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ABSTRACT 

 

A multiscale computational framework for multiphase composites considering 

damage is developed in this research. 

In micro-scale, micromechanics based homogenization methods are used to 

estimate effective elastic moduli of graded Ti2AlC/Al composites (GCMeCs) 

considering existence of damage (micro-voids). Then, in macro-scale, these properties 

are implemented in finite element model by using user material subroutine (UMAT) in 

Abaqus for numerical analysis of plate. 

In meso-scale, detailed 3D RVEs are created based on the microstructure of 

composites. Effective thermal and elastic properties are obtained from the corresponding 

FE models of 3D RVEs and compared with experimental results and micromechanics 

based homogenization methods. Two constitutive models are used to model plastic-

damage behavior of two IPCs regarding their different material properties of constituent 

phases: (1) Due to the ductile properties of constituent phases for stainless-steel/bronze 

IPCs, a widely used porous plasticity constitutive model, Gurson-Tvergaard-Needleman 

(GTN) model, is adopted to investigate elastoplastic-damage behavior of stainless-

steel/bronze IPCs. (2) For porous Ti2AlC, a continuum damage mechanics (CDM) based 

plastic-damage coupled constitutive model is used to study damage evolution in porous 

Ti2AlC, which can take distinct tensile and compressive inelastic behaviors of Ti2AlC 

into consideration. From the simulation results of FE models of 3D RVEs, it is found 

that: 
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 Porosity and interfacial layer with low effective thermal conductivity lowers the 

overall heat flux flowing through NiTi/Ti3SiC2 IPC. 

 The existence of thermal residual stress within stainless-steel/bronze IPCs leads to 

plastic deformation, especially in bronze phase, which further results in reduction of 

apparent moduli subjected to uniaxial tension. Nucleation of the new voids, which 

occurs at the second-phase particles by decohesion of the particle-matrix interface, 

has the main contribution to the overall damage. 

 For porous Ti2AlC with aligned ellipsoid-like pores, tensile stress plays a very 

important role in local damage of porous Ti2AlC due to the relatively low tensile 

strength and brittle-like tensile behavior of dense Ti2AlC. Different than typical 

porous ceramic, porous Ti2AlC fails in a quasi-brittle manner even with 30-40 vol. % 

porosity. The transversely isotropic material system has higher compressive strength 

in transverse direction than that in longitudinal direction. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Background 

Graded Ceramic/Metal Composite (GCMeC) is an innovative design integrating 

functionally graded ceramics (MAX phases) and metal in one material system, which is 

used to develop weight efficient aerospace structures for extreme environments with 

increased strength and durability. MAX phase is a family of ceramics consisting of more 

than 70 ternary carbides and nitrides (M is an early transition metal; A is an A-group 

element; and X stands for C and/or N) [1, 2]. The reason to select MAX phases as 

composed phase of GCMeC, e.g. Ti2AlC, Ti3SiC2, is that they have an unusual 

combination of both ceramic and metal properties: On one hand, like ceramics they have 

high temperature and oxidation-resistance [3], high stiffness [4], and low coefficient of 

thermal expansion [2]. On the other hand, due to their layered atomic nature, the 

presence of active slip systems, and the formation of heavily deformed lamellar bridges 

upon damage, MAX phases are relatively soft, readily machinable, thermal shock 

resistant and damage tolerant [1, 2] like metal. Moreover, they can dissipate mechanical 

energy during compressive cyclic loading at room temperature and have better creep 

resistance than most of the high-temperature metallic alloys [5]. 

Due to the common existence of defects (micro voids, cracks, and debonding) in 

GCMeCs which results from manufacturing process (e.g., bubbles in melting, 

incomplete infiltration etc.), and complex inelastic behavior (e.g., plastic-damage 
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behavior) of GCMeCs, a multiscale computational framework is needed to understand 

and predict the thermomechanical behavior of GCMeC material system with damage. 

The damage referred here includes all types of damages, including micro-scale defects 

and macro-scale damages, such as voids and cracks that formed under certain load 

condition. 

In micro-scale, micromechanics based homogenization methods can be used to 

obtain basic mechanical properties of multiphase composites considering defects, such 

as elastic moduli and coefficient of thermal expansion (CTE). However, the geometry 

representation of these methods is highly simplified and cannot efficiently reflect the 

microstructure of the given composite material systems. Therefore in meso-scale, 

representative volume element (RVE) method is adopted to create detailed model for 

multiphase composites based on their microstructures, especially for the interpenetrating 

phase composite (IPC) case when each constituent phase is interconnected in 3D space. 

In macro-scale, with the graded compositions of the constituent phases, GCMeC can be 

seen as functionally graded material (FGM). Furthermore, the mechanical properties 

obtained from micro- and meso-scale micromechanics based homogenization methods 

and RVE method can be implemented in macro-scale finite element model for structural 

analysis. A short introduction on functionally graded materials (FGMs) and 

interpenetrating phase composites (IPCs) is given below: 

Functionally graded materials (FGMs) were first developed in the mid-80s, and 

were used in thermal protection components in the aerospace and other industrial 

applications[6]. Unlike traditional laminate composites or composites with uniformly 
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distributed reinforcement phase(s), functionally graded materials are a new kind of 

engineered materials which has non-uniform distribution of reinforcement phase(s) 

varied in one or more directions spatially in microscopic scale. By using different sizes 

and shapes of the reinforcement phase(s), adjusting the gradient variation, and 

interchanging the characters of reinforcement and matrix phases, functionally graded 

materials could have continuous varied thermal and mechanical properties in 

macroscopic scale. This new concept in material science and mechanics of materials 

allows one to integrate the advances of different materials as well as structural 

consideration in a system design. Functionally graded materials have been widely used 

in aerospace and industrial applications which usually involving extreme work 

conditions. The concept of tailoring microstructural transition of different phases to 

optimize the temperature, deformation and stress distributions has also been used to 

enhance thermal fatigue resistance and life of ceramic thermal barrier coatings. Other 

benefits can be realized from the use of functionally graded architectures include 

fracture toughness enhancement in ceramic matrix composites through tailored 

interfaces and mismatch reduction in laminate composites by smoothing out the gradient 

transition among dissimilar layers. More other applications of functionally graded 

materials mentioned in [6] include solar energy conversion devices, dental implants and 

naturally occurring biological FGMs.  

Interpenetrating phase composites (IPCs) which are multi-phase composites with 

co-continuous phase structures can be seen as a part of the skeletal transition zone in the 

functionally graded materials. In two-phase IPCs, each constituent phase completely 
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interpenetrates through the composite microstructure in all three dimensions and 

contributes its own properties in a very independent manner to the overall properties of 

the composite, while the two phases are topologically interconnected and mutually 

reinforced in the three dimensions. IPCs have been experimentally shown to enhance 

elastic properties, as compared with discontinuously reinforced phase structures [7-9]. 

Different than the traditional composite material that usually have a continuous 

phase(matrix) with one or more discrete reinforcement phases, such as fibers, whiskers 

or particles, the continuity of each phase kept in the IPCs make them a truly 

multifunctional and highly durable material. Examples of the processing techniques used 

to produce IPCs include directed metal oxidation, spontaneous infiltration, squeeze 

casting, gas pressure assisted infiltration, self-propagating high-temperature synthesis 

(SHS), three-dimensional printing process and spark plasma sintering (SPS) [10-22]. 

Another material system studied here, porous MAX phase, can also be seen as IPC if 

porosity is treated as a constituent phase. It has drawn author’s attention due to their 

light weight, open-cell foam structure and application as preforms of multi-phase IPC 

using infiltration fabrication technique [23]. Therefore in this dissertation, regarding 

scale and geometry, the thermomechanical behavior of following four composite 

material systems has been studied: 

 GCMeCs (macro-scale): Functionally graded Ti2AlC/Al rectangular plate. 

 IPCs (meso-scale): NiTi/Ti3SiC2 IPC, stainless-steel/bronze IPCs and porous Ti2AlC. 

Literatures on these topics of interest in this dissertation are reviewed and 

summarized below. 
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1.2 Literature review 

1.2.1 Micromechanics based homogenization methods 

Functionally graded material (FGM) can be treated as a material system 

microscopically contains a particle–matrix zone with dispersed particles filled in a 

continuous matrix, followed by a skeletal transition zone, then by another particle–

matrix zone with interchanged phases of particle and matrix [24]. As mentioned before, 

the skeletal transition zone is also can be seen as interpenetrating phase composites 

(IPCs), which will be discussed later. 

Efforts at predicting the effective elastic moduli over the entire composition 

range for FGMs had limited success. The micromechanics based homogenization 

methods that have been used to estimate the elastic moduli of such composites can be 

grouped into two categories. In the first category, the composite structure is not treated 

as being fixed: Hashin and Shtrikman (H-S bounds) [25] considered a random 

discontinuous sphere inclusion assembly, Torquato et al. [26] used the effective medium 

approximation (EMA), researchers [27, 28] considered a random contacting elliptical 

inclusion assembly, and the contiguity approach used by Fan et al.[29] considers a 

random distribution of discontinuous inclusions. In the second category, the composite 

structure is fixed and is usually modeled by a repeating geometry: the rule-of-mixture 

iso-stress and iso-strain approximations consider an alternating layer of each phase 

assembly [30], Ravichandran [31] and Paul [32] considered a discontinuous unit-cell 

assembly, while Tuchinskii considers a co-continuous unit-cell assembly [33]. 
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Comparing to the models of predicting effective elastic constant of composites, 

models for predicting the coefficient of thermal expansion (CTE) are limited. The 

simplest model to estimate the CTE of two-phase materials is the rule of mixtures 

(ROM). Kerner [34] and Schapery [35] proposed models for particle-reinforced 

composites. Also the H-S bounds for elastic constants were used in the equations for 

coefficient of thermal expansion, then the bounds for CTE are established in [36]. For 

finite element model considering micro damage, Bruck [37] modified ROM model and 

Schapery model to obtain the effective CTE of the damaged particle-reinforced 

composites. 

Micromechanics methods have also been used to analyze linear thermoelastic 

responses of functionally graded materials. Aboudi et al. [6, 38] and Pindera et al. [39] 

presented higher order micromechanical models for analyzing steady linear heat 

conduction and thermo-elastic deformations of functionally graded materials. Higher 

order functions of the field quantities were defined for each constituent. Closed form 

solutions of stress and deformation fields in the functionally graded beams and plates 

obtained from the higher order theory were comparable to the ones calculated using 

finite element method. Mori-Tanaka method and self-consistent micromechanical 

models have been used to analyze thermoelastic responses of FGMs, e.g., Reiter et al. 

[40], Reddy and Cheng [41], and Vel and Batra [42]. Gasik [43] derived a 

micromechanical model for analyzing FGMs with arbitrary distributions of the 

constituents. The FGMs microstructures were idealized by piecewise homogeneous 

materials (sub cells) having cubic inclusions. Each sub cell corresponded to fixed 
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volume content. The calculated effective elastic constant and coefficient of thermal 

expansion were compared with the ones obtained using Mori–Tanaka, Voigt, and 

Kerner’s models. Ueda and Gasik [44] and Ueda [45] have extended the Gasik [43] 

micro model to analyze transient heat conduction and thermal stresses in FGMs having 

elastic and inelastic constituents. Parametric studies on the effects of material gradations 

on the overall stress and deformation fields were performed. In [24, 46], Yin et al. 

formulated effective linear coefficient of thermal expansion and effective elastic material 

constants, i.e., Young’s moduli and Poisson’s ratio, of FGMs using micromechanical 

models. The particle interactions were considered in obtaining the effective material 

properties. The properties of the constituents were assumed independent on temperature 

fields (linear behaviors). The calculated effective material properties were verified with 

experimental data. It was shown that particle interactions needed to be considered when 

the volume contents of the particles were relatively high. 

 

1.2.2 Thermal conductivity of IPC 

Micromechanics methods have been used to predict the effective thermal 

properties of composites [47]. For example, Benveniste and Miloh [48] predicted the 

effective conductivity of a composite media where temperature discontinuity at 

constituent interfaces reveals thermal boundary resistance. Böhm and Nogales [49] used 

a Mori-Tanaka scheme to predict the effective thermal conductivity of spherical particle 

reinforced composites with interfacial resistance and prescribed particle size 

distributions. Dunn and Taya [50] developed an analytical model to study the effective 
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thermal conductivity of multiphase composites reinforced with coated fillers considering 

the influence of thermal resistance at the filler-matrix interface. All the studies 

mentioned are based on composites with one phase as matrix and a secondary phase as 

reinforcement. The NiTi/Ti3SiC2 composite, however, is an interpenetrating phase 

composite (IPC), and the presence of pores and reaction interfaces in this composite 

makes it an even more complicated, four-component (i.e. Ti3SiC2, NiTi, pore, and 

interface) system. No computational work has been done on the effective thermal 

conductivity of IPC with such a complex microstructural characteristics. 

 

1.2.3 Mechanical response of IPC 

A large amount of work has been done on characterization and modeling of IPCs 

focusing on elastic effective properties of the composites. Poniznik in [51] gave a review 

on estimating effective elastic properties of IPCs. For analytical approximation, an 

approach based on Voigt and Reuss models were developed by Tuchinskii [33], Zahl et 

al. [52], Ravichandran [53, 54], and Feng et al. [55], among others. Tuchinskii [33] 

proposed a unit cell method designed to calculate bounds for effective elastic constants 

of a bimetallic composite. The unit cell was considered with an interpenetrating phase in 

the shapes of a 3D cross section. According to different ways of dividing the unit cell 

into sub-layers, different results were obtained based on the iso-stress and iso-strain 

assumptions that lead to bounds for effective elastic properties. Later in Ravichandran’s 

study [53, 54], simplified unit-cell models of the microstructure was used to predict the 

deformation and creep behavior of interpenetrating phase composites. Simple iso-stress 
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and iso-strain models of deformation of bimaterials have been employed for this purpose. 

Feng [55] developed a model for calculating the effective elastic properties of 

anisotropic multiphase composites, containing both interpenetrating phases and 

disconnected inclusions using the Mori-Tanaka method, the iso-stress, and iso-strain 

assumptions. Another approach is presented in the work of Schmauder et al. [56] and 

Torquto [57], where the influence of microstructure of the phases on the effective elastic 

properties of composites was addressed. 

Following these analytical approximations, numerical methods, such as the finite 

element method, were used for calculation of effective elastic macroscopic properties 

from microstructural data. Feng et al. [55] simulated the elastic behavior of a co-

continuous stainless-steel/bronze composite. Mishnaevsky [58] represented the irregular 

microstructure of a composite by a number of prescribed or randomly generated square 

(2D) and cubic (3D) cells. Poniznik [51] used the randomly generated voxels structure 

FE model to simulate a real Al2O3-Cu microstructure, which is acquired from the 

computer tomography images, compared the results with analytical models such as the 

unit cell method, Tuchinskii bounds and Hashin-Shtrikman bounds [25]. 

Inelastic behavior of IPCs, such as plastic or viscoplastic behavior has also been 

studied by some researchers. Feng et al. [59] extended their model to characterize the 

elastoplastic behavior of co-continuous stainless-steel/bronze composites, then compared 

the analytical model with the FE analysis results. In Kouzeli and Dunand’s work [7], a 

self-consistent approach was used to model the composites consisting of a thermo-

elastoplastic aluminum matrix with 34 and 37 vol.% sub-micron Al2O3 particles in 
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compression for two reinforcement architectures: interconnected and discontinuous. The 

classical self-consistent and the three-phase self-consistent models were used for the 

interconnected and discontinuous architectures, respectively. They found that at small 

strains the interconnected reinforcement becomes increasingly more effective at 

strengthening the composites at elevated temperatures. 

 

1.2.4 Porous plasticity 

The above studies on effective elastic and inelastic properties of IPCs were 

conducted mainly based on changing the material constants and volume fraction of each 

phase. However, other factors like geometrical topology of the phases, thermal residual 

stress due to processing, and damage such as debonding at interface of phases, micro-

voids and micro-cracks may also affect the effective properties of the composites. For 

example, Wegner and Gibson [21] conducted experimental and modeling investigations 

on the mechanical and thermal expansion properties of stainless-steel/bronze composites, 

and they found from the results of nonlinear FE analyses that the existence of thermal 

residual stress and porosity contribute to a reduction in effective elastic moduli of these 

composites. However, the damage effect was ignored in the FE analysis even though the 

composites failed at very small strains compared to their constituent materials. Therefore, 

it is also very important to understand the link between damage and the mechanical 

properties of IPCs, which requests an understanding on the damage mechanisms, how 

the damage influence the effective properties, as well as how damage couples with other 

mechanical behavior. 
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One of the most widely used plasticity-damage models to describe ductile rupture 

of composite materials is the Gurson-Tvergaard-Needleman model, which was first 

developed by Gurson [60] for a problem with spherical void growing in a rigid-perfectly 

plastic matrix and later modified by Tvergaard and Needleman [61, 62] to completely 

model void growth, nucleation and coalescence in ductile rupture process of porous 

materials. For better ductile fracture models dealing with various material systems, there 

have been some extensions to Gurson model. For example, Nahshon and Hutchinson in 

[63] modified Gurson-Tvergaard-Needleman model to account for shear-dominated 

fracture with low triaxiality. The issues with void coalescent in failure criterion were 

improved by some researchers in [64-69]. More accurate hardening descriptions of 

matrix material were proposed in [70, 71] considering kinematic hardening, and in [72] 

with improved strain hardening exponents. Extended Gurson-type rate-dependent porous 

plastic models were developed in [73-76]. For the effects of void shape and size, the 

work in [77-79] extended Gurson-type model to account for ellipsoidal void shape, 

referring as Gologanu–Leblond–Devaux model, and later in [64, 67, 80-84] plastic 

anisotropy resulting from non-spherical void shape, aspect ratio and orientation were 

studied. The effect of void size was studied in [85, 86]. 

