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ABSTRACT

A wealth of unique physics makes the frequency band from 0.3 – 3.0THz techno-

logically relevant, and compact room-temperature semiconductor sources would en-

able many new spectroscopic applications. All semiconductor sources currently have

serious difficulties reaching the THz, and no THz device of any type operates on the

full range at room temperature. This dissertation proposes a novel semiconductor

source which utilizes the transferred-electron (Gunn) effect and the Smith-Purcell

effect to operate over the majority of the 0.3 – 3.0THz band at room temperature.

Mathematical derivations provide a theoretical analysis of the device and computer

simulations explore its performance as a function of design.

The dissertation begins with a description of the device and an overview of the

field of terahertz science. A literature review establishes the relevance and uniqueness

of the work and highlights the physical principles required to model the operation

of the device. Next, the mathematical “machinery” required model the device is

built, starting with a derivation of the Butcher-Fawcett “equal-areas”method used to

calculate the Gunn effect. A description of the computer code written to implement

the equal-areas method and examples validating its correct operation follow. A

derivation of the Smith-Purcell effect provides a closed-form solution for the electric

field, which is then combined with the Gunn effect results.

With the theoretical methods thus established, a detailed explanation of the

simulation methods used to model the device is provided, followed by a detailed

comparison between theory and simulation – in which it is shown that the theoretical

methods display a high degree of agreement with computer simulations of the device.

The results of an extensive design study are then presented that map the range of
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predicted results for this terahertz device. The Smith-Purcell device is found to

perform better than or comparable to any state-of-the-art semiconductor THz source.

At room temperature, a single 100µm-wide device is predicted to generate 365µW of

power at 0.28THz and 1µW at 2.5THz. The dissertation concludes with suggestions

for subsequent research – most urgently for an attempt to experimentally verify the

predictions of this work.
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1. INTRODUCTION

Figure 1.1 illustrates a proposed room-temperature semiconductor device that

combines the Smith-Purcell effect and the transferred electron effect to generate

coherent, variable-frequency narrowband terahertz (THz) radiation. These physical

effects have been extensively but separately studied for over 40 years. To the best

of our knowledge, this is the first report jointly applying them to solve a specific

problem – namely, to design a compact THz source. The device consists of three

monolithic layers – a bulk semiconductor, a dielectric spacer, and a metallic grating.

Figure 1.1: Smith-Purcell Semiconductor THz source. Its performance compares
favorably with state of the art and it is compatible with silicon manufacturing. [1]
Reprinted with permission from D. D. Smith and A. Belyanin, “Room-temperature
semiconductor coherent Smith-Purcell terahertz sources,”Appl. Phys. Lett., vol. 98,
no. 6, pp. 063 501-063 504, Feb. 2011. Copyright 2011, AIP Publishing LLC.

As will be discussed below, the transferred electron (or Gunn) effect is a well-

known solid-state phenomenon in high-frequency semiconductor device physics. Un-
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der a sufficiently strong applied electric field, semiconductors with suitable energy

band structure exhibit negative differential resistance (NDR). At the onset of NDR,

fundamental conduction current instability causes spontaneous high-frequency cur-

rent oscillation. Theoretical prediction of the effect was made in the early 1960’s

by the team of Ridley and Watkins and independently by Hilsum. For this reason,

many textbooks refer to the “Ridley-Watkins-Hilsum” effect. [2, 3]

The transferred electron effect was first experimentally observed by Gunn in 1964,

which is why his name is also used synonymously with the effect. [4] Gunn demon-

strated that a simple semiconductor block with electrodes affixed to either end formed

a two-terminal high-frequency device known as the Gunn diode. Gunn diodes op-

erate in different oscillation modes. Of particular interest to this research is the

freely-traveling dipole mode, in which a narrow space-charge packet called a Gunn

domain forms at one terminal of the device and travels to the other terminal at

constant velocity.

In the THz device proposed in Figure 1.1, the Gunn domain induces an image-

charge dipole on each grating tooth as it traverses the semiconductor layer. These

image-charge dipoles radiate via the Smith-Purcell effect. In 1953, Smith and Purcell

hypothesized that a metallic diffraction grating placed near a constant-current (DC)

electron beam in vacuum would generate electromagnetic radiation with frequency

equal to the ratio of the electron velocity to the grating period. Using a high-energy

electron beam, their experiments created visible light. [5] This discovery led to the

development of several different high power vacuum-electronic devices. As will be

discussed below, several key concepts of these devices can be applied to the present

work, but first we give an overview of the importance of the terahertz regime.
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1.1 Relevance of Terahertz (THz) Technology

Terahertz (THz) science and technology has experienced an explosion of interest

in the past several decade, but it is interesting to note that the field actually began

in the 1890’s – shortly after Hertz experimentally confirmed Maxwell’s prediction of

radio waves. Overviews by Wiltse (1984) and Siegel (2002) provide the interested

reader with a concise and well-referenced history of how THz science emerged as an

independent discipline, distinct from the radiofrequency (RF) and millimeter-wave

specialties both in its applications and technology. [6, 7]

Fascination with the THz regime is twofold: A wealth of interesting and useful

physics occurs in what has historically proven to be the most inaccessible portion of

the electromagnetic spectrum – the now-infamous “THz gap” that exists between the

millimeter-wave and the far-infrared, as illustrated in Figure 1.2. [8]

Figure 1.2: Electromagnetic spectrum showing the THz gap. Devices bridging the
gap are divided into two classes: Bottom up (electronic) and top down (photonic).

The terahertz spectrum may be viewed with equal accuracy either as extremely

high-frequency radio waves or extremely long-wavelength infrared light, and this is
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reflected in the literature – authors with RF and/or millimeter-wave backgrounds

refer to “sub-mm waves”, while authors from the optical fields instead refer to “far-

infrared light”. Figure 1.2 illustrates two qualitative categories used to classify the

efforts to develop new sources of THz radiation. The “bottom-up” category labels

efforts to increase the operating frequency of electronic devices, while “top-down”

approaches seek to increase the operational wavelength (or equivalently, to decrease

the operational frequency) of photonic devices. [8, 9]

As will be discussed below, the “bottom-up” and the “top-down” approaches both

encounter serious performance issues within the “THz gap”. Objective evaluation of

the efficacy of different THz sources requires a specific and consistent definition of the

term “terahertz”. Variation of this definition within the literature seems confusing,

since some authors define “terahertz” as 0.1 – 10 THz, while others define “terahertz”

as 0.3 – 3.0 THz. In general, the difference in the definitions of “terahertz” arises

from the authors’ backgrounds. Authors from the photonic field tend to use the

wider definition, and authors from the electronic field prefer the narrower definition.

We adopt the narrower definition of the terahertz range based on the relationship

between the wavelength λ and frequency f of an electromagnetic wave:

λ f = c, (1.1)

where c is the speed of light in vacuum. Equation (1.1) in standard SI units shows

that the wavelength of a 0.3 THz wave is exactly one millimeter (mm). Thus 0.3

THz is the logical lower boundary dividing millimeter-wave from THz. Similarly,

3.0 THz corresponds to a wavelength of 100 micrometers (µm), which falls approx-

imately in the middle of the far-infrared range. Irrespective of how “terahertz” is

defined, there is broad multi-disciplinary agreement that improved terahertz technol-

4



ogy represents a compelling advancement opportunity due to the fact that certain

physical mechanisms occur only within the THz regime, as illustrated in Figure 1.3.

[10, 11, 12, 13, 14]

Figure 1.3: Frequency ranges of physical processes unique to the terahertz.

As an example of how terahertz can create compelling new technological appli-

cations, we consider an important industrial mainstay application – spectroscopy.

The interaction of electromagnetic radiation with matter is usually modeled as an

incoming wave of known physical characteristics – frequency, intensity, direction and

phase. The electromagnetic wave interacts with matter through the physical mech-

anisms of absorption, reflection, and refraction. The radiation-matter interaction

creates an outgoing wave (or multiple outgoing waves) with different physical char-

acteristics. A detailed model of the material under consideration allows calculation
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of its response to radiation across different wavelengths (i.e. its spectrum). In many

practical applications, however, the physical properties of a sample of a material

under consideration are not known, and therefore the spectrum of the material is

collected, allowing the radiation-matter calcluation to be “worked backward” in or-

der to determine information about the physical state of the sample. Empirical

spectral data collection (spectroscopy) is perhaps one of the most pervasive modern

technical applications used in modern manufacturing.

Fourier transform infrared spectroscopy (FTIR) is a particularly effective tech-

nique – especially in the mid- and near-infrared (IR). FTIR hardware is based on

the Michelson interferometer developed in 1907, although Michelson never performed

spectroscopy. The two most critical parts of the mechanism are the IR source and

the mirror drive. Once the technique was successfully demonstrated, its usefulness

was quickly realized by workers in the physics, chemistry, and engineering disciplines.

Performing FTIR (and spectroscopy in general) is highly challenging from a tech-

nical perspective, and it was only the commercialization of spectroscopy that quickly

moved it from a scientific endeavor to a technical application. [15] Commercial

FTIR tools have been available for decades and are now indispensible to numerous

industries. In fact, the most important modern industries – food processing, phar-

maceuticals, and semiconductors to name a few – literally could not operate man-

ufacturing facilites without automated spectroscopy tools. Modern FTIR systems

utilize highly-controlled IR sources, robots, computers, and optimized calculation

algorithms. This level of automation allows a manufacturing technician to quickly

collect accurate FTIR data without assistance from an engineer or scientist.

Terahertz pulsed spectroscopy (TPS) is but one example of how discovering the

limitations of a well-established technique like FTIR leads to the development of a

new terahertz application. History suggests that terahertz technology may transform

6



twenty-first century industrial manufacturing in the same way that IR and Raman

spectroscopy helped revolutionize twentieth century manufacturing.

TPS is a new technique that has recently been demonstrated as a practical and

particularly effective chemical analysis methodology which significantly outperforms

state-of-the-art FTIR systems in terms of sensitivity and repeatability. TPS could

potentially allow the pharmaceutical industry to move away from its current batch

processing scheme required by United States federal law to the continuous processing

scheme employed in many other industries – for example, the semiconductor industry.

Batch processing presents an “all-or-nothing” approach to manufacturing – first

an entire production line is dedicated to producing a quantity of finished goods, then

the quality of the whole batch is tested. If the quality checks fail, then the entire

batch is scrapped. Continuous processing allows for nearly real-time detection of

discrepant product, thus mimimizing the financial impact of scrap material.

The development of TPS not only shows how a new terahertz application ad-

dresses the known limitations of the established approach, it shows how the tera-

hertz application can create new capabilities. In many cases the terahertz approach

delivers a simpler and more streamlined technical solution, as is the case with TPS

– using only a few microwatts (uW) of radiated THz power. [10]

Terahertz pulsed spectroscopy is an example of a broadband application in which

a powerful femtosecond laser excites a semiconductor photoconductive THz antenna

made of gallium arsenide (GaAs) to generate a wideband THz signal covering the

majority of the frequency spectrum between 0.3 – 3.0 THz with each laser pulse. The

use of the laser-semiconductor antenna THz generation scheme increases the THz

signal enough to eliminate the liquid-helium-cooled detectors required in far-infrared

FTIR systems. The reduction of system complexity that TPS affords allows it to be

put into a full production environment. State of the art for terahertz sources covers
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a broad spectrum of disciplines. [16, 17] In order to identify the correct context in

which to evaluate the performance of the proposed device, we next review the current

status of the field.

Figure 1.4: This research compared to all other THz sources.

1.2 Current State of the Art for THz Sources

Figure 1.4 [18] illustrates the power-frequency map of the many types of available

terahertz sources – the performance range spans two orders of magnitude in frequency

and ten orders of magnitude in power. In general, vacuum devices yield high power

and lasers yield high frequency, which provides clear guidance as to what approaches
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would be best-suited for applications tailored to these regimes. The situation becomes

more complex below 10µW and above 0.1 THz due to the existence of multiple THz

sources currently capable of delivering enough power at the required frequency, as

illustrated in Figure 1.5. [19]

Figure 1.5: This research compared to other semiconductor THz sources.

The above example of how terahertz pulsed spectroscopy evolved from FTIR

showed how compelling technological applications exist at the lowest THz power lev-

els and that the attractiveness of a given solution depends on more than just the

output of the radiation source. For instance, a THz source that can only operate at
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liquid-helium temperatures adds tremendous cost and complexity to any system in

which it is used. Similarly, an expensive THz source cannot successfully be imple-

mented in a low-cost application – the important criteria of cost and complexity will

be discussed in more detail below.

This research focuses on a novel semiconductor THz source, therefore it is appro-

priate to summarize the current status of other existing THz semiconductor sources.

Many semiconductor textbooks present a reasonably complete taxonomy of the many

specialized high-frequency electronic devices that have been developed over the last

several decades. Sze [20] in particular provides details of the physical operation of

each device. The majority of these devices are under active scrutiny to determine

their applicability in millimeter-wave and THz applications.

As can be seen in Figure 1.5, the majority of semiconductor sources are of the

“bottom-up”type discussed above, with the notable exception of the quantum cascade

laser (QCL). The QCL is an important optoelectronic semiconductor device that was

developed at Bell Laboratories in the 1990’s, first being demonstrated in 1994 by the

research groups of Capasso and Cho. QCL technology matured quickly and was

already commercially available by 2002. [21] The QCL differs from the laser-pumped

photoconductive THz antennas discussed above in that the QCL is an intrisically

narrowband device – it is a laser. The QCL utilizes a complex stack of deposited

films to achieve its operation, as shown in Figure 1.6. [22] In the past decade, the

main thrusts of QCL research have been to lower its operational frequency while

increasing its operating temperature. [23, 24, 25, 26]

The majority of QCL development to date has been done completely with III-V

compound semiconductor systems, such as gallium arsenide (GaAs), indium phos-

phide (InP), and their alloys. As will be discussed in detail below, established com-

pound semiconductors have a direct bandgap which imbues them with several highly
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desirable device properties. However, compound semiconductor processing represents

a much more expensive solution than silicon processing, for several reasons.

Much of the excess cost associated with compound semiconductors has to do

with the substrate (or wafer) upon which devices are fabricated. The process to

grow large-diameter, high-quality silicon ingots is very mature and well-established.

Additionally, large (200mm and above) silicon wafers are mechanically robust and

can be used in high volume with typical breakage yield well in excess of 97%. By way

of reference, state of the art substrate diameters for GaAs and InP are 150mm and

100mm, respectively. Additionally, the cost of an individual semiconductor device is

reduced as the inverse square of the substrate diameter, so for practical applications

there is a large advantage to develop a THz device on a silicon substrate.

Figure 1.6: Film stack schematic and corresponding cross-sectional micrograph of a
QCL active stack.

It is precisely for these reasons that recent efforts have intensely focused on QCL

development within the silicon and silicon-germanium (SiGe) materials system. To

11



date, THz emission has been achieved, but not a functional laser. [22] The QCL

has revolutionized the commercial availability of off-the-shelf semiconductor THz

sources while illustrating the desirability of an approach that can leverage existing

silicon-processing infrastructure. In this respect, it is more likely that one of the

“bottom-up” approaches will yield a working THz device on a silicon substrate –

although a different optical semiconductor holds a potentially important clue as to

what the future may hold for hybrid silicon-compound semiconductor devices.

Widegap semiconductors have received intense research focus in order to en-

able new high-frequency and high-power semiconductor devices, but have also been

demonstrated to be highly useful in the development of state of the art light emitting

diode (LED) technology. One of the more promising LED materials, gallium nitride

(GaN) comes from the “three-nitride” (III-N) family of compound semiconductors

which are expected to enable several new semiconductor THz device technologies.

GaN has been identified as a desirable semiconductor material for several years, and

has begun to achieve some level of practical maturity. [27, 28]

The above-mentioned Gunn diode has a performance trend in Figure 1.5 showing

its high power in the 0.1−0.3 THz range. III-N materials are particularly exciting for

high-frequency devices due to their high electron velocity, and in fact the investigation

of an indium nitride (InN) Gunn diode forms the basis of a large portion of this

research. Recently, investigation has begun into what specific challenges must be

overcome to develop working III-N Gunn diodes. [29, 30, 31, 32]

The widespread interest in silicon-compound semiconductor systems has spurred

the development of commercially available process technologies. One approach uses

crystalline rare-earth oxides (REO) as an intermediate lattice-matching layer to

enable full-wafer deposition of compound semiconductors on silicon, and recently

200mm GaN-on-Si process tools have been offered commercially. [33, 34] A different
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approach has been developed in which lattice-mismatch defectivity is managed by

epitaxial overgrowth on a pattern of oxide trenches on a silicon substrate. [35, 36]

These techniques may prove to be fruitful as selective epitaxial growth has been for

SiGe in mainstream silicon processing.

Silicon-germanium alloys have been crucial in the past two decades to enable ever-

higher frequency operation of bipolar-complimentary-metal-oxide-silicon (BiCMOS)

circuits. The primary semiconductor device in mainstream high-frequency BiCMOS

integrated circuits (IC’s) today is the heterojunction bipolar transistor (HBT). Typ-

ical epitaxial crystal growth is performed over the entire surface of a substrate. The

SiGe crystal lattice is larger than a silicon lattice, and the strain of the larger SiGe

lattice allows higher frequency HBT operation than using pure silicon – but poten-

tially inducing large numbers of lattice defects and destroying HBT function.

Therefore modern HBT devices rely on selective epitaxial growth of the silicon-

germanium (SiGe) alloy onto only small areas of the substrate where actual devices

will be fabricated. Additional improvements in process technology have been crucial

to increasing HBT operational frequency. In typical usage, the HBT is a room-

temperature device, but as is common with most semiconductor devices, performance

is enhanced at lower temperatures. Recently an operational SiGe HBT was reported

at 0.5 THz at liquid-helium temperature. [37] The most typical use of HBTs’s,

however, is not as a discrete standalone element, but as part of an integrated circuit

operated at room temperature.

