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ABSTRACT 

 

 Free L-tryptophan induces the expression of the Escherichia coli tna operon that 

specifies proteins necessary for catabolizing tryptophan.  Regulation is effected by a 

transcriptional attenuation mechanism requiring translational arrest at the TnaC 

regulatory leader peptide in the 5’ leader of the tna transcript.  Interactions between the 

TnaC nascent regulatory peptide and the elements constituting the ribosomal peptide exit 

tunnel are implicated in the inhibition of the translating ribosome by free L-tryptophan. 

 In this study, genetic and biochemical analyses were used to investigate the role 

of specific residues of the TnaC peptide and of 23S rRNA regions that line the ribosomal 

exit tunnel in TnaC-mediated ribosome arrest.  Highly conserved amino acids of TnaC 

and the 23S rRNA nucleotides predicted by structural models to interact with those 

TnaC residues were selected for analysis.  TnaC residues Trp-12, Asp-16, and Ile-19 and 

23S rRNA nucleotides A748-A752 as well as U2609 and A2058 are crucial for L-

tryptophan-induced TnaC-mediated ribosome arrest.  Interactions between the TnaC 

peptide and 23S rRNA residues are affected by mutations to either molecule.  These 

interactions, specifically between Ile-19 of TnaC and the 23S rRNA A2058 nucleotide, 

are required for L-tryptophan binding and/or action.  Finally, both cis-acting and trans-

acting mutations can suppress the loss-of-function TnaC D16E mutation, supporting the 

model that both the TnaC peptide and the ribosome exit tunnel are active participants in 

the inhibition of peptidyl-transferase activity in response to L-tryptophan.   
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 Taken together, the findings of this study suggest that the highly conserved 

nature of specific amino acids of TnaC can be explained by the requirement for 

interactions between these residues with 23S rRNA nucleotides within the ribosomal exit 

tunnel.  These interactions likely induce conformational changes within the TnaC 

peptide, the ribosomal exit tunnel or both that contribute to the formation of a free L-

tryptophan binding site, locking the peptidyl-transferase center in an inactive 

conformation resulting in ribosome arrest. 
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NOMENCLATURE 

 

β-gal   β-galactosidase 

Ery   erythromycin  

L-Trp   L-tryptophan 

PTC   peptidyl transferase center 

r-protein  ribosomal protein 

rRNA   ribosomal RNA 

SD   Shine-Dalgarno 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

OVERVIEW 

 The ribosome has the remarkable ability to synthesize all of the proteins that cells 

produce.  To accomplish this task, the ribosome must synthesize myriad of 

peptide/protein sequences without discrimination.  This requirement has historically led 

to the view that the ribosome was a nonspecific translational machine, without any 

regulatory function.  However, it has become evident that during translation the exit 

tunnel of the ribosome monitors the structure of the peptide being synthesized and can 

modulate translation in response to specific peptide sequences.  Peptide-dependent 

translational arrest, or ribosome stalling, is now known to control the expression of a 

number of bacterial and eukaryotic genes (1-11).   

  Ribosome arrest peptides (RAPs) are often encoded in the 5’-leader region of 

bacterial transcripts (termed leader peptides), and in upstream open reading frames 

(uORFs) in eukaryotic transcripts.  By stalling ribosomes during their own synthesis, 

such RAPs can regulate expression of downstream genes transcribed on the same 

transcript.  There are two classes of RAPs.  The first class of RAPs stalls the ribosome 

only when an inducing level of a required small molecule is present.  The bacterial 

leader peptides TnaC and ErmCL, and the eukaryotic Arginine Attenuator Peptide 

(AAP) and MAGDIS, fall into this class of RAPs (4,5,7,8).  The second class of RAPs 

contain intrinsic arrest sequences that mediate ribosome stalling without the requirement 
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for small molecules.  The bacterial leader peptides SecM and MifM, and the 

cytomegalovirus (CMV) gp48 uORF2 fall into the second class (10,12).  The bacterial 

leader peptides TnaC, ErmCL, SecM, and MifM, and their role in gene expression 

regulation, are the focus of this introduction and literature review.  TnaC will be 

reviewed because it is the focus of my research; ErmCL, SecM, and MifM regulation 

will be reviewed because the mechanism of TnaC-mediated ribosome arrest will be 

compared to the mechanism used by each of the other bacterial leader peptide systems in 

the discussion section of this dissertation. 

 My research has focused on understanding additional features of the molecular 

basis for TnaC-mediated L-tryptophan (L-Trp)-dependent ribosome arrest—how 

ribosome stalling is achieved through the interactions between the ribosomal exit tunnel, 

TnaC, and the amino acid, L-Trp.   Through genome-wide studies it has become evident 

that leader peptides and uORFs play more of a role in regulating gene expression than 

was first realized (13,14).  Furthermore, continuing studies have revealed the variety of 

regulatory features used by translating ribosomes, in regulating gene expression. As a 

result, understanding how RAPs function in concert with the ribosome to cause 

translational arrest is now more of a priority than it was ever before.  Therefore, the 

techniques used and the results of this study can be applied to understanding the arrest 

mechanisms of newly discovered RAPs, especially those implicated in human diseases 

and regulation of antibiotic resistance genes in bacteria.   
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PROKARYOTIC RIBOSOME 

 The prokaryotic 70S ribosome is a 2.3 MDa ribonucleoprotein complex, 

composed of a large (50S) subunit and the small (30S) subunit, their combined action 

functions to translate mRNA into proteins.  A total of 54 proteins and 3 ribosomal RNAs 

(rRNAs) make up the prokaryotic 70S ribosome, with 33 proteins and 2 rRNAs (23S and 

5S) in the 50S subunit and 21 proteins and 1 rRNA (16S) constituting the 30S subunit 

(15).  Ribosomal proteins are located primarily within the shell of the ribosome and 

serve a variety of functions such as aiding in the assembly and maintenance of the 

structure of the ribosome, lining the mRNA entry pore, and providing binding sites for 

translation factors, chaperones, and protein export machinery.  The rRNA forms most of 

the core of the ribosome, which contains the functional centers of the ribosome: the 

decoding center, the peptidyl-transferase center (PTC), and the exit tunnel.    

 During translation initiation, the functional 70S ribosome is formed by the 

binding of the 50S subunit to the pre-initiation complex (which is composed of the 30S 

subunit, initiation factors, and fMet-tRNA), bringing together at the interface the 

decoding center of the 30S subunit and PTC of the 50S subunit.  Within the decoding 

center, the 30S subunit contains three binding sites for tRNA: the aminoacyl site (A-

site), the peptidyl site (P-site), and the exit site (E-site).  The A-site accepts incoming 

aminoacylated-tRNA, the P-site contains tRNA with attached peptide chain (peptidyl-

tRNA), and the E-site holds deacylated-tRNA before it leaves the ribosome. The A-site 

is mainly tasked with maintaining the fidelity of translation by monitoring base-pairing 

between the codon of the mRNA and the anti-codon loop of the tRNA (16).  
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Specifically, the 16S rRNA nucleotides G530, A1492, and A1493 in this region are 

responsible for distinguishing between cognate and near-cognate tRNA, which is 

important for maintaining translational fidelity (17).  After the codon:anticodon 

interaction within the A-site of the decoding center, the PTC of the ribosome functions 

to catalyze peptide bond formation, transferring the growing nascent peptide from the 

peptidyl-tRNA to the amino acid of the newly bound aminoacyl-tRNA.  23S rRNA 

nucleotides within the PTC bind the acceptor arms of the incoming aminoacyl-tRNA and 

the peptidyl-tRNA, positioning them in a manner conducive to peptide bond formation 

(18).  Interactions among nucleotides A2602, U2584, and G2553 and the aminoacyl- and 

peptidyl-tRNAs influence peptide bond formation.  Through the concerted action of the 

two subunits at the interface—that is, decoding of the mRNA by the 30S subunit, 

peptide bond formation by the 50S subunit, and the involvement of both subunits in 

translocation—proteins are synthesized by adding one amino acid at a time.  

 All newly formed proteins must traverse the exit tunnel of the ribosome, which 

spans approximately 80-100 Å from the peptidyl-transferase center through the body of 

the large ribosomal subunit and opens at the opposite side (Figure 1) (19).  Along its 

length, the diameter of the exit tunnel varies between 10-20 Å (19).   The walls of the 

ribosome exit tunnel are composed almost entirely of 23S rRNA except at the 

constriction site where regions of ribosomal proteins (r-proteins) L4 and L22 protrude 

into the exit tunnel decreasing the diameter in this region (19,20).  The constriction site 

thus provides an opportunity for interactions between exit tunnel components and the 

nascent peptide.  Some proteins, instead of passing passively through the exit tunnel, 
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actively interact with and induce conformational changes within the exit tunnel as well 

as the PTC.  Therefore, the mechanism of how these interactions and conformational 

changes elicit translational arrest are subject to experimental analysis. 

 
 

 

Figure 1. Cryo-EM reconstruction of the TnaC•70S complex. (A and B) Cryo-EM reconstruction of the control 
E. coli 70S ribosome at 6.6 Å resolution, with small and large subunit colored yellow and blue, respectively. (C 
and D) The 5.8 Å resolution cryo-EM density of the TnaC•70S complex, with density for the TnaC-tRNA 
shown in green. (E) Isolated density for the TnaC-tRNA (green) and mRNA (red) from (C). The relative 
positions of ribosomal proteins L4 (purple), L22 (blue), and L23 (yellow) are indicated. (F) Fitting of molecular 
models for the TnaC-tRNAPro into the cryo-EM density from (E).  Figure was reprinted with permission from 
“Structural insight into nascent polypeptide chain-mediated translational stalling” by Birgit Seidelt, Axel C. 
Innis, Daniel N. Wilson, Marco, Gartmann, Jean-Paul Armache, Elizabeth Villa, Leohardo G. Trabuco, Thomas 
Becker, Thorsten Mielke, Klaus Schulten, Thomas A. Steitz, and Roland Beckman. 2009. Science, 326, 1412-
1415, Copyright [2009] by The American Association for the Advancement of Science. 
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TNAC 

 The tna operon of Escherichia coli contains a 319-nt transcribed leader region 

and two structural genes tnaA, which encodes tryptophanase, and tnaB, which encodes a 

tryptophan-specific permease (Figure 2) (21,22).  Tryptophanase is a catabolic enzyme 

that breaks down L-Trp into indole, pyruvate, and ammonia (23).  Pyruvate and 

ammonia can be used as carbon and nitrogen sources, respectively, which allow bacteria 

with a functional tna operon to use L-Trp as their sole carbon and nitrogen source.  

Indole is a volatile signaling molecule that has been shown to function in both quorum 

sensing and biofilm formation (24,25).  Recently, tryptophanase, through the production 

of indole, has been implicated in exotoxin-induced lethality caused by Enteropathogenic 

E.coli (26).  

 Transcription initiation of the tna operon is controlled by catabolite repression 

and is L-Trp-independent (27).  The CRP-cAMP complex is a positive acting element 

that is required for activation of catabolite sensitive promoters.  Glucose concentration 

and cAMP concentration in the cell are inversely related.  Therefore, when glucose, the 

preferred carbon source of E.coli, is limiting, cAMP levels increase.  Under limiting 

glucose, CRP-cAMP activates a number of catabolite sensitive promoters, including the 

promoter of the tna operon (27). 
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Figure 2. Arrangement of the E.coli tna operon.  The tna operon of E.coli consist of the coding region for 
the 24 amino acid leader peptide TnaC, followed by the two structural genes of the operon, tnaA and tnaB.  
The boxA site is contained within tnaC and is immediately followed by the rut site.  The 220 nucleotide 
transcribed region between tnaC and tnaA also contains several Rho-termination sites.  The boxA site, rut 
site, and Rho-termination sites all work in concert to terminate transcription in the leader region in the 
absence of inducing levels of tryptophan. 
   
 
 
 Continuation of transcription into the structural genes of the operon is regulated 

by L-Trp-dependent inhibition of Rho Factor-dependent transcription termination (1).  

Previous analysis of tna mRNA levels showed that in the absence of tryptophan 

transcription is terminated prematurely resulting in shorter transcripts that are rapidly 

degraded.  L-Trp decreases transcription termination and thus increases the presence of 

the read-through transcripts containing tnaA and tnaB coding regions (28,29).  The 

transcribed leader region contains important regulatory elements that work in concert to 

regulate the L-Trp-dependent increase of read-through transcription and subsequent 

translation of tnaA and tnaB.  The regulatory elements within the leader region include: 

(i) the coding region for the 24 amino acid leader peptide, tnaC, which functions as a 
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RAP, (ii) a presumed boxA site, (iii) a Rho utilization (rut) site, and (iv) transcription 

pause sites (30).  The boxA site, rut site, and transcription pause sites function together 

to reduce the expression of tnaA and tnaB in the absence of inducing levels of L-Trp by 

attenuating transcription.  In the presence of inducing levels of L-Trp, the TnaC leader 

peptide, through its RAP function, causes transcription to continue into tnaA and tnaB.   

  The specific functions of the last nine nucleotides of tnaC, which resemble a 

boxA site, which in bacteriophage λ early regions and rRNA operons prevents Rho-

dependent transcription termination through binding of Nus factors, remains obscure 

(31,32).  It was hypothesized that the presumed boxA sequence in the leader region of 

the tna operon might function similarly to decrease termination.  However, both in vivo 

and in vitro studies on the effect of NusA on anti-termination in the tna operon showed 

that NusA may actually increase Rho-dependent termination (32). Introduction of 

specific point mutations or deletion of the boxA sequence results in decreased 

termination and constitutive expression of tryptophanase (1,31,32).  However, whether 

this is a consequence of changes to the boxA sequence at the nucleotide level or a change 

in the amino acid sequence of TnaC has not been resolved.  Additionally, the roles of 

NusA and the identified boxA sequence in tna operon regulation remain unclear.   

 The functions of the other regulatory elements are clearer.  The rut site and the 

transcription pause sites in the intergenic region between tnaC and tnaA are important 

for Rho-dependent transcription termination (1,28,32).  Rho is an RNA-binding protein 

that is required for transcription termination by RNA polymerase at certain sites in the 

E.coli genome (33,34).  The observation that basal tryptophanase levels were increased 
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upon the addition of bicyclomycin, a Rho inhibitor, and the identification of a rut site 

immediately following tnaC suggested that Rho-dependent transcription termination 

reduced expression of tnaA and tnaB in the absence of inducing levels of L-Trp (32,35).  

Furthermore, Rho mutations and deletion of the rut site result in constitutive reporter 

operon expression (31,32,35).  Together, these results support the requirement for Rho-

dependent transcription termination in controlling basal level expression of the structural 

genes of the tna operon.  The transcription pauses sites in the intergenic region between 

tnaC and tnaA function to slow the progress of RNA polymerase.  This allows sufficient 

time for Rho to bind to the transcript and interact with RNA polymerase, which is 

required for transcription termination. 

 Translation of tnaC is required for L-Trp induction of tna operon expression.  In 

the absence of translation, when the start codon of tnaC is changed to a stop codon, L-

Trp induction of tna operon expression is abolished (28,36).  In the absence of inducing 

levels of L-Trp, translation termination at the tnaC stop codon occurs through RF2-

mediated cleavage of the peptidyl-tRNA.  The peptide is released from the ribosome and 

the ribosome dissociates from the mRNA (28).  After efficient translation termination at 

the tnaC stop codon, the rut site, which immediately follows the tnaC stop codon, is 

exposed and is available for Rho binding.  Rho-dependent transcription termination 

occurs in the leader region before transcription of the structural genes of the tna operon 

(Figure 3A) (31,37).  Therefore, in the absence of inducing levels of L-Trp, the 

expression of tnaA and tnaB is reduced.  In the presence of inducing levels of L-Trp, RF-

2 binding and/or action are inhibited causing the ribosome to stall at the stop codon of 
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tnaC.  The stalled ribosome blocks Rho’s access to the rut site decreasing transcription 

termination and increasing read-through transcription into the structural genes of the 

operon (Figure 3B) (31,37).  

The amino acid sequence of TnaC is important for free L-Trp-mediated induction 

(31).  Mutations in tnaC that alleviated L-Trp-mediated induction changed the amino 

acid sequence.  However, changes to the nucleotide sequence that did not change the 

amino acid sequence had little to no affect on L-Trp-mediated induction (31).  Genome-

wide comparisons of species that contain tnaC and mutational analysis of highly 

conserved residues identified W12, D16, I19, and P24 to be crucial for L-Trp-mediated 

induction of tna operon expression (31,32,38) (Figure 4).   These residues in 

combination with L-Trp either directly interfere with translation termination at the PTC 

or indirectly as a consequence of interactions within the ribosome exit tunnel. 
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Figure 3. Regulation of the E.coli tna operon by an attenuation of transcription mechanism.  (A) In the 
absence of inducing levels of L-Trp, after synthesis of TnaC, translation is efficiently terminated resulting 
in the dissociation of the nascent TnaC peptide and the ribosomal subunits from the transcript.  The 
dissociation of the ribosome from the transcript uncovers the rut-site.  The Rho transcription termination 
factor can then bind to the rut-site allowing Rho to interact with paused RNA polymerase in the intergenic 
region between tnaC and tnaA leading to premature transcription termination before the structural genes of 
the tna operon are transcribed.  (B) In the presence of inducing levels of L-Trp, TnaC translation 
termination is inhibited, leading to ribosome arrest at the end of the tnaC coding sequence.  The arrested 
ribosomes at the end of the tnaC sequence blocks Rho’s access to the rut-site allowing RNA polymerase 
to continue transcription into the structural genes of the tna operon, thus increasing the expression of tnaA 
and tnaB. 
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Figure 4. Alignment of TnaC sequences from different bacterial species.  Residues boxed in red are fully conserved across examined species and 
residues boxed in blue are semi-conserved.  Figure was reprinted with permission from “Conserved residues Asp16 and Pro24 of TnaC-tRNAPro 
participate in tryptophan induction of tna operon expression” by Luis R. Cruz-Vera and Charles Yanofsky. 2008. Journal of Bacteriology, 14, 4791-
4797, Copyright [2008] by American Society for Microbiology. 
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Although the P24 codon and the UGA stop codon are important at the nucleotide 

level as part of the boxA site for the termination of transcription in the absence of L-Trp, 

P24 and the UGA stop codon are also important for ribosome arrest in the presence of L-

Trp.  In species that possess a tnaC gene, P24 is highly conserved, and in E.coli, 

induction is reduced when changes are made to P24 (4,32,39).  Accumulation of TnaC-

tRNAPro is observed in response to L-Trp, consistent with the ribosome arrest occurring 

with P24 in the P-site and the stop codon in the A-site (29,40).  This finding suggests 

that Trp acts to inhibit translation termination by preventing the cleavage of the peptidyl-

tRNA by RF2.  The identity of the tnaC stop codon is also crucial, and controls both the 

basal and induced levels of tna operon expression (41).  The UGA stop codon is 

recognized by RF2, and in E.coli RF2 is less efficient at termination than RF1.  The 

inefficiency of RF2 may be important for allowing L-Trp binding and/or action before 

RF2 can function to terminate translation.  When the stop codon of tnaC is changed to 

UAA or UAG, both of which are recognized by RF1, translation terminates more 

efficiently and as a result both the basal and induced levels are impacted, resulting in 

less induction (41).  While P24 and the UGA stop codon are individually important, the 

combination of Pro-stop may function synergistically to strengthen the arrest.  The Pro-

stop combination was found to be the most common cause of stalling in laboratory 

derived peptide sequences, and although the choice of the Pro codon was not important, 

UGA was the most highly represented stop codon(42).  The Pro-stop combination may 

create a PTC conformation that is incompatible with RF2-mediated termination and in 

the case of TnaC, L-Trp may help to facilitate and/or prolong this conformation.   
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 The formation of the arrest-site within the PTC by the P24-stop combination 

means that at the time of arrest the other crucial peptide residues W12, D16, and I19 are 

within the exit tunnel (43).  W12 and D16 are the only two amino acids of TnaC that are 

absolutely conserved across all bacterial species that possess a tnaC gene; I19 along with 

P24 are the only two that are semi-conserved (39).  Changes to each of these positions 

have been examined (30,31,36,39).  TnaC has a single Trp codon at position 12, and its 

role in L-Trp induction of the tna operon was investigated due to the resemblance to the 

trp operon in regards to the components involved in regulation (36). Changing W12 to 

R, L, or a stop codon, abolishes induction (30,36).  Addition of excess arginine to 

cultures of the W12R strain did not restore induction, suggesting that induction is not 

simply due to the accumulation of high levels of the free amino acid encoded by codon 

12 (36).  However, induction was partially restored to the strain in which W12 was 

replaced by a stop codon upon addition of a suppressor tRNA that inserts Trp at position 

12 (36).  Taken together, these results suggest that the translation of W12 by tRNATrp is 

necessary for some aspect of L-Trp induction of reporter operon expression (36).  The 

observation that the conservative change D16E eliminated L-Trp induction led to further 

analysis to determine if D16 functions to prevent L-Trp binding and/or action or by 

some other mechanism (31,39).  Changes to D16 inhibited both the L-Trp-dependent 

accumulation of TnaC-tRNAPro and the ability of L-Trp to block the transfer of the 

nascent TnaC peptide to puromycin (39).  The results of these experiments suggest that 

D16 participates in the inhibition of peptidyl transferase activity resulting in translational 

arrest. The effect of changes to the only other semi-conserved residue besides P24, I19, 
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was also examined (31).  The non-conservative I19N and I19T changes eliminate 

induction; however, how I19 participates in causing the L-Trp-mediated ribosome arrest 

is not understood (39).  Structural analysis of the ribosome in the process of translating 

TnaC suggest that the critical residues implicated by the genetic and biochemical data 

may be interacting with residues in the ribosomal exit tunnel (43).   

 Stalling can be alleviated by mutations to specific 23S rRNA nucleotides and 

mutations altering r-proteins L4 and L22 within the exit tunnel, suggesting that 

interactions between exit tunnel components and specific amino acids of TnaC function 

to facilitate the arrest (44).   The loop of r-protein L22 protruding into the exit tunnel and 

23S rRNA nucleotides lining the wall of the exit tunnel on the same side as the L22 

protrusion appear to be the main components of the exit tunnel involved in TnaC-

mediated ribosome arrest.  Changes to r-protein L22 residues K90 and G91 or to 23S 

rRNA nucleotides A752, U2609, or the insertion of an additional adenine residue in the 

A750-754 region, reduce or eliminate reporter operon induction (44).  Many of these 

changes also inhibit TnaC-tRNAPro accumulation and allow puromycin release of TnaC 

in the presence of L-Trp, suggesting that these residues are important for hindering 

peptidyl-transferase activity in response to L-Trp (45).  Residues within the loop of r-

protein L4 that protrudes into the exit tunnel and/or residues of the 23S rRNA lining this 

side of the tunnel may play a minor role in L-Trp induction since changes to specific 

positions within these components slightly impact induction (44).       
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ERMCL 

 Erythromycin (Ery) and other macrolide antibiotics are bactericidal because their 

binding at the entrance of the ribosomal exit tunnel creates an obstruction leading to cell-

wide translational arrest (46).  The 2’-OH group of the deosamine sugar of Ery is 

responsible for binding within the exit tunnel through the formation of hydrogen bonds 

at three positions: N6 and N1 of A2058 and N6 of A2059 (46).  The two most common 

ribosomal resistance mechanisms against macrolide binding are the A2058G mutation at 

the Ery binding site and the N6 dimethylation of A2058 by the Ery resistance family of 

methylases (46,47).  In A2058G mutant ribosomes the presence of guanine instead of 

adenine at the Ery binding site affects the formation of the hydrogen bonds that are 

required for binding (48).  In mitochondrial and cytoplasmic rRNAs of eukaryotes, the 

position corresponding to E.coli A2058 is a guanine instead of an adenine, which 

explains the selectivity of macrolides to bacterial ribosomes (49).  The other mechanism 

of resistance, the dimethylation of N6 of A2058, would also prevent hydrogen bond 

formation, as well as cause a steric hindrance for binding due to the addition of the two 

bulky methyl groups (46).   

 The inducible ermC gene, which encodes a Ery resistance methylase, is preceded 

by the 19 amino acid long ORF that encodes the regulatory leader peptide ErmCL (7).  

The ermCL/ermC transcript adopts two different mRNA secondary structures, one in 

either the absence of ermCL translation or in the absence of Ery and the other 

conformation in the presence of subinhibitory concentrations of Ery (50).  The mRNA 

secondary structure adopted by the transcript in the absence of Ery contains two stem-
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loop structures, one containing the 3’-end of the ermCL coding sequence and the other 

containing the Shine Dalgarno (SD) sequence of ermC (50).  Therefore, in the absence 

of Ery, the occlusion of the ermC SD sequence prevents translation (Figure 5A).  In the 

presence of Ery, the ribosome stalls during translation of ermCL; the stalled ribosome 

prevents the first stem-loop from forming leading to the formation of an alternative 

stem-loop which does not occlude the ermC SD sequence (50).  Therefore, Ery-mediated 

ribosome arrest leads to activation of ermC (7) (Figure 5B).  

