populations with regard to maternal age, smoking 

status, and prevalence of diabetes mellitus, though slight differences were 

observed in terms of maternal race/ethnicity and education.282 Time to interview 

is also consistent between mothers with preterm and full term deliveries as the 

point of reference is the EDD rather than the actual delivery date. If the actual 

date of delivery was used, then mothers of preterm births would have a shorter 

length of time to recall exposures prior to conception through the end of 

pregnancy than mothers who had delivered full term infants. Both mothers of 

preterm and full term infants had a 7.7 month median length of time from the 

EDD to the interview.  

Another strength pertains to the various exposure periods which were 

investigated. Currently it is not known when the critical window of susceptibility 

for preterm births is. Though this question has been address by numerous 

studies, no clear answer has been identified. It is likely that the critical period of 

susceptibility would depend, partially, on the pathway which the exposure 

initiates its action.3 As prenatal exposures vary in their chemical structure and 

biological activities, the critical period of exposure for preterm births may differ 

and be contingent upon the exposure itself. In the present study, we were able 
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to examine different periods of exposure for nitrosatable drugs by trimester and 

month of gestation.  

The findings in our study are subject to several limitations. The first of 

which pertains to the potential maternal recall bias of drug exposures. In the 

original study, the primary outcome was birth defects, as such there was a 

concern that mothers of infants with birth defects may more likely recall drug 

exposures during pregnancy compared to mothers of infants without birth 

defects. However, our study population consisted only of control women from 

the NBDPS. In addition, little evidence has been found regarding differential 

recall of drugs classified as nitrosatable within the present study, particularly 

among antibiotics,302, 303 antinauseants,302 analgesics,303 and 

benzodiazepines.303 However, a 20% higher sensitivity was reported for 

antibiotics among case-mothers than in control-mothers.304 To reduce recall 

bias, NBPDS utilized a two-level approach for drug assessment by asking 

participants about drug use by indication and subsequently prompting them with 

lists of medications. This approach has been shown to be more accurate for 

assessing drug use compared to asking either type of question individually.305 

Medications were classified based on their nitrosatability and further grouped 

based on their functional groups (secondary amines, tertiary amines, or amides) 

after the interviews. Given that participants were not directly questioned about 

nitrosatable drug usage, it is unlikely that recall bias is present. Though, it may 

be possible that some sub-types of nitrosatable drugs may have been recalled 
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differentially. In addition, exposure to some nitrosatable drugs might have been 

missed. While the present study utilized extensive reviews160, 288 previous 

studies did not have available, some components may not been tested for its 

nitrosatability or results from such tests may not have been available and thus 

exposures may have been missed.    

Secondly, information regarding several risk factors previously reported to 

influence the risk of delivering a preterm infant were not available for this study. 

Of particular concern is prior history of preterm delivery as recurrence is 

estimated to range from 15 to over 50%, depending on the number and 

gestational age of previous deliveries.2, 306 Other risk factors include intrauterine 

infections,15-21 marital status,29-36 and psychological or social stress.307, 308 

Failure to account for a number of previously reported risk factors may have 

resulted in elevated point estimates. In addition, preterm births were treated as a 

single entity within the present study as we did not have information available for 

distinction by clinical presentation. Evidence has suggested that preterm 

deliveries consist of three clinical subtypes with partially heterogeneous 

etiologies, including spontaneous preterm delivery after preterm labor, medically 

indicated preterm delivery, and spontaneous preterm delivery after preterm 

premature rupture of fetal membranes (PPROM).309, 310 However, examining 

preterm births as a group versus splitting them into subsets remains 

controversial.311, 312 Splitting preterm births by clinical presentation has been 

supported by various researchers since preterm delivery can result from diverse 
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clinical pathways. For instance, rupturing of the membranes and spontaneous 

onset of labor is quite distinctive from fetal distress that should be handled with 

early delivery. However, it is argued that the conditions that prompt medical 

intervention for early delivery, such as preeclampsia and fetal growth restriction, 

have similar mechanisms as pathways resulting in spontaneous preterm 

births.311, 313 Spontaneous preterm births are also motivated by the same 

predictors of medically indicated preterm births, including placenta abruption,314 

preeclampsia,315 and restricted fetal growth.316, 317 Therefore, grouping preterm 

births would offer an increase in statistical power since etiologies are shared. 

Multiple analyses were performed to test the relation between prenatal 

nitrosatable drug use and preterm and moderately preterm births. In the study 

analyses, 95% CI were determined for 112 associations between nitrosatable 

drug use and the study outcome (56 for preterm births and 56 for moderately 

preterm births). Six statistically significant associations would be expected by 

chance alone. However, a total of 48 were observed (19 for preterm births and 

29 for moderately preterm births). 

 In conclusion, findings from the present study suggest that prenatal 

exposure to nitrosatable drugs during the second and third trimester of 

pregnancy, especially secondary amines, might increase the risk of having a 

preterm delivery. To our knowledge, this is the first study to examine the relation 

between prenatal exposure to nitrosatable drugs, as well as various functional 

groups (amides, secondary and tertiary amines), and preterm births. As N-
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nitroso compounds are formed when nitrosatable amines or amides react with 

nitrosating agents like nitrite, further research is needed to examine prenatal 

exposure to nitrosatable drugs in conjunction with dietary nitrite intake in relation 

to preterm births.    
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CHAPTER III 

 
DIETARY NITRITES, NITROSATABLE DRUGS, 

AND PRETERM BIRTHS 

 
 

Overview 
 

Nitrosatable drugs react with nitrite in the stomach to form N-nitroso 

compounds, observed to result in adverse pregnancy outcomes in animal 

models. An increased risk of preterm births has been detected with prenatal 

exposure to medications classified as nitrosatable.  

Using data from mothers (controls) of babies without major birth defects 

from the National Birth Defects Prevention Study, dietary intake of nitrites was 

examined in relation to preterm births among 496 case-mothers of preterm 

infants and 5398 control-mothers with full term deliveries between 1997 and 

2005. Exposure to nitrosatable drugs in conjunction with nitrite intake was also 

investigated. Dietary nitrite levels were estimated from a food frequency 

questionnaire.  

A reduced risk was detected with high levels of plant nitrites (adjusted 

hazard ratio (aHR) 0.72, [95% confidence interval (CI) 0.53, 0.97]). Drugs 

classified as secondary amines in conjunction with high levels of nitrite were 

associated with preterm births, having an increased risk with first (aHR 1.84, 

[95% CI 1.14, 2.98]), second (aHR 1.89, [95% CI 1.17, 3.07]), and third (aHR 
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2.00, [95% CI 1.22, 3.29]) trimester exposure. HRs for tertiary amine use during 

the third trimester from the lowest tertile of nitrite intake to the highest were 0.67 

[95% CI 0.35, 1.31] 1.25 [95% CI 0.71, 2.19], and 2.02 [95% CI 1.17, 3.49].  

Prenatal exposure to nitrosatable drugs, particularly secondary and 

tertiary amines, in conjunction with higher levels of dietary nitrite (including 

animal, plant, and total) may increase risk of preterm births. 

 

Background 

One of the most important predictors of an infant’s health and survival is 

gestational age. This measure provides a degree of prematurity as infants born 

before 37 weeks are considered preterm. These infants are at increased risk of 

gastrointestinal and respiratory complications and neurodevelopmental 

impairments.2 According to the National Vital Statistics Report for 2006, preterm 

infants were 14.7 times more likely to die during the first year of life compared to 

full term infants.1 Although survival rates for preterm infants have improved as a 

result of assisted ventilation, antenatal corticosteroid usage, and intensive care 

practices, preterm births have increased by 31% in the U.S. from 1981 to 2003,4 

though this rise may be due to changes in obstetric practice.5  

The causes and mechanisms of preterm delivery are multifactorial and 

are hypothesized to be initiated by numerous mechanisms, including infection, 

inflammation, uterine overdistension, and stress.2 These risk factors are 

believed to interact with one another, resulting in a transition from uterine 
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quiescence to preterm delivery. Obstetric precursors leading to preterm delivery 

include: inducing labor, spontaneous preterm labor with intact membranes, and 

preterm premature rupture of the membranes (PPROM).2 PPROM is defined as 

“rupture of the chorioamniotic membranes before the onset of labor prior to 37 

weeks of gestation”151 and accounts for one third of all preterm deliveries.152, 153 

Higher levels of nitric oxide have been observed in higher levels in the blood and 

urine of women with preterm labor and PPROM.8 While this compound is 

necessary for implantation, embryo development, and vascular tone in the 

placenta,154 high levels can lead to cell cycle arrest, apoptosis, and 

senescence.155 As a reactive oxygen species (ROS), nitric oxide has been 

hypothesized to damage the collagen in the chorioamnion which would result in 

PPROM.9 ROS are unstable molecules that inflict tissue damage in its attempts 

to reach a stable state by abstracting an electron from nearby molecules to pair 

with the single electron in its outer orbit. Numerous studies have observed 

collagen in several tissues to be the primary target for ROS damage.9 As a 

biologically active membrane, the chorioamnion’s collagenolytic enzymes are 

vulnerable to ROS, such as nitric oxide, stimulation.156           

Nitric oxide is naturally produced by the body; however, a portion is 

contributed by dietary consumption of nitrates and nitrites as five percent of 

dietary nitrate is converted to nitrite and further converted to nitric oxide.157 The 

major source of exogenous exposure to nitrates and nitrites is through food 

consumption, with vegetables contributing the most to nitrate levels and cured 
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meats the most to nitrite.7 Nitrate intake also contributes to total nitrite levels as 

approximately five percent of nitrate is endogenously converted to nitrite in the 

saliva and stomach.158         

Dietary intake of nitrates and nitrites in conjunction with nitrosatable 

compounds may pose a risk for preterm births. Previous studies regarding 

nitrate and nitrite exposure in relation to preterm births have only focused on 

exposure levels from drinking water.263-265 Super et al.265 conducted a study in a 

rural region of southwest Africa and found no association between the incidence 

of preterm births and residing in an area with high levels of nitrates (>89 mg/L 

nitrate as nitrate). Conversely, in a population-based case-control study 

conducted in Prince Edward Island, Canada, a significant dose-response 

relationship was observed between nitrate levels in drinking water and 

prematurity.263 An odds ratio of 1.83 [95% Confidence Interval (CI) 1.25, 2.68] 

was detected for prematurity with median nitrate levels as low as 13.7 mg/L 

nitrate as nitrate, a level which is below the current U.S. maximum contaminant 

level set for drinking water in public water supplies (45 mg/L nitrate as nitrate). 

Joyce et al.264 also noted an increase in the prevalence of PPROM with 

moderate (0.553-1.55 mg/L nitrate as nitrate) (adjusted odds ratio (aOR) 1.23, 

[95% CI 1.03, 1.52]) and high (>1.55 mg/L nitrate as nitrate) water nitrate levels 

(aOR 1.47, [95% CI 1.20, 1.79]).   

N-nitroso compounds are formed endogenously when nitrosatable 

amines or amides and nitrosating agents, such as nitrite, react in an acidic 
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environment like the stomach.11 Certain medications, which are classified as 

tertiary amines, secondary amines, or amides, are sources of nitrosatable 

compounds. N-nitroso compounds have been observed to result in adverse 

pregnancy outcomes in mice, such as reduced fetal weight12 and birth defects;13, 

14 its effects on gestational age are not known as previous studies did not 

examine this outcome.   

Although no known study has examined the relation between nitrosatable 

drugs and preterm births, a number of studies have investigated various drugs 

which have been classified as nitrosatable as outlined by Brambilla and 

Martelli.160 In a recent study of National Birth Defects Prevent Study (NBDPS) 

control women, drugs classified as nitrosatable were taken by 24% of the 

mothers during the first trimester of pregnancy.10 Several medications within the 

sub-categories of nitrosatable drugs have been indicated as possible risk factors 

of preterm births. For secondary amines, several studies have observed a 

positive association with prenatal use of beta blockers,177-179 anti-

depressants,184, 186, 188-191 thiazide diuretics,215 and migraine medications203, 205, 

206 in relation to preterm births. Tertiary amine drugs, such as antiepileptics,219, 

220 antihypertensives,229 calcium channel blockers,230 nicotine replacement,236, 

241 and opioids242-245 have also been implicated. In addition, prenatal use of 

benzodiazepine250, 251 and sulfamethoxazole,262 medications classified as 

amides, were associated with an increased risk of preterm births. Although 

evidence indicates a significant association for several of the nitrosatable drugs, 
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many studies have reported conflicting results.180-182, 192-195, 217, 218, 221-223, 231, 238, 

246 In the present study, we examined 1) the relation between maternal dietary 

intake of nitrites (animal, plant, and total) and preterm births; and 2) the relation 

between prenatal exposure to nitrosatable drugs (any nitrosatable drugs, and by 

their molecular structure, such as secondary amines, tertiary amines, and 

amides) in conjunction with dietary intake of nitrites and preterm births.    

 

Methods 

Study Population 

 The NBDPS, previously described by Yoon et al.,283 is an ongoing 

population-based, case-control study of major structural birth defects in the 

United States. Since its inception in 1997, ten sites have participated, including: 

Arkansas, California, Georgia, Iowa, Massachusetts, New York, and Texas (from 

1998 to present); New Jersey (from 1998 to 2002); and North Carolina and Utah 

(from 2003 to present). Case-infants within the NBDPS are identified from live 

births (all centers), stillbirths (all centers except New Jersey and New York from 

1997 to 1999), and elective pregnancy terminations (all centers except 

Massachusetts, New Jersey, and New York before 2000) from birth defect 

surveillance programs. The present study utilizes NBDPS data from control-

mothers of babies without major birth defects to examine the relation between 

prenatal exposure to nitrosatable drugs in conjunction with dietary intake of 

nitrites and preterm births.  
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NBDPS control-infants were live born without major birth defects and 

were delivered in the same time frame and study area as the case-infants with 

major birth defects. They were randomly sampled from birth certificates 

(Arkansas and Georgia, for estimated delivery dates (EDDs) after 2000; Iowa; 

Massachusetts; New Jersey; North Carolina; and Utah) or hospital records 

(Arkansas, for EDDs before 2001; California; Georgia, for EDDs before 2001; 

New York; and Texas).282 Control-infants were excluded if they were not 

liveborn, had a major birth defect, or were born outside the study area. 

Prospective study participants were further excluded if the infant was either 

adopted or in foster care or if the mother possessed at least one of the following 

characteristics: did not speak English or Spanish, participated in the NBDPS 

previously, was incarcerated, was a donor or a surrogate parent, was unable to 

answer questions, or was deceased. 

For our study, we focused on NBDPS control-infants with EDDs between 

October 1, 1997 and December 31, 2005. Analyses were further restricted to 

singleton births as multiple births have been observed to be major risk factor for 

preterm deliveries. Case-infants in the present study were defined as preterm 

births, infants who were born less than 37 weeks gestation. Gestational age at 

delivery was taken from study participants’ medical records or birth certificates. 

Gestational age was calculated using the EDD reported during the interview if 

the previously mentioned documents could not provide this information. If 

gestational age still could not be obtained through these methods, it was 
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calculated using (in order of descending preference): ultrasound <14 weeks, last 

menstrual period, ultrasound >14 weeks, or standard neonatal exam. Infants 

with a gestational age between 33 and 36 weeks were further classified as 

moderately preterm. Control-infants were those with 37-41 weeks of gestation. 

Small for gestational age infants were excluded since N-nitroso compounds 

have been reported to affect fetal weight.12 The institutional review boards in 

each state and the Centers for Disease Control and Prevention approved the 

NBDPS study protocol, and the institutional review board of Texas A&M 

University also approved this project on dietary nitrite, nitrosatable drugs, and 

preterm births.  

 

Data Collection 

 Interviews were conducted in either English or Spanish by trained female 

interviewers using a computer-assisted telephone interview after informed 

consent was received.283 Interviews were conducted 6 weeks to 24 months after 

the EDDs (or delivery of a full-term infant) and targeted for completion within 6 

months of the EDD. The interview contained detailed questions pertaining to 

maternal health during the index pregnancy (including medication usage), 

nutrition (food and beverage consumption), infections, and behavioral factors.  
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Classification of Nitrosatable Drugs 

Information about prescription and non-prescription drug usage, including 

medication name, frequency of use, and corresponding dates of usage were 

collected during the interview from three months prior to the estimated date of 

conception to the end of pregnancy. The Slone Epidemiology Center Drug 

Dictionary system was used to link reported medications to their active 

ingredient.287 Classification methods employed to categorize drugs in terms of 

their nitrosatability, functional groups, and indications have been described in 

detail elsewhere.10 Briefly, all reported orally administered prescription and non-

prescription medications and their active ingredients were identified and cross-

referenced against comprehensive nitrosatable medicinal compounds lists.160, 288 

These drugs were further categorized based on their chemical structure, 

whether an amine (secondary or tertiary) or amide functional group was present. 

Medline and internet sources were used to evaluate the presence of amine or 

amide functional groups of all remaining active ingredients. Lastly, each 

component was classified by primary indication or therapeutic use and 

pharmacologic class. This study focuses on drugs reported to have been taken 

during pregnancy, concentrating on periods of exposure by trimester.  

 

Estimation of Dietary Nitrates and Nitrites 

Women were questioned about their average food consumption 

throughout the year before conception using a 58-item food frequency 
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questionnaire (FFQ) that was adapted from the short Willett FFQ.318, 319 The 

Willett FFQ has been validated and reproduced in other studies and has been 

indicated to provide useful information about nutrient intake in women during 

pregnancy.284 Additional questions on consumption of breakfast cereals from 

three months preconception to the end of pregnancy were included. Questions 

on region-specific foods, such as avocados, tortillas, and refried beans, were 

also incorporated to address the diverse diet of the study population within the 

NBDPS. Nutrient calculations were based on the USDA National Nutrient 

Database for Standard Reference 19. Daily intake of each food component was 

calculated based on frequency of use and serving size. Since estimates of 

nitrites and nitrates were not available in the USDA National Nutrient Database, 

values were estimated based on published literature for each food item or group 

by Griesenbeck et al.285 Briefly, estimation of dietary intake of nitrates and 

nitrites in milligrams per day were assigned based on the following procedures: 

1) for each food item, weighted means (mg/100 g) were calculated based on 

relevant literature; 2) the number of serving sizes were multiplied by the 

weighted means; 3) values of nitrites and nitrates were multiplied by the number 

of monthly servings; and 4) levels of nitrates and nitrites were summed across 

all food items and divided by 30. Total dietary nitrite was calculated based on the 

following formula: total nitrite = dietary nitrite intake + (0.05 × dietary nitrate 

intake).286 Nitrites, including animal nitrites, plant nitrites, and total nitrites, were 

further categorized into tertiles based on the control women’s distribution who 
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reported a total caloric intake between 500-5000 kcal per day. These limits are 

consistent with previous dietary studies291 and with what has been used with the 

NBDPS population.293, 320 Complete data for any nitrosatable drug use stratified 

by nitrite intake were available for 471 (95%), 388 (94.9%), and 5132 (95.1%) 

mothers of preterm, moderately preterm, and full term infants, respectively.     