The optical and millimeter-wave disciplines face distinctly different challenges

based on their respective operational wavelengths. Recent advances in millimeter-

wave imaging highlight the immense advantages that a terahertz integrated circuit op-

erating in pulsed mode could provide – real-time, three-dimensional materials imag-

ing. [38] Current state of the art in the high-speed IC field is the millimeter-wave
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integrated circuit (MMIC). For the last 20 years, only compound semiconductors

could achieve the speed necessary to fabricate working MMIC’s. Initially, MMIC’s

were only fabricated in GaAs, but the advent of InP process maturity and the inher-

ently higher electron velocity that InP provides has made it the MMIC material of

choice for the highest-speed devices, as can be seen in Figure 1.5.

The automotive industry provided a “killer application” that has begun to funda-

mentally change this situation – automotive radar. Radar safety systems have been

available for many years as an expensive option on top-end luxury cars. The primary

reason for the relative inaccessability of these features was due to the complexity and

expense of the GaAs devices comprising the systems. It was the cost advantages in

the marketplace that drove the extension of SiGe BiCMOS MMIC technology to

reach the 77GHz frequency and above. This achievement has led to the expectation

that multiple SiGe-based radar safety features will be widely available on all cars

within the next 3 years. Consequently, the performance of SiGe-based MMIC’s have

begun to approach InP MMIC’s, as indicated by the overlay in Figure 1.5. Discus-

sion of circuit-design principles is beyond the scope of this discussion. Therefore it

is sufficient to note that the success of SiGe MMIC’s in automotive radar systems

lies as much in the availability of integrated support devices on the MMIC to enable

the complex circuit designs necessary to implement two-way radar communications.

[39, 40]

In much the same way that radar provided the impetus to move millimeter-wave

integrated circuits into the mainstream with silicon-based process technology, it is

expected that wireless communication will help drive the development of affordable

THz integrated circuits. As illustrated in the detailed spectroscopy example above,

applications require a system solution, not necessarily just one improved component.

In the case of THz communications, there are a number of technical issues beyond
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just transmitting power that must be addressed before any potential solutions be-

come available. [41] Therefore in wireless communications, as for many other new

THz applications, the “holy grail” would be a room-temperature integrated circuit

technology capable of supporting multiple designs that deliver usable power level

across the 0.3− 3.0 THz range.

Figure 1.7: Hyper-abrupt epitaxy used to fabricate a working 1.04 THz resonant
tunneling diode (RTD).

The resonant-tunneling diode (RTD) represents current state-of-the-art for InP-

based semiconductor THz device technology, with recent reports of fundamental

oscillations in the THz range. This is one of the more compelling THz semiconductor

devices to date with demonstrated output power of 7µW at 1.04THz. The device uses

standard monolithic process technology and allows for an integrated slot antenna to

boost output power. [42] The THz RTD requires hyper-abrupt epitaxial growth to

achieve its performance, as shown in Figure 1.7. [43] This is a much simpler process

than is required to fabricate the complex film stack necessary for QCL’s.

Underscoring the feasibility of the migration to a “hybrid theory” of silicon-

compound semiconductor integration, a working InP-based RTD was recently re-
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ported in which the RTD was fabricated on a silicon substrate as shown in Figure

1.8. [44] The silicon semiconductor industry has realized the difficulties that silicon

faces at advanced technology nodes, and has researched the integration of III-V mate-

rials into standard process flows for a number of years. The SEMATECH consortium

recently reported the successful fabrication of 50nm InGaAs transistors on a 200mm

silicon substrate compatible with modern state-of-the-art silicon processing using a

GaAs buffer layer. [45] Selective epitaxy of InP on silicon is showing promise at the

research phase for developing working diode lasers with integrated waveguides. [46]

Figure 1.8: Film stack to fabricate a working InP-based RTD on a silicon substrate.

This introduction has set the context for the current research by capturing some of

the major trends and relevant ideas for state-of-the-art THz semiconductor devices:

1. Widegap materials → higher electron velocities → higher frequency

2. Integrated circuits → higher integration → more powerful solutions

3. Silicon substrates → more devices per wafer → lower cost
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4. Simpler processes → higher yield → lower cost

The Smith-Purcell Semiconductor THz Source is specifically designed to integrate

into a silicon-based integrated circuit technology in a very straightforward and sim-

ple manner, using the techniques referenced in this Introduction. This device may

provide a realistic path to useful THz integrated circuits that can be used in many

emerging application spaces. For the purposes of discussion of the methods and re-

sults of this research, we next provide some background on the two primary physical

phenomena utilized by the device and how their joint application provides a viable

solution to the problem of the compact semiconductor THz source.

1.3 Smith-Purcell Radiation

The Smith-Purcell effect was first hypothesized and observed as a vacuum elec-

tronic effect. The nature of Smith-Purcell radiation (SPR) depends on the manner

in which electrons interact with the grating. Weak, incoherent radiation known as

spontaneous SPR is produced when single electrons randomly interact with a metal-

lic diffraction grating – this is the type of SPR originally obeserved by Smith and

Purcell. They observed that the wavelength λ′ of the radiated light in their experi-

ments depended on the reduced electron velocity β = v/c, observation angle θ, and

grating period P according to:

λ′
SPR = P [ β−1 − cos θ ] (1.2)

Here the prime indicates the case of relativistic electrons to distinguish it from the

non-relativistic case to be considered in detail below. Issues such as imperfect vacuum

and dense-beam electron optics are practical considerations for electron beam devices,

but relativistic beams are routinely used in high-power SPR applications. [47, 48] In
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fact, relativistic SPR is one of the primary focus areas of modern research. [49, 50]

Experimental SPR studies indicate that radiated power PSPR varies with the

distance between the charges and the grating b (called the impact parameter), the

number of charges N , and the velocity of the charges v as:

PSPR = CN2v4 exp−αb (1.3)

Equation (1.3) represents C and α as constants for clarity, but in reality they are

complicated functions related to the specifics of a given experimental setup. To

maximize SPR power, tradeoffs must be made among conflicting requirements. The

impact parameter must be minimized while the number of charges and their velocity

are maximized. This situation must be maintained over the largest possible distance.

Electron beam focusing poses significant challenges to vacuum Smith-Purcell devices.

Space-charge repulsion within a highly-focused electron beam tends to push the beam

apart. Thus the distance over which the beam interacts optimally with the grating

is limited to some characteristic distance around the beam waist. [51]

The typical minimum impact parameter in a high-power vacuum device is of the

order of hundreds or thousands of microns. In contrast to vacuum devices, typical

separation between the gate electrode and the conduction electrons in modern silicon

transistors is of order 10Å. In high-power semiconductor devices, the gate dielectric

may be a few hundred angstroms thick. This is several orders of magnitude smaller

than the impact parameter associated with vacuum devices. As will be discussed in

more detail below, it is precisely this very small impact parameter that allows the

Smith-Purcell effect to be seriously considered as a viable radiation mechanism for a

semiconductor device.

Quantitative theoretical calculation of SPR power proved to be much more dif-
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ficult than experimental production of SPR devices. In 1961, Ishiguro and Tako

performed early experiments on SPR wavelength and power. As a physical model of

the radiation mechanism, they calculated the Larmor power of an oscillating dipole

with moment perpendicular to the grating plane. Their experiments did confirm

Smith and Purcell’s wavelength dependence in Equation (1.2), but the SPR power

they observed was much lower than their theoretical prediction. [52] The “blinking

electric dipole” utilized by Ishiguro and Tako has subsequently appeared as one of

the most common simplified physical SPR models to appear in the literature. It is

worthwhile to note that the blinking-dipole model of SPR immediately predicts that

radiation intensity will be minimum in the direction normal to the grating plane.

In 1960, Giuliano Toraldo diFrancia proposed an SPR theory in which the field

of a uniformly moving electron is expanded into a set of evancescent basis waves

that independently interact with the grating. Once each wave has interacted with

the grating, superposition of the set of outgoing waves are found to contain real

propagating waves that correspond to observed SPR. [53] The diFrancia theory was

notoriously difficult to use for practical calculations, and therefore was not amenable

to direct confirmation.

Thirteen years later, Peter van den Berg later expanded diFrancia’s theory and

was able to solve the specific case of a sinusoidal grating, both for a point charge

and a line charge. [54, 55] To underscore the difficulty of the evanescent-wave theory

of spontaneous SPR, even van den Berg’s more specific calculations were not exper-

imentally confirmed until until 1997 by Goldstein and Walsh – nearly 40 years after

diFrancia’s initial publication! [51]

In contrast to the spontaneous SPR produced by a DC electron beam in proximity

to a diffraction grating, if the vacuum electron beam can be bunched tightly enough

in a self-consistent manner, then all electrons in each bunch are observed to radiate
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coherently. This much stronger version of the Smith-Purcell effect is called stimulated

SPR, and it the physical radiation mechanism used in certain types of free-electron

lasers. In fact, the first high-power Smith-Purcell device – called the orotron – first

introduced by Rusin in 1965 was later shown to be the first free-electron laser. [56]

The Smith-Purcell semiconductor THz source described in this work can conceptually

be considered as a ‘solid-state orotron’, although the detailed operation of the devices

differ radically since the orotron is a vacuum device, as will be discussed in detail

below.

In the orotron, an initally DC electron beam creates spontaneous (single-charge)

SPR that feeds a resonant mode of the device. The resonant cavity mode bunches

the electron beam and generates stimulated (many-charge) SPR. In free-electron laser

terminology, the transition from spontaneous to stimulated SPR is when the device

begins to lase. Stimulated SPR power varies as the square of the number of charges in

the bunch and as the fourth power of the bunch velocity. Modern pulsed orotrons are

reported to generate 60mW pulsed power at 0.36THz. [57, 58, 59] Smaller vacuum-

electronic Smith-Purcell devices have been reported in which a grating is inserted

into the electron beam column of a modified scanning electron microscope (SEM),

and experimental studies of Smith-Purcell radiation have been performed using this

method. [60, 61]

In order to observe SPR, the charge carriers need to be moving at constant

velocity for a distance comparable with one grating period. For electrons in vacuum

this is not an issue since the electron conduction is collisionless, and electrons in

vacuum experience what is known as ballistic transport (motion without collisions).

The velocity of the electrons in a vacuum beam travelling between two charged plates

without collisions is limited only by the electric potential that can be held between

the electrodes. This is why relativistic devices can readily be built within the vacuum
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electronics disciplines.

In a semiconductor device, however, it is the electrical conduction current of

charge carriers (electrons and/or holes) which must play the physical analog of the

electron beam in a vacuum SPR device. As charge carriers in a crystalline mate-

rial attempt to respond to the influence of an externally-applied electric field, they

encounter an extremely high collision rate. Crystal defects, intentionally-introduced

impurities (dopants), and vibrations of the crystal lattice (phonons) can all interact

with charge carriers in the form of scattering events (collisions). These collisions pre-

vent charge carriers from being accelerated to arbitrarily high velocities, no matter

how high the applied electric field. Typically the maximum charge-carrier velocity

is referred to as the drift velocity. Thus the very nature of electrical conduction

in semiconductors provides two immediate challenges for SPR in semiconductors –

mean free path (average distance the carrier moves between collisions) and the finite

drift velocity that results.

One of the key properties used to describe semiconductors is itsmobility (generally

denoted by µ), the definition of which characterizes the complex collision physics at

microscopic scale as a proportionality between the drift velocity vd and the applied

electric field E:

vd = µE, (1.4)

The mobility µ is in general a complex function of electric field, temperature, dop-

ing concentration, and other variables. All semiconductors display a maximum drift

velocity at extremely high applied electric field. This is referred to as the saturation

velocity, and will be dicussed in more detail in the next section. Typical semiconduc-

tor saturation velocity is on the order of 105 m/s, which is three orders of magnitude

slower than that of relativistic electrons. Thus in the remainder of this work we only
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consider the non-relativistic case of Smith-Purcell radiation.

The non-relativistic Smith-Purcell relationship between radiation wavelength and

electron velocity given in Equation (1.2) simplifies to a directionally-isotropic scenario

described by:

λSPR =
c

f
, (1.5)

where the frequency f of the radiation is the same as given in Figure 1.1, namely

the ratio of the electron velocity v to the grating period P :

f =
v

P
(1.6)

With drift velocity of order of 105 m/s, Equation (1.6) shows that mm-wave and

THz frequencies can be readily achieved with micron and sub-micron grating periods,

provided that uninterrupted carrier motion in the semiconductor could be arranged.

Unfortunately, electron mean free path decreases dramatically with temperature in

semiconductors due to increased thermal lattice vibration (phonon activation)Worse

yet, doping the semiconductor (to improve its current-carrying ability) also dramati-

cally reduces mean free path due to the charge carriers being scattered off the doping

impurities. These considerations imply that in order to observe spontaneous SPR in

semiconductors, very pure samples at low temperatures must be used. The literature

of SPR from solid-state devices – specifically SPR from semconductors – is very small

when compared to the extensive body of literature for SPR from vacuum devices.

Gornik investigated spontaneous SPR from cryogenic semiconductor samples; the

observed power was indeed very small. [62]

Since SPR power varies as the fourth power of velocity, any spontaneous SPR

power from semiconductors is simply too weak to be able to bunch the conduction
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current in a semiconductor sample and generate stimulated SPR. Gornik’s experi-

ments also confirmed that only very pure semiconductors at cryogenic temperatures

were able to produce any SPR. Therefore it is clear that the propsect of room-

temperature stimulated SPR from a semiconductor is indeed bleak without some

sort of additional physics available to overcome the serious obstacles observed by

Gornik. Fortunately, nature has provided a very simple method for automatically

“bunching” the conduction current in many semiconductor materials – at room tem-

perature and for highly-doped samples. This, of course, is precisely the primary

characteristic of the transferred electron (or Gunn) effect.

1.4 Transferred Electron (Gunn) Effect

The transferred electron effect makes it possible to consider room temperature

generation of stimulated SPR from a semiconductor device. As noted above, the

transferred electron effect was independently predicted in theoretical works by Ridley

and Watkins and by Hilsum. The first experimental observations of the effect were

reported by Gunn, which is why the effect also bears his name. Ironically, the end

goal that drove the discovery of the transferred electron effect was none other than

the development of a high-power terahertz source – over 50 years ago.

In the late 1950’s, Kroemer noted that the energy band structure of certain semi-

conductors predicted conditions under which charge carriers could display negative

effective mass along certain preferred crystal axes as shown in Figure 1.9. Kroe-

mer proposed that charge carriers in germanium samples subjected to high magnetic

fields would be forced near the edges of the energy band, where their effective masses

in crossed electric and magnetic fields would have anisotropic components – and that

at least one of these effective mass values would be negative. Kroemer’s primary

physical requirement was that the charge carrier have enough kinetic energy to reach
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Figure 1.9: Re-entrant energy band structure of germanium showing region of nega-
tive effective mass.

the band edge, where it would experience negative effective mass. Typically the ki-

netic energy of charge carriers is increased by applying an external electric field to

the semiconductor crystal. [63]

The charge carriers are thus said to be “heated” by the electric field because

their velocity (and therefore their kinetic energy) is increased according to Equation

(1.4). Kroemer predicted that “hot carrier” effects would lead to the novel macro-

scopic observation of bulk negative resistivity, in which the resistance of the semi-

conductor would decrease in response to an increasing electric field. He proposed

that negative resistance in semiconductors would enable the design and fabrication

of high-frequency amplifiers operating into the terahertz (THz) frequency range by

placing the highly-biased semiconductor crystal into a resonant cavity. The initial

experiments to observe this effect were not successful, but the approach was later

shown to work, and in fact high-power THz sources for use in astrophysical research

are based on Kroemer’s approach using high magnetic and electric fields. [64]

In 1961, parallel work by Hilsum and the team of Ridley and Watkins proposed
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a theoretical alternative to Kroemer’s negative-effective-mass approach to attaining

negative resistance in semiconductors. Instead of attempting to determine the con-

ditions under which bulk negative resistivity could be attained, they instead realized

that if the energy band structure of a semiconductor contained two different effective

mass bands, then it might be possible to populate the higher-energy (and higher ef-

fective mass) band with “hot” carriers. They showed that as long as the hot carriers

could tunnel into the higher-mass band and not decay back to the lower-energy band

too quickly, then bulk negative differential resistance (NDR) would be displayed in

the material.

In what is now called Ridley-Watkins-Hilsum theory, semiconductor NDR mani-

fests as a change in curvature of the conduction current versus applied electric field

plot. Figure 1.10 from Hilsum’s original paper demonstrates both the higher-mass

“satellite” energy bands found in gallium arsenide (GaAs) as well as the predicted

current-field relationship with the onset of NDR occurring at an applied field of ap-

proximately 3 kv/cm. [2] Both authors noted that at the onset of NDR the voltage-

current (VI) characteristic of the material would contain a fundamental instability

that could potentially prove useful for high-frequency device applications. They

predicted that the nature of this instability would lead to the observation of high-

electric-field “domains” that would freely travel through the material.

As hot carriers populate the high-field satellite valley, their effective mass in-

creases and their drift velocity drops since the “heavy” carriers move more slowly at

the same applied field. As a result of carrier accumulation, a space-charge dipole

boundary layer can detach from one electrode of the sample and freely propagate

through its length. The electric field in the vicinity of the dipole layer is typically

much higher than the electric field in the remainder of the device, and can be quite

narrow in the direction of propagation.
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Figure 1.10: (left) Band structure of gallium arsenide (GaAs) showing the high-
effective-mass “satellite valleys” available to hot carriers. (right) Calculated current-
field plot predicting NDR at approximately 3kv/cm.

