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ABSTRACT

The dissertation considers semiparametric regression models inspired by statis-

tical problems in ecological, medical and neurological studies. In those models, the

interest is usually on the estimation of a set of finite parameters with difficulties of

handling some unknown distribution functions or some other unknown structures.

Developing novel semiparametric treatments and deriving a class of consistent and

efficient estimators can not only provide us with better inferences, but also a general

framework in those studies.

In capture-recapture models for closed populations, the goal is to estimate the

abundance of population. When multiple error-prone measurements of a covariate

are available, we discover that no suitable complete and sufficient statistic exists due

to the identity between the number of captures and the number of measurements.

Hence the existing treatment utilizing such statistic no longer apply. Our investi-

gation indicates that the familiar strategy of generalized method of moments can

only resolve the issue with high capture probabilities. Further complexity includes

the loss of the surrogacy assumption, commonly assumed in most measurement error

problems. We devise a novel semiparametric treatment to overcome those difficulties.

Simulation studies and real data analysis show good performance of our method.

In HIV research, we study errors-in-variables problems when the response is bi-

nary and instrumental variables are available. We construct consistent estimators

through taking advantage of the prediction relation between the unobservable vari-

ables and the instruments. The asymptotic properties of the new estimator are

established, and illustrated through simulation studies. We also demonstrate that

the method can be readily generalized to generalized linear models and beyond. The
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usefulness of the method is illustrated through a real data example.

Lastly, we nonparametrically estimate distribution functions for multiple popu-

lations in kin-cohort studies. The data is mixed and known to belong to a specific

population with certain probabilities. Some of the observations can be further cor-

related, and are subject to censoring. We estimate the distributions in an optimal

way through using the optimal base estimators and then combine the estimators

optimally as well. The optimality implies both estimation consistency and minimum

estimation variability. One obvious advantage is that our estimator does not assume

any parametric forms of the distributions, and does not require to know or to model

the potential correlation structure. Analysis on the Huntington’s disease data is

performed to illustrate the effectiveness of the method.
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1. INTRODUCTION

Semiparametric regression models naturally arise in statistical problems where

data are generated through a class of distributions containing both parameters of

interest and nuisance parameters. An intuitive example is a logistic regression where

covariates are measured with error. The coefficients of regressors are the parame-

ters to be estimated, while the unknown distributions of mis-measured covariates

are the the nuisance parameters. The dissertation is then dedicated to design novel

statistical models to efficiently and consistently estimate parameters of interest with

the presence of nuisance parameters, which in most occasions, are from an infinite-

dimensional space. Since the nuisance parameter space is left completely unspecified,

the estimators from semiparametric regression models will be more general and ro-

bust.

The development of semiparametric regression models dates back to Newey (1990).

The modern treatment begins with the discussion in Bickel, Klaassen, Ritov & Well-

ner (1993) and Tsiatis (2006). Later Tsiatis & Ma (2004) introduces semiparametric

regression models into measurement error models. The semiparametric theory con-

siders independently, identically distributed random variables X1, . . . ,Xn from a

class of distributions

{pX(x; θ), θ ∈ Θ},

where the parameter can be written as θ = (βT,ηT)T. Suppose β is the parameter

of interest and η is the nuisance parameter. Denote the true parameters by θ0 =

(βT
0 ,η

T
0 )

T. In order to find a consistent and hopefully more efficient estimator β̂n, we
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seek for influence function ϕ(X) such that E{ϕ(X)} = 0, E{ϕ(X)ϕ(X)T} is finite

and positive-definite, and that

√
n(β̂n − β0) = n− 1

2

n∑

i=1

ϕ(Xi) + op(1). (1.1)

If we further put regular condition on β̂n, we call it regular and asymptotically linear

(RAL) estimator, see Tsiatis (2006).

Due to equation (1.1), the asymptotic properties of β̂n can be determined by

its corresponding influence function ϕ(X). Considering a Hilbert space H with the

covariance inner product, the semiparametric method demonstrates that the most

efficient influence function is an element of the orthogonal complement of the nui-

sance tangent space from the geometric view. Here the covariance inner product

is represented as E(hT
1 h2) for any two elements h1, h2 ∈ H. To this end, we must

identify the nuisance tangent space, construct its orthogonal complement in H and

obtain efficient influence functions for semiparametric regression models.

This semiparametric method yields optimal estimators for a wide range of sta-

tistical models. However, other methodologies can also be developed. For example,

Generalized Method of Moments (GMM) (Hansen (1982)) offers an optimal way

to combine estimating equations. Bootstrap (Efron (1979)) can nonparametrically

estimate statistics. Those applications are good supplements to semiparametric re-

gression models.

In my dissertation, I investigate three different kinds of semiparametric regression

models in the literature of a capture-recapture model in ecological study, an instru-

mental variable regression model in medical study and a censored mixed correlated

data in neurological study. I apply the semiparametric methodology to the first two

problems and derive a class of consistent and efficient semiparametric estimators. I
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design a resampled and bootstrapped method and obtain optimal estimators for the

neurological study.

In section 2, I develop two methods, namely GMM and semiparametric method,

to estimate the abundance of animals in capture-recapture experiments. Until now

there are no consistent estimators in the literature to take full advantage of multiple

measurements of covariates, subject to measurement errors. Besides, the distribu-

tions of covariates are left completely unspecified. Both methods yield consistent

and robust estimators and bring on efficiency gain. In addition, the advance of

GMM method is in scenarios where biologists believe a large portion of animals

can be captured. The semiparametric method offers a guideline to solve a class of

measurement error models where surrogacy assumption breaks down. Two simula-

tions are conducted to validate the proposed methods and compared to a conditional

score method (Hwang, Huang & Wang (2007)) which ignore additional information

from multiple measurements of covariates. In real data analysis, the semiparametric

method outperforms the conditional score method.

In section 3, I derive a class of consistent, asymptotically normal estimators

for generalized regression models where there are errors in variables. So far, there

are limited discussions of the use of instrumental variables in the literature. My

semiparametric method is the first to solve the problem without any distribution

assumptions on both unobserved covariates and measurement errors. In addition,

the proposed method is robust and general. The estimation efficiency will not be

lost because of a smart configuration of the prediction relationship for unobserved

covariates using instruments. Two simulations and a real data analysis are used to

show the satisfactory performance.

In section 4, I investigate a problem that requires immediate treatment in kin-

cohort studies for diseases like Huntington’s disease. The data are mixed with differ-
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ent probabilities calculated by Mendalian law for the populations. The facts that data

are subject to censoring and correlated increase the complexity of the problem. The

parameters of interest are the distribution functions for multiple populations, while

the nuisance parameter space could be the space of all family correlation matrices. I

nonparametrically estimate the distribution functions for this type of semiparamet-

ric models. In particular, I use only one member per family to form base estimator.

Afterwards, I devise an optimal way to synthesize a new estimator to take advan-

tage of multiple members in families. In the section, I demonstrate two methods

in detail with the same modeling strategy and show their equivalence in asymptotic

aspect. These methods are novel, straightforward and flexible. Simulation studies

are performed and a real data is illustrated.

In section 5, I summarize the research work of semiparametric regression models

in ecological, medical and neurological studies with discoveries, limitations and future

applications. All the technical proofs are in section 6, 7 and 8.
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2. EFFECTIVE USE OF MULTIPLE ERROR-PRONE COVARIATE

MEASUREMENTS IN CAPTURE-RECAPTURE MODELS

2.1 Introduction

Capture-recapture models are widely used to describe the abundance of a species

of interest. Through modeling the probability of different numbers of captures of

a single animal as a function of the associated covariates, it enables to use the

observed covariate and capture information to infer the total population size. Here

we work in the closed population framework. This means that there is no population

flow such as mortality and immigration occurring during the experiment, hence the

population size does not vary. Due to various reasons associated with the capture

activity, covariate measurements are almost always prone to error. Hwang, Huang

& Wang (2007) studied the effect of covariate measurement error on estimating

the population size in capture-recapture models, and established that ignoring the

covariate measurement error leads to estimation bias. They further proposed an

effective method to correct this bias through accounting for the measurement error

structure.

One main feature of a capture-recapture model is that it incorporates the situa-

tion that an individual animal is captured multiple times. It is not uncommon that

at each capture event, the same covariates are measured, especially if these covari-

ates are difficult to measure precisely or their values could fluctuate. If we believe

these are different measurements of one underlying true covariate that affects the

capture probability, it is then quite natural to use the average of these measure-

ments in the capture-recapture model. If the measures are performed systematically,

then one would think that the average of more measurements is more precise than

5



that of fewer measurements. This implies different measurement error variabilities

for animals that are captured different times. However the multiple measurement

information is ignored in Hwang, Huang & Wang (2007), where they assume a single

covariate measurement is available, and this covariate measurement has a common

error variance across different animals regardless of their different capture times.

Huggins & Hwang (2009) realized the advantage of multiple measurements and suc-

cessfully utilized it. However, to circumvent the inherent difficulty, they made an

additional normality assumption on the unobservable covariates. Hence the problem

becomes completely parametric and it is no longer in the functional measurement

error model framework.

Intuitively, if one uses the average measurements but still assumes a common

error variability, it is a model mis-specification issue and bias will occur in the final

estimation. Conceptually, the reason underneath the estimation bias is not different

from that of the estimation bias if we ignore the measurement error completely. If

one ignores the multiple measurements and incorporates only one of these measure-

ments, then not all the information is taken into account hence it implies a potential

estimation efficiency loss. It is our goal to take into account the multiple measure-

ments in the estimation procedure and retain consistency, while at the same time

improve estimation efficiency.

In the capture-recapture literature, the capture probability is typically assumed

to relate to covariates through a linear logistic model (Huggins (1989)), see Pollock

(2002) for a comprehensive review of this topic. To increase model flexibility, ex-

tension to partially linear structure was studied in Huggins (2006), while Hwang &

Huggins (2007) further incorporated categorical variables. When covariates are mea-

sured with error, Wang (2000) proposed a refined regression calibration estimator

while Hwang & Huang (2003) proposed a conditional likelihood based method to

6



estimate the population size. A conditional score based method was later proposed

by Hwang, Huang & Wang (2007), and Huggins & Hwang (2009) further extended

the method to handle unknown measurement error variance. Our contribution in

this work is to allow unknown, unequal measurement error variance that depends

on the capture times, and construct consistent and efficient estimators that benefit

from the special error properties.

The rest of the section is organized as the following. In section 2.2, we investigate

a generalized method of moments (GMM) procedure. In section 2.3, we propose an

effective way of using multiple measurements based on semiparametrics. Numeri-

cal experiments are conducted on both simulated examples in section 2.4 and on a

capture-recapture data of the bird population in section 2.5. We conclude the section

with a discussion in section 2.6 and relegate all the technical derivations and proofs

to appendix.

2.2 Generalized Method of Moments Procedure

In the capture-recapture model we consider here, we use N to denote the total

population size of the animals under study. The study interest lies in estimating and

making inference about N . Let J be the total number of capture occasions. Using

i to index the distinct animals and j to index the capture occasions, we denote the

random event of the ith animal being captured on the jth occasion as Yij, with Yij = 1

for capture and Yij = 0 otherwise. Here i = 1, . . . , N and j = 1, . . . , J . Assume there

are a total of D distinct animals captured at least once. For convenience, we label

these animals from 1 to D and the animals never captured from D + 1 to N . A

widely used model to describe the probability mass function of a binary outcome is
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the logistic regression model

logit{pr(Yij = 1 | Xi = xi)} = α + xT
i β,

which relates the capture probability of an animal on one occasion to its covariates.

This model is often used to describe the relation between capture probability and

an animal’s characteristic, see for example Pollock, Hines & Nichols (1984), Huggins

(1989), Alho (1990), Huggins (1991) and Pledger (2000). Let Yi be the total number

of captures of the ith animal. Obviously, Yi =
∑J

j=1 Yij . Under the assumptions that

for each animal, conditional on its covariates, the different captures are independent

of each other, we have

pr(Yi = yi | Xi = xi) =

(
J

yi

)
exp{(α + xT

i β)yi}
{1 + exp(α + xT

i β)}J
.

The above model is the logistic based capture-recapture model.

Under the situation that the covariates Xi’s are not directly observed, alternative

information is usually collected. We consider the practical situation that at each

capture of an animal, its covariate is measured, subject to measurement error. Let

Wij be the measurement of Xi at the jth occasion if Yij = 1. We assume Wij =

Xi + Uij, where Uij is a random measurement error, and is typically assumed to

have a normal distribution with mean zero and variance-covariance matrix Σ. Our

goal is to estimate N and make inference using the observed data (Yij, YijWij), i =

1, . . . , N, j = 1, . . . , J .

We would like to point out that if only a single measurement Wi is available in

place of Xi, where Wi has the same relation to Xi as Wij ’s above, elegant results

have been established in the literature, see Hwang, Huang & Wang (2007). The cen-
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tral consideration there is that if we treat (Yi,Wi) to be fixed and the parameters

θ = (α,β) to be known in the joint probability density function of (Yi,Wi) given Xi,

then ∆i = Wi + YiΣβ is a complete sufficient statistic for Xi. Thus, conditional on

∆i, because of the sufficiency, Yi does not depend on Xi. Further taking advantage

of the completeness, one can construct an estimating equation based on (Yi,∆i)

alone. See Ma & Tsiatis (2006a) for the details on how the sufficiency and complete-

ness contribute to the construction of the estimator. It is thus tempting to form the

average Wi = (
∑J

j=1 YijWi,j)/Yi and use it in the place of Wi. Unfortunately, this

is no longer a valid practice. The difficulty is not only caused by the different mea-

surement error variances across different animals, which certainly needs attention. A

more fundamental difficulty arises in this approach because the method by Hwang,

Huang & Wang (2007) critically relies on the existence of a sufficient and complete

“statistic” ∆i = Wi + YiΣβ, while under the replacement, the same quantity would

equal to Wi +Σβ and it is no longer a sufficient or complete statistic.

An alternative obvious attempt of taking advantage of the situation is to combine

the procedures in Hwang, Huang & Wang (2007) performed on each individual Wij.

To this end, we resort to the GMM (Hansen (1982)) approach. Our consideration

is the following. We first consider making use of the first measurement of each

animal that is captured at least once, forming the complete sufficient statistic with

the first measurement. This provides the first set of estimating equations. We then

consider making use of the second measurement of each animal that is captured at

least twice, forming the complete sufficient statistic with the second measurement.

This provides the second set of estimating equations. We continue this process and

obtain a maximum of J sets of estimating equations in total. We then use GMM to

take advantage of all these equations. Specifically, let Cik denote the event Yi ≥ k

for k = 1, . . . , J . Thus, I(Cik) = 1 if the ith animal is captured at least k times,
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and I(Cik) = 0 otherwise. For the ith animal with Yi total captures, we denote its

Yi available measurements Wi(l), l = 1, . . . , Yi. Thus, the lth complete sufficient

statistic is defined by ∆i(l) = Wi(l) + YiΣβ, l = 1, . . . , Yi.

Using the above notation, the kth set of estimating equations can be written as

N∑

i=1

gk(Yi,∆i(k), α,β)

=
N∑

i=1

I(Cik)




Yi −E(Yi | ∆i(k), Cik)
{
∆i(k) − E(Yi | ∆i(k), Cik)Σβ

}{
Yi − E(Yi | ∆i(k), Cik)

}


 = 0,

where k = 1, . . . , K ≤ J . We emphasize here that when k = 1, the estimat-

ing equation is identical to the proposal in Hwang, Huang & Wang (2007). Here

we use K to denote the maximum k value where there are still data available to

form the estimating equation, i.e. the largest possible k such that maxi I(Cik) =

1. We now combine these K sets of equations via GMM. Specifically, Let Oi =

(Yi1, Yi1W
T
i1, . . . , YiJ , YiJW

T
iJ)

T be the observations related to the ith animal, let

θ = (α,βT)T, write

g(Oi, θ) =




g1(Yi,∆i(1), θ)

g2(Yi,∆i(2), θ)

...

gK(Yi,∆i(K), θ)




,

and obtain the estimator of θ through minimizing

{
N∑

i=1

g(Oi, θ)

}T{ N∑

i=1

g(Oi, θ)g
T(Oi, θ)

}−1{ N∑

i=1

g(Oi, θ)

}
.