As a result, Gurson-type of models were widely used in modeling ductile rupture 

of various material systems: examples like metallic alloys [73, 75, 76, 86-94], polymers 

[95-97] and Particle reinforced Metal Matrix composites [98, 99]. 
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1.2.5 Continuum damage mechanics based plasticity-damage model 

Recently, porous MAX phases have been studied due to their light weight, open-

cell foam structure, tailorable thermo-mechanical properties [100-103], and application 

as preforms of multi-phase composites [23]. All of these studies focused on design, 

manufacture and properties of the porous MAX phases. Systematic numerical study of 

porous MAX phases is needed to optimize the microstructure since the porous 

microstructure leads to stress and strain concentration near pores which will result in 

strength and damage tolerance reduction. 

The crystalline defects in Ti2AlC are basal plane dislocations, which are large in 

amount, multiply and are mobile even low temperature (as low as 77K). Therefore, the 

ductility of Ti2AlC is in between of typical ceramic and metal. The formation of kink 

bands (KB) under compressive loading plays a central role in deformation of Ti2AlC, 

which also results in the distinct tensile and compressive behaviors (i.e. Ti2AlC is more 

brittle in tension than in compression at room temperature) [104]. Therefore, a plastic-

damage constitutive module that can capture the distinct tensile and compressive 

behavior of a quasi-brittle material system should be used.  

Coupled plasticity and damage constitutive models are usually combinations of 

isotropic hardening and either isotropic or anisotropic damage. Cicekli et al. in [105] 

gave a review of these constitutive models. In general, they can be divided into two 

categories: One category, the stress-based plasticity is formulated in the effective 

(undamaged) configuration, e.g. [106-109]. The second category, the stress-based 

plasticity is formulated in the nominal (damaged) configuration and the nominal stress is 
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defined as the macro-scale stress work on both effective and nominal configuration, e.g. 

[110-115]. 

In this study, a coupled plasticity-damage constitutive model belongs to the first 

category mentioned above which was formulated by Cicekli et al. [105] and modified by 

Abu Al-Rub and Kim [116] is used. In this constitutive model, the Lubliner yield 

criterion [114] expressed in the effective (undamaged) configuration is adopted to 

predict the plastic behavior of porous Ti2AlC. Furthermore, the non-associative plasticity 

flow rule based on the Drucker–Prager potential and power law damage evolution 

functions with two distinct damage evolution surfaces: tensile and compressive damage 

surfaces are included in this constitutive model. 

 

1.3 Research objectives 

The main objective of this dissertation is to estimate effective thermomechanical 

properties and investigate the plastic-damage behavior of multi-phase composite 

material systems with damage. This contains twofold steps: one is to understand the 

influence of damage on the strength of composite materials, and the other one is to 

develop a framework for interpreting measurements of damage evolution. Therefore, in 

details the objectives are: 

 Objective I: Estimation of effective elastic moduli of multiphase composites 

using micromechanics based homogenization methods. 
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Micromechanics based homogenization methods, such as Mori-Tanaka method, unit 

cell method, and Hashin-Shtrikman bounds etc., are used to estimate the effective 

elastic moduli of multiphase composites with various phase compositions. 

 Objective II: Development of 3D RVEs based on microstructures of the 

multiphase composites. 

To make up for the deficiencies of homogenization methods for their highly 

simplified geometry and certain assumptions made in derivation (such as dilute 

assumption for Mori-Tanaka method), detailed 3D RVEs are developed based on the 

microstructures of the given multiphase composites. 

 Objective III: Estimation of effective thermomechanical properties of 

multiphase composites using 3D RVE s and FE method. 

To validate the 3D RVEs created, effective thermomechanical properties of 

composite material systems are obtained from the corresponding 3D RVEs using 

finite element method and compared with those obtained micromechanics based 

homogenization methods and experimental results. 

 Objective IV: Modeling of plastic-damage behavior of composite material 

systems using 3D RVEs and proper constitutive models. 

A porous plasticity constitutive model for ductile rupture of stainless-steel/bronze 

IPCs and a plastic-damage constitutive model for porous Ti2AlC accounting for 

different tensile and compressive behaviors of dense Ti2AlC are used in this study to 

investigate the plastic-damage behaviors for the corresponding material systems. 
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1.4 Outline of the dissertation 

The dissertation consists of 6 Chapters and is organized as follows: 

 Chapter I presents the background and objectives of this research and a detailed 

literature review on the topics of interests is given. 

 Chapter II estimates the effective elastic moduli of two-phase functionally graded 

material with pre-existing damage using micromechanics based methods. Then these 

properties are implemented in finite element model to study the mechanical response 

of a graded Ti2AlC/Al rectangular plate. 

 Chapter III develops 3D RVEs of stainless-steel/bronze interpenetrating phase 

composites based on their microstructure, predicts the effective elastic and 

elastoplastic properties of the undamaged given IPCs. Then these effective properties 

are used in Gurson-Tvergaard-Needleman (GTN) constitutive model to study the 

elastoplastic behavior and damage evolution of the IPCs considering micro-damage, 

such as micro-voids and debonding at the interface of phases. 

 Chapter IV creates 3D RVEs of NiTi/Ti3SiC2 composite consists of four phases and 

estimates the effective temperature-dependent thermal conductivity of the composite 

considering the effects of existence of porosity within Ti3SiC2 phase and interfacial 

layer forming between Ti3SiC2 phase and NiTi phase. 

 Chapter V builds two groups of 3D RVEs of porous Ti2AlC regarding the shape of 

pores and investigates the effects of porosity volume fraction, pore size and shape on 

overall elastic, plastic-damage behavior of porous Ti2AlC. A coupled plasticity-

damage constitutive model developed by Cicekli et al.[105] and modified by Abu 
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Al-Rub and Kim [116] is adopted to simulate the plastic-damage behavior of porous 

Ti2AlC. 

 Chapter VI summarizes the research works in this dissertation and draws some 

conclusions from the numerical results. 
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CHAPTER II 

MECHANICAL RESPONSE OF FUNCTIONALLY GRADED RECTANGULAR 

PLATE WITH PRE EXISTING MICRO-DAMAGE 

 

2.1 Estimation of effective mechanical properties 

A micromechanics based unit cell method [59] is used in obtaining the effective 

elastic moduli along the graded direction for isotropic case. The unit cell geometry in 

this method [59] for a macroscopically isotropic, two-phase interpenetrating phase 

composite is shown in Figure 1. 

 

 

 

Figure 1: Unit cell method for two-phase interpenetrating phase composites. 

 

 

The effective elastic constants are obtained by decomposing the unit cell into 

parallel and series sub-cells based on a combination of iso-stress and iso-strain 
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assumptions. For an isotropic composite it is assumed that all directions of 

decomposition are equal and after averaging over the whole composite volume the 

differences between the results of decomposition in different directions will vanish. 

Assuming in Figure 1 a1=b1=c1, and define a non-dimensional quantity  1 1 2a a a a  , 

then the effective Young’s modulus of the two-phase IPC can be expressed as [59]: 

  
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where the subscripts “r” and “m” refer to the reinforcement extending in three 

dimensions and the matrix, respectively. The same model is used for computing the 

effective shear modulus, 
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Similarly, for a three-phase interpenetrating phase composite, define another non-

dimensional quantity  1 1 2 1 1 1 with b a a a a b c         for the third phase, the effective 

Young’s modulus and shear modulus can be written as: 
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where the subscripts “1” and “2” refer to the two reinforcement phases extending in 

three dimensions. 

As an example, the effective elastic moduli of Ti2AlC/Al composite with varied 

volume fraction of Ti2AlC are plotted in Figure 2. The material properties of the two 

constituent phases are listed in Table 1. 

 

 

Table 1: Material constants of constituent phases for Ti2AlC/Al composite. 

Material 
Young’s modulus 

E (GPa) 
Poisson’s ratio v 

Al 70 0.346 

Ti2AlC 278 0.17 
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Figure 2: Effective elastic moduli of Ti2AlC/Al composite with varied volume fraction 

of Ti2AlC obtained from unit cell method. 

 

 

Comparisons of effective Young’s modulus as a function of volume fraction of 

Ti2AlC calculated using the Voigt, Reuss, Mori-Tanaka methods and unit cell method 

for Ti2AlC/Al composites are plotted in Figure 3. It can be seen that there is only one 

curve for unit cell method which lies between two curves for the Mori-Tanaka method. 

This is because the shape of the blue part and shape of the transparent part in the cube 

shown in Figure 1 are similar, and therefore the formulations of 
cE and 

cG are symmetric 

regarding the two phases in Eq. (2.1) and Eq. (2.2). In other words, not like other classic 
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micromechanics based homogenization methods, the results will be the same for treating 

either one of the two phases as reinforcement for unit cell method. 

 

 

 

Figure 3: Effective Young’s moduli vs. volume fraction of Ti2AlC for Ti2AlC/Al 

composites. 

 

 

Unit cell method also has the capability of including inclusion type of phases by 

utilizing the Mori-Tanaka method with iso-stress, iso-strain assumptions. Here we 
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considering the above two-phase model as a hybrid matrix (or averaged media), and 

introduce the micro damage (micro voids and micro cracks) into the model by using 

spherical voids as the third phase. The latter are randomly distributed in interpenetrating 

two-phase hybrid matrix. 

For voids, consider the limiting case of 1 0 1 0/ 0, / 0G G K K  , where “1” 

refer to voids, and “0” refer to two-phase hybrid matrix, then the Mori-Tanaka method 

[117] reduces to 
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where df is the volume fraction of voids, 
0K and 

0G are the bulk and shear modulus of 

hybrid matrix which can be obtained from unit cell method of interpenetrating two-phase 

composites from Eq. (2.1) and Eq. (2.2). 

Figure 4 includes the plots of effective Young’s modulus as a function of void 

volume fraction for different compositions of two phases within the hybrid matrix. The 

letter “r” here refers the volume fraction of Al among the total volume fraction of 

Ti2AlC/Al hybrid matrix. Using this method, the effective elastic moduli of GCMeC 

with micro-voids can be obtained and further used in structural level analysis, such as 

mechanical response to bending for plate. 
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Figure 4: Effective Young’s modulus vs. volume fraction of voids. 

 

 

2.2 Finite element modeling of graded Ti2AlC/Al rectangular plate 

Commercial package Abaqus is used for finite element modeling and analysis. 

User material subroutine UMAT corresponding to aforementioned unit cell method is 

developed and implemented in nonlinear finite element analysis of 3D GCMeC 

rectangular plate. 

As a numerical example, a rectangular GCMeC plate made of Al and Ti2AlC is 

studied. The material properties for the two constituent phases are listed in Table 1. The 

dimension ratios of the plate are a/b =1 and a/h =10. Here in this section, “a” and “b” 

refer as in-plane edge lengths and h is the thickness. Simply supported boundary 
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conditions in Eq. (2.7) are applied. Uniformly distributed load of intensity q0 is applied 

on the pure Ti2AlC surface (z = h/2). 

 
0,    at 0,

Simply Support BCs :
0,    at 0,

v w x a

u w y a

  

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 (2.7) 

The geometry of graded Ti2AlC/Al plate and corresponding mesh are shown in the 

Figure 5. There are 16000 elements in the mesh, and C3D20R element (20-node 

quadratic brick, reduced integration element) is used as element type. Also, geometry 

nonlinearity is taken into account in the finite element analyses. 

 

 

 

Figure 5: Finite element mesh of 3D graded Ti2AlC/Al plate generated in Abaqus. 

 

 

A linear through-thickness variation of the volume fractions of the two 

constituent phases is assumed here, i.e. 
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By using unit cell method aforementioned, effective material properties for 

whole composition range of the two phases along thickness direction of the graded 

Ti2AlC/Al plate can be obtained. Figure 6 to Figure 8 show the comparisons of the 

effective elastic properties along plate thickness direction for various void volume 

fractions obtained from unit cell method. 

 

 

 

Figure 6: Effective Young’s modulus along thickness direction of graded Ti2AlC/Al 

plate for various void volume fractions obtain from unit cell method. 
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Figure 7: Effective shear modulus along thickness direction of graded Ti2AlC/Al plate 

for various void volume fractions obtain from unit cell method. 

 

 

As expected, the degradations of these properties with increased void volume 

fraction can be observed. Also, it can be seen that the Young’s modulus and shear 

modulus have similar variation trend through thickness direction in Figure 6 and Figure 

7. The bulk modulus varies more nonlinearly close to the pure Al surface, shown in 

Figure 8, due to the fact that the bulk modulus of Al is larger than its Young’s modulus 

while for Ti2AlC the former is smaller than the latter. 
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Figure 8: Effective bulk modulus along thickness direction of graded Ti2AlC/Al plate for 

various void volume fractions obtain from unit cell method. 

 

 

The FE results are presented in terms of non-dimensional stress and 

displacements. The non-dimensional parameters used here are: deflection along mid-

plane, w0/h; axial displacement, /u u h ; axial stress, 0/xx xx q  ; transverse shear 

stress 0/yz yz q  . 

Under mechanical loading, finite element results of non-dimensional deflection 

w0/h along mid-plane at x=a/2 with different void volume fractions for graded Ti2AlC/Al 

plate are shown in Figure 9. As expected, the deflection of plate along mid-plane 

increases as the void volume fraction increases, i.e., stiffness degrades. 
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Figure 9: Non-dimensional deflection w0/h along mid-plane at x=a/2 for different void 

volume fractions. 

 

 

Figure 10 and Figure 11 give the through thickness distributions of displacements 

for various void volume fractions. In general, the absolute value of non-dimensional 

axial displacement u is larger in the part close to the top surface (Ti2AlC side) than that 

near the bottom surface (Al side) of the plate, see in Figure 10. In Figure 11, the 

nonlinear distribution of deflection in thickness direction implies that the inextensible 

assumption made by most 2D plate theories is not valid in this case. Also, as volume 

fraction increases, both axial displacement and deflection increase (in absolute value). 
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Figure 10: Through-thickness distributions of non-dimensional axial displacement u/h 

for different void volume fractions. 

 

 

Figure 11: Through-thickness distributions of non-dimensional deflection w/h for 

different void volume fractions.  
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Figure 12 shows the comparison of FE results of through thickness distribution 

of axial stress for graded Ti2AlC/Al plate and a laminate shell with 10 layers piled up 

with elastic properties of each layer calculated from unit cell method at the mid-point of 

graded Ti2AlC/Al plate. It shows that the FE results for these two cases agree well. 

 

 

 

Figure 12: Comparison of through-thickness distributions of non-dimensional axial 

stress 
xx

of the graded Ti2AlC/Al plate and laminate shell for various fd values. 
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Figure 13: Through-thickness distributions of non-dimensional axial stress 
xx

(at x=a/2, 

y= a/2) of the graded Ti2AlC/Al plate for various fd values. 

 

 

Figure 14: Through-thickness distributions of non-dimensional transvers shear stress 
yz

 

(at x=a/2, y=0) of the graded Ti2AlC/Al plate for various fd values. 
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Figure 13 and Figure 14 plot the through thickness distributions of axial and 

transverse stresses for various void volume fractions. It can be seen in Figure 13 that the 

through thickness distributions of axial stress become slightly smaller with rising void 

volume fraction. The location with zero axial stress through thickness direction under 

bending is not at the mid-point, but at around 0.2-0.3h in Ti2AlC rich side, and this 

location moves upward as void volume fraction increases. On the other hand, the 

transverse shear stress altered significantly in the middle and lower part of plate in 

thickness direction for different void volume fractions. 

It is noteworthy that although it is convenient to get effective elastic moduli of 

multiphase composites using micromechanics based homogenization methods, the phase 

geometry description in these methods are highly simplified and followed with certain 

assumptions (e.g., dilute solution assumption in some classic micromechanics based 

homogenization methods). Therefore, a more detailed meso-scale model based on real 

microstructure of multiphase composite is needed, especially for modeling of nonlinear 

behavior of multiphase composite, such as plasticity, damage and plasticity-damage 

coupled problem. To meet this need, representative volume element (RVE) concept is 

adopted in modeling multiphase composites and investigation of their thermomechanical 

behavior in the following chapters. 
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CHAPTER III 

COMPUTATIONAL MODELING OF ELASTOPLASTIC BEHAVIOR OF 

STAINLESS-STEEL/BRONZE INTERPENETRATING PHASE COMPOSITES 

WITH DAMAGE EVOLUTION 

 

In this chapter, an elastoplastic finite element model for stainless-steel/bronze 

interpenetrating phase composites (IPCs) with damage evolution is developed. Detailed 

3D representative volume elements (RVE) and corresponding finite element models are 

generated based on the microstructure of the stainless-steel/bronze IPCs to study their 

mechanical and thermal expansion properties. A mixed boundary condition for uniaxial 

loading is implemented in the finite element models. The predicted effective elastic 

moduli are compared with those obtained from unit cell method and the Hashin-

Shtrikman bounds. The effective elastoplastic properties obtained from finite element 

models of 3D RVEs with thermal residual stresses are then used as fully dense matrix 

material in the Gurson-Tvergaard-Needleman (GTN) constitutive model to investigate 

the influence of voids on the elastoplastic and evolutionary damage behavior of 

composites under uniaxial tension. Numerical results are compared with experimental 

data, and the effect of the damage evolution on plastic flow of the composites is 

discussed. The numerical results obtained from finite element models have very good 

correlation with the experimental results and provide useful insights on how thermal 

residual stresses and voids nucleation affect the mechanical properties of the stainless-

steel/bronze IPCs. 
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3.1 Elastoplastic behavior of stainless-steel/bronze IPC with micro-damage —

Gurson-Tvergaard-Needleman model 

For a ductile media containing a dilute concentration of voids, Gurson in [60] 

proposed a yield condition as a function of the void volume fraction f. This yield 

condition was later modified by Tvergaard [61] to the form 

 
   

 
2

2

1 2 3

3
2 cosh 1 0

2pl pl

y m y m

q p
q f q q f

   

   
         
      

 (3.1) 

where q is the von Mises stress,  

 
0
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: ,   ,   : ,   : d
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t
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m m mq p p t        S S S I I   (3.2) 

y  is the yield stress of the fully dense matrix material as a function of 
pl

m , the 

equivalent plastic strain in the matrix 
pl

m , and I  is the second-order identity tensor; q1, 

q2, and q3 are material parameters: q1 affects the yielding by modifying the void volume 

fraction f; q2 can be seen as a corrective factor for the hydrostatic component p; and q3 is 

related by q1 by 2

3 1q q . 

