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ABSTRACT 

Current materials and construction specifications for pavement preservation 

treatments are predominantly prescriptive and they have little or no methodical linkage 

between initial treatment quality and future performance.  There is an imperative need 

for performance-related specifications (PRS) that link the initial quality of pavement 

preservation treatments to their long-term performance and life-cycle costs so that 

rational pay adjustment and acceptance decisions can be made.  However, the current 

literature lacks a methodology for developing PRS for pavement preservation treatments.  

The aim of this research is to fill this gap in the literature, with focus on thin HMA 

overlays.  

In this dissertation, a novel approach was devised for developing performance 

prediction models for pavements that received preservation treatments.  In this approach, 

the model consists of two tightly-coupled components:   the first component is 

responsible for predicting the performance (e.g., IRI) of the existing pavement if no 

treatment was applied. The second component is responsible for predicting the reduction 

in pavement deterioration due to the application of the treatment. Inputs to the first 

component include material and construction properties of the existing pavement layers, 

climatic conditions, and traffic factors. Inputs to the second component include the 

treatment’s acceptance quality characteristics (AQCs), climatic conditions, and traffic 

factors.  The artificial neural networks (ANNs) and the Bayesian regression methods 

were used for developing the two model components.  Using this approach, a model was 
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developed for predicting the International Roughness Index (IRI) of flexible pavement 

treated with thin HMA overlay.  The data used for developing and testing this model was 

obtained from the Long-Term Pavement Performance (LTPP) database. Artificial neural 

networks (ANNs) and Bayesian regression techniques were employed for developing the 

first and second components of this model, respectively. 

A PRS methodology was developed for quantifying the difference between the 

initial quality levels of as-constructed and as-designed treatments. This methodology 

consists of a novel approach for determining the probability distributions of service life 

and present-worth value (PWV). This approach allows for transforming the probabilistic 

distribution of future IRI (predicted by the Bayesian model) into probability distributions 

for service life and PWV. Pay factors are then estimated based on the difference between 

the as-constructed and target PWVs. Finally, this dissertation provides insights into the 

relationships between initial quality (measured in terms of both mean and standard 

deviation of key acceptance quality characteristics) and expected pay factors through 

analysis of real world case studies of asphalt pavements treated with thin HMA overlays. 
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NOMENCLATURE 

AADTT Average annual daily truck traffic 

AQC  Acceptance quality characteristics 

ESAL  Equivalent single axle load 

FDOT  Florida Department of Transportation 

FHWA  Federal Highway Administration 

FI  Freezing index 

GPS  General Pavement Studies 

HMA  Hot-mix asphalt 

HPD  Highest posterior density 

IRI  International Roughness Index 

LHS  Latin Hypercube Sampling 

LCC  Life-cycle cost 

LTPP  Long-Term Pavement Performance 

MEPDG Mechanistic-Empirical Pavement Design Guide 

NAPA   National Asphalt Pavement Association 

PCC  Portland cement concrete 

PWV  Present-worth value 

QC  Quality control 

QA  Quality assurance 

SAS  Statistical Analysis System 

SHRP  Strategic Highway Research Program 

SMA  Stone matrix asphalt 

SPS  Specific Pavement Studies 

TCMA  Two-Component Modeling Approach 

TRB  Transportation Research Board 

TxDOT Texas Department of Transportation 

WIM  Weight-in-motion  
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CHAPTER I 

INTRODUCTION 

PROBLEM STATEMENT 

Major financial resources are invested in preserving and maintaining the nation’s 

roadway infrastructure every year. For example, the Federal Highway Administration 

SAFETEA-LU program has authorized $25.2 billion for preserving just the interstate 

highway system during the period of 2005-2009.  Figure 1 shows that highway 

preservation and maintenance investment in the U.S. has been steadily rising since 1945, 

reaching approximately $50 billion per year in 2009-2010 (FHWA, 2010). 

 

Figure 1  Highway preservation and maintenance disbursements in the U.S. during 
1945-2010. 

 

Preservation treatments applied to hot-mix asphalt (HMA) pavement include 

crack sealing, slurry seals, chip seals, microsurfacing, cape seals, fog seals, hot in-place 

recycling, cold in-place recycling, and thin HMA overlays. Preservation treatments 

applied to Portland cement concrete (PCC) pavement include joint resealing, crack 
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sealing, diamond grinding, dowel bar retrofitting, partial-depth repair, slab stabilization 

(undersealing), and full-depth repair. Generally, these preservation treatments are 

applied to extend pavement service life, enhance its performance, delay costly 

rehabilitation and reconstruction, and ultimately, reduce the pavement total life-cycle 

cost. 

Considering the major investment in pavement preservation and the impact that 

preservation treatments have on extending the longevity of roadway infrastructure, it is 

imperative that the initial quality and long-term performance of these treatments be 

assured in the best possible way. However, current materials and construction 

specifications for these treatments are predominantly prescriptive and have little or no 

linkage between initial quality of preservation treatments and their future performance. 

For example, the Texas Department of Transportation’s (TxDOT) 2004 Specifications 

for thin HMA overlays assign a pay increase when the absolute deviation from the target 

laboratory-molded density is less than 1% and assign a pay decrease when the deviation 

is greater than 1% (TxDOT 2004).  This pay adjustment method greatly depends on 

subjective judgments of the relationships between the treatment initial quality and its 

future performance.  

As a result of this situation, highway agencies have very limited capacity to 

capture the performance lost or gained due to differences between the as-designed 

treatment and as-constructed treatment; and the contractors’ ability to be innovative by 

focusing on quality characteristics that affect the treatment’s in-service performance is 

also restricted. To account for these limitations, performance-related specifications (PRS) 
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that relate the treatment’s initial materials and construction quality to its future 

performance are needed.  

PRS specify the desired levels of key materials and construction acceptance 

quality characteristics (AQCs) (e.g., air voids of hot-mix asphalt) that correlate with 

future performance and are amenable to acceptant testing at the time of construction. 

Additionally, PRS employ quantitative models for predicting pavement performance as a 

function of AQCs and other site factors. These models provide the basis for rational pay 

adjustment decisions. Over the past two decades, significant progress has been made in 

developing and implementing PRS for new pavements (both HMA and PCC) (Hoerner 

et al. 2000; Fugro and ASU 2011). However, the literature is lacking a methodology for 

developing PRS for pavement preservation treatments. This dissertation presents a 

research endeavor to fill this gap in the literature, with focus on thin HMA overlay.  

RESEARCH SCOPE AND HYPOTHESES 

Although the pavement community is making great efforts to develop PRS 

methodologies, little progress has been made with respect to pavement preservation 

treatments. Based on the aforementioned observations, the following specific research 

questions are addressed in this dissertation: 

• How do we model the post-treatment performance of pavements so that the 

treatment acceptance quality characteristics can be linked to its future 

performance? 

• How do we quantify the economic loss or gain due to the deviation of the as-

constructed treatment from the target (as-designed) quality level?  
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To address these questions, the following hypotheses are made: 

Hypothesis #1: Pavement post-treatment performance is affected by three 

categories of factors: treatment quality, condition and design of existing 

pavement, and site conditions (e.g., traffic and climatic factors). 

Hypothesis #2: The economic loss or gain due to deviation from as-designed 

(i.e., target) quality level can be quantified through life-cycle cost analysis in 

terms of the difference between present-worth values of the as-constructed 

and the as-designed treatments. 

While this research focuses on thin HMA overlays, the modeling approach and 

the PRS methodology developed and presented in this dissertation can potentially be 

applied to other pavement preservation treatments.  

RESEARCH OBJECTIVES AND PERFORMED TASKS 

The aim of this research is to find answers to the questions raised in Section 1.2, 

and to develop a PRS methodology for pavement preservation treatments, with 

application to thin HMA overlay. This entails the following specific objectives and 

corresponding tasks to achieve each objective: 

Objective #1: Develop a performance prediction modeling approach for pavement 

preservation treatments and apply it to thin HMA overlays  

Task 1. Develop a conceptual approach for predicting preservation treatment 

performance 

The performance of preservation treatments is affected by a large number of 

factors. These factors include key material and construction properties of the 
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treatment, the condition of the existing (original) pavement, the design of the 

existing pavement, and other site factors such as traffic and climate. The 

modeling approaches and model forms used in new pavement studies may not 

work for pavement preservation treatments.  Additionally, available pavement 

preservation performance data tend to be incomplete and highly variable (i.e., 

without clear patterns).  A “Two-Component Modeling Approach” was 

developed based on a perspective analysis of the distress mechanism in a 

pavement before and after preservation treatment is applied. 

Task 2. Develop pavement prediction models for thin HMA overlays 

Preservation treatment and performance data were obtained from the Long-Term 

Pavement Performance (LTPP) Standard Data Release (SDR) 26. The LTPP 

dataset was carefully evaluated and processed to form a high-quality dataset for 

developing performance prediction models for flexible pavements treated with 

think HMA overlays.  The final dataset included 88 flexible pavement sections 

that were treated with thin HMA overlay, located throughout the U.S. and some 

Canadian Provinces and overlaid between 1989 and 2003. Artificial neural 

networks and Bayesian regression techniques were employed for developing 

these performance prediction models. The predictive power of the developed 

prediction models was checked by using them to predict the performance of 

LTPP test sections that have received thin HMA overlay treatments.   

Objective #2: Develop a PRS methodology for pavement preservation treatments 

To accomplish this objective, the following task was carried out: 



6 
 

Task 3. Develop a simulation-based methodology for pavement preservation 

treatments 

In this task, a PRS methodology was developed to allow for determining pay 

adjustment based on the economic value of performance lost or gained due the 

differences between the treatment’s as-designed (i.e., target) and as-constructed 

levels of quality.  This economic value is quantified by estimating the difference 

in the present-worth values (PWVs) of the as-designed and as-constructed 

treatments, and is ultimately converted to pay adjustment factors.   

Objective #3: Apply the developed PRS methodology to thin HMA overlays to 

investigate the impact of treatment initial quality on long-term performance and pay 

adjustment 

To accomplish this objective, the following tasks were carried out: 

Task 4. Apply the developed PRS methodology to case studies of flexible 

pavements treated with thin HMA overlays 

In this task, the developed PRS methodology was applied to case studies that 

consist of LTPP test sections with various combinations of mean and standard 

deviation of initial quality levels, climate, traffic volume, and existing pavement 

designs and conditions.   

Task 5. Investigate the impact of initial quality characteristics on pay adjustment  

The following quality scenarios were simulated for Task 4 case studies: 1) on-

target quality, in which the initial quality characteristics of the as-constructed 

treatment have mean and standard deviation values equal to the target values; 2) 
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high quality, in which the initial quality characteristics of the as-constructed 

treatment have mean and standard deviation values superior to the target values; 

and 3) poor quality, in which the initial quality characteristics of the as-

constructed treatment have mean and standard deviation values inferior to the 

target values.   
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CHAPTER II 

LITERATURE REVIEW 

OVERVIEW 

This chapter presents a review of the literature in pavement construction and 

materials specifications, preservation treatments, and performance prediction models.  

An introduction about the artificial neural networks modeling technique, which is used 

in this research, is also provided in this chapter. 

HIGHWAY CONSTRUCTION SPECIFICATIONS 

In highway constructions, specifications are used for measuring compliance of 

as-constructed products to what is specified in the contract. They are also used as a basis 

for competitive bidding for the delivery of products (Chamberlin 1995).   Highway 

construction specifications can be classified into different categories based on different 

criteria (TRB, 2009). For example, based on who is responsible for the quality of 

construction, it can be classified into 1) materials and methods specifications (0% 

contractor responsibility), 2) quality assurance (QA) specifications, and 3) end results 

specifications (100% contractor responsibility). Based on the type of sampling, highway 

construction specifications can also be classified into 1) representative sampling 

specifications (little information), 2) statistical specifications, and 3) 100% sampling 

specifications (much information).    

Based on the relation to performance, highway construction classifications can be 

classified into four categories: 1) intuitive specifications, 2) performance-related 
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specifications, 3) performance-based specifications, and 4) performance specifications. 

For highways, performance is typically described in terms of changes in physical 

conditions of the surface and its response to load.  Figure 2 shows a diagram that helps 

distinguish between the different levels of construction specifications taking pavement 

performance into consideration (TRB, 2009). 

   

 

Figure 2  Classification of highway construction specifications according to relation 
to performance. 

 

Among the different types of specifications shown in Figure 2, performance-

related specifications (PRS) are the focus of this study. The other three types of 

specifications, based on relation to performance, are briefly introduced in the following 

sections, while more details will be provided about PRS. 

Intuitive Specifications 

Intuitive specifications provide the least relation to pavement long-term 

performance. In intuitive specifications, materials and construction quality 

characteristics are used to control quality and tied to performance through intuition, 

engineering judgment, or both (Epps et al. 2002).  For example, minimum density is 



10 
 

used as an acceptance quality characteristic (AQC) in an intuitive specification where 

the connection to better performance is intuitive, that is, higher densities generally mean 

better performance.  

Most construction specifications used by state highway agencies can be classified 

into this category based on their features in specifying the intuitive specification limits 

and pay adjustment schedules.  There is a consequence to the contractor for not 

satisfying the specification, which usually results in the removal and replacement of 

defective pavement, or a reduced payment.   

Performance-Based Specifications 

Performance-based specifications (PBS) describe the desired levels of 

fundamental engineering properties (e.g., resilient modulus, creep properties, and fatigue 

properties) that are predictors of performance.  These properties appear in primary 

prediction relationships (or models) that are used to predict pavement stress, distress, or 

performance from combinations of predictors that represent traffic, environmental, 

roadbed, and structural conditions.  For most part, these fundamental properties are not 

amenable to timely acceptance testing (Chamberlin 1995).  

In PBS, the selection of a particular AQC by itself does not make the 

specification performance-based.  Instead, there must be the connection to performance 

through some valid empirical or mechanistic prediction model that accounts for the 

effect of deviations of the as-constructed AQC level from the as-designed AQC level 

(Epps et al. 2002). The difference in predicted performance between the as-designed and 

as-constructed product is then used as a basis for pay adjustment.  
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Because most fundamental engineering properties associated with pavements are 

currently not amenable to timely acceptance testing, performance-based specifications 

have not found applications in highway construction (TRB 2009). 

Performance Specifications 

Performance specifications represent the level of most known relation of AQCs 

to performance. It includes the specifications that describe how the finished product 

should perform over time (TRB, 2009).  For example, the specifications can require that 

“no cracking after 5 years,” “permanent deformation less than 0.4 inch after 10 years,” 

and  “IRI no greater than 150 in/mile after 20 years.”   

Performance specifications are not widely used for highway pavement 

construction because they involve time (e.g., 10 years) as a factor and there have not 

been suitable non-destructive tests to measure long-term performance immediately after 

construction (TRB 2009).  The ones that have been used typically from the form of 

warranty or guarantee specifications, under which the contractor agrees to build and 

maintain the pavement for specified period of time (Epps 2002). 

Performance-Related Specifications     

Performance-related specifications (PRS) are quality assurance specifications 

that describe the desired levels of key materials and construction quality characteristics 

that have been found to correlate with the long-term performance of the finished product, 

thus providing the basis for rational acceptance and price adjustments (TRB 2009; 

Hoerner and Darter 1999). These quality characteristics (for example, air voids in HMA 
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pavement) should be amendable to acceptance testing at the time of construction. 

Generally, a systematically complete and scientifically sound PRS should include the 

following elements (Chamberlin 1995; Hoerner and Darter 1999; Weed 2006): 

• Acceptance quality characteristics (AQCs) that correlate with the 

performance (or longevity) of the pavement 

• Pavement performance indicators that are affected by the defined AQCs 

• Statistical acceptance sampling and testing plan, including definition of lots, 

sublots, and sample size 

• Pay adjustment factors 

• Operating characteristic (OC) curves to evaluate the agency’s and 

contractor’s risks 

AQCs and performance indicators are core elements in PRS.  The essence of 

PRS is that these two elements can be linked through mathematical relationships. AQCs 

that are amendable to PRS can be described as follows: 

• Measurable at the time of construction 

• Can be controlled by the contractor or material supplier 

• Affect the future performance of the finished product 

Efforts to develop PRS for highway construction were dated back to as early as 

the late 1940s. Weed (1989) provided a prototype PRS which used total life-cycle cost 

(LCC) as an overall measure of pavement quality. This approach was modified and 

adopted in a series of FHWA-sponsored research studies that resulted in guidelines for 
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developing PRS for new PCC pavements and the PaveSpec PRS software (Hoerner and 

Darter 1999). A follow-up research was sponsored by the FHWA to improve the 

performance prediction models used in the PRS methodology for PCC pavement and to 

revise the PaveSpec software (Hoerner et al. 2000), which represents the current PRS 

methodology and guidelines for new PCC pavement at the national level. 

Initial efforts to develop PRS for new HMA pavements began under the NCHRP 

Project 10-26 “Performance-related specifications for hot-mix asphaltic concrete”, where 

Anderson et al. (1990) identified relationships between materials and construction 

properties and performance of HMA pavements. During 1998 to 2000, the NCHRP 

Project 09-20 “Performance-related specifications for hot-mix asphalt construction” was 

carried out to develop PRS for HMA pavements based on field data from the WesTrack 

accelerated pavement test sections by examining how deviations in materials and 

construction properties affected pavement performance (Seed et al. 1997; Epps et al. 

2002). The PRS software, namely HMA Spec, was developed under this project but not 

publicly distributed because it has been superseded by another PRS developed in the 

NCHRP Project 09-22.   Conducted during 2000 to 2011, the NCHRP Project 09-22 

“Beta testing and validation of HMA PRS” developed a new PRS methodology for new 

HMA pavements and incorporated closed-form solutions (CFS) of AASHTO’s 

mechanistic-empirical models for predicting HMA pavement performance which was 

indicated by three major distresses – rutting, fatigue cracking, and thermal cracking 

(Fugro and ASU 2011).  The PRS methodology and accompanying Quality-Related 

Specification Software (QRSS) was documented in NCHRP Report 704, which 
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represents the current PRS methodology and guidelines for new HMA pavement at the 

national level.  

Table 1 compares key aspects of current PRS methodologies for new PCC and 

HMA pavements. While the general PRS framework is similar, the two pavement types 

have different acceptance quality characteristics and distress types. The two 

methodologies also differ in terms of the basis for computing pay adjustment factors. 

The HMA PRS methodology determines pay factors based on the difference in expected 

life between as-designed and as-constructed pavements; whereas, the PCC PRS 

methodology determines pay factors based on the difference in total life-cycle costs 

(LCC) between as-designed and as-constructed pavements. Finally, the PCC PRS 

methodology considers initial IRI as an AQC and is equipped with models to predict 

future IRI as a performance indicator; whereas, the HMA PRS methodology considers 

pavement smoothness through user-defined pay adjustment factors for various values of 

initial IRI (three different payment schedules are provided in QRSS for users to adjust 

penalty/bonus values based on initial IRI).  

Currently, most materials and construction specifications for pavement 

preservation treatments provide little or no linkage between their initial quality (material 

properties, construction quality, and design) and future performance (short and long-

term). For example, the Texas DOT (TxDOT) 2004 Specifications for thin HMA 

overlays assign a reward (i.e., pay factor > 1.0) when the absolute deviation from target 

laboratory-molded density is less than 1% and assign a penalty (i.e., pay factor < 1.0) 

when the deviation is greater than 1% (TxDOT 2004). The Michigan DOT (MDOT) 
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2012 Specifications for chip seals specify a tolerance (e.g., ±1 pound per square yard of 

the required aggregate application rate) for the quality characteristics. No pay adjustment 

is made if the acceptance testing is within the tolerance; otherwise, the agency makes a 

pay adjustment if the test result is outside of the tolerance (MDOT 2012).    

 

Table 1  Comparison of Current PRS for PCC and HMA Pavements 

PRS 
Components New PCC Pavement New HMA Pavement 

AQCs 

• PCC strength (compressive or flexural) 
• Slab thickness 
• Air content 
• Initial smoothness  
• Consolidation around dowel bars 

• Asphalt concrete (AC) layer thickness 
• Gradation: 3⁄4 in., 3⁄8 in., #4, and #200 
• Asphalt content (%) 
• Air voids (%) 
• Max. theoretical specific gravity of mix 

Performance 
Indicators 

• Transverse cracking 
• Joint faulting 
• Joint spalling 
• International Roughness Index (IRI) 

• Bottom-up fatigue cracking 
• Top-down (longitudinal) fatigue 

cracking 
• Permanent deformation (rutting) 
• Thermal (transverse) cracking 

Pavement 
Smoothness 

• Initial smoothness considered as an 
AQC 

• Future IRI considered as a performance 
indicator 

User-defined pay factors based on initial 
IRI (at the time of construction) 

Performance 
Prediction 

Models 

Empirical and Mechanistic-empirical 
models 

Rapid closed-form of AASHTO’s 
mechanistic-empirical models 

Basis for Pay 
Factor 

Difference in life-cycle costs between as-
designed and as-constructed pavements 

Difference in expected lives between as-
designed and as-constructed pavements 

Composite 
Pay Factor 

• Individual pay factors combined using 
multiple options (multiplication, 
average, weighted average, etc.) 

• Overall pay factor computed based on 
LCC 

Summation of individual pay factors 

 

 

This pay adjustment method is greatly based on subjective judgment of the 

relationships between the AQC of the treatment and its future performance (e.g., the 
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longest service life).  The performance of a pavement section, especially after 

preservation, is affected by many factors including site conditions, climatic conditions, 

and materials and construction quality (Epps et al. 2002). The current standard 

specifications for pavement preservation treatments lack objective relationships between 

the AQCs and the long-term performance of the pavement after preservation. A pay 

adjustment derived from subjective deviation of some AQCs from a certain tolerance 

may not appropriately reflect the true life-cycle cost of the as-constructed product and 

consequently of the payment it deserves. 

PRS specify the desired levels of key AQCs that correlate with future 

performance. In addition, PRS employ quantitative relationships containing the 

characteristics to predict long-term pavement performance. They thus provide the basis 

for rational pay adjustment decisions and work as an alternative approach to address the 

limitations described previously.   

However, it was found that the literature lacks a methodology for developing 

performance models for pavement preservation treatments that can be used in PRS.  

Another key component in PRS that is missing is a rational method for determining pay 

adjustment factors. In PRS, pay adjustment decisions are made based on the knowledge 

of life expectancy or life-cycle cost (LLC) of the as-designed and as-constructed 

products. The PRS methodology for PCC pavement, documented in FHWA reports RD-

98-155, -156, -171, and RD-99-059, specified the use of differentiation in LLCs of the 

as-designed and as-constructed pavement as the basis for estimating pay adjustment 

factors (FHWA 1998). In contrast, the pay adjustment for new HMA pavement is based 
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on the loss or gain in the service life predicted through close-form pavement prediction 

models (Fugro and ASU 2011).  How these pay adjustment methods can be adapted into 

the PRS for pavement preservation treatments (thin HMA overlay in this dissertation) 

has not been understood.  

This dissertation presents a research endeavor aiming to fill this gap in the 

literature, with focus on thin HMA overlays. 

PAVEMENT PRESERVATION TREATMENTS 

The concept of “pavement preservation” has emerged as a cost-effective 

alternative to reactive maintenance. Generally, preservation treatments are applied to 

extend pavement service life, enhance its performance, and reduce its life-cycle cost 

(FHWA 1999; Smith 2002; Zhang et al. 2010).  Applications of preservation pavements 

are used to postpone costly rehabilitation and reconstruction and consequently reduce the 

life-cycle cost of the pavement. Figure 3 depicts the effect of preservation treatments on 

pavement performance and service life. 
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Figure 3   Effect of preservation treatments on pavement service life. 
 