Since the binding of Ery within the ribosome exit tunnel causes cell-wide 

translational arrest, whether arrest during translation of ermCL was simply a 

consequence of the Ery-induced global translational arrest or if the ErmCL peptide itself 

has features that promote the arrest in response to Ery binding was analyzed (7,51).  The 

effect of changes to the ErmCL amino acid sequence was first analyzed by ErmCL-

mediated reporter gene induction in response to Ery and later by toeprinting assays 

(7,51).  The results of both studies showed that the 6IFVI9 sequence of ErmCL is 

required for ErmCL-mediated ribosome arrest in the response to Ery (7,51).  By 

toeprinting, I9 of ErmCL was identified as the arrest-site with the I9 codon in the P-site 

and the S10 codon in the A-site at the time of the stall (7).  The stalled ribosome was 

found to contain a 9 amino acid-long peptidyl-tRNAIle meaning that it was stalled after 

translocation and not trapped in the pre-translocation state, which would lead to the 10 

amino acid-long peptidyl-tRNASer (7).  The location of the peptidyl-tRNA in the P-site 

suggests that the ErmCL peptide, in combination with Ery, functions to inhibit the 
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Figure 5. The adoption of an alternative mRNA secondary structure in response to Ery-mediated ribosome 
arrest in the ermCL/ermC transcript induces the expression of ermC.  (A) In the absence of Ery, the 
ermCL/ermC transcript adopts a conformation with two stem-loop structures that is not conducive to ermC 
translation.  One stem-loop contains the 3’-end of the ermCL coding sequence and the other stem-loop 
contains the SD sequence of ermC.  The occlusion of the ermC SD sequence within the second stem-loop 
inhibits translation initiation.  (B) In the presence of Ery, ribosome arrest occurs during translation of 
ermCL.  The arrested ribosome prevents formation of the first stem-loop structure containing the 3’-end of 
ermCL, thus allowing an alternative stem-loop structure to form.  This alternative stem-loop does not 
occlude the ermC SD sequence relieving the inhibition of translation initiation at ermC.  SD = Shine-
Dalgarno. 
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catalysis of peptide bond formation.  This hypothesis was validated by the observation 

that Ery prevents the transfer of the stalled ErmCL peptide to puromycin (7). The 

observations that the stalled ErmCL peptide is much shorter than other RAPs and that 

the identity of residues 1-5 of ErmCL is not important for ribosome arrest, led to the 

questions of whether or not the length of the stalled peptide is important and if the length 

impacts the stall site.  Insertion or deletion of one or more amino acid within the N-

terminus resulted in less efficient stalling; however, the ribosome always arrested at the 

same site, with the I9 codon in the P-site (7).  These results suggest that although the 

sequence of the N-terminus is not important, the length is important so that the peptide 

can reach a specific place within the exit tunnel to cause the ribosome arrest. 

 Mutations to ribosomal components within the exit tunnel decrease Ery-

dependent stalling at the ermCL ORF, supporting the idea that ErmCL must reach a 

specific place in the exit tunnel to trigger ribosome arrest (5,7,52).  Mutations to three 

23S rRNA nucleotides close to the macrolide binding site drastically reduce both Ery-

dependent ErmCL-driven reporter gene expression in vivo and ribosome stalling in vitro 

as assessed by toeprinting, without affecting Ery binding (5,7,52).  23S rRNA nucleotide 

A2062 extends into the exit tunnel opposite the Ery binding site (20).  The narrowing of 

the exit tunnel entrance created by Ery binding and the A2062 protrusion is at an optimal 

location for interaction with the ErmCL IFVI stall sequence (7).  Therefore, mutations of 

A2062 may prohibit recognition of the ErmCL stall sequence by the ribosome, 

preventing Ery-mediated ribosome arrest.  Another 23S rRNA nucleotide located in the  
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Figure 6. Dual function of the antibiotic cofactor in programmed ribosome stalling.  (A) First, binding in 
the ribosome exit tunnel of a macrolide antibiotic (salmon mesh) ensures interaction of the ermCL stalling 
nascent peptide (cyan) with tunnel sensors, including U1782 and A2062 (blue).  (B and C) Second, the 
antibiotic is recognized as a part of the composite stalling signal in the tunnel. Specific sensors 
(experimentally identified C2610 and A2503 as well as suspected A2058 and A2059) (red) are positioned 
to interact specifically with the drug molecule. The nascent peptide (cyan) and antibiotic (salmon) are 
shown in surface representation.  (B) Side view of the peptide–antibiotic complex; (C) top view from the 
PTC down the tunnel.  This figure was reprinted with permission from “Role of antibiotic ligand in 
nascent peptide-dependent ribosome stalling” by Nora Vázquez-Laslop, Dorota Klepacki, Debbie C. 
Mulhearn, Haripriya Ramu, Olga Krasnykh, Scott Franzblau, and Alexander S. Mankin. 2011.Proceedings 
of the National Academy of Sciences of the United States of America, 108, 10496-10501, Copyright [2011] 
by The National Academy of Sciences of the United States of America. 
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vicinity of the Ery binding site at the entrance of the exit tunnel is the post-

transcriptionally modified nucleotide A2503 (5).  A2503 is dimethylated at the C2 

position by the RlmN methyltransferase (53).  This modification as well as an adenine at 

this position are both required for Ery-dependent stalling at the ermCL ORF (5).   The 

importance of the adenine at this position is likely due to the requirement for the 

dimethylation of this residue, while the addition of the two bulky methyl groups may 

facilitate the recognition of the ErmCL stall sequence by the ribosome, possibly through 

the positioning of ErmCL for interaction with A2062.  The 23S rRNA nucleotide C2610 

is also in close proximity to A2058, A2062, and A2503; and mutations to this residue 

affect Ery-induced ErmCL-mediated ribosome arrest (52).  The cladinose sugar of Ery 

that is required for ErmCL-mediated ribosome stalling is 3.5 Å away from C2610 (52).  

This distance allows direct interaction between the 3” methyl group of the cladinose 

sugar and the hydrophobic face of C2610 (Figure 6) (52).  The fact that the cladinose 

sugar of Ery is required for ErmCL-mediated ribosome arrest, the direct contact of the 

cladinose sugar with C2610, and the reduced stalling at the ermCL ORF in C2610 

mutant ribosomes, implicates C2610 as the Ery sensor that specifically responds to the 

properly positioned macrolide contributing to stalling at the ermCL ORF.  Besides 23S 

rRNA residues at the entrance of the exit tunnel, the loop of r-protein L22 at the 

constriction site may also be involved in ErmCL-mediated ribosome stalling in response 

to Ery (7).  A deletion of three amino acids (M82-R84) in the β-loop of r-protein L22 

reduced Ery-induced stalling at the ermCL ORF (7).  The N-terminus of the 9 amino 

acid-long extended ErmCL peptide is in close proximity to this loop of r-protein L22 in 
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the exit tunnel (7).  The requirement for the ErmCL peptide to reach a certain length for 

formation of the stalled complex and the proposed function of the constriction site as a 

discriminating gate are both consistent with the idea that r-protein L22 participates in 

ErmCL-mediated ribosome arrest.   

 

SECM 

 The cytosolic ATPase SecA functions to target nascent peptides that possess a 

signal sequence to the SecYEG translocation machinery and assist in their translocation 

across the inner membrane (54).  secA is translationally regulated by the leader peptide 

SecM, which is encoded upstream of secA in the same transcriptional unit (55).  SecM 

monitors the protein export competency of the cell, and expression of secA is induced 

when protein export is compromised.  SecM contains a signal sequence and a 

translational arrest domain, both of which are required for its regulatory activity (55).   

 The signal sequence of SecM and its recognition by SecA are required for 

translational repression of secA under conditions of excess secretion capacity (55,56).  

The cotranslational recognition of the SecM signal sequence by SecA results in the 

targeting of SecM to the SecYEG complex.  The translocation of SecM via the SecYEG 

complex results in SecM being pulled from the ribosome (55).  The 3’-end of secM is 

predicted to form a stem-loop structure with the region upstream of the secA coding 

sequence occluding the secA Shine-Dalgarno sequence (SD) when this region of secM is 

not translated (57,58).  Therefore, when the levels of SecA are sufficient to support the 

protein secretion needs of the cell, SecM is continually pulled from the ribosome, and 
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the sequestration of the secA SD sequence is maintained, resulting in repression of secA 

(Figure 7A).  When levels of SecA are insufficient to support protein translocation, the 

interaction of the SecM signal sequence with SecA is reduced, and translation of secM 

continues into the translational-arrest domain.  Translational arrest disrupts the stem-

loop structure, relieving the sequestration of the SD sequence of secA.  Other ribosomes 

can bind to the available SD sequence and initiate translation resulting in the induction 

of secA (Figure 7B) (57).  

The C-terminus of SecM contains the translational arrest domain.  The stall site 

was identified by inserting a TAA stop codon into various positions near the 3’-end of 

the secM coding sequence (12).  Insertion of a stop codon before or at the arrest site will 

result in translation termination at this position, relieving the ribosome arrest.  However, 

the ribosome arrest will be maintained if a stop codon is inserted after the arrest site.  

Using this method, P166 was identified as the arrest point (12).  Other amino acids in 

this region that are required for the arrest function were identified by alanine scanning 

mutagenesis (wild-type Ala residues were replaced by Ser) (12).  Amino acids were 

designated as essential if the change to alanine (or serine) resulted in a decreased 

precipitation of peptidyl-tRNA by cetyltrimethylammonium bromide (CTABr) and an 

increase in the production of full-length product.  CTABr precipitates nucleic acid, and 

is used to assess the accumulation of peptidyl-tRNA.  Peptidyl-tRNA accumulates as a 

result of translational arrest.  Also, insertions or deletions of one residue in the region 

severely compromised the arrest activity (12).  The translational arrest sequence was 

identified as FXXXXWIXXXXGIRAGP (12).  The residues that immediately precede  
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Figure 7. The leader peptide SecM contains an intrinsic ribosome arrest sequence, which regulates 
expression of the downstream gene, secA, based on whether the stall is alleviated or maintained.  (A) The 
secM/secA transcript is predicted to form a secondary structure, which occludes the SD sequence of secA.  
When levels of SecA are sufficient to support the protein secretion needs of the cell, SecM, which contains 
a secretion signal sequence, is continually pulled from the ribosome, alleviating ribosomal arrest.  Under 
these conditions the sequestration of the secA SD sequence within the stem-loop structure is maintained 
leading to repression of secA translation.  (B) When the levels of SecA are not sufficient to support the 
protein secretion needs of the cell, the ribosome stall at the secM ribosome arrest sequence is maintained 
because SecM is not pulled from the ribosome by the secretion machinery.  The stalled ribosome blocks 
the formation of the stem-loop structure, which results in induction of secA expression due to the 
availability of the SD for translation initiation.  SD = Shine-Dalgarno, SS = Secretion signal. 
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the stall site residue, P166, likely interacts with components of the ribosome within the 

PTC, and these interactions may contribute to the inhibition of translation elongation.  

Other residues further away from the stall site, namely F150, W155, and I156, are within 

the ribosome exit tunnel at the time of the stall.  Interactions between these residues and 

components of the ribosome exit tunnel may be necessary for translational arrest. 

 The SecM signal sequence is only required for regulated secA expression.  The 

translational arrest domain [SecM(121-166)] is necessary and sufficient for the arrest 

function (59). SecM that does not contain the signal sequence produces a prolonged 

translational arrest that is independent of the protein translocation capacity of the cell 

(59).  Since several of the critical residues of SecM would be within the ribosomal exit 

tunnel at the time of arrest, interactions between these residues of SecM and components 

of the ribosomal exit tunnel may play a role in the arrest.  Therefore, just as mutations to 

specific positions of SecM relieve ribosome arrest, mutations to key positions within the 

ribosomal exit tunnel may also relieve the arrest.  To test this possibility, the 

translational arrest domain fused to LacZα was used in a genetic screen for mutations in 

ribosomal components that relieve arrest (12).  Due to translational arrest and incomplete 

LacZα production, cells with the SecM(140-166)-LacZα construct will produce white 

colonies on plates containing 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal).  

After mutagenesis cells can be screened on X-gal plates for production of blue colonies.  

Blue colonies result from translational read-through leading to production of LacZα.  

 Two amino acids of r-protein L22 and two positions within the 23S rRNA were 

identified through the genetic screen to be crucial for translational arrest.  Changes to 
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G91 and A93 of r-protein L22 resulted in blue-colored colonies and increased 

production of full-length SecM(140-166)-LacZα (12).  Both of these amino acids are in 

the region of r-protein L22 that forms the constriction site within the ribosomal exit 

tunnel.  Changes to G91 and A93 would increase the size of the amino acid side chains 

leading to further constriction in this region, which may be responsible for the 

impairment of translational stalling.  Two mutations within the 23S rRNA were also 

found to alleviate SecM-mediated ribosome arrest.  The mutation A2058G and an 

insertion of an additional adenine in a region with five consecutive adenine residues 

(A749-A753 region) both result in blue-colored colonies and a substantial increase in the 

production of full-length SecM(140-166)-LacZα (12). A2058 is within the region of the 

23S rRNA that lines the wall of the narrowest part of the exit tunnel.  The A749-A753 

region also occupies the narrowest part but on the opposite side of the exit tunnel (12).  

Since most of the ribosomal exit tunnel is composed of 23S rRNA, interactions between 

specific regions of the 23S rRNA and residues of SecM may play an important role in 

SecM-mediated ribosome arrest.  The positioning of crucial residues of SecM within the 

exit tunnel at the time of the ribosome stall further supports this hypothesis.     

 

MIFM 

 The YidC/Oxa1/Alb3 family of proteins function to insert proteins into the 

membrane and ensure assembly of many of these proteins within the membrane (60).  

YidC can either function in association with the Sec machinery or can function 

independently for insertion of proteins that lack large extracellular domains (61).  
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Bacillus subtilis encodes two YidC homologs, spoIIIJ/yidC1, which is constitutively 

expressed and yqjG/yidC2, which is only expressed under conditions where SpoIIIJ 

activity is limited (62).  Although either SpoIIIJ or YidC2 alone can support viability, 

SpoIIIJ is the main contributor in the protein insertion pathway, while YidC2 functions 

as a backup system in the event that SpoIIIJ activity is compromised (8,62).   

 The observation that expression of yidC2 is SpoIIIJ-dependent suggests that 

B.subtilis has a mechanism to monitor SpoIIIJ activity and increase YidC2 levels for 

maintenance of YidC activity (8).  The yidC2 gene is transcribed as an operon, with the 

upstream gene yqz1/mifM.  The leader peptide MifM, encoded by the upstream gene 

regulates the expression of yidC2 at the level of translation (8).  MifM contains an N-

terminal transmembrane domain, which is a substrate for SpoIIIJ, and the C-terminal 

translational arrest domain, both of which are required for the regulated expression of 

yidC2 (8).   

 Interaction of MifM with SpoIIIJ is required to maintain the repression of yidC2 

(8).  The interaction of the N-terminal transmembrane domain of ribosome-associated 

MifM with SpoIIIJ results in insertion of MifM into the membrane, and as a 

consequence the nascent peptide is pulled from the ribosome in a mechanism similar to 

SecM (12). The 3’-end of the mifM coding sequence is predicted to form a stem-loop 

structure with the SD sequence of yidC2 (Figure 8A).  The mechanical pulling of the 

nascent peptide disassociates the ribosome from the peptide and the mRNA, preventing 

the translation of the 3’-end of mifM.  In the absence of mifM translation, the SD 

sequence of yidC2 remains sequestered in the stem-loop and unavailable for ribosome 
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binding for translation initiation of yidC2 (8).  Therefore, adequate membrane insertion 

by SpoIIIJ results in the repression of yidC2.  Under conditions in which membrane 

insertion is inhibited due to insufficient levels of SpoIIIJ, translation of mifM is 

attenuated resulting in induction of yidC2 (8).  When SpoIIIJ is unavailable to pull MifM 

from the ribosome, translation of MifM continues and ribosomal arrest disrupts the stem-

loop structure making the yidC2 SD sequence available for ribosome binding resulting in 

yidC2 translation (Figure 8B) (8).  

The mechanism of MifM-mediated ribosomal arrest is unique in that the 

ribosome stalls temporarily and consecutively at four or more codons (63).  In most 

other RAPs studied to date, the functional stall happens at only one specific location.  

The multi-site stalling observed with MifM is hypothesized to be important for 

prolonging the stall so that sufficient levels of YidC2 can be produced to support 

membrane insertion in the absence of SpoIIIJ (63).  The amino acid sequence, and not 

the nucleotide sequence of MifM, has been shown to be important for the stalling 

activity (8,63).  Specifically, a stretch of four consecutive negatively charged amino 

acids (termed the DEED motif) immediately upstream of the first major arrest site is 

required for MifM-mediated ribosomal arrest and induction of reporter gene expression.  

Decreasing the net negative charge of the DEED motif results in decreased induction.  

However, only the net negative charge, and not the identity of the amino acids, is 

important (63).  Besides the DEED motif, alanine-scanning mutagenesis was used to 

identify the minimal set of amino acids required for MifM-mediated ribosomal arrest.   
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Figure 8. The MifM leader peptide, encoded upstream of yidC2, responds to the level of SpoIIIJ and 
regulates expression of the downstream yidC2 gene.  (A) The secondary structure of the mifM/yidC2 
transcript occludes the SD sequence of yidC2 within a stem-loop structure, leading to the repression of 
yidC2.  Under conditions where SpoIIIJ levels are sufficient to support the insertion of proteins into the 
membrane, the N-terminus of ribosomally-associated MifM interacts with SpoIIIJ, which results in MifM 
being pulled from the ribosome and inserted into the.  The secondary structure of the mRNA is maintained 
and yidC2 expression is repressed.  (B) Under conditions where SpoIIIJ levels are limiting, ribosomally-
associated MifM is not pulled from the ribosome and thus translation continues into the ribosome arrest 
domain of mifM.  The arrested ribosome within the mifM coding sequence prevents the formation of the 
stem-loop structure; therefore, the SD sequence of yidC2 is available for translation initiation and the 
repression of yidC2 is relieved.  SD = Shine-Dalgarno, SS = Secretion signal. 
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An amino acid was designated as essential if the change to alanine both increased 

production of full length MifMΔTM (MifM that lacks transmembrane domain) and 

reduced yidC2 induction when SpoIIIJ is absent (8).   Based on this analysis, R69, I70, 

W73, I74, M80, and N81 were determined to be essential.  All of these amino acids are 

upstream of the translational arrest sites and are predicted to be within the ribosomal exit 

tunnel during arrest.  Therefore, the identity of the amino acids within the ribosomal exit 

tunnel and not those at the arrest sites are critical for MifM-mediated ribosomal arrest 

(8). 

 During the time of translational arrest the amino acids of MifM that are critical 

for the arrest function reside within the ribosomal exit tunnel.  Therefore, the interactions 

between these amino acids and components of the ribosomal exit tunnel may contribute 

to the arrest.  A duplication of seven amino acids in r-protein L22 (94SQINKRT100) that 

confers erythromycin resistance compromises both MifM translational arrest and yidC2 

induction (8).  This region of r-protein L22 forms part of the constriction site of the 

ribosomal exit tunnel, and mutations in this region are also know to affect SecM-, 

ErmCL-, and TnaC-mediated ribosomal arrest (7,12,44).  The constriction site, which is 

made up of regions of r-proteins L4 and L22 that protrude into the exit tunnel, is 

approximately 30 Å from the PTC (7).  The seven amino acid duplication within this 

region of r-protein L22 may disrupt an interaction between one or more of the critical 

MifM amino acids with specific residues of r-protein L22 that is required for the 

ribosomal arrest.   
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SUMMARY AND PURPOSE 

 The ribosome is tasked with the responsibility of synthesizing the entire array of 

proteins required by a cell.  In most cases, the ribosome synthesizes proteins without 

evident discrimination of the peptide sequence being translated; however, in some cases 

the ribosome clearly responds to specific peptide sequences by arresting translation 

during their synthesis.  The ribosome can either recognize intrinsic stall sequences 

within a RAP or respond to a stall site only in combination with a required small 

molecule.  This nascent peptide-dependent translational arrest makes the ribosome an 

active participant in the regulation of the gene(s) whose expression is controlled by the 

regulatory leader peptide. 

 The fact that features of both the RAP and the ribosome are required for the 

nascent peptide-dependent arrest suggests that the ribosome must be recognizing some 

feature of the RAP likely through interactions between the ribosomal components and 

the nascent peptide.  These interactions may be required for positioning the peptide such 

that other required interactions take place and/or for inducing conformational changes of 

the peptide, the ribosome, or both.  The changes induced by these interactions lead to 

ribosome arrest by interfering with peptidyl transferase activity.   

 Studying nascent peptide-mediated stalling of the ribosome in E.coli has several 

advantages over studying it in a eukaryotic system.  The mechanistic basis of 

fundamental translation processes is best understood in bacteria and thus tools are 

available in E.coli that facilitate the understanding of this mechanism of translational 

control. One available tool is the crystal structure of the prokaryotic ribosome, which 
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provides a high resolution structure of ribosomal components including the PTC and the 

ribosome exit tunnel (18).  Also, cryo-EM structures of the E.coli ribosome in the 

process of translation (43).  These structures provide insight into the interactions taking 

place between the nascent peptide and the ribosome and how these interactions lead to 

conformational changes that induce nascent peptide-dependent ribosome stalling.  Other 

advantages to using E.coli as a model include the availability of rRNA mutations that 

have differential effects on different stall-inducing nascent peptides and the fact that 

nascent peptide-mediated stalling activity can be reliably assessed by in vivo studies 

(7,42,44,64,65).   

The structural analysis of the ribosome in the process of translating TnaC has 

furthered our understanding of the relationship between essential residues of TnaC and 

exit tunnel components, predicting which interactions may be responsible for L-Trp-

mediated ribosome arrest (43).  However, biochemical data is still needed to assess the 

functionality of these interactions.  The goal of this study was to combine data from the 

structural analysis with the biochemical data from my dissertation research to develop a 

model for the molecular mechanism of L-Trp-dependent ribosome arrest during the 

synthesis of TnaC.  Mutational analyses of specific TnaC and 23S rRNA residues 

separately and in combination were used to confirm the interactions predicted by the 

structural analysis and understand the role of these interactions in ribosome arrest.   

 The cryo-EM model shows all four conserved residues of TnaC determined to be 

involved in L-Trp induction (W12, D16, I19, and P24) to be in close proximity to 

residues of the ribosome that are also important for L-Trp induction (43).  W12 of TnaC 
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is adjacent to r-protein L22 residue R92 and 23S rRNA residue A751, which is 

consistent with the UV-crosslinking data showing that TnaC residue K11 can be cross-

linked to 23S rRNA residue A750 (43,44).  23S rRNA nucleotides A752 and U2609 are 

predicted to form a base-pair interaction and the cryo-EM model shows D16 of TnaC 

contacting these two positions (43,66).  The ribosomal contact partner of I19 is predicted 

to be A2058 and A2059 of the 23S rRNA; however, due to limited biochemical data on 

these residues, the role that this interaction may play on L-Trp induction is unknown 

(43).  The PTC nucleotide U2585 is predicted to interact with P24 of TnaC and, in  

the presence of TnaC, U2585 and A2602 adopt conformations that are incompatible with 

release factor binding (43).  Since the ribosome stalls as a result of the inhibition of 

peptidyl transferase activity, unexpectedly most of the crucial residues of TnaC and of 

ribosomal components are in the exit tunnel and not at the PTC.  Therefore, 

understanding how nascent peptide-exit tunnel interactions, in combination with free L-

Trp, contribute to translational arrest was crucial for developing a model of the 

molecular mechanism of TnaC-mediated L-Trp induction of ribosome arrest.  
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CHAPTER II 

CRITICAL ELEMENTS THAT MAINTAIN THE INTERACTIONS BETWEEN THE 

REGULATORY TNAC PEPTIDE AND THE RIBOSOME EXIT TUNNEL 

RESPONSIBLE FOR TRP INHIBITION OF RIBOSOME FUNCTION∗ 

 

INTRODUCTION 

 Expression of the E. coli tryptophanase operon, tnaCAB, is induced in response 

to L-tryptophan (L-Trp) by the action of the TnaC nascent peptide.  TnaC stalls the 

ribosomes that have produced it in response to high L-Trp; the stalled ribosomes inhibit 

transcription attenuation, resulting in increased operon expression (1).  The tna operon 

consists of a leader regulatory region, which includes tnaC, and two downstream 

structural genes, tnaA and tnaB. tnaA encodes tryptophanase, an enzyme involved in the 

degradation of L-Trp to obtain indole, energy and ammonia (21).  In addition to its roles 

in biosynthetic pathways, the indole molecule is used in bacteria as a signal in regulating 

biofilm formation and quorum sensing (24).  tnaB encodes a Trp permease for Trp 

transport into the cell (21).  tnaC specifies the 24- residue TnaC regulatory leader 

peptide. Immediately downstream of tnaC there is a non-coding segment which contains 

Rho-dependent terminator sequences (21).  

                                                

*Reprinted with permission from “Crucial elements that maintain the interactions between the regulatory 
TnaC and the ribosome exit tunnel responsible for Trp inhibition of ribosome function” by Allyson K. 
Martínez, Nitin H. Shirole, Shino Murakami, Michael J. Benedik, Matthew S. Sachs, and Luis R. Cruz-
Vera, 2012. Nucleic Acids Research, 40(5), 2247-2257, Copyright [2012] by Oxford Journals 
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Transcription initiation of the tna operon is regulated by catabolite repression 

(67).  Despite transcription activation by CAP/cAMP, transcription of the tna operon is 

terminated prematurely at the Rho-dependent termination sequences when low 

concentrations of L-Trp are present in the growth media (1).  However, in the presence 

of high L-Trp, transcription of the tna operon is not attenuated at those sites and mRNA 

containing tnaA and tnaB is produced (1).  Hydrolysis of the terminal TnaC-tRNAPro 

peptidyl-tRNA by the action of RF-2 protein during translation termination is inhibited 

by L-Trp, causing the translating ribosome to transiently stall at the tnaC stop codon 

(29,40).  The stalled ribosome masks the binding sequences for the Rho termination-

factor; the absence of interaction of Rho with the nascent mRNA allows transcription to 

continue into the tnaA and tnaB structural genes (32,40).  

Analyses of the primary structure of the TnaC peptide from many bacterial 

species have revealed that the Trp residue at the 12th position (W12), an aspartic acid 

residue at the 16th position (D16), and a proline residue at the last position (P24) of E. 

coli TnaC are highly conserved (38,39).  These conserved TnaC residues are essential 

for TnaC-mediated L-Trp-induction (39).  Changing these amino acid residues abolishes 

L-Trp induction in vivo, the ability of L-Trp to inhibit the hydrolysis induced by RF-2, 

and L-Trp-inhibition of TnaC-tRNAPro cleavage induced by puromycin (36,39).  The 

relative position of these conserved residues in the TnaC peptide is important as well: 

insertion or deletion of single amino acids between the W12 and the P24 residues 

abolishes L-Trp induction (68).  These data indicate that the nature and positions of the 
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conserved TnaC residues are important for the nascent peptide’s regulatory activity at 

the level of translation.  