The presence of pressure in the yield condition results in non-deviatoric plastic 

strains. Plastic flow is assumed to be normal to the yield surface: 

 pl 








 (3.3) 

where   is the plastic consistency parameter. The plastic hardening of the fully dense 

matrix material is described through  pl

y m  . The evolution of the equivalent plastic 
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strain in the matrix material is obtained from the following equivalent rate of plastic 

work expression: 

  1 :pl pl

y mf      (3.4) 

The total change in void volume fraction f can be expressed as 

 
g nf f f   (3.5) 

where 
gf  is the void volume fraction change due to growth of existing voids and nf  is 

the void volume fraction change due to nucleation of new voids. Coalescence of voids is 

neglected in this study due to the lack of supporting experimental data. Growth of the 

existing voids is based on the law of conservation of mass and the assumption that the 

matrix material is plastically incompressible, 

  1 :pl

gf f  I  (3.6) 

Nucleation of the new voids occurs mainly at the second-phase particles, by 

decohesion of the particle-matrix interface or by particle fracture [118]. Different kinds 

of nucleation criteria have been formulated within this general phenomenological 

framework, [60, 62], which can be described by the simple two parameter relation 

  
1

:
3

pl

n mf A B  I  (3.7) 

where A gives the dependence of the void nucleation rate on the matrix effective plastic 

strain increment and B gives the dependence on the rate of increase of hydrostatic stress. 

For nucleation of voids only controlled by the plastic strain, the parameters are specified 

by [62] 
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where N  and Ns  are the mean value and standard deviation for the normal distribution 

of the nucleation strain, and Nf  is the volume fraction of the void nucleating particles. If 

void nucleation is neglected, then for zero or negative stress triaxiality the GTN model 

predicts no increase in damage. 

 

3.2 3D RVEs and finite element modeling 

The stainless-steel/bronze interpenetrating phase composites were made by 

infiltrating bronze in sintered stainless-steel powder skeletons to produce a nearly fully 

dense stainless-steel/bronze IPCs. The sintered stainless-steel skeleton was produced 

using spherical stainless-steel powders using three-dimensional printing technique [21]. 

There are about 1% of voids located within the bronze phase of the produced 60% and 

80% IPCs. Their existence is mainly the result of incomplete infiltration or the presence 

of bubbles in the bronze melt [21]. In order to investigate the mechanical behavior of the 

stainless-steel/bronze composites, two 3D RVEs for 60% and 80% IPCs, are generated 

based on the micrographs of IPCs in [21] (note that 60% and 80% refer to the volume 

fractions of the stainless-steel phase) using the commercial software AutoCAD and 

Abaqus, as shown in Figure 15. The cross-sectional images of the 3D RVEs for 60% IPC 

and 80% IPC are shown in Figure 16. 
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(a) 

 

(b) 

Figure 15: 3D RVEs: (a) 60% IPC and (b) 80% IPC. 
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(a) 

 

(b) 

Figure 16: Cross-sectional images of the 3D RVEs: (a) 60% IPC and (b) 80% IPC. 

 

 

3.2.1 Simulated microstructure 

In modeling the stainless-steel/bronze IPCs, simplified geometries of the 

stainless-steel and bronze phases have been used to generate the microstructure of IPCs 

[9, 21, 59]. However, it should be mentioned that such three-dimensional representations, 

such as 3D trusses and spherical shape particles, do not accurately reflect the shape of 

the phases. In fact, the irregularity of the phase shape is intensified as the phase volume 

fraction increases as shown in the micrographs of the 60% and 80% IPCs in [21]. 

Moreover, it has been found in [119] that the RVE of particulate composites with 

spherical shape particles tends to show higher strength than the ones with irregular shape 

particles. This is attributed to the increased level of stress concentration at the regions 
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with geometric singularity for the irregular shape particles, which is actually more close 

to the stress state of the real microstructure of the composites. Therefore in this study, 

instead of spherical phases, truncated icosahedron (i.e., soccer ball shape) is adopted to 

represent the shape of stainless-steel phase in order to reflect the irregularity of the outer 

surface of the interconnected particle phase more realistically. Another advantage of 

using truncated icosahedron shape particles is that it can tremendously reduce the 

number of elements in the finite element mesh. The reason is that when we use perfect 

spherical shape, there exist many tiny segments of curved surfaces due to the 

connectivity of the particles. It leads to much denser mesh as compared to the truncated 

icosahedron shape with only flat surfaces that are easier to mesh. 

The dimensions of the two 3D RVEs for 60% and 80% IPCs are taken to be 

150μm × 150μm × 150μm, and three different sized stainless-steel particles are used in 

the 3D RVEs. As it is difficult to describe the size of a truncated icosahedron, the 

radiuses of the corresponding circumscribed spheres of the truncated icosahedrons are 

used to represent the size of the particle. They are 25μm, 20μm, and 15μm, respectively, 

and the gradation of the corresponding particles is assumed to be approximately 2:2:1. 

There are 96 randomly distributed interconnected stainless-steel particles in the RVE of 

60% IPC and 171 in the RVE of 80% IPC. 

In order to achieve desired volume fraction of particles, the connectivity of 

neighboring particles is also controlled. As illustrated in Figure 17 schematically, the 

relation between adjoining particles can be categorized into three states: separation, in 

contact, and interpenetration states. Although all these three states may exist in the real 
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microstructure of the IPCs at the same time, the in contact state, see in Figure 17 (b), is 

not considered in our model for simplicity. Since for this state, additional contact 

properties need to be defined, which is unknown. Also, numerical singularity may arise 

at the sharp tip of the bronze matrix region which is close to the contact point between 

particles. Hence, only separation and interpenetration states, i.e. Figure 17 (a) and (c), 

are considered in the modeling, which is achieved by controlling the range of the 

distance between centers of particles. 

 

 

 

 (a) (b) (c) 

Figure 17: Schematic representation of the relation between adjoining particles: (a) 

separation state ( 1 2D R R  ), (b) contact state ( 1 2D R R  ), and (c) interpenetration 

state ( 1 2D R R  ). 

 

 

In the 3D RVEs, it is assumed that the IPCs consisted of only two phases that are 

perfectly bonded at the interface. Although other phases exist in the IPCs due to 

diffusion during the manufacturing process, such as the second tin-rich sub phase and 

the diffused iron in the bronze, the volume fraction of these phases is negligible. 

Therefore, for simplicity, they are not taken into account in the 3D RVEs, neither is 
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porosity considered in the 3D RVEs for the reasons that the volume fraction of the voids 

is very small (1.0%-1.5%). Except for damage evolution, initial porosity has relatively 

small influence on the mechanical properties of the IPCs. When it comes to the study of 

damage, the Gurson-Tvergaard-Needleman constitutive model is adopted, which has the 

capability to include initial porosity in an effective media, without the need to model the 

voids explicitly in the 3D RVEs. 

 

3.2.2 FE mesh and boundary conditions 

In order to determine the approximate global element size for the given FE 

models of 3D RVEs, mesh sensitivity study is carried out. The approximate edge lengths 

of elements used here are 10μm, 8μm, 6μm, and 5μm, and the corresponding meshes are 

generated automatically using the commercial software Abaqus. Due to the complex 

microstructure of the 3D RVEs, C3D10 elements (ten-node quadratic tetrahedral element) 

are used because they are geometrically versatile and very convenient to mesh complex 

shapes. Examples of FE models of RVEs with 10μm and 6μm as approximate element 

edge lengths for 60 % and 80 % IPCs are illustrated in Figure 18. The relation between 

the element edge length versus total element number for the given IPCs is shown in 

Figure 19. It can be seen that as the approximate global element size decreases as the 

total element number increases exponentially. Very large amounts of computer memory 

and processor time are required when the number of element is above 150,000. Further, 

it is noteworthy that the total number of elements of the finite element mesh for 80% 

IPC is much greater than that of 60% IPC for the same approximate global element size. 
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This is because, geometrically, the 3D RVE of 80% IPC has much more small edges 

resulting from the interpenetration of the stainless-steel phase. 

 

 

 
(a)                                                               (b) 

 
(c)                                                              (d) 

Figure 18: Examples of FE models used in mesh sensitivity study: (a) mesh for 60% IPC 

with element edge length= 10μm, (b) mesh for 60% IPC with element edge length= 6μm, 

(c) mesh for 80% IPC with element edge length=10μm, and (d) mesh for 80% IPC with 

element edge length=6μm. 
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Figure 19: Total element number versus element edge length. 

 

 

Nonlinear FE analyses of elastoplastic behavior of the given IPCs are carried out 

to study the mesh sensitivity of the FE models created. Isotropic hardening and von 

Mises yield criterion are used in these analyses. For simplicity, simply supported 

boundary conditions are applied. The results for 60% and 80% IPCs are shown in Figure 

20 and Figure 21, respectively. It can be seen that for FE model of 60% IPC, the initial 

elastic response is independent of the mesh density, while the plastic response is mesh 

density-dependent. For example, in Figure 20, at strain around 0.13, when the element 

edge length decreases from 8μm to 6μm, the difference between the stress levels for the 
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two mesh densities is around 4.5%. It is found that this discrepancy reduces to 1.9% 

when the element edge length is reduced from 6μm to 5μm. In contrast, the effect of 

mesh density on the elastoplastic response of the FE model is not significant for the 80% 

IPC. As can be seen from Figure 21, the difference between the results obtained from FE 

models with element edge lengths 10μm, 8μm, 6μm and 5μm are all under 2%. Even this 

small difference is due to the fact that local plasticity theory, such as von Mises 

plasticity theory, is mesh-sensitive. As compared to 60% IPC, 80% IPC has larger 

volume fraction of stainless-steel phase, which has much higher yield strength than 

bronze phase. In other words, more parts of 60% IPC yield locally than 80% IPC under 

the given strain level. Therefore, the former is more mesh sensitive than the latter. 

Taking accuracy and computational efficiency into consideration, 6μm is selected as an 

approximate global element edge length for FE models of both 60% and 80% IPCs in the 

subsequent numerical studies. There are 138,709 elements and 182,917 elements in the 

corresponding FE models of 60% and 80% IPCs, respectively. 

For a composite with periodic microstructure, periodic boundary conditions 

(PBCs) should be applied in order to make an RVE represent a volume of the material 

embedded within a much larger volume. In the PBCs, one should constrain the 

relationship between each pair of nodes on the matching meshes of opposite faces of the 

RVE. However, the RVEs used in this study are created by cutting parts of a simulated 

microstructure with random distributed phases based on actual microstructure of a 

heterogeneous material, and they do not exhibit geometry periodicity. Therefore, instead 

of PBC, a mixed boundary condition designed for such RVEs [120] are imposed in this 
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study: uniform displacements are imposed on the faces perpendicular to the loading 

direction. To simulate an interior domain compatible with the surrounding material, the 

faces parallel to the loading direction remain straight and parallel during deformation 

(i.e., no shear). 

 

 

 

Figure 20: Tensile behavior of 60% IPCs with various mesh density. 
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Figure 21: Tensile behavior of 80% IPCs with various mesh density. 

 

 

3.3 Numerical simulation and results 

In the FE analysis, interpenetrating phase composites made of stainless-steel and 
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were made and studied, which are referred to as the 60% IPC and 80% IPC, respectively. 

The material properties of the two phases are listed in Table 2 [59]. 

 

 

Table 2: Material constants of the constituent phase in 420 stainless-steel/ 150P bronze 

IPC. 

Material 

Young’s 

modulus 

E (GPa) 

Poisson’s 

ratio 

Shear modulus 

G (GPa) 

Initial yield stress 

σs
 (MPa) 

420 stainless 210.0 0.30 81.40 1432.62 

150P bronze 110.0 0.33 41.35 135.96 

 

 

3.3.1 Effective elastic properties 

Hashin-Shtrikman bounds are the most well-known effective elastic moduli 

bounds that are derived from variational principles and formulated in terms of the 

polarization stress. They give meaningful bounds on isotropic and transversely isotropic 

effective elastic moduli to all homogeneous composites without specifying phase 

geometry. Also, the aforementioned micromechanics based unit cell method, which is 

particularly designed for interpenetrating phase composites, is used here to predict the 

effective elastic moduli of the given IPCs [59]. The geometry of the unit cell for a 

macroscopically isotropic, two-phase interpenetrating phase composite has been shown 

in Figure 1. 
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The effective elastic constants are obtained by decomposing the unit cell into 

parallel and series sub-cells based on a combination of iso-stress and iso-strain 

assumptions. As mentioned in Chapter II, assuming a1=b1=c1, a2=b2=c2 in Figure 1, and 

defining a non-dimensional quantity  1 1 2a a a a  , the expression of the effective 

Young’s modulus and shear modulus of the two-phase IPC are expressed in Eq. (2.1) 

and Eq. (2.2). 

For the IPCs that consist of stainless-steel and bronze, comparisons of the 

effective Young’s modulus as a function of stainless-steel volume fraction obtained from 

Hashin-Shtrikman bounds and unit cell method are shown in Figure 22. It can be seen 

that the Hashin-Shtrikman bounds are very narrow due to the relatively small contrast 

between the moduli of the two phases. The curve of the unit cell method lies in between 

of the Hashin-Shtrikman upper and lower bounds and is more close to the Hashin-

Shtrikman lower bound. Under simple elastic conditions, unit cell method as well as the 

Hashin-Shtrikman bounds is sufficient to predict the effective modulus for such a two-

phase composite. However, the measured effective Young’s modulus of the given IPCs 

is a little bit lower than the predictions of these two micromechanics based methods (e.g. 

approximately 3.6% and 5.4% lower than the predictions of unit cell method for 60% 

IPC and 80% IPC, respectively), see Figure 22. The main reason is the presence of voids 

in bronze phase, especially for 80% IPC. 
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Figure 22: Effective moduli vs. volume fraction of stainless-steel, for stainless-

steel/bronze IPC. 

 

 

The unit cell method mentioned above also has the capability to account for the 

inclusion shapes of phases by utilizing Mori-Tanaka method with iso-stress and iso-

strain assumptions [59]. Using the unit cell method in which voids are introduced as a 

third phase in the original two-phase IPCs, we can predict the effective Young’s 

modulus of the composites considering porosity. In Figure 22, it is shown that by 

considering voids, the difference of effective Young’s modulus between predictions and 
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is in an acceptable range. Therefore, we can conclude that voids located within bronze 

phase and along interface slightly affect the effective Young’s modulus. 

Other possible explanations for the reduction in the initial modulus are: (1) the 

resultant plastic deformation in the IPCs induced by thermal residual stresses due to 

cooling process. Since the Young’s modulus is obtained by the tensile test, the initial 

response of the composite is affected by the state of the initial stress, especially the 

resultant plastic deformation in bronze; (2) even at very small strain level, there might be 

some damage evolution during the tensile test. Of course, this effect can be totally 

neglected if non-destructive test technique is used in measuring the effective Young’s 

modulus of the composites. However, due to the fact that the strain level at which 

effective Young’s modulus was measured in the test is not known, and the results from 

unit cell method considering porosity are reasonable when compared with the 

experimental measurements, the effects of thermal residual stress and damage evolution 

on the effective elastic moduli will not be addressed using the 3D RVE and 

corresponding FE model in this study. 

Next, the effective elastic moduli of 60% and 80% IPCs are obtained from FE 

models of 3D RVEs using linear elastic material properties. Uniaxial tension and simple 

shear tests are simulated using the FE models of 3D RVEs with load in the x1-, x2-, and 

x3- directions. The effective Young’s moduli, Poisson’s ratios and shear moduli of 60% 

and 80% IPCs obtained are presented in Table 3. It is found that loading direction has 

slight influence on the FE predicted effective elastic moduli for the given 3D RVEs, and 

the effective elastic moduli follow the relation G=E/2(1+v) which is valid for linear 
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isotropic elastic material. Therefore, the corresponding IPC systems achieve 

approximate isotropy, and further we can conclude that the 3D RVEs created for 60% 

and 80% IPCs are statistically homogeneous and can represent the local continuum 

properties of the IPCs. 

 

 

Table 3: Prediction of effective elastic moduli of 60% IPC and 80% IPC obtained from 

FE models of 3D RVEs. 

  
Young’s modulus, 

E (GPa) 
Poisson’s ratio, ν 

Shear modulus 

G (GPa) 

  E11 E22 E33 v12 v23 v31 G12 G23 G31 

60% IPC 164.85 165.10 165.11 0.31 0.31 0.31 63.11 63.23 62.90 

80% IPC 185.46 185.32 185.49 0.30 0.30 0.30 71.18 71.24 71.22 

 

 

Comparisons of the effective Young’s modulus obtained from FE models of 3D 

RVEs with Hashin-Shtrikman bounds and unit cell method are presented in Figure 22. 