A questionnaire survey by Morian (2011) found that thin HMA overlay, 

microsurfacing, crack sealing, and chip seal techniques are the most frequently used 

treatments for HMA pavement. The same survey also indicated that thin HMA overlays 

are used for all the traffic levels. Another questionnaire survey of 50 highway agencies 

by Peshkin et al. (2011) concluded that crack sealing, crack filling, cold milling, and thin 

HMA overlays are the treatments most extensively used on both rural and urban high 

volume HMA-surfaced roadways.  

Cuelho et al. (2006) conducted a web-based emailing survey that was distributed 

to all the 50 U.S. states, Washington, D.C., and 11 Canadian provinces. Responses from 

34 U.S. states and five Canadian provinces indicated that crack sealing, thin HMA 
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overlays, chip seal, maintenance of drainage features, and microsurfacing are the most 

frequently used treatments for HMA-surfaced pavements.   

This dissertation defines pavement preservation treatments as “treatments applied 

to preserve an existing roadway, slow future deterioration, and maintain and improve its 

functional condition (without substantially increasing structural capacity).”  This 

definition is consistent with the FHWA definition of pavement preservation, which 

includes preventive maintenance, minor rehabilitation (non-structural), and some routine 

maintenance activities (FHWA 2005). The developed PRS methodology has been 

applied to thin HMA overlays to investigate its applicability. Furthermore, the developed 

concepts and methodology can potentially be applied to other pavement preservation 

treatments, such as slurry seals, microsurfacing, and chip seals.  

THIN HMA OVERLAYS AND SPECIFICATIONS 

Thin HMA Overlays 

Thin HMA overlays are composed of asphalt binder and aggregate combined in a 

central mixing plant and place with a paving machine. They are typically placed in thin 

lifts of 0.5 to 1.5 inches thick, occasionally up to 2.0 inches (Liu et al. 2010; Peshkin et 

al. 2011).  Based on aggregate gradation, thin HMA overlays can be distinguished into 

dense-graded, open-graded, and stone matrix asphalt (SMA).  Dense graded thin 

overlays, which are relatively impermeable mix, are intended for general use. Due to the 

thin thickness, small nominal maximum aggregate size (NMAS) mixtures are used in 

order for the lift thickness to NMAS ratio to be maintained in the range of 3:1 to 5:1 for 
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ensuring adequate compaction (Brown et al. 2004).  A few agencies’ gradations, 

aggregate quality, and mix design requirements in thin HMA overlay constructions are 

summarized in the National Asphalt Pavement Association (NAPA) report by Newcomb 

(2009).  Sometimes the underlying existing pavement needs to be milled when surface 

distresses (e.g., segregation, raveling, or block cracking) are evident.   

Thin HMA overlays are often applied to address function problems, such as 

roughness, cracking (longitudinal, transverse, and block), raveling/weathering, friction 

loss, and bleeding. Generally, a thin overlay is too thin to add additional structural (or 

load-carrying) capacity to the existing pavement; however, when the overlay gets thicker 

or repetitive applications are applied, greater structural benefits in terms of load-carrying 

capability  is possible (Peshkin et al. 2011). Thin HMA overlays can also contribute to 

the improvement of pavement strength, including impermeability properties, thus 

minimizing moisture damage and oxidative aging from water and air infiltration, 

respectively (Lubinda and Scullion 2008). Comparing to slurry seals and chip seals, thin 

HMA overlays are normally used on higher volume routes or as an alternative to these 

treatments. When properly placed on pavements without structural problems, thin HMA 

overlays can provide excellent extended service life and performance.  

Recent studies suggest that thin HMA overlay is one of the most frequently used 

preservation techniques for HMA pavements (Morian et al. 2011; Cuelho et al. 2006; 

and Smith et al. 2011).  The performance of thin HMA overlay varies among highway 

agencies, as stated in many reports. Previous studies show that the service life of thin 

HMA overlays may vary from 2 to 12 years (Geoffroy 1996; Hicks et al. 1999; Johnson 
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2000; Wade et al. 2001; Peshkin et al. 2004; Liu et al. 2010; Liu and Gharaibeh 2012).  

Some highway agencies, such as the Illinois Department of Transportation, reported 

superior performance on their thin overlay projects when targeted to pavement meeting 

specified criteria (Reed 1994).  The wide use of thin HMA overlay in pavement 

preservation makes it an ideal candidate for developing PRS. 

Specifications for Thin HMA Overlays 

The construction specifications from 14 state highway agencies were reviewed. It 

was found that a very small proportion of these agencies have separate specifications 

specific for thin HMA overlays. Most state DOTs include this treatment in their 

specifications for HMA pavements, stone mastic asphalt, open graded friction course, 

etc. with or without minor modifications.  Table 2 summarizes the current specifications 

for thin HMA overlays used in Michigan, Texas, Kansas, and Florida.  Materials and 

construction quality measures and payment methods are presented in this table.  

Based on the literature review, a few initial material and construction quality 

characteristics are used as AQCs by some states and may have an impact on the 

performance of thin HMA overlays. They are thus candidate AQCs in the PRS under 

development, as listed below: 

• HMA overlay thickness 

• Asphalt binder content 

• Percent air voids in laboratory HMA mixture 

• Aggregate gradation (percent passing #8 and #200 sieves) 

• Initial IRI, immediately measured after an overlay treatment 
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Table 2  Construction Specifications for Thin HMA Overlays 

 

Material Type Quality Measure
Bond Coat (SS1h) N/A

Marshall air voids
Voids of Mineral Aggregate
Marshall Stability
Marshall Flow Value
Percent Fines (passing #200 sieve)
Percent Crushed Face
LA Abrasion Loss
Aggregate Wear Index
Aggregate Angularity Index
Gradation

Asphalt Performance Grading*
Asphalt Performance Grading*

SA CA QMP
Deterious material
Decantation, %, max
Micro-Deval abrasion loss
Los Angeles abrasion loss
Magnesium sulfate soundness
Coarse aggregate angularity
Flat and elongated particles
Linear shrinkage
Sand equivalent
Gradation

Asphalt Performance Grading*
Gradation
Plasticity index
Clay content
Coarse aggregate angularity
Fine aggregate angularity
Soundness
Abrasion loss
Flat and elongated particles
Linear shrinkage

Asphalt Performance Grading*
Gradation
Sand equivalent
Clay content
Coarse aggregate angularity
Fine aggregate angularity
Soundness
Abrasion loss
Flat and elongated particles
Linear shrinkage
Shale content

* Performance grading of asphalt refers to all the superpave binder testing performed on original, RTFO aged, and PAV aged binder to
 determine its high and low temperature properties and thereby classify them into PG grade.

Aggregate
Florida

Asphalt binder content (Pb)
No. 8 sieve (P8)
No. 200 sieve (P200)
Air voids (Va) at Ndesign
Density (Gmb)
Smoothness using straightedge

Payment = contracted unit 
price × tons of HMA used

Michigan

Aggregate

Asphalt binder content (Pb)
No. 8 sieve (P8)
No. 200 sieve (P200)
In-place air voids (Va)
Lab-modeled density (Gmb)
International Roughness Index
Joint Density (In-place)

Payment = contracted unit 
price × tons of HMA usedTexas

Aggregate
Kansas

Air voids (Va) at Ndesign
Density (Gmb)
Thickness
Profile index

Payment = contracted unit 
price × tons of HMA used

State
Materials Quality Measures (Pre-construction)

Payment Methods
During and Post-construction 

Quality Measures

Aggregate

HMA Mixture Tackcoat application rate
HMA application rate
Asphalt content
Air voids
Aggregate gradation (#8, #80, and 
#200 sieve)

Payment = contracted unit 
price × sq yd of application

or Payment = contracted unit 
price for special mix × tons of 
mix used
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PRESERVATION TREATMENT PERFORMANCE PREDICTION MODELS 

Performance prediction models are the most critical component in PRS. Through 

these models, the AQCs of thin HMA overlays are related to pavement long-term 

performance and life-cycle cost of the treatment.  As discussed earlier, the ability to 

related AQCs to in-service performance allows for developing rational pay adjustment 

schemes.  

Existing Models for Predicting the Performance of Thin HMA Overlays 

The review of past studies revealed a lack of promising performance prediction 

models in the literature. Most existing models predict pavement performance 

(represented by either individual distress or a composite index) as a function of age, 

traffic, climatic parameters, without considering the initial material and construction 

quality of the treatment. Below are a few thin HMA overlay performance models 

developed in studies by other researchers. 

Morian et al. (1998) developed linear regression models using the LTPP data for 

predicting pavement composite rating score (CRS) as a function of traffic, environment, 

and site-specific variables.  CRS is a composite 0-100 scale performance indicator, 

computed based upon distress conditions including fatigue cracking, longitudinal 

cracking, transverse cracking, and patching. The CRS model for thin HMA overlays has 

the following form: 

( ) ( ) ( ) ( )43.3486 1.88071 6.137 4.37 6.122CRS EZ Age IC SG= + + + +  
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where EZ is environmental zone (dry-no freeze, dry-freeze, wet-no freeze, wet-freeze), 

Age is year of pavement preservation treatment, IC is original pavement condition level 

(good, fair, and poor),  and SG is subgrade type (fine verses coarse). 

Eltahan et al. (1999) employed the Kaplan-Meier method to develop a model that 

predicts the probability of failure of thin HMA overlay treatments at any given time as 

expressed in the following form. 

 1 ( 1)( ) 1
( 1) 1 1r

n n r n rF t
n n r n r

 − − − −
= − × × × − − + − + 



  

where F(tr) is the probability of treatment failure at a given time, n is the total number of 

sections, and r is the rank of the section at a given time.  

 Labi et al. (2007) fitted exponential models for predicting IRI on thin HMA 

overlays using pavement management data from Indiana, which has the following form: 

( )1 2 3AATT AFDX ty eβ β β+ × + × ×=   

where y is the IRI value for a treated pavement section at a given year, AATT is annual 

average daily truck traffic, AFDX is average annual freeze index, t is the pavement age 

at which IRI is being estimated, and β1, β2, and β3 are regression coefficients. 

Chen and Zhang (2011) used New Mexico pavement data to investigate the 

applicability of IRI-based pavement deterioration prediction models of four forms – the 

NCHRP, Al-Omari-Darter, Dubai, and New Mexico Department of Transportation 

(NMDOT) models. In the four models, the NCHRP and NMDOT models predict other 

performance indicators (e.g., PSI) based on IRI, while the Al-Omari-Darter and Dubai 
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models predict IRI based on other factors (e.g., age). The Al-Omari-Darter and Dubai 

models have the following forms: 

0.0539( )Al-Omari-Darter Model : 0.796
Dubai Model : 57.56 334.28

136.19 116.36

AgeIRI e
IRI = RD
IRI SD

=
−

= −
 

where Age is the age of the pavement section since the original construction or last 

overlay, RD is the rut depth, and SD is the standard deviation of rut depth.   

It is obvious that these models are not adequate for being used in PRS as none of 

them has included any initial material and construction characteristics that were listed in 

the previous section.  In addition, these models are too simple for predicting pavement 

post-treatment performance, as they usually consider a very limited number of variables, 

which restricts their capability of capturing actual in-service treatment performance.  A 

preliminary analysis of the LTPP Specific Pavement Studies Experiment 3 (SPS-3) data 

indicated that field post-treatment performance data commonly shows large variations 

and does not follow obvious patterns or trends, making it essential to devise a promising 

approach for developing pavement post-treatment performance models.  

Performance Indicators of Thin HMA Overlays 

Performance prediction models used in PRS include acceptance quality 

characteristics, along with other influential factors, as predicator variables; on the other 

side of the model will be pavement performance, which is usually represented by 

different forms of distress (e.g., fatigue cracking, longitudinal cracking, transverse 

cracking, and rutting) and pavement smoothness [e.g., International Roughness Index 
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(IRI)], especially in the Mechanistic Empirical Pavement Design Guide (MEPDG). 

Selection of appropriate performance indicator for thin HMA overlays is important in 

the PRS because it helps define the failure of the pavement that receives a thin HMA 

overlay treatment.    

IRI was originally produced in a research effort led by the World Bank that 

aimed to establish a universal and transportable index for quantifying pavement 

roughness.  IRI is defined as the cumulative relative displacement of the axle with 

respect to the frame of a reference quarter-car per unit distance traveled over the 

pavement profile at a speed of 80 km/h (Sayers et al. 1986).  

In this dissertation, IRI was used as the performance criterion to characterize thin 

HMA overlays and underlying pavement structure.  Using IRI as the performance 

criterion was determined for several reasons.  First, it is one of the most commonly used 

performance criteria for new HMA pavements (ARA 2004; Choi et al. 2004; Fugro and 

ASU 2011; Haider and Dwaikat 2011).  Secondly, in the construction specifications of 

many highway agencies (such as TxDOT and FDOT), the initial IRI measurement 

immediately after a thin HMA overlay treatment is used as a post-construction quality 

measure for making pay adjustment purposes.  Thirdly, a pilot application of the 

pavement prediction under development finds that IRI models tend to give the most 

promising predictions that are closer the field observations in the LTPP database, 

comparing to other considered distress types, such as alligator cracking and rutting.  

These features make IRI an ideal performance indicator for justifying the quality of thin 

HMA overlay treatments. 



27 
 

A REVIEW OF EXISTING IRI MODELS FOR HMA PAVEMENT  

With an aim of developing IRI models for thin HMA overlays, a review of 

existing IRI models for HMA pavement in the literature was conducted.  

The existing pavement structure is a complex system and usually consists of 

multiple pavement layers, such as the HMA surface layer, granular/stabilized base, and 

subgrade.  Some pavement sections also include an HMA binder course between the 

surface layer and base, or a granular/stabilized subbase between the base and subgrade.  

Considering abundant information contained in each layer, a great number of variables 

need to be taken into consideration for predicting overall pavement performance. Ideally, 

these variables include pavement material properties, traffic loading, and environmental 

factors such as temperature, rainfall, and freezing index (Owusu-Abaio 1998).  

Over the past decades, numerous efforts have been made to develop pavement 

performance models that aim to address one of the commonly used performance 

indicators in HMA pavement design, including distresses (e.g., rutting, alligator cracking, 

longitudinal cracking, and transverse cracking), serviceability (e.g., present 

serviceability index and roughness) ,and surface friction (Huang 2004).  For example, in 

the SHRP Early Analysis, Simpson et al. (1994) developed regression equations for 

predicting the variation of IRI for HMA pavements on granular base in different climatic 

regions. Their model for the Wet-Freeze climatic region has the following form: 

10B CIRI N∆ =  
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where ΔIRI is the difference in IRI compared to the construction year (in/mile), N is the 

number of cumulative KESALs (1 KESALs = 1000 ESALs), and B and C are 

determined using the following equations: 

0 1 1 2 2

0 1 1 2 2

n n

n n

B b b x b x b x

C c c x c x c x

= + + + +

= + + + +





 

where x1 is the asphalt viscosity at 140 ᵒF, x2 is the air voids, x3 is the logarithm of HMA 

layer thickness, x4 is the base thickness,  x5 is the annual number days > 90ᵒF, and x6 is 

the product of freeze index and air voids in HMA mix.   

Many of these predictive models were mostly developed based on regression 

analysis on localized data base, resulting in very limited usefulness in practice (Huang 

2004).  Some researcher developed pavement roughness models using the neural 

network approach (La Torre et al. 1998; Roberts and Attoh-Okine 1998).  These models 

either considered only a small number of independent variables or were based on local 

pavement performance data, preventing them from being used in a generalized PRS 

system. 

The NCHRP Study 01-37A, namely “Development of the 2002 Guide for the 

Design of New and Rehabilitated Pavement Structures: Phase II,” adopted a 

mechanistic-empirical approach to damage analysis of HMA pavements.  This approach 

involves computing the pavement structural responses to load (i.e., stresses/strains), 

translating them into damage, and accumulating the damage into distresses, which 

reduce pavement performance over time. It implemented damage functions for fatigue 



29 
 

cracking (bottom-up and top-down), rutting by computing the plastic deformation in all 

layers, and pavement roughness (Papagiannakis and Masad 2008).  The mechanistic-

empirical performance prediction models were calibrated using field performance 

observations from three large-scale pavement experiments: the Minnesota Road 

Research (MnRoad) Project, the WesTrack Project, and the LTPP Program. These 

models were implemented in the MEPDG software, which was developed under the 

NCHRP 01-37A.   

The IRI model proposed in the NCHRP 01-37A guide is regression-based, using 

the other computed distresses as the main independent variables. It was developed in 

three forms to accommodate three types of pavement design. 

1. For HMA pavements on unbound granular bases, the IRI model has the 

following form: 

( ) ( )

( ) ( ) ( )

20
0 0.463 1 0.00119 0.1834

0.00384 0.00736 0.00115

age

L RDT

SNWPT T MH

IRI IRI SF e TC COV

FC BC LC

  
= + − + +  

   
+ + +

 

where IRI0 is the initial (as constructed) pavement roughness, (TCL)T is the 

total length of transverse cracks (low, medium, and high severity levels), 

COVRD is the coefficient of variation in rut depth, (FC)T is the fatigue 

cracking in the wheel-paths, (BC)T is the area of block cracking (percent of 

total lane area), (LCSNWP)MH is the length of moderate and high severity sealed 

longitudinal cracks outside the wheel-paths, age is the age the section in 

years, and SF is a site factor, expressed as 
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( ) ( ) ( ) ( ).075 .02
4

* 1 * ln 1 * 1 *ln 1
2*10 10

SD mR P PI FI P R
SF

+ + + +   
= +   
   

 

where Rm and RSD are the mean and standard deviation in annual rainfall, P.075 

and P.02 are the subgrade percent finer fractions for grain sizes 0.075 mm and 

0.02 mm, FI is the average annual freezing index, and PI is the plasticity 

index of the subgrade.  

2. For HMA pavements on asphalt treated bases, the IRI model has the 

following form: 

( ) ( ) ( )

( ) ( )

0 0.0099947 0.0005183 0.000235

118.36 0.9694

T

H
s H

IRI IRI Age FI FC

P
TC

= + + +

 
+ + 

  

 

where (TCs)H is the average spacing of high severity transverse cracks, and 

(P)H is the area of high severity patches. 

3. For HMA pavements on chemically treated bases, the IRI model has the 

following form: 

( ) ( ) ( )
( ) ( )

0 0.00732 0.07647 0.0001449

0.00842 0.0002115
RD LT T

NWPT MH

IRI IRI FC SD TC

BC LC

= + + +

+ +
 

In another NCHRP Project 9-22 “Beta Testing and Validation of HMA PRS” 

conducted by Fugro Inc. and Arizona State University (ASU), the researchers developed 

closed form solutions for three major distresses (rutting, fatigue cracking, and thermal 

cracking) that predict the simulation of the MEPDG distress predictions (Fugro and ASU 
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2011). Their research and the resulted Quality-Related Specification Software (QRSS) 

used the Initial IRI (actual degree of smoothness obtained by the contractor, not 

predicted through models) in its analyses for adjusting the pay factor.  The QRSS rutting 

and fatigue cracking models are based on relating the dynamic modulus calculated with 

the respective effective temperature to the pavement distress. The QRSS thermal 

cracking model is based on relating the calculated creep compliance to the pavement 

distress.   

The literature review of existing pavement performance prediction models 

indicates that the mechanistic-empirical performance models incorporated in the 

MEPDG software are the most promising at current stage and widely accepted by the 

pavement community (Graves and Mahboub 2006; Tarefder and Sumee 2011; Aguiar-

Moya et al. 2009; Ahn et al 2009; Guclu et al. 2009). Another advantage of the MEPDG 

models is that these models are developed based on nation-wide database (i.e., not 

limited to particular locality) and well-tested.  Therefore, this dissertation made an effort 

to develop performance models that predict the simulation results of IRI prediction using 

MEPDG. 

The literature and practically trial runs of the MEPDG show that the MEPDG is a 

computation-intensive program, requiring many input factors including material 

properties, climate, and traffic. Because the MEPDG consists of a finite element (FE) or 

a multilayer linear elastic analysis (Aguiar-Moya and Prozzi 2011), running a single 

instance using the MEPDG requires considerable amount of time, generally 20 to 40 

minutes per run depending on the complexity of the pavement design.  Additionally, the 
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source code for the MEPDG distress prediction models is not accessible, making it 

impossible to directly integrate the MEPDG analysis into the PRS simulations.  These 

barriers make it necessary to develop reliable and rapid-form pavement roughness 

models that can predict the MEPDG distress analysis results.  

A REVIEW OF THE ARTIFICIAL NEURAL NETWORKS MODELING 

APPROACH 

In this research, efforts were made to develop IRI models for HMA pavement 

that simulate the MEPDG IRI models introduced in Section 2.6.  Due to the complexity 

of pavement structure and the number of predictors used for predicting IRI, the artificial 

neural networks (ANNs) approach was used in this study for modeling purposes.  An 

introduction about ANNs is provided in the following part of this section. 

What is ANNs  

An ANNs is a machine that is designed to model the way in which the human 

brain performs a particular task or function of interest by employing a massive 

interconnection of simple computing cells referred to as neurons or processing units. 

Haykin (2008) defined ANNs as  

“A neural network is a massively parallel distributed processor made up of 

simple processing units that has a natural propensity for storing experimental 

knowledge and making it available for use. It resembles the brain in two respects: 1) 

knowledge is acquired by the network from its environment through a learning process; 
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2) interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge.”  

ANNs has many useful features, making it a powerful tool in modeling. The first 

feature is that it has the ability to represent any arbitrary nonlinear relationships. 

Although in regression analysis linear relationships (or at best pre-specified nonlinearity) 

are often needed, ANNs can find its own function without the constraint of linearity. 

Additionally, ANNs has the ability of generalizing a relationship from a small subset of 

data, to remain relatively robust in the presence of noisy inputs or missing input 

parameters, and to adapt and continue to learn in the face of changing environments 

linearity (Roberts and Attoh-Okine 1998).   Another feature of ANNs is that it can find 

good approximate solutions to complex (large-scale) problems that are intractable 

(Haykin 2008).  These advantages made ANNs an ideal approach for developing 

existing pavement IRI models in this study.   

An ANNs consists of a large number of neurons, which are interconnected by 

means of directed links, and each directed link has an associated weight.  The weights 

acquired through the training process represent abstracted information from the data set, 

which is used by the ANNs to solve particular problems.  To construct an ANNs, three 

key components need to be first determined: 1) the network architecture; 2) the neuron 

activation function; and 3) the learning method.  

Architecture 

Selection of the network architecture is an important step in the ANNs modeling 

process as it is intimately linked with the learning algorithm used to train the network 
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(Haykin 2008).  The efforts generally include determination of input and output 

variables, number of hidden layers, and number of hidden neurons in each hidden layer.  

Usually an ANNs with too few hidden neurons is unable to learn sufficiently from the 

training data set, whereas an ANNs with too many hidden neurons will allow the 

network to memorize the training set instead of generalizing the acquired knowledge for 

unseen patterns (Lawrence and Fredrickson 1994).   In general, there are three 

fundamental ANNs architectures (Haykin 2008):  

• Single-layer feedforward networks, in which the input layer of source codes 

are projected directly onto the output layer of neurons, but not vice versa (in 

the sense of “feedforward”).  

• Multilayer feedforward networks, in which one or more hidden layers are 

used to intervene between the input and output layers. By doing this, the 

network is enabled to extract higher-order statistics from its input.  

• Recurrent networks, in which at least one feedback loop is included. 

Among these architectures, multilayer feedforward ANNs are the one most 

commonly used in many scientific studies. The backpropagation learning algorithm, 

introduced later in this section, requires an input and an output layer and at least one 

hidden layer (Alsugair and Al-Qudrah 1998).  The number of hidden layers and the 

number of neurons in a hidden layer(s) are selected based on the problem complexity.  