 

Covariates 

Covariate selection was based on factors associated with preterm births 

in previous studies and maternal factors associated with nitrosatable drug 

exposure.10 Potential confounders assessed included maternal race/ethnicity 

(non-Hispanic white, non-Hispanic black, Hispanic, Asian/Pacific Islander, 

other), educational level (<12 years, 12 years, 13-15 years, >15 years), age 

(<18, 18-19, 20-24, 25-29, 30-34, ≥35 years), and smoking status (yes/no); body 

mass index (BMI) based on self-reported height and weight (kg/m2), categorized 

according to NIH guidelines (underweight, normal, overweight, and obese); 

study site; infant gender (male/female); parity (nulliparous, primiparous, and 

multiparous); pre-pregnancy diabetes (yes/no); gestational diabetes (yes/no); 

and pre-pregnancy hypertension (yes/no). Nonsignificant covariates as well as 

those that did not change the hazard ratio by 10% or more were eliminated from 

the final model using forward selection.  
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Statistical Analysis 

 Descriptive analyses were performed to examine the distribution of 

several covariates among case- and control-mothers. For the main analyses, 

time-to-event methods were employed since preterm birth is a time-based 

outcome that depends on gestational age. Cox proportional hazards model was 

used to estimate hazard ratios (HR) and corresponding 95% confidence 

intervals (CI) for preterm and moderately preterm births in relation to dietary 

nitrites. The lowest tertile of each compound was used as the referent category 

in all analyses. Gestational age at birth, measured in weeks, was used as the 

underlying time variable. Each woman remained in the risk set of giving birth to a 

preterm infant until delivery or gestational age of 37 weeks, whichever occurred 

first. In other words, women with term or post-term deliveries were censored at 

37 weeks. Maternal race/ethnicity, educational level, and age; study center; pre-

pregnancy diabetes; pre-pregnancy hypertension; and caloric intake were 

included in the regression models as possible confounders. Analyses were 

restricted to singleton pregnancies with complete information on all covariates 

included in the final model. Statistical tests were two-sided, and findings were 

considered statistically significant at the 5% level if the CI did not include 1.00. A 

hazard ratio above 1.00 represents an increased probability of preterm birth, 

corresponding to a shorter period of gestation. We assessed the fit of the final 

model using Cox-Snell residuals analysis, link test, and a global test based on 
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Schoenfeld residuals to assess violation of the proportional hazards 

assumption.300  

Nitrosatable drug use by trimester of pregnancy (any, secondary amines, 

tertiary amines, and amides) was further stratified by tertiles of dietary nitrite 

(plant nitrite, animal nitrite, and total nitrite), and HRs and 95% CIs were 

estimated for preterm births for each stratum. Women who reported no 

nitrosatable drug use during pregnancy served as the referent group for these 

analyses. Additive and multiplicative interaction was assessed for the 

associations of preterm births with nitrosatable drugs by dietary intake of nitrites. 

To determine whether significant additive interaction was present, we relied on 

measures of relative excess risk due to interaction (RERI) and attributable 

proportion due to interaction (AP).295 If the 95% confidence intervals of either or 

both measures excluded 0, additive interaction was considered present, implying 

that the risk of preterm births attributable to the two risk factors in combination is 

greater than the sum of risks associated with each risk factor separately.  

Multiplicative interaction was assessed with the inclusion of product terms of 

nitrosatable drug groups with dietary nitrite intake in the Cox proportional 

hazards models and was considered significant if the P value was less than 

0.05. STATA version 12.0 was used for all analyses.     
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Table 7. Selected Maternal Characteristics of Preterm Cases and Controls in the 
National Birth Defects Prevention Study, 1997-2005 

Characteristics of Controlsa (%) Preterm Casesa (%) 
Participants n=5398 n=496 

Race/ethnicity*   
 Non-Hispanic white 3252 (60.2) 277 (55.9)  
 Non-Hispanic black 605 (11.2) 74 (14.9) 
 Hispanic 1180 (21.9) 107 (21.6) 
 Asian/Pacific Islander 155 (2.9) 9 (1.8) 
 All others 206 (3.8) 29 (5.9) 
Education (years)   
 <12 852 (15.8) 91 (18.4) 
 12 1288 (23.9) 137 (27.6) 
 13-15 1462 (27.1) 124 (25.0) 
 >15  1723 (31.9) 136 (27.4) 
 Missing 73 (1.4) 8 (1.6) 
Age at delivery (years)*   
 <18 193 (3.6) 24 (4.8) 
 18-19 370 (6.9) 40 (8.1) 
 20-24 1223 (22.7) 119 (24.0) 
 25-29 1433 (26.6) 142 (28.6) 
 30-34 1459 (27.0) 96 (19.4) 
 >34 720 (13.3) 75 (15.1) 
Study center*   
 Arkansas 650 (12.0) 88 (17.7) 
 California 697 (12.9) 57 (11.5) 
 Georgia 597 (11.1) 44 (8.9) 
 Iowa 607 (11.2) 56 (11.3) 
 Massachusetts 672 (12.5) 58 (11.7) 
 North Carolina 321 (6.0) 34 (6.9) 
 New Jersey 449 (8.3) 32 (6.5) 
 New York 499 (9.2) 33 (6.7) 
 Texas 602 (11.2) 68 (13.7) 
 Utah 304 (5.6) 26 (5.2) 
Body mass index (kg/m2)   
 <18.5 257 (4.8) 29 (5.9) 
 18.5–24.9 2904 (53.8) 268 (54.0) 
 25.0–29.9 1190 (22.1) 99 (20.0) 
 >29.9 847 (15.7) 86 (17.3) 
 Missing 200 (3.7) 14 (2.8) 
Smoking   
 No 4371 (81.0) 382 (77.0) 
 Yes 969 (18.0) 107 (21.6) 
 Missing 58 (1.1) 7 (1.4) 
Pre-pregnancy diabetes*   
 No  5244 (97.2) 475 (95.8) 
 Yes 26 (0.5) 10 (2.0) 
 Missing 128 (2.4) 11 (2.2) 
Pre-pregnancy hypertension*   
 No 4723 (87.5) 393 (79.2) 
 Yes 668 (12.4) 102 (20.6) 
 Missing 7 (0.1) 1 (0.2) 
Infant gender   
 Male 2702 (50.1) 243 (49.0) 
 Female 2696 (49.9) 253 (51.0) 
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Table 7 (continued) 
Characteristics of Controlsa (%) Preterm Casesa (%) 

Participants n=5398 n=496 
Parity   
 Nulliparous 2150 (39.8) 207 (41.7) 
 Primiparous 1816 (33.6) 154 (31.1)  
 Multiparous 1432 (26.5) 135 (27.2) 
a NBDPS control women who gave birth to preterm infants (cases) and women who had full term infants  
  without SGA (controls) 
* Statistically significant differences in the distribution between cases and controls at P < 0.05. 
 

 
 
Results 

 A total of 496 eligible case-mothers who delivered a preterm infant (409 

who delivered a moderately preterm infant) and 5398 control-mothers with an 

EDD from 1997 to 2005 participated in the NBDPS. The participation rate among 

NBDPS controls mothers was 66%. Time to interview was consistent between 

mothers with preterm and full term deliveries, with both having a 7.7 month 

median length of time from the EDD to the interview. Control-mothers were 

significantly more likely than case-mothers to be non-Hispanic white and 

somewhat older at time of delivery, and less likely to have pre-pregnancy 

hypertension, pre-pregnancy diabetes, and live in Arkansas and Texas (Table 

7). 

 The results of the unadjusted and adjusted Cox proportional hazards 

models for preterm births in relation to dietary intake of nitrates and nitrites are 

shown in Table 8. No increased risk of preterm deliveries was noted among 

women with estimated nitrate levels in the second or third tertile compared to 

levels <31.62 mg/day. Compared to the lowest tertile of nitrite intake, neither of  
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Table 8.  Estimated Dietary Intake of Nitrates and Nitrites and Preterm Births, 
National Birth Defects Prevention Study, 1997-2005  

 Cases Controls Unadjusted HRa Adjusted HRa,b 
Dietary 

Contaminant 
(mg/day) 

No. % No. % HR 95% CI aHR 95% CI P-value 
trend 

Nitrate          
  <31.62 168 36.2 1709 33.8 1.00 Referent 1.00 Referent 0.222 
  31.62-52.30 155 33.4 1689 33.4 0.94 [0.75, 1.17] 0.94 [0.75, 1.19]  
  >52.30 141 30.4 1664 32.9 0.87 [0.69, 1.09] 0.85 [0.65, 1.10]  
Nitrite          
  <1.29 159 34.3 1717 33.9 1.00 Referent 1.00 Referent 0.379 
  1.29-1.92 153 33.0 1702 33.6 0.98 [0.78, 1.22] 0.93 [0.74, 1.17]  
  >1.92 152 32.8 1649 32.5 0.99 [0.80, 1.24] 0.88 [0.66, 1.74]  
Animal Nitrite          
  <0.74 157 33.6 1719 33.8 1.00 Referent 1.00 Referent 0.562 
  0.74-1.21 156 33.3 1712 33.7 1.00 [0.80, 1.24] 0.96 [0.77, 1.21]  
  >1.21 155 33.1 1657 32.6 1.02 [0.82, 1.27] 0.93 [0.72, 1.20]  
Plant Nitrite          
  <0.46 170 36.6 1706 33.6 1.00 Referent 1.00 Referent 0.032 
  0.46-0.71 157 33.8 1707 33.6 0.92 [0.74, 1.15] 0.90 [0.71, 1.13]  
  >0.71 138 29.7 1672 32.9 0.83 [0.67, 1.04] 0.72 [0.53, 0.97]  
Total Nitritec          
  <3.04 167 36.0 1706 33.7 1.00 Referent 1.00 Referent 0.347 
  3.04-4.57 147 31.7 1696 33.5 0.89 [0.71, 1.11] 0.88 [0.69, 1.11]  
  >4.57 150 32.3 1660 32.8 0.93 [0.74, 1.16] 0.88 [0.67, 1.16]  
Abbreviations: HR, hazard ratio; CI, confidence interval. 
a Crude and adjusted hazard ratios include only cases and controls with complete information for 
dietary contaminants and covariates, and who had a daily caloric intake between 500-5000 kcal. 
b Adjusted for caloric intake, study center, maternal age, race/ethnicity, education, pre-pregnancy 
diabetes, and pre-pregnancy hypertension. 
c Total nitrites = daily dietary nitrite intake + 5% of daily nitrate intake. 
 
 
 
 
the upper two were associated with an increased risk of preterm births. Though 

nitrite intake from animal sources yielded similar null findings, a protective effect 

was noted for the highest tertile of nitrite intake from plant sources (aHR 0.72, 

[95% CI 0.53, 0.97]) compared to the lowest tertile. A significant linear trend (P = 

0.032) was also observed in the association between plant nitrite and preterm 

births. Linear trend was assessed by treating the three levels of plant nitrite 

intake as a continuous variable in the hazards model and testing the significance   



     
 

104 
 

Table 9.  Estimated Dietary Intake of Nitrates and Nitrites and Moderately 
Preterm Births, National Birth Defects Prevention Study, 1997-2005  

 Cases Controls Unadjusted HRa Adjusted HRa,b 
Dietary 

Contaminant 
(mg/day) 

No. % No. % HR 95%CI aHR 95%CI P-value 
trend 

Nitrate          
  <31.62 139 36.4 1709 33.8 1.00 Referent 1.00 Referent 0.353 
  31.62-52.30 125 32.7 1689 33.4 0.91 [0.72, 1.16] 0.92 [0.71, 1.19]  
  >52.30 118 30.9 1664 32.9 0.88 [0.69, 1.12] 0.87 [0.65, 1.17]  
Nitrite          
  <1.29 138 36.1 1717 33.9 1.00 Referent 1.00 Referent 0.206 
  1.29-1.92 119 31.2 1702 33.6 0.87 [0.68, 1.12] 0.84 [0.65, 1.08]  
  >1.92 125 32.7 1649 32.5 0.94 [0.74, 1.20] 0.83 [0.60, 1.14]  
Animal Nitrite          
  <0.74 131 34.1 1719 33.8 1.00 Referent 1.00 Referent 0.580 
  0.74-1.21 126 32.8 1712 33.7 0.96 [0.75, 1.23] 0.93 [0.73, 1.20]  
  >1.21 127 33.1 1657 32.6 1.00 [0.78, 1.28] 0.93 [0.70, 1.23]  
Plant Nitrite          
  <0.46 141 36.8 1706 33.6 1.00 Referent 1.00 Referent 0.025 
  0.46-0.71 130 33.9 1707 33.6 0.92 [0.73, 1.17] 0.88 [0.69, 1.13]  
  >0.71 112 29.2 1672 32.9 0.81 [0.64, 1.04] 0.68 [0.49, 0.94]  
Total Nitritec          
  <3.04 141 36.9 1706 33.7 1.00 Referent 1.00 Referent 0.322 
  3.04-4.57 117 30.6 1696 33.5 0.84 [0.66, 1.07] 0.83 [0.64, 1.07]  
  >4.57 124 32.5 1660 32.8 0.91 [0.71, 1.15] 0.87 [0.64, 1.18]  
Abbreviations: HR, hazard ratio; CI, confidence interval. 
a Crude and adjusted hazard ratios include only cases and controls with complete information for 
dietary contaminants and covariates, and who had a daily caloric intake between 500-5000 kcal. 
b Adjusted for caloric intake, study center, maternal age, race/ethnicity, education, pre-pregnancy 
diabetes, and pre-pregnancy hypertension. 
c Total nitrites = daily dietary nitrite intake + 5% of daily nitrate intake. 
 
 

 
of linearity with the z-test in STATA (equivalent to the Wald chi-square test). No 

association was detected with total nitrite levels (sum of dietary nitrite and 5% 

dietary nitrate intake) and preterm births. Dietary intake of nitrites was further 

examined in relation to moderately preterm births (Table 9). Analyses regarding 

moderately preterm births and dietary nitrate and nitrite resulted in similar 

findings, including a reduced risk among women with high levels of plant nitrite 

intake (aHR 0.68, [95% CI 0.49, 0.94]) and a significant linear trend (P = 0.025).  
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Nitrosatable drug use during the first, second, and third trimester of 

pregnancy was most strongly associated with preterm births among mothers 

with the highest estimated intake of nitrites (aHR 1.61, [95% CI 1.08, 2.41]; aHR 

1.85, [95% CI 1.25, 2.73]; and aHR 1.89, [95% CI 1.26, 2.85], respectively) 

(Table 10). Of the nitrosatable drug groups, secondary amine usage in 

conjunction with high levels of nitrite intake was significantly associated with 

having a preterm delivery. An increased risk was observed with first (aHR 1.84, 

[95% CI 1.14, 2.98]), second (aHR 1.89, [95% CI 1.17, 3.07]), and third (aHR 

2.00, [95% CI 1.22, 3.29]) trimester exposure. Additive (AP 0.70, [95% CI 0.29, 

1.11]) and multiplicative interaction (P = 0.011) was noted between secondary 

amine usage during the first trimester of pregnancy and nitrite intake. Hazard 

ratios for preterm births in relation to tertiary amine drug use during the last 

trimester of pregnancy for the first, second, and third tertiles of nitrite intake were  

0.67 [95% CI 0.35, 1.31], 1.25 [95% CI 0.71, 2.19], and 2.02 [95% CI 1.17, 3.49], 

respectively; significant additive (AP 0.75, [95% CI 0.29, 1.21]) and multiplicative 

interaction (P = 0.018) was observed between exposure to tertiary amines 

during the third trimester and nitrite intake. With regard to dietary nitrite intake  

from animal sources, a similar pattern of increasing risk was found with 

secondary and tertiary amine usage during every trimester of pregnancy. In 

particular, risk was higher among women with secondary amine use during the 

first trimester who also had high levels of animal nitrite intake (aHR 1.87, [1.20, 

2.92]) compared to the lower two tertiles (aHR 0.68, [95% CI 0.37, 1.23] and  
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Table 10.  Exposure to Nitrosatable Drugs by Trimester of Pregnancy and Preterm Births Stratified by Estimated 
Dietary Intake of Nitrites, National Birth Defects Prevention Study, 1997-2005  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

Nitrite 
P1P3 < 1.29 

 
No nitrosatable drug exposure 97 74.1 1050 71.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 34 25.9 417 28.4 0.88 [0.60, 1.30] 0.88d,e [0.59, 1.32] 
   Secondary amines 16 14.2 220 17.3 0.79 [0.47, 1.34] 0.76d,e [0.44, 1.32] 
   Tertiary amines 17 14.9 222 17.5 0.83 [0.50, 1.40] 0.81 [0.47, 1.38] 
   Amides 16 14.2 123 10.5 1.36 [0.80, 2.31] 1.45 [0.84, 2.49] 

 
1.29-1.92 

 
No nitrosatable drug exposure 87 65.4 1005 70.7 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 46 34.6 416 29.3 1.27 [0.89, 1.81] 1.28d,e [0.88, 1.86] 
   Secondary amines 28 24.4 215 17.6 1.48 [0.97, 2.27] 1.49d,e [0.95, 2.33] 
   Tertiary amines 22 20.2 203 16.8 1.24 [0.77, 1.97] 1.20 [0.73, 1.96] 
   Amides 16 15.5 135 11.8 1.34 [0.79, 2.29] 1.37 [0.79, 2.36] 

 
> 1.92 

 
No nitrosatable drug exposure 80 64.5 1070 74.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 44 35.5 360 25.2 1.61 [1.11, 2.32] 1.61d,e [1.08, 2.41] 
   Secondary amines 27 25.2 194 15.4 1.83 [1.18, 2.82] 1.84d,e [1.14, 2.98] 
   Tertiary amines 21 20.8 207 16.2 1.35 [0.84, 2.19] 1.27 [0.75, 2.16] 
   Amides 14 14.9 123 10.3 1.50 [0.85, 2.65] 1.61 [0.88, 2.93] 

 
P4P6 < 1.29 

 
No nitrosatable drug exposure 97 71.9 1050 73.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 38 28.1 370 26.1 1.10 [0.75, 1.60] 1.17 [0.79, 1.72] 
   Secondary amines 23 19.2 221 17.4 1.12 [0.71, 1.76] 1.19 [0.74, 1.90] 
   Tertiary amines 15 13.4 171 14.0 0.95 [0.55, 1.63] 0.95d [0.54, 1.67] 
   Amides 15 13.4 107 9.3 1.45 [0.84, 2.49] 1.60 [0.92, 2.81] 

 
1.29-1.92 

 
No nitrosatable drug exposure 87 66.4 1005 72.3 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 44 33.6 386 27.7 1.31 [0.91, 1.88] 1.32 [0.90, 1.92] 
   Secondary amines 24 21.6 229 18.6 1.21 [0.77, 1.90] 1.25 [0.78, 1.99] 
   Tertiary amines 23 20.9 175 14.8 1.50 [0.95, 2.37] 1.41d [0.87, 2.27] 
   Amides 12 12.1 116 10.4 1.19 [0.65, 2.17] 1.25 [0.67, 2.32] 
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Table 10 (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
> 1.92 