It is well known that the GMM estimator provides the optimal combination of the es-
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timating equations in terms of the estimation efficiency, and the resulting estimator

has the usual root-n consistency and asymptotic normality. Here, estimation effi-

ciency is measured by the inverse of the variance of an estimator. A smaller variance

results in larger efficiency, hence indicates a more efficient estimator. Specifically,

the above estimation procedure yields θ̂ that is consistent, and has the asymptotic

variance

N−1

(
E

{
∂gT(Oi, θ)

∂θ

}[
E
{
g(Oi, θ)g

T(Oi, θ)
}]−1

E

{
∂g(Oi, θ)

∂θT

})−1

.

The above GMM uses each measurement Wi(k) separately. Alternatively, as

suggest by a referee, one can also consider the averaged measurement k−1
∑k

l=1Wi(l)

in the construction, and form estimating equation using all animals captured at least

k times. Since the averaged quantity does not depend on Yi, it will result in a

sufficient complete statistic. One obvious advantage of such a configuration is that

it can stabilize the estimation procedure.

To take advantage of the multiple measurements fully, it is tempting to use the

average of all the Yi measurements. However, this operation will lead to dependence

between the response variable Yi and the averaged measurement Y −1
i

∑Yi

l=1Wi(l). In

other words, the measurement error problem is now differential hence it requires a

more careful investigation, as is discussed in the next section.

2.3 Semiparametric Method

We consider the observed animals, which are the ones captured at least once.

Modeling the probability of the observed animal being captured y times given that
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it is captured at least once, we have

pr(Yi = yi | Xi = xi, Ci1)

=

(
J

yi

)
exp{(α + xT

i β)yi}
{1 + exp(α + xT

i β)}J

[
1−

{
1

1 + exp(α + xT
i β)

}J
]−1

, (2.1)

where yi = 1, . . . J . In addition, The averaged measurement Wi satisfies Wi =

Xi +Ui, where Ui is normally distributed with mean zero and variance-covariance

Σ/Yi, i.e. Ui ∼ N(0,Σ/Yi). Of course, Wi is well defined only if yi 6= 0. When

yi = 0, we can set Wi to 0 and we will see that it has no effect on our estimation. In

the situation that Σ is not known, we can easily estimate it by forming differences

of the repeated observations, say Wi(1) −Wi(2), and calculate the sample variance-

covariance matrix, see Hall & Ma (2007) for details. Thus, for the rest of the article,

unless we specifically point out otherwise, we assume Σ is known.

The variance expression of Ui indicates that Yi and Wi are no longer indepen-

dent conditional on Xi. This means that the standard surrogacy assumption in the

measurement error literature is violated in this context. Let p be the dimension of

Xi, then the joint distribution of Yi and Wi conditional on (Xi, Ci1) is

fYi,Wi|Xi,Ci1
(yi,wi | xi, Ci1)

= pr(Yi = yi | Xi = xi, Ci1)fWi|Yi,Xi,Ci1
(wi | yi,xi, Ci1)

=

(
J

yi

)
exp{(α+ xT

i β)yi}
{1 + exp(α + xT

i β)}J

[
1−

{
1

1 + exp(α + xT
i β)

}J
]−1

(2π)−
p

2 |Σ/yi|−
1

2 exp
{
−yi

2
(wi − xi)

TΣ−1(wi − xi)
}

=

(
J

yi

)
(2π)−

p

2 |Σ/yi|−
1

2

exp(yiα− yiw
T
i Σ

−1wi/2)

{1 + exp(α+ xT
i β)}

J − 1

exp
{
xT
i (yiβ + yiΣ

−1wi)− yix
T
i Σ

−1xi/2
}
.
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Because it is in the form of the exponential family, the minimal complete statistic is

(Yiβ+ YiΣ
−1Wi, Yi), or equivalently (Wi, Yi). This statistic certainly does not help

simplifying the problem.

The lack of both the surrogacy property and a suitable sufficient and complete

statistic requires a new way of treating the problem. Our way is through casting the

problem in a semiparametric framework. In the semiparametric derivation, the distri-

bution ofXi has to be taken into account and we treat it as a nuisance parameter with

infinite dimension. However, we avoid estimating the distribution of Xi. Instead, we

calculate its corresponding tangent space formed by the mean squared closure of the

set of all score functions of its parametric submodels. The orthogonal complement

of the tangent space subsequently contains the elements for building consistent esti-

mating equations. This type of approach originates from Bickel, Klaassen, Ritov &

Wellner (1993), and a nice explanation and more elaborated discussions about such

calculations can be found in Tsiatis (2006).

To this end, the joint distribution of the observed (Yi,Wi) is

fYi,Wi|Ci1
(yi,wi | Ci1)

=

∫
f
Wi|Yi,Xi,Ci1

(wi | yi,xi, Ci1)fYi|Xi,Ci1(yi | xi, Ci1)fXi|Ci1(xi | Ci1)dµ(xi),

where fXi|Ci1(xi | Ci1) is the unknown probability density function of Xi conditional

on Ci1, while the conditional distribution fYi|Xi,Ci1(yi | xi, Ci1) is completely deter-

mined by θ = (α,βT)T.

Our goal is to construct the estimating equation based on the conditional joint

distribution of (Yi,Wi) through calculating the efficient score function. The process

contains three steps. The first step is to calculate the score function with respect to
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θ. We have

Sθ(Yi,Wi) ≡
∂

∂θ

{
logfYi,Wi|Ci1

(yi,wi | Ci1)
}
= E

{
SF
θ (Yi,Xi) | Yi,Wi, Ci1

}
,

where SF
θ (Yi,Xi) ≡ ∂logfYi|Xi,Ci1(yi | xi, Ci1)/∂θ and fYi|Xi,Ci1(yi | xi, Ci1) is given in

(2.1). The second step is to find the nuisance tangent space Λ and its orthogonal

complement with respect to the infinite dimensional parameter fXi|Ci1(xi | Ci1). We

start with considering the parametric submodels which lie in the family of the un-

known conditional distributions and contain the true distribution. For each of the

parametric submodels, the score function with respect to the nuisance parameter

can be calculated directly. Then we proceed to take the mean squared closure of all

these score functions corresponding to the different submodels to obtain Λ. Detailed

calculation in appendix yields

Λ =
[
E
{
h(Xi) | Yi,Wi, Ci1

}
: E {h(Xi) | Ci1} = 0

]
.

Here h(Xi) is a random function in the Hilbert space H. The corresponding orthog-

onal complement of Λ, denoted Λ⊥ is then given by

Λ⊥ =
[
g(Yi,Wi) : E

{
g(Yi,Wi) | Xi, Ci1

}
= 0

]
.

The third step is to project the score function Sθ(Yi,Wi) to Λ⊥ to obtain the ef-

ficient score Seff(Yi,Wi). Any random function g(Yi,Wi) in Λ⊥ must satisfy that

its conditional expectation on Xi and Ci1 is zero. On the other hand, any random

function in Λ must be able to be expressed as E
{
a(Xi) | Yi,Wi, Ci1

}
. Thus, if we

14



identify a function a(Xi) such that

E
[
Sθ(Yi,Wi)− E

{
a(Xi) | Yi,Wi, Ci1

}
| Xi, Ci1

]
= 0, (2.2)

then we have found the efficient score

Seff(Yi,Wi) = Sθ(Yi,Wi)−E
{
a(Xi) | Yi,Wi, Ci1

}

= E
{
SF
θ (Yi,Xi)− a(Xi) | Yi,Wi, Ci1

}
.

The conditional expectation involved in the calculation of the efficient score relies on

the unknown distribution fXi|Ci1(xi | Ci1). In practice, we propose a candidate distri-

bution f ∗
Xi|Ci1

(xi | Ci1), and carry out the estimation procedure under f ∗
Xi|Ci1

(xi | Ci1).

We denote the resulting efficient score function S∗
eff(Yi,Wi). Because our proce-

dure in obtaining a(Xi) from (2.2) calculated under f ∗
Xi|Ci1

(xi | Ci1) ensures that

E{S∗
eff(Yi,Wi)} = 0 regardless f ∗

Xi|Ci1
(xi | Ci1) equals the true conditional distri-

bution or not, we will still have a consistent estimator even if the candidate model

is not the same as the true model. This is usually referred to as a locally efficient

estimator. To solve for a(Xi), we use the similar computational technique as in Tsi-

atis & Ma (2004). Although the statistical derivation and problem context is very

different, the integral equation (2.2) shares similar mathematical properties as the

integral equation there. The final estimating equation is

D∑

i=1

S∗
eff(Yi,Wi; θ) = 0. (2.3)

The summation in (2.3) indicates that only the animals captured at least once con-

tribute to the estimation. Numerically, (2.3) is solved through the Newton-Raphson
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algorithm. In practice, especially when D is small, there can be multiple roots to

(2.3). In such case, empirical rule and practical knowledge is typically used to se-

lect a suitable root. The estimator from solving (2.3) has the asymptotic property

described in Theorem 1.

Theorem 1. Let θ̂ solve the estimating equation (2.3). Assume the covariance Σ to

be known for the measurement error. Then,

√
N(θ̂ − θ) → N(0,V)

in distribution when N → ∞. Here V = A−1(θ)B(θ) {A−1(θ)}T,

A(θ) = E

{
∂

∂θT
S∗
eff(Yi,Wi; θ)

}
,

B(θ) = E
{
S∗
eff(Yi,Wi; θ)S

∗T
eff (Yi,Wi; θ)

}
.

In addition, when f ∗
Xi|Ci1

(xi | Ci1) = fXi|Ci1(xi | Ci1), the estimator achieves the

optimal estimation variance Vopt = B−1(θ).

When Σ is unknown and needs to be estimated, the asymptotic normality results

in Theorem 1 still hold, while the variance V will have a different form due to the

additional variability caused by estimating Σ. However, the optimality result will

no longer hold when an estimated variance is used to replace Σ. The proof of The-

orem 1 is in appendix. When performing inference in practice, we can approximate

A(θ),B(θ) with their respective sample versions evaluated at θ̂.

Once we have θ̂, we can use the procedure proposed in Hwang, Huang & Wang

(2007) to estimate the population size

N̂C =

N∑

i=1

I(Ci1)
p̂r(Ci1 | ∆i)

, (2.4)
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with the associated asymptotic variance

var(N̂c) =
N∑

i=1

I(Ci1)
1− pr(Ci1 | ∆i)

pr2(Ci1 | ∆i)

+

{
∂

∂θT

N∑

i=1

I(Ci1)
pr(Ci1 | ∆i)

}
var(θ̂)

{
∂

∂θ

N∑

i=1

I(Ci1)
pr(Ci1 | ∆i)

}
.

Here ∆i = Wi(1) + YiΣβ and

pr(Ci1 | ∆i) = 1−
[

J∑

yi=0

(
J

yi

)
exp

{
yi(α +∆T

i β)−
1

2
y2iβ

TΣβ

}]−1

,

p̂r(Ci1 | ∆i) is pr(Ci1 | ∆i) calculated under θ̂, and var(θ̂) is given in Theorem 1.

We can easily obtain the approximation v̂ar(N̂c) through replacing θ with θ̂ in the

expression of var(N̂C).

The first term of var(N̂c) captures the variability of estimating Nc caused by not

observing all the animals. This is completely decided by the data and is not affected

by how well we estimate the parameters. The second term describes the additional

variability due to the estimation of the related parameters. Hence if we reduce the

estimation variance of the parameters, we can reduce the second term and reduce the

overall variance in estimating N . In the simulation section, we will illustrate that

the semiparametric method achieves this goal.

2.4 Simulation

We conduct a series of simulation experiments to investigate the performance

of the semiparametric methods, in comparison with GMM and the conditional score

method Hwang, Huang &Wang (2007). In each simulation experiment, we generated

1000 data sets.

In the first simulation, the true population size is set to be N = 500. We gener-
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ated the true covariates Xi from uniform distribution Unif[−3, 3], and set the mea-

surement error standard deviation σu = 0.6. We then generated the observations

(Yij,WijYij), j = 1, · · · , 5 from the model with the true parameter values α = 0.2,

β = 1.0. This yields an average of 417 first time captures and 335 second time cap-

tures, corresponding to high capture probability. To implement different estimators,

we replaced Σ with its estimate Σ̂, which has bias -0.009 and variance 0.0007. In

the semiparametric estimation, we implemented the estimation when both the true

uniform distribution of X is used and a false normal distribution is used. Two GMM

methods, one uses a single Wi(k) and the other uses the average k−1
∑k

l=1Wi(l), were

implemented. Throughout the simulation section, we call them GMM1 and GMM2

respectively. The results of the various estimators are given in Table 2.1, where we

reported the mean and the standard error of the estimators as well as the average of

estimated standard errors and the sample coverage of the 95% confidence intervals

constructed using the asymptotic results. From the results in Table 2.1, we can see

that all five estimators have small biases in estimating the parameters α, β. Under

finite sample, each of the five methods has positive bias for the population size N

estimation. However, the bias decreases towards zero when larger sample sizes are

used.

The two GMM methods perform similarly. Although the GMM estimators are

able to reduce the estimation standard error for the model parameters α and β, they

do not seem to reduce the estimating variability of the population size N . This is

likely because the reduction on parameter estimation variability is not large enough

so that it is masked out by the first term of var(N̂c). However, the semiparametric

method yields larger variability reduction in the parameter estimation, hence this

reduction is able to propagate to a more visible variability reduction of the population

size estimate as well in the finite sample.
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α β N
true 0.2 1.0 500

CS estimate 0.1986 1.0035 503.12
emp se 0.0710 0.0607 23.79
mse 0.0101 0.0074 1163.3
est se 0.0712 0.0606 23.39

95% cov 95.1% 95.5% 94.8%
GMM1 estimate 0.1970 1.0091 504.44

emp se 0.0688 0.0591 23.96
mse 0.0095 0.0070 1179.7
est se 0.0690 0.0585 23.40

95% cov 95.0% 95.8% 95.3%
GMM2 estimate 0.1977 1.0083 504.24

emp se 0.0702 0.0598 24.06
mse 0.0099 0.0071 1187.8
est se 0.0701 0.0590 23.48

95% cov 94.9% 95.0% 95.3%
Semi-Nor estimate 0.2006 1.0033 502.14

emp se 0.0640 0.0537 22.92
mse 0.0084 0.0059 1056.5
est se 0.0658 0.0546 22.28

95% cov 95.4% 95.1% 93.3%
Semi-Uni estimate 0.2005 1.0031 502.13

emp se 0.0640 0.0536 22.91
mse 0.0084 0.0059 1055.7
est se 0.0658 0.0546 22.27

95% cov 95.6% 95.0% 93.3%

Table 2.1: Simulation 1. Performance of five methods based on conditional score
(CS), two types of GMM (GMM1, GMM2), in comparison with the semiparametric
estimator using normal fX(x) (Semi-Nor) and using uniform fX(x) (Semi-Uni). The
mean of the estimates (estimate), empirical standard error (emp se), mean square
error (mse), average of estimated standard error (est se) and the sample coverage
rate of the 95% confidence interval (95% cov) are reported.

The second simulation uses α = −1.0, β = 1.0. This yields an average of 298

first time captures and 125 second time captures. The situation is more likely to

happen in practice. All the other settings are the same as above, except that Xi is

generated from a standard normal distribution. An estimated Σ̂ is used in all the

19



estimation procedures, where Σ̂ has bias -0.0019 and variance 0.0021. The semipara-

metric estimation also proposes both true and false distribution for Xi. The results

of the various estimators are given in Table 2.2. From the results in Table 2.2, we

can see that all five estimators have non-substantial biases in estimating both the

parameters α, β and the population size N . With the exception of GMM estimators,

the sample standard error and the average of the estimated standard errors are close

to each other, indicating the satisfactory performance of the asymptotic results for

the relatively small N . This is further reflected in the close proximity of the ob-

served 95% coverage to its nominal level. The poor performance of GMM is likely

caused by the small number of animals captured more than once. Indeed, in simu-

lations not reported here, when we increase the population size, the performance of

the GMM estimators improves. The two GMM estimators perform similarly, with

GMM2 yields slightly smaller MSE than GMM1. However, both GMM estimators

are clearly inferior compared to the semiparametric estimators.