Studies have proved that any continuous function can be approximated by using a three-

layered network (Funahashi 1989; Hornik et al. 1989).  In practice, most ANNs 

applications found in the literature used one hidden layer in the final models. This 
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research also used one hidden layer ANNs for developing existing pavement 

performance models.  A typical fully connected feedforward ANNs is shown in Figure 4.  

Note that in this study, the ANNs output layer has only one neuron, which represents IRI. 

 

 

Figure 4  A typical 7-4-2 fully connected feedforward ANNs architecture. 
 

Activation Function  

Each neuron in an ANNs works as a processing units, taking in inputs and giving 

output to the next layer.  It functions in a way of distributed parallel computation. The 

processing of each neuron is simply a weighted summation that is transferred via 

activation function, which is shown as the following equation: 
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where Oj is the output of the jth neuron, f is the activation function, xi is the ith input, wi 

is the connection weight associated with the ith input, and n is the total number of input 

in that layer.  Five typical transfer functions are generally used as neuron activation 

functions, including: 1) linear; 2) linear threshold; 3) step; 4) sigmoid (or hyperbolic 

tangent sigmoid); and 5) Gaussain. Among these, the sigmoid function is mostly 

commonly used owing to its concise form and differentiability.  In this study, the 

sigmoid function and linear threshold function were used for hidden layer and output 

layer, respectively.  The two functions have the following mathematical expressions 

(Rooij et al. 1996): 
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where y is the input to the transfer function,  and a is the gain of the sigmoid function. 
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Learning 

The learning process in an ANNs is one of developing a mapping between the 

output data and the input data, so that the weight values in the network are adjusted to 

reflect the characteristics of the input data.  This process is generally achieved by 

adjusting the signs and magnitudes of the weight values according to learning rules that 

seek to minimize a cost or an error function. All learning methods can be classified into 

two categories: supervised learning and unsupervised learning.  In supervised learning, a 

target value is included as part of each pattern within the training data.  In unsupervised 

learning, there is not target value; instead, the set of data which contains the facts is 

repeatedly applied to the network until a stable network output is obtained.  It relies on 

local information during the learning process by organizing presented data and 

discovering its emergent collective properties (Yang et al. 2003).   

The backpropagation method in supervised learning is widely used in many 

studies for network learning (Najjar et al. 1996; Alsugair and Al-Qudrah 1998). The 

backpropagation learning algorithm uses gradient descent search in the weight space to 

minimize the error between the target output and the actual output.  A typical network 

error is the mean square error (MSE), which is defined as follows: 

( ) ( )( )2

1 1

1
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n m
j j
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E T Y
= =
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where Etotal is the square of the output error for all the patterns in the data sample, Tk
(j) is 

the target value of the kth output for the jth pattern, Yk
(j) is the actual kth output for the jth 
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pattern, n is the number of patterns in the data sample, and m is the number of neurons in 

the output layer. 

Then the error is minimized by backpropagation through the neural network. 

During this process, the error contribution caused by each layer is computed and 

distributed backward, and the corresponding weight adjustments (through learning rules) 

are made to minimize the error. Using the gradient descent method, the backpropagation 

weight adjustment is associated with the derivative of the error with respect to each 

weight, according to the delta rule, and can be expressed as follows (Rooij et al. 1996): 

( ) ( ) ( )1 1total
jk jk

jk

Ew t t w t
w

η µ∂
∆ + = − + + ∆

∂
 

where Δwjk (t + 1) is the weight adjustment for training iteration t + 1 between the jth 

neuron and the kth neuron in the next layer, η is the learning rate, and μ is a momentum 

term used to achieve rapid convergence and avoid numerical vibration during training.  

The ANN training approach used in this research is batch training, in which the 

weights are adjusted after all samples are processed. This training approach guarantees 

the network error Etotal to decrease gradually and convergence can be speeded up. The 

ANN training process is considered complete based on some criteria. In this research, 

the magnitude of the gradient of performance, MSE, and the number of validation 

checks are used to terminate the training process. When the magnitude of the gradient is 

below 10-5 or the number of successive iterations that the validation performance fails to 

decrease reaches 6, the training process will stop. These values are default values in the 

Matlab Neural Network Toolbox.    
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CHAPTER III 

MODELING APPROACH FOR PREDICTING POST-TREATMENT 

PAVEMENT PERFORMANCE  

OVERVIEW 

PRS depend on quantified relationships between various initial quality 

characteristics and performance.  A modeling approach for predicting post-treatment 

pavement performance was developed and is discussed in this chapter.  This approach, 

named “Two-Component Modeling Approach” (TCMA), consists of two model 

components. The first component consists of a set of artificial neural networks (ANNs) 

for predicting the performance of original pavement structure (i.e., before a preservation 

treatment is applied).  The second component consists of Bayesian linear models that 

predict the beneficial effects due to a preservation treatment, exhibited as reduced 

deterioration in pavement. In this research, TCMA was applied to thin HMA overlays 

for developing pavement roughness models that will be used in the PRS.  

THE TWO-COMPONENT MODELING APPROACH 

As discussed in Section 2.3, pavement preservation treatments are not aimed to 

add substantial structural capacity to the existing pavement; instead, they are used to 

correct surface defects and retard the initiation and propagation of distresses in the 

original pavement layers. Eventually, however, the distresses in the original layers will 

develop and reflect on the treatment surface after a certain period of time.  This 

mechanism is depicted graphically in Figure 5.  
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Figure 5  Distress development mechanism for pavement preservation treatments. 
 

The existing pavement distresses (e.g., cracking and roughness) are immediately 

covered (i.e., reduced to zero) or alleviated (i.e., reduced to a lower amount) after the 

treatment layer is placed, as shown in the top two parts of Figure 5.  With time and 

increasing traffic loading on the treatment layer, the distress grow in extent and severity, 

propagate upward, and eventually reflected on the surface, as shown in the bottom part 

of Figure 5.  Therefore, the performance of pavement preservation treatments is affected 

by three major categories of factors: 1) the initial quality characteristics of the treatment; 

2) the condition of the original pavement; and 3) other important site factors such as 

traffic and climatic conditions.  
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The TCMA modeling approach, developed as part of this research, simulates the 

above distress development mechanism of pavement preservation treatments illustrated 

in Figure 5. TCMA is illustrated graphically in Figure 6. 

 

 

Figure 6  A modeling approach for predicting preservation treatment performance. 
 

In this approach, the performance of a pavement preservation treatment is 

modeled as a function of the AQCs of the treatment, the treatment age, the condition of 

the original pavement structure, and site conditions (traffic loading, climate, etc.).  The 

final model includes two tightly-coupled components: 

• The first component is used to predict the performance of the existing (i.e. 

original) pavement. The inputs to this component include material properties 

and structural characteristics of the pavement layers (e.g., HMA layer(s), 
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base/subbase, and subgrade), age of the pavement, climate conditions, and 

traffic factors. The performance prediction using this component is 

represented by the “Original Pavement Performance Curve” in Figure 6. The 

solid part of this curve refers to the performance of existing pavement before 

a preservation treatment is applied. The dotted part of this curve refers to the 

conceptual performance of existing pavement if no preservation treatment is 

applied.  Eq. 1 is a generalized model form of the first component.   

 ( ), ,orig orig orig origPerf f materials structure age ,traffic,climate=    (Eq. 1)  

In practice, there are many different pavement designs (i.e., layer 

compositions of HMA surface, binder course, base, and subbase).  This 

model component may vary for different original pavement designs. 

• The second component, represented by “Δperf” in Figure 6, is used to predict 

the reduction in distress or roughness, which is induced by application of the 

preservation treatment.  Immediately after the treatment, the existing 

pavement distress or roughness is brought down to a lower level. For some 

distresses (e.g. alligator cracking), the amount of cracks after treatment would 

be reduced to close to zero; whereas an initial post-treatment IRI would be 

typically 60-70 in/mile.  In the MEPDG software, the default initial IRI is 63 

in/mile (≈ 1 m/km), which is set based on the LTPP pavement profile data 

(ARA 2004).   Inputs to this component include the AQCs of the treatment, 
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age of the treatment, traffic factors, and climate conditions. The general form 

of the second component can be expressed as in Eq. 2. 

  ( ), , ,perf trmt trmtf AQCs age traffic climate∆ =  (Eq. 2) 

When the two components are developed, the treatment’s future performance can 

be predicted by combining the predictions from the two components, as shown in Eq. 3. 

The pavement post-treatment performance is illustrated by the “Post-Treatment 

Performance Curve” in Figure 6.   

 trmt orig perfPerf Perf= −∆   (Eq. 3) 

An example is given here for predicting pavement IRI after a thin HMA overlay 

treatment was applied. The first step is to predict the IRI of the existing pavement over a 

given analysis period. In this step, information about the existing pavement layers needs 

to be obtained from appropriate data sources, such as state DOT’s pavement 

management systems.  Using the first model component (i.e., Eq. 1), the IRI of the 

existing pavement is predicted as a set of time series values (typically successive data 

points in time spaced at uniform intervals).  In the second step, the treatment AQCs 

measured during the quality assurance and quality control process of the overlay 

treatment, along with other necessary information, are input into the second component 

(i.e., Eq. 2) to predict the reduction in IRI in different years after the thin HMA overlay 

treatment was applied.  The last step is to obtain the post-treatment IRI in different years 
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by subtracting the reduction in IRI estimated in the second step from the predicted IRI in 

the first step.    

PREDICTION OF IRI FOR HMA PAVEMENT TREATED WITH A THIN HMA 

OVERLAY – MODEL COMPONENT 1 

The above modeling approach was applied to develop a model for predicting IRI 

for HMA pavement treated with a thin HMA overlay. The IRI model incorporated in the 

MEPDG for HMA pavement was used as the bases for developing the first component 

(i.e., prediction of IRI of existing pavement) of this model.  A rapid form of the MEPDG 

IRI model was developed using artificial neural networks. The following steps were 

followed to develop the first component of this model:  

• Step 1: Prepare a pavement dataset of adequate sample size for 

simulation. Important pavement layers properties that are influential on 

future performance are identified based on past pavement studies in the 

literature and available data in the LTPP database.  In this step, the statistics 

(e.g., range and distribution) of each key pavement property and site factor 

were obtained from the LTPP data. Then this research used the Latin 

Hypercube Sampling (LHS) procedure for generating the input data set to be 

used in MEPDG simulations. LHS was used to generate all possible 

combination of the model inputs within their ranges. The LHS procedure will 

be introduced in a later section of this chapter.  

• Step 2: Input the sample data into MEPDG and ran the simulations.  
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This step was one of the most time-consuming tasks during the simulation 

because about three thousands cases were input into the MEPDG.  A script 

was written using AutoIt to facilitate the input process on a case-by-case 

basis.  A very useful feature of MEPDG was that it allows for running 

multiple simulation cases under the “Batching” mode.  

• Step 3: Extract the MEPDG simulation results into a dataset. After each 

run, the MEPDG generates an output file in Excel format that contains 

detailed information about the pavement design, site conditions, and 

predicted performance data over the pavement design life.  Another script 

was writing using Matlab to read necessary pavement and performance data 

into one dataset, which was used as the basis for developing performance 

models for existing pavement (i.e., the first component of the overall 

prediction model). 

• Step 4: Develop reliable and rapid-form of pavement roughness 

prediction models. In this step, the artificial neural networks modeling 

approach was applied to develop the first component of the IRI model using 

the dataset generated from the MEPDG simulation results. The details and 

advantages of this modeling technique are discussed in the next chapter of 

this dissertation. 
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PREDICTION OF IRI FOR HMA PAVEMENT TREATED WITH A THIN HMA 

OVERLAY – MODEL COMPONENT 2  

It was observed that the IRI data in the LTPP database have a high propensity of 

being incomplete (i.e., missing IRI values for some years within the study period) and 

highly variable (i.e., without clear patterns).  For example, Figure 7 displays the actual 

IRI values observed at two Wyoming LTPP test sections that received thin HMA 

overlays in 1991.  Section 56-A310 had consecutive IRI measurements while 56-B310 

did not have values for some years. In contrast, 56-B310 had a clear increasing pattern in 

its IRI measurements, whereas the pattern for 56-A310 was not clear.  This type of 

incomplete and variable performance data made the development of deterministic 

performance models unviable.   

 

Figure 7  IRI measurements for example LTPP sections treated with thin HMA 
overlay. 
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In this research, Bayesian regression was used due to its power to incorporate 

uncertainty, which is specially reality in pavement preservation performance data.  The 

other advantage is its ability to incorporate expert opinions (used as priors) to 

supplement historical data where quality data is not available (Amador and Mrawira 

2011).  Instead of predicting in the form of a single value for the response variable, 

Bayesian regression models generate probability distributions for the response variable 

(i.e., IRI reduction in this study), which is more in line with commonsense 

interpretations (Congdon 2001).   Another desired property of the Bayesian approach is 

that it avoids the maximization of any function, which is required and numerically 

difficult in classical linear or non-linear modeling approaches (Train 2001).  

DATA USED FOR DEVELOPING PERFORMANCE PREDICTION MODEL  

The Long-Term Pavement Performance (LTPP) Data is used for developing the 

IRI prediction model.  The LTPP program is a large-scale pavement experiment that was 

initiated in 1986 as part of the Strategic Highway Research Program (SHRP) to evaluate 

the long-term performance of pavement consisting of various material and layer 

compositions.  It was first funded by the SHRP during 1987 to 1992; then the Federal 

Highway Administration (FHWA) assumed the management and funding of the LTPP 

program (Ali and Tayabji 1998).  

The LTPP includes two classes of studies: the General Pavement Studies (GPS), 

and the Specific Pavement Studies (SPS). The GPS experiments were designed to study 

the performance of existing pavements; whereas the SPS experiments were designed to 

study the performance of specially constructed, maintained, or rehabilitated pavement 
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sections, incorporating a controlled set of experimental design and construction features. 

For HMA pavements, the SPS experiments included four specific preventive 

maintenance treatments (designated as “SPS-3”): 1) chip seals; 2) crack sealing; 3) 

slurry seals; and 4) thin HMA overlays. A control section (untreated pavement) was also 

included for each SPS test section for comparison purposes. The total number of test 

sections is nearly 800 for the GPS experiments and 1,262 for the SPS experiments. 

These sections were exposed to in-service traffic monitored by weight-in-motion (WIM) 

systems (Elkins et al. 2003). Pavement performance data has been collected at these 

sections for over 20 years through four regional contracting agencies under the oversight 

of the FHWA. The data is assembled into a massive database, which is publicly 

accessible at the LTPP DataPave web-based database or by inquiry. The whole database 

is composed of a total of 14 modules that contains similar sets of tables.  

This research used the data from the Inventory, Maintenance, Rehabilitation, 

Monitoring, Specific Pavement Studies, Test, Traffic, Climate, and Administration 

modules. The IRI data computed from raw pavement longitudinal profile data is stored 

in the MON_PROFILE_MASTER table of the Monitoring module. Normally, the 

profile data were collected for at least five repeat measurement passes on the same day 

using inertial profilers.  

In this research, a HMA overlay treatment that has a thickness of below 2.0 

inches was regard as thin HMA overlay.  The 2.0 inches cutoff value was selected based 

on an analysis of the SPS-3 thin HMA overlay data, in which the thin HMA overlay 

treatments ranged between 0.5 and 2.0 inches. The initial data set included 148 test 
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sections that had received a thin HMA overlay treatment.  These pavement sections have 

25 different pavement layouts (or pavement designs).  A histogram of these pavement 

layouts is shown in Figure 8.  The most commonly observed pavement layout at these 

sections was “GB_BC_OSL”, followed by “GS_GB_BC_OSL”, “GS_GB_OSL”, and 

“GB_OSL” (shaded area in Figure 8). These four pavement layouts accounted for about 

60% of all observed layouts of the LTPP test sections that had received a thin HMA 

overlay treatment. As a result, this research used four dominating pavement layouts only.  

Figure 9 graphically depicts the layout compositions in each of the four pavement 

layouts used in this research.  Furthermore, those sections with incomplete pavement 

data or suspicious values were excluded from further study. The final dataset consists of 

88 LTPP test sections. Thin HMA overlay treatments were applied at these sections 

during the period of 1989 to 2003.  A map showing the locations of these overlay 

treatments is presented in Figure 10. It can be seen that these locations had a reasonable 

coverage of the climatic and geographical conditions in the U.S. 



50 
 

 
Figure 8  Pavement layouts of all LTPP thin HMA overlay sections.  

(GS = Granular Subbase; GB = Granular Base; BC = Binder Course; OSL = 
Original Surface Layer; OL = Overlay. A subgrade is present for all sections, thus 
not shown. Example: GB_BC_OSL indicates the pavement consists of from top to 
down, an original HMA surface, a binder course, a granular base, and subgrade.) 

 

 
Figure 9  Layout compositions of four dominating pavement layouts in the research 

dataset. 
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Figure 10  Locations of the thin HMA overlay treatments included in the research 
dataset. 

 

 

Tables 3 through 5 provide summary statistics (i.e., minimum, maximum, mean, 

and standard deviation) of the site conditions, important properties of HMA layers, and 

underlying courses of the LTPP sections used in this study, respectively. 

  

Table 3  Site Conditions  

Variables LTPP Data 
Min Max Mean Stdev 

Average air temperature, ᵒF  34.5 74.5 52.9 43.8 

Annual rainfall, in 7.6 84.8 33.1 17.2 

Freeze index, ᵒF-days 0 1820 476.1 580.5 

Initial two-way AADTT, veh/day 40 1,900 320 319 

AADTT compound growth rate, % 0.4 14.5 4.5 3.1 
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Table 4  Characteristics of Existing (Pre-treatment) HMA Layers  

Layer Variables LTPP Data 
Min Max Mean Stdev 

HMA Surface 
Layer 

Thickness, in 0.7 12.6 2.9 2.1 
Effective asphalt content, % 3.7 7.7 5.5 0.8 
Air voids, % 1.9 10.0 4.8 1.9 
Unit weight, pcf 131.6 166.6 145.3 5.2 
Cum. % retained 3/4” sieve 0.0 8.0 0.6 1.5 
Cum. % retained 3/8” sieve 0.0 39.0 14.8 10.1 
Cum. % retained #4 sieve 13.0 59.0 39.7 8.3 
% passing #200 sieve 1.0 10.5 5.7 1.6 

Binder 
Course 

Thickness, in 1.0 8.3 3.9 2.0 
Effective asphalt content, % 3.5 7.1 4.9 0.8 
Air voids, % 1.8 9.6 4.8 1.8 
Unit weight, pcf 131.0 162.2 147.4 6.3 
Cum. % retained 3/4” sieve 0.0 26.0 6.4 7.3 
Cum. % retained 3/8” sieve 1.0 50.5 28.1 15.5 
Cum. % retained #4 sieve 19.0 65.0 48.2 11.1 
% passing #200 sieve 3.2 9.6 5.9 1.7 

 

Table 5  Characteristics of Existing (Pre-treatment) Base, Subbase, and Subgrade 

Layer Variables LTPP Data 
Min Max Mean Stdev 

Granular 
Base 

Thickness, in 1.0 25.6 9.2 4.4 
Plasticity index 0 12 2.3 3.0 
Liquid limit 0 32 11.4 11.4 
% passing #200 sieve 0.5 38.5 14.1 8.5 
% passing #40 sieve 5 67 29.8 13.2 
% passing #10 sieve 13 80 47.1 14.2 
% passing #4 sieve 16 89 59.3 13.2 
% passing 1" sieve 39 100 96.0 7.8 
Max dry unit weight, pcf 109.5 147.5 134.7 7.5 
Opt. moisture content, % 4.5 16.0 7.4 2.0 

Granular 
Subbase 

Thickness, in 3.0 38.2 11.8 6.8 
Plasticity index 0 11 1.9 3.3 
Liquid limit 0 32 9.9 11.0 
% passing #200 sieve 3.2 31.1 12.9 6.3 
% passing #40 sieve 8 99 41.7 26.7 
% passing #10 sieve 19 100 59.8 25.2 
% passing #4 sieve 30 100 69.3 22.3 
% passing 1" sieve 62 100 93.0 9.0 
Max dry unit weight, pcf 107 149.5 128.5 13.0 
Opt. moisture content, % 5.0 18.0 9.1 3.2 

Subgrade 

Plasticity index 0 33 7.2 8.2 
Liquid limit 0 65 20.0 16.4 
% passing #200 sieve 0.3 91.8 29.7 23.6 
% passing #40 sieve 12 99 63.0 25.0 
% passing #10 sieve 20 100 75.7 23.2 
% passing #4 sieve 23 100 81.6 20.1 
% passing 1" sieve 63 100 95.1 8.3 
Max dry unit weight, pcf 96.0 140.5 116.2 10.3 
Opt. moisture content, % 6.0 22.0 12.8 3.8 
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The asphalt binder used in the HMA layers of these LTPP sections included the 

following types (which are based on conventional viscosity or penetration grading 

systems): AC-2.5, AC-5, AC-10, AC-20, AC-30, AC-40, PEN40-50, PEN60-70, 

PEN85-100, PEN120-150, and PEN200-300.  The viscosity of the asphalt binder at a 

reference temperature (70ᵒF used as default in this study) was determined using the 

ASTM viscosity temperature relationship defined as follows (Fugro and ASU 2004): 

( )log log log 459.7 RA VTS Tη = + +    (Eq. 4) 

where η is the viscosity in cP, A is the regression intercept, VTS is the regression slope of 

viscosity temperature susceptibility, and TR is the reference temperature in ᵒF. The A and 

VTS values recommended by MEPDG and computed viscosity values for different 

asphalt binders are provided in Table 6. 

 

Table 6  Viscosity of Typical Asphalt Binders  

Asphalt Binder A VTS Viscosity@70ᵒF  
(10^6 Poise) 

AC-2.5 11.5167 -3.8900 2.10 
AC-5 11.2614 -3.7914 3.81 
AC-10 11.0134 -3.6954 7.10 
AC-20 10.7709 -3.6017 13.03 
AC-30 10.6316 -3.5418 42.67 
AC-40 10.5338 -3.5104 23.01 
PEN40-50 10.5254 -3.5047 32.87 
PEN60-70 10.6508 -3.5537 21.95 
PEN85-100 10.8232 -3.6210 12.86 
PEN120-150 11.0897 -3.7252 5.66 
PEN200-300 11.8107 -4.0068 0.74 

Source: Fugro and ASU 2004. 
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Figures 11 through 16 show histograms of the variables in the LTPP data that 

were categorized into traffic factors, HMA surface, binder course, granular base, 

granular subbase, and subgrade.   It can be seen that some variables, such as effective 

binder content and unit weight, exhibit a pattern of normal distribution; however the 

distributions of a lot of input variables can hardly be identified. 

 

 

Figure 11  Histograms of traffic factors. 

 

 

Figure 12  Histograms of HMA surface properties. 
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Figure 13  Histograms of binder course properties. 

 

 
Figure 14  Histograms of base properties. 
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Figure 15  Histograms of subbase properties. 

 

 
Figure 16  Histograms of subgrade properties. 
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CHAPTER IV 

DEVELOPMENT OF IRI PREDICTION MODEL FOR HMA PAVEMENT 

TREATED WITH THIN HMA OVERLAYS 

OVERVIEW 

This chapter describes the development of IRI prediction model for HMA 

pavement treated with thin HMA overlays.  As discussed earlier, this model consists of 

two tightly-coupled components. The first component is used to predict the IRI of the 

existing (i.e., original) pavement. The second component is used to predict the reduction 

in IRI induced by application of the thin HMA overlay. The development of these two 

components of the model is discussed in this chapter.  

DEVELOPMENT OF IRI PREDICTION MODEL FOR EXISTING HMA 

PAVEMENT 

This component of the model consists of ANNs that mimic the IRI prediction 

model used in the MEPDG.  To develop these ANNs, thousands of HMA pavement 

design cases were generated based on the LTPP dataset using the Latin hypercube 

sampling (LHS) technique. MEPDG was then used to predict IRI for these design cases. 