 
No nitrosatable drug exposure 80 64.0 1070 76.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 45 36.0 335 23.8 1.74 [1.21, 2.50] 1.85 [1.25, 2.73] 
   Secondary amines 25 23.8 195 15.4 1.67 [1.07, 2.62] 1.89 [1.17, 3.07] 
   Tertiary amines 23 22.3 160 13.0 1.83 [1.15, 2.91] 2.06d [1.25, 3.40] 
   Amides 15 15.8 111 9.4 1.76 [1.01, 3.05] 1.58 [0.89, 2.83] 

 
P7P9 < 1.29 

 
No nitrosatable drug exposure 97 74.1 1050 75.1 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 34 25.9 349 24.9 1.04 [0.70, 1.54] 1.05 [0.70, 1.56] 
   Secondary amines 23 19.2 207 16.5 1.18 [0.75, 1.86] 1.22 [0.76, 1.94] 
   Tertiary amines 10 9.4 162 13.4 0.68 [0.35, 1.29] 0.67d,e [0.35, 1.31] 
   Amides 10 9.4 90 7.9 1.16 [0.61, 2.23] 1.19 [0.62, 2.32] 

 
1.29-1.92 

 
No nitrosatable drug exposure 87 73.1 1005 74.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 32 26.9 343 25.4 1.08 [0.72, 1.63] 1.06 [0.69, 1.61] 
   Secondary amines 19 17.9 208 17.2 1.06 [0.64, 1.74] 1.07 [0.64, 1.78] 
   Tertiary amines 16 15.5 141 12.3 1.31 [0.77, 2.23] 1.25d,e [0.71, 2.19] 
   Amides 10 10.3 94 8.6 1.23 [0.64, 2.36] 1.16 [0.59, 2.29] 

 
> 1.92 

 
No nitrosatable drug exposure 80 66.1 1070 78.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 41 33.9 288 21.2 1.82 [1.25, 2.65] 1.89 [1.26, 2.85] 
   Secondary amines 24 23.1 169 13.6 1.83 [1.16, 2.88] 2.00 [1.22, 3.29] 
   Tertiary amines 19 19.2 123 10.3 1.96 [1.19, 3.23] 2.02d,e [1.17, 3.49] 
   Amides 12 13.0 95 8.2 1.63 [0.89, 2.99] 1.68 [0.89, 3.16] 
Animal Nitrite 
         P1P3    < 0.74 

 
No nitrosatable drug exposure 96 74.4 1099 74.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 33 25.6 382 25.8 0.98 [0.66, 1.46] 0.96d [0.64, 1.44] 
   Secondary amines 13 11.9 204 15.7 0.74 [0.41, 1.31] 0.68d,e [0.37, 1.23] 
   Tertiary amines 13 11.9 196 15.1 0.76 [0.43, 1.36] 0.73 [0.40, 1.33] 
   Amides 19 16.5 109 9.0 1.88 [1.15, 3.07] 1.82 [1.09, 3.03] 
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Table 10  (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
0.74-1.21 

 
No nitrosatable drug exposure 90 68.7 1026 71.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 41 31.3 415 28.8 1.12 [0.78, 1.62] 1.05d [0.71, 1.54] 
   Secondary amines 25 21.7 219 17.6 1.29 [0.83, 2.01] 1.23d,e [0.77, 1.95] 
   Tertiary amines 23 20.4 211 17.1 1.23 [0.78, 1.94] 1.11 [0.69, 1.80] 
   Amides 12 11.8 134 11.6 1.02 [0.56, 1.86] 0.95 [0.51, 1.76] 

 
> 1.21 

 
No nitrosatable drug exposure 81 61.8 1015 71.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 50 38.2 398 28.2 1.55 [1.09, 2.20] 1.54d [1.05, 2.25] 
   Secondary amines 33 29.0 208 17.0 1.94 [1.29, 2.90] 1.87d,e [1.20, 2.92] 
   Tertiary amines 24 22.9 225 18.2 1.34 [0.85, 2.11] 1.22 [0.74, 2.01] 
   Amides 15 15.6 139 12.1 1.34 [0.77, 2.33] 1.35 [0.76, 2.40] 

 
P4P6 < 0.74 

 
No nitrosatable drug exposure 96 71.6 1099 75.5 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 38 28.4 356 24.5 1.20 [0.82, 1.75] 1.27 [0.86, 1.87] 
   Secondary amines 19 16.5 215 16.4 1.01 [0.61, 1.64] 1.06 [0.64, 1.76] 
   Tertiary amines 16 14.3 161 12.8 1.12 [0.66, 1.91] 1.14 [0.66, 1.97] 
   Amides 18 15.8 102 8.5 1.89 [1.14, 3.12] 2.01 [1.20, 3.38] 

 
0.74-1.21 

 
No nitrosatable drug exposure 90 66.7 1026 73.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 45 33.3 364 26.2 1.39 [0.97, 1.99] 1.33 [0.91, 1.93] 
   Secondary amines 27 23.1 219 17.6 1.39 [0.91, 2.14] 1.37 [0.88, 2.14] 
   Tertiary amines 24 21.1 168 14.1 1.59 [1.01, 2.50] 1.43 [0.90, 2.29] 
   Amides 10 10.0 109 9.6 1.04 [0.54, 2.00] 0.94 [0.48, 1.86] 

 
> 1.21 

 
No nitrosatable drug exposure 81 64.8 1015 72.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 44 35.2 377 27.1 1.44 [1.00, 2.07] 1.54 [1.05, 2.27] 
   Secondary amines 26 24.3 214 17.4 1.50 [0.96, 2.33] 1.66 [1.04, 2.66] 
   Tertiary amines 21 20.6 181 15.1 1.42 [0.88, 2.29] 1.55 [0.93, 2.60] 
   Amides 14 14.7 125 11.0 1.39 [0.79, 2.45] 1.32 [0.73, 2.40] 
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Table 10 (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
P7P9 < 0.74 

 
No nitrosatable drug exposure 96 75.6 1099 77.0 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 31 24.4 329 23.0 1.06 [0.71, 1.59] 1.06 [0.70, 1.61] 
   Secondary amines 19 16.5 198 15.3 1.08 [0.66, 1.77] 1.11 [0.67, 1.84] 
   Tertiary amines 11 10.3 147 11.8 0.86 [0.46, 1.61] 0.85 [0.45, 1.61] 
   Amides 10 9.4 88 7.4 1.25 [0.65, 2.40] 1.26 [0.65, 2.44] 

 
0.74-1.21 

 
No nitrosatable drug exposure 90 71.4 1026 75.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 36 28.6 339 24.8 1.21 [0.82, 1.77] 1.12 [0.75, 1.69] 
   Secondary amines 23 20.4 206 16.7 1.26 [0.80, 2.00] 1.25 [0.77, 2.01] 
   Tertiary amines 16 15.1 136 11.7 1.33 [0.78, 2.26] 1.21 [0.69, 2.11] 
   Amides 11 10.9 89 8.0 1.39 [0.74, 2.60] 1.17 [0.61, 2.24] 

 
> 1.21 

 
No nitrosatable drug exposure 81 66.4 1015 76.4 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 41 33.6 313 23.6 1.59 [1.09, 2.31] 1.70 [1.14, 2.55] 
   Secondary amines 25 23.6 180 15.1 1.68 [1.08, 2.64] 1.89 [1.17, 3.06] 
   Tertiary amines 18 18.2 143 12.4 1.53 [0.92, 2.54] 1.58 [0.91, 2.74] 
   Amides 11 12.0 102 9.1 1.32 [0.70, 2.48] 1.46 [0.76, 2.81] 
Plant Nitrite 
         P1P3    < 0.46 

 
No nitrosatable drug exposure 98 69.5 1020 70.4 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 43 30.5 428 29.6 1.04 [0.73, 1.49] 1.02 [0.71, 1.48] 
   Secondary amines 24 19.7 221 17.8 1.11 [0.71, 1.74] 1.09 [0.69, 1.73] 
   Tertiary amines 25 20.3 215 17.4 1.20 [0.77, 1.86] 1.14 [0.72, 1.79] 
   Amides 16 14.0 144 12.4 1.13 [0.67, 1.93] 1.12 [0.65, 1.92] 

 
0.46-0.71 

 
No nitrosatable drug exposure 86 64.7 963 67.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 47 35.3 457 32.2 1.14 [0.80, 1.63] 1.17 [0.81, 1.70] 
   Secondary amines 27 23.9 249 20.5 1.21 [0.78, 1.86] 1.22 [0.78, 1.91] 
   Tertiary amines 22 20.4 260 21.3 0.95 [0.60, 1.52] 0.93 [0.57, 1.52] 
   Amides 17 16.5 134 12.2 1.38 [0.82, 2.32] 1.47 [0.86, 2.52] 
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Table 10 (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
> 0.71 

 
No nitrosatable drug exposure 80 69.6 1156 78.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 35 30.4 311 21.2 1.61 [1.08, 2.40] 1.65 [1.08, 2.53] 
   Secondary amines 21 20.8 161 12.2 1.86 [1.15, 3.02] 1.91 [1.14, 3.23] 
   Tertiary amines 13 14.0 158 12.0 1.19 [0.66, 2.14] 1.19 [0.63, 2.22] 
   Amides 13 14.0 104 8.3 1.78 [0.99, 3.21] 1.78 [0.97, 3.29] 

 
P4P6 < 0.46 

 
No nitrosatable drug exposure 98 68.5 1020 72.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 45 31.5 386 27.4 1.20 [0.84, 1.71] 1.30 [0.90, 1.88] 
   Secondary amines 27 21.6 228 18.3 1.23 [0.80, 1.88] 1.33 [0.86, 2.07] 
   Tertiary amines 23 19.0 169 14.2 1.38 [0.88, 2.17] 1.41 [0.88, 2.26] 
   Amides 14 12.5 119 10.5 1.19 [0.68, 2.07] 1.29 [0.73, 2.29] 

 
0.46-0.71 

 
No nitrosatable drug exposure 86 66.2 963 69.5 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 44 33.8 423 30.5 1.15 [0.80, 1.66] 1.11 [0.76, 1.62] 
   Secondary amines 23 21.1 257 21.1 1.00 [0.63, 1.59] 1.04 [0.64, 1.67] 
   Tertiary amines 23 21.1 211 18.0 1.20 [0.76, 1.91] 1.11 [0.68, 1.80] 
   Amides 14 14.0 118 10.9 1.30 [0.74, 2.29] 1.22 [0.68, 2.18] 

 
> 0.71 

 
No nitrosatable drug exposure 80 67.2 1156 80.3 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 39 32.8 284 19.7 1.92 [1.31, 2.82] 1.90 [1.27, 2.85] 
   Secondary amines 23 22.3 162 12.3 1.98 [1.24, 3.14] 2.10 [1.28, 3.44] 
   Tertiary amines 16 16.7 126 9.8 1.79 [1.04, 3.05] 1.95 [1.10, 3.44] 
   Amides 14 14.9 98 7.8 2.02 [1.14, 3.56] 1.76 [0.98, 3.17] 

 
P7P9 < 0.46 

 
No nitrosatable drug exposure 98 72.1 1020 74.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 38 27.9 348 25.4 1.12 [0.77, 1.63] 1.16 [0.79, 1.70] 
   Secondary amines 24 19.7 222 17.9 1.11 [0.71, 1.74] 1.16 [0.74, 1.84] 
   Tertiary amines 17 14.8 150 12.8 1.16 [0.70, 1.95] 1.15 [0.68, 1.94] 
   Amides 11 10.1 88 7.9 1.25 [0.67, 2.33] 1.32 [0.70, 2.49] 
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Table 10 (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
0.46-0.71 

 
No nitrosatable drug exposure 86 70.5 963 71.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 36 29.5 389 28.8 1.03 [0.70, 1.52] 1.00 [0.67, 1.50] 
   Secondary amines 23 21.1 222 18.7 1.15 [0.72, 1.82] 1.16 [0.72, 1.87] 
   Tertiary amines 15 14.9 180 15.8 0.93 [0.54, 1.62] 0.91 [0.51, 1.62] 
   Amides 12 12.2 111 10.3 1.19 [0.65, 2.17] 1.08 [0.57, 2.04] 

 
> 0.71 

 
No nitrosatable drug exposure 80 70.8 1156 82.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 33 29.2 244 17.4 1.89 [1.26, 2.83] 1.86 [1.20, 2.87] 
   Secondary amines 19 19.2 141 10.9 1.88 [1.14, 3.11] 1.96 [1.15, 3.34] 
   Tertiary amines 13 14.0 96 7.7 1.88 [1.05, 3.38] 1.96 [1.05, 3.68] 
   Amides 9 10.1 80 6.5 1.61 [0.81, 3.21] 1.54 [0.76, 3.14] 
Total Nitritec 

        P1P3     < 3.04 
 
No nitrosatable drug exposure 101 71.6 1033 71.3 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 40 28.4 416 28.7 0.98 [0.68, 1.42] 1.03 [0.71, 1.52] 
   Secondary amines 22 17.9 217 17.4 1.03 [0.65, 1.63] 1.06d [0.66, 1.71] 
   Tertiary amines 23 18.6 218 17.4 1.08 [0.68, 1.69] 1.08 [0.68, 1.74] 
   Amides 15 12.9 120 10.4 1.25 [0.73, 2.15] 1.36 [0.78, 2.38] 

 
3.04-4.57 

 
No nitrosatable drug exposure 82 67.2 1003 70.0 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 40 32.8 429 30.0 1.13 [0.78, 1.66] 1.11 [0.75, 1.66] 
   Secondary amines 23 21.9 230 18.7 1.21 [0.76, 1.93] 1.19d [0.73, 1.93] 
   Tertiary amines 18 18.0 226 18.4 0.98 [0.59, 1.63] 0.85 [0.49, 1.47] 
   Amides 11 11.8 148 12.9 0.91 [0.48, 1.70] 0.93 [0.49, 1.77] 

 
> 4.57 

 
No nitrosatable drug exposure 81 64.8 1086 75.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 44 35.2 345 24.1 1.67 [1.16, 2.41] 1.64 [1.10, 2.42] 
   Secondary amines 26 24.3 181 14.3 1.89 [1.21, 2.94] 1.85d [1.15, 2.99] 
   Tertiary amines 19 19.0 186 14.6 1.36 [0.82, 2.24] 1.37 [0.80, 2.34] 
   Amides 20 19.8 113 9.4 2.26 [1.39, 3.69] 2.14 [1.27, 3.59] 

  



 

 
 

112 

Table 10  (continued) 

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
P4P6 < 3.04 

 
No nitrosatable drug exposure 101 70.1 1033 73.7 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 43 29.9 368 26.3 1.18 [0.83, 1.69] 1.33 [0.92, 1.93] 
   Secondary amines 24 19.2 217 17.4 1.13 [0.72, 1.76] 1.27 [0.80, 2.02] 
   Tertiary amines 19 15.8 162 13.6 1.19 [0.73, 1.94] 1.22 [0.73, 2.04] 
   Amides 15 12.9 106 9.3 1.39 [0.81, 2.39] 1.52 [0.87, 2.67] 

 
3.04-4.57 

 
No nitrosatable drug exposure 82 67.2 1003 71.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 40 32.8 392 28.1 1.24 [0.85, 1.80] 1.25 [0.84, 1.85] 
   Secondary amines 24 22.6 228 18.5 1.27 [0.81, 2.01] 1.32 [0.83, 2.11] 
   Tertiary amines 23 21.9 186 15.6 1.47 [0.93, 2.34] 1.46 [0.90, 2.37] 
   Amides 7 7.9 131 11.6 0.67 [0.31, 1.44] 0.69 [0.31, 1.50] 

 
> 4.57 

 
No nitrosatable drug exposure 81 64.8 1086 76.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 44 35.2 331 23.4 1.72 [1.19, 2.49] 1.85 [1.25, 2.73] 
   Secondary amines 24 22.9 200 15.6 1.58 [1.00, 2.49] 1.78 [1.09, 2.89] 
   Tertiary amines 19 19.0 158 12.7 1.57 [0.95, 2.59] 1.77 [1.04, 3.00] 
   Amides 20 19.8 97 8.2 2.58 [1.58, 4.21] 2.36 [1.41, 3.96] 

 
P7P9 < 3.04 

 
No nitrosatable drug exposure 101 71.6 1033 75.1 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 40 28.4 342 24.9 1.18 [0.82, 1.70] 1.27 [0.87, 1.85] 
   Secondary amines 24 19.2 205 16.6 1.18 [0.76, 1.84] 1.32 [0.83, 2.08] 
   Tertiary amines 17 14.4 148 12.5 1.17 [0.70, 1.95] 1.23 [0.72, 2.09] 
   Amides 13 11.4 95 8.4 1.35 [0.76, 2.40] 1.35 [0.75, 2.43] 

 
3.04-4.57 

 
No nitrosatable drug exposure 82 75.2 1003 74.0 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 27 24.8 353 26.0 0.94 [0.61, 1.45] 0.87 [0.55, 1.36] 
   Secondary amines 17 17.2 215 17.7 0.97 [0.57, 1.63] 0.95 [0.55, 1.62] 
   Tertiary amines 12 12.8 163 14.0 0.90 [0.49, 1.65] 0.87 [0.46, 1.63] 
   Amides 7 7.9 92 8.4 0.92 [0.43, 2.00] 0.77 [0.34, 1.71] 

  



 

 
 

113 

Table 10 (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
> 4.57 

 
No nitrosatable drug exposure 81 66.9 1086 79.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 40 33.1 285 20.8 1.81 [1.24, 2.64] 1.85 [1.23, 2.78] 
   Secondary amines 25 23.6 164 13.1 1.96 [1.25, 3.07] 2.06 [1.27, 3.34] 
   Tertiary amines 16 16.5 115 9.6 1.79 [1.05, 3.06] 1.79 [1.01, 3.17] 
   Amides 12 12.9 92 7.8 1.70 [0.93, 3.12] 1.68 [0.90, 3.15] 

Abbreviations: HR, hazard ratio; CI, confidence interval; P1P3, first trimester; P4P6, second trimester; P7P9, third trimester. 
a Crude and adjusted hazard ratios include only cases and controls with complete information for dietary contaminants and covariates, and 
who had a daily caloric intake between 500-5000 kcal 

b Adjusted for caloric intake, study center, maternal age, race/ethnicity, education, pre-pregnancy diabetes, and pre-pregnancy 
hypertension. 

c Total nitrites = daily dietary nitrite intake + 5% of daily nitrate intake. 
d Significant additive interaction (95% CIs for RERI and/or AP exclude 0). 
e Significant multiplicative interaction (P < 0.05). 
 
 

 



 
 

114 
 

aHR 1.23, [95% CI 0.77, 1.95]). Significant additive (AP 0.68, [95% CI 0.38, 

0.97]) and multiplicative interaction (P = 0.005) was noted between first trimester 

secondary amine exposure and dietary animal nitrite. In contrast, higher risk of 

preterm births was observed within the lowest tertile of animal nitrites among 

women who reported taking amides during the second trimester of pregnancy 

(aHR 2.01, [95% CI 1.20, 3.38]).   

Only secondary amine usage during early pregnancy had a similar 

pattern of increasing risk for dietary nitrite levels from plant sources. An 

increased risk of delivering a preterm infant was observed with secondary amine 

usage during the first trimester among women with high levels of dietary nitrite 

from plant sources (aHR 1.91, [95% CI 1.14, 3.23]) compared to the lower two 

tertiles (aHR 1.09, [95% CI 0.69, 1.73] and aHR 1.22, [95% CI 0.78, 1.91]). 