Summarizing the first two simulation results, we find that the GMM did not

improve drastically over the conditional score method in terms of the estimation ef-

ficiency. Its finite sample performance also heavily relies on the capture probability

and the sample size, in that smaller sample sizes tend to inhibit the gain. Intuitively,

the gain of the GMM comes mainly from the appropriate usage of additional mea-

surements. When N is relatively small, there are very small amount of additional

measurements available. This not only limits the source of additional information,

but also adversely affects how such information is used, because the GMM weighting

matrix relies on asymptotic results and is not a suitable approximation to the true

weights under small number of recaptures. In contrast, the semiparametric methods

perform satisfactorily. The efficiency in estimating α, β is improved by 15% and 36%

respectively, while that for the population estimation is improved by 58% in the
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α β N
true -1 1 500

CS estimate -1.0229 1.0239 519.87
emp se 0.1604 0.1829 85.55
mse 0.0528 0.0651 15928
est se 0.1612 0.1736 73.29

95% cov 96.2% 94.2% 94.1%
GMM1 estimate -1.0686 1.0692 544.22

emp se 0.1782 0.2082 142.21
mse 0.0682 0.0868 64989
est se 0.1676 0.1800 94.34

95% cov 95.6% 93.4% 96.2%
GMM2 estimate -1.0673 1.0685 544.37

emp se 0.1843 0.2107 147.12
mse 0.0672 0.0827 53500
est se 0.1663 0.1786 90.21

95% cov 94.7% 93.5% 95.9%
Semi-Nor estimate -1.0101 1.0102 512.27

emp se 0.1497 0.1571 68.16
mse 0.0442 0.0494 10149
est se 0.1465 0.1556 63.85

95% cov 95.7% 95.0% 93.3%
Semi-Uni estimate -1.0103 1.0106 512.40

emp se 0.1500 0.1577 68.36
mse 0.0444 0.0497 10220
est se 0.1468 0.1561 64.00

95% cov 96.0% 95.0% 93.5%

Table 2.2: Simulation 2. Performance of five methods based on conditional score
(CS), two types of GMM (GMM1, GMM2), in comparison with the semiparametric
estimator using normal fX(x) (Semi-Nor) and using uniform fX(x) (Semi-Uni). The
mean of the estimates (estimate), empirical standard error (emp se), mean square
error (mse), average of estimated standard error (est se) and the sample coverage
rate of the 95% confidence interval (95% cov) are reported.

worse capture scenario. The dramatic efficiency gain on the population estimation is

caused by the multiplication of
∑N

i=1 ∂{I(Ci1)/pr(Ci1 | ∆i)}/∂θT in the second term

of var(N̂c), which amplifies the magnitude of the change in var(θ̂) in this model.

In the third simulation study, we generated the data by mimicking the bird data

21



structure in Section 2.5. Specifically, we set the true population size N = 913

and used J = 12 capture occasions. We generated the covariates Xi from a nor-

mal distribution with mean µX = 45.2 and standard deviation σX = 1.0, while

used variance σu = 0.8 to generate the measurement errors. The observations

(Yij,WijYij), j = 1, . . . , J are generated from the logistic model with α = −36.34

and β = 0.72. These values are all reasonably close to the estimation results of

the bird data example. Under this data generation procedure, the observed average

number of first captures and second captures are respectively 244 and 49. Simi-

lar as in the first simulation, we conducted the five estimations procedures and the

results are in Table 2.3. In all five estimators, an estimated Σ̂ is used, with bias

-0.0136 and variance 0.1261. We see small biases of θ̂ and the population estimate

in all estimators. Both the conditional score and the semiparametric methods yield

close results between the sample estimation standard error and the empirical one,

and between the observed coverage of the 95% confidence intervals and the nominal

level, indicating the validity and relevance of the asymptotic results. Once more,

the semiparametric methods provided the smallest estimation variability for both

parameter and population estimation, with a gain of 59%, 63% and 277% in terms

of estimation efficiency in comparison with the conditional score method. Among

the two semiparametric methods, the normal-based procedure is slightly better per-

formed than the uniform-based procedure, indicating the optimality when the true

fX distribution is used. However, the performance difference is very small, which

is quite encouraging considering that the true fX is not easy to obtain in practice.

Despite the fact that GMM2 improves upon GMM1 through reducing estimation

bias, the GMM estimates of population are not competitive in comparison with the

semiparametric methods due to the small number of recaptures.
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α β N
true -36.34 0.72 913

CS mean -37.41 0.74 1031.44
emp se 10.43 0.2251 527.56
mse 353.43 0.1651 1.994e6

est se 10.21 0.2202 381.67
95% cov 94.7% 94.7% 93.3%

GMM1 mean -37.94 0.75 1051.96
emp se 9.7499 0.2118 264.97
mse 376.34 0.1769 4.539e5

est se 11.25 0.2427 365.93
95% cov 97.6% 97.6% 97.7%

GMM2 mean -37.93 0.75 1048.81
emp se 9.3641 0.2033 269.47
mse 252.54 0.1183 2.833e5

est se 10.53 0.2271 332.50
95% cov 98.3% 98.3% 98.3%

Semi-Nor mean -36.74 0.73 976.73
emp se 8.2814 0.1787 271.72
mse 137.01 0.0638 1.705e5

est se 8.0443 0.1735 245.43
95% cov 94.2% 94.3% 92.4%

Semi-Uni mean -36.91 0.73 982.07
emp se 8.4262 0.1818 279.99
mse 141.89 0.0661 1.798e5

est se 8.2185 0.1773 250.39
95% cov 94.2% 94.3% 92.6%

Table 2.3: Simulation 3. Performance of five methods based on conditional score
(CS), two types of GMM (GMM1, GMM2), in comparison with the semiparametric
estimator using normal fX(x) (Semi-Nor) and using uniform fX(x) (Semi-Uni). The
mean of the estimates (estimate), empirical standard error (emp se), mean square
error (mse), average of estimated standard error (est se) and the sample coverage
rate of the 95% confidence interval (95% cov) are reported.

2.5 Data Example

We implement the conditional score method, the generalized method of moments

and the semiparametric method on a data set regarding the bird species Prinia

flaviventris collected by the Hong Kong Bird Society from 1991 to 1995. In addition
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to the capture record, the data set contains the measurements of a bird’s wing

length, which is believed to be directly linked with a bird’s capture probability and

is measured with error. We consider a subset of the data from 01/31/93 to 04/11/93.

In this relatively short time period, the population size change is likely small and is

negligible. Therefore, we treat it as a closed population. During this time period,

146 distinct birds were captured and measured in J = 12 occasions with 168 total

captures. Among them, the average wing length is 45.20 and the variance is 1.64.

Under the normal additive measurement error assumption, taking advantage of

the multiple measurements of the wing length of recaptured birds, we form the

difference between the measurements and estimated the variance of the measurement

error to be σ̂2
u = 0.626.

The results of parameter and population size estimation based on the five methods

are summarized in Table 2.4, where we proposed both a normal and a uniform

working model in the semiparametric estimation. In the GMM implementation, we

only incorporated the first two captures despite that the maximum total recapture

is five. This is because only four animals are captured three or more times and this

sample size is certainly too small to justify any analysis based on asymptotic results.

Table 2.4 indicates that both the GMM and the semiparametric methods result in

estimation variance reduction in comparison to the conditional score method, while

the improvement from the two semiparametric methods are especially important in

terms of estimating the population size. The improvement in the semiparametric

estimators is likely quite reliable as is reflected in the simulation studies. However,

we would like to caution that the improvement from GMM is less trustworthy. This

is because the inference result of GMM at this population size may not be sufficiently

precise, and it tends to under-estimate the estimation variability, as is exhibited in

the simulation studies.
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α̂(se) β̂(se) N̂(se)
CS -40.11 (31.742) 0.80 (0.694) 921.46 (713.767)

GMM(First 2 captures) -35.46 (9.274) 0.69 (0.201) 1117.31 (431.082)
Semi-Nor -37.03 (14.451) 0.73 (0.318) 839.58 (293.993)
Semi-Uni -32.75 (9.66) 0.64 (0.213) 770.82 (225.332)

Table 2.4: Data analysis. Estimation and the associated standard error (se) of
bird data analysis based on conditional score (CS), generalized method of moments
(GMM) and Semiparametric methods using normal (Semi-Nor) and uniform (Semi-
Uni) candidate distributions for the wing lengths.

2.6 Discussion

We have investigated the issue of using multiple error-prone covariate measure-

ments in the capture-recapture models. Among the two methods that we propose,

we have found that the GMM estimation tend not to perform satisfactorily while the

semiparametric methods generally demonstrate good performance. We emphasize

here that although multiple measurements are often easy to be taken into account

in most measurement error models, it is not the case in the capture-recapture model

context. This is a direct consequence of two difficulties, the violation of the com-

monly assumed surrogacy assumption and the loss of the complete sufficient statistic.

Because of the loss of surrogacy, together with the need to estimate measurement er-

ror structure, to handle multiple measurements and missing observations, this work

made a breakthrough in the field of capture-recapture models by modifying ideas from

Tsiatis and Ma (2004). Although GMM is a possible way of taking into account the

multiple measurements, its usage of the information is somewhat superficial. Our

semiparametric approach, in contrast, forms an improved measurements and takes

advantage of this information directly in the core construction of the estimator, hence

is a more profound way of using the multiple measurements. Its effectiveness has

been reflected in both the theoretical analysis and the numerical results.
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We would like to point out three major differences of our problem setting and

approach in comparison with Xi, Watson, Wang & Yip (2009). First, Xi, Watson,

Wang & Yip (2009) assumes a parametric distribution model for the error prone

covariates, hence they work in the structural measurement error model framework

and their final model is a parametric one. In contrast, we leave the distribution

of the error prone covariates completely unspecified, hence we work in a functional

measurement error model and have to deal with a semiparametric problem. Second,

the parametric model in Xi, Watson, Wang & Yip (2009) permits the construction

of a likelihood, and a maximum likelihood estimator is therefore used for estimation.

In contrast, we do not have a well-defined likelihood function, hence we seek various

ways to construct estimating equations to develop estimators. Finally, in terms of

computation, an EM algorithm is implemented to obtain the maximum likelihood

estimator in Xi, Watson, Wang & Yip (2009), while we resort to a Newton-Raphson

procedure in combination with integral equation solving to obtain the semiparametric

estimator.

We are aware that when the sample size is moderate or small, the asymptotic

properties of the semiparametric estimator may not exhibit well. In addition, the su-

perior performance of the semiparametric estimator comes with the price of relatively

more intensive computation. These are limitations of the semiparametric estimator.

Finally, throughout the article, we have worked under a closed population as-

sumption in the capture-recapture framework. Because we only considered a short

time period, it is a reasonable assumption for our data example (Hwang & Huang

(2003), Hwang, Huang & Wang (2007) and Xi, Watson, Wang & Yip (2009)). On the

other hand, it is certainly of interest to also study the population sizes over the whole

five year period that the data were collected. In this case, open population models,

such as the Jolly-Seber open population model (Jolly (1965), Seber (1982) and Seber
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(1986)), will be more appropriate. See also recent developments in open population

studies in Schwarz & Arnason (1996) and Pledger, Pollock & Norris (2003).
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3. INSTRUMENT ASSISTED REGRESSION FOR ERRORS IN VARIABLES

MODELS WITH BINARY RESPONSE

3.1 Introduction

Logistic and probit models are widely used in regression analysis with binary

response. They belong to the family of generalized linear models. In real data analy-

sis, particularly in the analysis of medical and clinical data, a ubiquitous problem is

that some or all covariates cannot be directly or precisely measured and indirect or

proxy measurements are used instead. For example, in studies of human immunod-

eficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS), important

variables such as CD4 lymphocyte count cannot be accurately measured due to in-

strument’s limitation or individual biological variation. Other well-known examples

include blood pressure and cholesterol level in cardiovascular disease research. It is

well-known that ignoring the measurement error and simply replacing the true co-

variates with their mismeasured proxies will lead to biased estimates and thus invalid

conclusions (Stefanski & Buzas (1995)).

Although the problem of measurement error in general has been extensively stud-

ied in the literature, research focusing specifically on binary regression with instru-

mental variables is limited. Stefanski & Carroll (1985) and Stefanski & Buzas (1995)

proposed approximate estimators for functional logistic models, while Stefanski &

Carroll (1987) and Ma & Tsiatis (2006b) studied consistent estimators for gener-

alized linear models based on conditional score functions under the assumption of

normal measurement errors or unknown measurement error distribution. Huang and

Wang (2001) proposed alternative estimating function correction schemes to obtain

consistent estimators for the cases where the measurement error distribution is known
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or the replicate data are available. These works did not use instrumental variable

approach, although Huang and Wang (2001) discussed the possibility in their setup.

Buzas & Stefanski (1996) considered instrumental variable approach to functional

generalized linear models. However, their approach requires the normality assump-

tion for both the measurement error and instrumental variables.

Therefore, an interesting question is whether it is possible to use instrumental

variables to obtain consistent estimators without normality assumption for both the

unobserved covariates and the measurement errors. In this paper, we demonstrate

that this is possible in a wide range of models. In particular, we show that this can be

achieved by employing a prediction relationship for the unobserved covariates using

the instruments. Similar use of the instruments in some special models also appeared

in Buzas (1997). This way of incorporating instrumental variables is different than

most other methods mentioned above, and its applicability in the generality of the

model has also not been achieved before. Thus, our work is the first in using instru-

ments in the general regression models with measurement error and binary response,

where the link between the response and the covariates does not need to belong to

any special regression family.

Instrumental variable approach has been used by other authors to deal with

errors-in-variables problem in general nonlinear models, e.g., Amemiya (1985), Amemiya

(1990), Schennach (2007), Wang & Hsiao (2011), and Abarin & Wang (2012). In

particular, Schennach (2007) and Wang & Hsiao (2011) show that the nonlinear

measurement error models are generally identified when instrumental variables are

available. In recent years, instrumental variable approach has drawn more and more

attention in the literature, partly due to its methodological flexibility and practical

applicability. In practice, any observable variables that are correlated with unob-

served covariates but independent of measurement error can be used as instruments.
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In particular, the replicate measurements can be regarded as special instruments.

The rest of the section is organized as the following. We present the model we

study and our main methodology in section 3.2. In this section, we also establish the

asymptotic properties of our estimator. Numerical work including both simulations

and real data analysis is given in section 3.3. We conclude the section with some

discussions on the generalization and possible extension of the method in section 3.4.

All the technical details are in appendix.

3.2 Main Results

3.2.1 The Model

The model we study can be explicitly written as

pr(Y = 1 | X = x,Z = z) = H(xTβ + zTγ) (3.1)

where H is a known inverse link function, for example, the inverse logit link function

H(·) = 1 − 1/{exp(·) + 1} or the inverse probit link function H(·) = Φ(·). While

the response variable Y and the covariate Z are observed, the covariate X is a latent

variable. Instead of observing X, we observe an erroneous version of X, written as

W and an instrumental variable S. The variables W and S are linked to X through

W = X+U and X = m(S,Z,α) + ǫ, (3.2)

where m is a known function up to an unknown parameter α. Here we assume the

conditional mean of ǫ and the marginal mean of U to be zero, i.e. E(ǫ | S,Z) = 0,

E(U) = 0. We further assume that (S,Z,X) is independent of U, U is independent

of ǫ, W is independent of (S,Z) given X, and Y is independent of (S,W) given

(X,Z). The observed data are (Zi,Si,Wi, Yi), i = 1, . . . , n. They are independent
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and identically distributed (iid) according to the model described in (3.1) and (3.2).

Our main interest is in estimating θ = (βT,γT)T. The problem considered here can

be viewed as a generalization of the one considered in Buzas & Stefanski (1996),

in that we have much less stringent conditions. For example, we do not impose

the normality assumption on X,S, ǫ,U, while this is required there. Note also that

parametric assumption of the regression functionm in (3.2) is not restrictive, because

it can be easily checked using data on (W,S,Z) (see (3.3) below).