Finally, ANNs were developed to relate IRI to the input parameters of these design cases.  

Generation of Input and Output Dataset for MEPDG IRI Prediction Model 

The MEPDG input variables for thousands of simulated designs were drawn 

from probability density functions that represent the LTPP histograms (i.e., Figures 11 

through 16 discussed earlier) using the LHS technique. The MEPDG default values were 
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used for other inputs (such as the vehicle classification distribution and monthly 

adjustment factors) that are not available in the LTPP data set. The asphalt binder for 

HMA layers in each case were randomly generated from the 11 types listed in Table 6. 

LHS is widely used in engineering studies, especially sensitivity analysis of 

complex models (Kleijnen 1997; Mrawira et al. 1999; Orobio and Zaniewski 2011).  

LHS is a stratified random procedure which provides an efficient way of sampling 

variables from their distributions (Iman and Canover 1980). In LHS, probability 

distributions of the input variables are prescribed first. Then the cumulative distribution 

for each variable is divided into equiprobable intervals. A value is selected randomly 

from each interval and placed in a Latin square, (see Figure 17).  

 

 

Figure 17  Example of LHS: a) Random stratified sampling of variables x1 and x2 
at five intervals (left); and b) Random pairing of sampled x1 and x2 forming a 

Latin hypercube (right). 
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The LHS sample sizes included 600 design cases for Layout-1, 700 for Layout-2, 

700 for Layout-3, and 1000 for Layout-4.  The summary statistics of the input variables 

used in the LHS data generation process are provided in Table A-1 of the Appendix. 

The input values for the simulated design cases were input into MEPDG in a 

batch mode. and simulations were ran for every pavement layout.  As each case 

consisted of a large number of input variables, manual input was very time-consuming, 

and may result in input errors.  To facilitate this process, a script was written using 

AutoIt, which read the inputs row by row from the spreadsheet that contained the 

simulation data, called the MEPDG application into the design environment, and wrote 

each input variable in the corresponding place in MEPDG.  Each run of the MEPDG 

simulation took about 20 to 40 minutes, depending on the complexity of pavement 

structure.  Another script was written using Matlab to automatically extract the input 

values and IRI predictions into a summary spreadsheet for developing the ANNs that 

mimic the MEPDG IRI model. 

ANNs Models for Predicting IRI of Existing Pavement 

One ANN was developed for each one of the four pavement layouts using the 

final dataset of inputs and outputs of the MEPDG IRI prediction model. Recap that 600 

simulations were performed for Layout-1, 700 for Layout-2, 700 for Layout-3, and 1000 

for Layout-4.  In all the simulations, a 30-year analysis period was used.  This resulted in 

a total of 30*n patterns in the ANN dataset for each pavement layout. For example, in 

the Layout-1 data, each simulation resulted in 30 patterns, with each pattern consisting 
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of the same pavement layer properties and climate conditions but a different age value. 

As a result, the total number of patterns for Layout-1 equaled 18,000 (i.e., 30*600).   

Development of these ANNs for existing pavements was conducted using the 

Neural Network Toolbox incorporated in the Matlab R2012b.  This toolbox offers a 

user-friendly interface and allows the user to easily adjust the parameters and functions 

that define the ANNs when necessary.   

Before training the ANNs, the data was randomly divided into three subsets. The 

first subset was the training set, used for computing the gradient and updating the 

network weights and biases. The second subset was the validation set. The error on the 

validation set was monitored during the training process. The network weights and 

biases were maintained at the minimum of the validation set error.  The test subset error 

was not used during training, but used for comparing different models.  In this study, 70% 

of the data was used for training purpose and 15% of the data was used for validation 

and testing purposes, respectively.   

At the very beginning of the training process, the input and target values in the 

raw data were scaled through data transformation to fall within a specified range, usually 

[-1, 1].  The primary purpose of data transformation was to modify the distribution of the 

input variables so that they could better match the distribution of the predicted 

distribution (Shi 2000).  When the dataset was transferred between [-1, 1], a small 

change in a normalized input within the range would have a greater influence on the 

output, making the training of the ANN become faster (Nourani and Sayyah Fard 2012). 
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In the Matlab environment, the data transformation process was carried out using the 

“mapminmax” function, as follows: 

 
( )( )

( )
max min min

min
max min

'
y y x x

x y
x x
− −

= +
−

  (Eq. 5) 

where x’ is the input value after transformation, ymax is the upper bound of the 

normalized interval (i.e., 1), ymin is the lower bound of the normalized interval (i.e., -1), x 

is the original input value, xmax is the maximum value in the data set corresponding to the 

input neuron, and xmin is the minimum value in the data set corresponding to the input 

neuron. 

Similar to the regular regression process, the objective of ANNs modeling is to 

attain a set of weight matrices, which represent the underlying knowledge from the 

sample data after many iterations of training.  Before the modeling process, the 

architecture of the IRI ANNs was not available to or known by the researcher, thus they 

were selected based on a decision-making process.  This process involved determining 

the number of layers in the network, the number of neurons in the hidden layer, and the 

variables that were included in the input layer.  Selection of the variables used in the 

input layer was based on the literature and data availability in the LTPP database.  When 

this process was finished, the patterns contained in the data set were trained, validated, 

and tested.   

Figure 18 displays the architecture of a typical 30-15-1 network used for Layout-

1. This ANNs had 30 input neurons, 15 neurons in the hidden layer, and one output 

neuron.  The activation function was “tansig” for the hidden neurons and “satlins’ for 
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the output neuron. Similar configurations were used for developing ANNs for the other 

three pavement layouts, with a different number of neurons in the input and hidden 

layers.   

 

Figure 18  A typical 30-15-1 ANN for Layout-1. 

 

The algorithms for the “tansig” and “satlins” transfer functions were as follows 

(Beale et al. 2012): 
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 (Eq. 6) 

 

where y is the input to the neuron, and f(y) is the output of the neuron. 

Two forms of performance prediction accuracy measures were used for 

evaluating the ANNs for IRI prediction. The first measure was the coefficient of 

determination (R2) and the second was the root of mean square error (RMSE).  The R2 is 

calculated using the following equation: 
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  (Eq. 7) 
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where IRIact is the actual IRI values, IRIpred is the predicted IRI values using ANNs, and 

IRIavg is the average IRI value.  The RMSE is mathematically expressed as follows: 

 
( )2

, ,
1

n

act i pred i
i

IRI IRI
RMSE

n
=

−
=
∑

  (Eq. 8) 

where n is the total number of patterns in the sample data.  The closer the RMSE to 0 and 

the closer the R2 to 1, the more accurate the ANN would be. 

ANNs Modeling Results for IRI 

The ANNs and fitting statistics for the four pavement layouts are summarized in 

Table 9.  The modeling results indicated that when more neurons were used in the 

hidden layer, the training process usually took a longer time to reach acceptable 

accuracy (i.e., MSE gradient magnitude < 10-5 or the no. of validation iterations > 6).  

The R2 tended to be higher when more neurons were used in the hidden layer. Generally, 

the R2 for the training subset was slightly higher than that for the validation and testing 

subsets in all the ANNs architectures. When the developed ANNs were used for making 

IRI predictions on the test subsets, which were not used in the network development, the 

R2 values were very high (greater than 0.95), indicating adequate generalization of the 

ANNs.   There was also a tendency that the RMSE values of these ANNs became lower 

when more hidden neurons were used, but it was also observed that when the number of 

hidden neurons reached 15, the reduction in RMSE became very insignificant. Therefore, 

it was concluded that 15 hidden neurons were adequately enough for the IRI ANNs for 

all four pavement layouts.   
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Based on Table 7, ANNs architectures 30-15-1, 39-15-1, 32-15-1, and 47-15-1 

were selected for pavement layouts 1 through 4, respectively. The input variables 

included in the ANNs of layouts 1 through 4 are presented in Table 8. Plasticity index 

and liquid limit values were not included for the Layout-3, because of insufficient data 

points in the LTPP database. Detailed information about these ANNs and their computer 

programming code are provided in the appendix of this dissertation.   

 

Table 7  Summary Statistics of the ANNs of Layouts 1 to 4  

Layout ANN 
Architecture 

# of 
Iterations 

Training 
Time 
(min) 

Training Validation Testing 

R2 RMSE 
(in/mile) R2 RMSE 

(in/mile) R2 RMSE 
(in/mile) 

1 

30-9-1 109 3.1 0.954 7.91 0.951 8.43 0.95 8.41 
30-11-1 333 18.3 0.961 6.84 0.958 7.43 0.956 7.62 
30-13-1 136 16.3 0.965 6.12 0.963 6.57 0.961 6.55 
30-15-1* 248 29.3 0.967 5.48 0.965 6.02 0.963 6.16 
30-17-1 265 35.7 0.964 5.54 0.97 7.05 0.961 6.76 
30-19-1 176 34 0.972 5.21 0.971 5.39 0.961 5.44 

2 

39-9-1 312 20.3 0.99 3.54 0.99 3.64 0.989 3.6 
39-11-1 675 22.4 0.989 3.71 0.988 3.78 0.989 3.77 
39-13-1 210 27.2 0.996 2.38 0.995 2.46 0.995 2.53 
39-15-1* 758 29.3 0.996 2.18 0.995 2.56 0.995 2.43 
39-17-1 447 37.8 0.997 2.17 0.996 2.36 0.996 2.38 
39-19-1 127 39.4 0.998 2.11 0.997 1.87 0.997 1.87 

3 

32-9-1 327 15.9 0.957 10.34 0.954 10.59 0.956 10.97 
32-11-1 223 22.7 0.98 7.13 0.977 7.28 0.978 7.58 
32-13-1 304 27.5 0.98 7.33 0.979 7.06 0.98 7.2 
32-15-1* 124 14.7 0.987 5.70 0.981 6.01 0.982 6.21 
32-17-1 137 20.2 0.988 5.67 0.983 5.97 0.981 6.25 
32-19-1 287 52.8 0.989 5.65 0.985 5.96 0.985 6.11 

4 

47-9-1 1000 181.4 0.988 3.87 0.987 4.02 0.987 3.96 
47-11-1 1000 180.8 0.976 5.28 0.977 5.49 0.976 5.43 
47-13-1 478 90.9 0.994 2.77 0.993 2.96 0.993 2.9 
47-15-1* 770 216.1 0.994 2.7 0.993 2.89 0.994 2.79 
47-17-1 219 83.7 0.99 3.6 0.989 3.79 0.988 3.81 
47-19-1 358 211 0.993 2.8 0.994 2.93 0.993 2.97 

* indicates the corresponding ANN was selected as the final model for that layout. 
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Table 8  Input Variables Used in the ANNs of Layouts 1 to 4  

Categories Input Variables Pavement Layout 
1 2 3 4 

Site Factors 

Average air temperature, ᵒF  √ √ √ √ 
Annual rainfall, in √ √ √ √ 
Freeze index, ᵒF-days √ √ √ √ 
Initial two-way AADTT, veh/day √ √ √ √ 
Compound growth rate, % √ √ √ √ 

HMA Surface 
Layer 

Thickness, in √ √ √ √ 
Effective asphalt content, % √ √ √ √ 
Air voids, % √ √ √ √ 
Unit weight, pcf √ √ √ √ 
Cumulative % retained 3/4” sieve √ √ √ √ 
Cumulative % retained 3/8” sieve √ √ √ √ 
Cumulative % retained #4 sieve √ √ √ √ 
% passing #200 sieve √ √ √ √ 
Asphalt Viscosity (10^6 Poise) √ √ √ √ 

Binder Course 

Thickness, in × √ × √ 
Effective asphalt content, % × √ × √ 
Air voids, % × √ × √ 
Unit weight, pcf × √ × √ 
Cumulative % retained 3/4” sieve × √ × √ 
Cumulative % retained 3/8” sieve × √ × √ 
Cumulative % retained #4 sieve × √ × √ 
% passing #200 sieve × √ × √ 
Asphalt Viscosity (10^6 Poise) × √ × √ 

Granular Base 

Thickness, in √ √ √ √ 
Plasticity index √ √ × √ 
Liquid limit √ √ × √ 
% passing #200 sieve √ √ √ √ 
% passing #40 sieve √ √ √ √ 
% passing #4 sieve √ √ √ √ 
Max dry unit weight, pcf √ √ √ √ 
Optimum moisture content, % √ √ √ √ 

Granular Subbase 

Thickness, in × × √ √ 
Plasticity index × × × √ 
Liquid limit × × × √ 
% passing #200 sieve × × √ √ 
% passing #40 sieve × × √ √ 
% passing #4 sieve × × √ √ 
Max dry unit weight, pcf × × √ √ 
Optimum moisture content, % × × √ √ 

Subgrade 

Plasticity index √ √ × √ 
Liquid limit √ √ × √ 
% passing #200 sieve √ √ √ √ 
% passing #40 sieve √ √ √ √ 
% passing #4 sieve √ √ √ √ 
Max dry unit weight, pcf √ √ √ √ 
Optimum moisture content, % √ √ √ √ 
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Figure 19 shows the IRI predicted using ANNs against the IRI predicted using 

the MEPDG for the training, validation, and testing subsets in layouts 1 through 4.  The 

strong correlation between the MEPDG predictions and the ANN predictions is evident 

in these charts, suggesting that these ANNs can substitute the MEPDG IRI model for the 

four pavement design layouts considered in this research. 

     

 

Figure 19 ANN predictions vs. MEPDG simulation data for three subsets: training, 
validation, and testing. 
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ANNs Checking with LTPP Data 

In this section, the IRI predictions using the ANNs were compared to the 

measured IRI values recorded in the LTPP dataset for the year prior to or the year in 

which the thin overlay was placed. The results are shown in Figure 20.  The R-square 

values for these comparisons range from 0.6 to 0.72, indicating reasonable predicative 

capability of the ANNs when they are used for predicting IRI on actual LTPP test 

sections.   

  

  

    

Figure 20  ANN Predictions versus actual IRI observations in the LTPP database. 
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Calibration of ANNs 

The use of ANNs for predicting the IRI of some LTPP test sections showed 

adequate accuracy as shown in Figure 20; however in order to be used in practical cases 

(i.e., predicting IRI development of existing HMA pavements), calibration of the 

developed ANNs using local pavement and performance measurement data is needed.  A 

good sample of such data is the LTPP database that consists of both pavement design 

information and field performance measurement.  Other resources include pavement 

management system (PMS) database administered by state highway agencies.  

The calibration process can be done by following a few steps. First, a dataset that 

consists of actual pavement data and field IRI measurement should be prepared.  Then it 

can be used solely as the calibration sub-dataset or aggregated with the calibration sub-

dataset from the MEPDG simulation data for calibration purposes.  Eventually, the final 

ANN is developed by adapting its weight matrix so that the IRI predictions using the 

ANN are closer to actual field observations.   

This calibration mechanism is displayed in Figure 21.  For example, some field 

IRI measurement value at certain pavement age is available (this is the case for many of 

LTPP test sections, especially SPS sections).  Without calibration using localized dataset, 

the predictions using the ANNs tend to underestimate the IRI development of this 

section.  After a localized calibration is applied, the weight matrix of the ANNs is 

adapted, and the predicted IRI curve using the calibrated ANNs shifts to the side of field 

observations, making the predictions more realistic and much closer to field 

measurements.   
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Figure 21  A demonstration of the effect of calibrating IRI ANNs using local data. 
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the output variable and the input variables (Nourani and Sayyah Fard 2012; Shekharan 

1999).  The first method (i.e., the weight method) was adopted in this study as it 
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involves less computation while gives similar results to the second method (i.e., the 

partial derivative method).  

   In the weight method, the output layer connection weights are partitioned into 

input node shares (Garson 1991).  The weights along the paths from the input to the 

output indicate the relative predictive importance of input variables.  The weights are 

used to partition the sum of effects on the output neuron with the following equation, 

using absolute values of all weights (Shekharan 1999): 
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  (Eq. 9) 

      
where RC is the relative contribution of each input variable, v is the number of input 

variables, h is the number of hidden neurons, wij is the connection weight between the jth 

hidden neuron and the ith input variable, and Oj is the connection weight between the 

output neuron and the jth hidden neuron.  The calculated RC values range between 0 and 

1. A larger RC value indicates a greater effect of the corresponding input variable on the 

predicted IRI.  

Using Equation 6, the relative contribution of input variables to IRI prediction for 

all four pavement layouts was computed into percentage values, as summarized in Table 

9. For each layout, the sum of RCs of all input variables equals 100%.  
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Table 9  Relative Contribution of Input Variables in the ANNs 

Category Variables 
RC (%) 

Layout-1 Layout-2 Layout-3 Layout-4 

Site factors 

Air Temperature (F) 5.9 2.1 4.2 1.9 
Rainfall (in) 2.3 3.0 1.9 2.4 
Freeze Index (F-Days) 5.2 1.2 2.1 3.0 
AADTT (veh/day) 3.6 4.9 7.4 2.2 
Traffic Growth Rate (%) 4.0 8.3 2.8 4.2 
Age (year) 4.3 5.7 5.2 5.1 

HMA Surface 
Layer 

Thickness (in) 9.0 8.8 11.2 16.3 
Effective Binder Content (%) 6.9 3.2 5.0 3.9 
Air Voids (%) 6.4 0.5 6.6 1.0 
Unit Weight (pcf) 1.5 3.1 1.8 1.6 
% Retained on ¾” Sieve 0.9 2.1 1.5 0.2 
% Retained on 3/8” Sieve 1.2 0.7 2.4 2.5 
% Retained on #4 Sieve 5.2 3.0 2.0 0.8 
% Passing #200 Sieve 2.3 2.4 2.8 0.8 
Viscosity (106 Poise) 2.9 1.1 1.4 0.6 

Binder 
Course 

Thickness (in) -  5.3 -  8.3 
Effective Binder Content (%) -  1.2 -  0.3 
Air Voids (%) -  3.2 -  6.2 
Unit Weight (pcf) -  3.8 -  0.6 
% Retained on ¾” Sieve -  1.2 -  0.3 
% Retained on 3/8” Sieve -  2.3 -  1.9 
% Retained on #4 Sieve -  0.6 -  1.6 
% Passing #200 Sieve -  0.7 -  0.6 
Viscosity (106 Poise) -  0.4 -  1.6 

Granular Base 

Thickness (in) 2.1 1.4 2.5 1.3 
Plasticity Index 1.3 1.2 - 0.8 
Liquid Limit 1.8 0.5 - 0.7 
% Passing #200 Sieve 2.3 1.5 2.8 2.2 
% Passing #40 Sieve 1.7 2.6 2.9 1.9 
% Passing #4 Sieve 4.7 2.8 2.8 1.7 
Max Dry Unit Weight (pcf) 3.2 2.6 2.0 2.6 
Optimum Moisture Content (%) 4.9 4.4 4.4 0.9 

Granular 
Subbase 

Thickness (in) -  -  2.0  0.7 
Plasticity Index -  -  -  1.7 
Liquid Limit -  -  -  1.8 
% Passing #200 Sieve -  -  2.8 0.2 
% Passing #40 Sieve -  -  2.4 0.9 
% Passing #4 Sieve -  -  2.4 0.6 
Max Dry Unit Weight (pcf) -  -  2.7 1.1 
Optimum Moisture Content (%) -  -  1.3 1.6 

Subgrade 

Plasticity Index 1.8 2.0 -  1.7 
Liquid Limit 2.3 1.8 -  1.3 
% Passing #200 Sieve 3.2 2.1 2.4 1.2 
% Passing #40 Sieve 1.5 1.0 2.2 2.6 
% Passing #4 Sieve 3.0 5.0 2.1 1.8 
Max Dry Unit Weight (pcf) 1.7 0.4 1.9 0.5 
Optimum Moisture Content (%) 2.6 1.9 2.1 2.1 
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For all layouts, the thickness of HMA surface layer had the largest RC value, and 

site factors, such as temperature and traffic factors, played an important role in IRI 

predictions.  When a binder course was present in the pavement structure, its thickness 

also became a significant factor, as evidenced by 5.3% and 8.3% RC values for layouts 2 

and 3, respectively.  However, the relative contribution of some factors, such as air voids 

of the HMA surface layer, exhibited significant variation among different layouts by 

dropping from more than 6% (i.e., in layouts 1 and 3) to less than 1% (i.e., in layouts 2 

and 4). The cause of this phenomenon might be due to the inclusion of a binder course in 

the pavement design. It can be seen that in layouts 2 and 4, air voids in the binder course 

layer had relatively larger RCs than those of the HMA surface layer. 

It can also be seen that the RCs of the input variables from granular layers and 

subgrade hardly exceeded 4%, in contrast to site factors and HMA layer properties. This 

is an indication that, in terms of predicting IRI by simulating the MEPDG, the HMA 

layer properties (such as thickness, asphalt binder content, and air voids) and site 

conditions played a more important role than the material properties of the underlying 

granular layers and subgrade.  Table 9 also shows that no variable had very low RC 

values in all the ANNs, thus no input variable was removed from the model. 
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DEVELOPMENT OF A BAYESIAN MODEL FOR PREDICTING REDUCTION 

IN IRI DUE TO TREATMENT 

Introduction 

This section discusses the development of the second component of post-

treatment performance prediction models.  Instead of predicting in the form of a single 

value for the response variable, Bayesian regression models generate probability 

distributions for the response variable (i.e., IRI reduction in this study), which is more in 

line with commonsense interpretations (Congdon 2001).    

In Bayesian regression, uncertainty in the model parameters is expressed as 

probabilities, through Bayesian theorem.  Bayesian theorem combines prior knowledge 

of certain event probabilities with observed data (likelihood) in order to produce an 

adjusted expression of the event probabilistic distribution, called the posterior, which can 

be expressed as follows: 

 ( ) ( ) ( )
( ) ( )

|
|

|
P x P

P x
P x P d

θ θ
θ

θ θ θ
=
∫

 (Eq. 10) 

where ( )|P xθ  denotes the posterior probability  beliefs about the parameter θ  given 

the data x, ( )|P x θ is the likelihood of the data given the parameter θ , and ( )P θ  is the 

prior beliefs about the parameter.  Therefore, the learning process in Bayesian inference 

is one of modifying one’s initial probability statements about the predicted parameter 

prior to observing the data to updated or posterior knowledge incorporating both prior 

knowledge and the data in hand (Congdon 2001).   
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 Bayesian regression is similar to traditional regression in the sense that a 

functional form (equation) relates a response to explanatory factors.  However, Bayesian 

regression embeds the equation as the mean of a probabilistic distribution of the 

predictions and incorporates the precision (inverse of the variance) to capture uncertainty 

(Amador and Mrawira 2012). The Bayesian analysis begins by defining each of the 

model terms and their functional relation in a multivariate regression model.  

Recap from Equation #2 that the IRI reduction due to thin HMA overlay was 

modeled as a function of acceptance quality characteristics (AQCs), site conditions, and 

treatment age. Therefore, the Bayesian linear models developed in this research have the 

following form: 

( ) 0 1
1 1

log * *
l m

i i j j l m
i j

IRI AQC SF Ageβ β β β ε+ +
= =

∆ = + + + +∑ ∑        (Eq. 11) 

where ΔIRI is reduction in IRI due to treatment (thin HMA overlay in this case), β is 

parameter coefficients, SF is site factors (e.g., annual average daily truck traffic and 

rainfall), Age is treatment age, ε is error item [subject to a normal distribution N(0, σ2I)], 

l is the number of AQCs, and m is the number of site factors considered in the regression. 

The natural logarithm of ΔIRI is used as the response variable to avoid predicted 

reduction in IRI from being negative values.  