Tertiary amine use during the last two trimesters of pregnancy was most strongly 

associated with preterm births among mothers with the highest estimated intake 

of plant nitrites (aHR 1.95, [95% CI 1.10, 3.44] and aHR 1.96, [95% CI 1.05, 

3.68]). An overall pattern was observed where exposures to nitrosatable drugs 

and plant nitrites during the last two trimesters resulted in a decrease in the HRs 

for the second tertile followed by an increase in the highest tertile. When 

examining total nitrite intake, higher HRs were observed for preterm births in 

relation to secondary amine usage during the first and second trimester among 

women with high intake (aHR 1.85, [95% CI 1.15, 2.99] and aHR 1.78, [95% CI 

1.09, 2.89]). Additive interaction was detected between secondary amine usage 
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during the first trimester of pregnancy and total nitrite intake (AP 0.45, [95% CI 

0.01, 0.89]). Although an increasing pattern was not found with tertiary amine 

exposure during the third trimester of pregnancy and total nitrite intake, the 

highest tertile of total nitrite intake was associated with increased risk of preterm 

births (aHR 1.79, [1.01, 3.17]).   

Results for nitrosatable drug exposure by trimester of pregnancy and 

moderately preterm births stratified by estimated dietary intake of nitrites are 

shown in Table 11. The strongest associations between moderately preterm 

births and exposure to secondary and tertiary amines were among women with 

nitrite levels in the upper two tertiles during the second trimester of pregnancy. 

Adjusted HRs for moderately preterm births in relation to secondary amines 

during the second trimester from the lowest to the highest tertile of nitrite were 

1.28 [95% CI 0.78, 2.10], 1.35 [95% CI 0.80, 2.29], and 1.87 [95% CI 1.09, 3.20]. 

A similar pattern was observed with tertiary amines during the same time frame, 

with the highest risk observed among women with dietary nitrite in the highest 

tertile (aHR 2.31, [95% CI 1.34, 3.99]) compared to the lower two tertiles (aHR 

0.96, [95% CI 0.53, 1.76] and aHR 1.27, [95% CI 0.72, 2.25]). Stronger 

associations were observed during the last trimester, with adjusted HRs of 0.70 

[95% CI 0.35, 1.41], 1.08 [95% CI 0.55, 2.12], and 2.21 [95% CI 1.21, 4.01] for 

increasing levels of nitrite intake among women reporting tertiary amine use (AP 

0.77, [95% CI 0.26, 1.29] for additive interaction; P = 0.023 for multiplicative 

interaction). Focusing on dietary nitrite from animal sources and moderately 
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Table 11.  Exposure to Nitrosatable Drugs by Trimester of Pregnancy and Moderately Preterm Births Stratified by 
Estimated Dietary Intake of Nitrites, National Birth Defects Prevention Study, 1997-2005  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

Nitrite 
P1P3 < 1.29 

 
No nitrosatable drug exposure 82 73.2 1050 71.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 30 26.8 417 28.4 0.92 [0.61, 1.40] 0.94 [0.61, 1.44] 
   Secondary amines 15 15.5 220 17.3 0.87 [0.50, 1.52] 0.85 [0.48, 1.51] 
   Tertiary amines 13 13.7 222 17.5 0.75 [0.42, 1.35] 0.75 [0.41, 1.37] 
   Amides 15 15.5 123 10.5 1.51 [0.87, 2.62] 1.65 [0.94, 2.92] 

 
1.29-1.92 

 
No nitrosatable drug exposure 65 62.5 1005 70.7 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 39 37.5 416 29.3 1.44 [0.97, 2.14] 1.44 [0.95, 2.19] 
   Secondary amines 24 27.0 215 17.6 1.71 [1.07, 2.73] 1.67 [1.02, 2.74] 
   Tertiary amines 19 22.6 203 16.8 1.43 [0.86, 2.39] 1.38 [0.80, 2.38] 
   Amides 14 17.7 135 11.8 1.58 [0.89, 2.81] 1.60 [0.89, 2.91] 

 
> 1.92 

 
No nitrosatable drug exposure 65 67.0 1070 74.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 32 33.0 360 25.2 1.44 [0.95, 2.21] 1.49 [0.94, 2.35] 
   Secondary amines 18 21.7 194 15.4 1.51 [0.90, 2.54] 1.51 [0.85, 2.66] 
   Tertiary amines 14 17.7 207 16.2 1.12 [0.63, 1.99] 1.10 [0.59, 2.05] 
   Amides 9 12.2 123 10.3 1.20 [0.60, 2.40] 1.36 [0.65, 2.82] 

 
P4P6 < 1.29 

 
No nitrosatable drug exposure 82 70.7 1050 73.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 34 29.3 370 26.1 1.16 [0.78, 1.73] 1.22 [0.81, 1.84] 
   Secondary amines 21 20.4 221 17.4 1.21 [0.75, 1.95] 1.28 [0.78, 2.10] 
   Tertiary amines 13 13.7 171 14.0 0.97 [0.54, 1.74] 0.96d [0.53, 1.76] 
   Amides 14 14.6 107 9.3 1.59 [0.90, 2.81] 1.79 [1.00, 3.21] 

 
1.29-1.92 

 
No nitrosatable drug exposure 65 65.0 1005 72.3 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 35 35.0 386 27.7 1.40 [0.93, 2.11] 1.40 [0.91, 2.15] 
   Secondary amines 19 22.6 229 18.6 1.29 [0.77, 2.14] 1.35 [0.80, 2.29] 
   Tertiary amines 16 19.8 175 14.8 1.40 [0.81, 2.43] 1.27d [0.72, 2.25] 
   Amides 10 13.3 116 10.4 1.33 [0.68, 2.59] 1.37 [0.69, 2.72] 
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Table 11 (continued) 

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
> 1.92 

 
No nitrosatable drug exposure 65 63.7 1070 76.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 37 36.3 335 23.8 1.77 [1.18, 2.64] 1.92 [1.25, 2.96] 
   Secondary amines 20 23.5 195 15.4 1.65 [1.00, 2.73] 1.87 [1.09, 3.20] 
   Tertiary amines 20 23.5 160 13.0 1.97 [1.19, 3.25] 2.31d [1.34, 3.99] 
   Amides 11 14.5 111 9.4 1.60 [0.84, 3.03] 1.52 [0.78, 2.96] 

 
P7P9 < 1.29 

 
No nitrosatable drug exposure 82 71.9 1050 75.1 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 32 28.1 349 24.9 1.16 [0.77, 1.74] 1.16 [0.77, 1.77] 
   Secondary amines 22 21.2 207 16.5 1.34 [0.83, 2.14] 1.36 [0.84, 2.20] 
   Tertiary amines 9 9.9 162 13.4 0.72 [0.36, 1.43] 0.70d,e [0.35, 1.41] 
   Amides 10 10.9 90 7.9 1.37 [0.71, 2.64] 1.48 [0.75, 2.89] 

 
1.29-1.92 

 
No nitrosatable drug exposure 65 72.2 1005 74.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 25 27.8 343 25.4 1.14 [0.72, 1.80] 1.09 [0.68, 1.77] 
   Secondary amines 16 19.8 208 17.2 1.20 [0.69, 2.07] 1.21 [0.69, 2.13] 
   Tertiary amines 11 14.5 141 12.3 1.21 [0.64, 2.29] 1.08d,e [0.55, 2.12] 
   Amides 8 11.0 94 8.6 1.32 [0.63, 2.75] 1.22 [0.57, 2.61] 

 
> 1.92 

 
No nitrosatable drug exposure 65 64.4 1070 78.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 36 35.6 288 21.2 1.97 [1.31, 2.97] 2.08 [1.33, 3.24] 
   Secondary amines 20 23.5 169 13.6 1.88 [1.14, 3.11] 2.05 [1.19, 3.56] 
   Tertiary amines 16 19.8 123 10.3 2.04 [1.18, 3.52] 2.21d,e [1.21, 4.01] 
   Amides 11 14.5 95 8.2 1.85 [0.98, 3.50] 1.95 [1.00, 3.82] 
Animal Nitrite 
         P1P3     < 0.74 

 
No nitrosatable drug exposure 76 71.7 1099 74.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 30 28.3 382 25.8 1.13 [0.74, 1.72] 1.15 [0.74, 1.78] 
   Secondary amines 12 13.6 204 15.7 0.86 [0.47, 1.57] 0.82d [0.44, 1.55] 
   Tertiary amines 11 12.6 196 15.1 0.81 [0.43, 1.53] 0.85 [0.44, 1.64] 
   Amides 18 19.2 109 9.0 2.26 [1.35, 3.77] 2.31 [1.35, 3.94] 
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Table 11 (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
0.74-1.21 

 
No nitrosatable drug exposure 72 68.6 1026 71.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 33 31.4 415 28.8 1.13 [0.75, 1.71] 1.04 [0.67, 1.60] 
   Secondary amines 21 22.6 219 17.6 1.36 [0.84, 2.21] 1.26d [0.76, 2.09] 
   Tertiary amines 18 20.0 211 17.1 1.20 [0.72, 2.02] 1.06 [0.62, 1.82] 
   Amides 10 12.2 134 11.6 1.06 [0.55, 2.05] 0.96 [0.49, 1.89] 

 
> 1.21 

 
No nitrosatable drug exposure 65 63.1 1015 71.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 38 36.9 398 28.2 1.47 [0.99, 2.20] 1.47 [0.96, 2.26] 
   Secondary amines 24 27.0 208 17.0 1.77 [1.11, 2.83] 1.62d [0.97, 2.70] 
   Tertiary amines 17 20.7 225 18.2 1.18 [0.69, 2.02] 1.10 [0.61, 1.97] 
   Amides 10 13.3 139 12.1 1.12 [0.57, 2.18] 1.23 [0.61, 2.46] 

 
P4P6 < 0.74 

 
No nitrosatable drug exposure 76 69.1 1099 75.5 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 34 30.9 356 24.5 1.35 [0.90, 2.03] 1.47 [0.96, 2.23] 
   Secondary amines 18 19.2 215 16.4 1.20 [0.72, 2.01] 1.32 [0.78, 2.25] 
   Tertiary amines 14 15.6 161 12.8 1.24 [0.70, 2.19] 1.33 [0.74, 2.39] 
   Amides 17 18.3 102 8.5 2.26 [1.34, 3.82] 2.44 [1.42, 4.19] 

 
0.74-1.21 

 
No nitrosatable drug exposure 72 66.7 1026 73.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 36 33.3 364 26.2 1.40 [0.94, 2.08] 1.31 [0.86, 2.00] 
   Secondary amines 21 22.6 219 17.6 1.36 [0.84, 2.22] 1.32 [0.80, 2.18] 
   Tertiary amines 17 19.1 168 14.1 1.42 [0.83, 2.40] 1.22 [0.70, 2.12] 
   Amides 8 10.0 109 9.6 1.04 [0.50, 2.16] 0.92 [0.43, 1.98] 

 
> 1.21 

 
No nitrosatable drug exposure 65 64.4 1015 72.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 36 35.6 377 27.1 1.47 [0.98, 2.21] 1.57 [1.03, 2.42] 
   Secondary amines 21 24.4 214 17.4 1.51 [0.92, 2.47] 1.63 [0.96, 2.76] 
   Tertiary amines 18 21.7 181 15.1 1.52 [0.90, 2.56] 1.71 [0.98, 2.99] 
   Amides 10 13.3 125 11.0 1.24 [0.64, 2.42] 1.27 [0.64, 2.52] 
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Table 11 (continued) 

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
P7P9 < 0.74 

 
No nitrosatable drug exposure 76 73.1 1099 77.0 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 28 26.9 329 23.0 1.21 [0.79, 1.87] 1.26 [0.81, 1.98] 
   Secondary amines 18 19.2 198 15.3 1.29 [0.77, 2.16] 1.39 [0.82, 2.37] 
   Tertiary amines 9 10.6 147 11.8 0.89 [0.44, 1.77] 0.94 [0.46, 1.91] 
   Amides 10 11.6 88 7.4 1.58 [0.82, 3.06] 1.70 [0.86, 3.33] 

 
0.74-1.21 

 
No nitrosatable drug exposure 72 70.6 1026 75.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 30 29.4 339 24.8 1.26 [0.82, 1.93] 1.15 [0.74, 1.81] 
   Secondary amines 20 21.7 206 16.7 1.38 [0.84, 2.26] 1.33 [0.79, 2.23] 
   Tertiary amines 12 14.3 136 11.7 1.25 [0.68, 2.30] 1.07 [0.56, 2.03] 
   Amides 9 11.1 89 8.0 1.43 [0.71, 2.85] 1.14 [0.55, 2.35] 

 
> 1.21 

 
No nitrosatable drug exposure 65 64.4 1015 76.4 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 36 35.6 313 23.6 1.74 [1.16, 2.61] 1.88 [1.21, 2.92] 
   Secondary amines 21 24.4 180 15.1 1.77 [1.08, 2.90] 1.97 [1.16, 3.35] 
   Tertiary amines 15 18.8 143 12.4 1.59 [0.91, 2.78] 1.70 [0.93, 3.10] 
   Amides 10 13.3 102 9.1 1.50 [0.77, 2.92] 1.73 [0.86, 3.47] 
Plant Nitrite 
         P1P3     < 0.46 

 
No nitrosatable drug exposure 80 69.0 1020 70.4 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 36 31.0 428 29.6 1.07 [0.72, 1.58] 1.05 [0.70, 1.57] 
   Secondary amines 21 20.8 221 17.8 1.19 [0.74, 1.93] 1.16 [0.71, 1.90] 
   Tertiary amines 19 19.2 215 17.4 1.12 [0.68, 1.84] 1.06 [0.63, 1.77] 
   Amides 14 14.9 144 12.4 1.21 [0.69, 2.14] 1.20 [0.67, 2.14] 

 
0.46-0.71 

 
No nitrosatable drug exposure 68 63.0 963 67.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 40 37.0 457 32.2 1.23 [0.83, 1.82] 1.30 [0.86, 1.95] 
   Secondary amines 21 23.6 249 20.5 1.19 [0.73, 1.94] 1.26 [0.76, 2.09] 
   Tertiary amines 17 20.0 260 21.3 0.93 [0.55, 1.58] 0.94 [0.54, 1.65] 
   Amides 15 18.1 134 12.2 1.54 [0.88, 2.70] 1.65 [0.93, 2.93] 
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Table 11 (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
> 0.71 

 
No nitrosatable drug exposure 64 71.1 1156 78.8 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 26 28.9 311 21.2 1.50 [0.95, 2.37] 1.60 [0.98, 2.61] 
   Secondary amines 16 20.0 161 12.2 1.79 [1.04, 3.10] 1.86 [1.03, 3.37] 
   Tertiary amines 10 13.5 158 12.0 1.15 [0.59, 2.24] 1.21 [0.59, 2.46] 
   Amides 9 12.3 104 8.3 1.56 [0.77, 3.13] 1.64 [0.79, 3.38] 

 
P4P6 < 0.46 

 
No nitrosatable drug exposure 80 69.0 1020 72.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 36 31.0 386 27.4 1.18 [0.79, 1.74] 1.24 [0.82, 1.86] 
   Secondary amines 21 20.8 228 18.3 1.17 [0.72, 1.89] 1.23 [0.75, 2.02] 
   Tertiary amines 18 18.4 169 14.2 1.33 [0.80, 2.21] 1.33 [0.78, 2.25] 
   Amides 12 13.0 119 10.5 1.24 [0.68, 2.28] 1.35 [0.73, 2.52] 

 
0.46-0.71 

 
No nitrosatable drug exposure 68 64.2 963 69.5 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 38 35.8 423 30.5 1.26 [0.85, 1.87] 1.23 [0.81, 1.85] 
   Secondary amines 19 21.8 257 21.1 1.05 [0.63, 1.74] 1.12 [0.67, 1.90] 
   Tertiary amines 20 22.7 211 18.0 1.32 [0.80, 2.18] 1.24 [0.74, 2.09] 
   Amides 12 15.0 118 10.9 1.41 [0.77, 2.61] 1.36 [0.73, 2.56] 

 
> 0.71 

 
No nitrosatable drug exposure 64 66.0 1156 80.3 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 33 34.0 284 19.7 2.05 [1.34, 3.11] 2.07 [1.33, 3.22] 
   Secondary amines 21 24.7 162 12.3 2.27 [1.39, 3.72] 2.45 [1.45, 4.15] 
   Tertiary amines 12 15.8 126 9.8 1.68 [0.91, 3.11] 1.97 [1.03, 3.78] 
   Amides 11 14.7 98 7.8 2.00 [1.06, 3.79] 1.78 [0.92, 3.45] 

 
P7P9 < 0.46 

 
No nitrosatable drug exposure 80 70.8 1020 74.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 33 29.2 348 25.4 1.20 [0.80, 1.79] 1.19 [0.78, 1.80] 
   Secondary amines 21 20.8 222 17.9 1.20 [0.74, 1.93] 1.19 [0.73, 1.94] 
   Tertiary amines 14 14.9 150 12.8 1.17 [0.67, 2.07] 1.09 [0.61, 1.94] 
   Amides 10 11.1 88 7.9 1.39 [0.72, 2.68] 1.46 [0.75, 2.85] 
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Table 11 (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
0.46-0.71 

 
No nitrosatable drug exposure 68 68.7 963 71.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent] 

   Any nitrosatable 31 31.3 389 28.8 1.12 [0.73, 1.71] 1.12 [0.72, 1.74] 
   Secondary amines 20 22.7 222 18.7 1.26 [0.77, 2.08] 1.36 [0.81, 2.28] 
   Tertiary amines 11 13.9 180 15.8 0.87 [0.46, 1.64] 0.88 [0.46, 1.71] 
   Amides 11 13.9 111 10.3 1.38 [0.73, 2.60] 1.33 [0.69, 2.59] 

 
> 0.71 

 
No nitrosatable drug exposure 64 68.8 1156 82.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 29 31.2 244 17.4 2.08 [1.34, 3.23] 2.09 [1.30, 3.35] 
   Secondary amines 17 21.0 141 10.9 2.12 [1.24, 3.62] 2.25 [1.27, 4.00] 
   Tertiary amines 11 14.7 96 7.7 2.00 [1.06, 3.79] 2.16 [1.09, 4.31] 
   Amides 8 11.1 80 6.5 1.81 [0.87, 3.76] 1.71 [0.80, 3.66] 
Total Nitritec 

             P1P3     < 3.04 
 
No nitrosatable drug exposure 86 72.3 1033 71.3 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 33 27.7 416 28.7 0.95 [0.64, 1.42] 1.00 [0.66, 1.52] 
   Secondary amines 19 18.1 217 17.4 1.05 [0.64, 1.72] 1.05 [0.63, 1.76] 
   Tertiary amines 17 16.5 218 17.4 0.94 [0.56, 1.57] 0.95 [0.55, 1.64] 
   Amides 14 14.0 120 10.4 1.37 [0.78, 2.41] 1.51 [0.84, 2.71] 