3.2.2 A Simplification

To proceed with estimation, we first recognize that from the relations described

in (3.2), we have

W = m(S,Z,α) +U+ ǫ, (3.3)

where E(U + ǫ | S,Z) = 0. It is easy to see that this is a familiar mean regres-

sion model, so we can use least squares method to get a consistent estimator of α.

Specifically, we can solve the estimating equation

n∑

i=1

Sα(Si,Zi) =
n∑

i=1

∂mT(Si,Zi,α)

∂α
Ω(Si,Zi){Wi −m(Si,Zi,α)} = 0, (3.4)

where Ω(S,Z) is any weight matrix, to obtain a consistent estimator α̂. Obviously,

if we set Ω(S,Z) to be the identity matrix, we obtain the ordinary least squares

(OLS) estimator of α, while if we set Ω(S,Z) to be the inverse of the error variance-

covariance matrix conditional on (S,Z), we obtain the optimal weighted least squares

estimator (WLS) of α. Once we have an estimate α̂, we can plug the relation between
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X and (S,Z) into model (3.1) to obtain the joint distribution of (Y,S,Z) as

pr(Y = y,S = s,Z = z) = (3.5)

fS,Z(s, z)

∫ [
1− y + (2y − 1)H{m(S,Z, α̂)Tβ + zTγ + ǫTβ}

]
fǫ(ǫ | s, z)dµ(ǫ),

where fǫ(ǫ | s, z) is a conditional probability density function (pdf) that satisfies
∫
ǫfǫ(ǫ | s, z)dµ(ǫ) = 0, and fS,Z(s, z) is the joint pdf of (S,Z).

3.2.3 Semiparametric Derivation

We now derive the estimation procedure for β,γ from the above form. For sim-

plicity, we write θ = (βT,γT)T and assume θ ∈ R
p. Then the pdf in (3.5) involves

the unknown parameter θ and unknown functions fǫ(·), fS,Z(·), while we are only in-

terested in θ. Thus, fǫ(·), fS,Z(·) can be viewed as two infinite dimensional nuisance

parameters. This allows us to view the model as a semiparametric model and use

the existing semiparametric approaches (Bickel, Klaassen, Ritov & Wellner (1993),

Tsiatis (2006)). In the measurement error framework, semiparametric methods were

first introduced in Tsiatis & Ma (2004) in the context of a known error distribution.

Following the semiparametric approach, our estimator will be based on the efficient

score function. In general, the efficient score function can be obtained through pro-

jecting the score function Sθ(Y,S,Z) ≡ ∂logfǫ,S,Z{ǫ, s, z; θ, fǫ(·), fS,Z(·)}/∂θ onto

the orthogonal complement of the nuisance tangent space. The nuisance tangent

space is defined as the mean square closure of the nuisance tangent spaces associ-

ated with all possible parametric submodels of a semiparametric model (See Tsiatis

(2006), Section 4), and is often hard to obtain. In appendix, we derive the nuisance
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tangent space associated with model (3.5) as

Λ = Λ1 ⊕ Λ2

= {f(S,Z) : f ∈ R
p, E(f) = 0, E(fTf) < ∞, ∀f}

⊕ [E{f(ǫ,S,Z) | Y,S,Z} : f ∈ R
p, E(f | S,Z) = 0,

E(ǫfT | S,Z) = 0, E(fTf) < ∞, ∀f ].

Here, we use the notation ⊕ to emphasize that an arbitrary function f1(S,Z) in Λ1

and an arbitrary function f2(ǫ,S,Z) in Λ2 satisfy E{f1(S,Z)fT2 (ǫ,S,Z)} = 0. The

orthogonal complement of Λ can then be derived as

Λ⊥ = {f(Y,S,Z) : f ∈ R
p, E(f | ǫ,S,Z) = a(S,Z)ǫ, E(aTa) < ∞},

where a(S,Z) contains p rows and conforms with the dimension of ǫ. We also need

to calculate the score function with respect to θ, which has the form

Sθ(Y,S,Z) = (2Y − 1) ·

∫




m(S,Z, α̂) + ǫ

Z





H ′{m(S,Z, α̂)Tβ + ZTγ + ǫTβ}fǫ(ǫ | S,Z)dµ(ǫ)

∫
[1− Y + (2Y − 1)H{m(S,Z, α̂)Tβ + ZTγ + ǫTβ}] fǫ(ǫ | S,Z)dµ(ǫ) .

The efficient score can now be obtained by projecting Sθ to Λ⊥, and can be verified

as

Seff(Y,S,Z) = Sθ(Y,S,Z)− E{b(ǫ,S,Z) | Y,S,Z},
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where b(ǫ,S,Z) satisfies

E [ Sθ(Y,S,Z)−E{b(ǫ,S,Z) | Y,S,Z} | ǫ,S,Z] = a(S,Z)ǫ (3.6)

for some function a(S,Z). Unfortunately, a(S,Z) is unspecified in (3.6), hence we

cannot directly solve for b(ǫ,S,Z) from (3.6). In order to determine the function

a(S,Z), we multiply ǫ on both sides of (3.6), take expectation conditional on (S,Z),

and obtain

E
[
Sθ(Y,S,Z)ǫ

T − E{b(ǫ,S,Z) | Y,S,Z}ǫT | S,Z
]
= a(S,Z)E(ǫǫT | S,Z).

This implies

a(S,Z) = E
[
Sθ(Y,S,Z)ǫ

T − E{b(ǫ,S,Z) | Y,S,Z}ǫT | S,Z
] {

E(ǫǫT | S,Z)
}−1

.

We can now plug the form of a(S,Z) into (3.6) to obtain an explicit integral equation

E [ Sθ(Y,S,Z)− E{b(ǫ,S,Z) | Y,S,Z} | ǫ,S,Z]

= E
[
Sθ(Y,S,Z)ǫ

T − E{b(ǫ,S,Z) | Y,S,Z}ǫT | S,Z
] {

E(ǫǫT | S,Z)
}−1

ǫ.

This integral equation no longer contains unspecified component, and b(ǫ,S,Z) can

be obtained as a solution to the equation.

3.2.4 Estimation Under Working Model

The above derivation is performed under a true density fǫ(ǫ | S,Z) which is

usually unknown. In order to be able to compute Sθ or Seff , we propose to use

a working model f ∗
ǫ(ǫ | S,Z), which may or may not be equal to fǫ(ǫ | S,Z), and
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perform all the calculations under this working model. The name “working model”

means that f ∗
ǫ(ǫ | S,Z) is not a part of the model assumption. It is merely used for

constructing our estimator. This is in contrast to fǫ(ǫ | S,Z), which is the true model

that defines the data generation process. Using ∗ to denote all the affected quantities

by the substitution of fǫ(ǫ | S,Z) with f ∗
ǫ(ǫ | S,Z), our estimation procedure is the

following.

1. Propose a working model f ∗
ǫ(ǫ | S,Z) that has mean zero. For example, we

can propose f ∗
ǫ(ǫ | S,Z) to be a normal pdf with mean 0 and variance I.

2. Calculate the score function S∗
θ(Y,S,Z) under the working model.

3. Obtain b(ǫ,S,Z) through solving the integral equation

E [ S∗
θ(Y,S,Z)− E∗{b(ǫ,S,Z) | Y,S,Z} | ǫ,S,Z] =

E∗
[
S∗

θ(Y,S,Z)ǫ
T − E∗{b(ǫ,S,Z) | Y,S,Z}ǫT | S,Z

]
·

{
E∗(ǫǫT | S,Z)

}−1
ǫ. (3.7)

4. Form

S∗
eff(Y,S,Z) = S∗

θ(Y,S,Z)− E∗{b(ǫ,S,Z) | Y,S,Z}

and solve the estimating equation

n∑

i=1

S∗
eff(Yi,Si,Zi, θ) = 0

to obtain the estimator θ̂.
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In the above step 3, we solved the integration equation (3.7) via converting it to a

linear algebra problem. Specifically, based on the working model, we first discretize

the distribution of ǫ on m points ǫ1, . . . , ǫm. A typical practice is to choose m

equally spaced points on the support of the distribution. We then calculate the

probability mass πi(S,Z) at each of the m points and normalize the πi(S,Z)’s so

that
∑m

i=1 πi(S,Z) = 1. This allows us to approximate the calculation of E∗ with

Ê∗. For example, denoting

f̂ ∗
ǫ,Y (ǫi, Y | S,Z) =

[
1− y + (2y − 1)H{m(S,Z, α̂)Tβ + zTγ + ǫTi β}

]
πi(S,Z),

we replace E∗{b(ǫ,S,Z) | Y,S,Z} with

Ê∗{b(ǫ,S,Z) | Y,S,Z} =

∑m
i=1 b(ǫi,S,Z)f̂

∗
ǫ,Y (ǫi, Y | S,Z)

∑m
i=1 f̂

∗
ǫ,Y (ǫi, Y | S,Z)

.

Let

B(S,Z) = {b(ǫ1,S,Z), . . . ,b(ǫm,S,Z)}T,

C(S,Z) = {c(ǫ1,S,Z), . . . , c(ǫm,S,Z)}T,

where

c(ǫi,S,Z)

= E { S∗
θ(Y,S,Z) | ǫi,S,Z} −E

{
S∗

θ(Y,S,Z)ǫ
T | S,Z

}{
E∗(ǫǫT | S,Z)

}−1
ǫi.
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Further, let A(S,Z) be an m×m matrix whose (i, j) block is

E

{
f̂ ∗
ǫ,Y (ǫj , Y,S,Z)∑m

i=1 f̂
∗
ǫ,Y (ǫi, Y,S,Z)

| ǫi,S,Z
}

− Ê∗

{
f̂ ∗
ǫ,Y (ǫj, Y,S,Z)∑m

i=1 f̂
∗
ǫ,Y (ǫi, Y,S,Z)

ǫT | S,Z
}{

Ê∗(ǫǫT | S,Z)
}−1

ǫi.

The integral equation (3.7) can then be converted into a linear algebra problem

A(S, Z)B(S, Z) = C(S, Z),

and we can readily solve it for b(ǫi, S, Z)’s.

3.2.5 Asymptotic Properties

Although the working model f ∗
ǫ(ǫ | S,Z) does not necessarily equal to the true

model fǫ(ǫ | S,Z), the above procedure still yields a consistent estimator θ̂. Let

a⊗2 = aaT for all matrix or vector a throughout the text. In appendix, we prove the

following theorem.

Theorem 2. Under suitable regularity conditions, if α is known, then θ̂ obtained

from the procedure described above satisfies

√
n(θ̂ − θ) → N{0,A−1B(A−1)T}

when n → ∞. Here

A = E

{
∂ S∗

eff(Y,S,Z)

∂θT

}
, B = E{ S∗

eff(Y,S,Z)
⊗2}.

In addition, when f ∗
ǫ(ǫ | S,Z) = fǫ(ǫ | S,Z), the variance is [E{ Seff(Y,S,Z)

⊗2}]−1
,

which is the minimum semiparametric variance bound for estimating θ.
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In practice, α is unknown and θ̂ is obtained from using α̂, an estimator obtained

from solving (3.4). Hence additional variability associated with estimating α occurs

and needs to be taken into account. In this case, we have the following result.

Theorem 3. When α is estimated from (3.4) and α̂ is used in the estimation pro-

cedure, then the resulting plug-in estimator θ̂(α̂) satisfies

√
n{θ̂(α̂)− θ} → N(0,V)

when n → ∞. Here V = A−1B(A−1)T +Vα and

Vα = A−1
{
A1A

−1
2 B2(A1A

−1
2 )T −A1A

−1
2 B1 − (A1A

−1
2 B1)

T
}
(A−1)T,

where A,B are given in Theorem 2, A1 = E{∂ S∗
eff/∂α

T}, A2 = E{∂ Sα/∂α
T},

B1 = E( Sα S∗T
eff ), B2 = E( S⊗2

α ). In addition, when f ∗
ǫ(ǫ | S,Z) = fǫ(ǫ | S,Z), the

resulting estimation variance is minimized among all the plug-in estimators.

3.3 Numerical Examples

We now demonstrate our method numerically through both simulated and real

data examples. In all simulated examples, 1000 data sets were generated with sample

size n = 1000.
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3.3.1 Simulated Example One

In our first simulation, we generated the observations (Zi, Si,Wi, Yi) from the

model

Pr(Yi = 1 | Xi = xi, Zi = zi) = H(βxi + γzi),

Wi = Xi + Ui,

Xi = α1 + α2Si + ǫi.

Here, H(·) is respectively set to be the inverse logit and the inverse probit link

function, and α1 = 1, α2 = 1, β = 0.3, γ = 0.5. The observable covariate Zi

and the instrument variable Si are generated from the standard normal distribution.

We generated Ui from a normal distribution with mean zero and variance 0.6. We

further generated ǫi respectively from a normal distribution with mean 0 and variance

S2
i /2, and a t5 distribution multiplied by (|Si|/3)1/2. Those two cases correspond to

a normal and a non-normal regression model Wi = α1Si + α2Zi + Ui + ǫi with

heteroscedastic error. finally, we proposed a normal working model on ǫi. Thus,

the estimation in the two cases corresponds to a correct and a misspecified working

model.

The combination of the logit and probit link functions with the normal and non-

normal regression errors yields four different cases, and the performances of our

method in all four scenarios are summarized in Table 3.1. Because the OLS and

WLS are the most popular methods of estimating (α1, α2)
T, we calculated both of

them in our simulation and compared the performance with the estimation under

the known α.

Based on Table 3.1, it is obvious that the estimators for (β, γ) have very small
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α1 α2 β(logit) γ(logit) β(probit) γ(probit) β(as) γ(as)
truth 1.0 1.0 0.3 0.5 0.3 0.5 0.3 0.5

ǫ: Normal distribution
α0 mean 0.2994 0.4984 0.3006 0.4999 0.2992 0.4981

median 0.3005 0.4948 0.3001 0.5002 0.2997 0.4945
emp se NA NA 0.0526 0.0712 0.0366 0.0498 0.0521 0.0706
est se 0.0509 0.0708 0.0355 0.0478 0.0501 0.0709

95% cov 94.7% 95.3% 95.3% 93.0% 93.9% 95.6%
OLS mean 0.9999 1.0013 0.2992 0.4981 0.3006 0.4997 0.2992 0.4980

median 1.0015 1.0025 0.2990 0.4941 0.2994 0.4998 0.2998 0.4947
emp se 0.0334 0.0443 0.0530 0.0707 0.0372 0.0496 0.0521 0.0707
est se 0.0331 0.0456 0.0509 0.0708 0.0355 0.0478 0.0500 0.0709

95% cov 94.3% 95.3% 94.0% 95.4% 93.9% 93.3% 93.9% 95.6%
WLS mean 0.9999 0.9999 0.2994 0.4981 0.3008 0.4997 0.2992 0.4980

median 1.0001 1.0007 0.2997 0.4943 0.2997 0.5000 0.2998 0.4946
emp se 0.0299 0.0393 0.0531 0.0707 0.0371 0.0496 0.0521 0.0707
est se 0.0297 0.0398 0.0510 0.0708 0.0356 0.0478 0.0500 0.0709

95% cov 95.0% 96.1% 94.2% 95.4% 94.2% 93.3% 93.9% 95.6%
ǫ: Student t distribution t5

α0 mean 0.2994 0.4984 0.3004 0.4992 0.2986 0.4983
median 0.2993 0.4960 0.2986 0.4974 0.2996 0.4972
emp se NA NA 0.0528 0.0718 0.0370 0.0487 0.0515 0.0713
est se 0.0507 0.0707 0.0349 0.0476 0.0498 0.0709

95% cov 93.7% 95.9% 93.8% 94.4% 94.3% 95.7%
OLS mean 0.9984 0.9993 0.2998 0.4984 0.3007 0.4989 0.2985 0.4983

median 0.9969 0.9998 0.2996 0.4959 0.2988 0.4975 0.2994 0.4972
emp se 0.0316 0.0378 0.0528 0.0718 0.0371 0.0487 0.0516 0.0713
est se 0.0303 0.0384 0.0508 0.0707 0.0350 0.0476 0.0498 0.0709

95% cov 95.3% 95.8% 94.0% 95.8% 94.0% 94.3% 94.2% 95.6%
WLS mean 0.9989 0.9989 0.2997 0.4984 0.3007 0.4989 0.2985 0.4983

median 0.9977 0.9996 0.2995 0.4961 0.2985 0.4976 0.2991 0.4972
emp se 0.0303 0.0370 0.0529 0.0718 0.0372 0.0487 0.0516 0.0713
est se 0.0308 0.0373 0.0508 0.0707 0.0350 0.0476 0.0498 0.0709

95% cov 95.4% 95.8% 94.1% 95.8% 94.0% 94.3% 94.2% 95.6%

Table 3.1: Simulation 1: Estimation and inference results on α̂1, α̂2, β̂, γ̂. The
estimation mean, median, empirical standard error, estimated standard error and
coverage rate of the 95% confidence intervals are reported. α0 means the true α’s are
used. “as” stands the adjusted score method, implemented in the logit model only.
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bias in all cases. In addition, the empirical and average estimated standard errors

match closely, and the empirical coverage of the 95% confidence intervals are very

close to the nominal level. All these indicate satisfactory accuracy of our inference

results in the finite sample situations.