The major interest in Bayesian regression focuses on updating prior knowledge 

about parameters with the data in hand, and then drawing samples from the posterior 

density of the regression parameters to assess whether the effects of all or particular 
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predictors on the response variable is significant.  Suppose the ΔIRI Bayesian model has 

the following simplified form: 

Y X β ε= +      (Eq. 12) 

where Y is performance vector ( 1n× ), X is the input data matrix ( n p× ), β is the 

regression coefficients, ε is error item ~ N(0, σ2I), n is the number of observations, and p 

is the number of predictors.     

As no information currently exists about the values, ranges, or densities of the 

predictors of ΔIRI, noninformative priors were used in this research, as suggested by 

Hoff (2009) and Congdon (2011).  The main idea in using noninformative priors was 

that if the prior distribution cannot represent real prior information about the parameters, 

then it should be as minimally informative as possible.  The resulting posterior 

distribution would then represent the posterior information of someone who begins with 

little knowledge of the population being studied.    

Let the precision term, 21/τ σ= , and suppose that τ is unknown and so to be 

considered a variable parameter along with β.  One of the commonly used 

noninformative priors is as follows: 

( ) 1,p β τ τ −∝      (Eq. 13) 

It is used so that the log of σ2 is essentially uniform on ( ),−∞ ∞ (Congdon 2001). The 

corresponding joint posterior distribution is then expressed as  
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( ) ( ) ( ) ( ) ( )1 /2 2 ˆ ˆ, | exp / 2 exp
2

ny n p s X Xτπ β τ τ τ β β β β+  ′ ∝ − − − − −    
  (Eq. 14) 

From the second term in the above equation, the posterior distribution of β can be 

seen to be a multivariate normal distribution conditional on β̂  and τ as 

( )( )11ˆ ˆ| , ~ , TN X Xβ β τ β τ
−−     (Eq. 15) 

where β̂  is the ordinary least squares estimate of β and can be calculated as 

( ) 1ˆ T TX X X yβ
−

= . 

The posterior distribution of τ follows a scaled chi-square distribution as 

( )2 2| ~ ,y v sτ χ      (Eq. 16) 

where v is the degrees of freedom (n – p), and s2 is the standard estimate of the residual 

variance and calculated as ( )( ) ( )2 ˆ ˆ /s Y X Y X n pβ β= − − − .  

This research used the GENMOD procedure in SAS (Statistical Analysis System) 

for developing Bayesian linear models for the four pavement layouts.  This procedure 

can conduct a Bayesian analysis of the regression model by using Gibbs sampling (SAS 

OnlineDoc).  Gibbs sampling is a Markov Chain Monte Carlo (MCMC) algorithm for 

sampling from a specified multivariate probability distribution when direct sampling is 

difficult due to the complexity of model, which is the case in this research as each ΔIRI 

model may include 10 or more predictors.  This method is widely used in statistical 

studies (Hoff 2009). 
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The Gibbs sampling method draws samples from each parameter in the posterior 

density, while regarding all other parameters as fixed. Thus, it requires the joint posterior 

distribution decomposed into full conditional distributions for each parameter in the 

model and then it samples from them. Given full conditional distributions p(β|τ,Y) and 

p(τ|β,Y) and assuming the current state of the parameters at iteration t, the sampling 

procedures in this method can be briefly described as follows (Hoff 2009): 

1. Sample β(t+1) ~ p(β|τ(t),Y); 

2. Sample τ(t+1) ~ p(τ|β(t+1),Y); 

3. Sampled parameters at iteration t + 1 = {β(t+1), τ(t+1) }. 

The GENMOD procedure used noninformative uniform priors by default. The 

number of burn-in iterations before the Gibbs sampling chains were saved was 2,000. 

Additional 10,000 iterations were generated after the burn-in, which produced the 

posterior distributions of the parameters and the predictive model for ΔIRI.  Trace, 

autocorrelation, and density plots for each model parameters, were generated for 

diagnosing where the chain of posterior samples has converged.  Figure 22 shows some 

sample diagnostic plots for a variable, which indicate an excellent evidence of 

convergence and also shows that the posterior distribution of the parameter 

approximately follows normal distribution.  The Bayesian analysis outputs include the 

posterior estimates (mean and standard deviation) and 95% highest posterior density 

(HPD) regions.  The 95% HPD region represents a subset C of coefficient values such 

that ( )| 5%P C Yβ ∈ ≥ , given that the volume of C is as small as possible.  
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Figure 22  Sample diagnostic plots for the asphalt content (AC) variable. 
  

Fitness Assessment of Bayesian Models 

After the Bayesian models were developed, next important step was to assess 

their goodness of fit through some performance measures.  Some measures for this 

purpose included the deviance information criterion (DIC), predictive concordance (PC), 

and Bayesian p-values. 

Deviance Information Criterion 

DIC is used as a model assessment measure. A smaller DIC indicates a better fit 

to the data set. Since DIC increases with model complexity, a simpler model is preferred.  

DIC can be compared across different models as long as the predictors do not change 

between models.  As a rule of thumb, if two models differ in DIC by more than three, the 

one with the smaller DIC is considered better fitting (Spiegelhalter et al. 2002). 

Letting β be the parameters of the model, the deviance information formula is 
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( ) DDIC D pβ= +     (Eq. 17) 

where D(β) is the deviance, defined as ( ) ( )( ) ( )( )( )2 log log |D f y p yβ β= − , f(y) is a 

standardizing term that is a function of the data alone, p(y|β) is the likelihood function 

with the normalizing constants,  ( )D β is the posterior mean of the deviance, 

approximated by ( )( )
1

1 L
l

l
D

L
β

=
∑ , in which L is the number of iterations in the sampling 

and β(l) is the lth iteration parameters,  and pD is the effective number of parameters, 

which is the difference between the posterior mean of the deviance and the deviance 

evaluated at the posterior mean of the parameters, expressed as ( )( )D Dβ β− (Neelon et 

al. 2010). 

Predictive Concordance 

The posterior predictive distribution is either the replication of y given the model 

(usually represented as yrep), or the prediction of a new and unobserved y (usually 

represented as ynew). Gelfand (1996) suggested that any yi that is in either 2.5% tail area 

of yi
rep should be considered an outlier.  The percentage of yis that are not outliers is 

called the “predictive concordance” (PC).  Gelfand (1996) suggests that the goal is to 

attempt to achieve 95% PC.  In the case of a lower PC, say 80%, the discrepancy 

between the model and data is undesirable because the model does not fit the data well 

and many outliers have resulted.  On the other hand, if the PC is too high, say 100%, the 
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model may have been overfitted, and it may be worth considering a more parsimonious 

model (Statisticat LLC 2013).    

Bayesian P-Values 

A Bayesian form of p-value can be estimated with a variety of test statistics 

(Gelman et al. 1996). For instance, the minimum or maximum observed y is compared to 

the minimum or maximum yrep from posterior predictive prediction.  The Bayesian p-

value is to report the discrepancy between y and yrep.   

In this research, the Bayesian p-value is estimated based on a discrepancy 

statistic suggested by Link and Barker (2010). The following steps describe how to 

estimate the Bayesian p-values.  Let yi (i = 1, 2, …, n) denote the ith observation in data, 

and yi
(h) denote the expected value computed for each set of parameters based on the hth 

draw (h=1, 2, …, M) for a chain of length M. Note that n is the sample size, and M is the 

number of MCMC draws.  The values T1
obs, …, TM

obs, are obtained using 

( )2(h)

(h)
1

N
i iobs

h
i i

y y
T

y=

−
=∑     (Eq. 18) 

Another set of values T1
rep, …, TM

rep, are obtained using 

( )2(h)

(h)
1

repN
i irep

h
i i

y y
T

y=

−
=∑    (Eq. 19) 

where yi
rep is the ith draw from the posterior predictive distribution for yi.  

The Bayesian p-value is estimated by the proportion of Trep > Tobs for all M cases.  

A plot of Trep versus Tobs can be draw to graphically illustrate the calculation of Bayesian 

p-values.  A Bayesian p-value close to 0.5 represents good model fit, and p-values near 0 
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or 1 indicate lack of fit. Generally, p-values between 0.2 and 0.8 represent adequate fit 

(Neelon et al. 2013). Figure 23 shows a sample scatterplot. The Bayesian p-value is 

estimated by the proportion of points above the equality line. In this sample, the p-value 

is 0.284.   

 

 

Figure 23  A sample scatterplot of predictive Trep versus observed Tobs. 
 

Data Used for Development of Bayesian Linear Models 

The data used for developing the Bayesian linear models was prepared from 88 

LTPP test sections that had received thin HMA overlay treatments and had complete 

data about the existing pavement layers.  For these sections, IRI progression in the 

original pavement over a certain analysis period was predicted using the ANNs 
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previously developed in this research.  The observed post-treatment IRI values over 

several years were deducted from the predicted IRI values in the original pavement in 

the same post-treatment years (refer to Figure 6) to obtain the reduction in IRI (ΔIRI) 

values at different ages of the thin HMA overly treatment.     

Information about the quality characteristics in thin HMA overlay treatments and 

site factors were collected from the LTPP data. This information along with treatment 

age and ΔIRI values was formed into a data set for the Bayesian regression process.  In 

the final regression data set, 19 test sections were included for Layout-1, 25 for Layout-2, 

20 for Layout-3, and 24 for Layout-4.   The thin HMA overlay acceptance quality 

characteristics (AQCs) considered in Bayesian regression included the following: 

• Overlay thickness 

• Asphalt content 

• Percent air voids in laboratory-molded HMA mix 

• % aggregate passing #8 sieve 

• % aggregate passing #200 sieve 

• Initial IRI (immediately measured after overlay placement) 

These items were selected because they are used as quality measures in current 

specifications for thin HMA overlays by some states (i.e., Florida, Kansas, Michigan, 

and Texas) (NCHRP 2011).  The site factors included annual average air temperature, 

average annual rainfall, freezing index, and average annual daily truck traffic.  Unit 

weight of HMA mix, which is the weight of a specific volume of HMA mix, was also 

used as an independent variable in the regression model to characterize the HMA mix.  
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In additional to these input variables, second-order terms, such as the interactive effects 

between some of these variables (e.g., asphalt content, air voids, thickness, and unit 

weight) and the quadratic terms of asphalt content and air voids, were also considered in 

the modeling process to account for nonlinear relationships.  As previously mentioned, 

the logarithm of ΔIRI was used as response variable to avoid producing negative values 

for the response variable. Table 10 summarizes the acronyms of all the variables and 

some of their applicable ranges based on the data used for modeling. Application of the 

Bayesian regression models outside these ranges should be performed with caution.  

 

Table 10  Applicable Ranges of Independent Variables in the Bayesian Models 

Variables Acronym 
Layout1 Layout2 Layout3 Layout4 

Min Max Min Max Min Max Min Max 
Logarithm of ΔIRI log(ΔIRI) - - - - - - - - 
Temperature, (ᵒF) Temp 38 72 35 70 34 75 35 70 
Rainfall (in.) Rain 7 54 10 65 9 85 10 57 
Freeze Index (ᵒF-Days) FI 0 1,150 0 1,500 40 1,500 0 1,850 
AADTT (veh/day) AADTT 100 2,900 80 2,600 80 2,200 120 1,850 
Overlay Thickness (in.) Thick 0.5 2.0 0.8 2.0 0.8 2.0 1.0 2.0 
% Passing #8 Sieve PP8 18 61 29 61 7 46 15 51 
% Passing #200 Sieve PP200 2.0 8.0 2.0 10 1.0 7.0 2.0 7.5 
Asphalt Content (%) AC 3.0 7.5 3.5 7.0 3.5 7.0 4.0 8.5 
Air Voids (%) AV 3.0 6.5 2.0 8.5 2.0 7.5 1.5 6.5 
Initial IRI (in./mile) IRI0 55 135 60 135 60 140 55 135 
Unit Weight (lb/ft3) UW 134 150 133 153 133 149 132 164 
Treatment Age (years) Age 1 18 1 21 1 18 1 22 
Quadratic Term of AC AC2 - - - - - - - - 
Quadratic Term of AV AV2 - - - - - - - - 
Interaction of AC and AV AC_AV - - - - - - - - 
Interaction of Thick and UW Thick_UW - - - - - - - - 
Interaction of Rain and AC Rain_AC - - - - - - - - 
Interaction of FI and AC FI_AC - - - - - - - - 
Interaction of FI and AV FI_AV - - - - - - - - 
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Before the data presented in Table 10 was used for modeling, it was first 

standardized (i.e., ( ) /z X µ σ= − ), except for treatment age, to avoid significant 

differentiation in the magnitudes of regression coefficients between different 

independent variables. As a result, the posterior distributions of regression coefficients 

were based on the standardized data. 

Results of Bayesian Linear Regression 

A variety of forms of linear models, based on inclusion of different independent 

variables, were fitted using the Bayesian regression method. The aforementioned 

performance measures were derived for these models for comparisons. An appropriate 

model should meet the following criteria: 

• Include important AQCs; 

• Outperform rival models in observance of performance measures; 

• Be simpler when possible. 

The model fitting statistics are summarized in Tables 11 through 14 for pavement 

layouts 1 through 4, respectively.  The independent variables in each model are 

presented in the second column. The model performance measures (i.e., DIC, PC, and p-

value) were used to select the most appropriate model for each layout.  The last column 

contains RMSE (i.e., root mean squared error) values, estimated using ordinary least 

squares regression.  Smaller RMSEs indicate better fit of the model to actual data.  For 

each layout, the most appropriate model is marked with the * sign (e.g., Model #4 for 

layout-1), indicating best matching of the model with aforementioned criteria.  
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Table 11  Fitting Statistics of ΔIRI Bayesian Prediction Model for Layout-1 

 

 
Table 12  Fitting Statistics of ΔIRI Bayesian Prediction Model for Layout-2 

 

 

DIC pD PC (% ) p-value RMSE

1 Rain FI AADTT Thick PP8 PP200 UW AC AV IRI0 Age 188.6 13.5 97.7 0.323 0.472

2 Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 IRI0 Age 177.4 15.6 97.7 0.313 0.448

3 Rain FI AADTT PP200 UW AC AC2 AV AV2 Thick_UW Rain_AC 
FI_AC IRI0 Age

155.9 16.7 96.9 0.283 0.411

4* Rain AADTT PP8 PP200 UW AC AC2 AV AV2 Thick_UW 
Rain_AC FI_AC FI_AV IRI0 Age

148.8 17.8 96.9 0.318 0.409

5 Rain FI AADTT Thick PP8 PP200 AC AC2 AV AV2 Thick_UW 
Rain_AC FI_AC FI_AV IRI0 Age

155.6 18.8 96.9 0.280 0.407

6 Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 Thick_UW 
Rain_AC FI_AC FI_AV IRI0 Age

156.6 19.9 96.9 0.287 0.407

7 Temp Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 
Thick_UW Rain_AC FI_AC FI_AV IRI0 Age

157.9 20.9 96.9 0.293 0.407

8 Temp Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 
AC_AV Thick_UW Rain_AC FI_AC FI_AV IRI0 Age

156.4 22.0 96.9 0.298 0.403

Model Included Independent Variables # of 
Obs

Model Performance

130

DIC pD PC (% ) p-value RMSE

1 Temp AADTT Thick PP8 UW AC AC2 AV AV2 Thick_UW IRI0 Age 49.4 14.6 93.2 0.313 0.266

2 Temp AADTT Thick PP8 PP200 UW AC AC2 AV AV2 Thick_UW 
IRI0 Age

49.0 15.6 95.2 0.33 0.266

3 Temp Rain AADTT Thick PP8 PP200 UW AC AC2 AV AV2 
Thick_UW IRI0 Age

48.7 16.6 95.2 0.333 0.267

4* Temp Rain AADTT Thick PP8 PP200 UW AC AC2 AV AV2 
Thick_UW Rain_AC FI_AC IRI0 Age

47.8 18.8 95.2 0.35 0.268

5 Temp Rain AADTT Thick PP8 PP200 UW AC AC2 AV AV2 AC_AV 
Thick_UW Rain_AC FI_AC IRI0 Age

51.6 19.7 95.2 0.340 0.269

6 Temp Rain AADTT Thick PP8 PP200 UW AC AC2 AV AV2 AC_AV 
Thick_UW Rain_AC FI_AC FI_AV IRI0 Age

53.7 20.8 95.2 0.341 0.269

Model Performance
Model Included Independent Variables

# of 
Obs

146
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Table 13  Fitting Statistics of ΔIRI Bayesian Prediction Model for Layout-3 

 

 

Table 14  Fitting Statistics of ΔIRI Bayesian Prediction Model for Layout-4 

 

DIC pD PC (% ) p-value RMSE

1 AADTT PP200 AC AV AV2 AC_AV Rain_AC FI_AC IRI0 Age 86.9 12.6 96.6 0.534 0.306

2
AADTT Thick PP8 PP200 AC AV AV2 AC_AV Rain_AC FI_AC 
IRI0 Age 67.8 14.7 95.7 0.495 0.307

3* FI Thick PP8 PP200 UW AC AC2 FI_AC FI_AV IRI0 Age 59.7 13.6 97.4 0.498 0.291

4
Rain FI AADTT Thick PP200 AC AC2 AV AV2 AC_AV Thick_UW 
Rain_AC FI_AV IRI0 Age 71.9 17.8 97.4 0.513 0.309

5
Rain FI AADTT Thick PP8 PP200 AC AC2 AV AV2 AC_AV 
Thick_UW Rain_AC FI_AV IRI0 Age 69.3 18.9 96.6 0.493 0.31

6
Temp Rain FI AADTT Thick PP8 PP200 AC AC2 AV AV2 AC_AV 
Thick_UW Rain_AC FI_AV IRI0 Age 69.7 20 96.6 0.494 0.311

7
Temp Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 
AC_AV Thick_UW Rain_AC FI_AC FI_AV IRI0 Age 68.1 22.2 97.4 0.501 0.314

Model Performance
Model Included Independent Variables # of 

Obs

117

DIC pD PC (% ) p-value RMSE

1 Temp Rain FI AADTT Thick PP8 PP200 UW AC AV IRI0 Age 148.7 14.4 96.7 0.358 0.317

2 Rain AADTT Thick PP8 PP200 UW AC AV Thick_UW FI_AC 
FI_AV IRI0 Age

152.3 15.3 97.1 0.362 0.319

3* Rain FI AADTT Thick PP8 PP200 AC AV AV2 AC_AV Thick_UW 
FI_AV IRI0 Age

132.8 16.4 97.1 0.364 0.306

4 Temp Rain AADTT Thick PP8 PP200 UW AC AV Thick_UW FI_AC 
FI_AV IRI0 Age

152.5 16.4 96.7 0.368 0.319

5 Temp FI AADTT Thick PP8 PP200 UW AC AV Thick_UW Rain_AC 
FI_AC FI_AV IRI0 Age

154.6 17.4 97.1 0.359 0.319

6 Temp FI AADTT Thick PP8 PP200 UW AC AV AC_AV Thick_UW 
Rain_AC FI_AC FI_AV IRI0 Age

156.9 18.5 97.1 0.37 0.320

7 Temp Rain FI AADTT Thick PP8 PP200 UW AC AV AC_AV 
Thick_UW Rain_AC FI_AC FI_AV IRI0 Age

156.2 19.4 97.1 0.359 0.319

8 Temp Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AC_AV 
Thick_UW Rain_AC FI_AC FI_AV IRI0 Age

157.4 20.5 97.1 0.359 0.319

9 Temp Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 
AC_AV Thick_UW Rain_AC FI_AC FI_AV IRI0 Age

141.2 21.5 97.6 0.374 0.308

Model Performance
Model Included Independent Variables # of 

Obs

245
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Tables 15 through 18 present the posterior estimates and 95% highest posterior 

density (HPD) regions for the predictors included in the selected models.  Analogous to 

traditional regression, the relationship between the predictors and ΔIRI can be noticed by 

observing the 95% HPD regions.  For instance, unit weight of the asphalt mix has a 95% 

HPD region between 0.0107 and 0.5304, indicating that when the unit weight get higher, 

the reduction in IRI tends to be higher, with the other variables fixed.  Notice that the 95% 

HPD regions of variable Age were negative for all four pavement layouts, meaning the 

effect on reducing IRI decreases as the overlay course ages. 

Some variables, such as AC, AV and IRI0 in Layout-1 model, contain the null 

value in their 95% HPD regions. These variables can be regarded as less predictive, 

compared to those variables with a 95% HPD of either positive or negative only (such as 

UW and AC2 in the Layout-1 model). Nevertheless, these variables are widely used in 

many pavement models and specifications. They were regarded as important quality 

characteristics of thin HMA overlays, and remained in the final models.  
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Table 15  Posterior Estimates of the ΔIRI Bayesian Prediction Model for Layout-1 

 

  

 

Table 16  Posterior Estimates of the ΔIRI Bayesian Prediction Model for Layout-2 

Variables Posterior 
Mean 

Posterior 
Std. dev. 

95% HPD Region 
Lower End Upper End 

Intercept 3.7813 0.0478 3.6849 3.8723 
Temp -0.0263 0.0794 -0.1825 0.1278 
Rain 0.3759 0.2878 -0.1799 0.9469 
AADTT 0.0166 0.0371 -0.0566 0.0888 
Thick 1.5754 1.5247 -1.2993 4.7455 
PP8 0.0327 0.0448 -0.0541 0.1206 
PP200 0.0539 0.0327 -0.0126 0.1157 
UW 0.3511 0.2501 -0.1578 0.8308 
AC 1.3122 0.7479 -0.1231 2.8255 
AC2 -0.9303 0.7305 -2.3418 0.5128 
AV 0.8731 0.2258 0.4217 1.3030 
AV2 -0.9778 0.2126 -1.3815 -0.5573 
Thick_UW -1.7493 1.6664 -5.2017 1.3820 
Rain_AC -0.4126 0.3776 -1.1465 0.3313 
FI_AC 0.0580 0.0901 -0.1186 0.2368 
IRI0 -0.1951 0.0587 -0.3104 -0.0797 
Age -0.0644 0.00691 -0.0785 -0.0511 

Variables Posterior 
Mean 

Posterior 
Std. dev. 

95% HPD Region 
Lower End Upper End 

Intercept 3.7628 0.0654 3.6355 3.8905 
Rain -2.5552 0.8823 -4.2307 -0.7549 
AADTT -0.1265 0.0825 -0.2883 0.0337 
PP8 0.3463 0.0845 0.1705 0.5011 
PP200 -0.2595 0.1014 -0.4558 -0.0619 
UW 0.2815 0.1322 0.0107 0.5304 
AC 2.1683 1.0987 -0.0834 4.2324 
AC2 -2.9080 1.2051 -5.2617 -0.5415 
AV 1.2566 1.2699 -1.2417 3.6953 
AV2 -0.9575 1.2038 -3.2269 1.4529 
Thick_UW 0.1204 0.0599 0.00573 0.2385 
Rain_AC 2.8635 0.9558 0.9464 4.7170 
FI_AC 0.9880 0.3692 0.2615 1.7045 
FI_AV -1.1557 0.3533 -1.8364 -0.4531 
IRI0 0.0314 0.1252 -0.2131 0.2760 
Age -0.0807 0.0106 -0.1011 -0.0597 
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Table 17  Posterior Estimates of the ΔIRI Bayesian Prediction Model for Layout-3 

Variables Posterior 
Mean 

Posterior 
Std. dev. 

95% HPD Region 
Lower End Upper End 

Intercept 3.7666 0.0505 3.6686 3.8659 
FI -1.7556 0.3495 -2.4564 -1.0783 
Thick 0.2452 0.0728 0.3922 0.1046 
PP8 0.0611 0.0373 -0.0159 0.1304 
PP200 -0.1670 0.0575 -0.2835 -0.0583 
UW -0.0183 0.1123 -0.2424 0.2014 
AC -1.4250 0.6275 -2.6804 -0.2144 
AC2 1.3449 0.5453 0.2394 2.3937 
FI_AC 0.9364 0.2805 0.3992 1.4964 
FI_AV 0.5412 0.1255 0.3009 0.7954 
IRI0 -0.3248 0.0721 -0.4653 -0.1821 
Age -0.0529 0.0070 -0.0659 -0.0385 

 

Table 18  Posterior Estimates of the ΔIRI Bayesian Prediction Model for Layout-4  

Variables Posterior 
Mean 

Posterior 
Std. dev. 