Here, the average values of E11, E22, and E33 are taken as the FE predicted effective 

Young’s modulus for the given 3D RVEs of 60% and 80% IPCs. It is shown that the 

predicted effective Young’s moduli obtained from the FE models of 3D RVEs of 60% 

and 80% IPCs with elastic constituent material properties lie within the Hashin-

Shtrikman bounds, and they are very close to the corresponding predictions of the unit 
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cell method. This good agreement with micromechanics based models can be seen as the 

verification of the FE models of 3D RVEs developed in this study. 

 

3.3.2 Thermal residual stress 

In the IPCs, the mismatch between the coefficients of thermal expansion for the 

two constituent materials leads to the development of thermal residual stress during the 

manufacturing process. It is mentioned in [21] that the specimen will go through final 

heat-treatment which involves fast furnace cooling from 940°C to the room temperature. 

Since 832°C is the solidus temperature of the bronze and it is assumed that stresses did 

not develop in the composite above the solidus temperature. Therefore, 832°C is selected 

as the initial stress-free temperature. In turn, material properties such as elastic moduli, 

ultimate strain, coefficient of thermal expansion (CTE) as well as stress-strain relation, 

are also temperature dependent. 

In order to investigate the effects of the thermal residual stress on the mechanical 

behavior of IPCs, the cooling process is simulated: the temperature is dropped from 

832°C to 20°C uniformly throughout the entire model with increments of 20°C. Isotropic 

hardening and von Mises yield criterion are adopted in these nonlinear FE analyses 

while a mixed boundary condition is applied. The measured temperature dependent 

stress-strain curves of stainless-steel and bronze used in the nonlinear FE analyses are 

shown in Figure 23, while variation of Young’s moduli with temperature is listed in 

Table 4 [21]. 
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(a) 

 

(b) 

Figure 23: Tensile behavior at elevated temperatures for (a) stainless-steel, (b) bronze 

[21].  
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Table 4: Young's modulus of constituent phases of IPCs at elevated temperature. 

Temperature ( °C) 
Young's modulus (GPa) 

420 stainless 150P bronze 

20 210 110 

200 200 91 

400 182 70 

600 116 48 

800 84 27 

 

 

Figure 24 and Figure 25 show the numerical results of thermal residual stress 

component distributions within the bronze phase and stainless-steel phase of 60% IPC 

and 80% IPC, respectively. As an example, the distributions of x3-direction axial stress 

component in bronze and stainless-steel of 60% IPC are plotted in Figure 24(a) and 

Figure 24(b), respectively. As expected, relatively high stress distributes are observed 

along the interface of the two phases. Although the magnitude of the maximum 

compressive stress in the bronze matrix is much greater than the maximum tensile stress 

due to the interaction of two phases at the interface regions, the axial stress component 

of the thermal residual stress is mainly tensile in the bronze phase and compressive in 

stainless-steel phase under contraction. This phenomenon can be seen even more clearly 

for the 80% IPC in Figure 25. Therefore, if the IPCs then subjected to uniaxial tensile 

loading, the stainless-steel is actually unloading from a compressive state while the 

bronze is being even more stretched. 
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(a) 

 

 

(b) 

Figure 24: Axial stress distribution of 60% IPC (stress unit: 10
6
MPa): (a) stainless-steel 

phase and (b) bronze phase. 
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(a) 

 

(b) 

Figure 25: Axial stress distribution of 80% IPC (stress unit: 10
6
MPa): (a) stainless-steel 

phase and (b) bronze phase. 
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(a) 

 

(b) 

Figure 26: Equivalent plastic strain distribution of 60% IPC: (a) stainless-steel phase and 

(b) bronze phase. 
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(a) 

 

(b) 

Figure 27: Equivalent plastic strain distribution of 80% IPC: (a) stainless-steel phase and 

(b) bronze phase. 
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The equivalent plastic strain distributions in stainless-steel phase and bronze 

phase for 60% and 80% IPCs are plotted in Figure 26 and Figure 27, respectively. 

Comparing the equivalent plastic strain within the stainless-steel phase and bronze phase 

of 60% and 80% IPCs, it can be observed that for both IPCs, considerable part of the 

bronze phase yields while most part of stainless-steel remains in the elastic range at the 

end of the cooling process. 

 

3.3.3 Thermal expansion 

The effective temperature dependent coefficients of thermal expansion (CTE) of 

the 60% and 80% IPCs are obtained from the FE models of 3D RVEs. The thermal 

residual stress is considered as the initial stress condition and the temperature is 

increased from 20°C to 800°C with 20°C increment. At a given temperature, averaged 

dilation strains in the x1-, x2-, and x3-directions are used to calculate the instantaneous 

CTE. 

The measured temperature dependent CTE curves for the 60% and 80% IPCs as 

well as for the bronze and stainless-steel phases are shown in Figure 28. The sharp bends 

at two ends of the measured curves are caused by lagged temperature measurement on a 

single point of the specimen surface in the experiment. The roughness of the curves is 

due to the roughness of the constituent CTEs calculated from the measured values at a 

given temperature. 
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Figure 28: Measured CTE vs. temperature for stainless-steel/bronze IPCs and constituent 

phases [21]. 

 

 

Figure 29 and Figure 30 show the comparisons of the temperature dependent 

effective CTE among FE predictions, measured results and theoretical models for 60% 

and 80% IPCs, respectively. The theoretical models used in this study are based on the 

rule of mixtures, Turner model, and Kerner-Schapery bounds. Turner model is derived 

for reinforced plastics and assumes a uniform hydrostatic stress state throughout the 

composite. It typically provides lower bound for most of the experimental data [121]. 
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Kerner-Schapery bounds on the other hand give meaningful bounds for an elastic 

composite. Since the theoretical calculations and FE analyses are obtained using the 

measured CTEs of the constituent phases, see Figure 28, they also have the similar 

features, such as sharp ends and roughness as those of measured curves. 

For the theoretical predictions, it is shown in Figure 29 and Figure 30 that the 

rule of mixtures gives the highest CTE prediction, which is also the most close 

prediction comparing with the measurements, whereas the Turner model [122] gives the 

lowest one, and the Kerner-Schapery bounds [35] fell in between of these two. It is 

found that the thermal residual stress only has small influence on the CTEs of the given 

IPCs. The CTEs for the case considering initial thermal residual stress are lowered by an 

average of 0.7% and 1.3% over the 20-800°C temperature range for 60% and 80% IPCs 

respectively, as compared to those without an initial residual stress. Therefore, for clarity, 

the FE analysis results shown in Figure 29 and Figure 30 are for the cases considering 

initial thermal residual stress only. 

It is shown in Figure 29 that the curve of FE predictions is lower than the 

measured one and mostly close to the Kerner-Schapery lower bound for 60% IPC. The 

FE analysis results of 80% IPC are relatively closer to the experimental data and in 

general lies in between the Kerner-Schapery bounds. This can be understood by the fact 

that the Kerner-Schapery bounds are for elastic composites, and upon reheating from 

room temperature the FE models of 3D RVEs are unloaded from their initial residual 

stress state, and are therefore eventually in a relatively elastic state. Same reason that the 

cases neglecting initial thermal residual stress have higher CTE values. The expansion of 
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the constituent phases would be relatively unconstrained if the composite is under a 

plastic state. The discrepancy between the FE-predicted CTEs and the measured values 

can be attributed to experimental uncertainty. According to [21], experimental error, the 

presence of the second tin-rich sub phase in the bronze, the presence of diffused iron in 

the bronze, and slight differences between the bronze alloys tested and present as an 

infiltrant in the composite can be the sources of uncertainty and they are not considered 

in any of the models discussed here. 

 

 

 

Figure 29: Instantaneous coefficient of thermal expansion vs. temperature for 60% IPC. 
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Figure 30: Instantaneous coefficient of thermal expansion vs. temperature for 80% IPC. 

 

 

3.3.4 Damage evolution 

One microstructural feature of the IPCs is the presence of voids within the bronze 

phase, especially for 80% IPC [21]. Some of these voids are located along the phase 

interfaces. Although these voids have no effect on thermal expansion properties of the 

IPCs, they exert great influence on the damage evolution of IPCs. Since both stainless-

steel and bronze phases are ductile metals and void growth and nucleation at the phase 

8

10

12

14

16

18

0 200 400 600 800 1000

C
o
ef

fe
ci

en
t 
o
f 

T
h
er

m
al

 E
x
p
an

si
o
n
 (

x
1
0

-6
/°

C
) 

Temperature (°C) 

measured

FE analysis(with initial stresses)

rule of mixture

Turner model

Kerner-Schapery upper bound

Kerner-Schapery lower bound



 

64 

 

interface on the microstructural scale is assumed to be the failure mechanism for the 

composite, the Gurson-Tvergaard-Needleman (GTN) constitutive model is adopted here 

to study the damage evolution in the given IPCs. 

As mentioned before,  pl

y m  used in the yield condition, Eq. (3.1), in the GTN 

model is the yield stress of the fully dense matrix material. For the given IPCs, the fully 

dense matrix material should be state as “fully dense hybrid matrix material,” since it 

refers to undamaged stainless-steel/bronze IPCs. In other words, we need to obtain 

 pl

y m   from undamaged IPCs. These data then can be incorporated in the GTN model 

to study the damage effect due to voids. Therefore, in this study, a two-step procedure is 

used to study the damage evolution of IPCs: 

(1) Elastoplastic FE analyses of undamaged IPCs using the FE models of 3D 

RVEs are conducted under uniaxial tension to obtain the effective stress-strain curves of 

undamaged IPCs. The von Mises plasticity theory and isotropic hardening are adopted 

for these analyses. Again, the temperature dependent material properties used are from 

[21], and are given in Figure 23, Figure 28 and Table 4. Then the relation between 
y

and pl

m  are extracted from the obtained stress-strain curves. Also, thermal residual stress 

due to the cooling process which is obtained from the undamaged IPCs can be 

incorporated as the initial stress condition. 

(2) 
y  values as function of pl

m  obtained from the undamaged IPC FE models 

of 3D RVEs are used as the fully dense hybrid matrix material properties in the GTN 

constitutive model to study the elastoplastic behavior and damage evolution of the IPCs 
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with voids under uniaxial tension. For evaluation, a single 3D element representing the 

effective media of the IPCs is tested for uniaxial tension. 

Regarding the material parameters of GTN constitutive model: The value of the 

initial volume fraction of voids fini for 60% and 80% IPC used here are those from [21]. 

Since the microstructures of the 60% and 80% IPCs are different, q1 and q2 are taken 

different values for these two IPCs. The ranges of q1 and q2 are referred to those from 

[123]. Also, different values of the mean strain for nucleation N  in Eq. (3.8) are used 

because of the big difference in failure strain between the 60% and 80% IPCs. Since 80% 

IPC has larger volume fraction of steel phase with weak bonding between the phases and 

fails at a much smaller strain than 60% IPC, it is assumed that fN of 80% IPC is greater 

than that of 60% IPC. The values of the GTN model parameters that are used to adjust 

the numerical calculation to fit the measured effective strain-stress curves of 60% and 80% 

IPCs from [21] are listed in Table 5. 

 

 

Table 5: Material parameters for the Gurson-Tvergaard-Needleman constitutive model. 

Material q1 q2 fini N  Ns  Nf  

60% IPC 1.50 1.00 1.0% 0.015 0.05 0.2 

80% IPC 2.00 1.25 1.5% 0.005 0.05 0.7 
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Tensile stress-strain curves are obtained from the FE models of 3D RVEs for the 

cases without damage and with/without initial thermal residual stress, as well as from 

single element evaluation of GTN model for the case considering both initial thermal 

residual stress and damage evolution. Their comparisons with experimental data from 

[21] are plotted in Figure 31 and Figure 32 for 60% and 80% IPCs, respectively. 

 

 

 

Figure 31: Tensile behavior of 3D RVE FE model of 60% IPC. 
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Figure 32: Tensile behavior of 3D RVE FE model of 80% IPC. 

 

 

For 60% IPC under uniaxial tension, by comparing the stress-strain curves of FE 

analysis results without considering initial thermal residual stress nor damage with the 

experimental results, it can be noticed that the FE analysis result has stress values 14% 

higher than those of experimental results at failure stain around 3%, as seen in Figure 31. 

Further, by considering initial thermal residual stress, the reduction of average modulus 

in the bronze leads to a reduction of the modulus of the 60% IPC as a whole, and the 

stress value at failure strain is now 12.6% higher than the experimental measurement.  
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It is shown in Figure 32 that the stress-strain curves for those different cases of 

FE analysis results for the 80% IPC, in general, have similar trend to the 60% IPC. 

Without considering initial thermal residual stress, the FE analysis result shows 17.6% 

higher stress than the experimental data at failure strain 1.4%, while with initial thermal 

residual stress, the resultant stress of the FE analysis is 15.7% higher than the 

experimental results at failure strain. Therefore, it can be concluded that initial thermal 

residual stress only has slight influence on the elastoplastic behavior of the undamaged 

IPCs. Also, the initial thermal residual stress cannot explain an important fact that the 

given interpenetrating phase composites fail at much lower tensile strain than either of 

the constituent material ultimate strains. Moreover, even though the 80% IPC has more 

volume fraction of the stronger phase (stainless-steel), it fails at only half of the tensile 

strain that 60% IPC can sustain. The failure mechanism of the IPC is forming on the 

microstructure scale, rather than on the specimen scale [21]. Therefore, GTN 

constitutive model is adopted to include damage effect of the voids located within 

bronze and at the interface of the two phases. 

It is shown in Figure 31 and Figure 32 that by considering damage evolution, the 

numerical results of GTN constitutive model can be very close to the experimental 

results than the other two cases without damage evolution. For 60% IPC, the stress 

obtained from GTN model is 2.6% higher than the experimental results at 3% strain, 

while the numerical results has nearly the same stress value at the failure stain as the 

experimental data for 80% IPC. 
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The predicted results of total void volume fraction and its components void 

growth and nucleation volume fractions versus the total strain for the simulated 60% IPC 

and 80% IPC are plotted in Figure 33 and Figure 34, respectively. As listed in Table 5, 

the initial void volume fractions, fini, for 60% and 80% IPCs are 1% and 1.5%, 

respectively. Further, it is shown that void growth only contributes very small part 

(around 2%) to the overall change of void volume fraction for both 60% and 80% IPCs. 

In contrast, void nucleation plays a more important role in the damage evolution. As 

mentioned before, void nucleation occurs mainly at the second-phase particles by 

decohesion of the matrix-particle interface or by fracture of the particles. For the given 

IPCs, since the particle phase is made of stainless-steel which is very ductile and much 

stiffer than the bronze matrix, it can be predicted that the newly nucleated voids are 

mainly caused by decohesion of the particle-matrix interfaces. Also, it is noticed that 80% 

IPC fails at a much smaller strain level than 60% IPC. One of the reasons is that more 

void volume fraction is concentrated within the bronze matrix in 80% IPC (7.5% in 

bronze voids, and 1.5% in total) compared to that of 60% IPC (0.25% in bronze voids, 

and 1% in total). A more important reason for this phenomenon is that the 80% IPC has 

much greater volume fraction of stainless-steel phase which leads to the decohesion of 

considerable part of the weak particle-matrix interface bonding. 

In Figure 33 and Figure 34, it is shown that 60% IPC fails when the total void 

volume fraction is around 5%, while that value for 80% IPC is about 6%. Upon damage 

initiation, the composites start to lose the load carrying capability rapidly, which 

accompanies with void coalescence. GTN constitutive model can model void 
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coalescence use porous failure criterion. However, there is no information in the 

literature regarding initiation of cracking or any experimental coalescence results for the 

given interpenetrating phase composites except for experimental nominal stress-nominal 

strain curves. Therefore, final material failure by void coalescence is not addressed in 

this study. Moreover, the above mentioned total void volume fraction 5% and 6% at 

failure for 60% and 80% IPCs, respectively, are only approximations at which the IPCs 

start to lose the capacity to carry more load. 

 

 

 

Figure 33: Void growth and nucleation vs. strain for 3D RVE FE model of 60% IPC. 
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Figure 34: Void growth and nucleation vs. strain for 3D RVE FE model of 80% IPC. 
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CHAPTER IV 

COMPUTATIONAL MODELING OF TEMPERATURE-DEPENDENT 

THERMAL PROPERTIES OF A SHAPE MEMORY ALLOY (SMA)/MAX 

PHASE INTERPENETRATING PHASE COMPOSITES WITH POROSITY 

 

In this study, micromechanics based RVE method and finite element method is 

adopted to predict the effective thermal conductivity of NiTi/Ti3SiC2 interpenetrating 

phase composite fabricated using spark plasma sintering (SPS) technique. The phase 

composition of the composite is from experimental data: 16.3 vol. % pores located in 

Ti3SiC2 phase and about 1/1 volume ratio for Ti3SiC2 phase and NiTi phase. Besides 

porosity, the presence of the reaction interfacial layer between Ti3SiC2 phase and NiTi 

phase in the composite [124] is considered. Two 3D RVEs, i.e. one considering only 

porosity and the other taking both porosity and interface into account, are created to 

investigate the influence of interfaces on effective thermal conductivity. 

 

4.1 Microstructural characteristics of the NiTi/Ti3SiC2 composite 

Porosity with volume fraction of -16 % was observed in the Ti3SiC2 phase due to 

incomplete sintering at 960 
o
C which is well below the sintering temperature of Ti3SiC2 

but close to the melting temperature of NiTi [124]. Therefore, porosity is located within 

Ti3SiC2 phase, while NiTi and the two-phase interface are pore-free. A lot of these pores 

are interconnected according to the morphology observations. In order to realistically 

reflect the microstructure of the NiTi/Ti3SiC2 composite, pores located within Ti3SiC2 
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phase are explicitly included in the 3D RVEs in spite the difficulties in creating such 

complex geometries and generating mesh in the corresponding FE models later. In the 

following numerical analysis, the pores are assumed to be occupied by air. 