 
3.04-4.57 

 
No nitrosatable drug exposure 60 63.2 1003 70.0 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 35 36.8 429 30.0 1.36 [0.90, 2.06] 1.30 [0.84, 2.02] 
   Secondary amines 20 25.0 230 18.7 1.45 [0.87, 2.40] 1.38 [0.81, 2.35] 
   Tertiary amines 16 21.1 226 18.4 1.19 [0.68, 2.06] 1.00 [0.55, 1.81] 
   Amides 10 14.3 148 12.9 1.12 [0.58, 2.20] 1.15 [0.58, 2.28] 

 
> 4.57 

 
No nitrosatable drug exposure 66 66.7 1086 75.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 33 33.3 345 24.1 1.54 [1.02, 2.35] 1.60 [1.03, 2.50] 
   Secondary amines 18 21.4 181 14.3 1.62 [0.96, 2.73] 1.68 [0.96, 2.92] 
   Tertiary amines 13 16.5 186 14.6 1.15 [0.63, 2.08] 1.22 [0.65, 2.31] 
   Amides 14 17.5 113 9.4 1.96 [1.10, 3.50] 1.97 [1.07, 3.62] 
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Table 11 (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
P4P6 < 3.04 

 
No nitrosatable drug exposure 86 70.5 1033 73.7 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 36 29.5 368 26.3 1.16 [0.79, 1.72] 1.26 [0.84, 1.90] 
   Secondary amines 21 19.6 217 17.4 1.16 [0.72, 1.87] 1.28 [0.78, 2.09] 
   Tertiary amines 14 14.0 162 13.6 1.03 [0.59, 1.82] 1.02 [0.57, 1.83] 
   Amides 13 13.1 106 9.3 1.41 [0.79, 2.53] 1.51 [0.82, 2.76] 

 
3.04-4.57 

 
No nitrosatable drug exposure 60 64.5 1003 71.9 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 33 35.5 392 28.1 1.40 [0.91, 2.14] 1.35 [0.87, 2.11] 
   Secondary amines 19 24.1 228 18.5 1.38 [0.82, 2.31] 1.38 [0.81, 2.35] 
   Tertiary amines 20 25.0 186 15.6 1.75 [1.06, 2.91] 1.68 [0.99, 2.86] 
   Amides 7 10.5 131 11.6 0.91 [0.42, 1.99] 0.89 [0.40, 1.98] 

 
> 4.57 

 
No nitrosatable drug exposure 66 64.1 1086 76.6 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 37 35.9 331 23.4 1.79 [1.19, 2.67] 2.02 [1.32, 3.10] 
   Secondary amines 20 23.3 200 15.6 1.62 [0.98, 2.67] 1.91 [1.12, 3.26] 
   Tertiary amines 15 18.5 158 12.7 1.53 [0.87, 2.67] 1.87 [1.03, 3.39] 
   Amides 15 18.5 97 8.2 2.40 [1.37, 4.21] 2.35 [1.30, 4.23] 

 
P7P9 < 3.04 

 
No nitrosatable drug exposure 86 71.7 1033 75.1 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 34 28.3 342 24.9 1.18 [0.79, 1.76] 1.26 [0.83, 1.90] 
   Secondary amines 22 20.4 205 16.6 1.27 [0.80, 2.03] 1.39 [0.85, 2.25] 
   Tertiary amines 12 12.2 148 12.5 0.97 [0.53, 1.77] 0.96 [0.51, 1.79] 
   Amides 12 12.2 95 8.4 1.46 [0.80, 2.67] 1.48 [0.80, 2.75] 

 
3.04-4.57 

 
No nitrosatable drug exposure 60 71.4 1003 74.0 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 24 28.6 353 26.0 1.14 [0.71, 1.82] 1.02 [0.62, 1.68] 
   Secondary amines 15 20.0 215 17.7 1.17 [0.66, 2.06] 1.12 [0.63, 2.02] 
   Tertiary amines 11 15.5 163 14.0 1.13 [0.59, 2.14] 1.03 [0.52, 2.02] 
   Amides 7 10.5 92 8.4 1.26 [0.58, 2.76] 0.98 [0.43, 2.24] 
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Table 11 (continued)  

Period of 
Gestation 

Dietary 
Intake 

(mg/day) 

 
Type of drug exposure 

 
Cases 

 
Controls 

 
Unadjusted 

HRa 

 
 

95% CI 

 
Adjusted  

HRb 

 
 

95% CI 
No. 

 
% 

 
No. 

 
% 

 
> 4.57 

 
No nitrosatable drug exposure 66 65.4 1086 79.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Any nitrosatable 35 34.6 285 20.8 1.95 [1.29, 2.93] 2.07 [1.33, 3.22] 
   Secondary amines 21 24.1 164 13.1 2.03 [1.24, 3.31] 2.18 [1.28, 3.71] 
   Tertiary amines 13 16.5 115 9.6 1.79 [0.99, 3.25] 1.94 [1.03, 3.66] 
   Amides 10 13.2 92 7.8 1.75 [0.90, 3.41] 1.86 [0.93, 3.70] 
Abbreviations: HR, odds ratio; CI, confidence interval; P1P3, first trimester; P4P6, second trimester; P7P9, third trimester. 
a Crude and adjusted hazard ratios include only cases and controls with complete information for dietary contaminants and covariates, 
and who had a daily caloric intake between 500-5000 kcal. 

b Adjusted for caloric intake, study center, maternal age, race/ethnicity, education, pre-pregnancy diabetes, and pre-pregnancy 
hypertension. 

c Total nitrites = daily dietary nitrite intake + 5% of daily nitrate intake. 
d Significant additive interaction (95% CIs for RERI and/or AP exclude 0). 
e Significant multiplicative interaction (P < 0.05). 
 

 
 



 
 

124 
 

preterm births, we observed similar patterns of increasing risk with higher levels 

of intake among secondary and tertiary amine exposure during the first 

trimester. Additive interaction was noted between secondary amine exposure 

during the first trimester and dietary animal nitrite (AP 0.59, [95% CI 0.22, 0.96]). 

The highest risk among women with secondary amines during the last trimester 

was found with the upper tertile of animal nitrite (aHR 1.97, [95% CI 1.16, 3.35]). 

For amide usage, however, risk of delivering a moderately preterm infant was 

highest among women with the lowest levels of animal nitrite during the first and 

second trimester (aHR 2.31, [95% CI 1.35, 3.94] and aHR 2.44, [95% CI 1.42, 

4.19], respectively). 

For the most part, stratifying nitrostable drugs by levels of plant nitrite 

yielded HRs which would decline in the second tertile and increase in the third. 

With secondary and tertiary amine exposure during the last two trimesters, a 

higher adjusted HR was detected in the upper tertile of plant nitrite intake. 

Estimated risk of having a moderately preterm birth was 2.45 [95% CI 1.45, 

4.15] and 1.97 [95% CI 1.03, 3.78] for secondary and tertiary amine usage in 

conjunction with high levels of plant nitrite, respectively, during the second 

trimester. Similar findings were noted during the third trimester with high levels 

of plant nitrite and secondary (aHR 2.25, [95% CI 1.27, 4.00]) and tertiary amine 

usage (aHR 2.16, [95% CI 1.09, 4.31]). A pattern of increasing risk was 

observed with total nitrite intake in conjunction with secondary and tertiary amine 

usage during the first two trimesters of pregnancy. Positive associations were 
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detected among high levels of total nitrite during the second trimester of 

pregnancy for secondary (aHR 1.91, [95% CI 1.12, 3.26]) and tertiary amine 

usage (aHR 1.87, [95% CI 1.03, 3.39]). Exposure to nitrosatable amides and 

levels of total nitrite >4.57 mg/day also yielded the highest risk for moderately 

preterm births during the first (aHR 1.97, [95% CI 1.07, 3.62]) and second (aHR 

2.35, [95% CI 1.30, 4.23]) trimester of pregnancy. Adjusted HRs for moderately 

preterm births in relation to tertiary amine usage during the third trimester from 

the lowest tertile to the highest were 0.96 [95% CI 0.51, 1.79], 1.03 [95% CI 

0.52, 2.02], and 1.94 [95% CI 1.03, 3.66]. Risk associated with nitrosatable drug 

exposure was also highest in the upper tertile of total nitrite intake among 

women who reported taking secondary amines during the last trimester (aHR 

2.18, [95% CI 1.28, 3.71]). All graphical depictions based on the Cox-Snell 

residual analysis yielded results that support a reasonably well-fit model. 

Additionally, the link test and global test based on Schoenfeld residuals suggest 

no violation of the proportional hazards assumption.        

 

Comment 

 This study examined the relation between maternal consumption of 

dietary nitrites (animal, plant, and total) and preterm births as well as the relation 

between prenatal exposure to nitrosatable drugs in conjunction with dietary 

intake of nitrites and preterm births. Utilizing data from control women with EDDs 

between 1997 and 2003 within the NBDPS, we found insufficient evidence to 
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suggest a positive association between dietary intake of nitrates or nitrites 

(including animal and total nitrite) and preterm births. However, high levels of 

nitrite from plant sources were observed to have a protective effect for preterm 

and moderately preterm births compared to the lowest tertile of plant nitrite. This 

finding may be due to other nutrients and vitamins that are contained within 

grain products, vegetables, and fruit which may have contributed to the 

reduction in risk that was detected. Also, a significant source of dietary nitrites 

from plant sources is from cereals, which often are fortified with vitamins.  

This is the first study, to our knowledge, to examine the independent 

association between dietary levels of nitrite and preterm births. Studies 

regarding dietary intake have focused mainly on different types of diets rather 

than exposure to nitrite levels. A Mediterranean-type diet consists of vegetables, 

fruits, whole grains, nuts, legumes, fish, and use of olive oil.  Consumption of red 

meat, full-fat dairy products, and eggs are limited. While Haugen et al.266 noted 

no association, a significantly lower incidence of preterm births was reported 

among mothers who adopted a Mediterranean-type diet from gestational week 

17-20 to birth.267 Mikkelsen et al.268 reported a similar finding utilizing the Danish 

National Birth Cohort. In addition, Scholl et al.269 examined the association of 

high-sensitivity C-reactive protein (hsCRP) and preterm births. Higher hsCRP 

concentrations are associated with a Western diet, which consists of high 

quantities of red meat and high cholesterol food items. A significant increase in 
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risk for early preterm delivery (<34 weeks) was observed with the highest tertile 

of hsCRP (7.06-137.41 mg/L).    

In the present study, exposure to prenatal nitrosatable drug use and high 

levels of nitrite intake showed a positive association with preterm births as well 

as moderately preterm births. An increasing pattern was noted with secondary 

amine exposure and tertiles of dietary nitrite (first and second trimester), animal 

nitrite (every trimester), plant nitrite (first trimester), and total nitrite (first and 

second trimester) in relation to preterm births. Similar patterns were found with 

tertiary amine use and levels of dietary nitrite (every trimester), animal nitrite 

(every trimester), and total nitrite (second trimester). Nitrosatable drug 

exposures showed little to no association with preterm births among women in 

the lowest tertiles of dietary nitrite (including animal, plant, and total), with the 

exception of second trimester amide use and animal nitrite intake. Analyses of 

moderately preterm births yielded similar conclusions, though associations were 

weaker. Although previous studies have not examined the association between 

prenatal exposure to nitrosatable drugs in conjunction with dietary intake of 

nitrite, a number have indicated an association between drugs classified as 

nitrosatable and preterm births. In addition, formation of N-nitroso compounds in 

the presence of a nitrosatable compound is greater if nitrite concentration is 

high,286 lending support for our findings of an increased risk among women with 

higher levels of nitrite who were concomitantly exposed to nitrosatable drugs.     
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  One of the strengths of the present study is the relatively large sample of 

preterm delivery cases and controls. In addition, we utilized control data from the 

NBDPS, one of the largest population-based studies of birth defects in the U.S., 

which has its advantages. First, NBDPS control women were those who 

delivered infants without any birth defects. By analyzing this population of control 

mothers, we were able to eliminate the confounding effects of birth defects since 

preterm births are more likely to occur if congenital malformations are present.301 

Further, an association was reported between nitrosatable drugs and dietary 

nitrite and total nitrite intake in relation to selected birth defects in two previous 

studies.274, 294 Second, despite slight differences in terms of maternal 

race/ethnicity and education, NBDPS control women have been found to be 

representative of their base populations with regard to maternal age, smoking 

status, and prevalence of diabetes mellitus.282 Time to interview is also 

consistent between mothers with preterm and full term deliveries, with both 

having a 7.7 month median length of time from the EDD to the interview.  

 With studies implicating different time periods, it is not known when the 

critical window of susceptibility is for preterm births. Though this question has 

been addressed numerous times, the weight of evidence does not lend itself 

towards any one time period. It is likely that the critical period of susceptibility 

would depend, partially, on the pathway which the exposure initiates its action.3 

Since prenatal exposures vary in their chemical structure and biological 

activities, the critical period of susceptibility for preterm births may differ and be 
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contingent upon the exposure itself. In the present study, we were able to 

examine different periods of exposure for nitrosatable drugs by trimester.  

 Our study has several limitations, including the potential maternal recall 

bias of drug exposures. In the original study birth defects was the primary 

outcome of interest, and there was a concern that mothers of infants with birth 

defects may more likely recall prenatal drug exposures compared to mothers of 

infants without birth defects. Our study population, however, consists solely of 

NBDPS control women. In addition, little evidence has been found on the 

differential recall of drugs classified as nitrosatable, particularly antibiotics,302, 303 

antinauseants,302 analgesics,303 and benzodiazepines.303 However, a 20% 

higher sensitivity was reported for antibiotics among case-mothers than in 

control-mothers.304 NBPDS utilized a two-level approach for drug assessment to 

reduce recall bias by asking about drug use by indication and then prompting 

participants with medication lists. This method of drug assessment has been 

shown to be more accurate compared to asking either type of question 

individually.305 Medications were classified based on their nitrosatability and 

further categorized based on their functional groups (secondary amines, tertiary 

amines, or amides) after the interview was completed. Therefore, recall bias 

would be unlikely since participants were not questioned directly about 

nitrosatable drug exposure. Nevertheless, some sub-types of nitrosatable drugs 

may have been recalled differentially. In addition, despite utilizing extensive 

reviews160, 288 that were not available in previous studies, some exposures may 
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have been missed since some components may not have been tested for its 

nitrosatability or results from such tests may not have been available.     

 Measurement error in estimates of dietary nitrates and nitrites is a 

potential concern.321 Since levels were based on a FFQ, not all dietary sources 

of these contaminants may have been captured. Recall inaccuracy is also an 

issue; because frequency of foods eaten during the year prior to conception was 

collected, some misclassification of foods consumed during pregnancy may 

have resulted. However, any misclassification would be nondifferential since 

mothers were not aware of the nitrate and nitrite content in the foods they 

ingested when the FFQ was completed. In addition, the same time period of 

dietary assessment was used for all participants. To evaluate the effects of 

measurement error within the NBDPS FFQ, Huber et al.322 used the simulation 

extrapolation algorithm, varying the amount of measurement error included in 

the model from zero to an additional 60%. No substantive differences were 

found in terms of statistical significance or magnitude of effect size. Furthermore, 

Cuco et al.323 found that average consumption patterns of meats and vegetables 

do not significantly differ before and during pregnancy.      

Secondly, information on several risk factors previously reported to 

influence the risk of preterm births were not collected by the NBDPS. Of 

particular concern is prior history of preterm births since reoccurrence is 

estimated to range from 15 to over 50%, depending on the number and 

gestational age of previous deliveries.2, 306 Other risk factors include intrauterine 
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infections,15, 16, 18, 19 marital status,29-31, 34, 36 and psychological or social 

stress.307, 308 Significant associations within the present study may be due to the 

lack of adjustment for previously reported risk factors. And lastly, the NBDPS 

does not collect information on subtypes of preterm births. Because of which, 

preterm births were treated as a single entity within the present study. Evidence 

has suggested that preterm deliveries consist of three clinical subtypes with 

partially heterogeneous etiologies, including spontaneous preterm delivery after 

preterm labor, medically indicated preterm delivery, and spontaneous preterm 

delivery after PPROM.309, 310 Examining preterm births as a group versus 

splitting them into their respective subsets is still debated.311, 312 Some 

researchers support splitting preterm births by clinical presentation since 

preterm delivery can result from diverse clinical pathways. For instance, 

rupturing of the membranes and spontaneous onset of labor is quite distinctive 

from fetal distress, which is recommended to be managed with early delivery. 

On the other hand, researchers who support examining preterm births as a 

group argue that conditions prompting medical intervention for early delivery, 

such as preeclampsia and fetal growth restriction, have similar mechanisms as 

the pathways resulting in spontaneous preterm delivery.311, 313 Spontaneous 

preterm births are also motivated by the same predictors of medically indicated 

preterm births, including placenta abruption,314 preeclampsia,315 and restricted 

fetal growth.316, 317 Therefore, since etiologies are shared grouping preterm 

births would offer an increase in statistical power. 
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Multiple analyses and comparisons were involved in this study, mainly 

with respect to nitrosatable drug exposures stratified by dietary nitrite intake. 

Twenty statistical tests were conducted to assess the association between 

dietary nitrate/nitrite and preterm and moderately preterm births. One statistically 

significant finding was observed; however, one is expected by chance alone. To 

assess interaction between nitrosatable drugs and dietary nitrite, including 

animal and plant sources and total nitrite, with preterm and moderately preterm 

births, 96 tests were conducted. Fifteen statistically significant interactions were 

detected, while only 5 would have been expected by chance.    

 In conclusion, we found insufficient evidence to suggest a positive 

relationship between dietary intake of nitrates, nitrites, animal nitrite, and total 

nitrites and preterm births. However, high levels of nitrite from plant sources 

were observed to have a protective effect for preterm and moderately preterm 

births. Prenatal exposure to nitrosatable drugs, particularly secondary and 

tertiary amines, in conjunction with higher levels of dietary nitrites (including 

animal nitrites, plant nitrites, and total nitrites) may increase the risk of preterm 

births. Further research is needed to confirm the findings related between 

prenatal nitrosatable drug use and dietary nitrite intake levels in relation to 

preterm births.    
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CHAPTER IV 

 
PRENATAL EXPOSURE TO NITROSATABLE DRUGS, VITAMIN C,  

AND RISK OF PRETERM BIRTHS 

 
 

Overview 
 

Nitrosatable drugs react with nitrite in the stomach to form N-nitroso 

compounds, observed to result in adverse pregnancy outcomes in animal 

models. An increased risk of preterm births has been detected with prenatal 

exposure to medications classified as nitrosatable. Vitamin C is a known 

nitrosation inhibitor.  

Using data from mothers of babies without major birth defects from the 

National Birth Defects Prevention Study, we assessed nitrosatable drug 

exposure and vitamin C intake among 496 mothers of preterm infants and 5398 

mothers with full term deliveries between 1997 and 2005. Daily intake of vitamin 

C was estimated from maternal interviews that collected information on 

supplemental and dietary intake.  