95% HPD Region 
Lower End Upper End 

Intercept 3.9230 0.0380 3.8493 3.9961 
Rain -0.2164 0.0297 -0.2762 -0.1604 
FI -0.5968 0.1433 -0.8909 -0.3245 
AADTT 0.00209 0.0453 -0.0849 0.0902 
Thick 0.7984 0.1550 0.4920 1.0977 
PP8 0.0737 0.0275 0.0191 0.1263 
PP200 -0.2670 0.0252 -0.3178 -0.2187 
AC 0.5121 0.2194 0.0642 0.9269 
AV -0.5815 0.3465 -1.2532 0.1189 
AV2 0.8302 0.1861 0.4535 1.1801 
AC_AV -0.7552 0.4654 -1.6656 0.1573 
Thick_UW -0.7097 0.1615 -1.0284 -0.3960 
FI_AV 0.3370 0.1499 0.0465 0.6384 
IRI0 -0.1391 0.0554 -0.2475 -0.0326 
Age -0.0629 0.00404 -0.0708 -0.0550 

 

 

To justify the predictive capability of the developed Bayesian models, they were 

applied to some randomly selected thin HMA overlay treatments in LTPP for predicting 
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the treatment effect in reducing IRI. The predictions are displayed in Figure 24.  The 

dots represent actual ΔIRI values, while the lines represent the mean values and 95% 

confidence interval of ΔIRI predicted using the Bayesian models. The graphs show that 

although the variability in actual ΔIRI values is significant, the predicted distribution 

using the Bayesian models (represented by mean and standard deviation) can generally 

envelope this variability.  So the predictive capability of the developed Bayesian 

regression models was justified. 

 

 

 (a) (b) 

 

 (c) (d) 

Figure 24  Bayesian model predictions for randomly selected LTPP test sections: (a) 
Layout-1; (b) Layout-2; (c) Layout-3; and (d) Layout-4. 
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CONCLUDING REMARKS 

In this chapter, the most critical element in PRS (i.e., pavement post-treatment 

performance prediction models) was developed.  A novel modeling approach, “Two-

Component Modeling Approach,” was devised to predict pavement post-treatment 

performance.  As the name implies, the model consists of two major components, which 

predict the existing pavement performance and distress or roughness reduction due to 

treatment, respectively.  In this approach, the effect of the underlying pavement structure 

on post-treatment performance is considered, which was never accounted for in previous 

endeavors of developing performance prediction models for preservation treatments.    

New models were developed using this approach for predicting IRI of asphalt 

pavement treated with thin HMA overlay. ANNs were developed for predicting the IRI 

of the existing asphalt pavement and Bayesian regression models were developed for 

predicting the reduction in IRI due to thin HMA treatment.  The goodness of fit statistics 

of these models indicated that these models are sufficiently reliable to be adopted in PRS 

for making long-term pavement performance predictions.  
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CHAPTER V 

PRS METHODOLOGY FOR PAVEMENT PRESERVATION TREATMENTS 

OVERVIEW 

This chapter describes the development of a simulation-based performance-

related specifications (PRS) methodology for pavement preservation treatments.  In this 

methodology, the acceptance unit of a preservation treatment, namely lot, is divided into 

smaller units, namely sublot. As-designed and as-constructed measurements of AQCs, 

along with other necessary inputs, are used to predict the performance of the as-designed 

and as-constructed lots using the performance prediction models discussed earlier. The 

performance predictions are integrated into the PRS methodology, and eventually pay 

adjustment for a treatment lot is determined based on the economic value of performance 

lost or gained due to the differences between the treatment’s as-designed (i.e., target) 

and as-constructed level of quality. 

INTRODUCTION 

PRS is defined as specifications that describe the desired levels of key materials 

and construction AQCs (e.g., layer thickness, asphalt content, and air voids) that have 

been found to correlate strongly with fundamental engineering properties (e.g., dynamic 

modulus) that predict pavement performance (TRB 2009).  These AQCs should be 

amendable to acceptance testing at the time of construction.  True PRS not only describe 

the desired levels of these AQCs but also use the measured AQCs to predict subsequent 

pavement performance (e.g., post-treatment performance in this research), thus 
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providing the basis for rational acceptance and price adjustment decisions.  Thus, a 

promising PRS methodology should possess the capacity to relate the materials and 

construction quality of preservation treatments to the estimated performance and life-

cycle cost (LCC) of a given treatment lot.  The pay adjustment for a lot is computed 

based on the difference between the LCCs associated with the as-designed (target) 

treatment and the LCCs associated with the as-constructed (actual) treatment.  A general 

framework for the developed PRS methodology in this research is presented in Figure 25. 

In this research, performance is measured in terms of IRI. A treatment lot is considered 

failed (i.e., require a new treatment application or reconstruction) when it reaches a 

certain IRI threshold value. 

 

Figure 25  A general PRS framework for pavement preservation treatments. 
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In this framework, target AQC values are defined in the specifications and actual 

AQC values are measured in the lab or field.  Same site condition (e.g., traffic, climate, 

and existing pavement characteristics) values are used for both as-designed and as-

constructed treatments. Pavement performance prediction models (e.g., the two-

component ∆IRI prediction model discussed earlier) are used to predict the future 

performance based on the AQC values and other factors.  Service life of preservation 

treatment is defined here based on predicted performance as “number of years until user-

defined IRI threshold values are reached.”  As in this research the treatment performance 

is predicted as probability distributions, the resulting estimated service life is also 

expressed as probability distributions, as shown in Figure 24.  Then the present worth 

values (PWVs) of as-designed lot and as-constructed lot are estimated through LCC 

analysis (LCCA).  In LCCA, the treatment’s initial cost and the costs of future 

maintenance and rehabilitation (M&R) options expected to be incurred over the analysis 

period are included. The final step is to establish rational pay adjustment decisions based 

on the difference between the PWVs of the as-designed and as-constructed treatments. 

DEFINITIONS OF KEY PRS ELEMENTS 

Key elements in the PRS methodology are defined according to TRB (2009) and 

summarized as follows:   

• Lot:  This is the amount of treatment that may be accepted or rejected based 

on the deviation of the as-constructed quality level from the as-designed 

quality level. Each AQC of a lot is assumed to be normally distributed. A 

treatment lot can be measured in different units, depending on the treatment 
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type. For example, a thin HMA overlay lot may be measured in tonnage, 

whereas a chip seal lot may be measured in number of gallons for asphalt 

material and cubic yards for aggregate. 

• Sublot:  Each lot may be divided into 3 to 5 sublots of approximately equal 

size for sampling stratification purposes.   

• Sample Size:  This refers to the number of measurements taken randomly 

from a lot. Typically, at least one unit of the sample is taken from each sublot. 

It is important that each sample unit should be taken from a randomly-

selected location within each sublot.  Randomness of sampling is a vital 

assumption upon which statistical acceptance procedures are based.  

• AQC: Inherent measurable treatment characteristics that affect pavement 

performance, are under the control of the contractor, and are measurable at or 

near the time of construction. The performance prediction model developed 

in this research allows for considering up to six AQCs for thin HMA overlays: 

overlay thickness, percent aggregate passing #8 and #200 sieves, unit weight 

of HMA mix, asphalt content, air voids, and initial IRI right after treatment. 

• Analysis Period: Period of time over which future preservation and 

maintenance associated costs are to be considered in the LCC analysis.  

• As-Constructed Lot Present Worth Value (PWVC): The estimated post-

treatment PWV that represents the as-constructed treatment lot quality. It 

heavily depends on the measured AQC values of the as-constructed lot. In 

this research, PWVC is represented by a probability distribution. 
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• As-Designed Lot Present Worth Value (PWVD): The estimated post-

treatment PWV that represents the as-designed treatment lot quality. It is 

based on the as-designed target values for the AQCs. In this research, PWVD 

is represented by a probability distribution. 

• Performance Indicator: A key distress or a composite index that describes 

the condition of the pavement. In a PRS methodology, a performance 

indicator is predicted as a function of AQCs and site conditions.   

• Performance Indicator Threshold:  A predetermined value for a 

performance indicator (e.g., IRI in this research). Beyond this threshold, a 

treated pavement is marked as “Failed” and further M&R options need to be 

considered. 

• Pay Factor (PF): The percent of the bid price that the contractor is paid for 

the treatment lot. A PF greater than 100 percent is provided for a lot that 

exceeds the as-designed quality and a PF less than 100 percent is provided for 

a lot that falls short of the as-designed quality.   

SIMULATION-BASED PRS METHODOLOGY 

The general PRS framework discussed earlier was further developed into a 

detailed simulation-based PRS methodology that can take inputs including AQC values 

and site conditions, and through simulations give pay adjustment recommendations.  

Figure 26 depicts this detailed PRS methodology. 

In this methodology, a treatment lot is divided into multiple sublots. Samples are 

taken from each sublot for each AQC.  The AQC values, site conditions, and treatment 
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age are then input into the ∆IRI prediction model (discussed earlier).  The performance 

of each sublot is predicted and checked against predefined performance threshold value 

to determine the service life range of each sublot. The life distributions of all sublots 

within the same lot are aggregated through data sampling to obtain the life distribution 

of the whole lot.  Subsequently, the life distribution of the whole lot is used in the LCCA 

process to derive the PWV distribution of the lot.  The service life and the LCCA 

computation processes are discussed next.     

 

Figure 26  A simulation-based PRS methodology for pavement preservation 
treatments.   

Sublot #1 Sublot #2 Sublot #n
AQC Values

Lot LifeLot PWV

User Inputs
• Value of Each AQC
• Site Factors
• Age of Treatment

Sublot #n Life

AQC ValuesAQC Values

Sublot #2 LifeSublot #1 Life

Vary AQC Values 
Individually 
/Collectively

Pay Adjustment Curve

● ● ●

● ● ●

● ● ●

Age

IRI

Predicted Life 
Range

Threshold

Age

IRI

Predicted Life 
Range

Threshold

Age

IRI

Predicted Life 
Range

Threshold



98 
 

Determination of Treatment Service Life 

The end of service life of a preservation treatment (e.g., thin HMA overlay) has 

defined by the occurrence of either of the following two events (Liu and Gharaibeh 

2013):  

• Application of a subsequent preservation or rehabilitation treatment. 

• Reaching pre-determined threshold values of performance indicator. 

In this research, the determination of treatment service life was based on the 

second event (i.e., the IRI progression reaches or exceeds a pre-determined threshold 

value).  The IRI progression was predicted as a function of AQCs, site characteristics, 

and age. A graph depicting how to derive the treatment service life based on predicted 

IRI probability distribution is shown in Figure 27.  A confidence level, α (e.g., 95%) 

needs to be specified first.  At any given treatment age, the predicted IRI follows a 

normal distribution, expressed as N (μ, σ2). The predicted treatment service life is a range 

of time period that is determined as follows: 

• The lower end of service life range (denoted as SLL
α) is defined as the age at 

which the cumulative probability density of predicted IRI above the threshold 

limit exceeds (1 – α).  For example, let’s take the 95% confidence level. 

When the treatment age reaches five years, the upper endpoint of the 95% 

confidence interval of predicted IRI exceeds the threshold value [i.e., the 

shaded area of normal distribution below the threshold line becomes less than 

95% (see Figure 27)]. As a result, the SLL
.95 is determined to equal to five 

years. 
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• The upper end of service life range (denoted as SLU
α) is defined as the age at 

which the cumulative probability density of predicted IRI above the threshold 

limit exceeds α.  For example, let’s take the 95% confidence level again. 

When the treatment age reaches eight years, the lower endpoint of the 95% 

confidence interval of predicted IRI exceeds the threshold value [i.e., the 

shaded area of normal distribution below the threshold line becomes less than 

5% (see Figure 27)]. As a result, the SLU
.95 is determined to equal to eight 

years. 

• The predicted treatment service life is assumed to follow a normal 

distribution. The statistics of the normal distribution (i.e., mean and standard 

deviation) can be estimated based on SLL
α, SLU

α, and confidence level α. 

  

.  

Figure 27  A graphical illustration of determining treatment service life.  
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Selection of the IRI threshold is important in the definition of treatment service 

life. Federal Highway Administration (FHWA) recommends that for new asphalt and 

asphalt overlaid asphalt pavements, terminal IRI threshold value that define end of 

service life should not be over 170 in/mile (Shafizadeh and Mannering 2003).  In the 

MEPDG, the default terminal IRI for asphalt pavements is set at 172 in/mile, very close 

to the FHWA recommendation.  Some state highway agencies have their threshold 

values for IRI. For example, Indiana Department of Transportation (InDOT) specifies 

that when the IRI is above 150 in/mile, a thin HMA overlay shall be considered to 

improve the surface roughness (INDOT 2013). Baus and Stires (2010) mentioned that 

the IRI thresholds values recommended by AASHTO for use in judging pavement trial 

design are 160 in/mile for interstate highways, and 200 in/mile for lower class 

pavements. Based on the literature, an IRI threshold value between 150 and 170 in/mile 

is appropriate for defining the failure of a preservation treatment. 

Lifecycle Cost Analysis 

Figure 28 shows an LCCA diagram for estimating the PWV of preservation 

treatment constructions. In LCCA, the costs of initial treatment and future treatment(s) 

and the service life of each treatment are needed. The salvage value (SV) can be 

calculated using the prorated life method (Walls III and Smith 1998): 

Future
RLSV Cost
SL

= ×      (Eq. 20) 
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where RL is the remaining life after the analysis period, SL is the treatment service life, 

and CostFuture is the construction cost  of future treatment. The PWV is calculated by 

discounting future treatment costs at various points in time back to the base year as 

follows: 

( )1

1
1 k

N

Init Future n
k

PWV Cost Cost
i=

  
 = +  

 +   
∑    (Eq. 21) 

where CostInit is the construction cost of initial treatment, i is the discount rate, k is the 

number of cost items in the analysis (k = 1 to N), nk is the year at which the kth cost item 

is applied.  

 

 

Figure 28  A typical LCCA diagram for a pavement preservation treatment. 
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treatment service life, the less number of future treatments are needed, and therefore the 

lower the PWV is.   

A PF is determined based on the PWV distributions of as-designed and as-

constructed treatment lot and bid price of the lot.  The formula for PF calculation is as 

follows: 

( )
100%D CBID PWV PWV P

PF
BID

α α+ − ×
= ×   (Eq. 22) 

where BID is the bid price ($), PWVD
α is the present-worth value of as-designed lot at α 

confidence level, PWVC
α is the present-worth value of as-designed lot at α confidence 

level, and P is the probability of PWV between PWVD
α and PWVC

α (see Figures 30 and 

31). 

In the PF computation, the probability term P is included to account for the 

variability incorporated in the PWV distributions of as-designed and as-constructed 

treatments.  It can represent a probability of economic saving when the as-constructed 

treatment has superior quality to the as-designed treatment, or a probability of economic 

loss when the as-constructed treatment has inferior quality to the as-designed treatment. 

These scenarios are reflected in Figures 29 through 31 and summarized as follows: 

1. On-Target quality: In this case, the as-constructed and as-designed PWV 

distribution curves are identical (i.e., PWVC
α = PWVD

α, as shown in Figure 

29), and the pay factor is expected to be 100%. This happens when the mean 

and standard deviation values of the AQCs of the as-constructed lot are equal 

or very close to the target values. 
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2. High quality: In this case, the as-constructed PWV distribution curve shifts 

to the left of the as-designed PWV distribution curve (i.e., PWVC
α < PWVD

α, 

as shown in Figure 30), and the pay factor is expected to be greater than 

100%. This happens when the mean and standard deviation values of the 

AQCs of as-constructed lot are superior to the target values.  

3. Poor quality: In this case, the as-constructed PWV distribution curve shifts 

to the right of the as-designed PWV distribution curve (i.e., PWVC
α > PWVD

α, 

as shown in Figure 31), and the pay factor is expected to be less than 100%. 

This happens when the mean and standard deviation values of the AQCs of 

as-constructed lot are inferior to the target values. 

 

 

Figure 29  Scenario of on-target quality treatment: receiving PF = 100%. 
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Figure 30  Scenario of high-quality treatment: receiving PF > 100%. 
 

 

 

Figure 31  Scenario of poor-quality treatment: receiving PF < 100%. 

 

At the end of this PRS methodology, pay factor curves can be developed by 

plotting pay factors against different quality levels of the AQCs. Conceptual PF curves 

for various quality scenarios are shown in Figure 32.  It is important to emphasize that 

only one AQC is allowed to vary at a time when developing such pay factor curves, with 

the other AQCs set to their target values.   
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Figure 32  Pay factor curves for various quality scenarios. 

 

CONCLUDING REMARKS 

Current materials and construction specifications for pavement preservation 

treatments have little or no methodical linkage between initial quality of the treatment 

and its future performance.  Consequently, current pay adjustment methods greatly 

depend on subjective judgments of the relationships between the treatment initial quality 

and its future performance. This chapter describes a novel PRS methodology that was 

devised for pavement preservation treatments. This methodology consists of quantitative 

probabilistic models for predicting pavement performance (e.g., IRI) as a function of key 

AQCs and other site factors. The predicted performance indicator is then used to derive 

probability frequency distributions for the service life and the lifecycle cost (measured in 

terms of PWV) of the treatment.  Finally, the devised methodology computes rational 

pay adjustment factors based on the difference between the PWVs of the as-constructed 

and as-designed treatments on a lot-by-lot basis.  
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CHAPTER VI 

APPLICATION OF THE DEVELOPED PRS METHODOLOGY TO CASE 

STUDIES 

INTRODUCTION 

In previous chapters, the PRS methodology and its core elements (i.e., post-

treatment performance prediction models and AQCs) were discussed.  In this chapter, 

the developed methodology is applied to real-world cases of thin HMA overlay 

treatments of LTPP sections.   

One case study was performed for each pavement layout (totaling four case 

studies).  In all these case studies, the reliability level was set at 95%.  Various values 

were assigned to the AQCs to test their impact on the final pay factor.  It is important to 

mention that the input data was reasonably selected and checked with the applicable 

range of predicators in the performance models (refer back to Table 10 in Chapter 4).   

In all the case studies, the final PF of a treatment lot were within the range from 

80% to 110%, which is very common in current specifications of many highway 

agencies.  A PF below 80% indicates the quality of the thin HMA overlay is not 

acceptable and replacement of the treatment layer should be considered.  On the other 

hand, the contractor will receive a maximum payment of 110% of the bid price, which 

represents a maximum 10% reward owing to exceptional treatment quality.       

The following sections describe the case studies in the order of pavement layouts. 
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IMPLEMENTATION OF THE PRS METHODOLOGY 

Implementation of the developed PRS methodology was carried out by 

incorporating its elements into a computational tool programmed in Excel VBA. The 

process described in Figure 33 was followed to simulate various quality scenarios for 

each case study and to derive pay factor curves for a treatment lot.  

Data on site conditions, existing pavement properties, and the AQCs (i.e., mean 

and standard deviation values) is read into the simulation spreadsheet.  Simulated AQC 

samples are drawn based on given distribution statistics for each sublot. Then, on a 

sublot-by-sublot basis, the service life distributions are estimated and the life distribution 

of the lot is derived.  

 

 

Figure 33  Process used to derive PF curves for a treatment lot. 
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 CASE STUDY FOR PAVEMENT LAYOUT-1 

Section Information 

The LTPP SPS-3 test section 48-G310 was selected for cross-sectional Layout-1 

case study.  This section is located on Texas Highway 322 in Rusk County, Texas, with 

two lanes in each direction.  The original pavement at this section was constructed in 

August, 1972; and the thin HMA overlay treatment was applied on October 15, 1990.  

Crushed stone was used for constructing the granular base, and sand was used for the 

subgrade.  

This section has an annual air temperature of 64.5 ᵒF, an annual rainfall of 48.7 in, 

and a freeze index of 18.8 ᵒF-days, on average.  The initial average annual daily truck 

traffic (AADTT) was 96 trucks per day in each direction, with a 5.8% compound growth 

rate.   A current view of this roadway section is displayed in Figure 35.    

 

 

Figure 34  Current view of section 48-G310 in Rusk County, TX. 
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The pavement consists of three layers: HMA surface layer, granular base, and 

subgrade.  Table 19 summarizes the material and construction properties of the pre-

treatment pavement layers and the AQC values of the thin HMA overlay treatment at 

this section. 

Table 19  Pavement Characteristics of Section 48-G310 

 

 

Layer Attributes/AQC Values 

Thin HMA 
Overlay 

Overlay Thickness (in) 1.5 
% Passing #8 Sieve 37.0 
% Passing #200 Sieve 3.0 
Asphalt Content (%) 5.5 
Air Voids (%) 6.0 
Initial IRI (in/mile) 88 

Original HMA 
Surface Layer 

Thickness (in) 3.4 
Effective Binder Content (%) 5.0 
Air Voids (%) 3.7 
Unit Weight (pcf) 139.2 
Cum. % Retained on ¾ʺ Sieve 0 
Cum. % Retained on 3/8ʺ Sieve 0 
Cum. % Retained on #4 Sieve 38 
% Passing #200 Sieve 4 
Asphalt Viscosity (106 poise) 18.31 

Granular Base 

Thickness (in) 11.3 
Plasticity Index 4 
Liquid Limit 21 
% Passing #200 Sieve 27.8 
% Passing #40 Sieve 67.0 
% Passing #4 Sieve 83.0 
Max Dry Unit Weight (pcf) 135.5 
Opt. Gravimetric Water Content (%) 7.5 

Subgrade 

Plasticity Index 16 
Liquid Limit 34 
% Passing #200 Sieve 2.6 
% Passing #40 Sieve 79.0 
% Passing #4 Sieve 100 
Max Dry Unit Weight (pcf) 110.5 
Opt. Gravimetric Water Content (%) 12.5 
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IRI and Service Life Predictions 

Figure 36 shows the predicted IRI values in different years at this section. It is 

noticed that the predicted IRI in the 18th year is about 117 in/mile, very close to the field 

observed 112 in/mile recorded in the LTPP database. The blue curve represents the IRI 

predictions on the original pavement, while the green curve represents the predicted 

mean IRI after the thin HMA overlay was placed.  The prediction indicates that the IRI 

on the original pavement reaches the failure threshold value (i.e., 170 in/mile) at an age 

of 33 years.  Placement of the thin HMA overlay is expected to bring IRI down to a 

mean value of 84 in/mile in the first year.   

Based on the predicted IRI mean and standard deviation values, the service life 

of this thin HMA overlay has a mean of 7.5 years and a standard deviation of 1.3 years.  

With 95% confidence, the predicted service life is between 5 to 10 years.     

 

Figure 35  IRI predictions for Section 48-G310. 
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Pay Factor Curves 

In the thin overlay pay adjustment simulations, a lot size of 3,000 tons of HMA 

mix was used, and each lot consisted of six sublots.  Each sublot was sampled once and 

tested for each AQC.  Thus, the sample size for each lot is six.  The unit cost of HMA 

mix was assumed to be $55 per ton.  An analysis period of 20 years was used in all the 

PRS simulations.   

The s target mean and standard deviation values for each AQC of the thin HMA 

overlay are presented in Table 20. Note that the measured AQC values of the thin HMA 

overlay listed in Table 19 were used as target mean values.  Target standard deviation 

values were selected based on NCHRP research (i.e., Hughes 1996), highway agency 

construction specifications (e.g., TxDOT 2004 Standard Specifications) and engineering 

judgments, as shown in Table 20.   