As mentioned above, J. B. Gunn experimentally investigated the properties of

high-field conduction current in gallium arsenide (GaAs) in 1964. He observed the

spontaneous transition of GaAs conduction current from DC to RF at about 3kV/cm,

as predicted by Ridley-Watkins-Hilsum theory. Gunn’s observation led to a rush of

experimental work on the phenomenon which came to be named after him. It was

finally Kroemer who provided the key insights necessary to definitively show that the

various experimental“Gunn-like”experimental phenomena were inclusively described

by the Ridley-Watkins-Hilsum theory of the transferred-electron effect. [65]

The transferred-electron effect found almost immediate widespread attention as

a method of easily building high-frequency, high-power electronic devices. There-

fore the literature contains many references concerning the theory, modeling, and

fabrication of novel devices and analysis methods. In order to effectively apply the

transferred-electron effect to practical devices, the size, shape, and speed of the high-

field domains that are produced at the onset of NDR must be controlled.
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Butcher, Fawcett and Hilsum published a particularly useful method for cal-

culating fully-formed domain shapes. The method was so successful that today

it is the standard analysis presented in semiconductor textbooks. The Butcher-

Fawcett-Hilsum domain calculation method is commonly referred to as the “equal-

areas method”. In most cases, the domain shapes easily calculated by this semi-

analytic method agree very well with much more detailed Monte Carlo calculations.

The only inputs required to apply the equal-areas method are the relationship be-

tween drift velocity and applied electric field – the v-E characteristic and a value for

the mobility in the material of interest. [66] The next section details how the method

was implemented for this research.

The validity of the equal-areas method was experimentally verified shortly after

its publication. As Gunn diodes were incorporated into practical applications, it

was essential to establish solid connections between design (theory) and experiment.

Gunn used a capacitive-probe technique to measure domain profiles under various

experimental conditions. [67] Shoji later demonstrated that electrodes on the surface

of Gunn diodes produced predictable current waveforms and enabled the experimen-

tal investigation of 2D domain dynamics. [68] Shoji’s work demonstrated clearly that

domains traveling under metallic surface electrodes induce image charge. [69, 70]

In this Introduction, it has been established that all aspects of Figure 1.1 have

separately been experimentally investigated, and a thorough literature review shows

that this specific device has never previously been proposed or studied. The next sec-

tion provides an exposition of the theoretical methods and results used to perform

this research. The theoretical methods are then applied to investigate the charac-

teristics of the Smith-Purcell radiation generated from a metallic diffraction grating

fabricated near the surface of a Gunn diode under various device conditions.
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2. GUNN EFFECT

This research proposes the novel synthesis of two physical phenomena – the

solid-state transferred-electron effect and the electrodynamic Smith-Purcell effect

– to address the specific problem of generating terahertz (THz) radiation from a

room-temperature semiconductor device. This section presents the methods used

to theoretically analyze the performance of the proposed device, beginning with a

brief review of the physics of the transferred-electron effect and its various practical

manifestations.

The Butcher-Fawcett-Hilsum “equal-areas” method is then derived, which pro-

vides the means to calculate the detailed shape of a fully-formed dipole domain

using only the velocity-field (v-E) characteristic and the mobility of a given semi-

conductor material. This method makes it possible to accurately calculate domain

charge profiles for new semiconductor materials before device fabrication technology

exists.

A first-principles derivation of non-relativistic Smith-Purcell radiation from a

single charge follows, in the limit of very close charge-grating spacing appropriate to

a semiconductor device. It is found that the “blinking dipole” model commonly used

in the literature of vacuum Smith-Purcell devices incorrectly predicts the radiative

properties of the semiconductor device.

Superposition allows the single-charge SPR result to be readily extended to an

arbitrary charge distribution. Device performance is predicted by applying superposi-

tion of the single-charge SPR result to the charge distribution of a dipole domain. To

close the section, the analytically calculated electic field from the device is compared

to finite-element electromagnetic computer simulations of the device. Agreement
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between the methods validates the theoretical analysis.

Gunn diodes can oscillate in several different modes, depending on their size and

doping level. Of particular interest to this research is the transit-time dipole-layer

mode, which requires that the diode be long enough and contain enough charge for the

domain to fully form before it exits the device. In the literature these requirements

for dipole domain formation in GaAs and InP are expressed as a minimum threshold

value for the product of the doping level n0 and length L of the device, namely:

n0L > 1012cm−2 for dipole-layer mode oscillation (2.1)

Due to the intrinsic instability of a semiconductor at the onset of NDR, small

fluctuations in conduction current lead to domain formation. Domain nucleation and

growth are not directly observable for devices that are long compared with domain

width, and the capacitive measurement technique is required to observe domain

growth. [71] The domain quickly grows until it collects its maximum quantity of

charge, after which it is called a fully-formed dipole domain. The fully-formed domain

drifts at constant velocity through the the device with no change in shape.

Modeling of domain growth dynamics is typically done with Monte Carlo simu-

lations tailored to specific experimental conditions. A recent theoretical analysis of

gallium nitride (GaN) Gunn diodes including thermal effects illustrates some lim-

itations of Monte Carlo and provides overview references. [30] Evaluation of the

proposed Smith-Purcell THz source relative to other THz sources, however, only re-

quires knowledge of the physical characteristics of the fully-formed dipole domain.

For Smith-Purcell radiation, the important physical characteristics of the dipole do-

main are its velocity, peak charge density, and width. All these quantities are readily

obtained from the equal-areas method.
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2.1 Derivation of the Equal-Areas Condition

Butcher, Fawcett, and Hilsum developed the equal-areas method as a conceptually

simple theoretical framework with which to accurately calculate the shape of a fully-

formed dipole domain, given only a semiconductor’s mobility and its velocity-field (v-

E) characteristic. [72, 66] The equal-areas method is the main technique provided by

modern semiconductor physics textbooks to analysis domain shapes. A brief review

of the textbook derivation from Reference [20] is given, followed by confirmation

of the numerical code written to implement the equal-areas method for use in this

research.

Figure 2.1: Electric field and electron distribution in a dipole domain.

A dipole domain is a region where the electric field E is greater than field in

the remainder of the device Er, as illustrated in Figure 2.1. [20] The electron con-

30



centration n is equal to the doping level n0 outside the domain and at the point of

maximum electric field Edom. The “front half” of the domain is electron-depleted,

while electrons accumulate in the “back half”, showing the origin of the name dipole

domain.

The goal of the equal-areas method is to determine the electric field E and electron

concentration n as a function of position in the semiconductor by self-consistently

solving Poisson’s equation and the conservation of current density equation:

∇ ·E =
ρ

ǫ
(2.2)

∇ · J = 0 (2.3)

The first simplification is to write a one-dimensional theory by assuming that

the electric field E points along the x axis, causing the electrons of charge q to drift

in the positive x direction. This allows Poisson’s equation to be rewritten in terms

of the number of electrons n and number of ionized donors n0 (the doping level) as:

∂E

∂x
=

q(n− n0)

ǫ
(2.4)

where the doping n0 is assumed to be uniform throughout the length L of the device.

The total electron current density J is composed of contributions from conduc-

tion, diffusion, displacement currents. The conduction current is just the total charge

qn times the known field-dependent electron velocity v(E), which is a given input

to the problem. The diffusion current is also a function of the electric field, since in

general the electron diffusivity D(E) is field dependent. Once the final differential

equation for the problem is derived, the diffusivity will be replaced by the diffusion

constant. Finally, the displacement current term (from Maxwell’s equations) gives
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the expression for total current:

J = qnv(E) + q
∂

∂x
{D(E)n}+ ǫ

∂E

∂t
(2.5)

Since the domain is assumed to move through the semiconductor at constant

velocity vdom without changing shape, the next step is to transform to a coordinate

system y = x − vdomt that moves with the domain. In this coordinate system, the

electron concentration n is a double-valued function of the electric field E as seen

in Figure 2.1 – for each value of E between Er and Edom, the accumulation and

depletion regions of the domain have different values of n.

The chain rule allows Equations (2.4) and (2.5) to be to converted to the new

coordinate system:

∂f(y(x))

∂x
=

∂f

∂y

∂y

∂x
(2.6)

and since y = x− vdomt,

∂y

∂x
= 1 (2.7)

∂y

∂t
= −vdom (2.8)

therefore

∂E

∂x
=

dE

dy
(2.9)

∂E

∂t
= −vdom

∂E

∂y
(2.10)
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This allows Poisson’s equation and the total current to be rewritten as:

dE

dy
=

q

ǫ
(n− n0) (2.11)

J = qnv(E)− q
d

dy
[D(E)n]− ǫvdom

dE

dy
(2.12)

Outside the domain, only the conduction current exists with value J = qn0vr, where

vr = v(Er) comes from the known v-E characteristic, as shown in Figure 2.2. Using

this value for J and inserting Equation (2.11) into Equation (2.12):

qn0vr = qnv(E)− q
d

dy
[D(E)n]− qvdom(n− n0) (2.13)

Dropping the common factor of q, rearranging and collecting terms gives

d

dy
[D(E)n] = n(v(E)− vdom)− n0(vr − vdom) (2.14)

This equation can be divided by Equation (2.11) to get a single differential equation

describing the dipole domain:

q

ǫ

d

dE
[D(E)n] =

n(v(E)− vdom)− n0(vr − vdom)

n− n0

(2.15)

Numerical methods are required to solve the general case of Equation (2.15).

Replacing the field-dependent diffusivity D(E) with the normal diffusion constant

D, however, significantly simplifies the solution. In practice, the diffusion constant

D is taken to be proportional to the 300K low-field mobility:

D =
µkT

e
(2.16)
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The Boltzmann constant is k = 8.617 × 10−5 eV/K. Thus for the GaAs sam-

ples Butcher and Fawcett considered, the electron mobility and resulting diffusion

constant from (2.16) are:

µ = 6860
cm2

V s
→ D = 177

cm2

sec
(2.17)

Setting the diffusivity equal to the diffusion constant D yields a differential equa-

tion that describes the relationship between the electron concentration n and the

electric field E:

qD

ǫ

dn

dE
=

n(v(E)− vdom)− n0(vr − vdom)

n− n0

(2.18)

Figure 2.1 shows the boundary conditions that the electric field E and electron

concentration n must obey in order to properly satisfy Equation (2.18). In the two

limiting cases of the electric field, E = Er and E = Edom, the electron concentration

n must equal the background doping n = n0. Valid solutions of (2.18) give the

electron concentration as a function of the electric field, n(E). It is then necessary

to convert n(E) into the desired spatial description of the domain in terms of the

moving spatial coordinate y. Once n(E) is known, (2.11) can be converted into an

integral equation defining the spatial relationship E(y):

y = y0 +
ǫ

q

∫ E

Edom

dE ′

n− n0

(2.19)

where y0 is an arbitrary integration constant corresponding to an offset in the defi-

nition of y. Once E(y) is known, its derivative gives the electron concentration as a

function of position n(y) in accordance with Poisson’s equation (2.11).
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When D is constant, (2.18) has the formal transcendental solution:

n

n0

− ln

(

n

n0

)

− 1 =
ǫ

qn0D

∫ E

Er

{[v(E ′)− vdom]−
n0

n
(vr − vdom)}dE

′ (2.20)

Applying boundary conditions to (2.20) illustrates the origin of the name ‘equal-areas’

rule. When either E = Er or E = Edom, the boundary condition is that n = n0. In

both cases, the left-hand side of (2.20) is identically zero. Thus the integral on the

right-hand side must also be zero. The case E = Er is trivially satisfied because the

upper and lower limits of integration are the same. The maximum domain field case

E = Edom is non-trivial and provides insight into the solution of the problem.

The integration from Er to Edom can be carried out in two ways – either over

the accumulation or depletion region of the domain. Equation (2.20) must hold true

even though n has different values in the depletion and accumulation regions of the

domain. Specifically, the second term in the right-hand integral of (2.20) depends on

n but must be equal to zero irrepsective of the value of n. This requirement can only

be met if vdom = vr. Therefore the it is the boundary conditions that force solutions

of the original differential equation (2.18) to obey the ‘equal-areas’ condition shown

graphically in Figure 2.2:

∫ Edom

Er

[v(E ′)− vr]dE
′ = 0 (2.21)

The equal-areas method allows the peak domain field Edom and the domain drift

velocity vr to be determined from the applied electric field Er. As the applied field

Er is increased, the peak domain field Edom increases strongly. The set of points

(Edom, vr) determined by sequential application of the equal-areas condition is called

the dynamic characteristic line of the device. The dynamic characteristic (shown
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by the dashed line in Figure 2.2) shows that there exists a maximum domain field

(or equivalently, minimum drift velocity) for stable dipole-mode operation. [20] The

Gunn diode fails to operate in the dipole-domain mode at high applied fields that

result in a drift velocity below the minimum supported value vrm.

Figure 2.2: Solutions of (2.20) obeying the boundary conditions lead to (2.21), which
requires the areas above and below the line v = vr to be equal.

Figure 2.2 shows that domains with higher peak field are physically wider and

move more slowly than lower-field domains – within the same physical device. Thus

the voltage tunability of the Gunn domain does not simply change just the domain

velocity, it also changes the domain size and shape. This will be later seen to be a

key consideration in the tradeoff between SPR frequency and power.
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2.2 Verification of the Domain Calculation Code

The Butcher-Fawcett-Hilsum equal areas method of domain calculation requires

a numerical solution of the set of equations (2.19), (2.20), (2.21), and (2.11). The

simple form of these equations allows the method to be readily implemented in a

straightforward manner. For this research, a Microsoft Excel R© macro was sufficient

to accurately calculate domain shape. This section demonstrates the accuracy of the

equal-areas code by using it to reproduce Butcher and Fawcett’s original results from

the literature. Since the method requires a v(E) characteristic as input, the code

requires an analytic model at its starting point.

Shur’s textbook provides an analytic model for the velocity-field characteristic of

GaAs. [73] First the saturated electron drift velocity vs and the saturation electric

field Fs are calculated in Equations (2.22)) and (2.23). Then Equations (2.24) and

(2.25) are used to determine fitting parameters A and t. Finally, the electron velocity

as a function of electric field v(E) is calculated using Equation (2.26).

vs = 0.6 + 0.6µ− 0.2µ2 (105m/s) (2.22)

Fs = vs/µ (2.23)

A = 0.6
[

e10(µ−0.2) + e−35(µ−0.2)
]−1

+ 0.01 (2.24)

t = 4

[

1 +
320

sinh(40µ)

]

(2.25)

v(E) = vs

[

1 +
F/Fs − 1

1 + A(F/Fs)t

]

(2.26)

Shur’s v(E) model is the basis from which all domain shapes considered in this

work are calculated. For materials other than GaAs, however, the saturation velocity,

the saturation field, and the two fitting parameters were manually set instead of being

calculated from Equations (2.22) through (2.25). This provided a means to accurately
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match published v(E) characteristics. The manual fitting technique allowed the same

code to be used for all domain calculations.

The analytic v(E) model also requires a value for the electron mobility µ as an

input. Today it is more common to specify the bulk doping concentration n0 of a

sample instead of its mobility. Hilsum observed that a simple empirical relationship

between the mobility and µ and n0 was fairly accurate over several orders of mag-

nitude. [74] Hilsum’s relationship depends only on the lattice-limited upper limit of

mobility µL, which is published for the majority of semiconductor materials:

µ =
µL

1 +
√

n0

1017

(2.27)

The GaAs mobility µL = 104 cm2/V ·s will be used in order to compare results of the

equal-areas code against Butcher and Fawcett’s published results. Using (2.27) in

Equations (2.22) – (2.26) fully specifies v(E) in terms of the doping of the material.

Once v(E) has been determined as decribed above, the integration limits required

for the domain calculation can be found. The code calculates the domain in terms

of a user-specified drift velocity vr.

With v(E) and vr specified, the minimum electric field Er is readily determined

by running a lookup on the data array which holds the data for E and v(E). The

maximum peak domain field Edom is then calculated using a simple numerical in-

tegration of these data, as required by Equation (2.21). Figure 2.3 shows v(E) for

GaAs with n0 = 7 × 1016 cm−3. This is the condition for which the domain pro-

files calculated using this code are compared to Butcher and Fawcett’s published

domain profiles. The yellow lines in Figure 2.3 indicate the calculated minimum

and maximum electric field values Er and Edom corresponding to a selected drift

velocity vr = 1 × 107 cm/s. The first step of the domain calculation is to solve the
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Figure 2.3: Shur’s analytic v(E) characteristic for GaAs, n0 = 7×1016 cm−3. Yellow
lines show the equal-areas condition (2.21) for vr = 1× 107 cm/s.

transcendental equation (2.20). This solution determines n(E), which is the electron

concentration n as a function of electric field E within the domain. The“brute-force”

solution of (2.20) is accomplished in the following manner: First the code divides the

range of electric field values E between Er and Edom into a series of discrete mesh

points. The mesh density is user-specified, and the electric field values at each mesh

point are stored in a data array. Then for each discrete value of E in the mesh, the

left and right-hand sides of (2.20) are calculated and stored in separate arrays. For

each value in the array of left-hand solutions, a lookup is run to determine whether

a matching solution exists in the array of right-hand values. The accuracy of the

match between left- and right-hand side values is user-specified in order to improve

convergence of the solution. This routine is run over both the accumulation and

depletion branches of the domain. The n(E) plot calculated from the conditions of
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Figure 2.4: The first step of the calculation is to solve transcendental equation (2.20)
to determine electron concentration as a function of electric field, n(E).

Figure 2.3 is shown in Figure 2.4.