Nascent peptides mediating ribosome stalling are widespread in the microbial 

world (69).  Some notable examples are SecM from the secMA operon of E. coli, MifM 

that regulates expression of the yidC2 gene of Bacillus subtilis, ErmCL from the erm 

operon of erythromycin resistant bacteria, and the evolutionary conserved fungal 

arginine attenuator peptide (AAP) (7,8,12,70,71).  As is the case for TnaC, these 

regulatory peptides contain amino acid residues whose nature and relative positions are 

essential for stalling activity (7,8,12,72).  

Changes in the large subunit 23S rRNA sequence or in ribosomal protein L22 

affect L-Trp induction.  Insertion of an additional adenine nucleotide in the G745-A752 

region (designated +A751ins), or the substitutions U2609C, A752C and A752U in the 

23S rRNA, abolish the action of L-Trp to induce TnaC-mediated ribosome stalling (44).  

Replacements of the K90 residue of ribosomal protein L22 also affect L-Trp induction 

(44).  These ribosomal components are located in the narrowest region of the ribosome 

exit tunnel (73).  Cryo-EM structures of ribosomes containing TnaC-tRNAPro molecules 

suggest that W12 and D16 of TnaC are in close proximity to the K90 and R92 residues 

of ribosomal protein L22, and to 23S rRNA nucleotides A751-752 (43).  Cross linking 

analysis confirms that the W12 residue of TnaC is in close proximity to the G745-A752 

region of the 23S rRNA (44).  The cryo-EM structure also indicates that the P24 residue 

of the TnaC peptide is close to the peptidyl transferase center (PTC) nucleotide U2585, 
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and adjacent to the nucleotides G2583 and U2584, mutations in the two latter positions 

are tolerated but affect L-Trp induction (43,64).  

The evidence suggests that essential TnaC residues interact with components of 

the ribosomal exit tunnel, and that these interactions induce structural changes that are 

transferred from the TnaC-exit tunnel contact points to the PTC, resulting in inhibition 

of peptidyltransferase activity (68,74).  The cryo-EM model suggests three possible 

routes where structural changes could be induced and transferred from the ribosomal exit 

tunnel to the PTC.  In one possible route, the structural changes are transmitted through 

ribosomal protein L4 and the A2058-2059:2060-2062:2503:2451 23S rRNA nucleotides 

(43).  However, changes at most of these positions do not affect L-Trp induction, 

although they affect the action of the SecM and ErmCL nascent peptides (5,44).  A 

second possible route considers transmission of structural changes through the nascent 

TnaC peptide chain.  Finally, in the third proposed route, transmission of structural 

changes occurs through the interactions observed between L22 and the A751-

A752:U2609:U1781-U1782:U2586-U2585 23S rRNA nucleotides (43).  This last route 

contains mostly those nucleotides in which changes are known from experimental data 

to affect L-Trp induction.  

The fact that some elements of the ribosome exit tunnel are important for the 

function of the nascent TnaC peptide suggests that they may interact with this regulatory 

peptide.  The proximity of these elements to the nascent peptide observed in the cryo-

EM structure is also consistent with this idea (43).  However, changes in these elements 

could also affect the structure of the ribosome exit tunnel in a manner that indirectly 
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affects interactions between the exit tunnel and TnaC.  In this study, we show that the 

presence of the nascent TnaC peptide within the ribosome induces protection against 

chemical methylation of exit tunnel 23S rRNA nucleotide U2609.  We observed that 

mutational changes in the nucleotides constituting the G745-A752 region of the 23S 

rRNA, and in conserved TnaC residues, that abolish TnaC-mediated regulation also 

reduced the methylation protection of U2609 conferred by wild type nascent TnaC.  

These results indicate that changes in the G745-A752 and U2609 regions greatly 

reduced the capacity of L-Trp and TnaC to inhibit ribosome function. The proximity of 

these regions of the ribosome to TnaC suggests that functional interactions are impaired 

by these mutational changes. 

 

MATERIALS AND METHODS 

Bacterial strains, plasmids and mutagenesis procedures  

 The E. coli K-12 strains, and plasmids containing selected genes used in this 

study, are listed in Table 1.  Strains with replacements of the 23S rRNA gene were 

generated using plasmids pNK, and pK4-16 (Selwyn Quan and Catherine Squires, 

personal communication), which contain the rrnB operon (44).  Replacements of tnaC 

sequences were generated in the pGF2500 plasmid that contains the tna promoter, a 

wild-type tnaC gene, the tna intercistronic region and a rpoBC terminator (29,44).  

Mutations in these genes were made using the QuikChange Lightning Site-Directed 

Mutagenesis kit (Agilent Technologies).  Complementary primers were designed with 

the desired replacements flanked by ~10–15 nucleotides of the wild-type sequences on 
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each side of the change.  The mutagenesis reactions were performed as recommended by 

the manufacturer in 50 µL final volume with 10-100 ng of plasmid and 10 pmol of each 

complementary primer.  The plasmids that contained the desired replacements were 

confirmed by sequencing using the following primer: (5’-

ACGGAATTCCTTGCCGAGTTTGACTC-3’) which is complementary to the 3’-end of 

the rpoBC region.  

 
 
Table 1. E. coli bacterial strains and plasmids used in this work. 

Strains Relevant genotype Source 
SR-14 Δ7 rrn ΔlacZYA ΔrecA λ tnap tnaC(tnaA’-

‘lacZYA) (prrnC-sacB, ptRNA67) 
(44) 

SQ351 MG1655 Δ7 rrn Δ(lacZYA) (pKK3535, 
ptRNA67) 

(44) 

AW122 Derived from SQ351 (prrnC-sacB, ptRNA67) This work 
AW182 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-

‘lacZYA) (prrnC-sacB, ptRNA67) 
This work 

AW216 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNK, ptRNA67) 

This work 

AW218 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pKKU2609C, ptRNA67) 

This work 

AW221 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(W12R)(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

This work 

AW227 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNH153, ptRNA67) 

This work 

AW326 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(K18A)(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

This work 

AW600 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(D16A)(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

This work 
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Table 1. Continued. 

Plasmids Description Source 
pNK Wild-type rrnB operon; Ampr, derived from 

ColE1. 
(12) 

pNH153 Derived from pNK; has an insertion at position 
751 in the 23S rRNA gene 

(12) 

pKKU2609C Derived from pNK; has a T-to-C replacement at 
position 2609 in the 23S rRNA gene 

(75) 

pNKA752C Derived from pNK; has a A-to-C replacement at 
position 752 in the 23S rRNA gene 

(45) 

pK4-16 Wild-type rrnB operon; Kmr, derived from 
SC101. 

Quan and 
Squires, 
personal 

communication 
prrnC-sacB Wild type rrnC gene and a sacB gene, derived 

from SC101. 
(76) 

pKK3535 Wild type rrnB operon, derived from pBR322. (77) 
ptRNA67 tRNA encoding plasmid. (76) 
pGF2500 Wild type tnaC gene with the rpoBC terminator, 

derived from pUC18. 
(29) 

pAW137 Has the tnaptnaC(∆N2-H22) with BsaI-XhoI-BsaI 
linker-tna'-'lacZYA cloning reporter gene, derived 

from pACYC184. 

This work 

 
 

Creation of the tnaA’-‘lacZ reporter gene at the att7 site and tnaA’-’lacZ induction 

experiments 

 A DNA fragment containing the tnap tnaC(tnaA’-‘lacZY) reporter gene was 

amplified from the chromosome of the SVS1144 strain using the primers 5’-

CTGGTCGACGCTTCTGTATTGGTAAGTAACCGCGC-3’ and 5’-

CTAGTCGACGCTTAAGCGACTTCATTCACCTGACG-3’ (1).  These primers 

amplify a DNA fragment containing 262 bp upstream of the start codon of tnaC through 

2 bp downstream of the start codon of lacY.  These elements are flanked by SalI sites on 
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both ends of the PCR product.  This DNA fragment was cloned in the SalI site of 

pACYC184 plasmid.  Inverse PCR products obtained with the primers 5’-

CTGCTCGAGGGTCTCACGCCCTTGAATTGCCCTTCTGTAGC-3’ and 5’-

CTACTCGAGGGTCTCACATAATGCACTTATCCTCGCAAGAC-3’ containing XhoI 

restriction sites, were digested with XhoI enzyme and ligated.  This procedure eliminates 

the tnaC region that specifies the 2nd through the 22nd codons. The plasmid now contains 

a tnaC gene with an internal deletion marked with a BsaI-XhoI-BsaI cloning site, which 

allows direct insertion of synthetic oligonucleotides containing wild-type and mutated 

tnaC coding sequences [tnaC(∆N2-H22) BsaI-XhoI-BsaI linker-tnaA’].  To avoid 

potential complications arising from the inverse PCR, the new cloning construct was 

moved into pRS552 plasmid as a BamHI fragment, to generate the tnaC(∆N2-H22)-

tnaA’-‘lacZYA reporter gene that later was transfer back into pACYC184, generating 

plasmid pAW137 (1).  Annealed oligonucleotides were used to insert either wild-type or 

mutant tnaC sequence into pAW137.  5 µl of each 100 mM complementary 

oligonucleotides were mixed in a microcentrifuge tube, incubated in boiling water for 2 

min and allowed to cool to room temperature.  Annealed oligonucleotides were ligated 

to BsaI digested pAW137, creating derivatives containing wild-type or mutant tnaC 

sequences.  The SalI DNA fragments from these pAW137 derivatives were cloned into 

the XhoI site of pGRG36 plasmid (78).  pGRG36 encodes the Tn7 transposition 

machinery which allows site-specific transposition at the att7 locus of E. coli (78).  Two 

different orientations of the wild type or mutant tnaC-tnaA’-‘lacZYA reporter genes 

result from this cloning method.  Strains containing one of each orientation were 
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obtained for every construct.  The plasmids derived from pGRG36 were transformed 

into chemical-competent AW122 cells.  Transformants were selected on Luria-Bertani 

(LB) plates containing 100 µg/ml ampicillin at 32°C.  The transposition protocol to 

move tnaC-tnaA’-‘lacZYA reporters to the chromosomal att7 site was carried out as 

described (78).  Transposition was verified by replica plating colonies on LB plates 

containing, or lacking, 100 µg/ml ampicillin.  The sequence of the region from tnap 

through the tnaA’-‘lacZ junction of the att7 integrants was confirmed by using PCR to 

amplify the att7 locus using the primers 5’-

GCGGCGACAACAGTTGCGACGGTGGTACG-3’ and 5’-

GCGGTTTTCTCCGGCGCGTAAAAATGCGCTCAGG-3’ followed by sequencing of 

the resulting fragment.  To analyze the expression of the tnaA’-‘lacZ reporter gene we 

performed β-Gal assays as previously(79). β-Gal activity is reported in Miller units. 

 

Puromycin assay  

 Stalled ribosome complexes were isolated using pGF2500 variants as previously 

indicated (44).  10 µL of isolated stalled complexes dissolved in buffer A (35 mM Tris-

acetate, pH 8.0, 10 mM magnesium acetate, 175 mM potassium acetate, 10 mM 

ammonium acetate and 1 mM DTT) were mixed with 1 µl of water or 1 µl of 20 mM L-

Trp.  The mixtures then were mixed with 1 µl of water or 1 µl of 0.2 mM puromycin, 

and these mixtures were then incubated for 10 min at room temperature.  The reactions 

were stopped by adding an equal volume of loading buffer (100 mM Tris-HCl, pH 6.8, 

24% (v/v) glycerol, 8% sodium dodecyl sulfate, 4 % (v/v) β-mercaptoethanol and 0.4 
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mg/ mL bromophenol blue).  The products of this reaction were resolved using 10% 

Tris-tricine polyacrylamide gels.  The gels were dried by vacuum and then exposed to X-

ray films. 

 

Methylation protection and primer extension assays  

 50 µL of either 50S ribosomal subunits (40 A260), obtained as previously 

indicated, or isolated stalled complexes dissolved in buffer A were mixed with either 2 

µL of dimethyl sulfate (DMS, 1:6 dilution in ethanol) or 50 µL of 100mg/mL 1-

cyclohexyl-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate (CMCT) 

solution (44).  Mixtures containing DMS or CMCT were incubated at room temperature 

for 10 min or 30 min, respectively.  DMS reactions were stopped by adding 25 µL of a 

solution containing 1.4 M of β-mercaptoethanol and 1 M Tris-HCl (pH 8.0).  The final 

mixtures were diluted by adding 10mM EDTA in DEPC treated water.  The methylated 

rRNA was obtained by standard phenol chloroform extractions.  Integrity of the 

extracted rRNAs was verified on 2% agarose gels.  RNA was quantified using UV 

spectroscopy at A260.  Primer extension analysis was performed to detect the methylation 

of nucleotides in the 23S rRNA as indicated previously (44).  
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RESULTS 

Nucleotide changes in the ribosome exit tunnel that affect TnaC/L-Trp inhibition of 

the ribosome function 

 Mutations in 23S rRNA nucleotides that constituted the ribosome exit tunnel 

reduce TnaC-mediated operon induction in response to L-Trp (44,64).  We used 

bacterial strains in which the seven rRNA operons were deleted from their chromosomal 

locations to analyze how A752C, U2609C and +A751 insertion mutations in the 23S 

rRNA affected the inhibition of the ribosome function by L-Trp (44).  These strains 

contained a homogeneous population of mutant ribosomes (Figure 9).  To determine the 

effect of ribosomal mutations on TnaC-mediated regulation in response to L-Trp and L-

Trp-analogs, we used bacteria that contained a tnaC tnaA’-‘lacZ reporter gene (44).  We 

tested the effects of these ribosomal mutations on the expression of the reporter gene in 

vivo using several concentrations of 1-methyl-L-Trp (1MT).  This L-Trp analog induces 

operon expression but is not cleaved by tryptophanase, and thus is a more efficient 

inducer in vivo than L-Trp (80).  The results are summarized in Figure 10 (primary data 

are shown in Table 2).  Based on the induction curve, 40 µM of 1MT would be sufficient 

for maximal expression of the reporter gene in cells containing wild-type ribosomes 

(Figure 10, closed circles).  For cells containing ribosomes with the +A751ins mutation, 

even at 100 µM 1MT operon induction was 12-fold lower than cells containing wild-

type ribosomes (Figure 10, compare open squares with closed circles).  Similar results 

were observed with cells containing A752C mutant ribosomes, in which 100 µM 1MT 
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induced 25-fold less operon expression than in wild type cells (Figure 10, compare open 

triangles with closed circles).  These results indicated that +A751ins or A752C 

ribosomes allowed at most, slight induction of the tna reporter operon at high 

concentrations of 1MT (Figure 10, inset).  Finally, we observed in cells containing 

ribosomes with the U2609C replacement that expression of the reporter gene was not 

induced by the addition of any amount of 1MT tested (Figure 10, open circles and data 

not shown).  This result indicated that the U2609C replacement completely abolished 

TnaC-mediated regulation in response to 1MT.  In summary, we observed differences in 

the way that the +A751ins, A752C and the U2609C mutations affected TnaC-mediated 

regulation. 
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Figure 9. Ribosomes were isolated from bacterial cells containing plasmids expressing the indicated 23S 
rRNAs.  (A) The presence of +A751ins 23S rRNA in the ribosomes could be detected using primer 
extension assays (Materials and Methods).  cDNA synthesis on 23S rRNA template obtained from wild-
type ribosomes is usually stopped by the natural methylated G745 nucleotide (MG745)(81).   23S rRNA 
were extracted from the isolated ribosomes and used to perform primer extension assays with [32P]-labeled 
oligonucleotides complementary to nucleotides 821-838 of 23S rRNA.  The final products of the reaction 
were resolved using 6% urea-polyacrylamide gels.  The position of a significant stall of cDNA synthesis is 
indicated with arrows.  (B) Isolated ribosomes were used to perform methylation protection assays 
(Materials and Methods).  Ribosomes were exposed (+) or not (-) to the alkylating agent, CMCT, to 
methylate water-accessible uridines.  23S rRNAs were extracted and used to perform primer extension 
assays as indicated in part (A).  Primer extension was performed using [32P]-labeled oligonucleotides 
indicated in part (A).  Nucleotides methylated in the presence of DMS are indicated. 
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Figure 10. Mutations of 23S rRNA nucleotides that affect tna operon expression.  Bacterial cells 
expressing the indicated 23S rRNA alleles in the ∆7 rrn strain were used to analyze expression of β-
galactosidase from a tnaC-tnaA’-‘lacZ protein fusion. Bacterial cultures were grown in minimal medium 
containing 0.2% glycerol, 0.05% acid-hydrolyzed casein, 0.01% vitamin B1, 100µg/ml ampicillin, and 
variable amounts of 1-methyl-L-Trp as an inducer. The figure on the right shows an amplification of the 
plots between the induction values 0 to 4. 
 
 

Table 2. Primary data for results shown in Figure 9. 
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aCultures of AW182 derived strains (∆7 rrn) obtained by replacement of the prrnC-sacB plasmid by pNK 
(AW216), pNH2609 (AW218), pNH153 (AW227), or pNK-A752C (AW839) were grown in minimal 
medium plus 0.2% glycerol, 0.05% acid-hydrolyzed casein, 0.01% vitamin B1 and 100µg/ml ampicillin 
and variable amounts of 1-methyl-L-Trp as an inducer. β-Galactosidase assays were performed in four 
independent experiments. 
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Nucleotide residues of the ribosome exit tunnel that are protected from methylation 

by the presence of nascent TnaC 

 The action of L-Trp on tna operon expression requires the presence of the TnaC 

nascent peptide within the ribosome (29).  We performed methylation protection assays 

to determine if the nascent TnaC peptide protects 23S rRNA nucleotides A751, A752 

and U2609 from chemical methylation (Materials and Methods).  These nucleotide 

residues are water accessible in vacant ribosomes (ribosomes not engaged in polypeptide 

synthesis), and can therefore be methylated by alkylating agents (82).  We also examine 

methylation of U2585, which forms part of the PTC (20).  The alkylating agent CMCT 

induced methylation of U2585 and U2609 in vacant wild-type and +A751ins mutant 

ribosomes (Figure 11A compare lane 2 with lane 1, or lane 4 with lane 3).  We observed 

that the U2585 methylation level was slightly less (30 ± 5%, n=4) in vacant +A751ins 

ribosomes than vacant wild-type ribosomes (Figure 11A, compare lane 4 with lane 2).  

We also observed than the methylation level of U2609 was slightly higher (25 ± 3%, 

n=4) in vacant +A751ins ribosomes than in wild-type ribosomes (Figure 11A, compare 

lane 4 with lane 2).  The A752C mutant ribosomes, like the +A751ins ribosomes, 

differed from the wild-type.  Vacant A752C ribosomes showed slightly reduced 

methylation (32 ± 5%, n=4) of U2585 and an increased methylation (50 ± 3%, n=4) of 

U2609 compared to wild-type ribosomes (Figure 10C, compare lanes 4 with lane 2).  L-

Trp did not affect methylation levels in vacant ribosomes (Figure 12).  These 

observations suggested that there were differences in the architecture of the ribosome  
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Figure 11. 23S rRNA nucleotides that are protected by the TnaC nascent peptide. (A, C and E) 
Methylation protection assays were performed with ribosomes containing the indicated 23S rRNA alleles. 
Ribosomes translating (+) or not (-) messengers containing the tnaC gene sequences were analyzed in a 
buffer containing (+) or not (-) Trp. The ribosomes were exposed (+) or not (-) to the indicated alkylating 
agents. These assays were performed with [32P]-labeled oligonucleotides complementary to nucleotides 
2654-2674 of 23S rRNA (A and C), and complementary to nucleotides 821-838 of 23S rRNA for (E).  
Nucleotides methylated are indicated. cDNA synthesis on 23S rRNA template obtained from wild-type 
ribosomes is usually stopped by the natural methylated G745 nucleotide (MG745) (E) (83). (B, D and F) 
Northern blot assays performed with the ribosomes indicated above. The ribosomal components were 
resolved in 10% denaturing tris-tricine polyacrylamide gels. The presence of the TnaC-tRNAPro in the 
complexes was determined using a [32P]-labeled oligonucleotide complementary to the anti-codon region 
of the tRNAPro1 (84). 
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Figure 12. Methylation patterns of wild type ribosomes exposed to Trp.  Wild type ribosomes not engaged 
in translation (vacant) were incubated in the presence (+) or absence (-) of Trp at 37°C for 10 minutes.  
The final mixes were exposed (+) or not (-) to alkylating agents either DMS or CMCT, the 23S rRNA was 
extracted and primer extensions were performed as indicated in the Materials and Methods.  Primer 
extensions were performed using [32P]-labeled oligodeoxynucleotides which reveal methylation of 
nucleotides corresponding to indicated regions.  For 620-820 region we used the oligo 5’-
GGCGCTACCTAAATAGCT-3’ (44); for 1900-2100 region we used the oligo 5’-
CTATCCTACACTCAAGGCTC-3’; and for 2450-2650 region we used the oligo 5’-
TCCGGTCCTCTCGTACT-3’ (84). 
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exit tunnel between vacant +A751ins or A752C mutant ribosomes and wild-type 

ribosomes. 

The methylation levels of U2585 and U2609 were reduced when the wild-type 

ribosomes contained TnaC-tRNAPro.  This reduction occurred independent of the 

presence of L-Trp (Figure 11A, compare lanes 5 or 6 with lane 2).  The methylation of 

the U2609 nucleotide was substantially reduced (70 ± 3%, n=4) (Figure 11A, compare 

lanes 5 or 6 with lane 2) when TnaC-tRNAPro was in the ribosome.  These results 

indicated that the presence of the TnaC-tRNAPro within the wild-type ribosome reduced 

the accessibility of the U2585 and U2609 nucleotides with a greater effect on U2609 

accessibility.  In contrast, we did not observe any change in the methylation level of 

U2585 or U2609 in +A751ins (Figure 11A, compare lanes 7 or 8 with lane 4) or A752C 

(Figure 11C, compare lanes 7 or 8 with lanes 5 or 6) mutant ribosomes containing TnaC-

tRNAPro.  These results indicate that TnaC-tRNAPro did not protect the U2585 and 

U2609 nucleotides in the +A751ins and A752C mutant ribosomes.  These differences 

did not reflect changes in the capacity of mutant ribosomes to synthesize TnaC-tRNAPro 

as determined by Northern blots (Figure 11B and D). 

Finally, we analyzed the U2609C mutant ribosomes.  We focused our efforts on 

determining the DMS-accessibility of the A751 and A752 nucleotides because changes 

in these nucleotides affected the CMCT-accessibility of the U2609 nucleotide (see 

above).  The water soluble alkylating agent DMS methylates A751 and A752 in vacant 

wild-type and U2609C mutant ribosomes (Figure 11E, compare lane 2 or lane 3 with 

lane 1) (82).  The methylation levels of A751 and A752 nucleotides were not affected in 
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wild-type or U2609 mutant ribosomes containing a TnaC-tRNAPro molecule, in either 

the presence or absence of L-Trp (Figure 11E, compare lanes 4 and 5 with lane 2 or 

lanes 6 and 7 with lane 3).  These results indicate that the presence of TnaC-tRNAPro did 

not affect the DMS-accessibility of these two nucleotides.  

 

Exit tunnel nucleotide interactions that are important for TnaC-tRNAPro stalling 

activity 

 X-ray crystal structures of the E. coli 50S ribosomal subunits have shown that the 

23S rRNA A752 and U2609 nucleotides form a base-pair interaction (66).  To 

understand if this interaction is important for TnaC-mediated regulation we produced 

bacteria strains containing directed replacements at either or both positions in the 23S 

rRNA.  These strains also contained the tnaA’-‘lacZ L-Trp-inducible reporter gene (44).  

We determined the effects of these 23S rRNA mutations on the expression of this 

reporter gene by measuring β-galactosidase activity in cells grown with or without L-Trp 

(Table 3).  Strain with wild-type ribosomes (A752/U2609) exhibited high expression 

levels of the tnaA’-‘lacZ reporter gene in the presence but not the absence of L-Trp.  

Substitutions of A752 with uridine or cytosine substantially reduced induction of the 

reporter gene (Table 3, combinations A752U/U2609 and A752C/U2609).  However, the 

A752G mutation did not affect the induction of the reporter (Table 3, nucleotide 

combination A752G/U2609).  These results indicated that a purine nucleotide, A or G, 

was required at nucleotide 752 to enable TnaC function.  Substitutions at position U2609 

with A or C also abolished reporter gene induction by L-Trp in this analysis (Table 3, 



 

53 

nucleotide combinations A752/U2609C and A752/U2609A).  Finally, while most 

combinations of nucleotide replacements at both positions gave uninducible phenotypes 

(Table 3, nucleotide combinations A752U/U2609A, A752U/U2609C, A752C/U2609A, 

A752C/U2609C), the combination A752G/U2609C in 23S rRNA conferred an inducible 

phenotype similar to the wild-type combination A752/U2609, whereas A752/U2609C 

did not (Table 3).  