In the logistic model context, Buzas (1997) developed an adjusted score method.

For comparison, we included the adjusted score results in our simulation, see Table

3.1. Its performance in terms of means, estimation variability and coverage proba-

bilities are similar to our method. The drawback of the adjusted score method is its

limited applicability. For example, it can only be used for the logistic link function.

One can observe an interesting phenomenon regarding the relative efficiency of

the estimators for β and γ under different α estimators in comparison with the known

α case. On the one hand, it is clear that for estimating α, the WLS is much more

efficient than the OLS estimator. On the other hand, the difference in the estimation

variability for α̂ does not seem to influence much the estimation variability for β̂ and

γ̂. In fact, even when the estimation is conducted under the known α, the variability

of β̂ and γ̂ does not seem to improve much in this simulation example. However, we

point out that this is not always the case. For example, when we generate Ui from

a centered normal distribution with variance 8, the estimation variability of β̂ and γ̂

decreased visibly when α is known, see Table 3.2 for details. In fact, how does the

variability of α̂ affect that of β̂ and γ̂ is difficult to quantify, despite the analytic

result in Theorem 3.
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α1 α2 β (logit) γ (logit)
Initial values 1.0 1.0 0.3 0.5

α known mean 0.3002 0.4993
median 0.2990 0.4995
emp se NA NA 0.0766 0.0938
est se 0.0754 0.0950

95% cov 94.8% 96.3%
OLS mean 0.9983 1.0018 0.3023 0.4978

median 1.0000 1.0006 0.2980 0.5004
emp se 0.0930 0.0950 0.0813 0.0999
est se 0.0923 0.0973 0.0811 0.1028

95% cov 94.9% 95.6% 94.8% 96.8%
WLS mean 0.9984 1.0009 0.3026 0.4975

median 1.0000 1.0005 0.2979 0.5005
emp se 0.0929 0.0950 0.0815 0.1001
est se 0.0920 0.0968 0.0812 0.1030

95% cov 95.0% 95.8% 94.7% 96.8%

Table 3.2: Simulation 1: Estimation and inference results on α̂1, α̂2, β̂, γ̂ based on
logit function and normal regression error. Measurement error variance is 8. The
mean, median, empirical standard error, estimated standard error and coverage rate
of the 95% confidence intervals are reported.
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3.3.2 Simulated Example Two

Our second simulation is designed to reflect the structure of the AIDS data which

will be analyzed next. We generated the observations (Zi, Si,Wi, Yi) from the model

pr(Yi = 1 | Xi = xi, Zi = zi) (3.8)

= H{xi(β4 + β1z1i + β2z2i + β3z3i) + βc4 + βc1z1i + βc2z2i + βc3z3i},

Wi = Xi + Ui, (3.9)

Xi = α1 + α2Si + ǫi. (3.10)

Here, H(·) is chosen to be the inverse logit link function. We set (α1, α2) = (1.0, 1.0)

and (β1, β2, β3, β4, βc1, βc2, βc3, βc4) = (−0.5, 0.6,−0.4, 0.3, 1.0,−1.0, 0.5,−0.5). The

observable covariates z1i, z2i and z3i are all dichotomous variables, where z1i = z2i =

z3i = 0 indicates that the ith individual receives the reference treatment (treatment

1) and zki = 1 (k = 1, 2, 3) means that the ith individual receives treatment k +

1. For the ith observation, at most one of the three Zki(k = 1, 2, 3) is 1, and

the chances of receiving each of the four treatments are equal. The instrumental

variable Si is generated from the standard normal distribution, and we generated ǫi

from the normal distribution with mean 0 and variance S2
i /8, and Ui from a normal

distribution with mean 0 and variance 0.4.

The simulation results are summarized in Table 3.3. It is evident that all the

estimators show little bias. Although there are 10 unknown parameters in the prob-

lem, which is a relatively large number, the inference performance of our method is

still satisfactory. In particular, the empirical and average estimated standard errors

are close to each other, and the coverage rate of the 95% confidence intervals are

all around the nominal level. We further conducted the simulation by replacing the
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α1 α2 β1 β2 β3

Initial value 1 1 −0.5 0.6 −0.4
median 1.0011 1.0006 −0.5028 0.6029 −0.4064
emp se 0.0227 0.0270 0.1976 0.2319 0.1918
est se 0.0222 0.0264 0.1923 0.2339 0.1889

95% cov 94.1% 94.2% 94.1% 95.1% 95.6%
β4 βc1 βc2 βc3 βc4

Initial value 0.3 1.0 −1.0 0.5 −0.5
median 0.3006 1.0247 −0.9934 0.5068 −0.4973
emp se 0.1366 0.2752 0.3325 0.2559 0.1829
est se 0.1368 0.2705 0.3263 0.2645 0.1919

95% cov 95.9% 94.7% 95.7% 96.2% 96.7%

Table 3.3: Simulation 2: Model structure similar to the AIDS data; Estimation and
inference results on α̂1, α̂2, β̂1, β̂2, β̂3, β̂4, β̂c1, β̂c2, β̂c3, β̂c4. The median, empirical
standard error, estimated standard error and coverage rate of the 95% confidence
intervals are reported.

logit link with a probit link, and observed very similar results, which are omitted

here. Since this simulation is designed to have similar structure as the AIDS data,

it provides certain confidence in our real data analysis result in the next subsection.

3.3.3 Real Data Analysis

We applied our method on the data set from an AIDS Clinical Trials Group

(ACTG) study. This study evaluated four different treatments on HIV infected

adults whose CD4 cell counts were from 200 to 500 per cubic millimeter. These four

treatments are “ZDV”, “ZDV+ddI”, “ZDV+ddC” and “ddC”, labeled as treatment

1 to 4 in this order. Treatment 1 is a standard treatment hence is considered as

the reference treatment; see Hammer, Katzenstein, Hughes, Gundacker, Schooley,

Haubrich, Henry, Lederman, Phair, Niu, Hirsch & Merigan (1996), Huang & Wang

(2000) and Huang & Wang (2001) for more detailed descriptions of the data set.

We included 1036 patients who had no antiretroviral therapy at enrollment in our

analysis. We are interested in studying the treatment difference in terms of whether
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a patient has his CD4 count drop below 50%, a clinically important indicator for

the HIV infected patients, develops AIDS or dies from HIV related disease (Y = 1).

Thus, our main model is given in (3.8), where Zik has the same meaning as in the

second simulation study. Here, X is the baseline log(CD4 count) prior to the start

of treatment and within 3 weeks of randomization. Of course X is not measured

precisely, and we use the average of two available measurements as W . From the

two repeated measurements, the measurement error variance is estimated as 0.3.

In addition, a screening log(CD4 count) is available and is used as the instrumental

variable S. The relationship between W and S is depicted in Figure 3.2. Apparently,

a linear model will fit the data well. Therefore we assume the relation between W ,

X and S, Z can be described using (3.9) and (3.10).

We conducted the analysis under both the logit and probit models, but report

only the results in the logit model because the probit model yields very similar results.

The estimate for (α1, α2) is (0.0001, 0.67) with the standard error (0.02, 0.02) using

the OLS method. The result from the WLS is very similar. The subsequent estimate

of β is given in Table 3.4. We further plotted the corresponding relations between

the baseline log CD4 counts (X) and the estimated linear function of X under the

four treatments in Figure 3.1. Different methods of estimating the α parameter make

little difference in the β estimation since the estimations from OLS and WLS are

themselves very similar. This is reflected in the information in both Table 3.4 and

Figure 3.1. As manifested in the plots in Figure 3.1, treatment 1 shows a negative

slope, indicating that the standard treatment seems to be more effective for patients

with larger baseline CD4, or patients whose situation is less severe. On the contrary,

the treatments 2 and 4 show positive slopes, indicating that these treatments are

more effective for patients with smaller baseline CD4 counts, or patients with more

grave situation.
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Figure 3.1: Plots of the linear function of x inside the link H in four treatments,
where x is the baseline CD4 count in the logarithm scale. The OLS (left) and the
WLS (right) methods are used to estimate α.
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Figure 3.2: Plot of the covariate averaged baseline CD4 count versus the instrument
variable screening CD4 count. Unit is “Cells per cubic millimeter”. The measure-
ments are on logarithm scales. A straight line is fitted to the scattered points.
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β1 β2 β3 β4

OLS Estimate 0.13 -0.17 0.14 -0.77
two-sided (−0.60, 0.86) (−0.95, 0.61) (−0.52, 0.81) (−1.22,−0.31)
one-sided (−0.48,∞) (−∞, 0.49) (−0.41,∞) (−∞,−0.39)

IWLS Estimate 0.13 -0.17 0.15 -0.77
two-sided (−0.60, 0.86) (−0.96, 0.62) (−0.52, 0.81) (−1.23,−0.31)
one-sided (−0.49,∞) (−∞, 0.49) (−0.41,∞) (−∞,−0.39)

βc1 βc2 βc3 βc4

OLS Estimate -0.85 -1.14 -0.51 -1.30
two-sided (−1.37,−0.32) (−1.72,−0.56) (−1.00,−0.03) (−1.61,−0.98)
one-sided (−∞,−0.41) (−∞,−0.65) (−∞,−0.10) (−∞,−1.03)

IWLS Estimate -0.85 -1.14 -0.51 -1.30
two-sided (−1.37,−0.32) (−1.72,−0.56) (−1.00,−0.03) (−1.61,−0.98)
one-sided (−∞,−0.41) (−∞,−0.65) (−∞,−0.10) (−∞,−1.03)

Table 3.4: Analysis of the ACTG 175 data: Estimates, two-sided and one-sided 95%
confidence intervals for the model are reported. Results are based on logit model in
combination with the OLS and the WLS method respectively for α estimation.

In both the OLS (left plot in Figure 3.1) and the WLS (right plot in Figure

3.1) estimation, the lines from treatment 1 and the other three treatments intercept

around x = −0.5, corresponding to the baseline CD4 level of 288. Thus, for patients

with a baseline CD4 count larger than 288, treatment 1 is probably a good treatment

since the corresponding probability of having a ≥ 50% drop of CD4 count is quite

small compared to other treatments. On the other hand, if a patient’s baseline CD4

count is smaller than 288, there is probably good reason to use the new treatments.

To further confirm our intuitive conclusion from observing the plots, we perform

statistical inference regarding the four treatments. Our first attempt is to test the

treatment differences between treatment k, (k = 2, 3, 4) and treatment 1. From the

second row of Table 3.4, it is clear that at 95% confidence level, all of the three new

treatments (k = 2, 3, 4), are significantly different from the standard treatment.

Considering that our original goal of the study is to discover better new treat-

ments (k = 2, 3, 4) than the standard one, we further constructed one-sided con-
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fidence intervals. The third row in Table 3.4 summarizes the one-sided confidence

intervals. The fact that under both OLS and WLS, βc1, βc2 and βc3 are significantly

smaller than zero suggests that at 95% confidence level, treatments 2, 3 and 4 are

better than treatment 1 for severe patients, in that these three treatments decrease

the probability of severe CD4 count declination for patients with low baseline CD4

counts. On the other hand, with high baseline CD4 counts, no certain variation

in the treatment effect can be declared since the intervals regarding β1, β2 and β3

include zero. In other words, the improvement of the new treatments only applies

to patients with low CD4 counts and is more significant if the patients’ situation are

more grave in terms of their baseline CD4 counts. For patients whose baseline CD4

counts are sufficiently high, the standard treatment could be a preferred choice.

3.4 Discussion

The problem of measurement error arises in real data analysis in many scien-

tific disciplines. Generally speaking, there are two approaches to dealing with this

problem. The first approach assumes the distribution of the unobserved covariates

or of the measurement error to be known, or can be estimated using replicate data.

Therefore this approach has limited applicability in practice. Another approach uses

the instrumental variables which are easier to obtain than replicate data. Hence this

approach has wider applicability in practice.

Although the instrumental variable approach has been widely used in nonlinear

models, its applicability in binary response models is unclear. In this section we

demonstrate that this is possible without making any parametric assumption for the

distribution of the unobserved variables in the model. In particular, the proposed

estimator is fairly efficient under semiparametric setup. The simulation studies show

satisfactory performance of the proposed estimator in finite sample situation.
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Through combining the relations of the unobservable variableX with the observed

W and with the instruments S, we establish a direct relation between W and S, and

estimate the parameter α before performing the estimation for the parameter of

interest β. Although Theorem 3 clearly indicates that this estimated α alters the

final estimation variability of β̂, it is still unclear if such alteration is detrimental

or beneficial. The only clear message is that if a true error distribution fǫ(ǫ | S,Z)

is implemented, then the estimation of α causes estimation variance inflation for β.

Overall, how to best handle the estimation of α so that under a same working model

f ∗
ǫ(ǫ | S,Z), the estimation variability of β is minimized is still unknown. Further

study is certainly needed.

Although we present our main estimator in the context of logistic or probit mod-

els, the method is certainly not restricted only to these contexts. In fact, any regres-

sion model of Y conditional on X,Z can be handled by our method via a suitable H

function. This indicates that Y is also not restricted to binary variables. Thus, for

example, the method can readily be extended to generalized linear models.
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4. NONPARAMETRIC ESTIMATION OF AGE DISTRIBUTION OF

HUNTINGTON’S DISEASE WHEN FAMILIAL CORRELATION EXIST

4.1 Introduction

The Cooperative Huntington’s Observational Research Trial (COHORT, Dorsey

& the Huntington Study Group COHORT Investigators (2012)) is a kin-cohort study.

During the study, patients of the Huntington’s disease are genotyped while their rel-

atives are not. Instead, only the survival information of their relatives are collected.

This brings challenge in analyzing the relative data, mainly because it is impossible

to identify if a relative is a Huntingtin gene mutation carrier or not. This further

causes difficulty in characterizing the difference between the Huntingtin gene carrier

and non-carrier populations, a key step in understanding the disease hence effectively

intervening the disease progress or controlling the damage caused by the disease.

Nevertheless, a relative’s relation to the proband together with the Mendalian law

allows the calculation of the probability of a relative to carry the Huntingtin gene

mutation.

Using the probabilities associated with each relative, assuming that the observa-

tions are independent, it is possible to study the distribution of any trait of interest

for both the mutation carrier population and non-carrier population. This has been

extensively studied in Ma & Wang (2012) and efficient estimation procedures have

been developed. When data are also subject to censoring, Ma & Wang (2013) further

developed effective methods to perform the estimation and inference. However, both

works have assumed that the observations concerning the relatives are independent,

hence it is unclear how to properly handle the possible correlation, likely to exist

among relatives from a same family.
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It is the goal of this work to address the within family correlation between ob-

servations when the data are subject to censoring and their population identifiers

are only know up to the probabilities. Because the correlation with a family can

be a result of similar life style or similar biological elements other than the gene

under study, it is very difficult to quantify or even model such correlation. In addi-

tion, different family has different sizes. Due to these considerations, we leave the

within family correlation completely unspecified. The attractiveness of our method

lies in its novelty, its simplicity and its flexibility. We first eliminate the effect of

the within family correlation by using only one member per family to form our base

estimator. We then devise an optimal way to synthesize a new estimator that takes

advantage of the multiple members in the families. To the best of our knowledge,

no such treatment has been considered in the literature and the idea is completely

new. When forming the base estimator, we use the method by Ma & Wang (2013),

which is simple and practically as effective as the efficient estimator. This results a

final procedure that is also straightforward to implement. Finally, our method is able

to handle arbitrary distribution function forms and arbitrary correlation structures

with the need to tune or adapt any part of the method. This makes the method

extremely flexible and user friendly.