Lower hazard ratios were observed among women with combined 

exposures to nitrosatable drugs and dietary vitamin C ≥85 mg/day during the 

second trimester compared to those with lower levels. Most notably, a reduced 

risk of moderately preterm births was observed among women with amide use 

who also had higher levels of dietary vitamin C (adjusted hazard ratio (aHR) 
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1.14, [95% confidence interval (CI) 0.66, 1.98]) compared to those with <85 

mg/day (aHR 2.08, [95% CI 1.25, 3.47]). Inconsistent patterns were found with 

nitrosatable drug exposure and vitamin C supplementation in relation to preterm 

births.  

Dietary vitamin C intake ≥85 mg/day may attenuate the association 

between nitrosatable drug use during the second trimester and preterm and 

moderately preterm births. Daily vitamin C supplementation did not diminish the 

association between prenatal nitrosatable drug use and preterm births in this 

study population. 

 

Background 

Preterm birth, defined as delivery of a liveborn infant before 37 weeks 

gestation, is the leading cause of early neonatal death and neonatal morbidity, 

including respiratory distress, infections, and hypoglycemia.21 Worldwide, 

preterm deliveries complicate 5-12.7% of all deliveries,324 and in the United 

States the proportion of infants born preterm has increased 31% between 1981 

and 2003.4 It is hypothesized that survival limits for preterm infants has been 

reached using the current methods of neonatal intensive care.298 Despite 

numerous studies, the causes and mechanisms of preterm birth are not fully 

understood.   

N-nitroso compounds, including nitrosamines and nitrosamides, are 

formed when nitrosatable amines or amides react with nitrosating agents, such 
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as nitrite, in the acidic environment of the stomach.11 While endogenous 

formation constitutes approximately 45-75% of total levels, exogenous sources 

are responsible for some N-nitroso compound exposure.299 Certain nitrosatable 

drugs, relegated as secondary amines, tertiary amines, and amides, contribute 

to levels of N-nitroso compounds by reacting with nitrosating agents. Within the 

National Birth Defects Prevention Study (NBDPS), 24% of control mothers 

reported taking drugs classified as nitrosatable during the first trimester of 

pregnancy.10 In the NBDPS study population, first trimester exposure to 

nitrosatable drugs was associated with several birth defects, including neural 

tube defects, limb deficiencies, cleft lip with cleft palate, cleft palate alone, single 

ventricle heart defects, atrioventricular septal defects, and hypoplastic left heart 

syndrome.274, 294 Further, animal models have found a positive association 

between N-nitroso compounds and adverse pregnancy outcomes, such as 

reduced fetal weight and birth defects in mice.12-14 The effects of these 

compounds on gestational age are not known as no study has been published to 

date on this relationship.  

Vitamin C is a known nitrosation inhibitor, shown to block endogenous 

formation of N-nitroso compounds. Ascorbic acid inhibits the formation of N-

nitroso compounds by rapidly reducing nitrite to nitrous oxide, followed by the 

production of dehydroascorbic acid.270 Animal models have further 

demonstrated the ability of vitamin C to suppress nitrosation. In particular, a 

reduced risk of peripheral nervous system tumors in the offspring of pregnant 
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hamsters was observed when ascorbic acid was given in conjunction with 

ethylurea and nitrite.271, 272 In a clinical trial of human volunteers, increased 

doses of ascorbic acid, starting from 1.76 mg to 1,000 mg, were administered 

along with combined exposures of nitrate and a nitrosatable precursor, 

proline.273 A significant 44% reduction in N-nitroso compound excretion was 

noted among individuals who were given vitamin C in conjunction with nitrate 

and proline compared to those without concomitant administration of vitamin C. 

In a recent study of NBDPS mothers, daily vitamin C supplementation along with 

tertiary or secondary amine drug exposure resulted in lower odds of having 

anencephalic births compared to taking these drugs without vitamin C 

supplementation.274 A reduction in risk was also noted for transverse limb 

deficiency in conjunction with secondary amine drug exposure, cleft lip without 

cleft palate with tertiary amine exposure, and several congenital heart defects in 

conjunction with tertiary amine and amide drug exposures with daily use of 

supplements with vitamin C.275 Given previous animal and human data on the 

impact of vitamin C on ameliorating the effects of N-nitroso compounds, we 

examined the: 1) effects of dietary vitamin C intake on the relation between 

drugs classified as nitrosatable such as secondary amines, tertiary amines, or 

amides and preterm births (including moderately preterm births); and the 2) 

effects of vitamin C supplementation on the association between nitrosatable 

drugs and preterm births (including moderately preterm births). 
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Methods 

Study Population 

 The NBDPS is an ongoing population-based, case-control study of major 

structural birth defects in the United States. Ten sites have participated since the 

study’s inception in 1997, including: Arkansas, California, Georgia, Iowa, 

Massachusetts, New York, and Texas (from 1998 to present); New Jersey (from 

1998 to 2002); and North Carolina and Utah (from 2003 to present). Case-

infants within the NBDPS are identified from live births (all centers), stillbirths (all 

centers except New Jersey and New York from 1997 to 1999), and elective 

pregnancy terminations (all centers except Massachusetts, New Jersey, and 

New York before 2000) from birth defect surveillance programs. For the present 

study, data from control mothers of babies without major birth defects from the 

NBDPS were used to examine the effects of dietary and supplemental vitamin C 

intake on the relation between prenatal exposure to nitrosatable drugs and 

preterm births.  

Control-infants within the NBDPS were live born without major birth 

defects, who were delivered in the same time frame and study area as the case 

births with major birth defects. Birth certificates (Arkansas and Georgia, for 

estimated delivery dates (EDDs) after 2000; Iowa; Massachusetts; New Jersey; 

North Carolina; and Utah) and hospital records (Arkansas, for EDDs before 

2001; California; Georgia, for EDDs before 2001; New York; and Texas) were 

used as sources for random sampling.282 Control-infants were excluded if the 
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infant was either adopted or in foster care or if the mother possessed at least 

one of the following characteristics: did not speak English or Spanish, previously 

participated in the NBDPS, was incarcerated, was a donor or a surrogate parent, 

was unable to answer questions, or was deceased. 

NBDPS control-infants with EDDs between October 1, 1997 and 

December 31, 2005 were included in the present study. Our study population 

was further restricted to singletons since multiple births are a major risk factor for 

preterm deliveries. Small for gestational age infants were also excluded since N-

nitroso compounds have been reported to affect fetal weight.12 Case-infants in 

the present study were defined as preterm births, infants with a gestational age 

less than 37 weeks. Medical records and birth certificates were utilized to obtain 

gestational age at delivery. If these documents could not provide gestational 

age, then it was calculated using the reported EDD from the interview. Additional 

methods used to calculate gestational age (in order of descending preference) 

included: ultrasound <14 weeks, last menstrual period, ultrasound >14 weeks, 

and standard neonatal exam. Infants were further categorized as moderately 

preterm if their gestational age was between 33 and 36 weeks. Infants with 37 to 

41 weeks of gestation served as the control-infants. The institutional review 

boards in each state and the Centers for Disease Control and Prevention 

approved the NBDPS study protocol, and the institutional review board of Texas 

A&M University also approved this project on nitrosatable drugs, vitamin C, and 

preterm births.  



 
 

139 
 

Data Collection 

 The NBDPS interviews took about one hour to complete and were 

conducted by trained female interviewers in either English or Spanish using a 

computer-assisted telephone interview following informed consent.283 Interviews 

were conducted 6 weeks to 24 months after the EDDs (or delivery of a full-term 

infant) and targeted for completion within 6 months of the EDD. Time to 

interview was comparable between mothers of preterm and full term infants, with 

both having a 7.7 month median length of time from the EDD to the interview. 

The maternal interview included several sections, such as maternal health 

during the index pregnancy (including medication usage), diet (food 

consumption in the year before pregnancy, and vitamin supplementation from 

three months preconception to the end of pregnancy), infections, and behavioral 

factors.  

 

Classification of Nitrosatable Drugs 

Information on prescription and nonprescription medication use, including 

medication name, frequency of use, and corresponding dates of usage, from 

three months preconception to the end of pregnancy were collected during the 

NBDPS interview. The Slone Epidemiology Center Drug Dictionary system was 

used to link reported medications to their active ingredients.287 Categorization 

methods of drugs by their nitrosatability, functional groups, and indication have 

been described in detail by Brender et al.10 Briefly, all reported orally 
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administered medications and their active ingredients were identified and cross-

referenced against comprehensive nitrosatable medicinal compounds lists.160, 288 

These drugs were further classified by their chemical structure, i.e. whether an 

amine (secondary or tertiary) or amide functional group was present. Medline 

and internet sources were used to evaluate the presence of amine or amide 

functional groups of all remaining active ingredients. Lastly, each component 

was grouped by primary indication or therapeutic use and pharmacologic class. 

This study focuses on drugs reported to have been taken during pregnancy, 

concentrating on periods of exposure by trimester.  

 

Assessment of Vitamin C Intake 

The NBDPS collected information on average food consumption 

throughout the year before conception using a 58-item food frequency 

questionnaire (FFQ) that was adapted from the short Willett FFQ. The Willett 

FFQ has been validated and reproduced and provides useful information about 

nutrient intake in women during pregnancy.284, 318 Information on cereal intake 

three months preconception to the end of pregnancy was also collected. The 

USDA National Nutrient Database for Standard Reference 19 served as the 

basis for nutrient calculations, such as dietary intake of vitamin C.325 Complete 

data for any nitrosatable drug use stratified by dietary vitamin C intake were 

available for mothers of 477 (96.2%) preterm infants, 392 (95.8%) moderately 

preterm infants, and 5193 (96.2%) full-term infants (controls).   



 
 

141 
 

Vitamin C supplementation was assessed using the NBDPS 

questionnaire, which contained questions regarding start and stop dates, 

duration of use, and frequency of vitamin use (single, prenatal, and 

multivitamins) from three months preconception to the end of pregnancy. 

Vitamin C supplementation was categorized into less than daily and daily, 

depending on frequency of intake for the first and second trimester. Due to 

insufficient numbers, vitamin C supplementation during the third trimester could 

not be examined. Women who reported using a daily vitamin C supplement 

during a specified period were classified as “daily” while those who reported 

taking a vitamin C supplement less than 90 days in a given trimester or less than 

every day in a given period were categorized as “less than daily.” Complete data 

for any nitrosatable drug use stratified by supplemental vitamin C intake during 

the first trimester were available for 472 (95.2%), 389 (95.1%), and 5130 

(95.0%) mothers of preterm, moderately preterm, and full term infants, 

respectively.     

 

Covariates 

Covariate selection was based on factors previously reported to be 

associated with preterm births and/or nitrosatable drug use.10 Potential 

confounders assessed included maternal race/ethnicity (non-Hispanic white, 

non-Hispanic black, Hispanic, Asian/Pacific Islander, other), educational level 

(<12 years, 12 years, 13-15 years, >15 years), age (<18, 18-19, 20-24, 25-29, 
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30-34, ≥35 years), and smoking status (yes/no); body mass index (BMI) based 

on self-reported height and weight (kg/m2), categorized according to NIH 

guidelines (underweight, normal, overweight, and obese); study site; infant 

gender (male/female); parity (nulliparous, primiparous, and multiparous); pre-

pregnancy diabetes (yes/no); gestational diabetes (yes/no); and pre-pregnancy 

hypertension (yes/no). Nonsignificant covariates as well as those that did not 

change the hazard ratio by 10% or more were eliminated from the final model 

using forward selection.  

 
Statistical Analysis 

Descriptive analyses were performed to examine the distribution of 

several covariates among case- and control-mothers. Since preterm birth is a 

time-based outcome that depends on gestational age, Cox proportional hazards 

model was used to estimate hazard ratios (HR) and corresponding 95% 

confidence intervals (CI) for preterm and moderately preterm births in relation to 

nitrosatable drug use by supplemental and dietary intake of vitamin C. 

Gestational age at birth, measured in weeks, was the underlying time variable. 

Each woman remained in the risk set of giving birth to a preterm infant until 

delivery or gestational age of 37 weeks, whichever occurred first. In other words, 

women with term or post-term deliveries were censored at 37 weeks. Maternal 

race/ethnicity, educational level, and age; study center; pre-pregnancy diabetes; 

and pre-pregnancy hypertension were included in the regression models as 

possible confounders. Analyses were restricted to singleton pregnancies with 
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complete information on all covariates included in the final model. Statistical 

tests were two-sided, and findings were considered statistically significant at the 

5% level if the CI did not include 1.00. Cox-Snell residuals analysis, link test, and 

a global test based on Schoenfeld residuals was utilized to assess violation of 

the proportional hazards assumption.300  

Nitrosatable drug exposure (secondary amines, tertiary amines, and 

amides) was stratified by vitamin C supplementation (less than daily, daily) by 

trimester of pregnancy for preterm births, and HRs and 95% CIs were estimated 

for preterm births and moderately preterm births for each stratum. Women who 

reported no nitrosatable drug use during pregnancy served as the referent group 

in all analyses. Nitrosatable drugs were also stratified by dietary vitamin C intake 

(<85 mg/day or ≥85 mg/day). Cut points were based on the recommended 

dietary allowance for pregnant women over 18 years of age,326 which 

corresponds to the 41st percentile for control participants. The median cut-point 

for dietary vitamin C among our control-mothers was 101.35 mg/day. Dietary 

vitamin C analyses were restricted to women who had an estimated daily caloric 

intake between 500 and 5000 kcal. Models examining the effect of dietary 

vitamin C on the relation between nitrosatable drugs and preterm births included 

covariates previously listed in addition to daily caloric intake. 

Additive and multiplicative interaction was assessed for the associations 

of preterm births, as well as moderately preterm births, with nitrosatable drugs 

by supplemental and dietary vitamin C. Measures of relative excess risk due to 
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interaction (RERI) and attributable proportion due to interaction (AP) were 

utilized to determine whether significant additive interaction was present.295  If 

the 95% CIs of either or both measures excluded 0, additive interaction was 

considered present, indicating that the risk of preterm births attributable to the 

two risk factors in combination is greater than the sum of risks associated with 

each risk factor separately. Multiplicative interaction was assessed with the 

inclusion of product terms of nitrosatable drug groups with supplemental and 

dietary vitamin C in the Cox proportional hazards models and was considered  

significant if the P value was less than 0.05. STATA version 12.0 was used for 

all analyses.    

 

Results 

 The maternal participation rate among NBDPS controls mothers was 

66%. A total of 496 eligible case-mothers who delivered a preterm infant (409 

who delivered a moderately preterm infant) and 5398 control-mothers with an 

EDD between 1997 and 2005 participated in the study. Case-mothers were 

significantly less likely to be non-Hispanic white compared to control-mothers 

(Table 12). They were also significantly more likely to have pre-pregnancy 

hypertension, pre-pregnancy diabetes, reside in Arkansas and Texas, and were 

somewhat younger at time of delivery. The proportion of case- and control- 

mothers with an estimated vitamin C intake less than 85 mg/day was  
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Table 12. Selected Maternal Characteristics of Preterm Cases and Controls in 
the National Birth Defects Prevention Study, 1997-2005 

Characteristics of Controlsa (%) Preterm Casesa (%) 
Participants n=5398 n=496 

Race/ethnicity*   
 Non-Hispanic white 3252 (60.2) 277 (55.9)  
 Non-Hispanic black 605 (11.2) 74 (14.9) 
 Hispanic 1180 (21.9) 107 (21.6) 
 Asian/Pacific Islander 155 (2.9) 9 (1.8) 
 All others 206 (3.8) 29 (5.9) 
Education (years)   
 <12 852 (15.8) 91 (18.4) 
 12 1288 (23.9) 137 (27.6) 
 13-15 1462 (27.1) 124 (25.0) 
 >15  1723 (31.9) 136 (27.4) 
 Missing 73 (1.4) 8 (1.6) 
Age at delivery (years)*   
 <18 193 (3.6) 24 (4.8) 
 18-19 370 (6.9) 40 (8.1) 
 20-24 1223 (22.7) 119 (24.0) 
 25-29 1433 (26.6) 142 (28.6) 
 30-34 1459 (27.0) 96 (19.4) 
 >34 720 (13.3) 75 (15.1) 
Study center*   
 Arkansas 650 (12.0) 88 (17.7) 
 California 697 (12.9) 57 (11.5) 
 Georgia 597 (11.1) 44 (8.9) 
 Iowa 607 (11.2) 56 (11.3) 
 Massachusetts 672 (12.5) 58 (11.7) 
 North Carolina 321 (6.0) 34 (6.9) 
 New Jersey 449 (8.3) 32 (6.5) 
 New York 499 (9.2) 33 (6.7) 
 Texas 602 (11.2) 68 (13.7) 
 Utah 304 (5.6) 26 (5.2) 
Body mass index (kg/m2)   
 <18.5 257 (4.8) 29 (5.9) 
 18.5–24.9 2904 (53.8) 268 (54.0) 
 25.0–29.9 1190 (22.1) 99 (20.0) 
 >29.9 847 (15.7) 86 (17.3) 
 Missing 200 (3.7) 14 (2.8) 
Smoking   
 No 4371 (81.0) 382 (77.0) 
 Yes 969 (18.0) 107 (21.6) 
 Missing 58 (1.1) 7 (1.4) 
Pre-pregnancy diabetes*   
 No  5244 (97.2) 475 (95.8) 
 Yes 26 (0.5) 10 (2.0) 
 Missing 128 (2.4) 11 (2.2) 
Pre-pregnancy hypertension*   
 No 4723 (87.5) 393 (79.2) 
 Yes 668 (12.4) 102 (20.6) 
 Missing 7 (0.1) 1 (0.2) 
Infant gender   
 Male 2702 (50.1) 243 (49.0) 
 Female 2696 (49.9) 253 (51.0) 
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Table 12 (continued) 
Characteristics of Controlsa (%) Preterm Casesa (%) 

Participants n=5398 n=496 
Parity   
 Nulliparous 2150 (39.8) 207 (41.7) 
 Primiparous 1816 (33.6) 154 (31.1)  
 Multiparous 1432 (26.5) 135 (27.2) 
Dietary Vitamin C   
 < 85 mg/day 2191 (40.6) 217 (43.8) 
 ≥ 85 mg/day 3181 (58.9) 275 (55.4) 
 Missing 26 (0.5) 4 (0.8) 
Vitamin C supplements   
 First Trimester   
 <Daily 3601 (66.7) 328 (66.1) 
 Daily 1710 (31.7) 159 (31.1) 
 Missing 87 (1.6) 9 (1.8) 
 Second Trimester*   
 <Daily 944 (17.5) 120 (24.2) 
 Daily 4368 (80.9) 367 (74.0) 
 Missing 86 (1.6) 9 (1.8) 
a NBDPS control women who gave birth to preterm infants (cases) and women who had  
  full term infants without SGA (controls) 
* Statistically significant differences in the distribution between cases and controls at P < 0.05. 
 

 
 
comparable. Frequency of supplemental vitamin C intake was similar across 

cases and controls during the first trimester, but during the second trimester 

control-mothers were significantly more likely to report taking supplements 

containing vitamin C.  