 
 
Table 3. A752 and U2609 nucleotide changes that affect tnaA’-‘lacZ expression in the bacterial cell. 
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aCultures of SR-14 derived strains (∆7 rrn) obtained by replacement of the prrnC-sacB plasmid by pK4-16 
variants were grown in minimal medium plus 0.2% glycerol, 0.05% acid-hydrolyzed casein, 0.01% 
vitamin B1 and 50µg/ml kanamycin with (+Trp) or without (-Trp) 100 µg/ml L-Trp. β-Galactosidase 
assays were performed in four independent experiments . 
bRatio of values for cultures grown with L-Trp (+Trp) and those grown without L-Trp (-Trp). 
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TnaC residues that protect the U2609 nucleotide  

 The presence of TnaC-tRNAPro within the wild-type ribosome reduced CMCT 

accessibility of the U2609 nucleotide (Figure 11A).  These results suggested that either 

components of the TnaC peptide may be in close proximity to U2609, or interactions of 

TnaC-tRNAPro with other regions of the ribosome induced structural changes affecting 

this nucleotide.  The model of TnaC-tRNAPro bound to a ribosome suggested by cryo-

EM structures indicates that the TnaC residues W12, D16 and K18 are in the vicinity of 

the A751, A752 and U2609 (43).  We determined expression levels in vivo of the tnaA´-

´lacZ reporter construct containing either W12R, D16A or K18A substitutions in TnaC 

to establish their importance for TnaC-mediated regulation (Table 4).  The replacements 

W12R and D16A substantially reduced induction of the reporter gene in response to L-

Trp (Table 4) (39).  In contrast, the TnaC K18A mutation retained regulatory capacity 

(Table 4).  A K18E mutation also did not interfere with regulatory function (data not 

shown).  These results indicated that residues W12 and D16, but not K18, were 

important for L-Trp induction.  

We examined the impact of L-Trp on the function of ribosome complexes 

containing wild-type, W12R, D16A and K18A TnaC nascent peptides using puromycin, 

an aminoacyl-tRNA analog that is an A-site substrate at the PTC.  Puromycin was added 

to wild-type ribosomes containing wild-type or mutated TnaC peptides (Figure 13A).  

The addition of L-Trp inhibited puromycin activity on ribosomes containing either wild-

type or K18A nascent TnaC peptides (Figure 13A, compare lane 4 with lane 2; or lane 8 

with lane 6).  However, the addition of L-Trp did not inhibit puromycin activity on 
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Table 4. TnaC residue changes that affect tnaA’-‘lacZ expression in bacterial cell. 
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aCultures of rrn+ E. coli bacterial strains AW216 (Wt), AW221 (W12R), AW326 (K18A) and AW600 
(D16A) were grown in minimal medium plus 0.2% glycerol, 0.05% acid-hydrolyzed casein, 0.01% 
vitamin B1 and 100µg/ml ampicillin with (+Trp) or without (-Trp) 100 µg/ml L-Trp. β-Galactosidase 
assays were performed in three independent experiments . 
bRatio of values for cultures grown with L-Trp (+Trp) and those grown without L-Trp (-Trp). 

 
 
ribosomes containing either the W12R or D16A mutant TnaC peptides (Figure 13A, 

compare lane 12 with lane 10; or lane 16 with lane 14).  These results indicated that the 

replacements W12R and D16A, but not K18A, affected the capacity of TnaC to inhibit 

peptidyltransferase activity in response to L-Trp, consistent with their regulatory 

phenotypes in vivo.  

Finally, we analyzed the effects of W12R, D16A and K18A TnaC peptides on 

the protection of the U2609 nucleotide from methylation by CMCT (Figure 13B).  The 

presence of wild-type TnaC-tRNAPro substantially reduced the methylation level of the 

U2609 nucleotide that was observed in vacant wild-type ribosomes (Figure 13B, 

compare lanes 3 and 4 with lane 2), as also observed in the experiments shown in Figure 

11.  In contrast, in ribosomes complexes containing W12R or D16A TnaC-tRNAPro the 

methylation level of U2609 was not affected (Figure 13B, compare lanes 5 and 6 or 

lanes 7 and 8 with lane 2).  These results indicated that W12R and D16A mutations  

 



 

56 

 

Figure 13. Nascent TnaC peptide residues involved in the protection of the U2609 nucleotide. (A) Isolated 
ribosome complexes containing the indicated tnaC mRNAs were tested with (+) or without (-) puromycin 
in the presence (+) or absence (-) of Trp. The final products of each reaction were resolved on 10% tris –
tricine polyacrylamide gels. The TnaC-tRNAPro and TnaC-puromycin molecules position are indicated 
with arrows. (B) Methylation protection assays performed with wild type ribosomes containing the 
indicated tnaC mRNAs. The experiments were carried out as indicated in Figure 2 using the alkylating 
agent CMCT. Nucleotides methylated by the presence of CMCT are indicated. (C) Northern blot assays 
performed with the ribosome complexes indicated above. The TnaC-tRNAPro in the ribosome complexes 
was detected as indicated in Figure 11. 
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reduced the protection of U2609 conferred by the presence of the wild-type TnaC-

tRNAPro within the ribosome.  However, the methylation of U2609 within ribosomes 

containing K18A TnaC-tRNAPro was similar to that observed with ribosomes containing 

wild-type TnaC-tRNAPro (Figure 13B, compare lanes 9 and 10 with lane 2 or lanes 3 and 

4).  These effects on U2609 methylation were independent of the presence of Trp 

(Figure 12B, compare - lanes with + lanes). These results indicated that the K18A 

replacement did not affect TnaC-tRNAPro-mediated protection of U2609 from 

methylation. 

 

DISCUSSION 

 The data presented here show that, in ribosomes that can respond to functional 

TnaC, functional TnaC-tRNAPro in the ribosome exit tunnel protects U2609 of the 23S 

rRNA from methylation by CMCT (Figure 13).  These results are consistent with the 

structural model obtained from cryo-EM data, where it has been observed that U2609 

conformation is affected by the presence of the TnaC peptide (43).  The cryo-EM model 

suggests that the changes in the conformation of U2609 are not the result of major 

structural changes in the exit tunnel (43).  These data suggest that interaction between 

U2609 and TnaC residues is a major reason for the difference in methylation-sensitivity 

of U2609 when comparing ribosomes containing either no peptide or nonfunctional 

TnaC peptide to ribosomes containing functional TnaC peptide.  The cryo-EM model 

further suggests that the K18 residue of TnaC might be involved in positioning U2609 

(43).  However, our mutagenesis analyses did not support this view.  Replacing the K18 
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residue by alanine, a small non-charged amino acid, did not affect either Trp induction in 

vivo (Table 4) or inhibition of TnaC-tRNAPro cleavage by puromycin (Figure 13A).  

Also, the protection of U2609 was not affected by the K18A TnaC mutation (Figure 

13B).  The TnaC mutations W12R and D16A, which eliminate Trp-mediated ribosome 

stalling (Table 4 and Figure 13A), abolished the protection from methylation of U2609 

(Figure 13B).  Therefore, these essential residues of the TnaC peptide may interact with 

U2609 directly.  Alternatively, W12 and D16 interactions with other elements of the 

ribosome may relay structural changes through the TnaC peptide to establish a position 

for U2609 that protects this nucleotide from methylation (43,65).  Cryo-EM structures of 

eukaryotic ribosomes containing either of the regulatory peptides CMV or AAP suggest 

that amino acids that are important for stalling interact with the A751 and U2609 

nucleotides (85).  The essential residues for stalling Ser-12 of CMV and the Asp-12 of 

AAP seem to be in the proximity of A751 (10,72,85).  Meanwhile, the important 

residues Lys-18 of CMV and Trp-19 of AAP are close to U2609 (10,72,85).  These 

positions correspond with the conserved residues W12 and Ile-19 of TnaC (39).  

Furthermore, comparison of the cryo-EM structures of ribosomes containing each of 

these regulatory peptides reveal that they interact in similar manner with the A751-752 

and U2609 region (81).  These observations suggest that the interactions between the 

region constituted by A751-A752 and U2609 and residues of regulatory peptides are 

essential for stalling in prokaryotic and eukaryotic systems.  This region of the ribosomal 

exit tunnel might be a common anchor-place for regulatory peptides (Figure 14).  The 

ErmCL peptide seems to be the exception as the action of this regulatory peptide is not 
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affected by mutations in the A751 and U2609 nucleotides (5).  The ErmCL peptide is 

shorter and might not reach these nucleotides, in fact ErmCL is anchored to the A2058 

nucleotide by erythromycin (Figure 14) (7).  

X-ray structures of the E. coli 50S ribosomal subunit have shown that the A751 

and A752 help form the exit tunnel.  The exit tunnel structure is presumably stabilized 

by base-pairing, base-stacking interactions, and by the presence of the extended loop of 

ribosomal protein L22 (73,86).  Furthermore, A752 has base-pairing interactions with 

U2609 (66).  A752-U2609 base pairing interaction is also important for antibiotic 

binding (66).  Changes in either A752 or U2609 resulted in reduced regulation by TnaC 

in response to Trp (Table 3).  These changes could eliminate base-pairing interactions 

between nucleotides at these two positions.  In this regard, the A752G single substitution 

and the A752G/U2609C double substitution allowed TnaC-mediated regulation (Table 

3), suggesting that the G replacement at the 752 position might generate G:U base 

pairing interaction with the U2609 or G:C interaction with C2609 nucleotide retaining 

the contacts between these two nucleotide positions.  Therefore, it seems that the base 

pairing between the 752 and the 2609 nucleotide positions are required for TnaC 

function (Figure 14).  

In vacant ribosomes lacking a nascent peptide in the exit tunnel, the +A751ins 

and the A752C mutations affected the conformation of the U2609 nucleotide as well as 

that of the U2585 nucleotide, a residue located in the PTC, as assessed by their 

sensitivity to chemical methylation (Figure 11A and 11B).  The +A751ins mutation also 

affects the function of other regulatory peptides such as SecM (12).  These results  
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Figure 14. Regions of the ribosomal exit tunnel essential for stalling. (A) Lateral vision of the 70S 
ribosome of E. coli (73). (B) Sagittal plane section of the 70S ribosome (73). (C) Visual amplification of 
the PTC and the first part of the exit tunnel. Nucleotides in orange constitute the PTC region, these 
nucleotides are involved in the peptidyl transferase and hydrolysis of peptidyl-tRNAs during translation 
(87). Nucleotides in red are essential for stalling induced by the nascent peptides ErmCL and SecM (5,12). 
Nucleotides in pink and the amino acid residue K90 of the ribosomal protein L22 are essential for stalling 
induced by SecM and TnaC (12,44). Nucleotides in cyan connect the nucleotides U2585 and U2609. 
White arrow indicates possible structural relay from the exit tunnel to the PTC produced by the TnaC 
nascent peptide. 
 
 
 
indicate that these mutations generate perturbations in the structure of the exit tunnel.  

These perturbations might be transferred from U2609 to U2585 through the nucleotides 

U1782 and U2586 (Figure 14, cyan nucleotides).  Similar results have been observed in 

erythromycin-resistant ribosomes containing mutations in the extended loop of the 

ribosomal protein L22 (88).  Also, mutations in the loop of L22 affect the function of the 
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regulatory nascent ErmCL peptide as well as the nascent TnaC peptide (7,44). Therefore, 

perturbations in the shape of the exit tunnel induced by changes in the G745-A752 

nucleotide region, as well as the loop of L22, may affect the way that nascent peptides 

interact with the ribosome.  This is consistent with the idea that the shape of the exit 

tunnel is a determining factor for the function of regulatory nascent peptides (89,90).  
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CHAPTER III 

INTERACTIONS OF THE TNAC NASCENT PEPTIDE WITH RRNA IN THE EXIT 

TUNNEL ENABLE THE RIBOSOME TO RESPOND TO FREE TRYPTOPHAN 

 

 INTRODUCTION 

 Ribosomes are cellular molecular complexes whose primary function is carrying 

out protein synthesis, in all organisms.  Prokaryote ribosomes are composed of two 

subunits: the small, 30S subunit, which facilitates the decoding of genetic information 

from mRNA templates, and the large, 50S subunit, which performs the polymerization 

of amino acids into polypeptides.  Polypeptide assembly takes place in the peptidyl 

transferase center (PTC), which catalyzes peptide bond formation.  Nascent polypeptides 

exit the ribosome through the peptide exit tunnel, a structure that begins at the PTC and 

spans the body of the large subunit. 

Translation, and ultimately gene expression, can be regulated at many different 

levels.  One of them is by direct interaction of small molecules with specific sites in the 

large ribosomal subunit.  For instance, several antibiotics, which interfere with protein 

synthesis, inhibit ribosome function by binding to either the PTC or the peptide exit 

tunnel.  Nascent peptides can also regulate the activities of the large subunit, modulating 

gene expression.  These regulatory nascent peptides, termed ribosome arrest peptides 

(RAPs), induce translational arrest; the resulting arrested ribosomes control either 

transcription or translation of the downstream genes in the same operon (69,91,92).  
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RAPs contain specific domains, predominantly near their carboxyl termini, that 

are required for inducing ribosome stalling (65,69,91-93).  Genetic analyses have shown 

that components of the ribosomal PTC and exit tunnel are required for the action of 

RAPs.  Furthermore, structural analyses of arrested ribosomes containing RAPs show 

that their stalling domains form specific interactions with the PTC and the peptide exit 

tunnel (81).  However, the exact roles of the observed interactions in inhibiting ribosome 

function remain obscure. 

 Tryptophanase is an enzyme involved in the metabolic degradation of L-

tryptophan (L-Trp) (23).  Tryptophanase catalyzes the breakdown of L-Trp into indole, 

pyruvate, and ammonia.  Pyruvate and ammonia are used as carbon and nitrogen 

sources, respectively and indole is involved in establishing several bacterial phenotypes 

(26,94).  In Escherichia coli and Proteus vulgaris, for example, the tryptophanase 

coding gene is within the tightly regulated tnaCAB operon.  This operon contains a 

regulatory leader region including a small open reading frame, designated tnaC, which 

encodes the RAP TnaC, followed in the operon by two major structural genes, tnaA, 

encoding tryptophanase, and tnaB, encoding an L-Trp specific transporter (21,95).  Both 

the catabolite activator protein (CAP) and free L-Trp are required to induce expression 

of tnaCAB (67,96).  While initiation of transcription of the tnaCAB operon is under 

catabolite repression control, continuation of transcription into the tnaA and tnaB 

structural genes is regulated by the available concentration of free L-Trp.  After 

synthesizing the tnaC mRNA segment, the transcribing RNA polymerase pauses in the 

tnaC-tnaA intergenic spacer region before it can reach the tnaA and tnaB structural 
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genes.  When the cellular L-Trp levels are low, TnaC synthesis is completed, releasing 

TnaC and the translating ribosome at the tnaC stop codon.  Dissociation of the ribosome 

allows the interaction of the Rho-termination factor with the RNA polymerase that is 

paused in the tnaC-tnaA intergenic region.  This promotes premature Rho-dependent 

transcription termination to occur before the polymerase reaches the structural genes of 

the operon (1,29,32,96).  Conversely, when cellular L-Trp levels are high, L-Trp is 

bound to the ribosome, and the ribosome translating tnaC mRNA stalls at either the tnaC 

stop codon in E. coli or the tnaC Lys-33 codon in P. vulgaris (40,97).  The presence of 

the stalled ribosome in the mRNA 5’-leader prevents the interaction of the Rho-

termination factor with RNA polymerase.  Therefore, transcription of the tna mRNA 

operon continues, and tnaA and tnaB are transcribed and expressed (32,40,96,98).  

 In bacteria that possess the tnaCAB operon, the specified TnaC peptides range in 

length from 24 to 36 amino acid residues.  TnaC peptides of E. coli and P. vulgaris 

contain two highly conserved and one semi-conserved functional residues: a unique 

tryptophan residue (W12 in E. coli and W20 in P. vulgaris), a unique aspartic acid 

residue (D16 in E. coli and D24 in P. vulgaris) and a proline residue (P24 in E. coli and 

P32 in P. vulgaris) whose mutations prevent translational arrest and L-Trp-dependent 

tnaCAB operon induction (38,39).  These TnaC peptides also contains a semi-conserved 

residue, I19 in E. coli and L27 in P. vulgaris, which importance for TnaC function is 

unknown (39).  It has been suggested that interactions between these TnaC residues and 

the ribosome promote the formation of a L-Trp binding site, at which bound L-Trp 

inhibits ribosome function (39).  The binding of L-Trp to the TnaC-peptidyl-tRNAPro-
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ribosome complex has been shown to block either release factor 2 (RF2)-catalyzed 

hydrolysis of TnaC-tRNAPro at P24 (in E. coli), or the transfer of the TnaC peptide from 

TnaC-tRNAPro to Lysyl-tRNALys at K33 (in P. vulgaris) (40,97).  It has been proposed 

that free L-Trp binds either at or near the PTC A-site, but the exact location of the L-Trp 

binding site, unfortunately, remains unknown (68,84).  It is also unclear how bound L-

Trp inhibits ribosome function and what role(s) the TnaC peptide plays in the formation 

of the L-Trp binding site.  

Genetic, biochemical, and computational analyses have revealed possible points 

of interaction between the TnaC peptide and the stalled ribosome (38,43,44,84,99).  The 

available data suggest that TnaC residues W12 and D16 might be involved in 

interactions with amino acid residues R92 and K90 of r-protein L22, and 23S rRNA 

nucleotides A752 and U2609 (38,43,99).  Molecular dynamics simulations also suggest 

that TnaC amino acid residue I19 might in be contact with 23S rRNA nucleotides 

A2058, A2059 and U2609 (38).  Cryo-EM reconstructions of the TnaC-stalled ribosome 

complex suggest that the stalling signal may be transmitted by a relay of TnaC-ribosome 

interactions from the exit tunnel to the PTC either via the TnaC peptide chain or through 

the ribosome, causing conformational arrangements in the PTC that impede its activity 

(43).  Unfortunately, the cryo-EM analyses did not reveal the binding site for L-Trp (43).  

 In this study, we analyze the contribution of specific 23S rRNA nucleotides and 

TnaC residues in the ability of the ribosome to respond to varying concentrations of free 

L-Trp or the L-Trp analog, 1-methyl-L-Trp (1MT).  Our genetic and biochemical 

analyses demonstrate that 23S rRNA nucleotide A2058 and TnaC residue I19 are 
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important in promoting the sensing of L-Trp by the ribosome.  Our data also indicate 

that Trp-tRNATrp, unlike free L-Trp, does not induce either ribosome stalling or 

expression of the tnaCAB operon.  We conclude from our analyses that TnaC-ribosome 

interactions induce the formation of a critical L-Trp binding site within the ribosome. 

 

MATERIALS AND METHODS 

Bacteria strains and plasmids  

 The E. coli K-12 strains and plasmids containing selected genes used in this 

study are listed in Table 5.  For in vitro assays, replacements of tnaC and 23S rRNA 

sequences were generated in the pGF2500 and pNK plasmids respectively using the 

QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent Technologies).  S30 cell 

free extracts used in in vitro assays were prepared from bacterial strains with 

replacements of the 23S rRNA variants made as previously indicated (44).  For in vivo 

assays, reporter gene mutants were obtained as follows: the tnaptnaC-tnaA’- region from 

281 nucleotides upstream of the tnaC translation start through the BamHI site at the 

tnaA’-‘lacZ junction were amplified from pAW137 derivatives using the primers 

AW217 and AW218.  The PCR products were digested with BamHI and ligated to 

BamHI digested pUC18.  Site-directed mutagenesis to change the start codon of tnaC to 

a TGA stop codon or insert codons at tnaC position 25 were carried out on pUC18 

derivatives using Phusion DNA polymerase and the manufacturer’s instructions 

(ThermoScientific).  Complementary primers were designed with the desired 

replacements flanked by ~10–15 nucleotides of the wild-type sequences on each side of 
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the change.  The pUC18 plasmid derivatives that contained the desired replacements 

were confirmed by sequencing.  BamHI fragments from pUC18 derivatives were ligated 

to BamHI digested pRS552, which creates an in-frame translational fusion of tnaA and 

lacZ.  SalI fragments from pRS552 derivatives containing tnaptnaC-tnaA’-‘lacZYA with 

desired tnaC changes were ligated to SalI digested pACYC184.  Finally, SalI fragments 

from pACYC184 derivatives were ligated to XhoI digested pGRG36.  Site-specific 

transposition into the att7 locus of E.coli was carried out and confirmed as previously 

described (78,99).   

Bacterial strains containing mutant variants of the tnaA’-‘lacZ reporter genes and 

mutant variants of the 23S RNA gene were made as follows: pNK plasmids with desired 

23S rRNA mutations were transformed into AW122 derivatives.  Plating onto LB 

containing 100 µg/ml Amp was used to select for transformants.  Transformants were 

picked into 2 ml LB containing 100 µg/ml Amp and incubated overnight at 37°C.  10-6 

dilutions of the overnight cultures were plated on LB plates containing 5% sucrose, 

selecting against the prrnC-sacB plasmid, and incubated overnight at 37°C (76).  

Colonies from LB-5% sucrose plates were replica plated onto LB plates containing 

either 100 µg/ml Amp or 25 µg/ml Kan. Successful replacements of prrnC-sacB with 

pNK derivatives were confirmed by the AmpR/KanS phenotype.  After plasmid 

replacements, the 23S rRNA A2058 and A2059 mutations were verified in the strains by 

first amplification of 23S rRNA 1350-2902 region, followed by sequencing of the 

resulting PCR products. 
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Table 5. E. coli bacterial plasmids and strains used in this work. 

Plasmid Description Source 
ptRNA67 tRNA encoding plasmid (76) 

prrnC-sacB Wild-type rrnC operon; Kmr, and a sacB gene, 
derived from pCS101 

(76) 

pNK Wild-type rrnB operon; Ampr, derived from 
ColE1 

(12) 

pNKA2058G Derived from pNK has a A-to-G replacement at 
position 2058 in the 23S rRNA 

This study 

pNKA2058T Derived from pNK has a A-to-T replacement at 
position 2058 in the 23S rRNA 

This study 

pNKA2059C Derived from pNK has a A-to-C replacement at 
position 2059 in the 23S rRNA 

This study 

pNKA2059G Derived from pNK has a A-to-G replacement at 
position 2059 in the 23S rRNA 

This study 

pNKA2059T Derived from pNK has a A-to-T replacement at 
position 2059 in the 23S rRNA 

This study 

pKKU2609C Derived from pNK has a T-to-C replacement at 
position 2609 in the 23S rRNA 

(75) 

pAW137 Has the tnaptnaC(ΔN2-H22) with BsaI-XhoI-
BsaI linker-tnaA'-'lacZYA cloning reporter gene 

derived from pACYC184 

(99) 

Strain Description Source 
SQ351 MG1655 Δ7 rrn Δ(lacZYA) (pKK3535, 

ptRNA67) 
(44) 

AW122 Derived from SQ351 (prrnC-sacB, ptRNA67) (99) 
AW153 MG1655 Δ(lacZYA) att7::tnaptnaC(tnaA’-

‘lacZYA) 
(99) 

AW154 MG1655 Δ(lacZYA) 
att7::tnaptnaC(W12R)(tnaA’-‘lacZYA) 

(99) 

AW516 MG1655 Δ(lacZYA) 
att7::tnaptnaC(I19A)(tnaA’-‘lacZYA) 

This study 

AW517 MG1655 Δ(lacZYA) 
att7::tnaptnaC(I19W)(tnaA’-‘lacZYA) 

This study 

AW607 MG1655 Δ(lacZYA) 
att7::tnaptnaC(I19M)(tnaA’-‘lacZYA) 

This study 
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Table 5. Continued. 

Strain Description Source 
AW608 MG1655 Δ(lacZYA) 

att7::tnaptnaC(I19L)(tnaA’-‘lacZYA) 
This study 

AW609 MG1655 Δ(lacZYA) 
att7::tnaptnaC(I19V)(tnaA’-‘lacZYA) 

This study 

AW643 MG1655 Δ(lacZYA) 
att7::tnaptnaC(ΔAUG)(tnaA’-‘lacZYA) 

This study 

AW747 MG1655 Δ(lacZYA) 
att7::tnaptnaC(W12R)(ΔAUG)(tnaA’-

‘lacZYA) 

This study 

AW221 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(W12R)(tnaA’-‘lacZYA) 

(pNK, ptRNA67) 

(99) 

AW216 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

(99) 

AW677 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(tnaA’-‘lacZYA) 

(pNKA2059C, ptRNA67) 

This study 

AW676 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(tnaA’-‘lacZYA) 

(pNKA2059G, ptRNA67) 

This study 

AW675 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(tnaA’-‘lacZYA) 

(pNKA2059T, ptRNA67) 

This study 

AW680 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(tnaA’-‘lacZYA) 

(pNKA2058G, ptRNA67) 

This study 

AW673 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(tnaA’-‘lacZYA) 

(pNKA2058T, ptRNA67) 

This study 

AW701 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19A)(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

This study 

AW684 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19A)(tnaA’-‘lacZYA) 

(pNKA2059C, ptRNA67) 

This study 

AW681 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19A)(tnaA’-‘lacZYA) 

(pNKA2059G, ptRNA67) 

This study 
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Table 5. Continued. 

Strain Description Source 
AW683 MG1655 Δ7 rrn Δ(lacZYA) 

att7::tnaptnaC(I19A)(tnaA’-‘lacZYA) 
(pNKA2059T, ptRNA67) 

This study 

AW682 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19A)(tnaA’-‘lacZYA) 

(pNKA2058G, ptRNA67) 

This study 

AW685 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19A)(tnaA’-‘lacZYA) 

(pNKA2058T, ptRNA67) 

This study 

AW691 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19M)(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

This study 

AW692 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19M)(tnaA’-‘lacZYA) 

(pNKA2059C, ptRNA67) 

This study 

AW694 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19M)(tnaA’-‘lacZYA) 

(pNKA2059G, ptRNA67) 

This study 

AW693 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19M)(tnaA’-‘lacZYA) 

(pNKA2059T, ptRNA67) 

This study 

AW700 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19M)(tnaA’-‘lacZYA) 

(pNKA2058G, ptRNA67) 

This study 

AW695 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19M)(tnaA’-‘lacZYA) 

(pNKA2058T, ptRNA67) 

This study 

AW704 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19V)(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

This study 

AW705 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19V)(tnaA’-‘lacZYA) 

(pNKA2059C, ptRNA67) 

This study 

AW706 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19V)(tnaA’-‘lacZYA) 

(pNKA2059G, ptRNA67) 

This study 

AW707 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19V)(tnaA’-‘lacZYA) 

(pNKA2059T, ptRNA67) 

This study 
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Table 5. Continued. 