The rest of the section is organized as the following. We illustrate the method,

describe it implementation and demonstrate its optimality property in section 4.2.

Simulations are carried out in section 4.3 to illustrate the performance of the es-

timators in both simple and complex settings. Finally, we analyse the COHORT

data which motivated this work in section 4.4 and conculde the section with some

discussions in section 4.5. All the technical derivations are in appendix.
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4.2 Methodology

We first define some notations. Suppose there are N families in the study, and the

ith family has ni members, i = 1, . . . , N. The survival time for the jth member of the

ith family is Sij , where Sij is a random event time. The event is subject to censoring

at time Cij. Let Yij = min(Sij, Cij) and the censoring indicator δij = I(Sij ≤ Cij).

Furthermore, we assume there are p different populations, whose event time has

cumulative distribution functions F1(t), F2(t), . . . , Fp(t) respectively. Write F(t) =

{F1(t), F2(t), . . . , Fp(t)}T. Assume for all i = 1, . . . , n, j = 1, . . . , ni, Sij is a random

sample from one of the p populations, although we do not know which population it is.

We use qijk to denote the probability of the event Sij belonging to the kth population,

for k = 1, . . . , p. Let qij = (qij1, qij2, . . . , qijp)
T. Obviously,

∑p
k=1 qijk = 1. We assume

the p distribution processes are independent of the censoring process. Using these

notations, the observed data can be written as O = {(qij, Yij, δij), i = 1, . . . , N, j =

1, . . . , ni}.

In kin-cohort and QTL studies, there are only finitely many, say m, m < ∞,

possible values u1,u2, . . . ,um for qij . We count the frequencies of the occurrences of

u1,u2, . . . ,um and record them as d1, d2, . . . , dm with
∑m

i=1 di =
∑N

i=1 ni. The mix-

ture distributions are defined as H(t) = {H1(t), H2(t), . . . , Hm(t)}T, where Hl(t) =

uT
l F(t) for l = 1, . . . , m.

4.2.1 Special Configuration

We consider a special case where the observations O = {(qij , Yij, δij), i =

1, . . . , N, j = 1, . . . , ni} are independent of each other. Obviously, this happens

when each family has only one observation, i.e. ni = 1 for i = 1, . . . , N . This also

happens when there is no within family correlation. In this case, following Ma &
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Wang (2013), we use the relation

F(t) =

(
m∑

l=1

dlulu
T
l

)−1{ m∑

l=1

dlulHl(t)

}
, (4.1)

and estimate F(t) through

F̂(t) =

(
m∑

l=1

dlulu
T
l

)−1{ m∑

l=1

dlulĤl(t)

}
. (4.2)

Here Ĥl(t) is a Kaplan-Meier (KM) estimate (Kaplan & Meier (1958)) for Hl(t).

Kaplan & Meier (1958) has established the consistency for the KM estimator, while

Breslow & Crowley (1974) has shown that it converges weakly to a Gaussian process.

Since F̂(t) is a linear transformation of Ĥ(t), it is also consistent and converges weakly

to a Gaussian process when N → ∞. These observations will be used in our following

derivation when within family correlation exists.

4.2.2 Resampled and Bootstrapped Linear Combination Estimator (RBLCE)

In the general situation when members from a same family may be correlated,

we propose a two stage procedure that utilizes the results described in Section 4.2.1.

In the first stage, we randomly sample one member from each family, regardless of

the family size, and then use (4.2) to obtain a crude estimation of F(t). Repeat this

process multiple, say R, times to collect multiple estimators for F(t), denoting these

estimators F̂1(t), . . . , F̂R(t). In the second stage, we aim to combine the multiple

estimators from the first stage in an optimal way.

Since each F̂r(t), r = 1, . . . , R is a consistent estimator of F(t), it is natural to use

a weighted average of these estimators to form an estimator that is also consistent
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and hopefully more efficient. In general, we write the combined estimator

F̂(t) = AF̂L(t), (4.3)

where

F̂L(t) =
[
{F̂1(t)}T, {F̂2(t)}T, . . . , {F̂R(t)}T

]T
, (4.4)

and A is a p × pR weight matrix. The consistent requirement mandates AJ = Ip,

where Ip is the size p identity matrix, and J is a pR × p matrix formed by Ip’s,

i.e. J = (Ip, . . . , Ip)
T. In appendix, we further show that the optimal choice of A

in terms of minimizing the variance of F̂(t) is (JTU−1J)−1JTU−1, where U is the

asymptotic variance-covariance matrix of
√
N F̂L(t). We summarize the above results

in Theorem 1.

Theorem 4. Let F̂(t) be as in (4.3). Then as long as AJ = Ip, F̂(t) is consistent.

In addition, var{F̂(t)} is minimized when

Aopt = (JTU−1J)−1JTU−1. (4.5)

The resulting optimal variance of
√
NF̂(t) is

V
opt
1 = (JTU−1J)−1.

To take advantage of the result in Theorem 4, we still need to obtain U. Because

of our construction of F̂(t), U is naturally an R × R block matrix with each block

size p × p. Although the diagonal blocks of U can be approximated using results

in Section 4.2.1, the analysis of the off-diagonal blocks is impossible because of the
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unspecified correlation structure among family members and the potentially complex

pattern resulting from the sampling procedure. Thus, we resort to a bootstrap

procedure (Efron (1981) and Akritas (1986)) to assess U. However, caution needs to

be taken in performing the bootstrap procedure, which is somewhat different from the

obvious. In particular, although our interest is to repeatedly draw family members

to form estimators, we need to bootstrap families, not members of the families.

Specifically, for b = 1, . . . , B, we randomly draw N families with replacement and

with equal probability, and denote the bootstrap sample O∗
b . We then repeat the

estimation procedure described above on O∗
b to obtain F̂∗b

L (t). The sample variance

of F̂∗1
L (t), F̂∗2

L (t), . . . , F̂∗B
L (t) is then used to estimate U.

The complete procedure of our RBLCE is the following.

Algorithm 1.

Step 1. Randomly draw one member from each family, assume the resulting sample

contains m different q values, written as u1, . . . ,um, with frequency d1, . . . , dm.

Form

F̂r(t) =

(
m∑

l=1

dlulu
T
l

)−1{ m∑

l=1

dlulĤl(t)

}
.

Step 2. Repeat Step 1 R times (r = 1, . . . , R), and form F̂L(t) using (4.4).

Step 3. Randomly sample N families with replacement from the original families.

Step 4. Perform Steps 1 and 2 on the sampled data, obtain the corresponding F̂∗b
L (t).

Step 5. Repeated Steps 3 and 4 B times (b = 1, . . . , B) to obtain F̂∗1
L (t), . . . , F̂∗B

L (t).

Step 6. Calculate the sample variance Û of F̂∗1
L (t), . . . , F̂∗B

L (t).

55



Step 7. Form the estimator F̂(t) ≡ (JTÛ−1J)−1JTÛ−1F̂L(t).

4.2.3 Resampled and Bootstrapped Quadratic Inference Function Estimator

(RBQIF)

Considering that using each one-member-per-family data sampled from the orig-

inal data, we can collect, in the general case, a set of estimating equations, it is also

quite natural to combine different estimating equations to obtain a final estimator.

Specifically, when there is only one member per family, we rewrite the relation in

(4.1) as

N∑

i=1

{
qi1Hi(t)− qi1q

T
i1F(t)

}
= 0, (4.6)

and view F̂(t) as the root that solves

N∑

i=1

{
qi1Ĥi(t)− qi1(qi1)

TF(t)
}
= 0, (4.7)

where Ĥi(t) is the same KM estimator as before.

We use the sampling scheme in the first stage of RBLCE in section 4.2.2 to sample

R data sets, and write the estimating equation (4.7) based on the rth sampled data

∑N
i=1 g

r
i (t) =

∑N
i=1

{
qr
i Ĥ

r
i (t)− qr

i (q
r
i )

TF(t)
}

= 0, r = 1, . . . , R. Here, qr
i denotes

the q value of the member from the ith family in the rth sample. Because the number

of equations, pR, can be much larger than the number of the parameters p, we resort
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to the Quadratic Inference Function (QIF) method (Lindsay & Qu (2003)). Write

N∑

i=1

gi(t) =
N∑

i=1





g1
i (t)

g2
i (t)

...

gR
i (t)





=
N∑

i=1





q1
i Ĥ

1
i (t)− q1

i (q
1
i )

TF(t)

q2
i Ĥ

2
i (t)− q2

i (q
2
i )

TF(t)

...

qR
i Ĥ

R
i (t)− qR

i (q
R
i )

TF(t)





, (4.8)

We minimize the quadratic form,

{
N∑

i=1

gi(t)

}T

W

{
N∑

i=1

gi(t)

}
(4.9)

for a weight matrix W. In typical QIF construction, gi(t)’s are functions of the ith

observation respectively and hence are independent. Therefore root-N consistency,

asymptotic normality, etc. has been established in Lindsay & Qu (2003). However

here, it is important to recognize that gi(t)’s are not independent since they contain

Ĥr
i (t)’s, which are estimated based on all the observations from the rth sample for

r = 1, . . . , R. Nevertheless, in Theorem 5, we show that the resulting estimator still

enjoys the usual asymptotic normality property. The proof is in appendix.

Theorem 5. Let F̂(t) be the minimizer of the quadratic form in (4.9). Then
√
N{F̂(t) − F(t)} → Normal(0,V2) in distribution when N → ∞, where V2 is

a p×p positive-definite matrix. Let M be the asymptotic variance-covariance matrix

of N− 1

2

∑N
i=1 gi(t). When Wopt = M−1,

√
N{F̂(t) − F(t)} achieves the efficiency

bound

V
opt
2 =

[
E

{
∂gi(t)

∂FT(t)

}T

M−1E

{
∂gi(t)

∂FT(t)

}]−1

. (4.10)

Theorem 5 prescribes the choice of the optimal weight matrix. To achieve effi-
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ciency, it is essential to estimate M. Because no correlation structure is modeled for

members from the same family, we resort to the bootstrap procedure mentioned in

Section 4.2.2 to approximate M. Using the bth bootstrap sample O∗
b , we follow the

procedure described above to construct estimation equation
∑N

i=1 g
∗b
i (t). The sample

variance of
∑N

i=1 g
∗1
i (t), . . . ,

∑N
i=1 g

∗B
i (t) is then used to estimate M.

The detailed algorithm based on RBQIF is the following.

Algorithm 2.

Step 1. Randomly draw one member from each family. Form

N∑

i=1

gr
i (t) =

N∑

i=1

{
qr
i Ĥ

r
i (t)− qr

i (q
r
i )

TF(t)
}
.

Step 2. Repeat Step 1 R times (r = 1, . . . , R), and form
∑N

i=1 gi(t) using (4.8).

Step 3. Randomly sample N families with replacement from the original families.

Step 4. Perform Steps 1 and 2 on the sampled data, obtain the corresponding
∑N

i=1 g
∗b
i (t).

Step 5. Repeated Steps 3 and 4 B times (b = 1, . . . , B) to obtain
∑N

i=1 g
∗1
i (t), . . . ,

∑N
i=1 g

∗B
i (t).

Step 6. Calculate the sample variance M̂ of
∑N

i=1 g
∗1
i (t), . . . ,

∑N
i=1 g

∗B
i (t). Let W =

M̂−1.

Step 7. Obtain the estimator F̂(t) from minimizing (4.9).

4.2.4 Equivalence of the Two Methods

To understand the advantages and disadvantages of RBLCE and RBQIF intro-

duced respectively in Section 4.2.2 and 4.2.3, we perform further analysis to compare

their relative performance. Given that RBLCE is a combination of the estimators
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from R samples, while RBQIF results from solving a combination of estimating equa-

tions from the same R samples, it is not surprising that these two procedures are

in fact equivalent. In the following, we formally establish that there is a one-to-one

mapping between the estimators in the two classes, and in particular, the optimal

estimation variances from the two estimators are identical asymptotically.

Because the RBLCE is uniquely decided by the weight matrix choice A while

the RBQIF is uniquely decided by the weight matrix W, we only need to establish

the one-to-one mapping between A and W in order to show our results. Define a

pR× pR block diagonal matrix

D = diag
[{

E
(
qijq

T
ij

)}−1
, . . . ,

{
E
(
qijq

T
ij

)}−1
]
.

For any weight matrix W defined in the RBQIF estimator, consider

A = (JTD−1WD−1J)−1JTD−1WD−1 (4.11)

as the weight matrix in RBLCE. Obviously, AJ = Ip. We now investigate the

resulting RBLCE and RBQIF from the corresponding A and W. Let the RBLCE

estimator F̂(1)(t) = AF̂L(t), where F̂L(t) is defined in (4.4). Define FL(t) analogously

as F̂L(t) and recall the definition of gi(t) in (4.8). We can write

√
N{F̂L(t)− FL(t)} = N−1/2D

N∑

i=1

gi(t) + op(1), (4.12)

which leads to

F̂(1)(t) = ADN−1

N∑

i=1

gi(t) + F(t) + op(N
−1/2). (4.13)
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On the other hand, the RBQIF, denoted F̂(2)(t), is obtained from minimizing (4.9),

thus standard Taylor expansion leads to

F̂(2)(t)

= −
[
E

{
∂gi(t)

∂FT(t)

}T

WE

{
∂gi(t)

∂FT(t)

}]−1

E

{
∂gi(t)

∂FT(t)

}T

WN−1

N∑

i=1

gi(t)

+F(t) + op(N
−1/2)

= (JTD−1WD−1J)−1JTD−1WN−1
N∑

i=1

gi(t) + F(t) + op(N
−1/2) (4.14)

where the last equality follows from the relation

E

{
∂gi(t)

∂FT(t)

}
= −1R ⊗ E

{
qij(qij)

T
}
= −D−1J.

Further using the connection between A and W in (4.11), we immediately have

F̂(1)(t) = F̂(2)(t)+op(N
−1/2). Conversely, if F̂(1)(t) = F̂(2)(t)+op(N

−1/2), subtraction

of (4.14) from (4.13) yields (4.11).

Having established the one-to-one mapping between RBLCE and RBQIF via

(4.11), it is not surprising to expect that the optimal weight matrix choices in the

two estimator classes, Aopt and Wopt, also satisfies (4.11). This can be easily verified

through using the equality U = DMD, which follows from (4.12). Furthermore,

we can explicitly verify that the two optimal asymptotic estimation variances are

identical, i.e.

V
opt
1 = (JTU−1J)−1 = (JTD−1M−1D−1J)−1

=

[
E

{
∂gi(t)

∂FT(t)

}T

M−1E

{
∂gi(t)

∂FT(t)

}]−1

= V
opt
2 .
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4.3 Simulation

We now demonstrate the finite sample performance of the RBLCE and RBQIF

methods via two simulation studies. The first simulation is a relatively simple one.

We use it to illustrate the effectiveness of the theoretical properties derived in Section

4.2. In the second simulation, we generated data following the similar pattern as the

Huntington’s Disease data studied in Section 4.4, hence it represents quite realistic

scenario. Throughout both simulations, we repeated 1000 simulations.