Interfacial layer between Ti3SiC2 phase and NiTi phase is another feature of the 

microstructure of the NiTi/Ti3SiC2 composite. The thickness of the interfacial layer is in 

the scale of one micron, and thus 1μm is assumed as the thickness of all interfacial layers 

throughout the composite in this study [124]. Electron backscatter diffraction (EBSD) 

was used to identify the phase composition in the interfacial layer, and NiTi2, TiC and 

Ti5Si3 were found as the main phases [124]. Since it is very difficult to accurately 

measure the volume fraction of these phases, the overall effective thermal conductivity 

of the interfacial layer is assumed to vary linearly with temperature. Also, these new 

phases in the interfacial layer are assumed to be perfectly bounded with the adjoining 

Ti3SiC2 and NiTi phases. In fact, heat scattering at constituent interfaces due to the 

differences in vibration properties of dissimilar materials is known as interfacial thermal 

resistance (or Kapitza resistance) [125]. The interfacial layer plays an important role in 

heat transport in the NiTi/Ti3SiC2 interpenetrating phase composite because of the 

complex new phase boundaries formed in interfacial layer. Therefore, the influence of 

interfacial layer, besides porosity, on the effective thermal conductivity of the 

NiTi/Ti3SiC2 composite is investigated. 
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4.2 3D representative volume element (RVE) 

Two 3D RVEs are generated based on the micrographs of NiTi/Ti3SiC2 

composites [22] using the technique developed in the previous chapter, i.e. 

configurations A and B as shown in Figure 35. 

Configuration A considers only porosity in addition to the two constitutive 

phases, whereas configuration B contains both porosity and interfaces, as shown in 

Figure 35 (a) and (b), respectively. The generation of 3D RVE for configuration A 

consists of two steps: (i) NiTi particles are randomly placed inside a cubic and rest part 

of the cubic is the Ti3SiC2 matrix phase. (ii) The pores are randomly located within 

Ti3SiC2 matrix phase. The connectivity of the NiTi particles and pores in step (i) and (ii) 

is controlled by adjusting the range of distance among their centroids. Meanwhile, the 

desired volume fraction of these two phases can be achieved by varying the number of 

particles/pores. For configuration B, a third step is needed to create interfacial layer: (iii) 

Interfacial layer is carved out of one or both of NiTi phase and Ti3SiC2 matrix phase 

along the surface contour, while the volume fraction of the interface phase is controlled 

by adjusting the thickness of this layer. The dimensions of both 3D RVEs are 200μm × 

200μm × 200μm, which is found to be the size that can include enough volume fractions 

of randomly distributed interconnected NiTi as well as interconnected pores, and be 

statistically homogeneous to represent local continuum properties of the given composite. 
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(a)     (b) 

Figure 35: 3D RVEs of the NiTi/Ti3SiC2 composite: (a) in configuration A, grey 

represents pore, pink NiTi, and transparent Ti3SiC2; (b) in configuration B, grey 

represents pore, pink NiTi, transparent Ti3SiC2, and cyan interface. 

 

 

Simplified geometries, such as limited number of spherical shape particles and 

three-dimensional crosses, have been used to represent the microstructure of IPCs [9, 21, 

59]. However, the three-dimensional crosses cannot reflect the shape of the particle with 

the fact that the actual cross section of the NiTi particles in the composite is not perfect 

circle in 2-D. Therefore, again, truncated icosahedron (soccer ball shape) instead of a 

sphere is adopted to represent the shape of NiTi particles in order to reflect the 

irregularity of the outer surface of the interconnected particle phase. Another advantage 

of using truncated icosahedron shape particles is that it can greatly reduce the element 

number in the mesh of corresponding FE model. Since it is difficult to describe the size 
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of a truncated icosahedron, the radiuses of the corresponding circumscribed spheres of 

the truncated icosahedron are used to represent the size of the NiTi particle and voids. 

And two different sizes for NiTi particles and one size for voids are used in creating 3D 

RVEs. The sizes of NiTi particles are 50μm and 40μm in radius, whereas the radius of 

the pores is 12μm. Each 3D RVE consists of around 33 NiTi particles and 268 pores. 

It is assumed that the all the consistent phases in the NiTi/Ti3SiC2 composite are 

perfectly bonded. Table 6 lists the volume fractions of each phase that are calculated 

from the two configurations of 3D RVEs. 

 

 

Table 6: Volume fractions of four components, namely Ti3SiC2, NiTi, pore, and 

interface, in the NiTi/Ti3SiC2 composites. 

Component 
Volume fraction, % 

Configuration A Configuration B 

Ti3SiC2 40.5 40.5 

NiTi 43.2 40.5 

Pore 16.3 16.3 

Interface N/A 2.7 

 

 

4.3 Finite element models 

Due to the complex geometry of the 3D RVEs, they are represented with 

DC3D10 element mesh (diffusive ten-node quadratic tetrahedral element) in the 

commercial software Abaqus which are geometrically versatile and are very convenient 
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to automatically mesh a complex shape. The FE meshes for the two 3D RVE 

configurations are shown in Figure 36. The FE model for the configuration A contains 

633,718 elements, whereas the one for the configuration B contains 452,552 elements. 

For boundary conditions, temperature gradient of -1 K/μm is applied along x-, y-, and z- 

directions to obtain the effective thermal conductivity in the corresponding directions. 

 

 

  

(a)     (b) 

Figure 36: FE meshes on 3D RVEs of two configurations: (a) in configuration A, orange 

represents pore, blue NiTi, and white Ti3SiC2; (b) in configuration B, orange represents 

pore, blue NiTi, and white Ti3SiC2, and red interface. 

 

 

A steady state heat transfer problem is solved to obtain the effective thermal 

conductivity of the composite. For one dimension form, the Fourier's Law is simplified 

to 
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x x

dT
q k

dx
   (4.1) 

Therefore, the effective heat conductivity of the composite can be derived using the 

following equation 

 
x x

T
k q

x


 


 (4.2) 

For both configurations A and B, the experimental results of temperature 

dependent thermal conductivities for Ti3SiC2 and NiTi shown in Figure 37 [22] are used 

as input data in the FE modeling. The thermal conductivity in the 340-400 K temperature 

range is not considered due to the M→A reverse transformation of NiTi. As for 

configuration B, with the reaction interfaces treated as one phase, the thermal 

conductivity of this phase is assumed as a certain value to fit with the experimental 

results of the composite in Figure 37. Therefore, we neglect this part in the “thermal 

conductivity versus temperature” curve. 
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Figure 37: Temperature dependencies of thermal conductivity upon heating in 300-600 

K temperature range for the NiTi/Ti3SiC2 composite, and monolithic NiTi and Ti3SiC2 

[22]. 

 

 

4.4 Thermal conductivity: comparison between numerical results and 

experimental data 

The obtained effective thermal conductivities in different directions for the two 

configurations, i.e. configuration A considering only porosity and configuration B 

considering both the porosity and the interfaces, are listed in Table 7. It is shown that for 

configuration A, the maximum difference among kx, ky, and kz for various temperatures 

is 1.08%, while the corresponding value for configuration B is 0.9%. It suggests that for 

both configurations, the effective thermal conductivities are approximately isotropic, i.e. 

thermal conductivity being independent of temperature gradient direction. In other words, 
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for the steady state heat transfer problem, the corresponding two 3D RVEs achieve 

approximate isotropy, and furthermore they are statistically homogeneous and can 

represent the local continuum properties of the NiTi/Ti3SiC2 composite. 

 

 

Table 7: FE results of temperature-dependent thermal conductivity along different 

temperature-gradient directions, i.e. x, y, and z. 

Temperature 

(K) 

Thermal conductivity (W/m·K) 

Configuration A Configuration B 

k x k y k z 
Standard 

deviation 
k x k y kz 

Standard 

deviation 

300 16.17 16.11 16.26 0.08 13.83 13.84 13.93 0.06 

320 16.03 15.97 16.12 0.08 13.96 13.97 14.06 0.06 

450 17.46 17.37 17.54 0.09 15.69 15.66 15.78 0.06 

500 17.8 17.71 17.89 0.09 16.12 16.08 16.21 0.07 

550 18.04 17.93 18.12 0.10 16.44 16.39 16.53 0.07 

600 18.15 18.04 18.23 0.10 16.63 16.58 16.72 0.07 

 

 

Figure 38 shows the comparison between simulation with experimental results 

for the two configurations, where the simulation results are the average of k x, k y, and k z. 

For configuration A, the simulation overestimates the effective thermal conductivity by 

9.2-19.1% as compared to the measured data. The discrepancy between the measured 

data and the modeling predictions indicates that the presence of interfacial layer, besides 

porosity, may play an important role in heat transport. However, it is not easy to include 
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the interfacial layer into the model due to limited information on the volume fractions of 

the new phases in the interfacial area, as well as the interfacial thermal conductance 

across the multiple phase boundaries. One way to gain insight of the effect of this layer 

is to solve an inverse problem: matching the modeling data with measured data assuming 

the interfaces as one phase with a certain thermal conductivity value. 

For the FE model of configuration B, parameter study on the effective thermal 

conductivity of interfacial layer is conducted to fit numerical results with experimental 

data in a reasonable range. In result, the effective thermal conductivity is assumed to 

vary linearly from 0.4-1.6 W/m·K with temperature increasing from 300 to 620K, which 

is about one order of magnitude lower than that of the pure Ti3SiC2 and pure NiTi. 

Figure 38 shows a good agreement between the measured data and the FE results [22]. 

The difference between these two sets of data is from 2.5-8.9 %, which is much lower 

than the corresponding value in the case where only porosity is considered. 

Another observation from numerical results for both configurations is that the 

discrepancy between FE results and experimental results becomes smaller and smaller as 

the temperature moves further away from the M→A phase transformation temperature 

range. For example, in Figure 38, the difference is about 8.2% at temperature, 450 K, 

close to phase transformation temperature, and then this difference drops to 2.5% and 

3.8% at 300K and 600 K, respectively. There are two possible explanations for this 

phenomenal: (1) the measured data close to the M→A phase transformation temperature 

range is not as accurate as those with temperature away from it, due to the latent heat 

generated during M→A phase transformation; (2) instead of linear variation of the 
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overall effective thermal conductivity of interfacial layer with temperature, other 

assumption such as power law might be used. 

 

 

Figure 38: Temperature-dependent thermal conductivity of the NiTi/Ti3SiC2 composite: 

comparison between experiment and simulation results. Simulations results based on 

both configuration A and B are shown [22]. 

 

 

4.5 Heat flux: numerical results 

Figure 39 shows typical examples of heat flux distribution in each phase of the 

these two different configurations when temperature is around 600 K and temaperatue 

gradient is applied in the y-direction. According to the length scale used in this sudy, the 

unit of heat flux used here is 10
-6

 W/µm
2
. 
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Figure 39: Simulated heat flux (unit: 10
-6

 W/µm
2
) along y direction for four components, 

namely Ti3SiC2, NiTi, pore, and interface, in the NiTi/Ti3SiC2 composite under two 

different configurations: A and B. 
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Figure 39: Continued. 

 

For configuration A in which only porosity is considered, it is shown in Figure 

39(A1) that Ti3SiC2 has the highest level of heat flux in the composite. The main part of 

Ti3SiC2 phase has heat flux values in the range of 30-50 (10
-6

 W/µm
2
). Some parts of 

Ti3SiC2 phase adjacent to NiTi phase have lower heat flux values in the range of 15-30 

(10
-6

 W/µm
2
). Also, there are some small heat-concentration areas which are located at 

the immediate vicinity of pores in Ti3SiC2 phase. This can be understood by the fact that 

when heat flows from Ti3SiC2 phase to pores which are occupied by air, which has a 

dramatically lower thermal conductivity, heat will accumulate locally in those areas and 

form some “hot spots”. In Figure 39(A2), it can be seen that heat flux distributed 

relatively uniform in NiTi phase, with the values in the range of 15-20 (10
-6

 W/µm
2
). 

Pores have the lowest level of heat flux 0-0.15 (10
-6

 W/µm
2
), as shown in Figure 39 (A3). 

To see the influence of the interfacial layer upon heat flow in the composite, the 

distributions of heat flux along temperature gradient direction in each phase of 

configuration B considering both porosity and interfacial layer are plotted in Figure 39 
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(B1)-(B4). Heat flux distribution in Ti3SiC2 phase is very similar to that of the 

configuration A, as seen in Figure 39(A1) and 6(B1), but some slight differences for the 

two configurations can be observed. One is that the part with the heat flux value 30-50 

(10
-6

 W/µm
2
) shrinked slightly as compared to Figure 39(A1). Another difference is 

location of “hot spot”. They not only locate in the areas adjacent to pores, but also some 

areas adjacent to the interfacial layer. This follows that the effective thermal 

conductivity of the interfacial layer is much lower than that of pure Ti3SiC2. The heat 

flux values of NiTi phase in configuration B is lower than that of configuration A and 

mainly in the range of 10-15 (10
-6

 W/µm
2
) due to the heat scattering at the surrounding 

phase boundaries, as shown in Figure 39(B2). As expected, the interface has low heat 

flux value, mostly in the range of 1-10 (10
-6

 W/µm
2
), as shown Figure 39(B4). Once 

again, the pores have the lowest heat flux value in the composite, the value and 

distribution, as shown in Figure 39(B3), are similar to that of configuration A. An 

overall comparison between these two configurations indicates that the heat scattering at 

the interfacial layer results in an overall reduction of heat flow within the composite, 

especially in NiTi phase. 

Another advantage of the FE model is that we can explore the heat path in the 

NiTi/Ti3SiC2 interpenetrating phase composite by plotting the iso-surface of the heat 

flux along temperature gradient direction in the composite, which cannot be measured or 

observed in the experiments. First, the wireframe of mesh is plotted to show the 

geometry of the interested phases. Then 3D iso-surfaces of different level heat flux are 

drawn in the mesh wireframe to show the heat path in each phase, see in Figure 40. 
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The iso-surfaces of heat flux in Ti3SiC2 phase for the two configurations are very 

similar, as shown in Figure 40 (A1) and (B1). The iso-surfaces (yellow color) with heat 

flux value around 30×10
-6

 W/µm
2 

has broad distributions within Ti3SiC2 phase. Their 

connected parts can be seen as the “heat path” where heat can transfer efficiently. Also 

we can see the distribution of “hot spots” more clearly in the 3D wireframe mesh. 

Figure 40 (A2) and (B2) also show the plots of iso-surfaces of heat flux in NiTi 

for the two configurations. Although the locations with high heat flux level in NiTi for 

the two configurations are alike, there is apparently a drop in heat flux value for the 

configuration B considering interfacial layer as compared to configuration A. 
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Figure 40: Iso-surface of the heat flux (unit: 10
-6

 W/µm
2
) along y direction for Ti3SiC2 

and NiTi in the NiTi/Ti3SiC2 composite under two different configurations: A and B. 
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CHAPTER V 

COMPUTATIONAL MODELING OF PLASTIC-DAMAGE BEHAVIOR OF 

POROUS MAX PHASE 

 

In this chapter, the mechanical properties of porous Ti2AlC which is one of the 

materials from MAX phase with controlled porosity and pore size is studied. 

Micromechanics based representative element volume (RVE) method and finite element 

(FE) method is adopted in modeling porous Ti2AlC. Effective elastic moduli and 

compressive strength are obtained from FE analyses. A plasticity-damage coupled 

constitutive model which considers different tensile and compressive mechanical 

behavior is used in modeling the inelastic behavior of porous Ti2AlC. Numerical results 

show that volume fraction, size and shape of pores have influence on elastic moduli and 

compressive strength of the material. 

 

5.1 Constitutive model 

The crystalline defects in Ti2AlC are basal plane dislocations, which are large in 

amount, multiply and are mobile even low temperature (as low as 77K). Therefore, the 

ductility of Ti2AlC is in between of typical ceramic and metal. The formation of kink 

bands (KB) under loading plays a central role in deformation of Ti2AlC, which also 

results in the distinct tensile and compressive behaviors (i.e. Ti2AlC is more brittle in 

tension than in compression at room temperature) [104]. Therefore, a plastic-damage 
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constitutive module that can to capture the distinct tensile and compressive behavior of a 

quasi-brittle material system should be used.  

In this study, a coupled plasticity-damage constitutive model formulated by 

Cicekli et al. [105] and modified by Abu Al-Rub and Kim [116] is used in this study. In 

this constitutive model, the Lubliner yield criterion [114] expressed in the effective 

(undamaged) configuration is adopted to predict the plastic behavior of porous Ti2AlC. 

Furthermore, the non-associative plasticity flow rule based on the Drucker–Prager 

potential and power law damage evolution functions with two distinct damage evolution 

surfaces: tensile and compressive damage surfaces are included in this constitutive 

model. 