Strain Description Source 
AW708 MG1655 Δ7 rrn Δ(lacZYA) 

att7::tnaptnaC(I19V)(tnaA’-‘lacZYA) 
(pNKA2058G, ptRNA67) 

This study 

AW709 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19V)(tnaA’-‘lacZYA) 

(pNKA2058T, ptRNA67) 

This study 

AW711 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19L)(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

This study 

AW712 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19L)(tnaA’-‘lacZYA) 

(pNKA2059C, ptRNA67) 

This study 

AW713 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19L)(tnaA’-‘lacZYA) 

(pNKA2059G, ptRNA67) 

This study 

AW714 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19L)(tnaA’-‘lacZYA) 

(pNKA2059T, ptRNA67) 

This study 

AW715 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19L)(tnaA’-‘lacZYA) 

(pNKA2058G, ptRNA67) 

This study 

AW724 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19L)(tnaA’-‘lacZYA) 

(pNKA2058T, ptRNA67) 

This study 

AW218 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(tnaA’-‘lacZYA) (pNH2609, 

ptRNA67) 

(99) 

AW814 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(I19L)(tnaA’-‘lacZYA) 

(pNH2609, ptRNA67) 

This study 

AW671 MG1655 Δ(lacZYA) 
att7::tnaptnaC(+W25)(tnaA’-‘lacZYA) 

This study 

AW672 MG1655 Δ(lacZYA) 
att7::tnaptnaC(+W25)(ΔAUG)(tnaA’-

‘lacZYA) 

This study 

AW772 MG1655 Δ(lacZYA) 
att7::tnaptnaC(W12R)(+W25)(tnaA’-

‘lacZYA) 

This study 
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Table 5. Continued.  

Strain Description Source 
AW752 MG1655 Δ(lacZYA) 

att7::tnaptnaC(W12R)(+W25)(ΔAUG)(tnaA’-
‘lacZYA) 

This study 

AW778 MG1655 Δ(lacZYA) att7::tnaptnaC(+I25-
AUU)(tnaA’-‘lacZYA) 

This study 

AW755 MG1655 Δ(lacZYA) att7::tnaptnaC(+I25-
AUU)(ΔAUG)(tnaA’-‘lacZYA) 

This study 

AW750 MG1655 Δ(lacZYA) att7::tnaptnaC(+I25-
AUA)(tnaA’-‘lacZYA) 

This study 

AW801 MG1655 Δ(lacZYA) att7::tnaptnaC(+I25-
AUA)(ΔAUG)(tnaA’-‘lacZYA) 

This study 

AW826 MG1655 Δ(lacZYA) 
att7::tnaptnaC(+stop25)(tnaA’-‘lacZYA) 

This study 

 
 

Analysis of the effect of the A2058G mutation on protein expression in E. coli 

 The wild type pKK3535 and the mutant pNKA2058G plasmids were introduced 

into E. coli strain SQ171 (100).  After plasmid exchange, the purity of the population of 

the mutant ribosomes in the cells carrying the pNKA2058G plasmid was verified by 

primer extension (76,101).  For the protein analysis, cells logarithmically growing in LB 

medium at 37°C were harvested by centrifugation and rapidly frozen.  Protein isolation 

and 2D-DIGE analysis was performed by Dr. Lewis M. Brown at Comparative 

Proteomics Center, Columbia University as previously described (102).  Proteins were 

extracted from the gel and identified by mass-spectrometry of the tryptic digests. 

 

 

 



 

73 

tnaA’-‘lacZ reporter gene expression analysis 

 To analyze the expression of the tnaA’-‘lacZ reporter gene we performed β-Gal 

assays as previously described (79).  β-gal activity is reported in Miller units.   

 

In vitro accumulation of TnaC-tRNAPro and puromycin protection assays  

 In vitro reactions testing the effect of increasing concentrations of L-Trp on the 

accumulation of TnaC-tRNAPro were carried out as described previously (44).  The 

reaction mixtures were performed with S30 cell free extracts (wild type or 23S rRNA 

mutants) and [35S]-labeled methionine.  After incubation at 25°C for 5 minutes, 4 mg of 

wild type or tnaC mutant mRNAs were added to the reaction mixtures.  Equal aliquots 

of reaction mixture were added to tubes containing equal volume of L-Trp in increasing 

concentrations.  The reaction tubes were then incubated at 37°C for 10 minutes, and 

precipitated using acetone.  Dried pellets were resuspended with 25 µL of 1X loading 

buffer (10X Tricine loading buffer: 4% SDS, 12% glycerol, 50 mM Tris pH 6.8, 2% 2-

mercaptoethanol, 0.005% bromophenol blue) and loaded for electrophoresis on to 10% 

tris-tricine polyacrylamide gels .  [35S]-labeled methionine resolved molecules were 

detected using autoradiography and their intensity determined with the ImageJ software.  

Puromycin protection assays were performed with isolated TnaC-tRNA-ribosome 

complexes obtained as previously indicated (44).  Solutions containing [35S]-methionine 

labeled complexes were mixed with several concentrations of L-Trp before being mixed 

with a puromycin solution.  The final products of each reaction were resolved and 

analyzed as indicate above. 
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Toeprinting analysis 

 Toe-printing assays were performed essentially as described, following 

performing cell free transcription-translation reactions using a PURExpress system kit 

version (New England Biolabs) where ribosomes were added separately and amino acid 

concentrations could be adjusted (∆ ribosomes, ∆ amino acids) (7).  Ribosomes were 

isolated from the corresponding E. coli SQ171 described above.  Importantly, to avoid 

different levels of free L-Trp background in the ribosome preparations, wild type and 

mutant ribosomes were isolated in parallel using same batches of media and buffers.  

The DNA templates used to direct translation contained the entire tnaC ORF and were 

PCR-amplified from wt plasmid pGF2500 or its mutant versions (described above) using 

forward primer T7-tnaC-2, 5’-

TAATACGACTCACTATAGGGAGTTTTATAAGGAGGAAAACATATGAATATCT 

TACATATATGTG-3’, to add the T7 promoter sequence and an optimized translation 

initiation region, and reverse primer tnaC-toe-2, 5’-

AGCAAACAAATAGATCACATTG-3’, which was also used as the toe-printing 

primer.  Translation reactions were performed for 15 min at 37°C with a mixture 

containing every amino acid at 0.3 mM except for L-tryptophan whose concentration 

was adjusted, from stock solutions in water, from zero through the range 12.5 µM to 25 

mM. 
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RESULTS 

23S rRNA nucleotides A2058 and A2059 are important for ribosome stalling 

induced by TnaC and L-Trp  

 The 23S rRNA nucleotides A2058 and A2059 are located at the surface of the 

exit tunnel, which makes them susceptible to interactions with nascent peptides and 

other ligands.  These nucleotides form a hydrophobic crevice, which constitutes the 

binding site for antibiotic ligands involved in ribosome stalling regulated by the ErmCL 

RAP (5,78,99,103).  The A2058 nucleotide also participates in translation arrest induced 

by the SecM RAP (5,12).  In a search for other cellular proteins whose expression might 

depend on the nascent peptide recognition in the tunnel, we used 2D-differential gel 

electrophoresis (2D-DIGE) to compare global expression of proteins in wild type E. coli 

cells with those carrying the 23S rRNA A2058G mutation.  When cells were grown in 

rich (LB) medium, the most dramatic effect revealed by this analysis was the decreased 

expression of tryptophanase whose steady state level in the mutant was reduced 7.5 fold 

compared to the wild type cells (Figure 15).  This result suggested that nucleotide A2058 

plays an important role in the regulation of expression of the tnaCAB operon. 

To further investigate the role of A2058 and its neighboring residue A2059 in tna 

operon regulation, we prepared a library of plasmids containing mutant 23S rRNA genes 

with nucleotide replacements at either A2058 or A2059 (Table 5).  These plasmids were 

introduced into bacterial cells lacking chromosomal rrn alleles and containing a tnaC 

tnaA’-‘lacZ reporter construct (see Experimental Procedures), and the in vivo expression 

of the tnaA’-‘lacZ reporter in response to Trp was analyzed (44,99).  The cells were 
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grown in minimal media supplemented with 100 mg/ml L-Trp as inducer (see 

Experimental Procedures).  While in minimal media most of the A2058 and A2059 

changes did not significantly affect the expression of the reporter in the presence of 100 

mg/ml L-Trp (Table 6), we observed a 2.6-fold reduced expression of tnaA’-‘lacZ in 

cells with the A2058U substitution.  Importantly, the previously reported U2609C 

transition had a much more profound effect on the reporter expression and essentially 

 
 

 

Figure 15. In vivo expression of the tryptophanase enzyme. A representative image of a 2D-DIGE 
experiment performed with total protein obtained from E. coli bacteria cells expressing the 23S rRNA wild 
type (protein labeled with Cy3; green) and the 23S rRNA A2058 mutant (protein labeled with Cy5; red) 
genes is shown.  Green-lines indicate the position of the protein bands corresponding to the tryptophanase 
enzyme (TnaA).  The differential value in TnaA concentration between protein samples is indicated 
between parentheses. 
 
 
 
abolished its induction in the presence of 100 mg/ml L-Trp (Table 6).  In order to 

eliminate the possible influence of L-Trp degradation and utilization, we verified these 
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results using a range of 1-methyl-L-Trp (1MT) concentrations (Figure 16A).  1MT is an 

L-Trp analog that functions as an inducer of the tna operon but unlike L-Trp, is not 

degraded or incorporated into proteins and thus is maintained at a stable concentration 

within the cell (80,99).  Some of the A2059 and A2058 mutations affected the 

dependence of the reporter induction on 1MT concentration. Thus, in the minimal  

 
 
Table 6. Expression of the tnaA’-‘lacZ protein fusion in different A2058-A2059 mutant backgrounds. 

!"#$%&'() *+ ,- ../ ,-- 0.12
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aCultures of ∆7 rrn E. coli bacterial strains were grown in minimal medium plus 0.2% glycerol, 0.05% 
acid-hydrolyzed casein, 0.01 % vitamin B1 and 100µg/ml ampicillin with (+Trp) or without (-Trp) 100 
µg/ml L-Trp. β-Galactosidase assays were performed in three independent experiments. 
bRatio of values for cultures grown with L-Trp (+Trp) and those grown without L-Trp (-Trp). 
c Not enough bacterial cells were obtained to perform the experiments because cells expressing the 23S 
rRNA A2058C replacement grew poorly.  Cells containing only A2058C ribosomes are not viable. 
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 Figure 16. Sensibility of mutant ribosomes for L-Trp.  (A) β-galactosidase activity (given in Miller Units) 
was measured on cultures of bacterial cells (∆7 rrn) carrying the tnaC-tnaA’-‘lacZ reporter gene and the 
indicated 23S rRNA alleles.  Cultures were grown in minimal medium containing the indicated 
concentrations of 1-methyl-L-Trp (1MT).  The 1MT concentration required for 50% of induction was 
calculated using the data from these curves and the LMMpro nonlinear regression software program 
version 1.06 (http://www.alfisol.com/IFS/IFS-003/LMMpro-Downloads.php).  (B) Autoradiograms 
showing toeprinting assays performed with in vitro translation reactions. Translation reactions were 
performed with cell-free extracts reconstituted with ribosomes containing the indicated 23S rRNAs 
variants and with wild type tnaC mRNAs.  The TnaC peptide sequence and the tnaC codon sequence are 
shown on the left side of the figure. The positions of stalled ribosomes are shown with boxes in the tnaC 
codon sequence and with arrows in the right side of the autoradiograms.  (C) A plot showing the induction 
values with respect to L-Trp concentrations is also shown on the right side of the figure.  Induction values 
were calculated by using the following formula: intensity of the band corresponding to the proline codon 
position obtained for each sample/ intensity of the band corresponding to the proline codon position 
obtained in the sample without L-Trp.  (D) Autoradiograms showing L-Trp-protection assays performed 
with stalled ribosomes complexes containing the indicated 23S rRNAs and wild type tnaC mRNAs.  
Puromycin-cleavage of the TnaC-tRNAPro molecules was challenged with the indicated L-Trp 
concentrations.  TnaC-tRNAPro and TnaC band positions are indicated with arrows.  The % of TnaC-
tRNAPro that remained in each experiment was calculated using the following formula: % of TnaC-
tRNAPro = [amount of remained TnaC-tRNAPro/ (amount of remained TnaC-tRNAPro + amount of TnaC)].  
The L-Trp concentration required for 50% protection was calculated as indicted above using the % value 
of TnaC-tRNAPro that remained after puromycin treatment. 
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Figure 16. Continued. 
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medium at lower concentrations of 1MT, the reporter was poorly induced in the A2058G 

mutant, but induction reached the wild type level at high concentrations of 1MT.  The 

expression of the reporter in the A2059G mutant was slightly lower compared to the 

strain containing wild-type ribosomes.  More importantly however, the expression of the 

reporter in the A2058U mutant remained low compared to the wild-type control at all 

1MT concentrations.  Remarkably, however, higher concentrations of 1MT were 

required to reach 50% maximal induction in the A2058G, A2058U and A2059G mutants 

compared to the control (Figure 16A).  These data indicated that changes of A2058 and 

A2059 nucleotides affected the sensitivity of the reporter gene to Trp inducer.  

 To verify the observed in vivo effects in a better-defined system, we analyzed L-

Trp-dependent stalling of wild type or A2058U or U2609C ribosomes in an in vitro cell-

free translation system.  Translation of tnaC mRNA was performed in the transcription-

translation system assembled from purified components where the concentrations of L-

Trp could be accurately adjusted (104).  Ribosome stalling at the P24 codon of tnaC 

(Figure 16B, red arrow) was monitored by toeprinting analysis (see Experimental 

Procedures) over a wide range of concentrations of L-Trp.  In the absence of L-Trp, 

translation was arrested at the W12 codon, because of the lack of Trp-tRNATrp.  

Increasing the concentration of free L-Trp in the reaction to 12.5 µM eliminated the 

arrest at the Trp codon, yet only negligible ribosome stalling at the Pro24 codon was 

observed because the concentration of free L-Trp was insufficient for efficient formation 

of the TnaC-dependent stalled complex.  Significant ribosome stalling occurred at the 

Pro24 codon when translation reactions were performed at higher concentrations of L-
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Trp.  Most importantly, the concentration dependence of TnaC-mediated translation 

arrest was shifted towards higher concentrations for the A2058U mutant compared to 

wild type (Figure 16C, compare closed circles with open circles).  In contrast, U2609C 

mutant ribosomes completely lost their ability to stall at the Pro24 codon of tnaC, 

regardless of the L-Trp concentration (Figure 16C).  These results indicated that U2609C 

the mutation affected the general mechanism of TnaC-assisted stalling, whereas the 

A2058U mutation decreased the affinity of the ribosome for free L-Trp.  

We also tested the ability of L-Trp to inhibit PTC functions in the isolated 

ribosome/TnaC-tRNAPro stalled complexes containing changes in nucleotides A2058 or 

A2059.  Transfer of the nascent TnaC peptide from TnaC-tRNAPro to puromycin was 

monitored to determine if L-Trp was still capable of preventing this transfer in the 

stalled complexes containing mutant ribosomes.  Isolated complexes were reacted with 

puromycin in the presence of increasing concentrations of L-Trp (Figure 16D).  An 

approximately 3-fold higher concentration of L-Trp was required to achieve 50% of the 

maximum PTC inhibition in the A2058G or A2059G mutants compared to wild type 

ribosome (Figure 15D).  No inhibition of the TnaC-tRNAPro reactivity with puromycin 

was observed in the complex containing A2058U ribosomes up to 1 mM of L-Trp (the 

highest concentration of inducer tested in these experiments).  These results corroborated 

that changes in nucleotides A2058 and A2059 affect the concentration dependence of L-

Trp -mediated inhibition of the ribosome activity that underlies programmed translation 

arrest at the tnaC gene. 
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Features of TnaC residue I19 important for ribosome stalling induced by L-Trp  

 Molecular dynamic simulations that were based on the 5.8 Å cryo-EM map of 

the 70S-TnaC complex placed TnaC residue I19 in close proximity to 23S rRNA 

nucleotides A2058 and A2059 (38,43). Furthermore, this TnaC residue is highly 

conserved among several bacterial species, suggesting a role in Trp-dependent tnaC 

translation arrest (39).  To test whether the I19 residue of TnaC is involved in sensing 

the presence of the inducer, we replaced it with hydrophobic residues of variable sizes 

and tested the mutants in vitro and in vivo.  In vitro formation of stalled ribosome 

complexes was assessed by detecting the accumulation of the TnaC-tRNAPro in a cell-

free translation system in the presence of high concentration of L-Trp (Figure 17A) (29).  

No TnaC-tRNAPro was observed in the wild type complex at low concentration of L-Trp, 

but when the concentration of the inducer was raised to 4 mM, TnaC-tRNAPro 

accumulated, indicating that the wild type TnaC peptide in the ribosomal exit tunnel 

makes the ribosome sensitive to L-Trp.  Substitution I19L produced similar amounts of 

accumulated TnaC-tRNAPro as the wild type mRNA (Figure 17A, compare lane 4 with 

lane 10).  However, translation of mRNAs containing the codon changes I19V, I19M or 

I19F resulted in diminished accumulation of TnaC-tRNAPro compared to the wild type 

mRNA, whereas the I19A or I19W mutations abolished completely any TnaC-tRNAPro 

accumulation upon the addition of 4 mM L-Trp (Figure 17A, compare lane 4 with lane 

16).  These results indicated that the nature of the residue at position 19 of the TnaC 

peptide is important for its ribosome arrest function in response to L-Trp.  
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Figure 17. Effects of mutant TnaC peptides on the sensibility of ribosomes for L-Trp.  (A) 
Autoradiograms showing in vitro accumulation of TnaC-tRNAPro performed with wild type cell-free 
extracts and the indicated tnaC mRNAs variants. The reactions were performed adding (High) or not 
(Low) and extra 4 mM L-Trp. TnaC-tRNAPro and TnaC band positions are indicated with arrows.  (B) β-
galactosidase activity obtained from cultures of bacterial cells (rrn+) carrying a tnaC-tnaA’-‘lacZ reporter 
gene containing the indicated tnaC alleles. The plot and the 1MT concentration required for 50% induction 
were obtained as indicated in Figure 16A. 

!"#$%&'()*+,-

!"#$-

.&- /01)-

2%!+3- 2,.- 4567-

!"#$-8'()- /019- /01:- /01;-/012- /01<-

0- =- >- ?- @- A- B- C- 1- 0D- 00- 0=- 0>- 0?- 0@-
2,.- 4567-2,.- 4567- 2,.- 4567- 2,.- 4567- 2,.- 4567- 2,.- 4567-2,.- 4567-

0A-

=>E-+'()- ;5FG-!H3I-!

!" #"

$$" #"

%&" #"

&!" #"

$#'"()*(+*,-.,/)*""
-+01/-+"2)-""

345"/*61(,/)*"

7$!8"

9,"

7$!#"

7$!:"

7$!;"
<$%="

!"#$"

4"

$444"

%444"

>444"

?444"

3444"

&444"

@444"

4" %4" ?4" &4" A4" $44" $%4"

#
/BB
+-
"1
*/
,C
"

$DE+,FGBD'-H"I #J"

7$!<"

"



 

85 

We tested the expression of tnaC tnaA’-‘lacZ constructs containing tnaC genes 

with I19 codon replacements in vivo (Figure 17B).  The expression of these constructs 

was analyzed at different concentrations of 1MT to determine the effects of the 

mutations on the sensitivity of the ribosome to inducer concentration (64,99).  As 

expected, wild-type TnaC and the I19L replacement showed very similar inducer 

dependence (Figure 17B).  The I19A and I19W replacements, like the previously 

examined substitution W12R, completely abolished the expression of the reporter gene 

(Figure 17B).  The I19V and I19M replacements reduced the level of induction of the 

reporter construct (Figure 17B).  However, the most remarkable observation was that the 

I19M and I19V mutations changed the sensitivity for the system to the concentration of 

the inducer: these mutants required 2.4 times and 6.3 times more 1MT, respectively, 

compared to the wild type construct to obtain 50% of maximum induction.  These results 

were confirmed in vitro (Figure 18).  These data indicated that, similar to the effect of 

the 23S rRNA A2058 and A2059 mutations, changes in the nature of residue I19 of 

TnaC peptide alter the Trp concentration dependence of the translation arrest at tnaC 

mRNA. 
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Figure 18. (A) L-Trp protection analyses using isolated stalled ribosomes.  Stalled ribosome complexes 
were isolated from in vitro translation reactions performed with RF2 depleted cell free extracts and 
biotinylated tnaC mRNAs indicated in the figure.  The isolated complexes were mixed or not (-) with the 
indicated concentrations of L-Trp prior the addition (+) of 0.05 mM puromycin.  Products of the reactions 
were resolved in 10% tris-tricine polyacrylamide gels. TnaC-tRNAPro and TnaC-puromycin molecule 
positions are shown by arrows.  (B) Plot % of TnaC-tRNAPro protected vs tryptophan concentration. The 
values of % of TnaC-tRNAPro protected were obtained from the figures in (A) and the following formula: 
intensity of the band corresponding to TnaC-tRNAPro obtained for each sample/( intensity of the band 
corresponding to TnaC-tRNAPro + intensity of the band corresponding to TnaC). 
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Functional relationship between TnaC residue I19 and 23S rRNA nucleotide A2058  

 We have shown that changes to the 23S rRNA nucleotide A2058 (Figure 16) and 

to the TnaC residue I19 (Figure 17) affect the sensitivity of the ribosome to L-Trp.  To 

determine whether there is a genetic interaction between these two sensory elements, we 

tested whether the nascent peptide mutation could compensate for the negative effect on 

stalling of the A2058U mutation.  Results obtained by in vitro toeprinting assays using 

wild type or I19L tnaC mRNAs in combination with the wild type ribosomes were in a 

good agreement with the results of in vivo and in vitro experiments shown in Figure 17; 

the I19L mutation had little effect on Trp-concentration dependence of the translation 

arrest induced in wild type ribosomes.  Strikingly, however, the I19L mutation partly 

restored the reduced Trp sensitivity of stalling of the A2058U mutant ribosomes (Figure 

19A and B).  This compensatory effect of the nascent peptide mutation was specific for 

the A2058U mutant ribosomes, because the same I19L mutation was unable to 

compensate for the negative effect on stalling of the ribosomes carrying the U2609C 

mutation (Figure 20). 

The compensatory effect of the I19L TnaC mutation on the A2058U ribosomes 

was even more pronounced in vivo. We tested the expression of wild type or tnaC(I19L) 

tnaA`-`lacZ constructs in cells containing wild type or A2058U ribosomes (Figure 19C; 

Figure 21), As we showed above (Figure 16), expression of the wild type reporter was 

substantially reduced in the cells containing A2058U ribosomes. Strikingly,  
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Figure 19. Effects of the TnaC I19L mutant peptide in the sensibility of the A2058U mutant ribosome for 
L-Trp.  (A) Toeprinting assays performed as indicated in Figure 15C.  Cell-free extracts were reconstituted 
with either wild type ribosomes or ribosomes containing 23S rRNAs with the replacement A2058U.  In 
vitro translation was performed with wild type and I19L mutant tnaC mRNAs.  (B) Plots showing the 
induction levels obtained using several concentrations of L-Trp.  The data was obtained from the gels 
shown in Figure 18A and Figure 19.  Induction of stalled ribosomes was determined from in vitro 
reactions containing either wild-type or I19L mutant tnaC mRNAs and cell-free extracts reconstituted with 
the ribosomes indicated for each plot.  The induction levels were obtained as indicated in Figure 15C.  (C) 
β-galactosidase activity obtained from cultures of bacterial cells (∆7 rrn) carrying a tnaC-tnaA’-‘lacZ 
reporter gene containing the indicated tnaC alleles and expressing the indicated 23S rRNA variants.  The 
plot and the 1MT concentration required for 50% induction were obtained as indicated in Figure 16A. 
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Figure 19. Continued 
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Figure 20. Toeprinting analysis with extracts containing 23S U2609C rRNA and wild-type or I19L tnaC 
mRNAs.  Toeprinting analysis performed as indicated in supplementary Figure 17. 
 
 
 
 however, the I19L mutation in TnaC restored the sensitivity of A2058U ribosomes to 

the concentration of free L-Trp.  Corroborating the in vitro results, this compensatory 

effect of the TnaC mutation remained specific to the A2058U mutation in vivo, because 

expression of the mutant reporter remained at very low levels in the cells with U2609C 

ribosomes.  Altogether, these data indicate that the I19L mutation in the TnaC nascent 

peptide is able to suppress the loss of Trp sensitivity of A2058U mutant ribosomes, 

revealing that the ribosome and the nascent peptide cooperate to optimize the affinity of 

the system to free L-Trp. 
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Figure 21. Effects of A2058 and A2059 23S rRNA mutations on I19 mutant TnaC peptides.  Bacterial 
cells (∆7 rrn) expressing the indicated 23S rRNAs and tnaC alleles were used to analyze expression of β-
galactosidase from a tnaC-tnaA’-‘lacZ protein fusion.  The tested cultures were grown in minimal medium 
containing 0.2% glycerol, 0.05% acid-hydrolyzed casein, 0.01 % vitamin B1 in the presence of several 
concentrations of 1MT. 
 
 
 
The A-site bound Trp-tRNATrp is unable to substitute the function of free L-Trp in 

translation arrest  

Our data show that the 23S rRNA nucleotide A2058 and the TnaC residue I19 

are both involved in modulating the affinity of L-Trp to the ribosome and that there 

might be a functional interaction between these two elements.  These data are 

compatible with the possibility that the binding site for free L-Trp might be in the 

ribosomal nascent peptide exit tunnel.  However, this hypothesis seemingly contradicts 

the previous proposal that the L-Trp binding site is located at the ribosomal A-site 
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because in previously reported experiments, tryptophanyl-tRNATrp could replace free L-

Trp as an inducer of ribosome stalling in vitro (68).  Therefore, we revisited whether 

tryptophanyl-tRNATrp in the ribosomal A-site could substitute for the free L-Trp 

requirement as the stalling cofactor at the end of the tnaC open reading frame (ORF).  