Once the n(E) calculation has been completed, the second step of the domain cal-

culation is performed. In this step of the calculation, the description of the domain’s

electrical characteristics are converted to a more intuitive spatial description. This

change in perspective is accomplished by utilizing the integral relationship given in

Equation (2.19). For each point in the n(E) solution, Equation (2.19) is solved nu-

merically. This is what determines E(y), the electric field as a function of the moving

spatial coordinate. As was done when calculating n(E), the separate solutions are

carried out on both the depletion and accumulation branches of the domain. The

E(y) plot corresponding to the n(E) solution from Figure 2.4 is shown in Figure 2.5.

Butcher and Fawcett published E(y) solutions in the article used for verification of

the code under consideration. They preferred to specify domains in terms of the peak
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Figure 2.5: The second step of the calculation converts the electrical relationship
n(E) of Figure 2.4 into the spatial profile of the domain’s electric field E(y).

electric field Edom instead of the drift velocity vr used in the calculation code. Since

experimental studies of the transferred-electron effect show that the drift velocity of

the dipole domain follows the v(E) characteristic, these descriptions are completely

equivalent.

In the reference article, Butcher and Fawcett provide six different domain profiles

in terms of electric field as a function of moving coordinate E(y). The domains cor-

respond to a range of electric field maxima (i.e. six different domain drift velocities).

As can be seen in Figure 2.6, domains formed at lower device voltages are narrower

(and faster) than higher-voltage domains.

The faster, narrower low-field domains contain less charge than the wider, slower

high-field domains. Above it was noted that the radiation frequency of the Smith-

Purcell semiconductor THz source depends on domain velocity according to Equation
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(1.6). The higher-field domains, however, contain more charge than the lower-field

domains, and this generally implies higher radiated power from the Smith-Purcell

device. The performance tradeoffs associated with domain size and velocity will be

discussed in more detail below.

Figure 2.6: Verification of the domain-calculation code. E(y) plots calculated using
the code (dashed lines) are overlaid on the published profiles.

To verify that the equal-areas code worked correctly, E(y) domain plots were

calculated for the six conditions given in the reference article. An image from Butcher

and Fawcett’s article was sized to match the R© plots of the six domains. This is in

fact the origin of Figure 2.6, and it shows clearly that the code accurately determines
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domain profiles. [66]

For analysis of the Smith-Purcell semiconductor device, a domain profile given

in terms of the electric field is not as useful as a spatial description of the dipole’s

charge distribution. Therefore, the third and final step of the domain calculation

is to convert E(y) to n(y). Poisson’s equation (2.11) shows that a straightforward

calculation of the deriviative of E(y) is sufficient to determine n(y). As will be

discussed in more detail below, the key quantity for analysis of the Smith-Purcell

effect is the net electron concentration as a function of position n(y) − n0 shown in

Figure 2.7.

Figure 2.7: The third and final step of the Butcher-Fawcett method is to use Poisson’s
equation (2.11) to convert the electric field domain profile E(y) into the net electron
concentration profile n(y)− n0.
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2.3 Analytic Representation of the Gunn Domain

The most efficient way to use the numerical results from the equal-areas method

in computer simulations is to fit them to a closed-form analytic function. An analytic

representation of the Gunn domain profile is also useful for semi-manual calculations.

The numerically-calculated domain profiles were manually fitted to a difference of

Gaussians. The numerical values for the maximum and minimum electron concen-

trations ρmax and ρmin were fitted to the function

ρ(y) = ρmax e
−
(

y+ξa
2ηa

)2

− ρmin e
−
(

y+ξd
2ηd

)2

(2.28)

by selecting positions ξi and widths ηi for the Gaussians representing the accumula-

tion and depletion regions of the Gunn domain, where the subscript i assumes the

value a for the accumulation region and d for the depletion region.

During the manual fitting, the charge density of both the accumulation and de-

pletion regions was integrated to ensure that the total net charge was balanced to

over 99.5%. A typical example of the analytic fitting technique is shown in Figure

2.8. The manual Gaussian fitting method was found to accommodate all the various

Gunn domain shapes studied in this research. This methodology was found useful in

making semi-analytic theoretical predictions of device performance which compare

favorably with computer simulations.

Approximating the difference of Gaussians in a spreadsheet provides a straight-

forward way to discretize the Gunn domain onto 1D meshes of varying density and

number of elements j, and these discrete values ρ(yj) are readily concatenated into

text strings. In this manner, the same spreadsheet used to make the analytic approx-

imation to the numerical Gunn domain profile also generates code for the program

used to perform the theoretical calculations. As will be discussed below, gnuplot was
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used to calculate the radiated electromagnetic field quantities from the discretized

Gunn domains obtained in the manner described in this section.

Figure 2.8: Comparison of a numerically-calculated Gunn domain profile (red) to its
analytic Gaussian fit from Eq. (2.28) (blue).
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3. SMITH-PURCELL EFFECT

As discussed above, the Smith-Purcell effect has historically been of interest in

accelerator physics and high-power vacuum electronics. The term Smith-Purcell effect

refers to the mechanism by which electromagnetic radiation is produced by electric

charges in uniform rectilinear motion near a metallic grating. Smith and Purcell

hypothesized that a vacuum electron beam focused parallel to a stationary metallic

grating would create moving image-charge dipoles, and that these moving dipoles

would generate electromagnetic radiation. [5] The radiation thus produced is called

Smith-Purcell radiation (SPR).

In order to study the Smith-Purcell effect in a solid-state device, the section begins

with the derivation of a simple 3D model for the Smith-Purcell radiation produced

by a single point charge in close proximity to a metallic grating. This is followed

by a 2D derivation of the SPR produced by a line charge, since the 2D geometry is

identical to that used in computer simulations. The 2D and 3D derivations are shown

to be equivalent. The principle of superposition of the electric field is then applied

to the single-charge Smith-Purcell theory, which makes it possible to calculate the

radiation field generated by the Gunn domains calculated in the previous section.

Combining the theoretical results for the Gunn effect (Section 2) and the Smith-

Purcell effect in this manner provides very a detailed prediction of the time-domain

electric field radiated from the semiconductor device. In Section 4, the theoretically-

calculated electric field will be compared to the electric field from computer simu-

lations of the device. A high degree of agreement between theory and simulation is

demonstrated, validating the theoretical results.
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3.1 3D Potentials of a Point Charge Near a Metallic Grating

Figure 3.1 illustrates the physical problem to be solved. A metallic grating with

period P and tooth width ℓ is located in the z = 0 plane, with its (infinite) teeth

parallel to the y-axis. A point charge q moves with non-relativistic velocity v along

the positive x-axis at a height z = b. For simplicity, the edge of the first grating

tooth is placed on the y-axis and the grating is assumed to be an integer number n

of periods long so that its total length is L = nP .

Figure 3.1: Coordinate system for a single point charge near a metallic grating.

The uniformly moving point charge does not radiate, but it will be shown that as

the charge passes by the grating, the periodic image charge packets it induces on the

grating teeth do generate electromagnetic radiation. The end goal is to determine

the radiative properties of the system in the far-field. Thus it is advantageous to

first calculate the vector and scalar potentials of this system. The potentials of a

uniformly moving point charge provide a useful starting point for the derivation.
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3.1.1 Uniformly Moving Point Charge

The case of a point charge q charge moving with uniform non-relativistic velocity

v is treated in most introductory textbooks. The vector potential A and scalar

potential Φ as observed a distance r = |r| from the point charge are given by: [75]

A(r, t) =
µ0

4π

qv

r
(3.1)

Φ(r, t) =
1

4πǫ0

q

r
(3.2)

Equations (3.1) and (3.2) provide a useful basis of comparison for the potentials

associated with the induced image charge distribution.

3.1.2 Periodic Image Charge Distribution

Assumptions about the induced image charge are that (1) the point charge does

not change direction of motion as it interacts with the grating, (2) the induced

charges in the metallic grating move much more quickly than the velocity v = |v| of

the point charge, and therefore (3) the actual induced charge density ρ(r′, t) can be

approximated by the charge density induced on an infinite grounded conductor by

a point charge q. It follows that (4) the grating is accurately modeled as a series of

discrete teeth.

At low velocity and small impact parameter, it may be anticipated that the po-

tentials of the periodic image charge should reduce to (3.1) and (3.2) “being switched

on and off”. The strategy to derive the potentials of the induced image charge is to

simply make a“brute force” calculation of the vector potential A and scalar potential
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Φ by integrating over the whole grating (V ′):

A(r, t) =
µ0

4π

∫

V ′

[J(r′, t)]ret
|r − r′|

d3r′ (3.3)

Φ(r, t) =
1

4πǫ0

∫

V ′

[ρ(r′, t)]ret
|r − r′|

d3r′ (3.4)

Time-retarded source functions ensure that the potentials (and the electromagnetic

waves calculated from them) have the correct time delay at the observation point r,

and have the form:

[f(r′, t)]ret = f

(

r′, t−
|r − r′|

c

)

(3.5)

The current density J(r′, t) is the product of the charge density ρ(r′, t) and

the instantaneous velocity v of the point charge as indicated in (3.6). The charge

density induced at any point r′ = (x′, y′, z′) on an infinite grounded conducting plane

by a moving point charge q with time-varying location rq(t) = (xq(t), yq(t), zq(t)) is

given by (3.7). Combining these results with (3.5) yield the retarded current density

[J(r′, t)]ret, which is given in terms of the coordinate system from Figure 3.1 in (3.8).

J(r′, t) = ρ(r′, t)v (3.6)

ρ(r′, t) =
−qzq(t)

2π[(x′ − xq(t))2 + (y′ − yq(t))2 + (z′ − zq(t))2]
3

2

(3.7)

[J(r′, t)]ret = −

(

qbv

2π

)

δ(z′ − b) x̂

[(x′ − v(t− |r−r′|
c

))2 + y′2 + z′2]
3

2

(3.8)
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Therefore the vector potential A in Cartesian coordinates is:

A(r, t) = −

(

µ0

4π

)(

qbv

2π

)

L
P
−1
∑

n=0

[
∫ nP+ℓ

nP

dx′

∫ ∞

−∞

dy′
∫ ∞

−∞

δ(z′ − b) dz′

|r − r′| [(x′ − v(t− |r−r′|
c

))2 + y′2 + z′2]
3

2

]

x̂ (3.9)

where:

q = magnitude of the source charge

v = non-relativistic velocity of the source charge

b = fixed source charge distance from the grating

P = grating period

ℓ = grating tooth width

n = integer number of periods the grating contains

L = nP = total grating length

In order to integrate over all space, the grating as illustrated in Figure 3.1 extends

to infinity in the direction transverse to the path of the point charge q, giving the

limits of integration for y′. It is understood that the induced image charge is localized

to a circular region with radius of several b. Similarly, the integrand along x′ (the

direction of motion of the point charge) vanishes when the charge is not directly

above a grating tooth.

As discussed above, Equation (3.9) is solved in the case where the observation

distance r is assumed large compared to the integration variable r′ over the grating,

since the far-fields are of particular interest. Typical device lengths are less than ten

microns and the shortest wavelengths produced are of order hundreds of microns.

Thus within even a few wavelengths, the device is well-represented by a point radi-

ation source. Therefore it is justified to make the simplification |r − r′| ≈ |r| = r
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which is independent of the integration variables and simplifies the expression for A:

A(r, t) = −

(

µ0

4π

)(

qbv

2πr

)

L
P
−1
∑

n=0

[
∫ nP+ℓ

nP

dx′

∫ ∞

−∞

dy′
∫ ∞

−∞

δ(z′ − b) dz′

[(x′ − v(t− r
c
))2 + y′2 + z′2]

3

2

]

x̂ (3.10)

The delta function makes z′-integration normal to the grating trivial:

A(r, t) = −

(

µ0

4π

)(

qbv

2πr

)

L
P
−1
∑

n=0

[
∫ nP+ℓ

nP

dx′

∫ ∞

−∞

dy′

[(x′ − v(t− r
c
))2 + y′2 + b2]

3

2

]

x̂ (3.11)

Defining a2 = ((x′ − v(t− r/c))2 + b2) allows use of the integral identity:

∫ ∞

−∞

dy′

(y′2 + a2)
3

2

=

[

y′

a2|y′|
√

1 + (a/y′)2

]∞

−∞

=
2

a2
(3.12)

The identity reduces the vector potential A to:

A(r, t) = −

(

µ0

4π

)(

qbv

πr

)

L
P
−1
∑

n=0

[
∫ nP+ℓ

nP

dx′

(x′ − v(t− r
c
))2 + b2

]

x̂ (3.13)

Defining u = x′ − v(t− r/c) simplifies the last integration to:

A(r, t) = −

(

µ0

4π

)(

qbv

πr

)

L
P
−1
∑

n=0

[
∫ nP+ℓ+vr/c−vt

nP+vr/c−vt

du

u2 + b2

]

x̂ (3.14)

which is readily solved by using the integral identity:

∫

du

u2 + b2
=

tan−1(u
b
)

b
(3.15)
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With all integrations complete, definition of β = v/c gives the vector potential A as:

A(r, t) = −
µ0

4π

qv

πr
L
P
−1
∑

n=0

{

tan−1

[

(βr + nP + ℓ)− vt

b

]

− tan−1

[

(βr + nP )− vt

b

] }

x̂ (3.16)

It is convenient to define the function F (r, t):

F (r, t) =

(

1

π

)

L
P
−1
∑

n=0

[

tan−1(a1)− tan−1(a2)

]

(3.17)

and a1 =

(

1

b

)(

vt− (βr + nP )

)

(3.18)

where a2 =

(

1

b

)(

vt− (βr + nP + ℓ)

)

(3.19)

Each term of the sum in F (r, t) represents the interaction of the point charge

with a single grating tooth. Depending on the values of the parameters describing

the problem (which will be later shown to directly correspond to the design of the

device), the nature of the interaction can be varied significantly. The definition

of F (r, t) provides a means to compactly write the vector potential A and scalar

potential Φ (which involves the same integrations):

A(r, t) = −
µ0

4π

qv

r
F (r, t) (3.20)

Φ(r, t) = −
1

4πǫ0

q

r
F (r, t) (3.21)

Comparing the above potentials for the periodic induced charge to those of the

52



non-interacting charge given in Equations (3.1) and (3.2), it is seen that the only

differences are the negative sign and the presence of F (r, t). The negative sign

arises since the induced surface charge necessarily has the opposite polarity of q.

As discussed in detail in Appendix A, F (r, t) is a switching function that varies

smoothly as a function of its input parameters. In the limit of a “very strong”

argument, F (r, t) approximates a finite train of rectangular pulses of unit height.

The pulse width corresponds to the point charge traveling under the grating tooth

as expected.

3.2 2D Fields of a Line Charge Near a Metallic Grating

Empirical investigations of Gunn diodes show that the space charge profile is

uniform in the direction transverse to the motion of the domain [68]. Thus a 2D

line charge near a metallic grating more accurately models the device operation than

the 3D point charge considered above. Moreover, computer simulations utilize 2D

geometry, making a 2D theoretical treatment worthwhile.

3.2.1 Static Line Image Charge Density

First consider an infinite line charge of charge density λ C/m in the vicinity of

an infinite grounded plane conductor as indicated in Figure 3.2. A Cartesian coordi-

nate system is chosen which places the conductor on the x-axis, and the solution is

described in cylindrical coordinates, since the line and conductor are infinite in the

z-direction. The scalar potential Φ at an arbitrary point P in the half-space occupied

by the source line charge λ is determined using the method of images. In terms of

an arbitrary reference distance ρ0, the scalar potential of an infinite line charge is:

Φ(ρ) =
λ

4πǫ0
ln

(

ρ20
ρ2

)

=
λ

2πǫ0
ln

(

ρ0
ρ

)

(3.22)
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Figure 3.2: Line charge λ and its image. The x-axis is an infinite grounded plane
conductor.

where in this case ρ = |ρ| is the distance from the source line charge to the observation

point P . For the case of the image charge problem, Figure 3.2 shows the relevant

position vectors needed to express the scalar potential:

Φ(ρ) =
λ

2πǫ0

[

ln

(

ρ0
|ρ− ρ+|

)

− ln

(

ρ0
|ρ− ρ−|

)

]

Φ(ρ) =
λ

2πǫ0
ln

(

|ρ− ρ+|

|ρ− ρ−|

)

(3.23)

The induced image charge is more readily found by temporarily expressing the scalar

potential in cartesian coordinates:

Φ(ρ) =
λ

2πǫ0
ln

(

√

(x− x0)2 + (y − y0)2
√

(x− x0)2 + (y + y0)2

)

(3.24)
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The image surface charge density σ induced on the conductor is the normal derivative

of the scalar potential evaluated at the conductor:

σ = ǫ0(∇Φ · n̂)
∣

∣

conductor
(3.25)

In the coordinate system of Figure 3.2, the conductor is on the x-axis so that:

σ =
−λy0

π[(x− x0)2 + y20]
(3.26)

3.2.2 Potentials of the Periodic Image Charge Distribution

For the case of the line charge moving parallel to a metallic grating, the same

assumptions made for the point charge are made – namely, that the static image

charge distribution of Equation (3.26) continues to hold true when the line charge

moves with constant velocity v = vx̂ a perpendicular distance b from the grating. A

delta function places the conductor at y = 0, which gives the surface charge density

σ and current density J as functions of the observation point P = |ρ| and time t:

x0 = vt

y0 = b

σ(ρ, t) = −
λbδ(y)

π[(x− vt)2 + b2]
(3.27)

J(ρ, t) = σ(ρ, t)v (3.28)

The vector potential A

A(ρ, t) =
µ0

4π

∫

V ′

[J(ρ′, t)]ret
|ρ− ρ′|

d2ρ′ (3.29)
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and the scalar potential Φ

Φ(ρ, t) =
1

4πǫ0

∫

V ′

[σ(ρ′, t)]ret
|ρ− ρ′|

d2ρ′ (3.30)

are written in terms of the retarded source functions:

[f(ρ′, t)]ret = f

(

ρ′, t−
|ρ− ρ′|

c

)

(3.31)

The vector potential A is given by:

A(ρ, t) = −
µ0

4π

λbv

π

∫ +∞

−∞

dx′

∫ +∞

−∞

δ(y′)dy′

|ρ− ρ′|[(x′ − vt+ v|ρ−ρ′|
c

)2 + b2]
(3.32)

The observation distance is again assumed to be much greater than any dimension

associated with integration over the grating, thus |ρ− ρ′| ≈ ρ and the y-integration

is again trivial:

A(ρ, t) = −
µ0

4π

λbv

πρ

∫ +∞

−∞

dx′

[(x′ − vt+ vρ
c
)2 + b2]

(3.33)

The integrand again vanishes everywhere except on the grating teeth so that the

vector potential A is:

A(ρ, t) = −
µ0

4π

λbv

πρ

L/P
∑

n=0

{

∫ nP+ℓ

nP

dx′

[(x′ − vt+ vρ
c
)2 + b2]

}

x̂ (3.34)

Making the substitution u = x′ − vt+ vρ
c
→ du = dx′:

A(ρ, t) = −
µ0

4π

λbv

πρ

L/P
∑

n=0

{

∫ nP+ℓ−vt+ vρ
c

nP−vt+ vρ
c

du

u2 + b2

}

x̂ (3.35)
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The integral has the elementary inverse tangent solution so that:

A(ρ, t) = −
µ0λv

4πρ
F (ρ, t)x̂ (3.36)

In polar coordinates, the 2D vector and scalar potentials are completely analogous to

the 3D case with the point charge q replaced with a line charge with charge density

λ:

A(ρ, t) = −
µ0

4π

λv

ρ
F (ρ, t)

(

cosφ ρ̂− sinφ φ̂

)

(3.37)

Φ(ρ, t) = −
1

4πǫ0

λ

ρ
F (ρ, t) (3.38)

3.2.3 Fields of the Periodic Image Charge Distribution

The electric field, magnetic field, and Poynting vector can now be calculated from:

E(ρ, t) = −∇Φ−
∂A

∂t
= EΦ +EA (3.39)

B(ρ, t) = ∇×A (3.40)

S(ρ, t) =
1

µ0

E ×B (3.41)

As discussed in Appendix A, the partial derivatives of F (ρ, t) are:

∂F

∂t
=

v

πb
G(ρ, t) (3.42)

∂F

∂ρ
= −

(

β

bπ

)

G(ρ, t) = −
1

c

∂F

∂t
(3.43)
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Thus the electric field components EΦ and EA are:

EΦ =
λ

4πǫ0

(

β

bπ

G

ρ
−

F

ρ2

)

ρ̂ (3.44)

EA =
µ0

4π2

λv2

bρ
G
(

cosφ ρ̂− sinφ φ̂
)

(3.45)

The radial and angular components of the electric field Eρ and Eφ are given by

Equations (3.46) and (3.47). As will be shown below, the radiation field is associated

with the angular component of the electric field Eφ.

Eρ =
λ

4πǫ0

β

πbρ
G
(

1− β cosφ
)

−
λ

4πǫ0

F

ρ2
(3.46)

Eφ =
λ

4πǫ0

β2

πbρ
G sinφ (3.47)

The magnetic field B is:

B = ∇×A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ̂ φ̂ ẑ

∂
∂ρ

1
ρ

∂
∂φ

∂
∂z

Aρ Aφ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.48)
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The magnetic field has no radial or angular components:

B =
µ0λv

4π

(

∂

∂ρ

F sinφ

ρ
+

1

ρ

∂

∂φ

F cosφ

ρ

)

ẑ (3.49)

Bz =
1

c

λ

4πǫ0

β2

πbρ
G sinφ−

µ0

4π

2λv

ρ2
F sinφ (3.50)

Bz =
1

c
Eφ −

µ0

4π

2λv

ρ2
F sinφ (3.51)

The 1/ρ2 terms are disregarded, since only radiation fields are of interest for

device operation. The Poynting vector S (electromagnetic power flow) is directed

radially outward, away from the device. Equation (3.53) shows that the radiated

power of a single charge behaves as a point Larmor dipole radiator. Its power varies

as the fourth power of velocity and the square of the charge density.

S =
1

µ0

E ×B =
1

µ0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ρ̂ φ̂ ẑ

0 Eφ 0

0 0 Bz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
EφBz

µ0

ρ̂ =
E2

φ

cµ0

ρ̂ (3.52)

S =
1

cµ0

(

λ

4πǫ0

)2(

β2

πbρ

)2

G(ρ, t)2 sin2 φ ρ̂ (3.53)
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4. THEORY VS. SIMULATION

The principle of superposition allows the single-charge Smith-Purcell theory de-

veloped in Section 3 to be applied to the Gunn domains calculated using the methods

of Section 2. This is achieved by first discretizing the analytic approximation of the

Gunn domain given in Equation (2.28) on a finite number of points j. The resulting

array of sampled values (yj, ρj) of position within the domain and corresponding

1D charge density are transformed into coordinates suitable for use with Equation

(2.28).

Gnuplot is used to calculate the j-term superposition of the electric field Eφ(t)

radiated by the device as a function of time at a fixed point in space. The ana-

lytic result for Eφ(t) obtained from gnuplot is compared to that obtained from to

Comsol R© computer simulations of “bare devices” – devices without antennas present

to maximize power output.

4.1 Finalizing the Analytic Model

In Section 3, the 1D charge density inside the Gunn domain ρj was shown to

be constant in the direction transverse to the motion of the domain. Thus each ρj

can be represented by a 2D line charge λj in Equation (3.47). Likewise, the within-

domain location coordinates yj can all be transformed to the same frame of reference

xj defined in Figure 3.2. An Excel R© routine was used to create the gnuplot scripts

to calculate the j equations needed to determine the superposed electric field created

by the Gunn domain.

The gnuplot script superposing the j equations was written to calculate the az-

imuthal electric field as a function of time at an observation point chosen to be a

fixed distance ρ normal to the midpoint of the device, in order to make direct com-
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parison with computer simulations. In order to evaluate the impact of discretization

on the stability of the gunplot solutions, the number of points j was varied from a

very sparse 20-element array to a very dense 4000-point array. For each solution, the

superposed electric field was determined from the relationship:

Eφ(t) =
1

j

j
∑

i=1

Eφ,i(t) (4.1)

Figure 4.1: Analytically-calculated radiated electric field Eφ(t) at fixed distance of 3
wavelengths for a Gunn domain discretized to 20, 50, 100, and 500 points.

Figure 4.1 shows that varying j from 20 to 500 has no effect on the analytically-

calculated Eφ(t). It was observed that the sparsest representations of the Gunn
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domain did introduce a few percent underestimation of the minima of the field os-

cillations. Additional calculations with j = 1000 and j = 4000 did not show any

significant difference from the j = 500 result. Therefore all subsequent analytic

calculations were done using a 500-point sampling of the Gunn domains.

The gnuplot analytic model is only intended to demonstrate physical understand-

ing of the operation of the device. For the model to be a fully predictive design tool,

it would have to accurately comprehend three quantities: (1) the finite thickness of

the Gunn drift region, (2) the dielectric constant of the constituent materials , and

(3) the radiation resistance of the device as a function of its length and environment.

This is manually calibrated for one specific case to demonstrate the level of agree-

ment that can between achieved the analytic model and computer simulations. In

practice, the simulations are found to be a more useful design tool since they solve

quickly, as will be discussed in more detail below. Implementing a robust analytic

design tool is beyond the scope of this research, but is noted as an opportunity for

further research.

The 1D mesh used to represent the Gunn domain does not accurately capture

the contributions to the radiation field of a finite-thickness drift region. The gnu-

plot calculation used to calibrate the model to the computer utilizes a second sum

to numerically integrate over the impact parameter b in order to more accurately

represent the thin (100Å) drift region used in the simulations. For the calibration

exercise, the gnuplot script was run at 10Å increments around each simulated value

of b shown in Figure 4.2. The resulting analytic values were then calculated from:

Eφ(t) =
1

j

m
∑

k=1

j
∑

i=1

Eφ,ik(t, bk) (4.2)

The presence of dielectrics slightly alter the solution of image charge problems.
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In textbooks, these are typically presented as minor corrections to the idealized

all-vacuum solutions. This model was followed in Section 3 to streamline the presen-

tation, and therefore the derivation of SPR from a single charge did not explicitly

include dielectrics. There are a number of ways to rigorously introduce dielectrics

into an electrodynamic theory. For the purposes of this exercise, the simplest ap-

proach was to assign an effective dielectric thickness b′k to the analytically-calculated

field minima given in Equation (4.2):

b′k =

(

ǫ+ 1

ǫ− 1

)

bk (4.3)

The dielectric constant used in most simulations was ǫ = 12.85.

Figure 4.2: Comparison of the analytically-calculated minimum electric field Eφ(t)
to results of computer simulations of the device.
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The radiation resistance of a dipole of length L varies as 1/L2, and therefore short

dipoles face significant difficulty coupling to their surroundings. The radiation field

expression in Equation (4.1) does not depend on L, and thus does not accurately

account for device length. It was evident during the model-calibration exercise that

simulation of shorter devices offsets this shortcoming to a large extent. The draw-

back in modeling very short devices, however, is that the overall Eφ(t) waveform

loses definition since the grating contains only a few periods. For this reason, the

calibration exercise is targeted to matching the minima of the radiated electric field

as a function of the dielectric spacer thickness b.

The result of the model-calibration exercise is given in Figure 4.2. A series of

simulations was run at seven different dielectric thicknesses b. The corresponding

analytically-calculated field minima are plotted as a function of the effective dielectric

thickness b′ as discussed above. Agreement between the two methods is more than

sufficient to validate the theoretical methods. After a description of the methods used

to simulate the devices, a final comparison between theory and simulation is given

for the qualititative differences between grating densities. In these cases, an overall

constant is manually fitted to the analytic results without further justification.

4.2 Computer Simulations of the Device

Comsol R© Multiphysics, version 3.4 was selected as the program with which to

perform computer simulations of the device. Simulations were performed using the

time-dependent mode of the RF module to solve for in-plane transverse-magnetic

(TM) waves. No attempt was made to develop a full multi-physics simulation utiliz-

ing the semiconductor module to have Comsol R© internally generate Gunn domains

and then pass them to the RF module. The development of a fully integrated multi-

physics device model including semiconductor, thermal, and electrodynamic effects
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may represent another future research opportunity.

The Comsol R© model geometry of the device was identical to that pictured in

Figure 1.1. Rectangular subdomains were used to model the drift region of the Gunn

diode, the dielectric spacer, the grating teeth, and where applicable, the two lobes of

the dipole antenna. Antenna results will be more fully discussed in the next section.

As discussed above, Equation (2.28) was developed using the methods of Section

2, and this equation was shown to accurately represent the space charge profile of the

Gunn domain. Therefore the Gunn diode portion of the device (labeled ‘Semicon-

ductor’ in Figure 1.1) was simulated with a rectangular block containing a volume

current-density source term, since Comsol R© seeks to solve the Maxwell relation:

∇×B = µ0J (4.4)

Equation (2.28) allows use of the source term J(t) = ρ(t)v. In Section 2, the

charge density ρ(y) was implicitly defined as a function of time since it was derived

in terms of the time-dependent variable y = x − vt, where it is understood that

v = vdom is the domain velocity. To complete definition of the domain drift region,

values of the dielectric constant ǫ = 12.85 and electrical conductivity σ = 20.4 of the

drift region were chosen to represent a typical highly-doped semiconductor.

In recently reported InGaAs heterostructure planar Gunn diodes, AlGaAs buffer

layers are deposited above and below the drift region. [76] In normal device fabri-

cation processes, it is not uncommon to cap the highly n-doped drift region with a

corresponding buffer layer. Therefore the dielectric spacer region was modeled to the

same dielectric constant as the drift region, as mentioned above. The conductivity σ

of the spacer layer was set to that of the default quartz material definition provided

with Comsol R©. The thickness of the dielectric spacer corresponds to the impact
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parameter b used in the Smith-Purcell theory of Section 3.

Rectangular blocks were used to represent the metallic grating teeth and the

lobes of the dipole antennas. A limited number of simulations were run to ascertain

the relative impact of grating thickness and composition on the output power. This

was done by changing the material properties of the blocks using Comsol’s R© built-in

definitions of copper and aluminum, since these are the preferred interconnect process

technologies for mature silicon CMOS. It was found that switching to aluminum had

no discernible effect on the output power of the device. The intended application of

the proposed technology is its integration into a silicon CMOS process. Therefore

the results presented below all use the metallic properties of copper.

Figure 4.3: Comsol R© device simulation showing Ex. The air box radius is r = 10λ.
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The device geometry was placed in a large circular air box, with the device cen-

tered at the Cartesian coordinate system provided by Comsol R©. The typical radius

of the air box was set to three times the free-space wavelength of the device. The

Smith-Purcell radiation frequency λSPR determined by the grating period P and

domain velocity v is:

λSPR =
c

fSPR

=
cP

v
(4.5)

where c is the speed of light in vacuum. Figure 4.3 shows a device model with

the radius of the air box set significantly larger than typical (10λ) to more clearly

illustrate the dipole radiation pattern than might be seen at a distance of three

wavelengths.

The outer boundary of the air box used Comsol’s R© scattering boundary condition

and all the interior boundaries were set to continuity. Two different time-dependent

solvers were evaluated in device simulations (UMFpack and PARDISO). No signifi-

cant differences in the radiated electric field were observed between the solvers. Since

UMFpack was found to be significantly slower than PARDISO, PARDISO was the

preferred solver for all simulations. The time steps used in the simulations were

chosen to ensure that the Gunn domain moved between 20Å and 50Å per time step.

Depending on the length of the drift region simulated, between 300 and 2000 steps

were required to simulate a single pass of the Gunn domain through the drift region.

Time was added to allow the electromagnetic pulse train to fully propagate through

the edge of the air box.

Various post-processing methods were used to investigate the large (tens of giga-

bytes) solution files created for each simulation. Perhaps the most useful information

was obtained by placing a probe point into the simulation geometry at the intersec-

tion of the air box with the y-axis. The probe point collects field information at each
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time step so that it can be saved immediately upon solution. In Equation (3.47) the

azimuthal angle φ was measured from the z-axis. Measuring from the x-axis in the

more usual polar notation yields:

Eφ =
λ

4πǫ0

β2

πbρ
G cosφ (4.6)

One of the post-processing modes available in Comsol R© allows various field quan-

tities to be evaluated on geometry boundaries. Evaluation of the electric field along

the outer boundary of the air box confirms that the magnitude of Eφ during sim-

ulation displays the sinusoidal variation expected from a dipole radiation source.

Therefore the use of the probe point in the simulation provides a simple proxy for

the radiation passing through the entire boundary as a function of time. Additionally,

using the probe plot to determine Eθ(t) also allows a simple means to calculate the

radiated power of the device. Comsol R© internally defines the instantaneous Poynt-

ing flux with the variable name nP0. Post-processing the full (very large) solution

file allows the Poynting flux (measured in W/m) to be integrated over the entire

boundary for each of the hundreds of time steps in the simulation. Alternatively, the

probe plot allows the instantaneous power density to be directly obtained using the

following relationship:

nP0(t) = cǫ0πrE
2
φ(t) (4.7)

where c is the vacuum speed of light, ǫ0 is the vacuum permittivity, and r is the

radius of the air box. This method is used to calculate the simulated power densities

throughout the remainder of this work.
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Figure 4.4: Schematic of gratings with density δ = 0.1 (upper) and δ = 0.8 (lower).

4.3 Electric Field From Sparse and Dense Gratings

The analytic Gunn-Smith-Purcell theory developed in Sections 2 and 3 has a high

degree of qualitative agreement with simulation. This is can be seen by comparing

the theory to simulation for a Gunn domain passing by gratings with fixed period P

but different grating density δ (defined as the ratio of the tooth width to the grating

period, as discussed in Appendix A). Figure 4.4 illustrates a sparse grating with

δ = 0.1 and a dense grating with δ = 0.8.

The domain profile shown in Figure 4.5 is calculated for indium nitride with

bulk doping density of 3 × 1023 electrons/m3. The drift velocity is selected to be

4.5 × 105 m/sec, resulting in a Smith-Purcell radiation frequency of 1.0 THz. The

tradeoff with Gunn domains is that higher applied bias increases the domain size

and therefore increases radiated RF power. However, the larger domain has lower

drift velocity and thus lower frequency. Additionally, the increased bias increases the

DC current. Since there is not corresponding increase in RF power, the efficiency of

the device is decreased. This tradeoff is well-known in the experimental Gunn diode

literature and is discussed in more detail below. [77]

Figure 4.6 shows analytic and simulation results for Eφ(t) from the sparse grating.

The electric field is characterized in this case by positive spikes generated as the
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domain passes under the narrow grating teeth. The analytic result correctly identifies

the slight asymmetry between the depletion and accumulation regions that can be

seen in the Gunn domain profile of Figure 4.5. The analytic result does not precisely

capture the behavior of the domain as it passes through the large open regions

between grating teeth, but clearly approximates the salient qualitative features of

Eφ(t).

Figure 4.5: InN Gunn domain used to compare analytic theory to computer simula-
tion. The width of the line corresponds to the grating period P = 0.45µm.

In much the same manner, the analytic result for the dense grating with δ =

0.8 also corresponds closely with the results of computer simulation. The primary

characteristic of the dense grating is seen to be the large negative pulse generated

as the domain travels past the narrow gap between grating teeth. The distortion

of the first pulse of the simulation results of Figure 4.7 is an artifact – the initial
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position of the pulse starts directly under the first grating tooth. Again it is clearly

seen that the analytic calculation accurately detects the asymmetry of the Gunn

domain and the direction and size of the electric field pulses. The analytic result

slightly overestimates the edge contributions of the grating teeth, exactly as it did

in the case of the sparse grating. Now that a correspondence between theory and

simulation has been established, all further results in this work will specifically refer

to simulations.