Dietary vitamin C intake above 85 mg/day in conjunction with nitrosatable 

drug exposure during the first trimester of pregnancy resulted in higher hazard 

ratios for preterm delivery (Table 13). Among women who reported taking drugs 

classified as amides, a higher point estimate was observed among those who 

had higher daily vitamin C intake (aHR 1.52, [95% CI 0.99, 2.32]) compared to 

those with lower levels of vitamin C intake (aHR 1.20, [95% CI 0.73, 1.96]). In 

contrast, lower hazard ratios for nitrosatable drug use combined with higher 
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Table 13. Maternal Nitrosatable Drug Exposure by Gestational Period and Preterm Births Stratified by Dietary 
Vitamin C, National Birth Defects Prevention Study, 1997-2005 

Gestational 
Period 

Dietary 
Vitamin C 
mg/day 

 
Type of drug exposure 

Cases Controls  
Unadjusted 

HRb 

 
 

95% CI 

 
Adjusted  

HRb,c 

 
 

95% CI 
 

No. 
 

%a 
 

No. 
 

%a 

 
P1P3 

 
<85 

 
No nitrosatable drug 
exposure 105 64.8 1181 67.6 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
    Secondary  amines 36 25.5 298 20.2 1.32 [0.91, 1.93] 1.27 [0.86, 1.89] 
     Tertiary amines 30 22.2 318 21.2 1.05 [0.70, 1.58] 0.99 [0.65, 1.52] 
     Amides 20 16.0 182 13.4 1.20 [0.75, 1.94] 1.20 [0.73, 1.96] 
  

≥85 
 
No nitrosatable drug 
exposure 162 70.4 1989 75.8 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
    Secondary amines 36 18.2 335 14.4 1.32 [0.92, 1.90] 1.31 [0.90, 1.92] 
     Tertiary amines 30 15.6 318 13.8 1.16 [0.79, 1.71] 1.11 [0.74, 1.68] 
     Amides 26 13.8 201 9.2 1.56 [1.03, 2.36] 1.52 [0.99, 2.32] 
 

P4P6 
 

<85 
 
No nitrosatable drug 
exposure 105 62.5 1181 70.2 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
    Secondary amines 35 25.0 294 19.9 1.31 [0.89, 1.92] 1.39 [0.94, 2.06] 
     Tertiary amines 33 23.9 248 17.4 1.44 [0.98, 2.13] 1.49 [0.99, 2.24] 
     Amides 22 17.3 145 10.9 1.61 [1.02, 2.55] 1.71 [1.06, 2.75] 
  

≥85 
 
No nitrosatable drug 
exposure 162 71.4 1989 76.9 1.00 Referent 1.00 Referent 

  Secondary amines 38 19.0 356 15.2 1.31 [0.92, 1.86] 1.35 [0.93, 1.94] 
     Tertiary amines  29 15.2 262 11.6 1.34 [0.91, 2.00] 1.33 [0.88, 2.00] 
     Amides 20 11.0 192 8.8 1.28 [0.80, 2.03] 1.23 [0.76, 1.97] 
 

P7P9 
 

<85 
 
No nitrosatable drug 
exposure 105 66.5 1181 72.0 1.00 Referent 1.00 Referent 

  Secondary amines 31 22.8 272 18.7 1.25 [0.84, 1.87] 1.25 [0.83, 1.89] 
     Tertiary amines 26 19.9 216 15.5 1.31 [0.85, 2.01] 1.37 [0.88, 2.14] 
     Amides 14 11.8 136 10.3 1.13 [0.65, 1.97] 1.17 [0.66, 2.06] 
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Table 13 (continued) 
Gestational 

Period 

Dietary 
Vitamin C 
mg/day 

 
Type of drug exposure 

Cases Controls  
Unadjusted 

HRb 

 
 

95% CI 

 
Adjusted  

HRb,c 

 
 

95% CI 
 

No. 
 

%a 
 

No. 
 

%a 

  
≥85 

 
No nitrosatable drug 
exposure 

 
162 

 
74.7 

 
1989 

 
79.2 

 
1.00 

 
Referent 

 
1.00 

 
Referent 

   Secondary amines 36 18.2 314 13.6 1.39 [0.97, 1.99] 1.40 [0.97, 2.04] 
     Tertiary amines  19 10.5 211 9.6 1.11 [0.69, 1.79] 1.12 [0.69, 1.84] 
     Amides 18 10.0 143 6.7 1.51 [0.93, 2.46] 1.37 [0.83, 2.25] 
Abbreviations: HR, hazard ratio; CI, confidence interval; P1P3, first trimester; P4P6, second trimester; P7P9, third trimester. 
a Percentages for no nitrosatable drug exposure are based on total participants with complete information while percentages for   
  secondary or tertiary amines and amides includes complete information for the given drug group and excludes other nitrosatable 
groups in the denominator. 
b Crude and adjusted hazard ratios include only cases and controls with complete information for drug exposures and covariates and 
  who had a daily caloric intake between 500-5000 kcal. 
c Adjusted for daily caloric intake, study center, maternal age, race/ethnicity, education, pre-pregnancy diabetes, and pre-pregnancy 
  hypertension. 
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levels of dietary vitamin C were noted during the second trimester. The 

beneficial effects of dietary vitamin C were seen across all broad classifications 

of nitrosatable drugs. The difference was most notable with amide exposure, 

with a smaller effect observed among women who had an estimated dietary 

intake of vitamin C ≥85 mg/day (aHR 1.23, [95% CI 0.76, 1.97]) compared to 

less than 85 mg/day (aHR 1.71, [95% CI 1.06, 2.75]). During the third trimester 

of pregnancy, a slightly lower risk of delivering a preterm infant was noted 

among women with tertiary amine use in conjunction with higher levels of dietary 

vitamin C (aHR 1.12, [95% CI 0.69, 1.84]) compared to women with less than 85 

mg/day (aHR 1.37, [95% CI 0.88, 2.14]). However, secondary amine or amide 

exposure during the same gestational period and vitamin C intake ≥85 mg/day 

resulted in higher hazard ratios than dietary vitamin C levels less than 85 

mg/day. No significant additive or multiplicative interaction was observed for 

preterm births by dietary vitamin C in relation to nitrosatable drug exposure. 

Table 14 displays the results of the Cox proportional hazard models for 

prenatal nitrosatable drug use and moderately preterm births stratified by dietary 

vitamin C. Higher intake of dietary vitamin C did not appear to make a difference 

with nitrosatable drug exposure during the first trimester of pregnancy, except for 

secondary amines. Exposure to secondary amines and dietary vitamin C ≥85 

mg/day resulted in lower risk of having a moderately preterm birth (aHR 1.16, 

[95% CI 0.75, 1.79]) compared to dietary vitamin C levels under 85 mg/day (aHR 

1.45, [95% CI 0.94, 2.24]). Higher dietary vitamin C appeared to provide more    
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Table 14. Maternal Nitrosatable Drug Exposure by Gestational Period and Moderately Preterm Births Stratified by 
Dietary Vitamin C, National Birth Defects Prevention Study, 1997-2005 

Gestational 
Period 

Dietary 
Vitamin C 
mg/day 

 
Type of drug 
exposure 

Cases Controls  
Unadjusted 

HRb 

 
 

95% CI 

 
Adjusted  

HRb,c 

 
 

95% CI 
 

No. 
 

%a 
 

No. 
 

%a 

 
P1P3 

 
<85 

 
No nitrosatable drug 
exposure 78 61.4 1181 67.6 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
    Secondary  amines 32 29.1 298 20.2 1.59 [1.05, 2.39] 1.45 [0.94, 2.24] 
      Tertiary amines 24 23.5 318 21.2 1.13 [0.72, 1.79] 1.01 [0.62, 1.65] 
      Amides 18 18.8 182 13.4 1.46 [0.87, 2.43] 1.40 [0.82, 2.37] 
  

≥85 
 
No nitrosatable drug 
exposure 135 71.8 1989 75.8 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
    Secondary amines 26 16.2 335 14.4 1.15 [0.76, 1.75] 1.16 [0.75, 1.79] 
      Tertiary amines 22 14.0 318 13.8 1.02 [0.65, 1.61] 1.02 [0.64, 1.64] 
      Amides 20 12.9 201 9.2 1.45 [0.90, 2.31] 1.46 [0.90, 2.36] 
 

P4P6 
 

<85 
 
No nitrosatable drug 
exposure 78 58.2 1181 70.2 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
    Secondary amines 30 27.8 294 19.9 1.51 [0.99, 2.31] 1.58 [1.02, 2.44] 
      Tertiary amines 29 27.1 248 17.4 1.71 [1.12, 2.62] 1.74 [1.12, 2.72] 
      Amides 20 20.4 145 10.9 1.97 [1.20, 3.22] 2.08 [1.25, 3.47] 
  

≥85 
 
No nitrosatable drug 
exposure 135 72.6 1989 76.9 1.00 Referent 1.00 Referent 

    Secondary amines 31 18.7 356 15.2 1.28 [0.87, 1.90] 1.34 [0.89, 2.00] 
      Tertiary amines  21 13.5 262 11.6 1.17 [0.74, 1.85] 1.19 [0.74, 1.92] 
      Amides 15 10.0 192 8.8 1.16 [0.68, 1.97] 1.14 [0.66, 1.97] 
 

P7P9 
 

<85 
 
No nitrosatable drug 
exposure 78 61.9 1181 72.0 1.00 Referent 1.00 Referent 

    Secondary amines 28 26.4 272 18.7 1.52 [0.99, 2.34] 1.47 [0.94, 2.30] 
      Tertiary amines 23 22.8 216 15.5 1.56 [0.98, 2.48] 1.58 [0.97, 2.56] 
      Amides 13 14.3 136 10.3 1.40 [0.78, 2.52] 1.44 [0.79, 2.63] 

  



 

 
 

151 

Table 14 (continued) 
Gestational 

Period 

Dietary 
Vitamin C 
mg/day 

 
Type of drug 
exposure 

Cases Controls  
Unadjusted 

HRb 

 
 

95% CI 

 
Adjusted  

HRb,c 

 
 

95% CI 
 

No. 
 

%a 
 

No. 
 

%a 

  
≥85 

 
No nitrosatable drug 
exposure 135 74.6 1989 79.2 1.00 Referent 1.00 Referent 

   Secondary amines 31 18.7 314 13.6 1.44 [0.97, 2.13] 1.46 [0.98, 2.19] 
     Tertiary amines  13 8.8 211 9.6 0.92 [0.52, 1.62] 0.96 [0.54, 1.73] 
     Amides 16 10.6 143 6.7 1.62 [0.97, 2.72] 1.49 [0.88, 2.54] 

Abbreviations: HR, hazard ratio; CI, confidence interval; P1P3, first trimester; P4P6, second trimester; P7P9, third trimester. 
a Percentages for no nitrosatable drug exposure are based on total participants with complete information while percentages for    
  secondary or tertiary amines and amides includes complete information for the given drug group and excludes other nitrosatable 
groups in the denominator. 
b Crude and adjusted hazard ratios include only cases and controls with complete information for drug exposures and covariates and 
  who had a daily caloric intake between 500-5000 kcal. 
c Adjusted for daily caloric intake, study center, maternal age, race/ethnicity, education, pre-pregnancy diabetes, and pre-pregnancy 
  hypertension 
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beneficial effects against moderately preterm births than preterm births overall 

during the second trimester of pregnancy. The largest reduction was observed 

with amide usage in combination with a vitamin C intake ≥85 mg/day (aHR 1.14, 

[95% CI 0.66, 1.97]) in comparison to an intake less than 85 mg/day (aHR 2.08, 

95% CI 1.25, 3.47]). We observed comparable point estimates in the last 

trimester of pregnancy across nitrosatable drug groups between the two levels 

of dietary vitamin C, with the exception of tertiary amines. A reduction in point 

estimates among women with tertiary amine exposure and high levels of dietary 

vitamin C (≥85 mg/day) (aHR 0.96, [95% CI 0.54, 1.73]) compared to those with 

lower levels (aHR 1.58, [95% CI 0.97, 2.56]) was detected. No significant 

additive or multiplicative interactions were observed for moderately preterm 

births by dietary vitamin C in relation to prenatal nitrosatable drug use. 

 The effects of prenatal nitrosatable drug exposures on preterm births 

stratified by vitamin C supplementation are shown in Table 15. We observed 

conflicting results regarding the effects of daily vitamin C supplementation on 

nitrosatable drug use during the first trimester. A higher hazard ratio was 

detected among women with amide usage who reported taking a daily vitamin C 

supplement (aHR 2.02, [95% CI 1.25, 3.26]) compared to those with less than 

daily supplementation (aHR 0.99, [95% CI 0.64, 1.55]); multiplicative interaction 

was noted between amide exposure and vitamin C supplementation (P = 0.04). 

However, a reduction in the point estimate was noted with secondary amine use 

and daily supplementation of vitamin C (aHR 1.03, [95% CI 0.63, 1.70]) when
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Table 15. Maternal Nitrosatable Drug Exposure by Gestational Period and Preterm Births Stratified by Vitamin C 
Supplementation, National Birth Defects Prevention Study, 1997-2005 
Gestational 
Period 

Frequency of 
Vitamin 
supplement 

 
Type of drug exposure 

Cases Controls  
Unadjusted 

HRb 

 
 

95% CI 

 
Adjusted  

HRb,c 

 
 

95% CI 
 

No. 
 

%a 
 

No. 
 

%a 

 
P1P3 

 
Less than 
daily 

 
No nitrosatable drug 
exposure 188 69.9 2213 74.1 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
   Secondary  amines 52 21.7 392 15.1 1.54 [1.13, 2.09] 1.45 [1.05, 2.00] 
      Tertiary amines 39 17.2 421 16.0 1.09 [0.77, 1.54] 0.99 [0.69, 1.43] 
      Amides 23 10.9 253 10.3 1.07 [0.69, 1.65] 0.99d [0.64, 1.55] 
  

Daily 
 
No nitrosatable drug 
exposure 80 64.0 958 68.8 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
   Secondary amines 21 20.8 241 20.1 1.03 [0.64, 1.67] 1.03 [0.63, 1.70] 
      Tertiary amines 21 20.8 218 18.5 1.15 [0.71, 1.85] 1.14 [0.70, 1.87] 
      Amides 23 22.3 134 12.3 1.94 [1.22, 3.09] 2.02d [1.25, 3.26] 
 
P4P6 

 
Less than 
daily 

 
No nitrosatable drug 
exposure 71 71.0 596 77.2 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
   Secondary amines 13 15.5 89 13.0 1.19 [0.66, 2.15] 1.11 [0.58, 2.11] 
      Tertiary amines 18 20.2 91 13.3 1.57 [0.94, 2.63] 1.41 [0.79, 2.51] 
      Amides 8 10.1 56 8.6 1.18 [0.57, 2.46] 1.11 [0.51, 2.39] 
  

Daily 
 
No nitrosatable drug 
exposure 197 66.3 2575 73.6 1.00 Referent 1.00 Referent 

   Secondary amines 61 23.6 562 17.9 1.40 [1.05, 1.87] 1.47 [1.10, 1.98] 
     Tertiary amines  45 18.6 420 14.0 1.38 [1.00, 1.91] 1.37 [0.98, 1.91] 
      Amides 33 14.4 281 9.8 1.49 [1.03, 2.16] 1.44 [0.99, 2.10] 
Abbreviations: HR, hazard ratio; CI, confidence interval; P1P3, first trimester; P4P6, second trimester. 
a Percentages for no nitrosatable drug exposure are based on total participants with complete information while percentages for 
secondary  or tertiary amines and amides includes complete information for the given drug group and excludes other nitrosatable groups 
in the  denominator. 
b Crude and adjusted hazard ratios include only cases and controls with complete information for drug exposures and covariates. 
c Adjusted for study center, maternal age, race/ethnicity, education, pre-pregnancy diabetes, and pre-pregnancy hypertension. 
d Significant multiplicative interaction (P < 0.05)
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compared to less than daily (aHR 1.45, [95% CI 1.05, 2.00]). Daily vitamin C 

supplementation did not appear to lower the effects of nitrosatable drugs on the 

risk of preterm delivery during the second trimester. Taking a vitamin C 

supplement every day in conjunction with secondary amines or amides were 

observed to have higher risk estimates than if vitamin C supplementation was 

taken less than daily.  

Similar conclusions regarding the effects of vitamin C supplementation on 

nitrosatable drug use and moderately preterm births were observed. Women 

who took a daily vitamin C supplement during the first trimester of pregnancy in 

conjunction with nitrosatable drugs appeared to have higher risk of delivering a 

moderately preterm infant compared to those with less than daily 

supplementation, especially among amide users (aHR 2.17, [95% CI 1.29, 3.66] 

versus aHR 1.00, [95% CI 0.61, 1.65]) (Table 16); significant multiplicative 

interaction (P = 0.03) was detected between first trimester amide exposure and 

supplemental vitamin C. A diminished association, however, was noted with 

daily supplementation and secondary amine usage, with a hazard ratio of 1.02 

[95% CI 0.59, 1.77] compared to 1.46 [95% CI 1.02, 2.09] with less than daily 

supplement use. Exposures to secondary amines or amides and daily 

supplementation resulted in higher point estimates during the last two 

gestational periods. Though, for the second trimester of pregnancy, daily vitamin 

C supplements did appear to provide some benefits among women with tertiary 

amine exposures. A lower risk (aHR 1.33, [95% CI 0.92, 1.93]) for moderately  
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Table 16. Maternal Nitrosatable Drug Exposure by Gestational Period and Moderately Preterm Births Stratified by 
Vitamin C Supplementation, National Birth Defects Prevention Study, 1997-2005 
Gestational 
Period 

Frequency of 
Vitamin 
supplement 

 
Type of drug exposure 

Cases Controls  
Unadjusted 

HRb 

 
 

95% CI 

 
Adjusted  

HRb,c 

 
 

95% CI 
 

No. 
 

%a 
 

No. 
 

%a 

 
P1P3 

 
Less than 
daily 

 
No nitrosatable drug 
exposure 152 70.1 2213 74.1 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
   Secondary  amines 42 21.7 392 15.1 1.55 [1.10, 2.18] 1.46 [1.02, 2.09] 
      Tertiary amines 29 16.0 421 16.0 1.00 [0.67, 1.49] 0.93 [0.61, 1.42] 
      Amides 18 10.6 253 10.3 1.03 [0.63, 1.68] 1.00d [0.61, 1.65] 
  

Daily 
 
No nitrosatable drug 
exposure 63 62.4 958 68.8 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
   Secondary amines 17 21.3 241 20.1 1.06 [0.62, 1.81] 1.02 [0.59, 1.77] 
      Tertiary amines 17 21.3 218 18.5 1.18 [0.69, 2.02] 1.17 [0.67, 2.02] 
      Amides 20 24.1 134 12.3 2.16 [1.30, 3.56] 2.17d [1.29, 3.66] 
 
P4P6 

 
Less than 
daily 

 
No nitrosatable drug 
exposure 50 68.5 596 77.2 

 
 

1.00 

 
 

Referent 

 
 

1.00 

 
 

Referent 
   Secondary amines 11 18.0 89 13.0 1.43 [0.74, 2.75] 1.38 [0.68, 2.82] 
      Tertiary amines 15 23.1 91 13.3 1.86 [1.05, 3.32] 1.82 [0.94, 3.53] 
      Amides 5 9.1 56 8.6 1.05 [0.42, 2.64] 1.04 [0.40, 2.73] 
  

Daily 
 
No nitrosatable drug 
exposure 165 66.0 2575 73.6 1.00 Referent 1.00 Referent 

   Secondary amines 51 23.6 562 17.9 1.41 [1.03, 1.93] 1.48 [1.07, 2.04] 
      Tertiary amines  36 17.9 420 14.0 1.32 [0.92, 1.89] 1.33 [0.92, 1.93] 
      Amides 29 15.0 281 9.8 1.57 [1.06, 2.33] 1.55 [1.04, 2.31] 

Abbreviations: HR, hazard ratio; CI, confidence interval; P1P3, first trimester; P4P6, second trimester. 
a Percentages for no nitrosatable drug exposure are based on total participants with complete information while percentages for 
secondary  or tertiary amines and amides includes complete information for the given drug group and excludes other nitrosatable groups 
in the  denominator. 
b Crude and adjusted hazard ratios include only cases and controls with complete information for drug exposures and covariates. 
c Adjusted for study center, maternal age, race/ethnicity, education, pre-pregnancy diabetes, and pre-pregnancy hypertension. 
d Significant multiplicative interaction (P < 0.05).
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preterm births was detected among mothers with daily supplementation 

compared to less than daily (aHR 1.82, [95% CI 0.94, 3.53]).  