We performed in vitro translation assays by programming extracts with T7 transcribed 

wild type mRNA or a mutant tnaC mRNA (tnaC W25) containing a Trp codon inserted 

between the Pro24 codon and the stop codon.  Our cell free extracts were made from a 

strain containing the tryptophanase gene and RNAseI activity. These experiments differ 

from those previously described by Gong and Yanofsky in which transcription and 

translation were coupled in vitro using circular DNA containing the tnaC gene and cell 

free extracts lacking of both the tryptophanase activity and the RNAseI activity (29,68).  

In contrast to the previous study, our in vitro conditions would not maintain high 

concentrations of either L-Trp or mRNAs during the reactions, making the assay more 

sensitive to small changes in both L-Trp and mRNA concentrations.  In contrast to the 

previous observations, no accumulation of peptidyl-tRNA was significantly detected 

when tnaC W25 mRNA was translated irrespective of the presence of absence of 

exogenously added L-Trp (Figure 22A).  This result argued against the idea that 

tryptophanyl-tRNATrp in the A-site substituted for free L-Trp bound at a specific 

ribosomal site required for translation arrest.  
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Figure 22. Tryptophanyl-tRNATrp as an inducer. (A) Autoradiogram showing in vitro accumulation of 
TnaC-tRNAPro performed with cell-free extracts containing ribosomes with the indicated 23S rRNAs.  The 
indicated tnaC mRNAs variants were translated adding (High) or not (Low) an extra 4 mM L-Trp to the 
reactions. TnaC-tRNAPro and TnaC band positions are indicated with arrows.  (B) Toeprinting assays 
performed with in vitro translation reactions. The indicated tnaC mRNAs variants were translated using 
wild type cell-free extracts and variable concentrations of L-Trp.  The TnaC peptide sequence and the 
tnaC codon sequence for both mRNA variants are shown on the left side of each figure.  The positions of 
stalled ribosomes are shown with boxes in the tnaC codon sequence and with arrows in the right side of 
the autoradiograms.  (C) β-galactosidase activity obtained from cultures of bacterial cells (rrn+) carrying a 
tnaC-tnaA’-‘lacZ reporter gene containing the indicated tnaC variants.  The cultures were grown in the 
presence (+Trp) or in absence (-Trp) of 100 µg/ml L-Trp. 
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Figure 22. Continued. 
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would stall at the Pro24 codon.  Strikingly, however, ribosomes stalled at Pro24 of tnaC 
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W25 mRNA were nearly undetectable at low concentrations of Trp. This result indicates 

that binding of tryptophanyl-tRNATrp in the A-site of the ribosome that carries TnaC-

tRNAPro in the P-site does not induce translation arrest. Furthermore, even at high 

concentrations of L-Trp, ribosomes translating tnaC W25 mRNA stalled less efficiently 

than those translating wild type tnaC ORF, confirming that addition of an extra Trp 

codon at the end of the tnaC ORF, not only fails to rescue Trp-independent stalling, but 

is even detrimental for Trp-induced translation arrest. 

We further verified the in vitro results indicating that TnaC W25 does not induce 

ribosome arrest in the absence of L-Trp by following the in vivo Trp-mediated 

expression of tnaA in bacteria containing tnaC tnaA’-‘lacZ reporter constructs with 

several changes in its tnaC sequence.  As seen in Figure 22C, the tnaC W25 construct 

retained the L-Trp dependence confirming that the A-site bound tryptophanyl-tRNATrp 

does not substitute for binding of free L-Trp to the ribosome as a stalling cofactor.  

Elimination of the tnaC start codon (ΔAUG) or the W12R replacement in the TnaC 

sequences eliminated the L-Trp-dependent induction in the expression of both the wild 

type and the W25 reporter genes.  Combined, the results of in vitro and in vivo 

experiments argue that the A-site bound Trp-tRNATrp does not substitute for binding of 

free L-Trp to the ribosome suggesting that free L-Trp binding site does not coincide with 

the position of the Trp moiety of aminoacyl-tRNA in the PTC A-site.  Accordingly, the 

possibility that the L-Trp binding site is not in the PTC, but in the exit tunnel is 

consistent with our data in which Trp placed at the PTC does not induce stalling. 
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DISCUSSION 

 

 

 Figure 23. Model of the 50S ribosomal subunit bound to a TnaC-tRNAPro molecule. This model, obtained 
by Seidelt et al., shows the TnaC nascent peptide (dark-gray balls) within the peptide exit tunnel (43). The 
23S rRNA nucleotides (light-gray balls), proposed by Trabuco et al., that could contact the TnaC residue 
I19 (light blue balls) are shown as well. The 3’end segment of the tRNAPro (dark-gray sticks) is shown at 
the PTC P-site (38). 
 
 
 

In this study we present genetic and biochemical evidence for a functional 

interaction between the regulatory nascent TnaC peptide and the ribosome in modulating 

the affinity of the ribosome for free L-Trp, the crucial cofactor in TnaC-mediated 

translational arrest.  Mutations of either the 23S rRNA nucleotides A2058 or A2059, or 
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the TnaC residue I19, affect the response of translational arrest to the L-Trp 

concentration.  Importantly, however, the TnaC I19L substitution specifically suppresses 

the effect of the 23S rRNA A2058U mutation that reduces the affinity of the TnaC-

tRNAPro-ribosome complex for free L-Trp, arguing that the ribosome and the RAP 

cooperate in controlling properties of the L-Trp binding site.  Indeed, both cryo-EM and 

molecular dynamics analyses suggested that the 23S rRNA residues A2058 and A2059 

are in close proximity to TnaC residue I19 and thus may serve as interacting partners in 

modulating L-Trp binding or retention in the ribosome (Figure 23) (38,43).   

Although previous data suggested that the free L-Trp binding site could coincide 

with the placement of the tryptophanyl moiety of Trp-tRNATrp bound in the ribosomal 

A-site, re-evaluating the previous experiments using more natural conditions and 

alternative approaches suggest that Trp-tRNATrp cannot substitute for free L-Trp (68).  

This, by no means, excludes the formal possibility of binding of free L-Trp in the PTC, 

but raises the possibility of other interpretations.  One possibility is that the L-Trp 

binding site is formed at the site of interaction of the 23S rRNA nucleotides A2058 and 

A2059 with TnaC, once the I19 residue reaches these two nucleotides (Figure 23).  This 

model, however, would presume that L-Trp binding at this site is extremely short-lived, 

because its lifespan would be limited by the addition of P24 at the C-terminus of the 

nascent peptide, and peptide release upon binding of the release factor RF2.  An 

alternative, more attractive possibility is that the L-Trp binding site is formed by the 

residues A2058 and A2059, whereas the nascent peptide modulates the retention 

(dissociation rate) of L-Trp at this site.  The A2058 and A2059 nucleotides form a 
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hydrophobic crevice in the exit tunnel where a number of ribosome-targeting antibiotics 

bind, including macrolides that also serve as cofactors of translational arrest mediated by 

leader peptides of various erm genes (91,103,105).  Perhaps the hydrophobic planar side 

chain of L-Trp could be drawn into the crevice, possibly intercalating between the two 

adenine bases. We should note, however, that we did not observe any significant 

changes in reactivity of the A2058 and A2059 residues of the vacant E. coli ribosome to 

the modifying reagent dimethylsufate, even at high (5 mM) concentration of L-Trp 

(Klepacki and Vázquez-Laslop, unpublished results).  

 Alternatively, specific interactions between 23S rRNA nucleotides A2058 and 

A2059 and TnaC residue I19 may allosterically induce the formation of the L-Trp 

binding site at the PTC or another ribosomal location.  Biophysical analyses suggest that 

residues of nascent peptides within the exit tunnel region constituted by the nucleotides 

A2058 and A2059 are constricted to their possible spatial conformations, inducing 

specific interactions between nascent peptides and the exit tunnel (106).  Once specific 

contacts between I19 of TnaC and tunnel adenines are established, the stalling signal 

may be relayed to the L-Trp binding site via the nascent peptide, the ribosome, or both. 

Relaying the conformational change from the tunnel to the PTC has been proposed for 

other cases of peptide-mediated translational arrest (7,12,43,107).  Such a possibility 

would be compatible with the observation that L-Trp competes with the PTC-targeting 

antibiotic sparsomycin for binding to the ribosome (84).  In fact, another hydrophobic 

crevice, formed by A2451 and C2452 in the PTC is used as a binding site by a number 

of antibiotic molecules (103).  The properties of this crevice and its putative affinity for 
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L-Trp could be affected by events occurring in the exit tunnel, involving the interactions 

between the 23S rRNA nucleotides A2058 and A2059 and the TnaC residue I19.  

 Regardless of the actual location of the ribosomal binding site for free L-Trp, our 

results clearly establish that direct interactions between the regulatory nascent TnaC 

peptide and the elements of the exit tunnel modulate the affinity of the ribosome for L-

Trp.  
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CHAPTER IV 

A COMBINED SELECTION AND SCREENING APPROACH FOR IDENTIFYING 

MUTATIONS THAT CAN RESTORE THE L-TRP DEPENDENT RIBOSOME 

ARREST FUNCTION TO THE LOSS-OF-FUNCTION TNAC(D16E) MUTANT 

 

INTRODUCTION 

 The tnaCAB operon of Escherichia coli encodes the genes required for the 

catabolism of L-Trp (23).  The two structural genes of the operon tnaA and tnaB encode 

tryptophanase and an L-Trp-specific permease, respectively (21,96).  Tryptophanase 

catalyzes the breakdown of L-Trp into pyruvate, ammonia, and indole (23).   Pyruvate 

and ammonia are used by the cell as carbon and nitrogen sources, respectively, while 

indole is a volatile signaling molecule that can function in quorum sensing and biofilm 

formation (24,25).  The expression of tnaA and tnaB is regulated by elements within the 

5’-leader region of the operon that includes tnaC, which encodes the 24 amino acid 

ribosome arrest peptide (RAP) TnaC.  In combination with the other regulatory elements 

of the 5’-leader region, TnaC regulates read-through transcription into the structural 

genes by an attenuation of transcription mechanism (21,96).  Transcription initiation of 

tnaCAB is controlled by catabolite repression, occurring upon cAMP/CAP binding at the 

promoter (27).  Continuation of transcription into the structural genes is regulated by 

TnaC-mediated ribosome arrest in response to free L-Trp (1).   

 In the absence of inducing levels of L-Trp, translating ribosomes terminate after 

synthesis of TnaC, releasing the nascent peptide and ribosomal subunits from the 
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mRNA.  The absence of ribosomes at the end of tnaC allows binding of the transcription 

termination factor Rho to its rut-binding site, which is immediately downstream of the 

tnaC coding sequence.  Rho can then interact with paused RNA polymerase, promoting 

premature transcription termination before tnaA and tnaB are transcribed (1,29,32,96).  

In the presence of inducing levels of L-Trp, translation termination is inhibited after 

synthesis of TnaC, causing the ribosome to stall at the tnaC stop codon.  The stalled 

ribosome blocks Rho’s access to its rut-binding site; therefore, transcription is able to 

continue into the structural genes of the operon (1,29,32,96).   

 TnaC-mediated stalling requires elements of both the nascent peptide and of the 

ribosome. Changes at specific positions of the TnaC peptide or of specific elements of 

the large ribosomal subunit, the 23S rRNA or ribosomal proteins L4 and L22, abolish 

TnaC-mediated stalling in response to L-Trp.  The TnaC peptide has three highly 

conserved residues: W12, D16, and P24, each of which has a functional role in ribosome 

arrest induced by TnaC (30,31,36,68,96).  Structural analyses have revealed possible 

interactions between these functional residues of TnaC and elements constituting the 

peptidyl transferase center (PTC) or exit tunnel of the ribosome (38,43).  The specific 

ribosomal elements that are predicted to interact with the crucial TnaC residues also 

have a functional role in TnaC-mediated arrest (44,45,64,99).  However, due to a lack of 

genetic and biochemical analyses on the functionality of the interactions between the 

TnaC peptide and ribosomal components, how the TnaC peptide, ribosomal components, 

and L-Trp work in concert to facilitate the stalling of the ribosome is still unclear.  

Identifying either cis-acting mutations to the TnaC peptide or trans-acting mutations to 
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ribosomal components that restore the ability of loss-of-function TnaC mutants to induce 

ribosome arrest in response to L-Trp may provide the missing details of the interplay 

between the ribosome and the TnaC peptide that leads to ribosome stalling. 

 To this end, we used a combined forward genetic selection and screening 

approach to isolate and identify mutations that suppress the inability of a specific amino 

acid substitution in TnaC, D16E, to induce ribosome arrest.  A screen had been 

previously developed by Nakatogawa and Ito using a translational lacZ fusion to the 

stalling sequence of the RAP SecM, that after mutagenesis allowed screening for 

mutations that alleviated SecM-mediated stalling (12).  However, this method could not 

be used for TnaC due to the requirements for other regulatory elements outside of the 

tnaC coding sequence within the 5’-leader region of the tnaCAB transcript.  Therefore, 

to maintain all of the required regulatory elements within the tnaCAB 5’-leader region a 

translational fusion was created between tnaA and lacZ for our studies.  Also, while 

Nakatogawa and Ito were able to see a dramatic difference in the color of colonies 

grown on plates containing the chromogenic substrate, 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-gal), such that white colonies were produced by strains in which 

the ribosome was capable of stalling at the SecM stalling sequence and blue colonies 

were produced by strains in which ribosome arrest at the SecM stalling sequence was 

alleviated, such a drastic difference in colony color on X-gal containing plates was not 

observed with our tnaC-tnaA’-‘lacZ constructs (12).  Instead of using a color screening 

approach, we took advantage of the tnaA’-‘lacZ translational fusion as well as the 

presence of the other genes of the lac operon, lacY and lacA, in our constructs to create a 
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combined forward genetic selection and screening approach for the identification of 

mutations that restore Trp-inducibility to loss-of-function TnaC mutants.  Using this 

method we isolated both cis-acting and trans-acting mutations (in addition to true 

revertants) that restored Trp-inducibility to the nonfunctional TnaC(D16E) mutant and 

characterized the cis-acting second-site mutations for their effects on tnaC-tnaA’-‘lacZ 

reporter expression.   

 

MATERIALS AND METHODS 

Bacteria strains and plasmids  

 The E. coli K-12 strains and plasmids containing selected genes used in this 

study are listed in Table 7.  Bacteria strains containing mutant variants of the tnaA’-‘lacZ 

reporter genes and mutant variants of the 23S RNA gene were made as previously 

described (99). 

 
 
Table 7. E.coli bacterial plasmids and strains used in this work. 

Strains Relevant genotype Source 
MB4091 DH10B E.coli cells containing pKD46 (108) 
AW122 Derived from SQ351 (prrnC-sacB, ptRNA67) (99) 
AW153 MG1655 Δ(lacZYA) att7::tnaptnaC(tnaA’-

‘lacZYA) 
(99) 

AW154 MG1655 Δ(lacZYA) att7::tnaptnaC(W12R)(tnaA’-
‘lacZYA) 

(99) 
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Table 7. Continued 

Strains Relevant genotype Source 
AW182 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-

‘lacZYA) (prrnC-sacB, ptRNA67) 
(99) 

AW216 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNK, ptRNA67) 

(99) 

AW218 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNH2609, ptRNA67) 

(99) 

AW227 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNH153, ptRNA67) 

(99) 

AW513 MG1655 Δ(lacZYA) att7::tnaptnaC(D16A)(tnaA’-
‘lacZYA) 

(99) 

AW643 MG1655 Δ(lacZYA) 
att7::tnaptnaC(ΔAUG)(tnaA’-‘lacZYA) 

This study 

AW673 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNK-A2058U, ptRNA67) 

This study 

AW675 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNK-A2059U, ptRNA67) 

This study 

AW676 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNK-A2059G, ptRNA67) 

This study 

AW677 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNK-A2059C, ptRNA67) 

This study 

AW680 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNK-A2058G, ptRNA67) 

This study 

AW741 Derived from MB4091 with tna operon:::CamR (99) 
AW797 MG1655 Δ(lacZYA) att7::tnaptnaC(D16K)(tnaA’-

‘lacZYA) 
This study 

AW819 MG1655 Δ7 rrn Δ(lacZYA) Δ(tnaCAB) 
att7::tnaptnaC(tnaA’-‘lacZYA) (prrnC-sacB, 

ptRNA67) 

This study 

AW821 MG1655 Δ(lacZYA) att7::tnaptnaC(D16E)(tnaA’-
‘lacZYA) 

This study 

AW822 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(D16E)(tnaA’-‘lacZYA) (prrnC-

sacB, ptRNA67) 

This study 

AW834 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(D16E)(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

This study 

AW839 MG1655 Δ7 rrn Δ(lacZYA) att7::tnaptnaC(tnaA’-
‘lacZYA) (pNK-A752C, ptRNA67) 

(99) 
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Table 7. Continued 

Strains Relevant genotype Source 
AW845 MG1655 Δ7 rrn Δ(lacZYA) Δ(tnaCAB) 

att7::tnaptnaC(D16E)(tnaA’-‘lacZYA) (prrnC-
sacB, ptRNA67) 

This study 

AW854 Derived from AW845 
att7::tnaptnaC(D16E)(tnaA’-‘lacZYA) (prrnC-

sacB, ptRNA67) 

This study 

AW855 Derived from AW845 
att7::tnaptnaC(D16E/R23S)(tnaA’-‘lacZYA) 

(prrnC-sacB, ptRNA67) 

This study 

AW856 Derived from AW845 
att7::tnaptnaC(D16E/R23S)(tnaA’-‘lacZYA) 

(prrnC-sacB, ptRNA67) 

This study 

AW857 Derived from AW845 
att7::tnaptnaC(D16E)(tnaA’-‘lacZYA) (prrnC-

sacB, ptRNA67) 

This study 

AW858 Derived from AW845 att7::tnaptnaC(tnaA’-
‘lacZYA) (prrnC-sacB, ptRNA67) 

This study 

AW859 Derived from AW845 
att7::tnaptnaC(S10P/D16E)(tnaA’-‘lacZYA) 

(prrnC-sacB, ptRNA67) 

This study 

AW860 Derived from AW845 att7::tnaptnaC(tnaA’-
‘lacZYA) (prrnC-sacB, ptRNA67) 

This study 

AW861 Derived from AW845 
att7::tnaptnaC(S10P/D16E)(tnaA’-‘lacZYA) 

(prrnC-sacB, ptRNA67) 

This study 

AW862 Derived from AW845 att7::tnaptnaC(tnaA’-
‘lacZYA) (prrnC-sacB, ptRNA67) 

This study 

AW863 Derived from AW845 att7::tnaptnaC(tnaA’-
‘lacZYA) (prrnC-sacB, ptRNA67) 

This study 

AW864 Derived from AW845 att7::tnaptnaC(tnaA’-
‘lacZYA) (prrnC-sacB, ptRNA67) 

This study 

AW865 Derived from AW845 att7::tnaptnaC(tnaA’-
‘lacZYA) (prrnC-sacB, ptRNA67) 

This study 

AW869 Derived from AW845 
att7::tnaptnaC(D16E/R23H)(tnaA’-‘lacZYA) 

(prrnC-sacB, ptRNA67) 

This study 

AW888 MG1655 Δ(lacZYA) att7::tnaptnaC(S10P)(tnaA’-
‘lacZYA) 

This study 

AW909 MG1655 Δ(lacZYA) 
att7::tnaptnaC(S10P/D16E)(tnaA’-‘lacZYA) 

This study 
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Table 7. Continued 

Strains Relevant genotype Source 
AW922 MG1655 Δ(lacZYA) att7::tnaptnaC(R23H)(tnaA’-

‘lacZYA) 
This study 

AW925 MG1655 Δ(lacZYA) 
att7::tnaptnaC(D16E/R23H)(tnaA’-‘lacZYA) 

This study 

AW930 MG1655 Δ(lacZYA) 
att7::tnaptnaC(S10P/D16K)(tnaA’-‘lacZYA) 

This study 

AW933 MG1655 Δ(lacZYA) 
att7::tnaptnaC(S10P/W12R)(tnaA’-‘lacZYA) 

This study 

AW940 MG1655 Δ(lacZYA) 
att7::tnaptnaC(S10PΔAUG)(tnaA’-‘lacZYA) 

This study 

AW946 MG1655 Δ(lacZYA) 
att7::tnaptnaC(D16EΔAUG)(tnaA’-‘lacZYA) 

This study 

AW949 MG1655 Δ(lacZYA) 
att7::tnaptnaC(S10P/D16EΔAUG)(tnaA’-

‘lacZYA) 

This study 

AW952 MG1655 Δ(lacZYA) 
att7::tnaptnaC(S10P/D16A)(tnaA’-‘lacZYA) 

This study 

AW955 MG1655 Δ(lacZYA) 
att7::tnaptnaC(D16K/R23H)(tnaA’-‘lacZYA) 

This study 

AW958 MG1655 Δ(lacZYA) 
att7::tnaptnaC(W12R/R23H)(tnaA’-‘lacZYA) 

This study 

AW961 MG1655 Δ(lacZYA) 
att7::tnaptnaC(R23HΔAUG)(tnaA’-‘lacZYA) 

This study 

AW965 MG1655 Δ(lacZYA) 
att7::tnaptnaC(D16A/R23H)(tnaA’-‘lacZYA) 

This study 

AW967 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(S10P)(tnaA’-‘lacZYA) (pNK-

A752, ptRNA67) 

This study 

AW968 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(S10P)(tnaA’-‘lacZYA) (pNH153, 

ptRNA67) 

This study 

AW969 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(S10P)(tnaA’-‘lacZYA) (pNH2609, 

ptRNA67) 

This study 

AW970 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(S10P)(tnaA’-‘lacZYA) (pNK-

A2059C, ptRNA67) 

This study 

AW973 MG1655 Δ(lacZYA) 
att7::tnaptnaC(D16E/R23HΔAUG)(tnaA’-

‘lacZYA) 

This study 
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Table 7. Continued 

Strains Relevant genotype Source 
AW974 MG1655 Δ7 rrn Δ(lacZYA) 

att7::tnaptnaC(S10P)(tnaA’-‘lacZYA) (pNK-
A2059G, ptRNA67) 

This study 

AW975 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(S10P)(tnaA’-‘lacZYA) (pNK-

A2059U, ptRNA67) 

This study 

AW976 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(S10P)(tnaA’-‘lacZYA) (pNK-

A2058U, ptRNA67) 

This study 

AW977 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(S10P)(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

This study 

AW978 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(R23H)(tnaA’-‘lacZYA) (pNK-

A2059C, ptRNA67) 

This study 

AW979 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(R23H)(tnaA’-‘lacZYA) (pNK-

A2059G, ptRNA67) 

This study 

AW980 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(R23H)(tnaA’-‘lacZYA) (pNK-

A2059U, ptRNA67) 

This study 

AW981 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(R23H)(tnaA’-‘lacZYA) (pNK-

A2058G, ptRNA67) 

This study 

AW982 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(R23H)(tnaA’-‘lacZYA) (pNK-

A752C, ptRNA67) 

This study 

AW983 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(R23H)(tnaA’-‘lacZYA) (pNH153, 

ptRNA67) 

This study 

AW984 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(R23H)(tnaA’-‘lacZYA) (pNH2609, 

ptRNA67) 

This study 

AW985 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(R23H)(tnaA’-‘lacZYA) (pNK, 

ptRNA67) 

This study 
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Table 7. Continued 

Strains Relevant genotype Source 
AW986 MG1655 Δ7 rrn Δ(lacZYA) 

att7::tnaptnaC(S10P)(tnaA’-‘lacZYA) (pNK-
A2058G, ptRNA67) 

This study 

AW987 MG1655 Δ7 rrn Δ(lacZYA) 
att7::tnaptnaC(R23H)(tnaA’-‘lacZYA) (pNK-

A2058U, ptRNA67) 

This study 

Plasmids Description Source 
pKD3 Template plasmid for gene disruption 

 
(109) 

pKD46 
 

Lambda red recombinase plasmid 
 

(109) 

ptRNA67 
 

tRNA encoding plasmid 
 

(76) 

prrnC-sacB 
 

Wild-type rrnC operon; Kmr, and a sacB gene, 
derived from pCS101 

(76) 

pNK 
 

Wild-type rrnB operon; Ampr, derived from 
ColE1 

 

(12) 

pAW137 
 

Has the tnaptnaC(ΔN2-H22) with BsaI-XhoI-BsaI 
linker-tnaA'-'lacZYA cloning reporter gene 

derived from pACYC184 

(99) 

pAW627 
 

tnaC-tnaA'- cloned into pUC18 BamHI site This study 

pAW629 
 

Derived from pAW627, start codon of tnaC 
changed to stop codon (ATG -> TGA) 

This study 

 
 
 
Creation of the tnaA’-‘lacZ reporter gene at the att7 site 

 Creation of the tnaA’-‘lacZ reporter genes at the att7 site was carried out as 

previously described (99).   
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tna operon deletion 

 The cat gene from pKD3 was amplified with forward primer, AW269, that 

contained 50 base pairs of homology from the endogenous tna locus of E.coli MG1655 

from -290 to -240 nucleotides upstream of tnaC and reverse primer, AW270, that 

contains 50 base pairs of homology from 150-200 nucleotides downstream of tnaB.  The 

resulting PCR product was used to transform MB4091 cells by electroporation.  

Transformants were selected for growth on LB containing 25µg/ml chloramphenicol.  

Transformants were screened to ensure replacement of the tna operon by the Cam-

cassette using colony PCR and Ehrlich’s reagent addition to over night cultures.  The 

resulting strain was designated AW741. 