Figure 4.6: Comparison of the analytic and simulation results for Eφ(t) in the case
of a Gunn domain passing near a sparse grating (δ = 0.1). The main contribution
to the electric field is made by the narrow grating tooth (positive spikes).
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Figure 4.7: Comparison of Eφ(t) for a dense grating (density δ = 0.8). In distinction
to Figure 4.6, the main electric field contribution is made from the narrow gaps
between grating teeth (negative spikes).
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5. RESULTS

As discussed in more detail in the Conclusion, a follow-up research topic related

to this work is the improvement of device modeling. Currently the most effective

method to determine the SPR power density of a specific device is simulation. This

is due to the high degree of interaction between the various electrical and geometry

design parameters inherent in the operation of the device. This section presents the

impact of these design parameters on the SPR power density output (performance)

of Smith-Purcell devices with and without an integrated antenna. It is understood

that a comprehensive multi-variate characterization is well beyond the current scope.

5.1 Performance of Bare Devices

For practical radiative applications, the most important device characteristic is its

SPR power density. Therefore it is important to determine the manner in which the

SPR power density depends on the device design parameters. Adding an integrated

antenna significantly boosts the SPR power density radiated by a bare device, as

presented below. The results of this section illustrate the role that device length L

plays, even for the very short (few µm) bare devices currently under consideration.

As discussed Section 6, bare devices without an integrated antenna may play an

important role in future millimeter-wave and terahertz integrated circuits.

All results use the probe-point methodology described in Section 4 to collect

electric field data as a function of time at a fixed point three wavelengths normal to

the midpoint of the device. These data were imported into Excel R©, and Equation

(4.7) was applied to convert the electric field time traces into instantaneous power

density traces, from which the average power density values were then calculated.
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5.1.1 Power vs. Domain Charge Density

Equation (3.53) of Section 3 also indicates that the SPR power density varies as

the square of the charge density – it is stimulated Smith-Purcell radiation. A set

of non-physical simulations were run in which the total integrated charge density

Q of the Gunn domain was varied while keeping the domain shape and velocity

constant. The exercise of verifying the SPR power density dependence on Q provides

a good check on whether the device simulations were developed and implemented

correctly. Since Comsol R© solves Maxwell’s Equations and because the Gunn domain

is directly entered into the simulation as a current density source term, deviation of

the simulated power from the expected Q2 dependence would indicate a serious error

in either the theory or experiment.

Figure 5.1: The power density of the bare Smith-Purcell device varies as the square
of the Gunn domain integrated charge density Q2, consistent with Equation (3.53).
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Figure 5.1 shows that the SPR power density calculated from the simulations

using the probe-point methodology described above does indeed have the expected

Q2 dependence derived in Equation (3.53). The Excel R© Q2 trend line had a perfect

fit metric of R2 = 100.00%, and no further confirmation was attempted.

5.1.2 Power vs. Domain Velocity

Figure 5.2: The power density of the bare Smith-Purcell device varies as the fourth
power of the Gunn domain velocity v4, consistent with Equation (3.53).

The theoretical calculations in Section 3 develop the properties of the radiated

fields. Equation (3.53) predicts that the radiated power varies as the fourth power of

the velocity of the charge – that the device behaves as a point Larmor dipole radiator.

In order to examine this prediction with Comsol R©, a different set of non-physical

simulations was performed in which all parameters were held constant except for the

domain velocity. As was presented in Section 2, a physical Gunn domain changes
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shape under the different applied bias required to change its velocity.

Additionally, the maximum velocity of the domain used in this set of simulations

was 1.8×106 m/s, significantly higher than any currently-known semiconductor drift

velocity. The point of the exercise was to simulate the device over a wide range of

Gunn domain velocity v in order to determine the dependence of power density on

v. Figure 5.2 shows the result of the simulation experiment (points) and an Excel R©

fitted trendline of power density as a function of v4. It is apparent that the SPR

power density behaves exactly as expected from Equation (3.53).

5.1.3 Power vs. Device Length

Longer devices have higher radiated power density than short devices because

of their increased ability to electromagnetically couple to their surroundings, due to

their higher radiation resistance Rr. Textbook calculations of an ideal infinitesimal

dipole of length L give Rr in terms of the impedance of free space η = µ0c and the

radiation wavelength as:

Rr = Cη
2π

3

(

L

λ

)2

(5.1)

The primary importance of Equation (5.1) is to determine the extent to which

the THz SPR power radiated by the device scales obeys the expected device length

L2 dependence displayed by an ideal point dipole radiator. Equation (5.1) contains a

device-dependent scaling factor C that is not usually presented for the ideal infinites-

imal dipole. In the case of an ideal infinitesimal dipole, it is assumed that all the

current flowing through the dipole actively generates power – namely, that C = 1.

This is not the case for the Smith-Purcell device, since only a portion of the RF

Gunn domain current – the induced image charge – is available to generate THz

SPR power. As discussed below, C provides a measure of the RF-to-THz frequency

upconversion efficiency provided by the grating via the Smith-Purcell effect. This is
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analogous to the DC-to-RF efficiency figure quoted in the literature for planar Gunn

diodes. Smith-Purcell upconversion efficiency is considered in more detail below.

The dependence of SPR power density upon device length L is first investigated.

Figure 5.3: The power density of the bare Smith-Purcell device varies as the square
of device length L2, confirming the expectation of point dipole behavior.

In order to determine the dependence of SPR power density on device length L,

several sets of simulations were run using the v = 4.5 × 105 m/s InN Gunn domain

depicted in Figure 4.5. The grating period was held fixed at P = 0.45µm, the grating

density was held fixed at δ = 0.8, and the grating thickness t was held fixed at 100Å.

The spacer thickness b was varied for four different device lengths L. As the device

length was increased, periods were added to the grating. The physical extent of the

Gunn domain was 0.2µm, which is smaller than the grating period P .

Moreover, it was noted in the discussion surrounding Figure 4.7 that the narrow
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gaps between grating teeth make the main contribution to the electric field and thus

the SPR power. These considerations lead to the expectation that the operation

of the Smith-Purcell device is well-approximated by a point dipole, and therefore

that the simulation results should exhibit the L2 dependence predicted by Equation

(5.1). Figure 5.3 shows the results of the simulations testing the effect of L on the

SPR power density. Fitting the data series to a second-degree polynomial in Excel R©

makes it clear that SPR power does have the expected L2 dependence. The R2

quality of fit was 99.99% in two cases and 100.00% in the other two, confirming that

the Smith-Purcell device indeed displays the expected behavior of a point dipole

radiator.

5.1.4 THz Upconversion Efficiency

The power-versus-length investigation provides a means by which to gain insight

into the RF-to-THz frequency upconversion efficiency of the bare Smith-Purcell de-

vice. A brief explanation of the DC-to-RF conversion efficiency of planar Gunn

diodes is apropos. Gunn effect efficiency is observed to be in the range 1%− 10% for

fixed-length devices with varying applied bias. This provides a reference point with

which to compare the RF-to-THz upconversion efficiency of the Smith-Purcell effect.

The DC-to-RF efficiency in a planar Gunn diode improves at higher applied

bias, and this is understood in terms of the theoretical methods of Section 2. A

minimum-size Gunn domain occurs at the onset of NDR – at minimum applied bias.

Domain size increases with bias until it reaches its maximum, which is determined

by the electron diffusion D of the material. Applying additional bias past this point

increases the diode’s DC current without increasing its RF current, thus decreasing

RF conversion efficiency. The DC-to-RF conversion efficiency of Gunn diodes is thus

observed to increase, flatten out, and finally roll off as the applied bias is increased.
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The values of C required to match Equation (5.1) to the simulation data were

manually determined for the four devices. In order to do this, a method was needed

to best reconcile the lack of an explicit dependence on L in the theoretical results.

As discussed in Section 4, the minimum device length that could be simulated was

two grating periods, which in the current case was L0 = 0.90µm. RF-to-THz up-

conversion efficiency estimates are made under the assumption the power density

obtained from the minimum-length device is due to a point dipole of length Pδ –

the gap between grating teeth. The power density of longer devices is then sys-

tematically extrapolated from the minimum-length device by iteratively defining an

effective dipole length ∆ℓi = (Pδ)(Li+1/Li).

Figure 5.4: Simulation data from Figure 5.3 fitted to Equation (5.1) gives the Smith-
Purcell THz power upconversion efficiency as a function of spacer thickness b.

These effective dipole lengths are then used in Equation (5.1) to determine RF-
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to-THz upconversion efficiency C values that best match the simulation data for a

given spacer thickness b. Figure 5.4 shows the results for C as a function of b. The

THz upconversion efficiency is observed to decrease exponentially with b, varying

from 3% for the b = 100Å device to 0.3% for the b = 800Å device, with an exponent

of −0.0033. The exponential decrease in efficiency as a function of spacer thickness

b is caused by the reduction in induced image current, as discussed below.

THz upconversion efficiency Smith-Purcell is in the single-digit range for radi-

ation from a bare device. This figure is comparable to the DC-to-RF conversion

efficiency provided by the Gunn effect, and it implies an overall DC-to-THz conver-

sion efficiency in the 0.1% range, even without an antenna present. This leads to the

expectation that the addition of an integrated antenna leads to a THz device with

efficiency comparable to that of a planar Gunn diode. The antenna results presented

below are found to be outperform standard Gunn devices in the low THz. [78]

5.1.5 Power vs. Spacer Thickness

In vacuum electronic devices, SPR power is empirically observed to decrease

exponentially as the impact parameter (charge-grating separation) increases. In the

semiconductor Smith-Purcell THz device, the impact parameter is controlled by the

dielectric spacer thickness b. In order to determine the dependence of SPR power

density on b, four sets of simulations were run. In the simulations, all parameters

were held constant except for the spacer thickness b and device length L. Figure 5.5

shows the results of the twenty-five simulations run for this investigation.

All data series in Figure 5.5 were fitted with exponential trendlines in Excel R©. No

special statistical analysis was performed beyond the trendline fit. It was found that

all four fit exponents were within 3% of the nominal exponent value of −0.0031. The

Excel R© quality of fit metric (R2) was between 99.8% and 99.5% for the three longest
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Figure 5.5: Power vs. spacer thickness is exponential (fit lines) for four different
device lengths L – this matches the expectations set by empirical observations.

devices. As can be seen in Figure 5.5, the power density of the shortest (0.9µm)

device – which only contained one negative spike of the form illustrated in Figure 4.7

– increases slightly faster at the very thinnest spacer values than the other devices.

This leads to a slight decrease in the R2 quality of fit of for this device (R2 = 98.4%).

The results are in agreement with the Smith-Purcell effect being responsible for the

THz radiation produced by the semiconductor device. The exponential decay of SPR

power density with spacer thickness b confirms the result for SPR efficiency, with the

decay exponents agreeing to within a few percent.

5.1.6 Power vs. Drift Region Thickness

The previous comparison between theory and simulation minimized the thickness

of the Gunn drift region. This was done in order to best match the 1D Gunn

theory with the 2D simulations. In practice, the thickness of the drift region t will
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Figure 5.6: Power vs. drift region thickness t increases to a device-specific maximum
at tc then slowly decreases for t > tc.

be optimized to maximize either the total SPR power density or the DC-to-THz

conversion efficiency, depending on the specifics of a particular application.

Between the minimum drift region thickness (100Å) and some critical thickness

tc, it is reasonable to expect that the SPR power density will increase monotonically.

Moreover, Debye charge screening leads to the expectation that power density in-

creases fastest per unit of t increase for thinnest drift regions, and the rate of power

increase per unit t slows as tc is approached. This is expected because the charge

density of the Gunn domain is reasonably uniform through the thickness of the drift

region. Therefore as thin“slabs”of drift region are added to the bottom of the device,

the added charge density is less effective at inducing image charge on the grating.

As the drift region becomes “too thick” (relative to the grating period P ), the

additional layers of charge stacked under the grating begin to diminish the ability of

the domain to induce image charge. Therefore the SPR power is expected to slowly
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decrease for t > tc. Simulations confirm the general expectations for power density as

a function of drift region thickness, as shown in Figure 5.6. Subsequent simulations,

including the antenna results presented below, utilize the observed critical thickness

tc = 1400Å.

5.1.7 Power vs. Grating Density

Perhaps the two most important design parameters are the grating period P and

the grating density δ. It is found in the course of this research that there is not yet

a universal prescription for geometry optimization. As mentioned above, simulation

experiments are currently required to determine the impact of the design parameters

on the SPR power density. Figure 5.7 illustrates the variation of SPR power density

as a function of grating density δ for devices with different spacer thicknesses b.

Figure 5.7: Power vs. grating density δ increases linearly up to a maximum at
δ = 0.8, then rolls off rapidly for very dense gratings.
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The domain pictured in Figure 4.5 is used for these sets of simulations. The SPR

power density is observed to increase linearly with grating density δ up to a maximum

at about δ = 0.8. In future work it is suggested to systematically study the optimal

grating density as a function of applied bias (varying Gunn domain profiles), grating

period P , and drift thickness t.

5.1.8 Power vs. Grating Period and Applied Field

The SPR power density of the bare Smith-Purcell device was shown above to

behave as a point Larmor dipole source. Non-physical experiments determined the

dependence of SPR power density on domain velocity v and integrated domain charge

Q. The power density was found to depend on velocity as v4 by using a fixed Gunn

domain profile that did not change in width or height.

Additionally, the power density was found to depend on the square of the inte-

grated domain charge Q2. This was done by running a series of simulations with

Gunn domains of fixed accumulation width a. In order to vary Q, the maximum

charge density ρmax of the domain accumulation region and the minimum charge

density ρmin of the depletion region were varied. In reality, the Gunn domain profile

changes as a function of the applied field E.

The final design parameter considered for bare Smith-Purcell devices is the fre-

quency f , which depends on the domain velocity v and grating period P according

to Equation (1.6):

f = v/P

The grating period P of the Smith-Purcell device is a straightforward parameter to

control since it is photolithographically defined. The domain velocity v, however, is

non-trivially related to the applied field E via the velocity-field characteristic v(E)

discussed in Section 2. Referring to Figure 2.2, no Gunn oscillations occur below the
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field value corresponding to the maximum electron velocity – this value of E marks

the onset of NDR.

Therefore, dipole oscillations occur on the portion of the v(E) curve with negative

slope where v decreases with increasing field. However, the dependence of SPR power

density on E is more complicated than just determining the drift velocity v. The

complication arises from the fact it is not only the domain velocity v that changes

in response to the electric field E – the entire shape of the Gunn domain changes, as

shown in Figure 5.8 for n-doped InN with doping concentration n0 = 1×1017 ion/cc.

The physical characteristics of these Gunn domains are listed in Table 5.1.

Figure 5.8: Gunn domains for InN with bulk doping concentration n0 = 1 ×
1017 ion/cc. Higher applied field decreases the drift velocity and increases the domain
size.

A brief explanation of terminology used to refer to specific Gunn domains may
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prove useful. Since the velocity-field characteristic v(E) uniquely correlates each

value of the applied field E to a value of the drift velocity v, references to drift

velocity are interchangeable with references to the applied field. Applied field (more

specifically, the bias voltage) is more germane to the discussion of a Smith-Purcell

device within an integrated circuit, whereas drift velocity is more intuitive for the

current discussion concerning only the operation of the bare Smith-Purcell device.

For practical applications, the applied bias voltage required to make a specific device

operate in an expected manner is a critical parameter. Moreover, the DC current

generated by the Gunn diode must be managed in order to prevent thermal damage

to the device.

Table 5.1: Physical characteristics of InN Gunn domains with n0 = 1× 1017.

E (V/µm) v (105m/s) a (µm) Qint (C/m2) ρmax (C/m3) ρmin (C/m3)

10.40 2.50 0.294 2.82× 10−3 22984 -11475

8.80 3.00 0.234 1.96× 10−3 18300 -10250

6.70 4.00 0.202 9.91× 10−4 10400 -7430

5.90 4.50 0.212 6.67× 10−4 6700 -5200

Lower applied field E produces faster and narrower Gunn domains, both of which

are desirable for high frequency operation. These fast domains, however, contain less

integrated charge Q. Adding to the complication is the additional dependence of

power density on the size ratio ξ, defined as the ratio of the width of the grating

tooth ℓ to the width of the Gunn domain’s accumulation region a:

ξ =
ℓ

a
(5.2)
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The frequency analysis of bare Smith-Purcell devices using different Gunn domains

below leads to the conclusion that the size ratio ξ plays an important role in deter-

mining SPR power density. The size ratio ξ defined in Equation (5.2) explains the

flatter frequency response of narrower domains, as will be shown below. Consider-

ation of the data in Table 5.1 completes the discussion of Gunn domain variation.

It is noted that the maximum charge density ρmax and the total integrated charge

density Q of the domains in Table 5.1 decrease with drift velocity as 1/v2.

Figure 5.9 shows the SPR power density of 5µm-long bare devices with 0.14µm

thick drift regions made of InN with the n0 = 1 × 1017 ion/cc domains shown in

Figure 5.8. Each data series corresponds to a different applied bias (and thus domain

velocity v) as noted in the legend. The frequency of each data point was obtained

by simulating devices of varying grating period P . The grating density was fixed at

δ = 0.8 for all devices. The SPR power density data shows that a 100µm-wide bare

device of this type could generate 2µW at 0.25 THz and 3.6nW at 1.8 THz. While

the addition of antenna will be seen to significantly increase the SPR power density,

the results indicate that it may be possible to find practical applications for bare

devices with power output in this range.