In the first simulation, we set the sample size N = 1000, p = 2, m = 3 and ni = 2

for i = 1, . . . , N . The two (p = 2) true functions F1(t) and F2(t) are respectively

the distribution functions of two normal density, N(4.0, 1.02) and N(6.0, (5/3)2). To

generate correlated survival times for members from a same family, we implement

the following procedure. For the ith family, we construct a multivariate normal

distribution with mean (4.0, 4.0, 6.0, 6.0) and a randomly-generated positive-definite

matrix with diagonal (1.02, 1.02, (5/3)2, (5/3)2). We then generate a random vector

(S1
i1, S

1
i2, S

2
i1, S

2
i2) from this multivariate normal distribution. It provides the jth

member of the ith family with possible survival time S1
ij or S2

ij , corresponding to

the two functions F1(t) and F2(t). We select Sij = S1
ij or S2

ij with probabilities in

the qij vector, where qij is randomly assigned to three (m = 3) different vector

values (0.25, 0.75)T, (0.75, 0.25)T and (0.5, 0.5)T, with probabilities 0.4, 0.55 and

0.05 respectively. Lastly, we generate the censoring time from a uniform distribution

on (0, 9.9), resulting in a censoring rate of 50% approximately. We then create

Yij = min(Sij, Cij) and δij = I(Sij ≤ Cij).

We use Algorithms 1 and 2 to carry out the RBLCE and RBQIF methods, and

considered R = 1, 2, 3 and 4. We implemented B = 1000 bootstrap repetitions to

estimate the variance-covariance matrices U in RBLCE and M in RBQIF respec-
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RBLCE RBQIF

F
(1)
1 (t) F

(1)
2 (t) F

(2)
1 (t) F

(2)
2 (t)

true 0.1842 0.6915 0.1842 0.6915
R = 1 mean 0.1855 0.6907 0.1855 0.6907

emp se 0.0393 0.0479 0.0393 0.0479
mse 0.0032 0.0047 0.0032 0.0047
est se 0.0408 0.0488 0.0408 0.0488

95% cov 95.6% 94.8% 95.5% 94.8%
R = 2 mean 0.1837 0.6925 0.1837 0.6925

emp se 0.0354 0.0412 0.0354 0.0412
mse 0.0025 0.0035 0.0025 0.0035
est se 0.0352 0.0422 0.0352 0.0422

95% cov 95.4% 95.1% 95.5% 95.3%
R = 3 mean 0.1846 0.6899 0.1845 0.6900

emp se 0.0334 0.0408 0.0334 0.0407
mse 0.0022 0.0032 0.0022 0.0032
est se 0.0408 0.0488 0.0408 0.0488

95% cov 94.7% 93.5% 94.3% 93.5%
R = 4 mean 0.1815 0.6935 0.1814 0.6936

emp se 0.0321 0.0385 0.0322 0.0385
mse 0.0021 0.0030 0.0021 0.0030
est se 0.0321 0.0385 0.0321 0.0385

95% cov 94.8% 95.9% 95.0% 95.7%

Table 4.1: Simulation study 1. The mean of the estimates (mean), empirical standard
error (emp se), mean square error (mse), average of estimated standard error (est se)
and the sample coverage rate of the 95% confidence interval (95% cov) are reported.

tively. We summarize the results of our analysis at t = 4.5 in Table 4.1. From Table

4.1, it is clear that Algorithms 1 and 2 produce very similar results across all choices

of R. This fact concurs with our theoretical results on the asymptotic equivalence of

the two methods in Section 4.2.4. In addition, the mean of the 1000 estimates are

very close to the true function values, the sample standard deviations of the 1000

estimates are very close to the average of the estimated standard deviations, and

coverage rate of the 95% confidence interval is indeed close to the nominal value.

When R is increased from 1 to 2, the mean squared error (MSE) is reduced by 22%
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for F
(1)
1 (t) and 26% for F

(1)
1 (t), indicating large improvement in estimation. When

R is increased to 3, MSE is further reduced by 12% and 9% respectively. When we

increase R to 4, the improvement on MSE is 5% and 6%. Since the last improvement

is rather small, we did not further increase R. The estimation result of the entire

functions F1(t) and F2(t) is given in the left panel of Figure 4.1, where the mean

estimated curves almost overlap with the true curves.

In the second simulation, we set sample size N = 750, m = 3, p = 2 and

generate the family sizes ni, i = 1, . . . , N from the same distribution as in the CO-

HORT data in Section 4.4. The distribution of the ni’s is described via a barplot

in Figure 4.2. We set F1(t) as the distribution function of a normal distribution

N(64, (43/3)2) and F2(t) as that of a skew-normal distribution (Genton (2004)) with

location 93.5, scale 20 and shape parameter -50. Our selection of F1(t) and F2(t)

results similar curves as those obtained from the data analysis in Figure 4.3. As

in simulation 1, we generate correlated survival time for members in a same family

from a multivariate distribution. Specifically, for the ith family, we first gener-

ate a vector (S1
i1, . . . , S

1
ini
, S2

i1, . . . , S
2
ini
) from a Clayton copula with parameter 2.

The survival time Sij of the jth member in the ith family is then assigned to S1
ij

or S2
ij, corresponding to F1(t) and F2(t), with probability qij1 or qij2 respectively.

Here qij = (qij1, qij2)
T is set to be (1.0, 0.0)T, (0.5, 0.5)T or (0.0, 1.0)T, with prob-

ability 0.15, 0.5 or 0.35 respectively. We generate censoring time from a uniform

distribution on (0, 100), resulting in a censoring rate around 29%. Finally we let

Yij = min(Sij, Cij) and δij = I(Sij ≤ Cij).

We implement Algorithm 1 (RBLCE) and 2 (RBQIF) with R = 1, 2, 3 and 4. We

use B = 1000 bootstraps to estimate U and M. The simulation results at t = 55

are summarized in Table 4.2 and the right panel of Figure 4.1 depicts the estimated

distribution curves and their confidence bands. From Table 4.2, we find that MSE
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RBLCE RBQIF

F
(1)
1 (t) F

(1)
2 (t) F

(2)
1 (t) F

(2)
2 (t)

true 0.2650 0.0542 0.2650 0.0542
R = 1 mean 0.2651 0.0536 0.2651 0.0536

emp se 0.0420 0.0204 0.0420 0.0204
mse 0.0035 0.0016 0.0035 0.0016
est se 0.0418 0.0206 0.0420 0.0207

95% cov 96.10% 95.20% 95.70% 95.60%
R = 2 mean 0.2639 0.0536 0.2640 0.0535

emp se 0.0343 0.0170 0.0344 0.0169
mse 0.0024 0.0013 0.0024 0.0013
est se 0.0345 0.0171 0.0345 0.0171

95% cov 95.10% 94.60% 94.90% 94.60%
R = 3 mean 0.2643 0.0541 0.2643 0.0541

emp se 0.0317 0.0153 0.0316 0.0153
mse 0.0020 0.0013 0.0020 0.0013
est se 0.0316 0.0157 0.0315 0.0157

95% cov 94.70% 95.30% 94.30% 95.10%

Table 4.2: Simulation study 2. Performance of two algorithms with t = 55. The
mean of the estimates (mean), empirical standard error (emp se), mean square error
(mse), average of estimated standard error (est se) and the sample coverage rate of
the 95% confidence interval (95% cov) are reported.

decreases 31% and 19% from R = 1 to 2, and further decreases 21% for the first

parameter when R increases to 3. We omit the results from R = 4 since it is very

similar to the one from R = 4.

4.4 Data Example

We apply our methods to analyze the COHORT data which motivated this work.

The data set includes 771 families with different numbers of members within each

family. There are a total of 3661 observations. The barplot in Figure 4.2 character-

izes the distribution of the family sizes. Using the available relationship (parents,

children, siblings etc.) between each family member and his/her proband, we cal-

culated the probability of the member to carry the Huntingtin gene mutation and
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Figure 4.1: Simulation study on F1(t) and F2(t). True CDFs (solid) and mean
(dashed), 95% confidence band (upper band dot-dashed, lower band dashed) of the
estimated CDFs. Left: simulation 1. Right: simulation 2.

not carry the mutation. We obtained three (m = 3) different qij values in total,

(1.0, 0.0)T, (0.5, 0.5)T and (0.0, 1.0)T, with frequency 558, 1805 and 1298 respectively.

Write the survival time of mutation carrier population have distribution function

F1(t) and the non-carrier group F2(t). Our goal is to estimate F(t) = {F1(t), F2(t)}T.

The COHORT data has approximately 29% censoring, mainly due to administration

in the data collection procedure or early data collection. Thus, we assume the cen-

soring time is independent of the event time.

We implemented both Algorithm 1 (RBLCE) and Algorithm 2 (RBQIF) devel-

oped in section 4.2. We performed B = 500 bootstraps to estimate the variance-

covariance U in RBLCE and M in RBQIF. The results corresponding to R = 120 are

given in left panel of Figure 4.3, where the estimated F1(t) and F2(t), and their 95%

confidence bands are provided. It is clear that the huntingtin gene mutation carriers

have much smaller survival rates than non-carriers, especially in the age range 50 to

90. This indicates that the detrimental effect of the Huntington’s disease on survival
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is most severe in the middle to old age range. This is possibly because the disease

takes time to progress so it does not cause early death very often, while for those

who live beyond 90, various other causes of death are sufficiently grave to compete

or even out perform the Huntington’s disease. For comparison, we also perform the

analysis of Ma & Wang (2013), where the within family correlation is ignored. We

present the estimated curves of F1(t) and F2(t), and their 95% pointwise confidence

bands in the right panel of Figure 4.3. It is clear that the 95% confidence bands are

wider when the observations are treated as independent. These observations indicate

that within family correlation indeed exists in the COHORT data and estimation ef-

ficiency is indeed improved if we take into account of the correlation and properly

handle it.
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Figure 4.2: Huntington’s Disease family members’ distribution in Barplot. The
highest percentage 16.86% happens when ni = 3. The largest family has ni = 20
members with the smallest percentage 0.13%.

4.5 Discussion

In this section, we devised resample and bootstrap based methods to explore

within family correlation for mixed data from multiple populations, while the pop-

ulation label is only known to a probability. Such data frequently arise from Kin-

cohort studies, such as COHORT study of Huntington’s disease. The estimators in

66



20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival Time

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Carrier
Non−Carrier

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival Time

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

Carrier
Non−Carrier

Figure 4.3: Distribution of the survival time for gene mutation carriers and non-
carriers in Huntington’s Disease study: estimated CDFs (solid) and the 95% confi-
dence band (upper band dot-dashed, lower band dashed). Left: Treat within-family
correlation; Right: Ignore within-family correlation.

the family is easy to implement, while the optimal estimators relies on proper choices

of the weight matrices, which we propose to estimate via bootstrap. The estimators

are applicable for longitudinal studies, where only marginal model is required. The

finite sample efficiency of the estimators relies on both the number of resamples and

the bootstrap size. Although in theory, large values of both are preferable, in prac-

tice, one can always gradually increase these values and stop when the improvement

becomes sufficiently small.
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5. CONCLUSIONS

The prevalence of semiparametric regression models is clearly seen in the previous

sections where we discuss capture-recapture models, instrumental variable regression

with binary response and mixed data in kin-cohort longitudinal studies. A class of

semiparametric estimators are derived for the first two problems by using a semi-

parametric treatment (Tsiatis (2006)). Two resampled and bootstrapped methods

are developed for the last study. All estimators are asymptotically consistent and op-

timal. During the process of deriving those estimators, we have some unique findings

regarding each model.

Hwang, Huang & Wang (2007) studies the measurement error problem in the lit-

erature of capture-recapture models. It corrects the estimation bias by implementing

a conditional score method. However, it completely ignores the multiple measure-

ments of the covariates of recaptures, thus leading to a waste of information. We

propose firstly a GMM method to combine estimating equations for observations

with different times of captures. This way of utilizing information is not as efficient

as constructing estimating equations directly for W. Therefore, the improvement of

estimation efficiency is significant only when there are large samples and capture

probabilities are high. Both of the scenarios are unlikely to happen in real life. In

order to solve the problem, we implement a semiparametric treatment to use the

averaged information directly because there are no complete sufficient statistics ex-

isting. An exciting finding is that the semiparametric treatment actually provides us

with an approach to deal with measurement error models without surrogacy assump-

tion. Simulations show the superior performance of the semiparametric method. We

have successfully utilized multiple information in capture-recapture models. In the
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future we can improve our work by proposing a better population estimator than

that in equation (2.4). In addition, there is room for research of taking advantage of

multiple measurements in open population problems.

The work of semiparametric method in instrumental variable regression fills the

gap of generalized linear models with measurement errors in variables. Because there

are no distribution assumptions on both the true covariates and measurement errors,

our work can be implemented to a wider range of statistical problems. Not surpris-

ingly, the measurement error problem is bypassed due to a configuration of prediction

relationship of instrumental variable and the covariate. This way of handling mea-

surement error models is rarely seen in the literature. So it offers another method

to deal with measurement error models. Another contribution of the work is the

realization of different treatment effects of different patients by the analysis of our

semiparametric method. The threshold values of baseline CD4 count are valuable

because they offers guidance for answering questions like what kind of patients need

to take new treatments. The estimation procedure is achieved by two steps. In the

second step, we need to plug in an estimator which is estimated from the first step.

Because the parameter is estimated, there must be a variance inflation, as illustrated

in Theorem 3. But the inflation is hardly seen in simulation studies. Therefore,

future investigations are needed to examine the problem. We also want to see what

kind of effects would be brought about by proposed working models.

Finally, we estimate the survival time distribution functions for Huntington’s dis-

ease gene mutation carriers and non-carriers. It is of great interest before to know

the age distribution of people whose family history contains Huntington’s disease.

The successful estimation will provide both doctors and patients with the knowl-

edge to treat the gene mutation disease more efficiently. Though the estimation is

achieved in Ma & Wang (2013), the family correlation, which definitely determines
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the development of Huntington’s disease, is not considered at all. Thus we design two

methods, namely RBLCE and RBQIF, to take into account the family correlation.

We also show that RBLCE and RBQIF are equivalent asymptotically. Our methods

are flexible and easy to implement. Besides, both the simulation studies and data

analysis show good performance of our proposed methods. Although the choice of

R is not determined, we can increase the R value until the efficiency improvement

becomes not visible in practice. This work can be extended to many kin-cohort

applications.
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APPENDIX A

SECTION 2

A.1 Derivation of Λ

For the model

fYi,Wi,Xi|Ci1
(yi,wi,xi | Ci1; θ)

= f
Wi|Yi,Xi,Ci1

(wi | yi,xi, Ci1)fYi|Xi,Ci1(yi | xi, Ci1; θ)fXi|Ci1(xi | Ci1), (1)

where fXi|Ci1(xi | Ci1) is unknown, its nuisance tangent space is

[h(Xi) : E {h(Xi) | Ci1} = 0] . (2)

To see this, suppose the true model for fXi|Ci1(xi | Ci1) is f0(xi | Ci1), and let

fXi|Ci1(xi | Ci1;η) = f0(xi | Ci1){1 + ηTh(Xi},

where h(Xi) satisfies (2) and is a bounded random function, and ηr×1 is required to

be sufficiently small such that 1 + ηTh(Xi) ≥ 0. A simple calculation yields that

∫
fXi|Ci1(xi | Ci1;η)dµ(xi) =

∫
f0(xi | Ci1)dµ(xi) +

∫
f0(xi | Ci1)ηTh(Xi)dµ(xi)

= 1 + ηTE {h(Xi) | Ci1}

= 1.

Therefore, fXi|Ci1(xi | Ci1;η) is a valid probability density function. When η = 0,

fXi|Ci1(xi | Ci1;η) equals to f0(xi | Ci1). So it contains the true model. Thus it is a
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parametric submodel. Since ∂fXi|Ci1(xi | Ci1;η)/∂η = h(Xi), we have shown that

any element in the set defined in (2) is indeed one element in the nuisance tangent

space of model (1). On the other hand, for any parametric submodel of (1)

fYi,Wi,Xi|Ci1
(yi,wi,xi | Ci1; θ,η)

= f
Wi|Yi,Xi,Ci1

(wi | yi,xi, Ci1)fYi|Xi,Ci1(yi | xi, Ci1; θ)fXi|Ci1(xi | Ci1;η),

let

Sη(xi;η) =
∂

∂η
log
{
fYi,Wi,Xi|Ci1

(yi,wi,xi | Ci1; θ,η)
}

=
∂

∂η
logfXi|Ci1(xi | Ci1;η).