 The tna operon:::CamR loci was transduced to recipient strains containing tnaC-

tnaA’-‘lacZYA (either wild type or mutant versions of tnaC) at the att7 locus of AW122 

using P1 transduction with P1virAW741.  P1 lysate preparation and transduction were 

carried out as previously described (79). 

 

Selection for suppressors that restore induction to TnaC D16E uninducible mutant 

 Strain AW845 was grown overnight in VB minimal medium plus 0.2% glucose, 

0.05% acid-hydrolyzed casein, 0.01% vitamin B1 and 25 µg/ml kanamycin.  Cultures 

were washed once in VB without any supplements and 100 µl of washed culture was 

plated on VB minimal medium supplemented with 1% lactose, 100 µg/ml Trp, 0.05% 

acid-hydrolyzed casein, 0.01% vitamin B1 and 25 µg/ml kanamycin.  Plates were 

incubated at 37°C for 6 days.  Colonies that formed were picked and each colony was 
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grown overnight in VB minimal medium plus 0.2% glucose, 0.05% acid-hydrolyzed 

casein, 0.01% vitamin B1 and 25 µg/ml kanamycin.  Mutations that restore induction to 

the uninducible TnaC(D16E) mutant were desired, so these cultures were screened for 

Trp inducibility. Overnight cultures were replica plated onto VB plates supplemented 

with 1% lactose, 0.05% acid-hydrolyzed casein, 0.01% vitamin B1 and 25 µg/ml 

kanamycin, with or without 100 µg/ml Trp.  Those colonies that either grew on the Trp 

containing plate and not at all on the plate lacking Trp, or those that grew better on the 

Trp containing plate than they did on the plate lacking Trp were selected for further 

analysis by Miller Assay.  Out of the 1152 total colonies screened by replica plating, 111 

showing differential growth were analyzed by Miller Assay of exponentially growing 

cultures to determine if the LacZ reporter was inducible by Trp.  Out of the 111, 13 were 

confirmed to be inducible by Trp in three independent experiments.  To analyze the 

expression of the tnaA’-‘lacZ reporter gene Miller assays were performed as 

described(79). β-gal activity is reported in Miller units.   

 

Sequencing of tnaptnaC-tnaA’-‘lacZ region to identify cis-acting mutations that 

suppress uninducible TnaC(D16E) mutant 

The tnaptnaC-tnaA’-‘lacZ region at the att7 site was first amplified from mutant 

strains using primers Att7F: 5'-GCGGCGACAACAGTTGCGACGGTGGTACG-3' 

and AW111: 5'-GCGGTTTTCTCCGGCGCGTAAAAATGCGCTCAGG-3', and the 

resulting PCR product was sequenced using M13F-200: 5'-

CCATTCGCCATTCAGGCTGCGCAAC-3'.  
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Recreation of second site mutations within TnaC(D16E) 

To recreate the D16E/S10P double mutant and the S10P single mutant, annealed 

oligonucleotides were used to insert TnaC(S10P/D16E) or TnaC(S10P) sequences into 

pAW137.  Synthetic oligonucleotides AW297 and AW298 were used for 

TnaC(S10P/D16E) and AW299 and AW300 were used for TnaC(S10P).  Creation of the 

tnaA’-‘lacZ reporter genes at the att7 site was carried out as previously described (99).  

To make the D16E/R23H double mutant and the R23H single mutant pAW627 was used 

as a template for site-directed mutagenesis.  Primers AW303 and AW304 were first used 

to make the R23H change and then primers AW305 and AW306 were used to make the 

D16E change for the double mutant.  The resulting tnaC-tnaA’- region was cloned from 

pUC18 into pRS552 as a BamHI fragment which creates an in-frame translational fusion 

between tnaA’- and -‘lacZ.  The tnaC-tnaA’-‘lacZYA region from the pRS552 

derivatives were cloned as SalI fragments into XhoI digested pGRG36.  The pGRG36 

derivatives were then used for integration at the att7 site as described previously 

{McKenzie, 2006 #26;Martinez, 2012 #90}.   

 

Identification of trans-acting rRNA mutations that suppress uninducible 

TnaC(D16E) mutant 

 To determine whether trans-acting mutations were within the rRNA, the prrnC-

sacB plasmids were prepared from strains AW854 and AW857.  The resulting plasmids 

were designated pAW854 and pAW857, respectively.  pAW854 and pAW857 were 

transformed into chemically competent AW834 cells and transformants were selected on 
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LB plates containing 25 µg/ml kanamycin.  Two independent transformants from each 

transformation were selected and subcultured every 12 hours for 72 hours in LB broth 

containing 25 µg/ml kanamycin.  Dilutions of each of the final cultures were plated on 

LB plates containing 25 µg/ml kanamycin.  Resulting colonies were replica plated on LB 

plates containing either 25 µg/ml kanamycin or 100 µg/ml ampicillin to ensure eviction 

of pNK and maintenance of pAW854 or pAW857.  The resulting strains were designated 

AW870, AW871, AW872, and AW873.  Likewise, pNK was transformed into 

chemically competent AW854 and AW857 cells.  Transformants were selected on LB 

plates containing 100 µg/ml ampicillin.  Two independent transformants of each were 

selected and cultured overnight in LB broth containing 100 µg/ml ampicillin.  Dilutions 

of the overnight cultures were plated on LB plates containing 5% sucrose, which selects 

against the prrnC-sacB derived plasmids (pAW854 and pAW857).  Resulting colonies 

were replica plated on LB plates containing either 25 µg/ml kanamycin or 100 µg/ml 

ampicillin to ensure eviction of prrnC-sacB derived plasmids and maintenance of pNK.  

The resulting strains were designated AW874, AW875, AW876, and AW877.   

After verifying by Miller Assay that the trans-acting mutation that conferred Trp-

inducibility to the TnaC(D16E) mutant was on the prrnC-sacB plasmids of AW854 and 

AW857, the rrnC operon from pAW854 and pAW857 were sequenced. 
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RESULTS 

Suppressor mutations of the loss-of-function TnaC mutant D16E, were isolated 

using a combined selection and screen strategy 

 Considering the conservation and functional importance of D16, this amino acid 

of TnaC was chosen as a candidate for the combined selection and screen for mutations 

that could suppress non-functional D16 mutants.  Nine different amino acid substitutions 

at this position abolish TnaC-mediated ribosome arrest in response to L-Trp, 

demonstrating the importance of this residue (31,39,99).  The conservative loss-of-

function mutation D16E was chosen for the selection for two reasons.  First, the D16E 

mutation is the result of a single nucleotide change and therefore revertants should be 

readily obtained.  Identification of revertants was used as a positive control to validate 

the combined selection and screen.  Second, because of the importance of D16, we 

reasoned that it would be more likely to obtain suppressor mutations of D16E, because 

of the conservative nature of this change (i.e., it extends the side chain by a methylene 

group).   

 The strain used for this study has several important characteristics that make the 

combined selection and screen possible.  First, the tnaC(D16E)-tnaA’-‘lacZYA reporter 

operon is integrated site-specifically in a single copy in the chromosome.  Second, the 

strain lacks the endogenous tna operon.   Deleting the endogenous tna operon eliminates 

homologous recombination between the reporter operon and the endogenous tna operon, 

which could restore the wild-type tnaC sequence to the reporter operon.  Finally, the 

strain has all seven of the rRNA operons deleted from the chromosome with a wild-type 
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rRNA operon supplied on a low copy plasmid.  This gets rid of the requirement for 

dominant trans-acting suppressor mutations in the rRNA and also allows these mutations 

to be easily identified.   

 Strains that acquire a mutation that restores the ability of the D16E mutant to 

induce expression of the reporter lac operon in the presence of L-Trp, should be able to 

grow on minimal lactose medium containing L-Trp.  Using the D16E strain to select for 

spontaneous mutations that confer growth on minimal lactose medium containing L-Trp, 

a total of 1152 individual colonies were isolated.  Resulting colonies could either be the 

result of mutations that only confer growth on minimal lactose medium containing L-Trp 

or mutations that confer growth on minimal lactose medium independent of L-Trp.   

Since suppressor mutations that restored Trp-induction to D16E were desired, the 1152 

colonies that resulted from the selection were screened by replica plating overnight 

cultures of each on minimal lactose medium with or without L-Trp.  Colonies from the 

replica plates were chosen for further analysis if they met one of two criteria: 1) the 

colony grew on the plate containing L-Trp and not at all on the plate lacking L-Trp, or 2) 

the colony grew better on the plate containing L-Trp than it did on the plate lacking Trp.    

 A total of 111 colonies from the replica plates met the above criteria and were 

screened by Miller Assay.  Out of these 111, 13 were confirmed to be ≥ 2-fold Trp-

inducible by 3 independent experiments (Table 8).  The leader region of the reporter 

operon from the 13 mutants was sequenced to determine if there were any mutations 

within TnaC.  Based on the tnaC sequence, the mutants were divided into 4 classes 

(Table 9).  Revertants were designated as class 1, trans-acting mutants were designated 
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as class 2, and two different cis-acting mutants were designated class 3 and class 4.  

Nearly half of the mutants were revertants, which shows that the combined selection and 

screening method is a powerful tool that can be used to identify mutations that can 

restore L-Trp-inducibility to the non-functional D16E mutant, or in principal any other 

non-functional TnaC mutant.   

 
 
Table 8. Mutants isolated from growth on minimal lactose medium containing L-Trp selection that restore 
≥2-fold Trp-induction to D16E. 

Wild-type 8 ±  0 97 ±    8 12.1
D16E 10 ±  1 12 ±    0 1.2
D16E-4E9 66 ±  1 181 ±    4 2.7
D16E-6E11 114 ±  1 179 ±    3 1.6
D16E-6F7 184 ±14 255 ±  21 1.4
D16E-8H11 67 ±  1 181 ±    5 2.7
D16E-11F5 33 ±  4 993 ±  11 30.1
D16E-12A9 51 ±  3 135 ±    5 2.6
D16E-12F12 12 ±  0 550 ±  32 45.8
D16E-13D3 74 ±13 178 ±  19 2.4
D16E-16G12 11 ±  1 450 ±  29 40.9
D16E-17B6 16 ±  1 1021 ±170 63.8
D16E-17E2 30 ±  1 1114 ±  79 37.1
D16E-19G2 26 ±  0 1437 ±  70 55.3
D16E-23E6 64 ±  3 191 ±    4 3.0

Strain
!-galactosidase activity (MU)

 -Trp  +Trp
Induction ratio 

(+Trp/-Trp)

 
aCultures of ∆7 rrn E. coli bacterial strains AW819 (Wt), AW845 (D16E), AW854 (D16E-4E9), AW855 
(D16E-6E11), AW856 (D16E-6F7), AW857 (D16E-8H11), AW858 (D16E-11F5), AW859 (D16E-12A9), 
AW860 (D16E-12F12), AW861 (D16E-13D3), AW862 (D16E-16G12), AW863 (D16E-17B6), AW864 
(D16E-17E2), AW865 (D16E-19G2), and AW869 (D16E-23E6) were grown in minimal medium plus 
0.2% glycerol, 0.05% acid-hydrolyzed casein, 0.01% vitamin B1, 25 µg/ml kanamycin, with (+Trp) or 
without (-Trp) 100 µg/ml Trp. β-Galactosidase assays were performed in three independent experiments . 
bRatio of values for cultures grown with Trp (+Trp) and those grown without Trp (-Trp). 
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Table 9. Four classes of mutants that restore ≥2-fold Trp-induction to D16E. 
Class Mutation Strains

1 Revertant D16E -> D16 11F5, 12F12, 16G12, 17B6, 17E2, 19G2
2 Still D16E, no other change in TnaC 4E9, 8H11
3 S10P/D16E 12A9, 13D3
4 D16E/R23S/H 6E11, 6F7, 23E6  

 
 
 
Trans-acting mutations 

 The two mutants in class 2 still have the D16E change within tnaC and do not 

have any other mutations within the tna leader region; therefore, the mutation in these 

strains that restore L-Trp-inducibility to the D16E peptide are trans-acting.  Structural 

studies of the TnaC peptide within the ribosomal exit tunnel show that at the time of 

ribosome arrest D16 is at the constriction site formed by loops of r-proteins L4 and L22 

(38,43).  Biochemical analysis show that the non-functional D16A mutant fails to protect 

the 23S rRNA nucleotide U2609 from methylation which is also located near the 

constriction site (99).  Based on the structural and biochemical analyses, we 

hypothesized that interactions between D16 and components of the ribosome exit tunnel 

contribute to the ability of the nascent TnaC peptide to respond to L-Trp and cause 

ribosome arrest, and that the side chain of D16 may be crucial for maintaining this 

interaction.  Thus changes at this position would disrupt this required interaction 

abolishing ribosome arrest in response to L-Trp. 

 Due to the predicted position of D16 within the ribosomal exit tunnel we 

hypothesized that mutations to residues of r-proteins L4 or L22 or to the 23S rRNA 

within this region may be able to suppress the D16E change restoring L-Trp-mediated 
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ribosome arrest to the D16E containing nascent peptide.  However, no mutations were 

identified in r-proteins L4 or L22 of the class 2 mutants.  Since the rRNA operon in 

these strains is plasmid-encoded, the rRNA-containing plasmid from the class 2 mutants 

was replaced by a plasmid encoding a wild-type rRNA.  With both of the class 2 

mutants, when the plasmid encoding the wild-type rRNA replaced the original rRNA-

containing plasmid, induction of the TnaC(D16E) reporter was abolished (data not 

shown).  Also, the rRNA-containing plasmid from the class 2 mutants was used to 

replace the wild-type rRNA plasmid in a virgin D16E strain.  In this case, the rRNA-

containing plasmids from both of the class 2 mutants restored induction to the 

TnaC(D16E) reporter in the virgin D16E strain (data not shown).  The results of these 

experiments suggest that the trans-acting mutation that suppresses the non-functional 

D16E mutation is plasmid-encoded.  However, after sequencing the entire rRNA operon 

from both class 2 mutants, no mutations in this region of the plasmid were identified 

(data not shown).  The nature of these plasmid-encoded trans-acting mutations is still 

unknown and may merely change copy number or expression levels.   

 

Cis-acting mutations at two different positions within TnaC restore inducibility to 

D16E 

 Mutations at two different positions within TnaC were found to suppress the non-

functional D16E mutant.  That is, in addition to still having the D16E mutation, the class 

3 mutants have the second-site mutation S10P and the class 4 mutants have a second-site 

mutation at R23, either R23S or R23H.  Both of the class 3 mutants (S10P/D16E double 
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mutants) are ~2.5-fold inducible in response to L-Trp (Table 8).  Within the class 4 

mutants, the cis-acting R23S mutants are ~1.5-fold inducible in response to L-Trp and 

the R23H cis-acting mutant is ~3-fold inducible in response to L-Trp (Table 8).  Since 

we are interested in suppressors that restore ≥ 2-fold L-Trp-induction to D16E, the cis-

acting S10P and R23H mutations will be the focus of the rest of this study.   

 

The cis-acting mutations S10P and R23H suppress the loss-of-function TnaC 

mutant, D16E 

 To ensure that the second-site mutations within tnaC that were isolated from the 

selection, S10P and R23H, are responsible for restoring L-Trp-mediated ribosome arrest 

to D16E, strains containing reporter operons with the single S10P and R23H changes in 

tnaC and the double S10P/D16E and D16E/R23H mutations within tnaC were 

constructed.  Both the S10P/D16E and D16E/R23H double mutant showed induction in 

response to L-Trp (~4-fold and ~2.4-fold respectively) (Table 10).  These results suggest 

that either of the single amino acid changes, S10P or R23H, can restore the L-Trp 

dependent ribosome arrest function to the non-functional D16E mutant.  Interestingly, 

both the S10P and R23H single mutants have high basal LacZ levels (~20-fold over 

wild-type TnaC basal LacZ levels) but still show a slight induction in response to L-Trp 

(~1.9-fold and ~1.4-fold, respectively) (Table 10).   
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Table 10. S10P and R23H are cis-acting mutations that suppress the loss-of-function D16E mutation. 

Wild-Type 57 ±     2 2175 ± 274 38.2
D16E 38 ±   11 68 ±   25 1.8
S10P 1312 ± 290 2506 ± 244 1.9
R23H 1147 ±   40 1636 ± 317 1.4
S10P/D16E 138 ±   14 568 ± 137 4.1
D16E/R23H 192 ±   32 453 ±   10 2.4

Strain
!-galactosidase activity (MU) Induction ratio 

(+Trp/-Trp) -Trp  +Trp

 
aCultures of rrn+ E. coli bacterial strains AW153 (Wt), AW821 (D16E), AW888 (S10P), AW922 (R23H), 
AW909 (D16E/S10P), and AW925 (D16E/R23H) were grown in minimal medium plus 0.2% glycerol, 
0.05% acid-hydrolyzed casein, 0.01% vitamin B1, with (+Trp) or without (-Trp) 100 µg/ml Trp. β-
Galactosidase assays were performed in three independent experiments .  bRatio of values for cultures 
grown with Trp (+Trp) and those grown without Trp (-Trp). 
 
 

The constitutive expression of the lacZ reporter observed in the S10P and R23H 

constructs is translation dependent 

 Two different mechanisms can explain the high basal level of LacZ observed 

with the S10P and R23H mutants.  The first possibility is that the changes at the 

nucleotide level affect the mRNA secondary structure or other regulatory elements 

leading to inefficient transcription attenuation in the absence of added L-Trp.  The 

second possibility is that the mutant nascent peptides are causing ribosome arrest in the 

absence of added L-Trp.  Constitutive ribosome arrest is translation-dependent and thus 

can be tested in vivo by eliminating translation of tnaC and preventing TnaC-mediated 

ribosome arrest.   If the mutant nascent peptides cause constitutive ribosome arrest, in 

the absence of translation, premature transcription termination will occur both in the 

presence and absence of L-Trp leading to a dramatic decrease in LacZ levels under both 

conditions.  To determine if the elevated basal level expression of LacZ in the S10P and 
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R23H mutants was dependent on the translation of the mutant nascent peptides we 

created reporter constructs in which the AUG start codon of TnaC was changed to a 

UGA stop codon (ΔAUG).  The elimination of the start codon of wild-type and several 

mutant versions of tnaC dramatically reduce the expression of the lacZ reporter gene and 

eliminate Trp-mediated induction (32,99).  As expected, elimination of the start codon of 

wild-type tnaC dramatically decreased the expression of lacZ both in the presence and 

absence of L-Trp, and L-Trp-dependent induction was abolished (Table 11 and 12).  

Elimination of the start codon of all of the TnaC mutants examined also decreased the 

expression of lacZ in both the presence and absence of L-Trp.  In the absence of 

translation, the L-Trp-dependent induction of the S10P/D16E and D16E/R23H double 

mutants was also abolished (Table 11 and 12).  These results suggest that the high basal 

level of LacZ observed with the S10P and R23H mutants is translation-dependent, which 

is consistent with the idea that these mutant nascent peptides cause ribosome arrest in 

vivo in the absence of added L-Trp. 
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Table 11. High basal LacZ level observed with S10P is translation-dependent.   

Wild-type !" #$$% %&%' #$$$(" 45.1
Wild-type (!AUG) ) #$$* ) #$$$$$& 1.0
S10P +&, #+* ,*%' #*&! 3.5
S10P (!AUG) ' #$$& ' #$$$$$% 1.0
D16E %) #$$" !! #$$$$$% 1.6
D16E  (!AUG) ) #$$* ) #$$$$$& 1.0
S10P/D16E *(* #$$+ ('' #$$$,( 4.3
S10P/D16E (!AUG) *& #$$& + #$$$$$* 0.9

Strain
!-galactosidase activity (MU) Induction ratio 

(+Trp/-Trp) -Trp  +Trp

 
aCultures of rrn+ E. coli bacterial strains AW153 (Wt), AW643 (Wt(ΔAUG)), AW821 (D16E), AW946 
(D16E (ΔAUG)), AW888 (S10P), AW940 (S10P (ΔAUG)), AW909 (S10P/D16E), and AW949 
(S10P/D16E (ΔAUG)) were grown in minimal medium plus 0.2% glycerol, 0.05% acid-hydrolyzed 
casein, 0.01% vitamin B1, with (+Trp) or without (-Trp) 100 µg/ml Trp. β-Galactosidase assays were 
performed in three independent experiments .  bRatio of values for cultures grown with Trp (+Trp) and 
those grown without Trp (-Trp). 
 
 
 
Table 12. High basal LacZ level observed with R23H is translation-dependent. 

Wild-type 78 ±17 3391 ±179 43.5
Wild-type (!AUG) 5 ±  0 5 ±    0 1.0
R23H 521 ±30 1690 ±326 3.2
R23H (!AUG) 5 ±  0 5 ±    0 1.0
D16E 31 ±  4 51 ±    6 1.6
D16E  (!AUG) 5 ±  0 5 ±    0 1.0
D16E/R23H 99 ±  6 512 ±  43 5.2
D16E/R23H (!AUG) 6 ±  1 5 ±    0 0.8

Strain !-galactosidase activity (MU)a Induction ratio 
(+Trp/-Trp)b -Trp  +Trp

 
aCultures of rrn+ E. coli bacterial strains AW153 (Wt), AW643 (Wt(ΔAUG)), AW821 (D16E), AW946 (D16E 
(ΔAUG)), AW922 (R23H), AW961 (R23H (ΔAUG)), AW925 (D16E/R23H), and AW973 (D16E/R23H 
(ΔAUG)) were grown in minimal medium plus 0.2% glycerol, 0.05% acid-hydrolyzed casein, 0.01% vitamin 
B1, with (+Trp) or without (-Trp) 100 µg/ml Trp. β-Galactosidase assays were performed in three independent 
experiments .  bRatio of values for cultures grown with Trp (+Trp) and those grown without Trp (-Trp). 
 
 
 
 



 

125 

The cis-acting S10P and R23H mutations increase induction to D16E, but not other 

non-functional TnaC mutants    

 Next, we wanted to determine if the S10P and R23H mutations could restore L-

Trp-inducibility to other uninducible TnaC mutants, or if this restoration was specific to 

D16E.  The cis-acting mutations were combined with two other loss-of-function 

mutations to D16, D16A (S10P/D16A or D16A/R23H) and D16K (S10P/D16K or 

D16K/R23H), and a loss-of-function mutation at a different position, W12R 

(S10P/W12R or W12R/R23H).  Only when the S10P mutation was combined with D16E 

was L-Trp-inducibility increased (Table 13).  Although the LacZ levels of the 

S10P/D16A, S10P/D16K, and S10P/W12R double mutants were higher than the D16A, 

D16K, and W12R single mutants, none of the double mutants were inducible by L-Trp.  

The higher levels of LacZ observed with the double mutants is likely a consequence of 

the S10P mutation.  Similar results were obtained when the R23H mutation was 

combined with the D16 and W12 changes (Table 14). These results suggest that the 

S10P and R23H mutations increase the L-Trp-mediated ribosome-arrest function of 

D16E, but not of other loss-of-function TnaC mutants.   
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Table 13. The ability of S10P to suppress the loss-of-function D16E mutant is allele specific. 

!"#$%&'() 52 ±  2 2045 ±    8 *+,*
-./0 1016 ±37 3196 ±140 *,.
1.23 27 ±  0 46 ±    2 .,4
-./051.23 178 ±  6 731 ±  61 6,.
1.27 61 ±  1 47 ±    1 /,8
-./051.27 328 ±41 373 ±  37 .,.
1.29 28 ±  1 21 ±    1 /,8
-./051.29 148 ±  5 114 ±    9 /,8
!.:; 155 ±  3 91 ±    6 /,2
-./05!.:; 156 ±16 96 ±    7 /,2

Strain
!-galactosidase activity (MU)a Induction ratio 

(+Trp/-Trp)b -Trp  +Trp

 
 

aCultures of rrn+ E. coli bacterial strains AW153 (Wt), AW888 (S10P), AW821 (D16E), AW513 (D16A), 
AW797 (D16K), AW154 (W12R), AW909 (S10P/D16E), AW952 (S10P/D16A), AW930 (S10P/D16K), 
and AW933 (S10P/W12R) were grown in minimal medium plus 0.2% glycerol, 0.05% acid-hydrolyzed 
casein, 0.01% vitamin B1, with (+Trp) or without (-Trp) 100 µg/ml Trp.  β-Galactosidase assays were 
performed in three independent experiments .  bRatio of values for cultures grown with Trp (+Trp) and 
those grown without Trp (-Trp). 
 
 

Table 14. The ability of R23H to suppress the loss-of-function D16E mutant is allele specific. 

!"#$%&'() 68 ±  3 2301 ±82 **+,
-.*/ 1193 ±43 2383 ±83 .+0
1234 28 ±  2 51 ±  2 2+,
12345-.*/ 187 ±  8 510 ±15 .+6
1237 45 ±  2 31 ±  2 0+6
12375-.*/ 464 ±52 403 ±21 0+8
1239 27 ±  0 20 ±  0 0+6
12395-.*/ 289 ±  8 132 ±  3 0+:
!2.- 136 ±  8 50 ±  2 0+;
!2.-5-.*/ 293 ±  6 85 ±  2 0+*

Strain
!-galactosidase activity (MU)a Induction ratio 

(+Trp/-Trp)b -Trp  +Trp

 
aCultures of rrn+ E. coli bacterial strains AW153 (Wt), AW922 (R23H), AW821 (D16E), AW513 (D16A), 
AW797 (D16K), AW154 (W12R), AW925 (D16E/R23H), AW965 (D16A/R23H), AW955 (D16K/R23H), and 
AW958 (W12R/R23H) were grown in minimal medium plus 0.2% glycerol, 0.05% acid-hydrolyzed casein, 
0.01% vitamin B1, with (+Trp) or without (-Trp) 100 µg/ml Trp.  β-Galactosidase assays were performed in 
three independent experiments .  bRatio of values for cultures grown with Trp (+Trp) and those grown without 
Trp (-Trp).  
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Interestingly, when either the S10P or R23H mutation was combined with other loss-of-

function TnaC mutants (D16A, D16K, and W12R), the LacZ levels decreased ~10-fold 

compared to the S10P or R23H single mutants (Table 13 and 14).  This decrease in LacZ 

levels indicates that both W12 and D16 are required for the constitutive S10P and R23H 

nascent peptide-mediated ribosome arrest.    