Figure 5.9 illustrates the crux of the design tradeoffs encountered in considering

frequency, SPR power density, and DC power consumption. At lower applied field,

the DC power consumption is lower and the frequency is higher, but the SPR power

density is lower. This is because the narrower domains remain effective in generating

the maximum amount of SPR power possible from gratings of smaller period P than

do the wider domains. Therefore defining the optimal characteristics of a Smith-

Purcell terahertz source is expected to be an application-specific design exercise. In

Section 6, suggestions are made for additional investigations that may prove useful

for implementing Smith-Purcell devices into future integrated circuit designs.
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Figure 5.9: Frequency response using the domains of Figure 5.8. All bare devices
have diode length L = 5µm long and grating density δ = 0.8. A 100µm-wide bare
device would thus generate 0.2µW at 0.25 THz and 3.6nW at 1.8 THz.
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5.1.9 Size Ratio Analysis – Bare Devices

As discussed above, the physical mechanism responsible that generates SPR

power in the Smith-Purcell device is induced current density moving across the grat-

ing teeth. It is found that the size ratio ξ defined in Equation (5.2) provides a useful

figure of merit with which to describe this device property. Continuing the analysis

of the bare devices from the previous section, the tooth widths ℓ for the devices used

to compile Figure 5.9 ranged from 0.2 − 1.3µm. The widths of the accumulation

regions of the Gunn domains shown in Figure 5.8 range from 0.21−0.29µm as shown

in Table 5.1. For fixed domain width a and decreasing tooth width ℓ correspond-

ing to higher frequency, the decreasing values of ξ represent the smaller fraction of

domain charge “captured” by the grating tooth. It is therefore expected that SPR

power density approaches zero in the limit ξ → 0 and increases with ξ up to some

maximum value.

Assuming a fixed Gunn domain size and grating density δ, it is expected that there

is some value of tooth width ℓ at which the induced image current becomes saturated

at its maximum. As the grating period P is increased at fixed grating density δ, both

the tooth width ℓ and the gaps between teeth grow. The induced current density is

saturated and therefore the fixed current density is forced to generate SPR across

a growing gap. Thus the SPR power density is expected to decrease slowly at very

large values of ξ.

To test the above hypothesis and to determine the role of device geometry in

SPR power density, the data from Figure 5.9 was recast. For each Gunn domain, the

power density at each value of frequency was first normalized to its maximum value.

Next, ξ values were calculated for each data point by using the accumulation width

a of each Gunn domain from Table 5.1. Finally, the normalized SPR power density
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plotted as a function of ξ to create the plot of Figure 5.10.

Figure 5.10: Power data of Figure 5.9 normalized to the peak power for each Gunn
domain, then plotted as a function of the size ratio ξ defined in Equation (5.2).

Organizing the data in the geometric manner described above confirms the hy-

pothesis that fixed induced current density across increasing tooth gap results in lower

SPR power density at large values of size ratio ξ. Moreover, the power density versus

size ratio data suggest the existence of a “universal” SPR power density model. The

results for antenna devices discussed below are found to follow a “universal” model

depending only on ξ and the integrated charge Q. The bare devices, however, do

not cleanly correlate with Q scaling. At this time normalized power density and size

ratio provide the cleanest model for bare devices. This clearly suggests that another

factor is convolved with the data in Figure 5.10, and the most likely contributor is

the nearest-neighbor tooth interactions discussed above. The full solution for bare

device modeling is left to future researchers.
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Most importantly, Figure 5.10 ties together the main ideas and results of the

previous three Sections. The Gunn effect physics developed in Section 2 is directly

tied to the Smith-Purcell physics developed in Section 3, using the simulation and

theoretical methods developed in Section 4. Having thus presented the response

of the bare Smith-Purcell device with respect to the design parameters and tying

together the threads begun in the preceding Sections, the next topic evaluates the

performance of Smith-Purcell devices with integrated antennas.

5.2 Performance of Devices With Antennas

It was shown above that since the radiating portion of the Smith-Purcell device

is very short – on order of the (sub)micron grating period P – bare devices have

low radiation resistance and thus low SPR power density. In order to set realistic

expectations for the SPR power density achievable in future experimental work on

Smith-Purcell THz devices, an antenna structure needs to be added to the bare

device. Several variations of antenna design were briefly investigated, but only the

antenna design used in this research was a half-wave dipole with solid metal arms.

The 2D device modeling methods covered previously are not readily adapted to

the unique challenges of modern high-frequency antenna design. Developing the 3D

modeling environment best-suited to antenna design was beyond the scope of the

current research. Therefore is it recommended that a future research project be

focused specifically on antenna optimization. In the simulation models, the arms of

the Gunn diode are connected directly to the ends of the device, consistent with the

usage of standard Gunn diodes to directly drive antennas.

During the course of this research, results were obtained from simulations covering

a wide portion of design space. The Gunn diode length L, active thickness t, grating

thickness g, spacer thickness b, and grating period P were varied, as discussed in
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detail above for bare devices. The material type, bulk doping concentration, and

applied bias (drift velocity) were also varied in order to change the Gunn domain

profile. In order to standardize the antenna device design, the length of the Gunn

diode L is chosen to be seven times the grating period P in all cases (L = 7P ). The

length of each arm of the dipole antenna is chosen to be one-quarter of a free-space

wavelength minus half the Gunn diode length (L/2). The total antenna device length

thus is always equal to one half the free-space wavelength.

The frequency response of four series of 5µm-long bare devices with varying grat-

ing period P drift velocity v were presented in Figure 5.9. All devices had bulk

doping concentration n0 = 1× 1017 ion/cc. Over the frequency range 0.2− 0.6 THz,

the lowest-frequency series of bare devices with drift velocity v = 2.5× 105 m/s had

SPR power density in the range 3×10−3 µW/µm to 3×10−4 µW/µm. This series of

devices was selected to measure the impact of the dipole antenna on the SPR power

density, as shown in Figure 5.11.

To create the plot, each of the bare device models was modified in the manner

described above to convert it to a standard device. The SPR power density data was

collected by the probe-point method described in detail above. Then the two sets of

data were graphically matched by multiplying the power density of each bare device

by the same constant. The multiplicative constant was selected by minimizing the

average percent difference for the data values in the 0.5− 1.0 THz range as shown.

The intent of the matching exercise is simply to identify an order-of-magnitude

estimate of the improvement made by the simple dipole antenna. It is found that

a factor of 900 gives a reasonable match between bare and antenna device power

densities over most of the frequency range. Having found that the antenna devices

are able to significantly improve the SPR power density over that observed in bare

devices, it is evident that technologically relevant radiated power can be generated
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Figure 5.11: Adding half-wave dipole antennas to the bare devices of Figure 5.9
boosts their SPR power density by a factor of 900. It is noted that the “tooth-
limited” low-frequency rolloff is observed for both bare and antenna devices.

from the Smith-Purcell THz device. Figure 5.11 indicates that a 100 µm-wide device

of this design would generate 448µW of power at 0.3 THz and 1.7µW of power at 1.0

THz. The frequency versus power data for the antenna device displays the same low-

frequency rolloff as was observed for bare devices. This supports the “tooth-limited”

mechanism described above being the correct mechanism for this phenomenon.

5.2.1 Power vs. Bulk Doping Concentration

Figure 5.8 showed how the shape of the Gunn domain varied with applied bias for

n-doped InN with bulk doping concentration of 1 × 1017 ion/cc. As was mentioned

in Section 2, bulk doping concentration has a strong effect on the shape of the Gunn

domain – higher doping concentration gives narrower and higher domains, both of

which are advantageous for higher SPR power and flatter frequency response. The

design tradeoff is that the DC power of the planar Gunn diode increases, which
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increases the waste heat that must be managed.

Figure 5.12: InN Gunn domain profiles for applied field 10 V/µm (v = 2.5×105 m/s)
at different bulk doping concentrations n0. Higher doping provides a favorable Gunn
domain profile, but also generates more DC current (thus more heat).

Figure 5.12 shows the effect of increasing n0 from 1×1017 ion/cc to 3×1017 ion/cc

in InN at constant applied electric field E = 10 V/µm. A complete presentation of

the properties of the Gunn domains in the higher-doped material will be given below,

after the effect of doping on power density is more fully investigated. In the previous

case where the domain profile was changed via the applied field E, narrower domains

were obtained by reducing the applied field. The field-narrowed domains had higher

velocity v but lower peak charge density ρmax and lower integrated charge Q.

Changing the doping by a small amount (less than an order of magnitude) does

not make appreciable changes in the drift velocity. In Figure 5.12, both domains
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have velocity v = 2.5×105 m/s. Higher doping is seen to decrease the domain width

– the accumulation widths are a1 = 0.29µm and a2 = 0.20µm, respectively, for the

wide and narrow domains. This is expected to allow the entire domain to induce

image charge on narrower grating teeth as seen previously. A size ratio analysis for

the antenna devices will be presented below. Finally, the higher doping is expected

to provide a performance increase due to the presence of extra n-type doping which

increases the peak charge density. The domain characteristics of Figure 5.12 as well

as the data for grating period P , frequency, tooth width ℓ, size ratios and SPR power

density used for Figure 5.13 is listed in Table 5.2.

Table 5.2: Data for the Gunn domains of Figure 5.12 with a1 = 0.29µm and a2 =
0.20µm and the power and size data used for Figures 5.13 and 5.14.

P (µm) f (THz) ℓ (µm) δ ξ1 = ξ2 = n0 = 1× 1017 n0 = 3× 1017

ℓ/a1 ℓ/a2 SPR (µW/µm) SPR (µW/µm)

1.60 0.16 1.28 0.80 4.34 6.31 3.37

0.90 0.28 0.72 0.80 2.44 3.55 4.48 3.95

0.50 0.50 0.40 0.80 1.36 1.97 0.98 3.40

0.40 0.63 0.32 0.80 1.08 1.58 0.31 2.04

0.35 0.71 0.28 0.80 0.95 1.38 0.15 1.12

0.30 0.83 0.24 0.80 0.81 1.18 0.07 0.44

0.25 1.00 0.20 0.80 0.68 0.99 0.02 0.10

The SPR power density data confirms the above expectations, as shown in Figure

5.13. Identical device geometries are used for both the higher and lower doping values.

The grating period P is reduced at constant domain velocity v = 2.5× 105 m/s and

constant grating density δ = 0.8. As discussed above, the diode length L was scaled

as L = 7P , and the length of the antenna arms was scaled to maintain total device

length λ/2. The SPR power density data was collected using the probe-point method
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and measured at a distance ρ = 3λ above the device midpoint as was done for the

bare device results discussed above.

Figure 5.13: Increasing the bulk doping concentration n0 improves the frequency
response, as expected from the domain profiles in Figure 5.12.

Figure 5.13 shows that at low frequency both the wide and narrow pulse produce

similar SPR power density. This is again the“tooth-limited”case discussed previously

in which the image charge induced by the domain is small compared to the total

capacity of the tooth. As the grating period P is reduced to achieve higher frequency,

the narrow domain in the higher-doped material consistently generates higher SPR

power density than the wide domain in the lower-doped material. This behavior is

again understood by plotting the SPR power density versus the size ratio ξ – the

tooth width ℓ divided by the accumulation width a defined in Equation (5.2).
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5.2.2 Size Ratio Analysis – Antenna Devices

It was found that the SPR power density for the many n0 = 1 × 1017 InN bare

devices approximately obeyed the “universal” SPR power density relationship shown

in Figure 5.10. It was noted in the discussion of bare devices that the SPR power

density values for each field-determined domain profile needed to be normalized to

the peak power generated in the series of devices. The hypothesis is that the (very

short) radiative length of the bare device leads to an heightened dependence on

within-grating interactions that are not comprehended by the current theory.

Figure 5.14: Size analysis of the SPR power density data from Figure 5.13. Note
that the antenna devices do not require normalized power as did the bare devices
presented in Figure 5.10.

Therefore, the data for the two domains just considered in the above comparison

of antenna devices with different bulk doping concentration are analyzed in the same

manner to determine the extent to which size ratio ξ plays a role in describing the
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SPR power density. It is found that the antenna devices indeed obey a similar

relationship between SPR power density and the size ratio ξ.

Figure 5.14 shows the result of performing the size ratio analysis for the antenna

devices with different bulk doping concentrations using the data in Table 5.2. Unlike

the bare devices, however, the antenna devices do not require SPR power density

normalization. This supports the hypothesis made above that the effective device

length interacts with the domain properties and device geometry to spread the power

data in a manner not captured solely by ξ.

In the following section the properties of the higher-doped material are investi-

gated in detail, and it is shown that a simple addition to the current size ratio analysis

appears to fully describe the operation of the Smith-Purcell antenna devices.

5.2.3 Best-Case Antenna Power Results

Table 5.3: Physical characteristics of InN Gunn domains with n0 = 3× 1017.

E (V/µm) v (105m/s) a (µm) Qint (C/m2) ρmax (C/m3) ρmin (C/m3)

10.40 2.50 0.202 3.01× 10−3 35118 -23422

8.80 3.00 0.158 1.91× 10−3 28459 -20346

7.70 3.50 0.140 1.36× 10−3 22424 -17081

6.70 4.00 0.132 9.90× 10−4 17000 -13541

5.90 4.50 0.138 6.65× 10−4 11200 -9660

It was demonstrated above that a slight increase in bulk doping concentration n0

can make a significant improvement in SPR power density. Therefore the final set of

InN simulation experiments focus on the best-case scenario with n0 = 3×1017 ion/cc.

The same set of applied field conditions as for the n0 = 1 × 1017 ion/cc case were
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repeated. An extra field condition with velocity v = 3.5 × 105 m/s was added, as

shown in Table 5.3. The domains are plotted in Figure 5.15.

Figure 5.15: Gunn domains in higher-doped InN (n0 = 3 × 1017 ion/cc) at several
drift velocities – compare to n0 = 1× 1017 ion/cc domains in Figure 5.8.

The same experimental conditions and design criteria were followed as has been

the case in previous cases. The SPR power density was found to behave in a manner

now seen to be typical for the Smith-Purcell device – strong high-frequency rolloff,

a peak at moderately low frequency, and slight tooth-limited low-frequency rolloff.

The SPR power density data is plotted in Figure 5.16 as a function of frequency and

domain velocity. The peak power density is found to be 3.65 µW/µm at 0.28 THz.

The highest device frequency was 2.5 THz, with power density 0.01 µW/µm.

Assuming a 100 µm-wide device, the SPR power generated across the 0.28−2.5 THz

range definitely has technological relevance – 0.4 mW at 0.28 THz and 1 µW at

2.5THz. The data of Figure 5.15 were in fact used to create Figure 1.4 in Section 1
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by selecting the maximum SPR power density at each frequency tested.

Since the Smith-Purcell device is intended to be incorporated into an integrated

circuit, it is expected that power from multiple devices can readily be combined, mak-

ing it a very attractive solution to the problem of building compact room-temperature

sources of THz radiation. It was mentioned above that an addition to the size ratio

analysis made it possible to describe a simple “universal scaling law” for the SPR

power density of the Smith-Purcell antenna device. In the following section, it is

shown that the integrated charge density Q is the key factor required.

Figure 5.16: Frequency performance for the 34 antenna devices used to determine
the efficacy of the Smith-Purcell concept from mm-wave into the low THz range. A
100 µm device would generate 365 µW at 0.28THz and 1µW at 2.5THz.

5.2.4 Antenna Power Density Scaling

In the discussion of bare devices, the definition of the size ratio ξ suggested that

the SPR power density data might be made to fall onto a “universal curve”. By
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plotting the normalized power density for each value of domain velocity v (or equiv-

alently, applied field E) corresponding to a different Gunn domain profile. Attempts

to fit the unnormalized power density data for bare devices to a simple model involv-

ing ξ, Q, or v were unsuccessful and this problem remains unsolved. It is conjectured

if the theory of device operation is improved enough to comprehend medium-scale

effects, then the short-device effects will be correctly resolved.

Subsequent size analysis of antenna devices with different bulk doping concen-

trations at the same applied field and similar values of integrated charge Q were

indeed able to be fit to a single curve as shown in Figure 5.14. Next, a large set of

34 different simulation experiments were run across the five different Gunn domain

profiles shown in Figure 5.15 and whose physical properties are tabulated in Table

5.3. It was found that a simple plot of SPR power density as a function of ξ resulted

in a family of curves – one for each domain, similar to what was observed in Figure

5.14.

At the beginning of this section, Figure 5.1 showed that SPR power density

increases as the square of the integrated charge density Q2. The bare devices did

not scale with Q2 as expected, but it was possible to scale the SPR power density

of the antenna devices by this method. The Q2 scaling was done in terms of the

largest domain (v = 2.5× 105 m/s). Its integrated charge value from Table 5.3 was

defined as Q0 = 3.01 × 10−3 C/m2. The scaled SPR power density values SPRscale

of subsequent domains were scaled according to:

SPRscale = SPRact

(

Q0

Qi

)2

(5.3)

where the subscript i cycles through the four domains in Table 5.3. The scaled SPR

power density values are then plotted as a function of the size ratio ξ, which results
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Figure 5.17: Data from the 34 (n0 = 3 × 1017 ion/cc) antenna devices in Figure
5.16 plotted by size ratio. When the SPR power density is scaled by the ratio of the
square of the integrated charge in the domain, a “universal curve” is realized.

in Figure 5.17. With the high quality of fit found by using Equation (5.3), it is

concluded that the operation of the Smith-Purcell antenna device is now reasonably

well understood, and that the goals set out in the research proposal have been fully

met.
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6. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

The combination of the transferred-electron (Gunn) effect and the Smith-Purcell

effect have been shown to offer a novel and compelling approach to the fabrication

of future millimeter-wave and terahertz electronic devices, as illustrated in Figure

1.1. The theory of operation is presented and has been demonstrated to be reason-

ably well-understood. Computer simulations of the device agree well with theory,

and design experiments have explored the capabilities of the approach. It is found

that the performance of the Smith-Purcell THz device compares favorably to other

semiconductor THz sources (Figure 1.4).