Because
∫
fXi|Ci1(xi | Ci1;η0)dµ(xi) = 1 when evaluating at the true value η0,

∂

∂η

∫
fXi|Ci1(xi | Ci1;η0)dµ(xi)

=

∫
∂

∂η
logfXi|Ci1(xi | Ci1;η0)fXi|Ci1(xi | Ci1;η0)dµ(xi)

= E{Sη(xi;η0) | Ci1} = 0.

Thus, any element belongs to the nuisance tangent space of model (1) must also

belong to the set given in (2).

Finally, because the conditional joint distribution of (Yi,Wi) can be written as

the conditional expectation

fYi,Wi|Ci1
(yi,wi | Ci1) = E{fYi,Wi,Xi|Ci1

(yi,wi,xi | Ci1; θ) | Yi,Wi, Ci1},
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the semiparametric nuisance tangent space is

Λ =
[
E
{
h(Xi) | Yi,Wi, Ci1

}
: E {h(Xi) | Ci1} = 0

]
.

A.2 Derivation of Λ⊥

Suppose g(Yi,Wi) is an element in Λ⊥ and E
{
h(Xi) | Yi,Wi, Ci1

}
∈ Λ. Since

the two spaces are orthogonal, by using the conditional expectations iteratively, we

have

0 = E
[
g(Yi,Wi)E

{
h(Xi) | Yi,Wi, Ci1

}]

= E
[
h(Xi)E

{
g(Yi,Wi) | Xi, Ci1

}]
.

The above equation is true for any random function h(Xi) in the Hilbert space.

Thus, E
{
g(Yi,Wi) | Xi, Ci1

}
= 0. Therefore, the orthogonal complement of the

nuisance tangent space is

Λ⊥ =
[
g(Yi,Wi) : E

{
g(Yi,Wi) | Xi, Ci1

}
= 0

]
.

A.3 Proof of Theorem 1

A standard Taylor expansion on the estimating equation yields

0 = N−1/2
N∑

i=1

S∗
eff(Yi,Wi; θ̂)

=
1√
N

N∑

i=1

S∗
eff(Yi,Wi; θ) +

1√
N

{
N∑

i=1

∂S∗
eff(Yi,Wi; θ)

∂θT

}
(θ̂ − θ) + op(1).
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This implies

√
N(θ̂ − θ)

=

{
− 1

N

N∑

i=1

∂S∗
eff (Yi,Wi; θ)

∂θT

}−1{
1√
N

N∑

i=1

S∗
eff(Yi,Wi; θ)

}
+ op(1)

= −A(θ)
1√
N

N∑

i=1

S∗
eff(Yi,Wi; θ) + op(1),

and the central limit theorem then immediately yields the asymptotic result in The-

orem 1.

When the true distribution model fXi|Ci1 is used, all the ∗ can be eliminated.

Using integration by parts and observing that Seff is the orthogonal projection of the

score function Sθ onto Λ⊥, we have

A(θ)

= E

{
∂Seff(Yi,Wi; θ)

∂θT

}

=

∫
∂Seff(yi,wi; θ)

∂θT
fYi,Wi

(yi,wi)dµ(yi,wi)

= 0−
∫

Seff(yi,wi; θ)
∂logfYi,Wi

(yi,wi)

∂θT
fYi,Wi

(yi,wi)dµ(yi,wi)

= −E
{
Seff(yi,wi; θ)S

T
θ (yi,wi; θ)

}

= −E
{
Seff(yi,wi; θ)S

T
eff(yi,wi; θ)

}

= −B(θ).

The general expression of V indicates that the variance is B−1(θ). Finally, it is the

optimal variance because it is the variance of the efficient influence function.
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APPENDIX B

SECTION 3

B.1 Derivation of Λ

If we consider the parametric submodel,

pr(Y = y,S = s,Z = z;β,γ,η1,η2)

=

∫
pr(Y = y | S,Z, ǫ;β,γ)fǫ(ǫ | s, z,η2)fS,Z(s, z;η1)dµ(ǫ),

the nuisance score vectors with respect to η1 and η2 are ∂logfS,Z(s, z;η1)/∂η1 and

E{∂logfǫ(ǫ | s, z,η2)/∂η2 | Y,S,Z} respectively. The former has the property

E{∂logfS,Z(s, z;η1)/∂η1} = 0,

and ∂logfǫ(ǫ | s, z,η2)/∂η2 satisfies

E{∂logfǫ(ǫ | s, z,η2)/∂η2 | S,Z} = 0,

E[{∂logfǫ(ǫ | s, z,η2)/∂η2}ǫT | S,Z] = 0.

The last equation comes from the condition that E(ǫ | S,Z) = 0. This completes

the nuisance tangent space derivation for a parametric submodel. Since the nuisance

tangent space of our original model is the mean square closure of the nuisance tangent

space of all parametric submodels, the conjecture for the desired nuisance tangent
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space is the direct sum of two subspaces Λ1 and Λ2, where

Λ1 = {f(S,Z) : f ∈ R
p, E(f) = 0, E(fTf) < ∞}

Λ2 = [E{f(ǫ,S,Z) | Y,S,Z} : f ∈ R
p, E(f | S,Z) = 0,

E(ǫfT | S,Z) = 0, E(fTf) < ∞].

In the second part of the proof, we must show that for any bounded random

functions f1(S,Z) ∈ Λ1 and E{f2(ǫ,S,Z) | Y,S,Z} ∈ Λ2, they are the nuisance score

vectors of a particular parametric submodel. When the true models for fS,Z(s, z)

and fǫ(ǫ | s, z) are f0(s, z) and f0(ǫ | s, z) respectively, we define new functions with

the aid of f1(S,Z) and f2(ǫ,S,Z) such that

fS,Z(s, z;η1) = f0(s, z){1 + ηT
1 f1(S,Z)}

fǫ(ǫ | s, z,η2) = f0(ǫ | s, z)[1 + ηT
2 f2(ǫ,S,Z)].

η1 and η2 must be sufficiently small such that

1 + ηT
1 f1(S,Z) ≥ 0, and 1 + ηT

2 f2(ǫ,S,Z) ≥ 0.

Both fS,Z(s, z;η1) and fǫ(ǫ | s, z,η2) are valid probability density function because

they are positive and their integration from negative infinity to infinity are 1, as can
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be seen below.

∫ ∫
fS,Z(s, z;η1)dµ(s, z)

=

∫ ∫
f0(s, z)dµ(s, z) +

∫ ∫
f0(s, z)η

T
1 f1(S,Z)dµ(s, z)

= 1 + ηT
1E{f1(S,Z)} = 1,

∫
fǫ(ǫ | s, z,η2)dµ(ǫ)

=

∫
f0(ǫ | s, z)dµ(ǫ) +

∫
f0(ǫ | s, z)ηT

2 f2(ǫ,S,Z)dµ(ǫ)

= 1 + ηT
2E{f2(ǫ,S,Z) | S,Z} = 1.

Moreover,

∫
fǫ(ǫ | s, z,η2)ǫ

Tdµ(ǫ)

=

∫
f0(ǫ | s, z)ǫTdµ(ǫ) +

∫
f0(ǫ | s, z)ηT

2 f2(ǫ,S,Z)ǫ
Tdµ(ǫ)

= 0 + ηT
2E{f2(ǫ,S,Z)ǫT | S,Z} = 0.

So the density for ǫ given S and Z also satisfies E(ǫ | S,Z) = 0. One the other hand,

the score vectors for the parametric submodel are

Sη1 =
∂logfS,Z(s, z;η1)

∂η1

= f1(S,Z),

Sη2 =

∫
∂logfǫ(ǫ | s, z,η2)

∂η2

fǫ(ǫ | Y = y, s, z)dµ(ǫ)

= E{f2(ǫ,S,Z) | Y,S,Z}.

This leads to the result.

83



B.2 Derivation of Λ⊥

Using the form of the nuisance tangent space, it can be shown that

Λ = [E{f(ǫ,S,Z) | Y,S,Z} : f ∈ R
p, E(ǫfT | S,Z) = 0, E(fTf) < ∞].

Therefore, any element g(Y,S,Z) ∈ Λ⊥ must satisfy

0 = E[gT(Y,S,Z)E{f(ǫ,S,Z) | Y,S,Z}]

= E[E{gT(Y,S,Z)f(ǫ,S,Z) | ǫ,S,Z}]

= E[E{gT(Y,S,Z) | ǫ,S,Z}f(ǫ,S,Z)]

for any f(ǫ,S,Z) such that E(ǫfT | S,Z) = 0. Therefore, E{g(Y,S,Z) | ǫ,S,Z}must

have the form a(S,Z)ǫ such that E(aTa) < ∞. This yields the desired result.

B.3 Proof of Theorem 2

Note that even under a possibly incorrect working model, we have

E{ S∗
eff(Yi,Si,Zi, θ)}

= E[E{ S∗
eff(Yi,Si,Zi, θ) | ǫ,S,Z}]

= E(E[ S∗
θ(Y,S,Z)− E∗{b(ǫ,S,Z) | Y,S,Z} | ǫ,S,Z])

= E
(
E
[
S∗

θ(Y,S,Z)ǫ
T − E∗{b(ǫ,S,Z) | Y,S,Z}ǫT | S,Z

] {
E∗(ǫǫT | S,Z)

}−1
ǫ
)

= 0,

which implies that the corresponding estimator θ is consistent. In the above display,

the second equality is due to the construction of Seff , the third equality is because b

satisfies the integral equation (3.7), and the last equality is because E(ǫ | S,Z) = 0.
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Standard Taylor expansion then yields the desired result. Namely,

n−1/2
N∑

i=1

S∗
eff(Yi,Si,Zi, θ̂)

= n−1/2
N∑

i=1

S∗
eff(Yi,Si,Zi, θ)

+ n−1/2 ∂

∂θT

{
N∑

i=1

S∗
eff(Yi,Si,Zi, θ)

}
(θ̂ − θ) + op(1).

The left side of the equation is zero by observing since θ̂ is the solution of the

estimating equation. It implies,

√
n(θ̂ − θ)

=

{
−1

n

N∑

i=1

∂

∂θT
S∗

eff(Yi,Si,Zi, θ)

}−1{
1√
n

N∑

i=1

S∗
eff(Yi,Si,Zi, θ)

}
+ op(1)

= −A−1

{
1√
n

N∑

i=1

S∗
eff(Yi,Si,Zi, θ)

}
+ op(1).

The asymptotic result in Theorem 2 is deduced by implementing the central limit

theorem. Furthermore, if the true model fǫ(ǫ | S,Z) is used, the variance will achieve

the minimum semiparametric bound because

E

{
∂

∂θT
Seff(Yi,Si,Zi)

}

= −E
{
Seff(Yi,Si,Zi) ST

θ (Yi,Si,Zi)
}

= −E
{
Seff(Yi,Si,Zi) ST

eff(Yi,Si,Zi)
}
.

The last equation is true since Seff is the projection of Sθ onto the space Λ⊥. It

means that A = −B, and the variance becomes B = [E{ Seff(Y,S,Z)
⊗2}]−1

.
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B.4 Proof of Theorem 3

Consider the joint estimating equation

N∑

i=1

S∗
eff(Yi,Si,Zi, θ,α) = 0

N∑

i=1

Sα(Yi,Si,Zi,α) = 0

for estimating α, θ simultaneous, the Taylor expansion yields

√
n




θ̂ − θ

α̂−α




= −





1

n

N∑

i=1




∂
∂θT S∗

eff
∂

∂αT S∗
eff

∂
∂θT Sα ∂

∂αT Sα








−1


1√
n

N∑

i=1




S∗
eff

Sα








+ op(1)

= −




A A1

0 A2




−1


1√
n

N∑

i=1




S∗
eff

Sα








+ op(1).

It indicates the normal limiting distribution with variance




A A1

0 A2




−1


B BT
1

B1 B2







A A1

0 A2




−T

,

by the central limit theorem. The (1, 1)th cell of the resulting matrix by expanding

the above expression is V = A−1B(A−1)T +Vα where

Vα = A−1
{
A1A

−1
2 B2(A1A

−1
2 )T −A1A

−1
2 B1 − (A1A

−1
2 B1)

T
}
(A−1)T.
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When

f ∗
ǫ(ǫ | S,Z) = fǫ(ǫ | S,Z),

−A = B.

The resulting estimation variance is minimized.
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APPENDIX C

SECTION 4

C.1 Proof of Theorem 4

Write A as A = (A1, . . . ,AR). Under the constraint AJ = Ip, we have

E{F̂(t)} = E{AF̂L(t)} =
R∑

r=1

ArE{F̂r(t)}

=

R∑

r=1

ArF(t) + op(1) = AJF(t) + op(1) = F(t) + op(1).

This shows that F̂(t) is a consistent estimator.

The variance of F̂(t) = AF̂L(t) is AUAT for a general A matrix. For any A that

satisfies AJ = Ip, we have

AUAT −AoptUAT
opt

= AUAT − (JTU−1J)−1

= (JTATAJ)−1JTATAUATAJ(JTATAJ)−1 − (JTU−1J)−1

= (JTATAJ)−1
{
JTATAUATAJ− JTATAJ(JTU−1J)−1JTATAJ

}

(JTATAJ)−1

= (JTATAJ)−1JTATAU
1

2

{
I −U− 1

2J(JTU−1J)−1JTU− 1

2

}

U
1

2ATAJ(JTATAJ)−1.

It is easy to verify that I−U− 1

2J(JTU−1J)−1JTU− 1

2 is an idempotent matrix, hence

it is semi-positive definite. Therefore, AUAT − (JTU−1J)−1 is also semi-positive

88



definite.

C.2 Proof of Theorem 5

Taking derivative of the quadratic form (4.9) with respect to F(t) and omit the

higher order terms, we obtain

E

{
∂gi(t)

∂FT(t)

}T

W

N∑

i=1

gi(t) = 0. (3)

In the following, we first investigate N− 1

2

∑N
i=1 gi(t).

For r = 1, . . . , R, write the observations in the rth sample as {Or
i : Or

i =

(qr
i , Y

r
i , δ

r
i ), i = 1, . . . , N}. Because there are m possible values for qr

i ’s, we can

divide these N observations into m groups Or
1, . . .O

r
m, where

Or
l =

{
Or

l,k : Or
l,k = (ul, Y

r
l,k, δ

r
l,k), k = 1, . . . , drl

}
,

and the Kaplan-Meier estimator in the respective group is denoted Ĥr
l (t) for l =

1, . . . , m.

From Breslow & Crowley 1974, we have the asymptotic expansion

√
drl {Ĥr

l (t)−Hl(t)} = (drl )
−1/2

dr
l∑

k=1

a(Or
l,k) + op(1),

where a(Or
l,k) is a function of the kth observation Or

l,k and E{a(Or
l,k)} = 0. Inserting

this relation into (4.8), we have
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N− 1

2

N∑

i=1

gi(t) = N− 1

2

m∑

l=1




√
d1lul

√
d1l {Ĥ1

l (t)−Hl(t)}
...

√
dRl ul

√
dRl {ĤR

l (t)−Hl(t)}




= N− 1

2

m∑

l=1




ul

∑d1
l

k=1 a(O
1
l,k)

...

ul

∑dR
l

k=1 a(O
R
l,k)



+ op(1)

= N− 1

2

N∑

i=1




q1
i a(O

1
i )

...

qR
i a(O

R
i )



+ op(1), (4)

where the first equality is obtained through rewriting the summation in (4.8), and

the last equality is obtained similarly. Viewing qr
i ’s as random quantities, we have

that N− 1

2

∑N
i=1 gi(t) is the average of independently identically distributed mean

zero random quantities hence it converges to a mean zero normal distribution with

variance denoted M.

Standard Taylor expansion of (3) then yields

√
N{F̂(t)− F(t)} → N{0,B−1C(B−1)T}

in distribution when N → ∞, where

B = E

{
∂gi(t)

∂FT(t)

}T

WE

{
∂gi(t)

∂FT(t)

}
,

C =

[
E

{
∂gi(t)

∂FT(t)

}T

W MWE

{
∂gi(t)

∂FT(t)

}]
.
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Similar derivation as in the proof of Theorem 4 can be used to show that the optimal

choice of the weight matrix is W = M−1, and the resulting variance is

[
E

{
∂gi(t)

∂FT(t)

}T

M−1E

{
∂gi(t)

∂FT(t)

}]−1

.
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