 No clear pattern was observed when examining total vitamin C intake 

(dietary intake and supplementation) and its effects on prenatal nitrosatable drug 

use (data not shown). A smaller HR was noted for preterm births in relation to 

secondary amine exposure during the first trimester of pregnancy among women 

with ≥85 mg/day of dietary vitamin C and daily vitamin C supplementation (aHR 

1.04, [95% CI 0.51, 2.13]) compared with those with lower dietary vitamin C and 

less than daily supplement use (aHR 1.42, [95% CI 0.88, 2.30]). Conversely, an 

increase in risk was detected with high dietary vitamin C and daily 

supplementation for both tertiary amine and amide exposure and preterm births. 

The difference was most notable among women who reported taking amide 

drugs during the first trimester, with higher risk of preterm delivery among those 

with ≥85 mg/day of dietary vitamin C and daily supplementation (aHR 2.14, [95% 

CI 1.08, 4.23]) compared to <85 mg/day and less than daily supplementation 

(aHR 0.73, [95% CI 0.35, 1.51]). Conflicting results were also found with regard 

to exposures during the second trimester. Associations were only diminished 

between tertiary amine exposure and preterm births among women with higher 

dietary vitamin C intake coupled with daily vitamin C supplementation (aHR 

1.27, [95% CI 0.79, 2.04]) compared to less than daily (aHR 1.62, [95% CI 0.74, 

3.58]). All graphical depictions based on the Cox-Snell residual analysis yielded 

results that support a reasonably well-fit model. Additionally, the link test and 
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global test based on Schoenfeld residuals suggest no violation of the 

proportional hazards assumption.    

 
 
Comment 

 In this large, population-based case-control study, we found that higher 

levels of dietary vitamin C (≥85 mg/day) reduced associations between 

nitrosatable drug exposure during the second trimester of pregnancy and both 

preterm and moderately preterm births. Women with dietary vitamin C levels ≥85 

mg/day who also reported taking nitrosatable drugs during the first trimester, 

however, had higher risk of delivering a preterm infant. Conflicting results were 

noted with third trimester exposures, as higher risk of preterm births was 

observed among mothers who had ≥85 mg/day of dietary vitamin C intake in 

conjunction with secondary amine or amide usage while the opposite was 

detected with tertiary amines. 

 Daily supplementation with preparations containing vitamin C did not 

appear to diminish the association between nitrosatable drugs and preterm 

births or moderately preterm births. Inconsistent patterns were found with every 

gestational period of exposure for both outcomes. For instance, a reduction in 

risk was observed during the first trimester for preterm births among women with 

secondary amine usage and daily vitamin C supplementation compared to less 

than daily; however, the opposite was noted among mothers reporting to have 

taken drugs classified as either tertiary amines or amides. The second trimester 
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yielded similar contradictory results for both preterm and moderately preterm 

births. Vitamin C supplementation does not modulate the association between 

prenatal nitrosatable drug use and preterm births or moderately preterm births in 

the expected direction. Previous studies utilizing data from the NBDPS have 

found that prenatal dietary and supplemental vitamin C may diminish the 

association between nitrosatable drugs and selected birth defects.274, 275 Results 

from the present study do not align with what has formerly been reported. 

Though dietary intake may confer some benefit in reducing risk of preterm births 

among women with nitrosatable drug use, particularly in the second trimester, 

vitamin C supplementation did not appear to have an ameliorating effect.  

In a prospective cohort of pregnant women in North Carolina, total vitamin 

C intake preconceptionally and during the second trimester was examined for its 

relation with preterm births.276 Although no association was noted between 

women with either preconception or second trimester total vitamin C intake less 

than the 10th percentile and overall preterm births, there was an increased risk of 

preterm births due to preterm premature rupture of the membrane (PPROM) 

(relative risk 2.2, [95% CI 1.1, 4.5]) among women with total vitamin C intake 

less than the 10th percentile preconceptionally. Other studies that have also 

reported a higher incidence of PPROM among women with low vitamin C levels 

(ascertained from serum or leucocytes).277-279 However, when we examined the 

main effects of dietary vitamin C, we did not observe higher risk of preterm births 

(aHR 1.13, [95% CI 0.92, 1.39]) or moderately preterm births (aHR 1.10, [95% 
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CI 0.88, 1.38]) among women with less than 85 mg/day compared to those with 

≥85 mg/day. In contrast, a significantly higher risk of preterm delivery was noted 

among women who did not take a supplement containing vitamin C during the 

second trimester of pregnancy (aHR 1.41, [95% CI 1.13, 1.75]). Mothers with 

less than daily vitamin C supplementation during the second trimester also had 

higher risk of delivering a moderately preterm infant (aHR 1.31, [95% CI 1.02, 

1.67]), but to a lesser extent. Two previous studies have stated conclusions 

which differed from that of our own. Steyn et al.280 noted no difference in preterm 

births between women who received 250 mg of vitamin C and women who were 

given a matching placebo daily until 34 weeks of gestation. Further, maternal 

supplementation with vitamin C and E beginning at 9 to 16 weeks gestation did 

not reduce the risk of preterm births among nulliparous women in a randomized 

controlled trial.281  

Our study has a number of strengths, including the fairly large sample 

size of preterm delivery cases and controls. In addition, our study population 

consists primarily of control women from the NBDPS, one of the largest 

population-based, case-control studies of birth defects in the United States. 

Utilizing control data from the NBDPS is advantageous since control-mothers 

were those who delivered infants without any birth defects. Analyzing this 

population eliminates the confounding effects of birth defects since infants are 

more likely to be born preterm if congenital malformations are present.301 An 

association was also observed with nitrosatable drugs and dietary nitrite and 
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total nitrite intake with selected birth defects in two previous studies.274, 294 

Second, NBDPS control data has been found to be representative of their base 

populations with respect to maternal age, smoking status, and prevalence of 

diabetes mellitus, though slight differences were observed in terms of maternal 

race/ethnicity and education.282 Time to interview is also consistent between 

mothers of preterm and full term infants, with mothers of preterm and full term 

infants having both a 7.7 month median length of time from the EDD to the 

interview.  

 At this time it is not known when the critical window of susceptibility for 

preterm births is. Though this question has been addressed by numerous 

studies, no clear time frame has been pinpointed. It is reasonable to believe that 

the critical period of susceptibility would depend, at least partially, on the 

exposure and the pathway it initiates its action.3 Because prenatal exposures 

vary in their chemical structure and biological activities, there may not be one 

particular period of susceptibility for preterm births, but would differ depending 

upon the exposure. One of the strengths of the present study is that various 

gestational periods of nitrosatable exposure were examined. 

The present study has several limitations. Because we did not have 

information on several risk factors previously reported to influence the risk of 

preterm births, we were unable to account for factors such as prior history of 

preterm births,2, 306 intrauterine infections,15, 16, 18, 19 marital status,29-31, 34, 36 and 

psychological or social stress.307, 308 Results must be interpreted with caution as 
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many confounding maternal behavioral factors were not controlled for, 

suggesting that the measure of effect may be overestimated. In addition, 

NBDPS does not collect information on the clinical subtypes of preterm births, 

such as spontaneous preterm delivery after preterm labor, medically indicated 

preterm delivery, and spontaneous preterm delivery after PPROM. Examining 

preterm births as a group versus splitting them into their respective subsets 

remains controversial.311, 312 Preterm delivery can result from diverse clinical 

pathways. For instance, rupturing of the membranes and spontaneous onset of 

labor is quite distinctive from fetal distress, which is managed with early delivery. 

Therefore, some have argued that separating preterm births by clinical 

presentation would be more appropriate. On the other hand, researchers who 

support examining preterm births as a group reason that conditions prompting 

medical intervention for early delivery, such as preeclampsia and fetal growth 

restriction, have similar mechanisms as the pathways resulting in spontaneous 

preterm delivery.311, 313 The same predictors of medically indicated preterm 

births, including placenta abruption,314 preeclampsia,315 and restricted fetal 

growth316, 317 also give rise to spontaneous preterm births. Consequently, since 

etiologies are shared, grouping preterm births is acceptable and would also offer 

an increase in statistical power. 

  Another limitation concerns potential maternal recall bias of drug 

exposures. In the original study, NBDPS focused on birth defects. Because of 

which, there was a concern that prenatal drug exposures would more likely be 
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recalled by mothers of infants with birth defects than mothers of infants without 

birth defects. It is unlikely that recall bias would be an issue in the present study, 

however, since our population consists solely of NBDPS control-mothers. In 

addition, little evidence of differential recall of drugs classified as nitrosatable, 

particularly antibiotics,302, 303 antinauseants,302 analgesics,303 and 

benzodiazepines303 have been reported. However, Werler et al.304 noted that 

antibiotics had a 20% higher sensitivity among case-mothers than in control-

mothers. To reduce recall bias, NBPDS utilized a two-level approach for drug 

assessment by first asking participants about drug use by indication and then 

prompting them with medication lists. This method of drug assessment has been 

shown to be more accurate than asking either type of question separately.305 

Medications were classified based on their nitrosatability and further categorized 

based on their functional groups (secondary amines, tertiary amines, or amides) 

after the interview. Because participants were not directly questioned about 

nitrosatable drug use, recall bias is not likely to be a major concern. 

Nevertheless, it may be possible that certain types of nitrosatable drugs have 

been recalled differently. Furthermore, possible exposure misclassification may 

have occurred even though extensive reviews160, 288 were utilized since some 

components’ nitrosatability may not have been tested or results from such tests 

may not have been published, resulting in exposures which would have been 

missed.    
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 Assessment of dietary nitrates and nitrites were restricted to a FFQ that 

collected information on foods consumed a year prior to conception. 

Measurement error is a potential concern since not all dietary sources of nitrates 

and nitrites may have been captured.321 Since estimates were based on food 

consumption a year prior to conception and not during the actual period of 

pregnancy, recall inaccuracy is an issue. However, any misclassification would 

be nondifferential since participants were not aware of nitrate and nitrite levels in 

foods reported to have been consumed at the time of the interview. In addition, 

Huber et al.322 evaluated the effects of measurement error of the NBDPS FFQ 

using the simulation extrapolation algorithm by varying the amount of 

measurement error included in the model from zero to an additional 60% 

variability in 0.10 increments and found no substantive differences with regard to 

statistical significance or magnitude of effect size. Furthermore, a previous study 

found that the average consumption of vegetables and meats did not 

significantly differ before and during pregnancy.323       

In the NBDPS, women were interviewed about their medications and 

supplement use from three months preconception to the end of pregnancy. And, 

as mentioned earlier, questions concerning diet were collected during the year 

prior to pregnancy. The specific timing of dietary or supplemental vitamin C 

intake in relation to nitrosatable drug use was not collected. Vitamin C is known 

to inhibit N-nitroso compound formation when administered concurrently with a 

nitrosatable precursor. Given that the precise timing of vitamin C intake could 
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not be ascertained, the reduced risk observed for preterm births may not be due 

to the effect of dietary vitamin C itself, but could be due to other factors or 

healthy behaviors correlated with higher dietary intake of vitamin C. In addition, 

we were unable to examine the effects of vitamin C supplementation during the 

third trimester of pregnancy on nitrosatable drug usage and preterm births due 

to insufficient numbers.     

Multiple analyses and comparisons were involved in this study. Eighteen 

statistical tests were conducted to assess the interaction between dietary vitamin 

C and preterm and moderately preterm births. No statistically significant 

interactions were observed. To assess interaction between nitrosatable drugs 

and supplemental vitamin C with preterm and moderately preterm births, 12 

tests were conducted. Two statistically significant interactions were detected, 

while only one would have been expected by chance.    

In conclusion, we found that dietary vitamin C intake greater than 85 

mg/day reduced the associations between nitrosatable drug exposures during 

the second trimester of pregnancy and both preterm and moderately preterm 

births. However, dietary vitamin C did not appear to confer the same benefits in 

the first or third trimester. Conflicting patterns for supplemental vitamin C were 

observed with every trimester of nitrosatable drug exposure and preterm births. 

No evidence has been observed within this study indicating that daily vitamin C 

supplementation reduces the association between prenatal nitrosatable drug use 

and preterm births or moderately preterm births. Further research is needed to 
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examine the role of vitamin C in reducing the potential risks of preterm births in 

relation to nitrosatable drugs, especially with respect to timing of supplement use 

in conjunction with nitrosatable drugs.      
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CHAPTER V 

 
CONCLUSIONS 

 
 

Discussion 
 

In this large, population-based case-control study based on NBDPS 

mothers (controls) of babies without major birth defects, who had EDDs between 

1997 and 2003, we examined: 1) prenatal nitrosatable drug use and its relation 

to preterm births; 2) the association between dietary intake of nitrites and 

nitrates and preterm births; 3) the joint effects of nitrosatable drug use during 

pregnancy and dietary nitrate/nitrate intake on risk of preterm births; and 4) the 

role of dietary and supplemental vitamin C on the relation between nitrosatable 

drug usage and preterm births.  

Exposure to nitrosatable drugs during the first trimester of pregnancy was 

associated with higher risk of preterm delivery. The strongest relationship was 

detected among nitrosatable drug use during the second trimester of pregnancy. 

Secondary amines were the most notable among the nitrosatable functional 

groups, with women who reported taking drugs classified as secondary amines 

during the second and third trimester of pregnancy having an increased risk of 

delivering a preterm infant. When timing of nitrosatable drug exposure was 

further examined by month of gestation, the strongest associations were 

observed during the sixth and seventh month. However, exposure during the 
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ninth gestational month yielded conflicting results. A reduction in risk for preterm 

delivery was observed among women with nitrosatable drug usage during the 

last month of gestation. Since length of gestation was taken into account, we 

have no explanation for the protective effect which was observed with 

nitrosatable drug  use and preterm births during the ninth month of gestation. 

Similar results were found between nitrosatable drug exposure by trimester and 

month of gestation and moderately preterm births. These associations were 

generally stronger than that observed with all preterm births combined. Prenatal 

exposure to nitrosatable drugs during the second and third trimester of 

pregnancy, particularly secondary amines, might increase the risk of having a 

preterm delivery.  

Insufficient evidence was found that would suggest a positive association 

exists between dietary intake of nitrates or nitrites (including animal and total 

nitrite) and preterm births. We did, however, find that higher levels of nitrite 

consumption from plant sources reduced the risk of delivering a preterm or 

moderately preterm infant when compared to the women with the lowest level of 

plant nitrite intake. This protective effect may be due to other nutrients and 

vitamins contained within grain products, vegetables, and fruit. In addition, a 

large portion of plant nitrite intake comes from cereals, which are often fortified 

with vitamins. 

Prenatal nitrosatable drug use in conjunction with high levels of nitrite 

intake had a positive association with both preterm and moderately preterm 
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births. An increasing pattern was noted with secondary amine exposure and 

tertiles of dietary nitrite (first and second trimester), animal nitrite (every 

trimester), plant nitrite (first trimester), and total nitrite (first and second trimester) 

in relation to preterm births. Similar patterns were found with tertiary amine use 

and levels of dietary nitrite (every trimester), animal nitrite (every trimester), and 

total nitrite (second trimester). Nitrosatable drug exposures showed little to no 

association with preterm births among women in the lowest tertiles of dietary 

nitrite (including animal, plant, and total), with the exception of second trimester 

amide use and animal nitrite intake. Analyses of moderately preterm births 

yielded similar conclusions, though associations were weaker. Prenatal 

exposure to nitrosatable drugs, particularly secondary and tertiary amines, in 

conjunction with higher levels of dietary nitrites (including animal nitrites, plant 

nitrites, and total nitrites) may increase the risk of preterm births. 

Higher levels of dietary vitamin C intake (≥85 mg/day) did not appear to 

lower the risk of delivering a preterm infant among women who reported taking 

nitrosatable drugs during the first trimester of pregnancy. However, during the 

second trimester, we observed that dietary vitamin C levels ≥85 mg/day reduced 

the association between nitrosatable drug exposure and preterm births. Dietary 

vitamin C conferred similar beneficial effects when combined with nitrosatable 

drug exposure and moderately preterm births. Conflicting results, however, were 

noted with exposure to nitrosatable drugs and dietary vitamin C during the third 

trimester. Though a lower risk of delivering a preterm infant was detected among 
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mothers with concomitant exposure to levels of dietary vitamin C ≥85 mg/day 

and tertiary amines, an increased risk was found with secondary amines and 

amides.     

Daily supplementation with preparations containing vitamin C does not 

appear to diminish the association between nitrosatable drugs and preterm or 

moderately preterm births. Conflicting patterns were observed with every 

trimester of exposure for both outcomes. For instance, during the first trimester, 

a lower hazard ratio was observed for preterm births among women with 

secondary amine exposure who also took a daily vitamin C supplement 

compared to less than daily. In contrast, mothers who reported taking drugs 

classified as either tertiary amines or amides had higher risk if they also took a 

daily vitamin C supplement compared to those with less than daily. The second 

trimester yielded similar contradictory results for both preterm and moderately 

preterm births. This study has found no evidence that would indicate that daily 

vitamin C supplementation reduces the association between prenatal 

nitrosatable drug use and preterm births or moderately preterm births. 

 

Implications 

 Prenatal nitrosatable drug usage, particularly during the second and third 

trimester of pregnancy, should be avoided as it has been observed to be 

associated with higher risk of preterm delivery. Women who are considering 

taking medications during pregnancy should seek the guidance of their 
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healthcare professional prior to usage. Non-nitrosatable drugs with similar 

therapeutic indications as possible alternatives during pregnancy are 

recommended. Among women who are prescribed nitrosatable drugs, such as 

anti-epileptics, prenatal exposure may be unavoidable. Consuming higher levels 

of vitamin C (≥85 mg/day) may attenuate the association between nitrosatable 

drugs and preterm births. Future studies should examine the role of vitamin C in 

reducing the potential risks of preterm births in relation to nitrosatable drugs, 

especially with respect to timing of supplement use in conjunction with 

nitrosatable drugs.           
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