 

5.1.1 Isotropic damage model 

The definition of the damage density  based on the effective (undamaged) area 

first proposed by Kachanov [126] is adopted here. In the nominal (damaged) 

configuration, all types of damages results from loading, such as voids, cracks and 

debonding, etc. are included and the damage density  is defined by the ratio of the total 

damaged area to overall cross-section area: 

 
DA A A

A A



   (5.1) 

The value of   ranges from 0 to 1. Material is considered as undamaged when   

equals to 0 and fully damaged when   equals to 1. 
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For the isotropic damage (i.e. scalar damage variable), the relation between the 

stresses in damaged and undamaged configurations, namely nominal Cauchy stress 

tensor 
ij

 and the corresponding effective stress tensor 
ij

 is nonlinear argued by 

Cicekli et al. [105]. Here, the effective stress means the average micro-level stress acting 

in the undamaged (intact) material under uniaxial loading, i.e. force divided by the 

undamaged part of the area, while the nominal stress means the macro-level stress and is 

defined as the force divided by the total area. In order to predict the nonlinear 

dependence of degradation of the damaged stiffness on damage density, a nonlinear 

relationship between the nominal and the effective stress tensor is assumed,  

  
2

1ij ij     (5.2) 

For simplicity and ease in the numerical implementation, strain equivalence 

hypothesis [127] is adopted in this study to derive the transformation relations between 

the damaged and the hypothetical undamaged states of the material. The total strain 

tensor 
ij is set equal to the corresponding effective strain tensor  ij

(i.e., 
ij ij   ), 

which can be decomposed into elastic strain e

ij (= e

ij ) part and plastic strain p

ij (= p

ij ) 

part, such that: 

 e p e p

ij ij ij ij ij ij           (5.3) 

The plastic strain in the above equation incorporates all types of irreversible 

deformations whether they are due to the formation of KB, delamination within grains, 

or shear-band formation, etc. 

Following generalized Hooke’s law,  
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 ,    e e

ij ijkl kl ij ijkl klE E      (5.4) 

The elasticity tensor for isotropic linear-elastic material in effective configuration can be 

expressed as,  

 
2

2
3

ijkl ik jl ij klE G K G   
 

   
 

 (5.5) 

where  / 2 1  G E and  / 3 1 2 K E are the effective shear and bulk moduli, 

respectively, with E  being the effective Young’s modulus and  is the effective 

Poisson’s ratio which are obtained from the stress-strain diagram in effective 

configuration. 

By applying the strain equivalence hypothesis, the relation between 
ijklE and 

ijklE

can be expressed by: 

  
2

1ijkl ijklE E   (5.6) 

Due to the existence of KB and IKB in Ti2AlC under compression, the tensile 

and compressive behaviors are different. Therefore, in order to model the damage 

behavior of porous Ti2AlC induced by tension and compression, the Cauchy stress tensor 

(in the nominal and effective configurations) should be decomposed into positive and 

negative parts using the spectral decomposition technique [128-130]. The nominal stress 

tensor  ij
 and the effective stress tensor  ij

 can be decomposed as follows: 

 ,    ij ij ij ij ij ij             (5.7) 
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where, the superscripts “+” and “-” designate tensile and compressive entities, 

respectively.  

ij
 and  

ij
are the tensile parts whereas  

ij
and  

ij
are the compressive 

parts of the stress tensors in nominal and effective configurations, respectively. 

To relate the effective tensile and compressive stress tensors  

ij
and  

ij
 to  ij

, 

fourth-order tensile and compressive projection tensors 

ijklP and 

ijklP  are used: 

 ,    kl klpq pq kl klpq pqP P         (5.8) 

The tensile and compressive projection tensors are defined as follows: 

           
3

1

ˆ ,    
k k k k k

ijpq i j p q ijpq ijpq ijpq

k

P H n n n n P I P  



    (5.9) 

where 
  ̂
k

H denotes the Heaviside step function computed at kth principal stress
 ̂
k

of  ij
and  k

in is the kth corresponding unit principal directions. In the subsequent 

development, the superimposed hat designates a principal value. 

Substituting tensile parts and compressive parts of the nominal and effective 

stress tensors of Eq. (5.7) into the expression in Eq. (5.2), we have: 

    
2 2

1 ,    1ij ij ij ij               (5.10) 

where the validity of Eq. (5.2) for both tension and compression is assumed 

independently,  
and  

are the tensile and compressive damage densities, respectively. 

And therefore, the relation between 
ij  and ij 

 in terms of  
and  

 can be written in 

the form: 

    
2 2

1 1ij ij ij            (5.11) 
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and further, 

    
2 2

1 1ij ijkl ijkl kl ijkl klP P M            
  

 (5.12) 

where 
ijklM  is the fourth-order damage-effect tensor. Substitute Eq. (5.4) into Eq. (5.12), 

the relation of damaged elastic tensor and the corresponding undamaged elastic tensor 

under strain equivalence hypothesis is given as: 

 ijkl ijmn mnklE M E  (5.13) 

 

5.1.2 Plasticity yield surface 

The Lubliner yield condition which takes both tension and compression plasticity 

into consideration is used. Since the stress state in the effective (undamaged) 

configuration is the one which drives the plastic flow, the Lubliner yield criterion is 

expressed in the effective configuration as follows: 

        2 1 max max
ˆ ˆ3 , 1 0eq eq eqf J I H c                 (5.14) 

where
2 / 2 ij ijJ S S is the second-invariant of the effective deviatoric stress tensor 

/ 3   ij ij kk ijS , 
1  kkI is the first-invariant of the effective Cauchy stress tensor ij

, 

max̂ is the maximum principal effective stress,  max̂H is the Heaviside step function 

( 1H  for 
max
ˆ 0  and 0H  for 

max
ˆ 0  ), and the parameters  and   are 

dimensionless material constants which are defined as: 

 
 
 

 
 
 

 
0 0

0 0

/ 1
,    1 1

2 / 1

b eq

b eq

f f c

f f c


   



  

  


    


 (5.15) 
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where 0bf and 
0

f are the initial equi-biaxial and uniaxial compressive yield strengths, 

respectively. Empirical values for 
0 0/ 

bf f  lie between 1.10 and 1.16; yielding values for 

  are between 0.08 and 0.12. The internal plastic state variables 
0

   
t

eq eqdt and 

0
   

t

eq eqdt  are the equivalent plastic strains in tension and compression, respectively, 

with their rates being defined as: 

     max min
ˆ ˆˆ ˆ,    1p p

eq ij eq ijr r           (5.16) 

where 
max̂ p and 

min̂ p  are the maximum and minimum principal values of the plastic strain 

rate  p

ij
, such that 

1 2 3
ˆ ˆ ˆ   p p p  with 

max 1
ˆ ˆ p p  and 

min 3
ˆ ˆ p p .  ̂ ijr  is a dimensionless 

weighting factor which accounts for the dependence of tension or compression on the 

values of the principal stresses and is defined as: 

  

3

1

3

1

ˆ

ˆ

ˆ

k

k
ij

k

k

r















 (5.17) 

where  is the Macaulay brackets presented as   2x x x  . Moreover, if the 

loading is pure uniaxial tension ˆ 0  , then  ˆ 1 ijr , and if the loading is pure 

compression ˆ 0  , then  ˆ 0 ijr . 

In Eq. (5.14), c  in the last term is the isotropic hardening function, which 

represents the material cohesion under uniaxial compression. The evolution laws for the 



 

95 

 

compressive and tensile isotropic hardening functions c and c  are assumed to be 

exponential and linear hardening laws, respectively: 

  0 01 exp ,    eq eqc f Q b c f h               
 

 (5.18) 

where 
0

f and 
0

f  are the initial yield stresses in compression and tension, respectively. 

The parameters Q
, b and h are material constants, which can be obtained from the 

uniaxial stress-strain diagram in effective configuration. 

A non-associative plasticity flow rule is to realistically characterize the 

volumetric expansion of porous Ti2AlC. In other words, the plastic flow direction should 

be written in terms of a plastic potential pF that is not equal to the plastic yield function 

f , such that: 

 
p

p p

ij

ij

F
 







 (5.19) 

where p is the plastic multiplier, which can be obtained from standard plasticity 

consistency condition, 0f  , such that: 

 0,  0,  0,  0p p pf f f       (5.20) 

The Drucker-Prager function is used as plastic potential pF , and can be expressed as: 

 2 13p pF J I   (5.21) 

where p is the dilation material constant. Then the plastic flow direction p

ijF   is 

written as 
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2

3

2 3

p
ij p

ij

ij

sF

J
 




 


 (5.22) 

 

5.1.3 Tensile and compressive damage surfaces 

The damage function proposed by Chow and Wang [131], and modified by 

Cicekli et al. [105] to incorporate both tensile and compressive damage separately is 

used, which has the form 

  
1

0
2

ij ijkl kl eqg Y I Y K         (5.23) 

where K   is the tensile or compressive damage isotropic hardening function such that 

0K   is the tensile or compressive damage threshold which is interpreted as the area under 

the linear portion of the stress-strain diagram; 
eq   is the equivalent tensile or 

compressive damage density. 

Due to the fact that Ti2AlC behaves in a brittle manner under tensile loading, one 

can assume that the tensile yielding of the material is almost coincide with the damage 

initiation. Therefore, the value of tensile yield strength 
0f
  is equal to that of the tensile 

damage threshold
0K  . However, under compressive loading, the stress-strain curves of 

Ti2AlC exhibit an inverted shallow V shape rather than a sharp drop as for tensile 

loading [104]. Therefore, the value of compressive yield strength 
0f
  is smaller than that 

of the compressive damage threshold
0K  . 
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The damage driving force 
ijY   is interpreted as the energy release rate according 

to the notion of fracture mechanics, where the following expression is proposed by Abu 

Al-Rub and Voyiadjis [132]: 

 11

2

ijpq

rs ijab ab pq

rs

M
Y E  



 







 (5.24) 

The evolution of 
ij  is given by: 

 
ij d

ij

g

Y
 


 







 (5.25) 

where 
d
  is the damage multiplier and one can easily show that 

d   . This multiplier 

can be obtained from the following damage consistency conditions: 

 

0 0 effective (undamaged state)

0,   0,   and 0 0 damage initiation

0 0 damage growth

d

d d

d

g g g



 





    



    
  

       
      

(5.26) 

The rate of the equivalent damage density 
eq   is defined as: 

 
0

  with  
t

eq ij ij eq eqdt            (5.27) 

Power tensile and compressive damage evolution laws are used to capture and 

predict the damage behavior of porous Ti2AlC: 

 0

0

1

q

eq

K K
B

K K




 
 

 

  
   

  
 (5.28) 

 
0

1

q

eq

K
B

K





 



 
  

 
 (5.29) 
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where B and q
are material constant. It shows that damage will be initiated when 

damage hardening function K   is greater than the damage threshold
0K  . 

Also, one can obtain the evolution of the damage isotropic hardening functions 

K  and K   by taking time derivative of Eq. (5.28) and Eq. (5.29) as follows: 

 

 0

1

00

1
1

K

K

q

eq

K K
K

KB q K









 

 

  

 
  

   
 (5.30) 

 

1

0

0

1

q

eq

K K
K

B q K



 

 

  

 
  

 
 (5.31) 

 

5.2 3D RVEs and finite element modeling 

A technique developed in Chapter II to generate FE model of 3D RVE for 

interpenetrating phase composites (IPCs) based on representative volume element (RVE) 

method and finite element (FE) method is used this chapter because of the open-cell 

foam microstructure of porous Ti2AlC. In other word, pores can be treated as a 

connected phase. Meanwhile, due to the usage pore former, various microstructures of 

porous Ti2AlC with different porosity volume fractions, pore size and shape has been 

fabricated. The data used to create 3D RVEs in this study are from micrographs and 

measurements reported in [103], and the detailed microstructure features and 3D RVE 

generating process will be discussed. 
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5.2.1 Microstructure of porous Ti2AlC 

The porous Ti2AlC was fabricated using fast consolidation techniques, i.e. spark 

plasma sintering (SPS) and pressureless sintering in [103]. The samples fabricated using 

Ti2AlC powders by SPS have small porosity volume fraction (i.e. less than 17%) and 

pore size (15-30μm). To get larger porosity volume fraction and to control pore size, 

NaCl powder was used as pore former to be mixed with Ti2AlC powder in cold pressing. 

The NaCl then can be dissolved using water before pressureless sintering process. There 

are three groups of pore size formed by this technique, 50-90μm, 170-250μm and 340-

500μm [103]. Since the strength of NaCl is much smaller than that of Ti2AlC, NaCl 

deformed extensively during cold pressing. As a result, the pore shape of the samples 

using NaCl pore former is ellipsoidal like while the pore shape of other samples without 

using pore former is approximately sphere. 

Another feature of the porous Ti2AlC is the open-cell foam structure. For the 

samples without using NaCl pore former, the volume fraction ratio of open porosity 

versus overall porosity is around 60%, and this value goes up to 80%-100% for the 

samples using NaCl pore former. Meanwhile, as pore size increases, the open/overall 

porosity ratio also increases. For examples, for the samples with porosity volume 

fraction around 20%, the open/overall porosity ratio is around 85% for 50-90μm pore 

size group, 95% for 170-250μm pore size group, and almost 100% for 340-500μm pore 

size group [103]. 

  



 

100 

 

5.2.2 Simulated microstructure 

In modeling of porous media, simplified geometry, such as limited number of 

spherical shape pores, has been used to represent the microstructure of porous media 

[120]. It has been found in [119] that the RVE model of composites with perfect 

spherical shape particles tends to show higher strength than the ones with irregular shape 

particles. This is attributed to the increased level of stress concentration at the regions 

with geometric singularity for the irregular shape particles, which is actually more close 

to the stress state of the real microstructure of the composites. Therefore in this study, 

instead of sphere and ellipsoid, truncated icosahedron and flat truncated icosahedron 

(soccer ball shape and flat soccer ball shape) are adopted to represent the pore shape in 

order to reflect the irregularity of the interconnected pore phase more realistically. 

Another advantage of using truncated icosahedron shape pores is that it can 

tremendously reduce the element number in the mesh of FE model. The reason is that 

when we use perfect spherical shape, there are a lot of tiny segments of curved surface 

existing due to the connectivity of the pores. It leads to much denser mesh comparing to 

the truncated icosahedron shape with only flat surfaces which is easier to mesh. 

In order to achieve desired volume fraction of porosity the connectivity of 

neighboring pores is controlled by adjusting the range of distance among pores. Similar 

to the illustration showed before in Chapter III Figure 17, the relation between adjoining 

pores can be categorized into three states: separation, in contact, and interpenetration 

states. Although all these three states may exist in the real microstructure of the porous 

Ti2AlC at the same time, the in contact state, see in Figure 17 (b), is not considered in 
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our model for simplicity. Since for this state, additional contact properties need to be 

defined, which is unknown. Also, numerical singularity may arise at the sharp tip of the 

region which is close to the contact point between pores. Hence, only separation and 

interpenetration states, Figure 17 (a) and (c), are considered in the modeling, which is 

achieved by controlling the range of the distance between centers of pores. 

In general, the dimensions of the 3D RVEs are selected to include enough 

number of random distributed interconnected pores, and in the meanwhile be statistically 

homogeneous and representative of local continuum properties of the porous Ti2AlC. As 

mentioned in the previous section, the pore shape of porous Ti2AlC can be controlled by 

using pore former. Therefore, depending on the pore shape, two configurations of 3D 

RVEs are created, i.e. one with sphere-like (truncated icosahedron) pores and the other 

with aligned ellipsoid-like (flat truncated icosahedron) pores. 

 

5.2.2.1 Porous Ti2AlC with sphere-like pores 

The dimensions of the 3D RVEs for porous Ti2AlC with sphere-like pores are 

taken to be 100μm×100μm×100μm. These samples were fabricated with 45-90μm in 

diameter Ti2AlC powders only. As observed in the micrograph in [103], the pore size is 

the range of 15-30μm range and the deviation of the pore size is relatively small. 

Therefore, three different sized pores are used in the 3D RVEs. As it is difficult to 

describe the size of a truncated icosahedron, the radiuses of the corresponding 

circumscribed spheres of the truncated icosahedron are used to represent the size of the 

pores. They are 15μm, 20μm, and 30μm, respectively, and the gradation of the 
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corresponding pores is assumed to be approximately 2:3:3. The porosity volume fraction, 

pore number within each 3D RVE is summarized in Table 8. The corresponding 3D 

RVEs with different porosity volume fractions are shown in Figure 41. 

 

 

 

(a)     (b) 

Figure 41: 3D RVEs (100×100×100μm
3
) for pore size 15-30μm group porosity volume 

fractions: (a) 8.9%, (b) 16%, (c) 28.3%, (d) 35.2%, (e) 40%, and (f) 47%. 
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(c)     (d) 

 

(e)     (f) 

Figure 41: Continued. 
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Table 8: 3D RVEs with sphere-like pores 

RVE dimensions(μm) 
Pore size 

(μm) 

Porosity 

(vol. %) 

Pore number within 

RVE 

100×100×100 15-30 

8.9 27 

15.9 57 

28.3 76 

35.2 90 

40.0 120 

47.1 139 

 

 

5.2.2.2 Porous Ti2AlC with ellipsoid-like pores 

As mentioned before, the porous Ti2AlC fabricated by Hu et al. and reported in 

[103] also has various larger pore sizes (i.e. three groups of pore size: 50-90μm, 170-

250μm, and 340-500μm) and ellipsoid like pore shape. This is result of using NaCl 

powder as pore former to mix with Ti2AlC powder during cold pressing before 

pressureless sintering. Since the stiffness of NaCl powder is much smaller than Ti2AlC 

powder and thus the former deformed more extensively than the latter in cold pressing, 

the pore shape is ellipsoid like. In this study, the dimensions of the flat truncated 

icosahedron representing pore shape is assumed to be the same in the two directions 

normal to the compressive loading direction and one half of those in the compressive 

loading direction, i.e. if compressive loading direction is z-direction, then we have the 

three axis of inscribed ellipsoid within the flat truncated icosahedron is a1=a2=2a3 The 
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dimensions of the 3D RVEs for porous Ti2AlC with ellipsoid-like pores are taken to be 

1000μm×1000μm×1000μm for all three pore size groups for the purpose of study on 

pore size effect. Furthermore, the distribution of the pore size becomes broader as pore 

size increases due to the broader particle size range of NaCl pore former used. Therefore, 

a broader pore size range should be considered in creating 3D RVEs. In this study, 9 

pore sizes are used within each pore size group and follow a normal distribution to 

approximate the pore size distribution observed in the experiment, which is shown in 

Figure 42. The pore size group, porosity volume fraction, pore number within each 3D 

RVE is summarized in Table 9 and the corresponding 3D RVEs are shown in Figure 43. 