 

Table 20  Case Study #1: AQC Target Mean and Standard Deviation Values  

AQC Targets Thick  
(in) 

PP8 
(%) 

PP200 
(%) 

AC 
(%) 

AV 
(%) 

IRI0 
(in/mile) 

Mean 1.5 37.0 3.0 5.5 6.0 88.0 

Std. Dev. 0.20 2.50 0.80 0.20 0.90 5.0 

 

For the as-constructed lot, the simulations were performed on seven levels of 

each AQC’s mean value and three levels of each AQC’s standard deviation. Therefore, 

each AQC was simulated for 21 combinations of mean and standard deviation levels.  

The simulation results, represented by PF curves, are shown in Figure 37.  
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Figure 36  Pay factor curves for case study #1.  
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(the other AQCs remain fixed) within the given ranges.  For the other three AQCs (i.e., 

air voids content, % aggregate passing #200 sieve, and initial IRI), the lot PF decreases 

when any of these three AQCs increases within the given ranges.   As the lot PF has a 

direct relationship with its service life, the PF curves indicate that in this particular case, 
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larger mean values of thickness, AC, and PP8 are favorable, whereas smaller mean 

values of PP200, AV, and IRI0 are favorable.   

The standard deviation of AQC values has also an impact on the lot PF.  For all 

AQCs, a lot with a smaller standard deviation tends to have a higher PF than that with a 

larger standard deviation, as can be seen from the PF curves in Figure 37.     

The effect of the AQCs on the magnitude of the PF varies. By observing the 

graphs in Figure 37, it can be seen that AC and IRI0 means are most influential on the lot 

PF (i.e., the PF varies from 80% to 110% for the simulated AQC levels).  The PF curves 

for PP200 has the smallest variation among different AQC levels, indicating much less 

influence of PP200 on contractor payment than the other AQCs.  From this case study, it 

can be concluded that establishment of PF curves for all considered AQCs can help not 

only determine the effect of individual AQC on PF, but also compare between a set of 

AQCs and identify those important AQCs affecting the PF (through affecting treatment 

service life and PWV).   

CASE STUDY FOR PAVEMENT LAYOUT-2 

Section Information 

The LTPP SPS-3 test section 16-C310 was selected for cross-sectional Layout-2 

case study.  This section is located on Highway US-15 in Bonneville County, Idaho, 

with two lanes in each direction.  The original pavement at this section was constructed 

in October, 1969; and the thin HMA overlay treatment was applied on September 24, 
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1990.  Crushed stone was used for constructing the granular base, and silty sand was 

used for the subgrade.  

This section has an annual air temperature of 44.2 ᵒF, an annual rainfall of 12.0 in, 

and a freezing index of 637.6 ᵒF-days, on average.  The initial AADTT was 356 trucks 

per day in each direction, with a 7.7% compound growth rate.   A current view of this 

roadway section is displayed in Figure 38.   

 

 

Figure 37  Current view of section 16-C310 in Bonneville County, Idaho. 
 

The pavement at this section consists of four layers: HMA surface layer, binder 

course, granular base, and subgrade.  Table 21 summarizes the material and construction 

properties of pre-treatment pavement layers and the AQC values of the thin HMA 

overlay treatment at this section. 
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Table 21  Pavement Characteristics of Section 16-C310 

 

 

IRI and Service Life Predictions 

Figure 39 shows the predicted IRI values in different age years of this section.  

The predicted IRI at the original pavement age of 21 years is about 112 in/mile, whereas 

the field observed IRI is 102 in/mile (as recorded in the LTPP database). The prediction 

indicates that the IRI of the original pavement reached the threshold of failure (i.e., 170 

Layer Attributes/AQC Values 

Thin HMA 
Overlay 

Overlay Thickness (in) 1.7 
% Passing #8 Sieve 49.1 
% Passing #200 Sieve 5.5 
Asphalt Content (%) 5.3 
Air Voids (%) 4.2 
Initial IRI (in/mile) 76 

Original HMA 
Surface Layer 

Thickness (in) 4.9 
Effective Binder Content (%) 5.3 
Air Voids (%) 4.1 
Unit Weight (pcf) 143.9 
Cum. % Retained on ¾ʺ Sieve 0 
Cum. % Retained on 3/8ʺ Sieve 5 
Cum. % Retained on #4 Sieve 37 
% Passing #200 Sieve 7.6 
Asphalt Viscosity (106 poise) 12.86 

Binder Course 

Thickness (in) 5.0 
Effective Binder Content (%) 5.2 
Air Voids (%) 3.6 
Unit Weight (pcf) 144.2 
Cum. % Retained on ¾ʺ Sieve 0 
Cum. % Retained on 3/8ʺ Sieve 25 
Cum. % Retained on #4 Sieve 48 
% Passing #200 Sieve 6.6 
Asphalt Viscosity (106 poise) 21.95 

Granular Base 

Thickness (in) 5.4 
Plasticity Index 0 
Liquid Limit 0 
% Passing #200 Sieve 7.8 
% Passing #40 Sieve 23 
% Passing #4 Sieve 46 
Max Dry Unit Weight (pcf) 140 
Opt. Gravimetric Water Content (%) 5.0 

Subgrade 

Plasticity Index 0 
Liquid Limit 0 
% Passing #200 Sieve 13.1 
% Passing #40 Sieve 66 
% Passing #4 Sieve 97 
Max Dry Unit Weight (pcf) 113.5 
Opt. Gravimetric Water Content (%) 11.0 
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in/mile) at the age of 41 years.  If a thin HMA overlay is placed in that year, it is 

predicted to bring the IRI down to a mean value of 120 in/mile in the first year.  

Based on the predicted IRI mean and standard deviation values, the service life 

of this thin HMA overlay has a mean of 9.5 years and a standard deviation of 1.3 years.  

With 95% confidence, the service life falls between 7 to 12 years.     

 

Figure 38  IRI predictions for Section 16-C310. 
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The target mean and standard deviation values for each AQC of the thin HMA 

overlay are presented in Table 22.   

 

Table 22  Case Study #2: AQC Target Mean and Standard Deviation Values  

AQC Targets Thick  
(in) 

PP8 
(%) 

PP200 
(%) 

AC 
(%) 

AV 
(%) 

IRI0 
(in/mile) 

Mean 1.7 49.1 5.5 5.3 4.2 76.0 

Std. Dev. 0.20 2.50 0.80 0.20 0.90 5.0 

 

The simulations were performed on seven levels of each AQC’s mean value and 

three levels of each AQC’s standard deviation. A total of 21 combinations of mean and 

standard deviation values were simulated for each AQC, and the simulation results are 

shown in Figure 40.  

In this case study, the PF curves show variations as the mean and standard 

deviation values of the AQCs change.  Except for initial IRI (i.e., IRI0), all other AQCs 

have a positive relationship between the PF and the mean AQC value within the given 

ranges (i.e., PF increases as the mean AQC value increases). As lower IRI is favorable, a 

lower PF value will be expected when the mean IRI0 value is larger, as displayed in 

Figure 40.   

The standard deviation of AQC values again has an impact on the lot PF.  Similar 

to the first case study, the PF curves of the second case study have a consistent pattern: 

for any as-constructed mean value, as the standard deviation decreases, the pay factor 

increases.    
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Figure 39  Pay factor curves for case study #2.  
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intermediate impact, among the AQCs, on the final PF.   
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CASE STUDY FOR PAVEMENT LAYOUT-3 

Section Information 

For cross-sectional layout-3, SPS-5 section 12-0505 was selected for applying 

the developed PRS methodology.  This section is located on Highway US-1 in Martin 

County, Florida, with two lanes in each direction.  The original pavement at this section 

was constructed in June 1971; and the thin HMA overlay treatment was applied on April 

18, 1995.  The granular base of this pavement was constructed using crushed gravel. The 

subbase was constructed using coarse soil-aggregate mixture, and poorly graded sand 

was used for the subgrade.  

At this section, the annual air temperature is74.5 ᵒF, the annual rainfall is 59.6 in, 

and the freezing index is 0 ᵒF-days, on average. The initial AADTT was 242 trucks per 

day on each direction, with a 4.0% compound growth rate.   A current view of this 

roadway section is displayed in Figure 41.   

 

 

Figure 40  Current view of section 12-0505 in Martin County, Florida. 
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The pavement at this section consists of four layers: HMA surface layer, granular 

base, granular subbase, and subgrade.  Table 23 summarizes the material and 

construction properties of existing pavement layers and the AQC values of the thin 

HMA overlay treatment at this roadway section. 

Table 23  Pavement Characteristics of Section 12-0505 

 

 

IRI and Service Life Predictions 

Figure 42 shows the predicted IRI values in different age years at this section.  

The predicted IRI for the original pavement at the age of 24 years is about 144 in/mile, 

Layer Attributes/AQC Values 

Thin HMA 
Overlay 

Overlay Thickness (in) 1.9 
% Passing #8 Sieve 38 
% Passing #200 Sieve 2.1 
Asphalt Content (%) 6.5 
Air Voids (%) 3.7 
Initial IRI (in/mile) 60.2 

Original HMA 
Surface Layer 

Thickness (in) 2.9 
Effective Binder Content (%) 6.5 
Air Voids (%) 5.2 
Unit Weight (pcf) 136.8 
Cum. % Retained on ¾ʺ Sieve 0 
Cum. % Retained on 3/8ʺ Sieve 1 
Cum. % Retained on #4 Sieve 32 
% Passing #200 Sieve 4.9 
Asphalt Viscosity (106 poise) 13.03 

Granular 
Subbase 

Thickness (in) 8.8 
% Passing #200 Sieve 16.2 
% Passing #40 Sieve 34 
% Passing #4 Sieve 58 
Max Dry Unit Weight (pcf) 131 
Opt. Gravimetric Water Content (%) 8.5 

Granular Base 

Thickness (in) 11 
% Passing #200 Sieve 5.1 
% Passing #40 Sieve 65 
% Passing #4 Sieve 87 
Max Dry Unit Weight (pcf) 116 
Opt. Gravimetric Water Content (%) 9.5 

Subgrade 

% Passing #200 Sieve 1.5 
% Passing #40 Sieve 70 
% Passing #4 Sieve 100 
Max Dry Unit Weight (pcf) 107 
Opt. Gravimetric Water Content (%) 12 
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which is not very far from the observed IRI of 122 in/mile (recorded in the LTPP 

database). The prediction indicates that the IRI of the original pavement reached the 

threshold of failure (i.e., 170 in/mile) at the age of 33 years.  After the thin HMA overlay 

is applied, the IRI is predicted to be brought down to a mean value of 80 in/mile in the 

first year.  

The predicted service life of the thin HMA overlay at this section has a mean of 

12 years and a standard deviation of 1.5 years.  With 95% confidence, the service life 

falls between 9 to 15 years.     

 

Figure 41  IRI predictions for Section 12-0505. 
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period was used in the simulations.  Table 24 presents the target mean and standard 

deviations of the thin HMA overlay AQCs.  

Table 24  Case Study #3: AQC Target Mean and Standard Deviation Values  

AQC Targets Thick  
(in) 

PP8 
(%) 

PP200 
(%) 

AC 
(%) 

AV 
(%) 

IRI0 
(in/mile) 

Mean 1.9 38.0 2.1 6.5 3.7 60.2 
Std. Dev. 0.20 2.50 0.80 0.20 0.90 5.0 

 

Simulations were performed on seven levels of the mean value and three levels 

of the standard deviation for each AQC. The simulated PF curves are shown in Figure 43.  

      
Figure 42  Pay factor curves for case study #3.  
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In this case study, AV and PP8 have very slight effect on the PF.  The PF curves 

remain flat at 100% when the mean PP8 varies from 28% to 47%, regardless of the 

variation in the standard deviation.  The PF curves also remain flat when the mean AV 

varies from 3.1% to 3.7%.     

The PF curves in Figure 43 indicate that larger mean overlay Thickness, AC, AV, 

and lower mean IRI0 and PP200 values (within the studied ranges) lead to a higher pay 

factor.  The PF curves with respect to mean IRI0 remain flat at lower IRI0 values, and 

start to drop when the mean IRI0 value exceed 64 in/mile (the target value is set at 60.2 

in/mile).   

Compared to case studies 1 and 2, the standard deviation impact on PF is less 

pronounced for most AQCs.  The impact of standard deviation on PF is obvious only for 

IRI0 and AC.  This may be caused by the fact that the range of mean values appear to be 

too small to cause noticeable difference in the PF.     

It can be seen that in this case study, the most influential factor is AC, which 

results in a variation from 93% to 103% in PF as the simulated AC level varies from 5.6% 

to 7.4%.  IRI0 can also result in approximately 10% variation in PF across different mean 

levels, and overlay thickness can result in about 5% variation in PF. In contrast, AV and 

PP8 each can result in less than ±1% differentiation in the lot PF.   

CASE STUDY FOR PAVEMENT LAYOUT-4 

Section Information 

The LTTP GPS test section 34-1030 was used in this case study.  This section is 

located on Highway 23 in Passaic County, New Jersey.  It has two lanes in each 
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direction.  The original pavement at this section was constructed in October, 1969; and 

the thin HMA overlay treatment was applied on September 18, 1997.  Crushed gravel 

was used for constructing the granular base, sand for constructing the granular subbase, 

and poorly-graded sand with silt and gravel used for the subgrade.  

This section has an annual air temperature of 50.8 ᵒF, an annual rainfall of 48.4 in, 

and a freezing index of 275.2 ᵒF-days, on average.  The initial AADTT was 420 trucks 

per day on each direction, with a 1.5% compound growth rate.   A current view of this 

roadway section is displayed in Figure 44.   

 

 

Figure 43  Current view of section 34-1030 in Passaic County, New Jersey. 
 

The pavement at this section consists of five layers: HMA surface layer, binder 

course, granular base, granular subbase, and subgrade.  Table 25 summarizes the 

material and construction properties of existing pavement layers and the AQC values of 

thin HMA overlay treatment at this section. 
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Table 25  Pavement Characteristics of Section 34-1030 

 

 

Layer Attributes/AQC Values 

Thin HMA 
Overlay 

Overlay Thickness (in) 1.8 
% Passing #8 Sieve 32 
% Passing #200 Sieve 7.1 
Asphalt Content (%) 5.6 
Air Voids (%) 6.1 
Initial IRI (in/mile) 110 

Original HMA 
Surface Layer 

Thickness (in) 1.8 
Effective Binder Content (%) 6.5 
Air Voids (%) 4.6 
Unit Weight (pcf) 148.6 
Cum. % Retained on ¾ʺ Sieve 0 
Cum. % Retained on 3/8ʺ Sieve 1 
Cum. % Retained on #4 Sieve 29 
% Passing #200 Sieve 5.7 
Asphalt Viscosity (106 poise) 13.03 

Binder Course 

Thickness (in) 4.2 
Effective Binder Content (%) 4.7 
Air Voids (%) 5.9 
Cum. % Retained on ¾ʺ Sieve 19 
Cum. % Retained on 3/8ʺ Sieve 46 
Cum. % Retained on #4 Sieve 58 
% Passing #200 Sieve 5.0 
Asphalt Viscosity (106 poise) 13.03 

Granular Base 

Thickness (in) 6.8 
Plasticity Index 0 
Liquid Limit 0 
% Passing #200 Sieve 0.5 
% Passing #40 Sieve 5 
% Passing #4 Sieve 16 
Max Dry Unit Weight (pcf) 137 
Opt. Gravimetric Water Content (%) 7.0 

Granular 
Subbase 

Thickness (in) 23.4 
Plasticity Index 0 
Liquid Limit 0 
% Passing #200 Sieve 5.9 
% Passing #40 Sieve 46 
% Passing #4 Sieve 67 
Max Dry Unit Weight (pcf) 132 
Opt. Gravimetric Water Content (%) 7.5 

Subgrade 

Plasticity Index 0 
Liquid Limit 0 
% Passing #200 Sieve 9.2 
% Passing #40 Sieve 31 
% Passing #4 Sieve 63 
Max Dry Unit Weight (pcf) 134 
Opt. Gravimetric Water Content (%) 10 



126 
 

IRI and Service Life Predictions 

Figure 45 shows the predicted IRI values in different age years at this section.  

The predicted IRI at the original pavement age of 28 years is about 139 in/mile, which is 

lower than the 178 in/mile IRI value recorded in the database. The prediction indicates 

that the IRI on the original pavement reached the threshold of failure (i.e., 170 in/mile) 

at the age of 38 years.  The thin HMA overlay treatment is predicted to bring the IRI 

down to a mean value of about 120 in/mile in the first year.  

Based on the predicted IRI mean and standard deviation values, the service life 

of this thin HMA overlay has a mean of 8.5 years and a standard deviation of 1.3 years.  

With 95% confidence, the service life falls between 6 to 11 years.     

 

Figure 44  IRI predictions for Section 34-1030. 
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Pay Factor Curves 

The same analysis configuration was conducted on this case study as the 

previous case studies, except for that an analysis period of 25 years was used here.  The 

target mean and standard deviation values shown in Table 26 were used for the 

simulations.   

 

Table 26  Case Study #4: AQC Target Mean and Standard Deviation Values  

AQC Targets Thick  
(in) 

PP8 
(%) 

PP200 
(%) 

AC 
(%) 

AV 
(%) 

IRI0 
(in/mile) 

Mean 1.8 32.0 7.1 5.6 6.1 110.0 

Std. Dev. 0.20 2.50 0.80 0.20 0.90 5.0 

 

Again, the PRS simulations were performed on seven levels of each AQC’s mean 

value and three levels of each AQC’s standard deviation value.  A total of 21 

combinations of mean and standard deviation levels were simulated for each AQC, and 

the simulation results are shown in Figure 46. 
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Figure 45  Pay factor curves for case study #4.  
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clear negative relationship with PF.  The PF curves with respect to mean AC have 
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target AC level and decreases below 100% when the AC value deviates from the target 

level (i.e., 5.6%).  With respect to PP8, the PF pattern is slightly different in that when 

PP8 is above 32%, the estimated PF becomes very stable around 100%.  Therefore, in 

this particular case, lower PP200 and IRI0 mean values lead to higher pay factors. 
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Similar to the other case studies, the PF curves of this case study have a consistent 

pattern: for any as-constructed mean value, as the standard deviation decreases, the pay 

factor increases.   

Based on Figure 46, PP200 became the most influential factor on the lot PF, as 

the variation in PF can result in the PF varies from 85% to 108%.  It was not consistent 

with what was observed in the previous three case studies. This might be due to the 

relatively higher range values of PP200 (i.e., 5.5% to 8.5%) in this case study, compared 

to the ranges of PP200 used in the previously case studies (2.4%-3.6%, 4%-7%, and 

1.5%-3.4%, for case studies # 1, 2, and 3 respectively). Commonly required PP200 in 

HMA mix design is less than 7% (Cominsky 1994 and TxDOT 2004).  In this case study, 

the PF corresponding to PP200 over 7% was lower than 100%, which was appropriate 

from the perspective of pavement engineering.  The PF curves also show that AV has the 

lowest impact on the lot PF, and the other AQCs have a moderate impact on the final PF.  

CONCLUDING REMARKS 

To demonstrate and validate the applicability of the PRS methodology developed 

in this research, four case studies of thin HMA overlay on existing asphalt pavement 

were conducted. These case studies are LTPP test sections that represent different 

scenarios of existing pavement characteristics, site conditions, and thin HMA overlay 

quality.   

Pay adjustment curves were developed to capture the variation of PF with respect 

to the variation in each AQC of the thin HMA overlay.  These PF curves showed that the 

developed PRS methodology translates deviations from the target mean and target 
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standard deviation values into reasonable pay factors that represent the economic value 

of performance lost or gained due to differences between the treatment’s target and as-

constructed levels of quality.  

With respect to mean overlay thickness and mean initial IRI, consistent patterns 

were found for all case studies:  for overlay thickness, as the mean value increases, the 

PF increases; for initial IRI, as the mean value increases the PF decreases. With respect 

to asphalt content, air voids, percent passing #8 and #200 sieves, the patterns of PF 

versus mean AQC were not consistent among the case studies. This might be due to 

differences in the AQC range. For example, for air voids, a range of 5.7 to 6.3% was 

used in case study #1, whereas a range of 3.6 to 4.8% was used in case study #2. With 

respect to the effect of variability in the AQC (i.e., standard deviation) on the pay factor, 

a consistent pattern was found for all AQCs and all case studies:  for any given as-

constructed mean value, as the standard deviation increases, the pay factor decreases.     
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CHAPTER VII 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

SUMMARY 

During past decades, numerous endeavors have been made in the pavement 

community to develop performance-related specifications (PRS) for pavement 

constructions.  Compared to traditional QC/QA specifications, PRS is more desirable 

because it employs objective mathematical relationships that correlate the initial quality 

of the pavement to its future performance.  In this way, pay adjustment decisions can be 

made based on the performance lost or gained due to differences between the target and 

as-constructed levels of quality. 

Although significant progress has been made for new pavement construction, the 

literature still lacks understanding of how PRS can be developed for and applied to 

pavement preservation treatments.  This dissertation fills this gap in the literature and 

makes the following specific contributions: 

• A systematic methodology for developing PRS for pavement preservation 

treatments was developed.  To demonstrate the applicability of the developed 

PRS methodology, it was applied to thin HMA overlays (a commonly-used 

pavement preservation treatment). 

• A novel modeling method was developed for predicting pavement post-

treatment performance.  The model consists of two tightly-coupled 

components: the first component is responsible for predicting the 

performance (e.g., IRI) of the existing pavement if no treatment was applied. 
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The second component is responsible for prediting the reduction in pavement 

deterioration due to the application of the preservation treatment. 

• New models were developed using this approach for predicting the IRI of 

asphalt pavement treated with thin HMA overlay. Artificial neural networks 

(ANNs) were developed for predicting the IRI of the existing asphalt 

pavement and Bayesian regression models were developed for predicting the 

reduction in IRI due to applying the thin HMA overlay treatment.     

• A novel approach for determining the probability distributions of service life 

and present-worth value (PWV) of pavement preservation treatments was 

developed.  This approach allows for transforming the probabilistic 

distribution of pavement condition (predicted by the Bayesian model) into 

probability distributions for service life and PWV. Pay factors are then 

estimated based on the the difference between the as-constructed and target 

PWVs. 

• Insights were obtained into the relationships between initial quality 

(measured in terms of both mean and standard deviation of key acceptance 

quality characteristics) and expected pay factors through analysis of real 

world case studies of pavements treated with thin HMA overlays. 

CONCLUSIONS 

The following concludions were made based on the results of this research: 

• The developed ANNs for predicting IRI of asphalt pavement corrolate with 

the MEPDG IRI prediction model very closely. These ANNs have the 
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advantages of a) being independent (run as standalone algorithms), b) being 

rapid, and c) requiring fewer inputs.   

• The Bayesian regression models developed to predict the reduction in IRI due 

to thin HMA overlay treatments have the advantages of considering seven 

key AQCs and high goodness of fit. The percent of outliers (i.e., data points 

falling within either 2.5% tail area of model predictions)  were less than 5% 

for all the developed Bayesian models. 

• The application of the PRS methodology to actual pavement sections showed 

that this methodology produces rational pay factor curves that account for 

both the mean and standard deviation of key AQCs.  

• The following conclusions can be made based on the pay factor curves of the 

case studies: 

o With respect to mean overlay thickness and mean initial IRI, 

consistent patterns were found for all case studies:  for overlay 

thickness, as the mean value increases, the PF increases; for initial IRI, 

as the mean value increases the PF decreases.    

o With respect to asphalt content, air voids, percent passing #8 and 

#200 sieves, the patterns of PF versus mean AQC were not consistent 

among the case studies. This might be due to differences in the AQC 

range. For example, for air voids, a range of 5.7 to 6.3% was used in 

case study #1, whereas a range of 3.6 to 4.8% was used in case study 

#2.    
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o With respect to the effect of variability in the AQC (i.e., standard 

deviation) on the pay factor, a consistent pattern was found for all 

AQCs and all case studies:  for any given as-constructed mean value, 

as the standard deviation increases, the pay factor decreases.     