The main conclusion to draw from this research is that the simplicity of construc-

tion of the Smith-Purcell THz device makes it a very attractive alternative to more

established high-frequency solid-state devices, to which its performance is comparable.

The primary suggestion for future work is to experimentally confirm the high-

frequency responses predicted in this Dissertation.

6.1 Summary and Conclusions

The Introduction (Section 1) described the motivation for (and challenges of)

exploiting the unique physics available in the frequency range 0.3 − 3.0 THz. Ex-

amples were given of practical application spaces, such as spectroscopic analysis,

which exhibit a compelling need for compact THz sources with at least microwatt

power output levels. A brief survey of current state-of-the-art semiconductor THz

sources was presented in which the technical limitations of the various approaches

were noted.

Section 1 made the case for the conclusion that clear paths to manufacturability

and high yield are key evaluation criteria for any semiconductor device. This is due
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to the practical reality that unit cost has historically determined the extent to which

new semiconductor technologies have gained widespread application. Figure 1.1 il-

lustrates the proposed concept for a novel room-temperature semiconductor device

capable of generating technologically relevant amounts of high-frequency electromag-

netic radiation, in which the transferred-electron (or Gunn) effect is used to create

compact packets of moving space charge. The moving charge packets (Gunn domains)

travel under and very near to a metallic grating with (sub)micron dimensions, which

cause induced image currents to flow in the grating teeth. These periodic image

currents then radiate via the Smith-Purcell effect with frequency in the 0.25 − 2.5

THz range.

Section 2 provided an explanation of the transferred-electron effect, which is also

eponymously known as the Gunn effect for the first researcher to report experimental

evidence of the phenomenon. The Gunn effect is observed as a spontaneous change

in the charge transport properties of certain semiconductor crystals. The effect was

theoretically predicted by Ridley, Watkins, and Hilsum. They predicted that direct-

gap bandgap materials whose band diagrams have satellite valleys with effective mass

higher than that found in the main valley would experience negative differential

resistivity (NDR) at high applied electric field. They predicted that the onset of

NDR in such a material would produce an instability in the conduction current and

electric field distribution in the crystal.

This instability was predicted to manifest as a free-traveling dipole layer (called

a domain) moving through the crystal, and that the cyclic production of these

dipole domains would cause the spontaneous DC-to-RF behavior observed by Gunn.

Butcher, Fawcett, and Hilsum provided a straightforward numerical method to cal-

culate the physical properties of the domain. The main conclusion from Section 2 is

that an accurate implementation of the Butcher-Fawcett domain-calculation method
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is used for this research.

Section 3 provided the theoretical background for the Smith-Purcell effect, in

which a uniformly-moving charge generates electromagnetic radiation when it passes

near to a metallic diffraction grating. The distinction was made between spontaneous

(incoherent single-electron) and stimulated (coherent many-electron) Smith-Purcell

radiation. It was noted that spontaneous Smith-Purcell radiation had previously been

observed in semiconductors, but only in very pure GaAs samples at low temperature,

with extremely low power. The connection was made that the Gunn effect potentially

provided a method by which stimulated Smith-Purcell radiation could be generated

from a semiconductor device.

First-principles calculations were made of the Smith-Purcell radiation for the spe-

cial case of a semiconductor device – non-relativistic electron speed and extremely

small impact parameter (charge-grating distance). It was shown that under these

conditions there was an exact closed-form solution for the vector potential that accu-

rately captured the expected behavior of a single charge, as presented in Appendix

A. The primary conclusion from Section 3 was that an exact theoretical expression

for the Smith-Purcell electric field of a single charge was known.

Section 4 introduced the computer simulation methodology in detail and investi-

gated to what extent simulation agreed with theory. It was shown that superposition

of the electric field allowed the single-charge theory of Section 3 to be applied to

the Gunn domains calculated with the methods of Section 2. When these analytic

methods were combined to calculate the radiated electric field, it was found that

qualitative agreement with simulation was very good. It was then demonstrated

that calibrations of the analytic model resulted in reasonable quantitative agreement

with simulation. The main conclusion from Section 4 was that theory and simulation

agreed well enough for the purposes of this research, but that opportunities exist for
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future improvement in both aspects.

Section 5 presented the results of the research, both for bare Smith-Purcell THz

devices and for devices with integrated dipole antennas. The Smith-Purcell radiation

(SPR) power density was studied as a function of all the design parameters relevant

to future experimental work. Non-physical experiments in which the Gunn domain

was artificially manipulated showed that the power density varied as the fourth power

of domain velocity v4 and as the square of the integrated domain charge Q2. This led

to the first conclusion that The (sub)micron radiative portion of the Smith-Purcell

device behaves as a point Larmor dipole source.

Next it was found that the power density of the bare devices varied with the

square of the diode length L2, which is the expected behavior for a short dipole.

However, this discovery confirmed the previous conclusion that the theoretical meth-

ods need improvement. A sharper conclusion is thus reached that the single-charge

theory does not correctly “comprehend” the length of the grating to which it is ap-

plied. Analysis of the length dependence of the bare devices allowed the RF-to-THz

conversion efficiency to be estimated in the range 0.3%− 3.0%, which is comparable

with the DC-to-RF conversion of regular Gunn diodes operating in the dipole-transit

oscillation mode.

The SPR power density was found to decrease exponentially with increasing

spacer thickness b – the measure of the impact parameter – the charge-distance

separation mentioned above. It it concluded that the solid-state device displays the

identical response to impact parameter to that of traditional vacuum Smith-Purcell

devices. The power density response to diode thickness showed that there is an

optimal thickness above which the power density declines.

Compiling the results of several systematic studies on bare devices led to the

analysis of power density as a function of the size ratio ξ = ℓ/a of the grating tooth
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ℓ and the domain accumulation width a. The primary conclusions from these results

are that bare devices may find some practical applications and that the bare devices

have a significant sensitivity to diode length.

The final portions of Section 5 investigate the SPR power density response of

Smith-Purcell devices with built-in half-wave dipole antennas. It was found that the

antenna devices do not have the severe sensitivity to device length seen in the bare

devices. As a result, it was possible to discover the “universal scaling law” involving

only the size ratio and the integrated domain charge. The main conclusion is that

Smith-Purcell devices can be designed with hundreds of µW at 0.3 THz and in excess

of 1 µW at 2.5 THz.

6.2 Suggestions for Future Research

The scope of research presented in this Dissertation demonstrates the viability of

a simple room-temperature, solid-state semiconductor device that can operate into

the terahertz range. It can be implemented in a very straightforward manner into

any existing compound-semiconductor process technology. It is expected that by

using novel epitaxial deposition techniques it can also readily be incorporated in to

mainstream silicon CMOS processes as well. Any development path from device

concept to mainstream manufacturing necessarily implies the existence of a complex

(and usually arduous) sequence of projects. Therefore it is appropriate that in closing,

a few of the highest-impact opportunities be highlighted.

The most obvious project to undertake is to experimentally verify the predictions

of this research. A planar Gunn diode is arguably the single easiest semiconductor

device in the world to build – it’s a block with two contacts. Therefore it should

be extremely simple to fabricate a planar Gunn diode with a thin dielectric cover

and a patterned metallic grating. The literature provides many examples of how
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to measure the domain characteristics. The methods developed in this research can

readily convert those measurements into the expected SPR power density generated

by the device. Moreover, measurement methods for the empirical radiated power

density are well-known for all frequencies accessible to the Smith-Purcell device. It

is hoped that within the next 1-2 years that proof of concept is established.

The simple analytic model correctly demonstrates the basic physical mechanisms

of device operation, as discussed in Section 5. Nonetheless, it was shown that the

“toy model” developed herein is insufficient to quantitatively predict the output elec-

tric field under all conditions. Therefore it may be of interest for future researchers

to return to the basic assumptions laid out in Sections 2 and 3 to develop a more so-

phisticated device model. Ideally, the need for a separate equal-areas solver would be

eliminated in favor of a first-principles multiphysics simulator working in conjunction

with a process simulator. This “bottoms-up” integration would be extremely useful

by accurately accounting for subtle changes in doping profile and local field gradients

due to process conditions.

Assuming that the Smith-Purcell device concept is experimentally verified, it is

expected that it will eventually be incorporated into a mainstream manufacturing

process flow. In this case, it will be expedient to develop a set of design tools adequate

for accurately modeling this device. The current simple model cannot automatically

determine the radiation resistance for a given set of device conditions. Therefore the

only current recourse is either to perform iterative electromagnetic simulation (as has

been done in this scope of research) or empirically determine the actual performance

by fabricating and testing a number of devices. Therefore “top-down” integration

with a circuit simulator would provide useful insight into how best to make practical

design choices.

As indicated in Sections 4 and 5, the current theoretical model “is not aware” of
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the size of the device in which it is embedded. Having a model that can comprehend

the mesoscale environment would prove useful for determining the tooth-to-tooth

variation in electric field of a given device. It is expected that incorporating the

Smith-Purcell device into practical integrated circuits will require this level of detail.

For example, this research has shown that the time-domain profile of the electric

field can be tailored by device design. The “spikiness” of the waveform generated by

the device determines the amount of harmonic content the wave contains. Depending

on the circuit in which the device is placed, it may prove advantageous to accept lower

power density in order to reduce off-frequency components that can be fed into an

amplifier and increase noise.

All these opportunities hinge upon the main conclusion that this concept be

aggressively pursued as an experimental project. In closing, it is hoped that this

work find practical use for future mainstream applications in the coming terahertz

age.
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APPENDIX A

PULSE FUNCTION F AND SPIKE FUNCTION G

Section 3 contains derivations for the vector and scalar potentials of the periodic

image charge packet induced by a single charge on the teeth of a nearby metallic

grating. These derivations led to the definition of the“variable pulse function”F (r, t).

In 3D, F (r, t) was defined in terms of the reduced velocity β = v/c as:

F (r, t) =

(

1

π

)

L
P
−1
∑

n=0

{

tan−1

[

vt− (βr + nP )

b

]

− tan−1

[

vt− (βr + nP + ℓ)

b

] }

The same function arises in 2D calculations, with the only difference being in the

definition of the observation point P . In 2D, P is located at ρ instead of r:

F (ρ, t) =

(

1

π

)

L
P
−1
∑

n=0

{

tan−1

[

vt− (βρ+ nP )

b

]

− tan−1

[

vt− (βρ+ nP + ℓ)

b

] }

This Appendix explores the properties of this function and its derivatives in detail.

Focusing on the 2D case, F (ρ, t) is rewritten to highlight the arguments:

F (ρ, t) =

(

1

π

)

L
P
−1
∑

n=0

[

tan−1(a1)− tan−1(a2)

]

(A.1)

where a1 =

(

1

b

)(

vt− (βρ+ nP )

)

and a2 =

(

1

b

)(

vt− (βρ+ nP + ℓ)

)
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Each term of the finite sum in F (ρ, t) defined in Equation (A.1) corresponds

to a single pulse whose specific shape depends on the magnitudes of a1 and a2.

The sum over all grating teeth yields a finite train of pulses. In the limit b → 0,

F (ρ, t) becomes a train of rectangular unit pulses. Recall that the inverse tangent

function tan−1(θ) approaches −π/2 as its argument θ → −∞ and π/2 as θ → +∞.

Therefore, dividing the inverse tangent by π gives a function that approximates a

unit step function from −1/2 to +1/2 and crosses the x-axis when its argument is

equal to zero. The “sharpness” of the step function is determined by the “strength”

of its argument as shown in Figure A.1, using a real parameter α to increase the

strength of the argument.

Figure A.1: The inverse tangent divided by π approximates a unit step function.
The approximation improves with increasing strength of the argument α.

Therefore, the difference of a pair of inverse tangents whose arguments differ by

an amount ǫ approximates a rectangular pulse of unit height and width ǫ when the

arguments are “strong”, as illustrated in Figure A.2.
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Figure A.2: Difference of inverse tangents from Figure A.1 and their images trans-
lated along the x-axis by a value ǫ = 1.

Rewriting the arguments of the inverse tangent terms in Equation (A.1) in terms

of the grating duty factor (or grating density) δ, the Smith-Purcell radiation fre-

quency f and associated wavelength λ:

δ =
ℓ

P
(A.2)

f =
v

P
(A.3)

λ =
cP

v
(A.4)

These expressions for a1 and a2 perhaps more clearly illustrate the relationship of

F (ρ, t) to the device geometry:

a1 =

(

β

b

)(

ct− r − nλ

)

(A.5)

a2 =

(

β

b

)(

ct− r − nλ− δλ

)

(A.6)
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Comparison to Figure A.2 with the definitions:

α =
β

b
(A.7)

θ = ct− r − nλ (A.8)

ǫ = δλ (A.9)

shows that each term in the sum of Equation (A.1) is indeed a pulse of width δλ.

Moreover, the form of the arguments as given in Equations (A.5) and (A.6) show

the physical interpretation of the wave train described by F (ρ, t). At fixed time t,

the maximum possible signal distance for an electromagnetic wave is ct. The leading

edges of each pulse occurs inside this maximum distance with spatial periodicity λ

as expected, since the edge of the pulse is zero every time that r = ct − nλ. The

trailing edges follow the same trend a spatial distance δλ behind the leading edges.

The interpretation follows in exactly the same manner when looking at F (ρ, t)

as a function of time at fixed observation distance r. The arguments a1 and a2 can

be rearranged in a “time-centric” format by recombining β in Equations (A.5) and

(A.6) with the spatial terms. The reciprocal of the Smith-Purcell frequency f given

in Equation (A.3) is its associated time period T = 1/f = P/v. In terms of T , the

leading-edge argument a1 is seen to be zero whenever t = R/c + nT . The trailing

edge of each pulse is delayed by a time ℓ/v relative to the leading edge.

The above discussion illustrates the “switching” behavior of the vector and scalar

potentials identified in Section 3 for small impact parameter b. Another interesting

property of F (ρ, t) is that it also displays the intuitively correct “smearing” behavior

in the opposite limit of large impact parameter b. Figure A.3 illustrates how increas-

ing the charge-grating distance b has the intuitively expected effect of spreading out

or “smearing” the image charge across multiple grating teeth.
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For definiteness consider the case of a four-tooth grating observed at fixed obser-

vation distance ρ. At small values of impact parameter b, each tooth is well-defined

and F (t) approaches its maximum value of unity. At progressively larger values of

b, the pulses from adjacent grating teeth begin to interfere with each other as the

image charge spreads across multiple teeth.

Figure A.3: Increasing b at fixed observation distance ρ “spreads out” the image
charge induced on the grating teeth. When b is comparable to the grating period P ,
the charge induces no appreciable image charge on the grating.

At large values of the impact parameter b – specifically when the charge-grating

separation becomes comparable to the grating period P – the charge does not interact

with the grating at all. There is only a mimimal rise in F (t) as the charge passes the

grating, with no discernible tooth features visible.

Calculation of the electric field from the vector and scalar potentials requires the
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computation of both the time and space derivatives of F (ρ, t). The above discussion

showed that in the limit of small b, F (ρ, t) represents a step-like function in both

space and time. Therefore it is reasonable to expect that the partial derivatives of

F (ρ, t) with respect to ρ and t will involve a “delta-like” function in the same limit.

It is useful to first recall the derivative of the inverse tangent function:

d

dx
tan−1(αx) =

α

1 + (αx)2
(A.10)

The partial derivative of F (ρ, t) with respect to the time t is

∂F

∂t
=

(

1

π

)(

v

b

)

L
P
−1
∑

n=0

{

1

1 +
[vt−(βρ+nP )

b

]2 −
1

1 +
[vt−(βρ+nP+ℓ)

b

]2

}

(A.11)

∂F

∂t
=

v

πb
G(ρ, t) (A.12)

Similarly, the partial derivative of F (ρ, t) with respect to ρ is

∂F

∂ρ
=

(

1

π

)(

−β

b

)

L
P
−1
∑

n=0

{

1

1 +
[vt−(βρ+nP )

b

]2 −
1

1 +
[vt−(βρ+nP+ℓ)

b

]2

}

(A.13)

∂F

∂ρ
= −

(

β

πb

)

G(ρ, t) = −
1

c

∂F

∂t
(A.14)

Both partial derivatives involve the function G(ρ, t), defined as

G(ρ, t) =

L
P
−1
∑

n=0

{

1

1 +
[

vt−(βρ+nP )
b

]2 −
1

1 +
[

vt−(βρ+nP+ℓ)
b

]2

}

(A.15)

The function G(ρ, t) describes an alternating series of positive and negative spikes
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as shown in Figure A.4. In the limit of a “very strong” argument (b → 0), the spikes

in G(ρ, t) approach unit height, corresponding to the rising and falling edges of the

pulses of F (ρ, t). At this point, the reader may wonder why so much effort has been

made to so exhaustively document such seemingly anticlimactic (and perhaps even

obvious) results. There are two reasons – the first is to clearly illustrate the simplicity

of the physics behind the Smith-Purcell effect at small b.

The second – and perhaps more important reason – is to demonstrate the wide

range of behaviors this simple theory satisfactorily explains. The results of the re-

search show that the design parameter space accessible by current and future process

technologies covers a wide frequency range. The simple theory developed herein al-

lows future analog designers and device engineers to specifically optimize output

waveforms for differentiated applications.

Figure A.4: G(ρ, t) defined in the derivation of the electric field generated by a point
charge interacting with a single grating tooth corresponding to the rectangular pulse
associated with the potential, as shown in Figure A.2.
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