 

 

 

Figure 42: Pore size distribution of porous Ti2AlC with different pore size groups: 50-

90μm, 170-250μm and 340-500μm. 
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Table 9: RVEs with ellipsoid-like pores 

RVE dimensions(μm) 
Pore size 

(μm) 

Porosity 

(vol. %) 

Pore number within 

RVE 

1000×1000×1000 

170-250 32.8 229 

170-250 40.8 302 

340-500 33.5 43 

 

 

 

(a)      (b) 

Figure 43: 3D RVEs (1000×1000×1000μm
3
) for (a) pore size 170-250μm, porosity 

volume fraction 32.8%, (b) pore size 170-250μm, porosity volume fraction 40.5%, (c) 

pore size 340-500μm, porosity volume fraction 33.5%. 
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(c) 

Figure 43: Continued. 

 

5.2.3 FE mesh and boundary conditions 

Due to the complex geometry of the 3D RVEs, they are meshed with C3D4 and 

C3D10 element (four-node linear tetrahedral element and ten-node quadratic tetrahedral 

element) in Abaqus which are geometrically versatile and are very convenient to mesh a 

complex shape. Here, for 3D RVEs of porous Ti2AlC with sphere-like pores 

(100×100×100μm
3
), the approximate edge length of elements is 4μm, and the 

corresponding FE models contain around 140,000 elements. For the 3D RVEs of porous 

Ti2AlC with ellipsoid-like pores (1000×1000×1000μm
3
), the approximate edge length of 

elements is 30μm, and the element number is 186,524 and 179,956 for Figure 43(a) and 

(b) in 170-250μm pore size group, and 168,354 for Figure 43(c) in 340-500μm pore size 

group. 
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The RVEs used in this chapter are also created by cutting parts of a simulated 

microstructure with random distributed phases based on actual microstructure of porous 

Ti2AlC, and they do not exhibit geometry periodicity. Therefore, as mentioned before in 

Chapter III, instead of PBC, a mixed boundary condition designed for such RVEs [120] 

are imposed in this study: uniform displacements are imposed on the faces perpendicular 

to the loading direction. To simulate an interior domain compatible with the surrounding 

material, the faces parallel to the loading direction remain straight and parallel during 

deformation. 

 

5.3 Numerical simulation and results 

Linear elastic and nonlinear plasticity-damage coupled FE analysis is carried out 

on the FE models of 3D RVEs to predict effective elastic moduli and study the coupled 

plastic-damage behavior of porous Ti2AlC, respectively. The coupled plastic-damage 

constitutive model developed and implemented in Abaqus via user material subroutine 

UMAT in [119] is used in conducting 3D numerical simulations. The effect of porosity 

volume fraction, pore size and shape on effective elastic moduli and compressive 

strength is investigated. The material properties of MAX phase T2AlC are listed in Table 

10 [104]. 
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Table 10: Material constants of dense T2AlC. 

Young’s modulus 

E (GPa) 

Poisson’s 

ratio 

Shear modulus 

G (GPa) 

Compressive 

strength(MPa) 

277 0.17 118.8 540 

 

 

5.3.1 Effective elastic moduli 

Mori-Tanaka method is one the most well-known micromechanics methods in 

predicting effective elastic moduli of multi-phase composites with non-overlapping 

inclusion phase which is derived based on the Eshelby solution. In this method, the 

effects of other inclusions to one inclusion are through its surrounding matrix. At 

relatively low phase concentration (due to the dilute assumption used in deriving the 

formulation), Mori-Tanaka method gives good estimation of effective elastic moduli for 

isotropic and homogeneous composites. Another micromechanics based unit cell method 

aforementioned in Chapter II, which is particularly designed for interpenetrating phase 

composites, is used here to predict the effective elastic moduli of the given porous 

Ti2AlC [59]. The expression of the effective Young’s modulus and shear modulus of the 

two-phase interpenetrating phase composite are expressed as Eq. (2.1) and Eq. (2.2) 

If the interconnected pores are treated as one of the constituent phases, referred 

as phase “1” and matrix referred as “0”, then the following limiting case should be used 

in Mori-Tanaka methods and unit cell method. 

 1 1

0 0

0,    0
E G

E G
   (5.32) 
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The unit cell method reduces to 

    
2 2

0 01 ,   1E a E G a G     (5.33) 

The Mori-Tanaka method gives 
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 (5.34) 

The corresponding curves of predicted elastic moduli versus porosity volume 

fraction are shown in Figure 44 and Figure 45. The experimental data are those from 

[103], using two fabrication techniques, i.e. pressureless-sintering and spark plasma 

sintering (SPS). The corresponding data points are distinguished in the figures by using 

different markers.It shows that most of experimental data points with relatively large 

porosity volume fraction are relative lose to unit cell method, while two data points with 

relatively small porosity volume fraction (i.e. 8.5%, 13.6%) are predicted well by Mori-

Tanaka method. Also, for two data points with nearly the same porosity volume fractions, 

13.6% and 13.8%, there is around 30% difference for both the corresponding measured 

effective Young’s moduli and shear moduli respectively. Our conjecture for the 

explanation of the above phenomena is because of the change of porosity percolation or 

interconnectivity. It has been observed in the experiment that the sharp jumps of 

mechanical properties of composites with increasing volume fraction of a particular 

phase are related to the formation of percolated or connected microstructures in 

composites [133, 134]. Since Mori-Tanaka method here represents the case when there 

is no overlapping among the pores while the unit cell method represents the case when 
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the pore phase is fully connected in the shape the 3D cross-truss. When the porosity 

volume fraction increases and reaches a critical value, a connected microstructure is first 

likely to form and the values of corresponding effective Young’s modulus and shear 

modulus have a jump. In other words, due to the change of microstructure, the 

dependence of the elastic properties of the porous Ti2AlC on the porosity has been 

changed.  

 

 

 

Figure 44: Comparisons of predicted effective Young’s modulus obtained by Mori-

Tanaka method, unit cell method and FE models with sphere-like pores with 

experimental results. 
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Figure 45: Comparisons of predicted effective Shear modulus obtained by Mori-Tanaka 

method, unit cell method and FE models with sphere-like pores with experimental 

results. 

 

 

Next, the effective elastic moduli of porous Ti2AlC with sphere-like and 

ellipsoid-like pores are obtained from FE models of 3D RVEs using linear elastic 

material properties. Uniaxial tension and simple shear tests are conducted on the FE 

models of 3D RVEs with load in the x-, y-, and z-directions. 
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5.3.1.1 Porous Ti2AlC with sphere-like pores 

The FE predicted effective elastic moduli are summarized in Table 11. It is found 

that the effective elastic moduli approximately follow the relation 2(1 )G E    which 

is valid for linear isotropic elastic material. Therefore, the corresponding porous Ti2AlC 

achieve approximate isotropy, and further we can conclude that the RVEs created are 

statistically homogeneous and can represent the local continuum properties of the porous 

Ti2AlC. Comparisons of the effective Young’s modulus and shear modulus obtained 

from FE models of 3D RVEs with Mori-Tanaka methods, unit cell method and 

experimental results are also shown in Figure 44 and Figure 45, respectively.  

 

 

Table 11: Effective elastic moduli of porous T2AlC with sphere-like pores. 

Pore size 

(μm) 

Porosity 

(vol. %) 
E (GPa) G(GPa) 

Poisson’s 

ratio 

15-30 

8.9 230.26 98.57 0.171 

15.9 197.57 84.40 0.173 

28.3 145.96 62.07 0.177 

35.2 121.05 52.47 0.182 

40.0 100.67 42.97 0.182 

47.1 80.10 34.60 0.188 

 

 

It is shown in Figure 44 and Figure 45 that the curve of predicted effective 

Young’s moduli obtained from the FE models of 3D RVEs for porous Ti2AlC with pore 
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size 15-30μm and various porosity volume fractions lies between the Mori-Tanaka 

method and unit cell method. Furthermore, at small porosity volume fraction, the FE 

predicted Young’s modulus and shear modulus are more close to the curve of Mori-

Tanaka method bound. However, as the porosity volume fraction increases the FE 

predictions gradually deviate from Mori-Tanaka method and get closer to the curve of 

unit cell method. Again, the explanation of this phenomenon is the change of porosity 

percolation or interconnectivity. When generating 3D RVE, high open/overall porosity 

can be achieved by adjusting connectivity of sphere-like pores for high porosity volume 

fraction. However, for low porosity volume fraction, it is hard to achieve high 

open/overall porosity observed in experiment by just control the connectivity of the 

sphere-like pores. In the real microstructure of porous Ti2AlC, this high open/overall 

porosity is due to the presence of pore channels at grain edges left at the end of the 

sintering. Actually, as mentioned in [135], the “sintering” refers to the process of pore 

shape change, shrinkage and grain growth of in contact solid particles under high 

temperature. In details, at initial stage of sintering spherical powders are in tangential 

contact; at near end of initial stage, powders begin to coalesce and the neck growth 

among the powders can be observed; at intermediate stage, grains are forming which 

have shape of polyhedron and with enclosing pore channels at grain edges; at final stage, 

pores channels shrink and eventually disappear while pores shape become sphere like 

polyhedron [135]. Therefore, it can be speculated that the high open/overall porosity 

ratio for low porosity volume fraction is caused by the existence of pore channels at 

grain edges which are not complete eliminates during the sintering process. Since the 
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percolation models are beyond the scope of this study and it is difficult to include both 

interconnected tiny cylindrical-like pores and relatively large sphere-like pores in 

creating 3D RVE, only the cases with sphere-like and ellipsoid-like pores are 

investigated in this study. 

 

5.3.1.2 Porous Ti2AlC with ellipsoid-like pores 

The micromechanics based methods and FE models of 3D RVEs mentioned 

before to estimate the elastic moduli of porous Ti2AlC with sphere-like pores are for 

isotropic case. However, the material system of porous Ti2AlC with aligned ellipsoid-

like pores is transversely isotropic, since it is assumed that three axis lengths have the 

relation of a1=a2=2a3 for inscribed ellipsoid of the flat truncated icosahedron used in 

corresponding 3D RVEs. Therefore, there are five independent elastic moduli due to 

transverse isotropy. The FE predicted effective elastic moduli in longitudinal direction 

(denoted by subscript “L”) and transverse direction (denoted by subscript “T”) are shown 

in Table 12. 

 

 

Table 12: Effective elastic moduli of porous T2AlC with ellipsoid-like pores. 

Pore 

size(μm) 

Porosity 

(vol. %) 
ET (GPa) EL(GPa) GT (GPa) GL (GPa) vL 

170-250 32.8 141.14 87.69 61.66 47.01 0.142 

170-250 40.5 115.55 59.56 50.15 35.74 0.140 

340-500 33.5 145.02 81.09 62.22 47.00 0.140 
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(a) 

 

(b) 

Figure 46: Comparisons of predicted effective elastic moduli obtained by FE models 

with ellipsoid-like pores with experimental results: (a) Young’s modulus, (b) shear 

modulus. 
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The measured Young’s modulus and shear modulus are only available for the 

porous Ti2AlC sample with 34.6% 170-250μm ellipsoid-like pores [103]. The FE 

predicted Young’s modulus and shear modulus for 3D RVE with 32.8% 170-250μm and 

340-500μm ellipsoid-like pores are compared with experimental data and plotted in 

Figure 46 (a) and (b), respectively. It is shown that the FE predicted Young’s moduli in 

longitudinal direction obtained from above mentioned 3D RVEs are around 7.0% and 

15.6% smaller than the measurement, while the corresponding shear moduli are nearly 

the same and are 5.9% larger than the experimental result. Therefore, it can be seen that 

the pore size does not affect the effective elastic moduli much for the given porous 

Ti2AlC. 

 

5.3.2 Meso-scale simulations for damage behavior of porous Ti2AlC with aligned 

ellipsoid-like pores 

As mentioned before, NaCl pore former is used in fabricating porous Ti2AlC in 

the experiments to control pore size and shape which results in ellipsoid-like pore shape 

and three pore size groups. For the compressive strength, experimental data is mostly 

available for the group of samples with ellipsoid-like pores. Therefore, in this section, 

the 3D RVEs with aligned ellipsoid-like pores are used in plastic-damage coupled finite 

element analysis to investigate the effects of porosity volume fraction, pore size and 

loading direction on compressive behavior of porous Ti2AlC. The coupled plasticity-

damage constitutive model outlined in previous section is adopted. This model was 
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developed and implemented in Abaqus via user material subroutine UMAT by Kim and 

Abu Al-Rub in [119], and is used in conducting 3D numerical simulations in this study. 

 

5.3.2.1 Tensile and compressive material properties of dense Ti2AlC 

For the material constants in yield criterion and plastic potential function, 

0.12,  0.2p    are used in this study. Other tensile and compressive material 

constants used in the constitutive model are listed in Table 13 and Table 14, respectively. 

Since, there is no experimental data available for stress-strain relation of dense Ti2AlC 

under tensile load in the literature due to the difficulty in conducting tensile test, the 

initial tensile yield strength of Ti2AlC is assumed to be smaller or equal to its flexure 

strength, i.e. 
0f
 =175, 225 and 275MPa, and other constants are selected empirically. 

 

 

Table 13: Tensile material constants used in the FE analysis. 

Tensile plastic material constants Tensile damage material constants 

0f
 (MPa) h (MPa) 0K  (MPa) B  q

 

175, 225 and 275 50000 225 1.7 1.0 

 

 

Table 14: Compressive material constants used in the FE analysis. 

Compressive plastic material constants Compressive damage material constants 

0f
  (MPa) Q

 (MPa) b  0K   (MPa) B  q
 

175, 225 and 275 5000 55 300 0.155 0.73 
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For simplicity, it is assumed that 
0 0f f  in the following study. Using the 

above mentioned parameters, the corresponding predicted overall compressive and 

tensile nonlinear behaviors of dense Ti2AlC are shown in Figure 47 and Figure 48, 

respectively. As shown in Figure 47, with fixed compressive damage threshold 
0K  , the 

compressive calibrated stress-strain curves and damage density-strain curves for both 

0f
 =175, 225 and 275MPa are very similar, and at the same time agree with the 

experimental data very well. In contrast, it is shown in Figure 48 that the value of initial 

tensile yield stress
0f
  plays an important role in tensile failure of dense Ti2AlC, because 

0f
  is assumed to be equal to tensile damage threshold 

0K  . In Figure 48 (a), it can be 

seen that the curve of 
0f
 =175MPa starts the softening stage (plastic yielding and 

damage initiation) earlier than that of 
0f
 =225MPa and reach a lower stress level at 

strain equals to 6.0E-3. Same trend can also be found for the cases of 
0f
 =225 and 

275MPa. This can be observed more clearly from damage density in Figure 48 (b). For 

example, the tensile damage density for the case with
0f
 =175MPa becomes non-zero at 

strain is about 6.0E-4 compared to about 8.0E-4 and 1.0E-3 for the case with
0f
 =225 

and 275MPa. Also, the tensile damage density for 
0f
 =175MPa case achieves 

approximate 0.96 at strain equals to 6.0E-3 while this value for the letter two cases is 

around 0.84 and 0.74, respectively. 
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(a) 

 

(b) 

Figure 47: Compressive plastic-damage behavior of dense Ti2AlC: (a) stress-strain curve, 

(b) tensile damage density-strain curve. 
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(a) 

 

(b) 

Figure 48: Tensile plastic-damage behavior of dense Ti2AlC: (a) stress-strain curve, (b) 

compressive damage density-strain curve. 
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5.3.2.2 The effect of varying the tensile properties of dense material 

Since the tensile strength of dense Ti2AlC is relatively small compared to 

compressive strength and tensile failure is more of brittle style, the damage of given 

porous Ti2AlC will first initiate locally where principle tensile stress reaches the initial 

tensile yield strength (also the tensile damage threshold). Accumulation of these tensile 

damages will lead to decohesion of the material locally and form small cracks within 

porous Ti2AlC. The growth and coalesce of these small cracks will eventually cause 

final failure of the porous system. Therefore, even though under uniaxial compressive 

load, the failure mechanism and overall compressive strength of porous Ti2AlC material 

system is strongly dependent on the tensile behavior of dense Ti2AlC. The effect of 

initial tensile yield stress of dense Ti2AlC on the overall compressive behavior of porous 

Ti2AlC material system is studied. 

As an example, finite element analysis is carried out on the 3D RVE for porous 

Ti2AlC with 32.8% aligned 170-250μm ellipsoid-like pores, as shown in Figure 43 (a). 

The obtained stress-strain relations for three cases: 
0 0f f   175, 225 and 275MPa 

with compressive load in longitudinal direction (z-direction) are shown in Figure 49. For 

all three cases, stress increases linearly with strain when strain is relatively small, and 

the initial stiffness of the porous Ti2AlC material system is approximately equal to the 

longitudinal Young’s modulus EL, i.e. 87.69GPa, as previously shown in Table 12. As 

the strain continuously increases, the stress increases nonlinearly and then experiences a 

softening stage, which forms a reverted narrow “V” shape for all three cases. It other 

words, unlike typical porous ceramic, the failure of the given porous Ti2AlC is relatively 
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graceful which coincide with the description in the experiment [103]. The compressive 

strength obtained from 3D RVE for the cases 
0 0f f   175, 225 and 275MPa is 

around 135, 153 and 166MPa, respectively. The results of the latter two cases fell into 

the range of measured compressive strength, i.e. 140-195MPa [103]. 