 

Differential response of ribosomes with 23S rRNA changes to TnaC S10P and 

R23H mutants 

 Finally, we wanted to examine what effect different 23S rRNA mutations have 

on the Trp-independent ribosome arrest caused by the S10P and R23H mutant TnaC 

peptides.  We tested the expression of the wild-type, tnaC(S10P), and tnaC(R23H) 

tnaA’-‘lacZ reporter constructs in cells containing wild-type ribosomes or ribosomes 

with 23S rRNA mutations (Figure 24).  As expected, expression of the wild-type 

reporter was dramatically reduced in cells containing A752C, U2609C, +A751ins, and 

A2058U ribosomes, and there was little change in the expression of the wild-type 

reporter in cells containing ribosomes with A2059 mutations or the A2058G mutation.  

Interestingly, in the Δ7 rrn E.coli background, the expression of the S10P and R23H 

reporters does not appear to be constitutive (Figure 24).  Although the basal level of 

expression of the S10P and R23H reporters is higher than the basal level of expression of 

the wild-type reporter, the basal level of expression of the mutant reporters is much 

lower than the induced level of expression, which is not what was observed in the wild-

type (rrn+) E.coli background.  As shown with S10P(ΔAUG) (Table 11) and 
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R23H(ΔAUG) (Table 12), the constitutive phenotype of the S10P and R23H mutants is 

translation dependent suggesting that these mutant peptides cause ribosome arrest in the 

absence of added L-Trp.  These TnaC mutations may increase the sensitivity of the 

ribosome to L-Trp such that endogenous levels of L-Trp are sufficient to induce 

ribosome arrest.  One explanation for the difference in the basal level of expression with 

the S10P and R23H reporter constructs between the two strain backgrounds is that the 

endogenous levels of L-Trp may be lower in the Δ7 rrn E.coli background compared to 

the wild-type (rrn+) E.coli background.  Therefore, if the TnaC S10P and R23H 

mutations increase the sensitivity of the ribosome for L-Trp, these reporter constructs 

would cause more stalling in the absence of added L-Trp in a strain background that 

produces a higher endogenous amount of L-Trp.  The mechanism of how the 23S rRNA 

mutations affect the TnaC S10P and R23H mutant peptides is still being explored.  
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Figure 24. Effects of 23S rRNA mutations on S10P and R23H mutant TnaC peptides.  Bacterial cells (∆7 rrn) expressing the indicated 23S rRNAs and 
tnaC alleles were used to analyze expression of β-galactosidase from a tnaC-tnaA’-‘lacZ protein fusion.  The tested cultures were grown in minimal 
medium containing 0.2% glycerol, 0.05% acid-hydrolyzed casein, 0.01 % vitamin B1, 100µg/ml ampicillin, with (+Trp) or without (-Trp) 100 µg/ml L-
Trp.  β-Galactosidase assays were performed in three independent experiments. 
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DISCUSSION  

 TnaC residue D16 is highly conserved and is required for the L-Trp-dependent 

ribosome arrest function of TnaC.  In this study we identified two second-site mutations 

within TnaC (S10P and R23H) that partially restore the ribosome arrest function to the 

non-functional TnaC(D16E) mutant.  In addition to eliminating TnaC-mediated 

ribosome arrest in response to L-Trp, changes to D16 also fail to protect 23S rRNA 

residue U2609 from chemical methylation (99).  The inability to protect U2609 from 

chemical methylation suggests that changes to the critical D16 residue affect the 

configuration of the nascent TnaC peptide in the ribosome exit tunnel.  The change in 

the configuration of the nascent peptide may disrupt interactions between components of 

TnaC and the exit tunnel that are required for L-Trp binding and/or action.  The cis-

acting S10P and R23H mutations may compensate for the altered configuration of TnaC 

induced by the D16E change, restoring the required contacts between D16E (or other 

functional residues) and exit tunnel components.  The observation that the cis-acting 

mutations can only restore L-Trp-inducibility to D16E, and not other loss-of-function 

TnaC mutants, is consistent with this idea. 

 In addition to S10P and R23H acting as suppressors of D16E, we showed that 

both the single S10P and R23H single TnaC mutants cause translation-dependent 

constitutive expression of the lacZ reporter in vivo.  These results suggest that the S10P 

and R23H TnaC peptides cause ribosome arrest even in the absence of added L-Trp.   

The ability of the S10P and R23H mutant TnaC peptides to change the way mutant 

ribosomes respond to L-Trp supports the idea that the S10P and R23H changes are 



 

131 

acting at the level of translation.  One explanation is that the mutant peptides have an 

altered conformation in the exit tunnel that mimics the conformation that is normally 

only induced in the presence of L-Trp, therefore the requirement for L-Trp to function as 

an inducer is lost in these mutants.  Alternatively, the S10P and R23H changes may 

increase the ribosome and/or nascent peptide’s binding affinity for L-Trp such that 

endogenous levels of L-Trp are sufficient to induce ribosome arrest.   

 Based on TnaC amino acid sequence alignments neither S10 nor R23 are 

conserved (39).  However, none of the versions of TnaC have a Pro corresponding to 

E.coli position 10 or a His corresponding to E.coli position 23.  Importantly, the 34 

amino acid long TnaC from Proteus vulgaris, which is the only other TnaC that has been 

shown to be functional, has a Lys at E.coli position 10 (P.vulgaris K18) and a Phe at 

E.coli position 23 (P.vulgaris F31) (39,97).  Although the amino acids at these positions 

are not conserved there may be selective pressure against a Pro at E.coli position 10 or a 

His at E.coli position 23 so that the regulated expression of the tna operon is maintained.  

It is crucial for the cell that the tna operon be tightly regulated so that the L-Trp 

catabolic genes are only produced under conditions in which glucose is limiting and L-

Trp is present in excess.   

 Yap and Bernstein proposed that in addition to the critical residues that are 

required for SecM-mediated ribosome arrest, other variable residues are also required to 

facilitate the positioning of the key functional residues.  These variable residues 

primarily influence the conformation of the nascent peptide in the exit tunnel ensuring 

that interactions between the essential SecM residues and the components of the exit 
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tunnel that are required for the ribosome arrest are maintained.  They further propose 

that all RAPs contain both essential, functional residues as well as context-dependent 

sequence elements (65).  Based on the results of genetic and biochemical analyses of 

S10 and R23, these residues of TnaC are likely context-dependent elements with their 

primary role being to direct the positioning of the essential TnaC residues so that they 

can interact with the ribosome exit tunnel components.   

 The classification of S10 and R23 as context-dependent elements is supported by 

several observations.  By biochemical and structural analyses W12 is shown to be in 

close proximity to the A750-752 region of the 23S rRNA; this region of the 23S rRNA is 

functionally important for TnaC-mediated ribosome arrest in response to L-Trp (38,43-

45,99).  Although changes to the N-terminus of TnaC have little to no effect on Trp-

induction, amino acids in the N-terminus may have a role in the proper positioning of 

W12 (68).  This could explain the selective pressure against a Pro residue at E.coli 

position 10.  A Pro at this position may impose conformational constraints on the 

peptide, that as discussed previously, would effect the configuration of the nascent 

peptide in the exit tunnel, such that regulated expression of the tna operon is lost.  

Genetic and biochemical analyses also show that the spacing between W12 and P24 is 

essential for maintaining L-Trp inducibility (68).  While this region contains all of the 

essential residues, it also contains residues that are context-dependent and while they 

may serve minor functions by interacting with ribosomal exit tunnel components, their 

main function is likely to maintain the required spacing between the critical W12 and 

P24 residues (31,36,39,44,68).        
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 In summary, the findings presented in this study show that the combined 

selection and screening method used is a powerful tool for identifying cis-acting 

mutations that can restore L-Trp-inducibility to the non-functional TnaC(D16E) mutant.  

Our findings also a suggest a possible role for S10 and R23 as context-dependent 

elements that influence the configuration of the nascent peptide in the ribosome exit 

tunnel and facilitate the interactions between D16, or other functional TnaC residues, 

with ribosomal exit tunnel components. 
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CHAPTER V 

GENERAL DISCUSSION AND FUTURE WORK 

 

OVERVIEW AND COMPARISON OF RIBOSOME ARREST PEPTIDES  

Ribosome arrest peptides (RAPs) encoded in the 5’-leader region of bacterial 

transcripts (leader peptides) and upstream open reading frames (uORFs) of eukaryotic 

transcripts function to stall translating ribosome during their own synthesis.  The 

mechanism by which the nascent peptide-dependent ribosome arrest regulates the 

expression of other genes encoded in the same transcriptional unit is dependent on the 

specific nature of the RAP.  Ribosomes arrested by the fungal arginine attenuator 

peptide (AAP) block scanning ribosomes from reaching the downstream gene arg2, thus 

leading to decreased arg2 expression (6).  The stall manifested by the bacterial RAPs 

SecM, ErmCL, and MifM induce structural rearrangements of the mRNA, which makes 

the once unavailable Shine Dalgarno (SD) sequence of the downstream gene available 

for translation initiation by other ribosomes (7,8,12).  The ribosome stall mediated by 

another bacterial RAP, TnaC, positively regulates transcription of the structural genes of 

the operon by inhibiting factor-dependent transcription termination (4).  In the case of 

the bacterial RAPs, the ribosome stall functions to increase the expression of the genes 

regulated by the leader peptides.     

 The bacterial RAPs TnaC, ErmCL, SecM, and MifM all function to stall 

ribosomes during their own synthesis; however, there is very little sequence similarity 

between these peptides.  All of bacterial RAPs contain residues that are essential for 
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ribosome arrest but how these residues are recognized by the ribosome and how they 

cause the arrest is poorly understood.  Both TnaC and ErmCL are factor-dependent, 

meaning that the arrest is induced in response to a small molecule, L-Trp or 

erythromycin (Ery), respectively.  SecM and MifM contain intrinsic arrest sequences.  In 

these cases the ribosome arrest is alleviated only when the nascent peptide is physically 

pulled from the ribosome by interactions with the cellular secretion/translocation 

machinery.  More studies need to be done before the sequence elements that are required 

for factor-dependent versus factor-independent ribosome arrest can be identified.  

In order for the nascent peptide to induce ribosome arrest, constituents of the 

ribosome must be recognizing or responding to specific sequence elements of the RAP.  

The fact that specific residues of the ribosome exit tunnel are required for the function of 

the Escherichia coli RAPs TnaC, SecM, and ErmCL support this idea.  The effect of 

mutations to ribosomal components have not been studied with the Bacillus subtilis 

RAP, MifM, because this RAP does not function in E.coli and the tools have yet to be 

developed for studying ribosomal mutations in B.subtilis (90).  The E.coli RAPs TnaC, 

SecM, and ErmCL are all affected by changes to the 23S rRNA nucleotide A2058, 

suggesting that this nucleotide may be involved in monitoring translation and 

recognizing components of the RAP involved in ribosome arrest (5,12,44).   

Based on the current knowledge, A2058 seems to be the only residue of the 

ribosomal exit tunnel that is required for the function of all of the E.coli RAPs.  While 

TnaC- and SecM-mediated ribosome arrest is abolished by changes to the A748-A752 

region of the 23S rRNA, ErmCL-mediated ribosome arrest is not affected by changes to 
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this region (7,12,44).  However, ErmCL is shorter than both TnaC and SecM and is 

anchored to the exit tunnel through its interactions with A2058 and A2059.  Therefore, 

ErmCL does not reach the region of the exit tunnel where nucleotides A748-A752 are 

located (7).  Finally, both SecM and ErmCL require nucleotides A2503 and A2062 while 

TnaC (and other Erm variants ErmBL and ErmDL) do not (5).  The different 

requirements for specific residues of the ribosome exit tunnel for RAP function suggest 

that the sequence components of the RAP essential for ribosome stalling activity are not 

recognized by the ribosome in the same way.  Instead, there are differences in the way 

that the ribosome responds to the sequence elements of the RAPs that are required for 

ribosome arrest.  

 

MAJOR FINDINGS OF STUDY 

The tna operon in E.coli contains a 5’-leader region containing the coding 

sequence for the 24 amino acid RAP TnaC followed by two structural genes tnaA and 

tnaB that function in the catabolism of L-tryptophan (L-Trp) (21-23).  TnaC stalls 

ribosomes in response to L-Trp positively regulating the expression of tnaA and tnaB by 

preventing premature transcription termination (1).  Key residues of both the TnaC 

peptide and the ribosome required for TnaC-mediated ribosome arrest have been 

identified through genetic and biochemical analyses (45,64,84).  Furthermore, structural 

analyses of TnaC in the ribosome exit tunnel revealed the position of these key residues, 

placing the conserved functional residues of TnaC in close proximity to residues of the 

23S rRNA that are required for TnaC-mediated ribosome arrest in response to L-Trp 
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(38,43).  These data suggest that interactions between the nascent peptide and ribosomal 

components play a role in ribosome arrest.  However, how the interactions between the 

nascent TnaC peptide and the ribosome exit tunnel facilitate the ribosome arrest has 

remained largely unknown.  The findings of this study begin to explain how TnaC, the 

ribosome, and L-Trp function cooperatively to mediate ribosome arrest.  

Changes to the highly conserved TnaC residues W12 and D16 as well as 

mutations in the A748-A752 region (+A751ins and A752C) and U2609 of the 23S rRNA 

abolish TnaC-mediated ribosome arrest in response to L-Trp.  Based on the UV cross-

linking data that showed K11 of TnaC is positioned near 23S rRNA nucleotide A750, 

W12 of TnaC is believed to be located in close proximity to the A748-A752 region and 

U2609 of the 23S rRNA (44).  Taken together, these data suggest that interactions 

between the crucial W12 residue of TnaC and the region of the ribosome exit tunnel 

containing nucleotides A748-A752 and U2609 may explain the requirement for these 

residues in L-Trp-induced ribosome arrest.  However, structural analyses of TnaC in the 

ribosome exit tunnel position W12 within the constriction site of the exit tunnel and 

instead place TnaC residue K18 in between nucleotides U2609 and A752 (38,43).    

In aiming to resolve the conflicting biochemical and structural data regarding the 

position of W12 within the exit tunnel, how changes to W12, D16, and K18 affect the 

configuration of the nascent peptide in the exit tunnel was examined.  While changes to 

W12 and D16 abolish TnaC-mediated ribosome arrest in response to L-Trp, changes to 

K18 had little to no affect on L-Trp induction.  Functional TnaC peptides (wild-type and 

K18A) protected 23S rRNA nucleotide U2609 from chemical methylation while non-
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functional TnaC peptides (W12R and D16A) failed to protect U2609 from chemical 

methylation.  The ability of the K18A mutant TnaC peptide to function in L-Trp 

induction and protection of U2609 from methylation is not consistent with the placement 

of K18 in this region of the exit tunnel.   

Instead, consistent with the TnaC K11 UV cross-linking data, several lines of 

evidence support the placement of the crucial TnaC residue W12 in close proximity to 

the region of the 23S rRNA containing nucleotides A748-A752 and U2609.  First, both 

W12 of TnaC and the A748-A752 and U2609 nucleotides are required for TnaC-

mediated ribosome arrest.  Second, the non-functional W12R mutant peptide fails to 

protect U2609 from chemical methylation.  Finally, U2609 methylation protection is 

abolished in ribosomes that have lost their ability to respond to functional TnaC due to 

the +A751ins or A752C mutations in the 23S rRNA.  The requirement for W12 and 

nucleotides in the A748-A752 region for Trp induction and for the protection of U2609 

from chemical methylation suggest that interactions between these components may play 

a role in TnaC-mediated ribosome arrest.  Although the results of this study support the 

placement of W12 instead of K18 near the A748-A752 and U2609 nucleotides, our 

results likely explain the change in conformation of U2609 in TnaC-containing 

ribosomes versus empty ribosomes that was observed by cryo-EM (43).  The TnaC-

induced conformational change of U2609 may be the result of either a direct interaction 

of W12 with U2609 or interactions between W12 and the A748-A752 region.  U2609 

forms a base-pair interaction with A752; it is conceivable that interactions between W12 

and the A748-A752 region would affect the conformation of U2609.     
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Another interaction between the TnaC nascent peptide and the ribosome exit 

tunnel predicted by the structural analyses is between TnaC residue I19 and 23S rRNA 

nucleotides A2058 and A2059 (38,43).   I19 of TnaC is highly conserved and the non-

conservative mutations I19N, I19T, I19A, and I19W eliminate L-Trp induction (31,39).   

Also TnaC-mediated ribosome arrest is affected by changes to A2058 and A2059 

(5,12,44).  Although the genetic and biochemical data on TnaC residue I19 and the 

A2058 and A2059 nucleotides is limited and therefore conclusions as to whether or not 

interactions between these residues contribute to TnaC-mediated ribosome arrest cannot 

be made, the available data does support a functional role of these positions.   

In this study we aimed to further examine the contributions of TnaC residue I19 

and the A2058 and A2059 23S rRNA nucleotides in TnaC-mediated ribosome arrest by 

performing a more extensive mutational analysis of these positions.  By making 

conservative and non-conservative changes to I19, we determined that I19 plays a role in 

the ability of the ribosome to sense free L-Trp.  All of the conservative changes (I19L, 

I19M, and I19V) maintain L-Trp induction while the non-conservative changes (I19W 

and I19A) abolish L-Trp induction.  While all of the conservative changes maintained L-

Trp induction, only I19L required a similar concentration of 1-L-methyl-Trp (1MT) as 

wild-type TnaC for 50% induction.  Both I19M and I19V required a higher 

concentration of 1MT to reach 50% induction compared to wild-type TnaC.  The ability 

of L-Trp to induce ribosome arrest is influenced by the nature of the residue at position 

19 of TnaC, suggesting that this residue participates in the ribosome’s ability to sense 

free L-Trp.   
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As a result of the mutational and biochemical analyses of nucleotides A2058 and 

A2059, A2058 was determined to be the most crucial for TnaC-mediated ribosome 

arrest.  While changes to A2059 had little to no effect on L-Trp induction, changes to 

A2058 impacted L-Trp induced ribosome arrest.  The A2058G mutation decreased 

induction at low concentrations of 1MT but at higher concentrations of 1MT induction 

reached wild-type levels.  More importantly however, the A2058U mutation drastically 

reduced L-Trp induced ribosome arrest.  Interestingly, cells containing the A2058C 

mutation are not viable suggesting, that along with this nucleotides role in RAP function, 

it may also play a role in general translation.   

After establishing the requirement for TnaC residue I19 and 23S rRNA 

nucleotide A2058 in TnaC-mediated ribosome arrest, we tested the prediction that there 

is a genetic interaction between TnaC I19 and the A2058 nucleotide.  The TnaC I19 

mutations were combined with each of the A2058 and A2059 changes and the effect of 

these changes on L-Trp induced ribosome arrest was assessed.  The I19L TnaC change 

restored L-Trp sensitivity to the A2058U ribosomes.  Furthermore, the compensatory 

effect of the TnaC I19L mutation was specific to A2058U because I19L was incapable 

of restoring L-Trp inducibility to U2609C ribosomes.  These results support the cryo-

EM model and molecular dynamic simulations that place I19 in close proximity to 

A2058 and A2059 and provide the first evidence of a functional interaction between a 

RAP and the ribosome exit tunnel (38,43).   

The requirement of the crucial D16 residue of TnaC was further explored 

through the development of a combined selection and screening method that was used to 
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select for second-site mutations that could restore L-Trp inducibility to the non-

functional D16E mutant.  Two cis-acting mutations, S10P and R23H, which restored L-

Trp induction to the D16E mutant peptide, were identified.   The compensatory effect of 

the cis-acting mutations was allele specific; they did not restore L-Trp inducibility to 

other non-functional TnaC mutants.  Interestingly, both of the single S10P and R23H 

TnaC mutants cause L-Trp-independent ribosome arrest in vivo that requires both W12 

and D16.  The restoration of ribosome arrest function to the D16E TnaC mutant by 

second-site mutations within TnaC suggest that the D16E change may be interfering 

with an interaction between the nascent TnaC peptide and ribosomal exit tunnel 

components that can be restored by compensatory mutations.  Alternatively, the cis-

acting S10P and R23H mutations within TnaC may create alternative interactions that 

allow the D16E mutant peptide to function in ribosome arrest.    

The nascent TnaC peptide induces ribosome arrest by inhibiting peptidyl 

transferase activity.  Many of the residues of TnaC and ribosomal components required 

for TnaC-mediated ribosome arrest are within the ribosome exit tunnel, far from the 

peptidyl transferase center (PTC).  The results of this study begin to explain how these 

residues contribute to ribosome arrest.  

Based on the cryo-EM model of TnaC in the exit tunnel of the ribosome, Seidelt, 

et al. proposed three different relay pathways to explain how a signal could be 

transmitted from interactions within the exit tunnel to the PTC, to cause inhibition of 

peptidyl transferase activity.  Two of the relay pathways propose that upon L-Trp 

binding, interactions between the nascent TnaC peptide and ribosomal components 
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induce conformational changes of exit tunnel components transmitting a signal through 

23S rRNA nucleotides in the exit tunnel to those in the PTC.  One pathway proposes that 

the signal is relayed by the side of the exit tunnel containing the A748-A752 and U2609 

23S rRNA nucleotides while the other pathway proposes that the other side of the exit 

tunnel, which contains the A2058 and A2059 nucleotides, relays the signal.  The third 

pathway proposes that upon L-Trp binding the signal is relayed through conformational 

changes of the nascent TnaC peptide (43). 

The results of this study suggest that all three of the proposed relay pathways 

play a role in transmitting the signal from the ribosome exit tunnel to the PTC.  First, 

changes to TnaC residues W12 and D16 and to 23S rRNA nucleotides A748-A752 

abolish the protection of U2609 from chemical methylation and abolish L-Trp induction.  

These results suggest that these changes affect the configuration of TnaC and/or the 

ribosomal exit tunnel components constituting this region.  The configuration changes 

may block the relay signal from being transmitted to the PTC through TnaC, the side of 

the exit tunnel containing 23S rRNA nucleotides A748-A752 and U2609, or both.  

Second, changes to TnaC residue I19 and 23S rRNA nucleotides A2058 and A2059 

affect L-Trp sensitivity and TnaC-mediated ribosome arrest.  These results suggest a 

requirement for these residues in L-Trp binding.  However, these changes may also 

cause conformational changes in these components, which block the relay signal to the 

PTC that is transmitted from the nascent peptide, the side of the exit tunnel containing 

the A2058 and A2059 nucleotides, or both.  Finally, the identification of cis-acting 

elements, which restore ribosome arrest function to the loss-of-function D16E TnaC 
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mutant suggest that the nascent peptide plays a role in relaying the signal from the 

ribosome exit tunnel to the PTC.  Taken together, these results support the requirement 

for all three relay pathways proposed by Seidelt et al. in inhibition of peptidyl 

transferase activity resulting in TnaC-mediated ribosome arrest.  Interestingly, relay 

pathways through the RAP and/or exit tunnel components have been proposed for other 

RAPs, most notably ErmCL and SecM (7,12,43,85).     

 

FUTURE WORK 

 While the results of this study begin to explain how residues of both TnaC and 

the 23S rRNA lining the exit tunnel contribute to ribosome arrest in response to L-Trp, 

further experiments are still needed before the molecular mechanism of TnaC-mediated 

ribosome arrest can be fully understood.   Previous genetic and biochemical analyses 

identifying the residues involved as well as the structural analyses which allow 

predictions on possible interactions and conformational changes that are required to 

induce ribosome arrest provide a starting point for further investigation.  All of the 

proposed interactions between the crucial TnaC residues and ribosomal components 

need to be tested experimentally.  The methods used in this and other studies provide a 

means to determine if these interactions are functionally important.  Most importantly 

however, the binding site of L-Trp has yet to be elucidated.  Once the L-Trp binding site 

is determined, how changes to TnaC and the ribosomal exit tunnel and PTC components 

affect L-Trp binding and/or action can be determined.  The answers to these remaining 

questions will allow the development of a model to explain the molecular mechanism of 
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L-Trp induced TnaC-mediated ribosome arrest.  This model will also be useful for 

comparing the mechanisms by which other RAPs induce ribosome arrest. 
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APPENDIX 

 
CONTIRBUTIONS  

 
 

 Several of my collaborators carried out specific experiments, the results of which 

are used in this work.  The purpose of this Contributions section is to explicitly state my 

contributions and the contributions of others.   

I constructed all strains with an “AW” designation and all plasmids with a 

“pAW” designation.  The following plasmids: pNKA2058G, pNKA2058T, 

pNKA2059C, pNKA2059G, and pNKA2059T, described in Chapter III, were 

constructed in Dr. Luis Rogelio Cruz-Vera’s laboratory.  All other plasmids and strains 

are referenced accordingly.   

I carried out all of the Miller Assays, with the exception of the results shown in 

Chapter II, Table 3.  I also developed the combined selection and screen method used in 

Chapter IV, and carried out all experiments in this chapter.   

The following experiments were carried out in Dr. Luis Rogelio Cruz-Vera’s 

laboratory: puromycin assays described in Chapters II and III, methylation protection 

assays described in Chapter II, primer extension experiments described in Chapter II, 

Miller Assays of 23S rRNA U2609 and A752 double mutants shown Table 3 of Chapter 

II, and TnaC-tRNAPro accumulation experiments described in Chapter III. 

The 2D-DIGE analysis described in Chapter III was performed by Dr. Lewis M. 

Brown at the Comparative Proteomics Center, Columbia University in collaboration 
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with Dr. Alexander Mankin’s laboratory.  Researchers in Dr. Alexander Mankin’s 

laboratory also carried out all of the toeprinting experiments described in Chapter III.     
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