 

 

 

Figure 49: Stress-strain relation obtained from 3D RVE of porous Ti2AlC with 32.8% 

aligned 170-250μm ellipsoid-like pores for the cases: initial yield stress 
0 0f f   175, 

225, 275MPa with load in z-direction.  
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To graphically see the plastic-damage evolution process in porous Ti2AlC, 

distributions of tensile equivalent plastic strain and corresponding tensile damage 

density, as well as compressive equivalent plastic strain and corresponding compressive 

damage density of porous Ti2AlC with 32.8 vol. % aligned 170-250μm ellipsoid-like 

pores ( 0 0f f   225MPa case) with compressive load in longitudinal direction (z-

direction) at different strain levels are plotted in Figure 50-Figure 53. 

As expected, damages usually are formed near the areas with high plastic strain 

level. For example, it can be observed that the pattern of tensile damage distribution in 

Figure 51 is very similar to that of high tensile equivalent plastic strain distribution in 

Figure 50. Comparing the tensile and compressive equivalent plastic strain distributions 

shown in Figure 50 and Figure 52, it is found that at relatively high strain level, tensile 

equivalent plastic strain distribution has more concentrated areas, although the maximum 

value of compressive equivalent plastic strain is higher than that of tensile equivalent 

plastic strain. 

For damage evolution process, it is shown in Figure 51 that initially the tensile 

damage occurs randomly in the porous Ti2AlC at low strain level. But as strain level 

increases, the local damage accumulates and starts to form small cracks. Further, these 

small cracks grow, coalesce and become larger cracks in the given porous Ti2AlC. Also, 

it can be seen in Figure 51 and Figure 53 that at  1.0E-1, considerable part of the 

given porous Ti2AlC is damaged due to tensile failure (i.e. tensile damage density 

approaches 1.0), whereas there is only small part of the porous system is damaged due to 

compressive failure. Therefore, it can be concluded that the damage mechanism of given 
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porous Ti2AlC is dominated by localized tensile damage (i.e., decohesion of the 

material). 

 

 

 

(a)     (b) 

 

(c)     (d) 

Figure 50: Tensile equivalent plastic strain for porous Ti2AlC with 32.8 vol. % aligned 

170-250μm ellipsoid-like pores ( 0 0f f  225MPa case) with compressive load in z-

direction at different strain level: (a)  3.0E-2, (b)  5.0E-2, (c)  7.0E-2, (d)  
1.0E-1.  
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(a)     (b) 

 

(c)     (d) 

Figure 51: Tensile damage density for porous Ti2AlC with 32.8 vol. % aligned 170-

250μm ellipsoid-like pores ( 0 0f f   225MPa case) with compressive load in z-

direction at different strain level: (a)  3.0E-2, (b)  5.0E-2, (c)  7.0E-2, (d)  
1.0E-1. 
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(a)     (b) 

 

(c)     (d) 

Figure 52: Compressive equivalent plastic strain for porous Ti2AlC with 32.8 vol. % 

aligned 170-250μm ellipsoid-like pores ( 0 0f f   225MPa case) with compressive 

load in z-direction at different strain level: (a)  3.0E-2, (b)  5.0E-2, (c)  7.0E-2, 

(d)  1.0E-1. 
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(a)     (b) 

  

(c)     (d) 

Figure 53: Compressive damage density for porous Ti2AlC with 32.8 vol. % aligned 

170-250μm ellipsoid-like pores ( 0 0f f  225MPa case) with compressive load in z-

direction at different strain level: (a)  3.0E-2, (b)  5.0E-2, (c)  7.0E-2, (d)  
1.0E-1. 
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5.3.2.3 The effect of varying loading direction 

As mentioned before, the material system of porous Ti2AlC with aligned 

ellipsoid-like pores is transversely isotropic. In this section, effect of loading direction 

on compressive behavior of this transversely isotropic porous system is investigated. As 

an example, plastic-damage finite element analysis is carried out on 3D RVE created for 

porous Ti2AlC with 32.8 vol. % aligned 170-250μm ellipsoid-like pores. The five 

independent Young’s moduli for the corresponding 3D RVE obtained previously are 

listed in Table 12. The stress-strain curves for the cases with same material properties (

0 0f f  225MPa) and three compressive load directions, i.e., transverse direction (x-, 

and y-direction) and longitudinal direction (z-direction), are shown in Figure 54. It has 

been shown in the previous section that the initial stiffness of porous Ti2AlC is 

approximately equal to the Young’s moduli in the load direction. Here again, the initial 

stiffness of porous Ti2AlC in different load directions are approximately equal to the 

Young’s modulus in the corresponding load direction, e.g. the initial stiffness in 

longitudinal direction is equal to EL= 87.69GPa and the initial stiffness in transverse 

directions is around ET= 141.14GPa. Also, the stress-strain curves for compressive load 

in two transverse directions, i.e. x-, and y-direction are very similar, with corresponding 

compressive strength in y-direction 3% higher than the compressive strength in x-

direction. This again approves the transverse isotropy of the created 3D RVE. Moreover, 

because of the transverse isotropy of the porous Ti2AlC with aligned ellipsoid-like pores, 

the material system can sustain more loads in transverse directions (x-, and y-direction) 

than in longitudinal direction (z-direction). It is shown in Figure 54 that the average 
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compressive strength obtained from the given 3D RVE of porous Ti2AlC in transverse 

directions (x-, and y-direction) is around 241.46MPa. It is about 58% larger than the 

compressive strength in longitudinal direction (z-direction) which is approximately 

152.76MPa. 

 

 

 

Figure 54: Stress-strain relation obtained from 3D RVE of porous Ti2AlC with 32.8 vol. 

% aligned 170-250μm ellipsoid-like pores for the cases: initial yield stress 
0 0f f  

225MPa with load in x, y- and z-direction. 

  

0

40

80

120

160

200

240

280

0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02

st
re

ss
 (

M
P

a)
 

strain 

f0=225MPa, load in x-direction

f0=225MPa, load in y-direction

f0=225MPa, load in z-direction



 

131 

 

5.3.2.4 The effect of pore volume fraction and pore size 

It has been shown in Table 12 that the elastic moduli of porous Ti2AlC decreases 

as porosity increases, and it is obvious that porosity will also play an important role for 

inelastic compressive behavior of the porous system. Therefore, the effect of porosity 

volume fraction and pore size on plastic-damage behavior of porous Ti2AlC is examined 

in this section. As an example, the 3D RVEs of porous Ti2AlC with 32.8 and 40.5 vol. % 

aligned 170-250μm ellipsoid-like pores, as shown in Figure 43 (a) and (b) are used for 

comparison. Figure 55 (a) and (b) show the FE predicted stress-strain curves obtained 

from the corresponding 3D RVEs for the case with initial yield stress 0 0f f  

225MPa and load in longitudinal as well as transverse direction (z, and y-direction), 

respectively. It is shown that with porosity decreasing from 40.5% to 32.8%, the 

compressive strength in longitudinal direction L of porous Ti2AlC increases 

approximately 51%, i.e. from 101.12MPa to 152.76MPa, while the compressive strength 

in transverse direction T increase around 24%, i.e. from 198.43MPa to 245.47MPa. 
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(a) 

Figure 55: Stress-strain relation obtained from 3D RVE of porous Ti2AlC with 32.8 and 

40.5 vol. % aligned 170-250μm ellipsoid-like pores for the case: initial yield stress 

0 0f f  225MPa with compressive load: (a) in longitudinal direction (z-direction), 

(b) in transverse direction (y-direction). 
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(b) 

Figure 55: Continued. 

 

 

For different pore sizes, as shown in Table 9, although the porosity volume 

fractions of two created 3D RVEs are nearly the same, i.e., 170-250μm pore size group 

with 32.8% in volume fraction and 340-500μm pore size group with 33.5% in volume 

fraction, the numbers of pores within the corresponding 3D RVEs are far more different. 

That is, for 170-250μm pore size group, there are 229 pores within the 3D RVE. With 

the same 3D RVE size, 340-500μm pore size group only have 43 pores within the 
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corresponding 3D RVE. The huge discrepancy in pore number affects the microstructure 

of the porous Ti2AlC, such as effective cross-section area and pore interconnectivity, etc. 

Therefore, the effect of pore size on the plastic-damage behavior of porous T2AlC is also 

investigated. The stress-strain curves obtained from finite element analysis for two 

porous Ti2AlC with approximately 33% volume fraction of pores in size 170-250μm and 

340-500μm, under compressive load in longitudinal and transverse direction (z-, and y-

direction) are shown in Figure 56 (a) and (b), respectively. 

As shown in Figure 56 (a), the compressive strength in longitudinal direction L  

of porous Ti2AlC with pore size 340-500μm is smaller than that of porous Ti2AlC with 

pore size 170-250μm. In details, the FE predicted L  of porous Ti2AlC with pore size 

340-500μm is 127.42MPa for 
0 0f f  225MPa, which is about 16.6% smaller than 

those of porous Ti2AlC with pore size 170-250μm. However, the compressive strengths 

in transverse direction T  for the two pore size group are nearly the same, around 

245MPa, as seen in Figure 56 (b). One possible explanation is that, the discrepancy of 

the effective solid area in transverse plane (x-y plane) for the two 3D RVEs is larger 

than that of effective solid area in longitudinal planes (x-z plane and y-z plane). Another 

observation is that the stress-strain curves of porous Ti2AlC with pore size 340-500μm is 

not as smooth as those of porous Ti2AlC with pore size 170-250μm. This might due to 

the way damage accumulates in the microstructure of porous Ti2AlC: Since the porous 

Ti2AlC with pore size 340-500μm has much less pore number than the latter, its pore 

interconnectivity is higher than that of pore size 170-250μm. Once local damages 
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accumulate and coalesce, small cracks start to form and they are likely to become major 

cracks due to the high pore interconnectivity and therefore will greatly affect the 

microstructure and further lead to local material failure and hardening (zigzag shape of 

the stress-strain curve). 

 

 

 

(a) 

Figure 56: Stress-strain relations obtained from 3D RVE of porous Ti2AlC with 

0 0f f  225, 275MPa and approximately 33 vol. % of pores in size 170-250μm and 

340-500μm, under compressive load: (a) in longitudinal direction (z-direction), (b) in 

transverse direction (y-direction). 
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(b) 

Figure 56: Continued 

 

 

Finally, in summary, the trend of all stress-strain curves shown in the above four 

subsections is similar, that is all of them have a reverted narrow “V” shape, i.e. quasi-
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transverse direction obtained from all three 3D RVEs for 
0 0f f   225MPa case are 

summarized in Table 15 and compared with the experimental data available in [103]. It 

is found that the FE predicted compressive strengths in longitudinal direction L  agree 

with the measured results well, and the FE predicted compressive strengths T  are about 

20% higher the experimental results. 

 

 

Table 15: Effective compressive strength of porous T2AlC with aligned ellipsoid-like 

pores (
0 0f f  225MPa). 

Pore 

size(μm) 

Porosity 

(vol. %) 

FE predicted

L  (MPa) 

FE predicted 

T  (MPa) 

Measured 

L  (MPa) 

Measured  

T  (MPa) 

170-250 32.8 152.76 241.62 168±27 N/A 

170-250 40.5 101.12 191.88 N/A 149±10 

340-500 33.5 127.42 238.05 130±10 188±12 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

Summary of the research work in this dissertation and the conclusions can be 

drawn from the computational study are: 

(1) In Chapter II, micromechanics based homogenization methods are used to 

estimate the effective elastic moduli of Ti2AlC/Al composites with various 

compositions. These properties are implemented in UMAT and used in finite element 

analysis of graded Ti2AlC/Al rectangular plate under uniformly distributed load on pure 

Ti2AlC surface. The effects of defects to mechanical response of graded Ti2AlC/Al 

rectangular plate are investigated. Due to the degradation of elastic moduli, the in-plane 

deflection along mid-plane and transverse shear stress through thickness altered 

considerably by increased void volume fraction. 

(2) In Chapter III, detailed FE models of 3D RVEs created based on the 

microstructure of the IPCs and micromechanics-based theoretical models are used to 

study the mechanical and thermal expansion properties of stainless-steel/bronze IPCs. 

For effective elastic moduli, uniaxial tension and simple shear test are simulated using 

FE models of 3D RVEs to obtain effective Young’s moduli, Poisson’s ratio and shear 

moduli of 60% and 80% IPCs. The FE predicted effective Young’s moduli agree well 

with the micromechanics based homogenization methods. Also, it is found that the 

predicted effective elastic moduli are loading direction independent, and the 3D RVEs 
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created can be seen as statistically homogeneous and isotropic. Therefore, they can 

represent the local continuum properties of the IPCs. 

The FE predicted CTEs in general agree with the elastic Kerner-Schapery bounds 

well. This can be understand by the fact that the FE analyses with uniaxial tensile load, 

in which thermal residual stress is taken as initial stress conditions, actually unloaded the 

IPCs from partially yielded condition to a relatively elastic state.  

The FE results show that the thermal residual stress and voids nucleation both 

have influence on the flow properties of the IPCs. The existence of thermal residual 

stress leads to plastic deformation, especially in bronze, which further results in 

reduction of apparent moduli of the IPCs subjected to uniaxial tension. On the other 

hand, voids located with bronze and along interfaces of the two phases play a very 

important role in damage evolution of the IPCs, especially for 80% IPC. Nucleation of 

the new voids, which occurs at the second-phase particles by decohesion of the particle-

matrix interface, has the main contribution to the overall increase in the volume fraction 

of the voids. In this paper, due to the limited experimental supporting data regarding the 

failure the IPCs, the damage behavior study is only focused on damage evolution and its 

influence on the flow properties of the IPCs. 

From the investigations of mechanical, thermal expansion, elastoplastic-damage 

properties of the IPCs, it is clear that the FE models developed in this study have very 

good correlation with the experimental results and provide useful insights on how 

thermal residual stresses and voids nucleation affect the mechanical properties of the 

IPCs. Therefore, it can be a very useful tool to study the behavior of IPCs, whose 
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properties cannot be obtained directly from the conventional micromechanics dispersed 

inclusions type solutions. 

(3) In Chapter IV, finite element modeling on 3D RVEs is carried out to predict 

the thermal conductivity of the NiTi/Ti3SiC2 composite, and the simulation results are 

compared to the measured results. The major findings are: 

The interfacial layer with low effective thermal conductivity lowers the overall 

heat flux flowing through the composite, especially the NiTi phase, due to the interfacial 

thermal resistance at those newly formed complex phase boundaries within interfacial 

layer during fabrication process. The new phase boundaries result in thermal interfacial 

resistance at constituent interfaces. The computational framework developed in this 

study offers a tool to provide insight into the effective thermal properties of the 

interfacial layer, which are difficult to determine experimentally. 

(4) In Chapter V, detailed FE models of 3D RVEs created based on the 

microstructure of the porous Ti2AlC with sphere-like and aligned ellipsoid-like pores. 

Micromechanics based homogenization methods are used to obtain the elastic properties 

of porous Ti2AlC and compared with FE predictions. A coupled plasticity-damage 

constitutive model is used to consider distinct tensile and compressive behaviors of 

Ti2AlC. 

Uniaxial tension and simple shear test are simulated using FE models of 3D 

RVEs to obtain effective elastic moduli for porous Ti2AlC with sphere-like pores as well 

as ellipsoid-like pores. For porous Ti2AlC with sphere-like pores, i.e. isotropic case, the 

effective elastic moduli obtained from micromechanics methods and FE analysis are 
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compared with experimental results. One observation from the experimental data point is 

that there is jump in Young’s modulus and shear modulus when the porosity volume 

fraction is around 13.6%. One possible explanation for this phenomenon is percolation 

or high pore interconnectivity which is caused by the small channel shape pores left at 

the grain edges after sintering. Also, it is found that the estimation of Young’s modulus 

and shear modulus obtained from Mori-Tanaka method and unit cell method can cover 

most of the experimental data points. This can be understand by the fact that the Mori-

Tanaka method represent the microstructure with non-overlapping inclusions and the 

unit cell method represent the microstructure with fully connected reinforcement phase, 

and therefore these two methods can cover the cases with relatively low and high pore 

interconnectivity. This also helps to explain why the FE prediction is more close to the 

Mori-Tanaka method when porosity volume fraction is low and gradually approaching 

the unit cell method as the porosity volume fraction increases. Since, channel shape 

pores are not considered in the 3D RVEs created in this study, it is hard to achieve high 

pore interconnectivity when the porosity volume fraction is low even though the 

overlapping of sphere-like pores is took into account. This condition can be improved 

when the porosity volume fraction if relatively high and the 3D RVEs can give 

reasonable FE predictions for elastic moduli in general. For porous Ti2AlC with 

ellipsoid-like pores, i.e. transversely isotropic case, five independent elastic moduli for 

porous Ti2AlC with two pore size group are obtained from FE analysis. It is found that 

the pore size does not have much influence on effective moduli. 
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For plastic-damage behavior of porous Ti2AlC with aligned ellipsoid-like pores, 

it shows that principle tensile stress plays a very important role in local damage of 

porous Ti2AlC due to the relatively low tensile strength and brittle-like behavior of dense 

Ti2AlC under tensile load. Overall the porous Ti2AlC fail in a quasi-brittle manner under 

uniaxial compressive load. That is the stress-strain curve has the inverted narrow “V” 

shape. It is also found that the transversely isotropic material system has higher 

compressive strength in transverse direction that in longitudinal direction. 

From the investigations of elastic and plastic-damage behavior of porous Ti2AlC 

material system, it shows that the FE models developed in this study have very good 

correlation with the experimental results and provide useful insight on how tensile 

material properties of dense Ti2AlC, loading direction, pore volume fraction and pore 

size affect the plastic-damage behavior of the porous Ti2AlC under compressive loading. 
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