• The impact of AQCs on the final PF vary between different pavement layouts.  

For example, different quality levels of percent air voids in HMA mix can 

result in a ±5% PF differentiation in Layout-1, whereas this effect is reduced 

to ±0.5% PF differentiation in Layout-3.  The percent aggregate passing #200 

sieve plays an important role in case study #4, whereas it is effective in the 

other three case studies.  This might be due to the different ranges of AQC 

values that were used in these studies.  

• Among the six AQCs of thin HMA overlay, asphalt content and initial IRI 

were found to be most influential for almost all four pavement layouts 

considered in this study.  With exception of PP200 for layout-4, aggregate 

gradation (i.e., percent aggregate passing #200 sieve and # 8 sieve) has a 

minimal impact on the pay factor.  

RECOMMENDATIONS 

Studies are recommended in the future to enhance the developed PRS 

methodology and underlying models as follows: 

• Extend the application of the developed methodology to other types of 

pavement preservation treatments.  This study focuses on thin HMA overlays.  
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However, there are many types of pavement preservation treatments being 

widely used in the pavement industry. 

• This study has focused on developing performance models for IRI only.  

Some other performance indicators, such as individual distress types, should 

also be considered in the future studies, if they are deemed to be adequate 

performance indicator for a particular preservation treatment type. 

• The existing pavement structure is an important component in the developed 

PRS methodology.  This research identified more than 15 different layer 

compositions from the LTPP database, but considered top four used layouts.  

Further studies can be conducted to consider other cross-sectional layouts of 

the existing pavement.  

• Test the developed PRS methodology on additional case studies and field 

trials that represent broader climatic, traffic, and geographic conditions. A 

software user interface could be developed to integrate the components of the 

developed PRS components, take input values, perform PRS simulations, and 

report results in a user friendly manner.  

• A mechanism for calibrating the developed ANNs for predicting the IRI of 

existing pavement was introduced in this dissertation.  Future research efforts 

can also be focused on calibrating the ANNs using local pavement design and 

performance data. 
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APPENDIX A  

SUMMARY STATISTICS OF INPUT VARIABLES USED IN THE LHS 
PROCESS 
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Table A-1  Summary Statistics of Input Variables Used in the LHS Process 

Category Parameters Layout 1 (600 Cases) Layout 2 (700 Cases) Layout 3 (700 Cases) Layout 4 (1,000 Cases) 
a1 b PD2 a b PD a b PD a b PD 

Site 
Factors 

Initial AADTT, veh/day 100 3000 U 100 3000 U 100 3000 U 100 3000 U 

Comp. Growth Rate, % 0 10 U 0 10 U 0 10 U 0 10 U 

HMA 
Surface 
Layer 

Thickness, in 1 13 U 1 13 U 1 13 U 1 13 U 

Unit Weight, pcf 145.3 5.2 N 145.3 5.2 N 145.3 5.2 N 145.3 5.2 N 

Eff. Binder Content, % 5.5 0.8 N 5.5 0.8 N 5.5 0.8 N 5.5 0.8 N 

Air Voids, % 4.8 1.9 N 4.8 1.9 N 4.8 1.9 N 4.8 1.9 N 

% Retained on 3/4 Sieve 0 10 U 0 10 U 0 10 U 0 10 U 

% Retained on 3/8 Sieve R34 40 U R34 40 U R34 40 U R34 40 U 

% Retained on #4 Sieve Max(R38,13) 60 U Max(R38,13) 60 U Max(R38,13) 60 U Max(R38,13) 60 U 

% Passing #200 Sieve 5.7 1.6 N 5.7 1.6 N 5.7 1.6 N 5.7 1.6 N 

Binder 
Course 

Thickness, in    1 9 U    1 9 U 

Unit Weight, pcf    147.4 6.3 U    147.4 6.3 U 

Eff. Binder Content, %    4.9 0.8 N    4.9 0.8 N 

Air Voids, %    4.8 1.8 N    4.8 1.8 N 

% Retained on 3/4 Sieve    0 26 U    0 26 U 

% Retained on 3/8 Sieve    R34 50 U    R34 50 U 

% Retained on #4 Sieve    Max(R38,19) 65 U    Max(R38,19) 65 U 

% Retained on #200 Sieve    5.9 1.7 N    5.9 1.7 N 

Granular 
Base 

Thickness, in 1 30 U 1 30 U 1 30 U 1 30 U 

Plasticity Index 0 12 U 0 12 U 0 12 U 0 12 U 

Liquid Limit PI 32 U PI 32 U PI 32 U PI 32 U 

% Passing #200 Sieve 0 40 U 0 40 U 0 40 U 0 40 U 

% Passing #40 Sieve Max(PP200,5) 70 U Max(PP200,5) 70 U Max(PP200,5) 70 U Max(PP200,5) 70 U 

                                                 
1 a and b are the LHS sampling parameters: 1) For uniform distributions, a and b are the minimum and maximum values, respectively;  2) For normal 
distributions, a and b are the mean and standard deviation, respectively. 
2  PD is the probability distribution of the corresponding variable, where U is uniform distribution and N is normal distribution. 
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Table A-1 Continued              

Category Parameters 
Layout 1 (600 Cases) Layout 2 (700 Cases) Layout 3 (700 Cases) Layout 4 (1,000 Cases) 

a b PD a b PD a b PD a b PD 

 

% Passing #10 Sieve Max(PP40,13) 80 U Max(PP40,13) 80 U Max(PP40,13) 80 U Max(PP40,13) 80 U 

% Passing #4 Sieve Max(PP10,16) 90 U Max(PP10,16) 90 U Max(PP10,16) 90 U Max(PP10,16) 90 U 

% Passing 1" Sieve Max(PP4,40) 100 U Max(PP4,40) 100 U Max(PP4,40) 100 U Max(PP4,40) 100 U 

Max Dry Unit Weight, pcf 135 7 N 135 7 N 135 7 N 135 7 N 

Opt. Moisture Content, % 7.4 2 N 7.4 2 N 7.4 2 N 7.4 2 N 

Granular 
Subbase 

Thickness, in       3 40 U 3 40 U 

Plasticity Index       0 11 U 0 11 U 

Liquid Limit       PI 32 U PI 32 U 

% Passing #200 Sieve       3 35 U 3 35 U 

% Passing #40 Sieve       Max(PP200,8) 95 U Max(PP200,8) 95 U 

% Passing #10 Sieve       Max(PP40,20) 100 U Max(PP40,20) 100 U 

% Passing #4 Sieve       Max(PP10,30) 100 U Max(PP10,30) 100 U 

% Passing 1" Sieve       Max(PP4,62) 100 U Max(PP4,62) 100 U 

Max Dry Unit Weight, pcf       128.5 13 N 128.5 13 N 

Opt. Moisture Content, %       9.1 3 N 9.1 3 N 

Subgrade 

Plasticity Index 0 33 U 0 33 U 0 33 U 0 33 U 

Liquid Limit PI 65 U PI 65 U PI 65 U PI 65 U 

% Passing #200 Sieve 0 90 U 0 90 U 0 90 U 0 90 U 

% Passing #40 Sieve Max(PP200,12) 100 U Max(PP200,12) 100 U Max(PP200,12) 100 U Max(PP200,12) 100 U 

% Passing #10 Sieve Max(PP40,20) 100 U Max(PP40,20) 100 U Max(PP40,20) 100 U Max(PP40,20) 100 U 

% Passing #4 Sieve Max(PP10,25) 100 U Max(PP10,25) 100 U Max(PP10,25) 100 U Max(PP10,25) 100 U 

% Passing 1" Sieve Max(PP4,63) 100 U Max(PP4,63) 100 U Max(PP4,63) 100 U Max(PP4,63) 100 U 

Max Dry Unit Weight, pcf 116 10.3 N 116 10.3 N 116 10.3 N 116 10.3 N 

Opt. Moisture Content, % 12.8 3.8 N 12.8 3.8 N 12.8 3.8 N 12.8 3.8 N 
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APPENDIX B  

FORMAT OF ANN AND ITS WEIGHT MATRIX
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Figure B-1.  Format of a typical ANN and connection weights. 
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APPENDIX C 

WEIGHT MATRICES OF IRI ARTIFICIAL NEURAL NETWORKS  

FOR PAVEMENT LAYOUTS 1 THROUGH 4 
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Table C-1 Connection Weights between Input and Hidden Layers for Layout-1 
 w.1 w.2 w.3 w.4 w.5 w.6 w.7 w.8 w.9 w.10 w.11 w.12 w.13 w.14 w.15 

W1. 1.23 -0.23 -1.39 -1.07 0.18 5.08 4.77 0.43 1.89 0.14 -0.28 -4.66 6.22 -1.82 3.56 
W2. 0.37 -0.22 2.33 -0.23 -0.95 3.24 3.34 0.08 -0.47 0.07 -0.02 3.60 1.45 0.67 4.43 
W3. 0.58 -0.54 -1.95 -0.10 4.52 5.15 2.72 0.17 0.64 0.17 -0.14 15.12 3.22 -2.48 -5.35 
W4. 0.71 0.02 0.95 -0.21 -0.97 4.94 5.25 0.01 0.11 0.09 -0.60 16.84 -5.42 -2.14 -0.27 
W5. 0.51 -0.26 -2.22 -0.19 0.65 9.05 0.85 -0.24 -1.50 0.09 -0.28 3.04 -16.10 -0.72 -8.10 
W6. -1.51 0.42 -0.65 1.15 -3.40 -4.17 -2.54 -0.26 0.01 -0.15 2.05 -5.78 4.55 0.69 15.92 
W7. -0.58 0.67 -7.14 0.87 -1.80 11.71 4.45 -0.33 0.70 -0.16 0.71 2.14 -1.98 -0.39 15.40 
W8. 1.38 -0.64 6.26 -0.53 4.58 -2.86 3.75 0.08 0.17 0.13 -1.18 0.96 16.13 0.12 4.69 
W9. 0.56 0.12 -2.68 0.33 -0.71 -2.78 0.21 -0.12 -0.17 0.03 -0.08 -2.18 -3.61 -0.14 0.08 
W10. 0.14 -0.34 -0.58 -0.28 -1.79 -3.82 0.21 0.04 0.61 0.00 -0.05 -0.88 9.30 0.21 -4.50 
W11. 0.21 0.21 2.91 -0.10 1.02 -1.21 3.26 0.03 -0.31 0.01 0.15 -4.77 -3.75 -1.51 -1.29 
W12. 0.76 -0.29 1.11 0.40 -0.39 -1.36 -5.93 0.29 -0.68 0.16 -0.14 3.50 0.23 0.99 -11.56 
W13. -0.74 0.00 -0.12 -0.78 -6.76 -3.07 0.22 0.25 1.79 -0.03 -0.06 2.73 -8.15 -1.25 0.66 
W14. -1.06 0.03 1.24 0.96 -2.32 -5.87 -0.53 0.03 0.89 -0.07 0.30 -12.96 -0.88 -0.14 -1.07 
W15. 0.45 0.15 -1.40 0.39 4.38 -3.34 -2.07 -0.02 0.60 0.06 0.08 2.52 -12.39 -0.25 0.76 
W16. 0.06 -0.33 0.25 -0.64 2.30 1.77 -0.53 -0.04 -0.32 0.02 0.10 0.62 -10.55 0.14 -3.91 
W17. -0.38 0.20 2.64 0.28 0.42 -7.01 -0.32 0.08 0.06 -0.05 0.02 -0.90 0.40 1.01 -2.15 
W18. 0.34 -0.68 1.25 0.14 1.28 -8.93 -3.04 -0.11 0.22 0.01 -0.39 -4.19 8.89 1.63 -0.24 
W19. 0.39 -0.06 -7.69 0.18 -3.00 13.68 -2.37 -0.17 0.84 0.01 0.13 5.26 0.75 -1.22 -3.94 
W20. 1.08 -0.02 0.66 -0.44 -7.13 -5.44 -1.61 0.25 -1.05 0.14 -0.17 -2.20 -7.26 -0.73 -1.44 
W21. 1.35 0.91 4.94 0.95 0.98 11.34 -0.57 0.12 -1.18 0.05 0.08 0.81 11.30 -1.58 4.85 
W22. 0.83 0.91 -0.74 1.43 6.41 6.21 -10.86 0.08 -1.82 0.10 0.40 13.11 5.10 0.64 -5.71 
W23. -0.41 -0.20 -3.27 0.06 2.74 12.88 0.87 -0.22 -1.28 0.02 0.05 -8.31 -5.67 -0.28 0.36 
W24. -0.21 -0.07 5.05 0.35 0.93 -10.85 -1.23 0.13 2.13 -0.05 -0.06 -8.11 0.88 -0.15 -2.20 
W25. 0.51 -0.49 -0.43 0.13 1.13 1.42 -4.58 0.01 -0.18 0.09 -0.15 13.53 7.76 1.82 9.79 
W26. -0.16 -0.16 2.07 -0.15 6.49 1.40 -2.72 0.09 0.04 0.03 0.04 -8.25 0.74 1.06 1.94 
W27. 0.66 0.61 -2.16 0.00 -3.06 -5.39 2.26 0.18 -0.92 0.07 0.02 12.96 -10.33 0.59 2.85 
W28. -0.31 -0.34 2.03 0.59 -1.58 -3.71 -7.94 -0.06 -1.03 -0.01 0.19 -3.42 1.08 1.96 3.58 
W29. -0.14 0.28 3.23 -0.11 -11.93 3.91 -9.49 0.08 -1.38 -0.06 -0.04 5.92 8.91 -1.41 0.28 
W30. -0.44 -0.10 0.57 0.03 -0.39 3.33 2.39 0.21 -0.05 -0.11 -0.70 0.13 0.47 0.01 -0.50 

 

Table C-2 Connection Weights between Hidden and Output Layers for Layout-1 

 L1. L2. L3. L4. L5. L6. L7. L8. L9. L10. L11. L12. L13. L14. L15. 

L.1 0.233 -0.455 -0.102 0.230 0.120 0.094 0.068 0.866 -0.196 -3.021 -1.201 0.103 -0.090 -0.151 0.106 

 

Table C-3 Biases for the Input and Hidden Neurons for Layout-1 

B1 -1.53 -1.53 3.40 -0.39 11.92 -12.31 1.38 -0.01 0.73 -0.70 1.92 16.51 13.84 -2.70 -13.76 

B2 -1.321               
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Table C-4 Connection Weights between Input and Hidden Layers for Layout-2 
 w.1 w.2 w.3 w.4 w.5 w.6 w.7 w.8 w.9 w.10 w.11 w.12 w.13 w.14 w.15 
W1. -0.63 5.00 11.41 5.81 6.98 0.69 -0.44 -0.05 0.73 -1.41 -17.40 -4.79 16.76 0.29 -0.35 
W2. -0.19 -6.50 7.75 10.81 1.94 0.05 -0.65 0.01 -2.38 0.64 6.11 0.65 7.57 -0.60 0.21 
W3. -1.10 2.42 -3.14 9.56 5.53 0.17 -0.29 0.10 -6.03 0.78 10.34 -5.25 6.73 0.01 0.10 
W4. -1.39 -1.54 0.04 7.32 -1.32 0.05 -0.12 0.07 2.78 1.40 -3.40 -0.80 -11.56 0.82 -0.07 
W5. -0.45 7.55 -1.28 2.86 1.69 -0.20 0.24 0.04 3.41 0.82 -6.45 0.39 0.52 1.68 0.34 
W6. 5.66 4.42 -1.38 0.44 3.31 0.93 0.05 -0.14 8.83 0.49 -1.03 1.47 0.58 -1.18 1.25 
W7. 0.30 -5.08 -8.37 -2.83 0.15 0.32 -0.14 0.03 -3.43 0.44 -4.91 2.52 1.21 0.61 -0.49 
W8. -0.14 8.00 -6.64 -2.75 -2.38 0.27 -0.24 0.04 -4.36 0.04 2.10 4.52 11.16 0.02 -0.16 
W9. -1.23 2.26 -3.09 -10.18 -2.41 -0.12 0.39 0.01 0.66 1.08 17.75 0.23 -12.53 0.53 0.05 
W10. -0.21 10.33 5.82 0.36 2.93 -0.02 0.16 0.01 3.75 0.34 -12.61 -3.05 -3.61 -0.39 -0.05 
W11. 0.15 2.67 -0.49 3.45 -2.55 0.31 0.04 0.01 -7.08 0.61 8.91 1.62 -11.80 -0.11 -0.35 
W12. 0.69 3.51 -6.87 -6.13 -1.69 0.56 -1.33 0.03 3.90 -0.55 -9.00 0.12 7.02 0.52 0.13 
W13. 0.60 5.20 6.20 5.58 4.37 0.29 0.21 -0.01 0.26 0.56 5.55 0.15 8.58 -0.44 -0.17 
W14. -0.03 -4.00 -0.76 -3.02 -0.56 0.04 -0.25 -0.07 -2.54 -0.13 18.51 -3.33 11.32 0.12 0.16 
W15. 2.68 4.48 -1.38 12.80 -0.60 0.37 -0.36 -0.10 -1.08 -0.35 7.63 2.47 -0.29 -0.75 0.48 
W16. 0.45 -1.01 -4.66 -0.61 -1.98 0.72 -1.33 0.00 -0.45 -0.83 -3.46 4.08 -0.43 -0.18 0.44 
W17. -2.27 -3.13 3.41 1.80 3.06 -0.05 0.05 0.03 -3.47 -0.55 0.75 0.60 -9.01 0.44 -0.46 
W18. 0.34 -0.48 -11.55 -7.62 -1.60 -0.21 0.65 0.04 0.55 -0.20 -5.20 4.00 -7.41 0.72 -0.28 
W19. 0.00 -0.98 -12.70 4.25 -2.17 0.02 -0.22 0.02 -8.90 -0.72 1.12 0.69 -15.41 -0.22 -0.22 
W20. -0.45 -11.36 -1.77 -4.07 0.33 0.04 -0.17 0.00 -8.30 -0.48 -5.02 -0.27 3.04 -0.44 0.31 
W21. -0.44 -6.78 -8.64 4.53 0.57 -0.26 0.24 0.03 3.37 0.98 0.43 -1.39 13.51 0.01 -0.36 
W22. 0.26 -2.17 6.47 -8.84 -3.48 0.17 -0.07 -0.01 -7.40 -0.11 3.24 2.28 -3.41 -0.08 0.28 
W23. 0.20 -0.57 -4.31 0.57 -1.83 0.46 -0.48 -0.02 3.95 -0.32 -2.52 2.44 -11.05 0.01 0.06 
W24. 0.83 -0.06 4.75 5.57 1.92 -0.77 0.95 -0.01 -2.94 -0.53 -5.46 -3.82 -3.53 0.19 -0.07 
W25. 0.08 7.86 4.31 -2.10 2.59 -0.10 0.03 0.00 -1.33 0.12 3.17 -3.93 6.94 0.24 0.13 
W26. 0.16 1.78 5.99 2.31 2.20 0.44 -0.62 -0.02 0.79 -0.36 -1.59 0.62 9.89 -0.05 0.11 
W27. -0.34 16.74 1.57 7.60 -1.08 -0.50 0.17 0.01 4.61 -0.65 3.62 -0.72 -12.57 0.25 0.04 
W28. -0.62 -7.05 6.24 -4.29 -2.14 0.35 -0.71 0.01 3.46 1.03 -2.53 2.27 7.57 -0.48 0.11 
W29. -0.13 2.30 -7.33 7.65 2.14 0.23 0.66 -0.05 -10.77 -0.91 3.82 0.45 -3.89 0.49 -0.09 
W30. 0.37 -2.10 -6.24 -10.77 -1.86 0.54 -0.10 -0.03 -7.25 -0.34 10.09 -0.52 -17.25 0.45 -0.10 
W31. 0.16 -0.38 -7.21 -18.96 -0.85 -0.05 0.07 0.03 2.83 -1.10 -0.48 5.98 -13.03 -0.86 -0.10 
W32. 0.33 -8.40 -6.75 0.62 -1.23 -0.02 0.32 0.03 -6.53 0.08 -4.73 1.15 -8.00 0.36 0.03 
W33. 0.12 0.44 -8.22 -8.95 -1.38 0.38 -0.10 0.00 3.64 0.32 1.03 0.99 -3.84 0.35 0.10 
W34. -0.74 -3.54 4.76 2.22 4.37 0.11 -0.24 0.09 -0.35 0.46 -10.43 1.88 2.37 0.26 -0.01 
W35. 0.02 -1.27 -3.79 2.57 0.03 -0.63 0.74 -0.02 -1.11 0.08 1.02 -2.14 14.27 -0.15 0.13 
W36. -0.79 -1.45 -9.55 6.82 -1.57 -0.03 -0.76 0.01 8.56 -0.89 -12.41 -2.99 2.67 0.98 0.09 
W37. 0.49 -2.18 -6.24 -13.49 -1.29 0.13 0.30 0.01 -0.38 -0.49 5.09 2.65 -6.02 0.01 -0.40 
W38. -0.63 -2.87 0.39 -8.89 -7.05 0.07 -0.33 -0.04 3.59 0.78 4.13 -0.19 -5.95 -0.29 0.02 
W39. -0.67 -1.81 1.02 -0.61 -0.16 -0.01 0.02 0.28 1.20 -0.30 0.97 0.25 -1.46 0.78 0.47 

 

Table C-5 Connection Weights between Hidden and Output Layers for Layout-2 

 L1. L2. L3. L4. L5. L6. L7. L8. L9. L10. L11. L12. L13. L14. L15. 

L.1 -1.552 -0.033 0.036 0.044 -0.054 0.138 0.099 1.470 0.037 -0.077 0.039 -0.040 0.028 11.967 0.152 

 

Table C-6 Biases for the Input and Hidden Neurons for Layout-2 

B1 8.02 20.70 3.68 15.17 3.04 0.12 -0.69 -0.51 0.79 1.28 -3.06 1.28 5.41 -6.84 -2.05 

B2 13.815               
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Table C-7 Connection Weights between Input and Hidden Layers for Layout-3 
 w.1 w.2 w.3 w.4 w.5 w.6 w.7 w.8 w.9 w.10 w.11 w.12 w.13 w.14 w.15 

W1. 0.17 -15.26 -4.62 0.84 -5.09 -14.06 -0.36 -0.49 -5.85 -13.47 -1.28 -0.25 -0.95 3.03 5.95 
W2. 0.14 14.46 1.42 -2.57 0.57 -4.34 -7.46 0.11 -2.76 10.61 -3.44 0.00 4.39 14.26 1.37 
W3. 0.19 6.97 -3.86 0.83 -2.72 0.40 6.18 -0.12 -6.45 3.61 -8.80 -0.09 -0.21 1.65 5.52 
W4. 0.70 19.23 5.54 1.22 0.05 13.82 -0.57 0.54 -1.68 10.75 5.57 -0.71 -1.65 -4.81 7.71 
W5. -0.04 5.78 3.01 0.19 -0.84 25.02 2.03 0.03 -1.83 2.53 -2.88 -0.45 0.42 8.96 4.73 
W6. -0.03 25.22 -1.67 -1.52 -0.63 12.89 -8.86 0.17 -0.76 -16.09 5.29 2.27 4.40 1.45 -4.91 
W7. -0.35 -6.71 -10.14 -2.97 -0.87 -0.29 0.79 -0.29 10.72 23.43 -4.35 0.42 3.05 5.96 6.23 
W8. 0.03 0.93 -4.41 3.16 -4.39 14.70 3.17 0.15 10.11 -25.47 -11.02 -1.09 -2.43 1.39 -5.01 
W9. 0.00 -8.21 0.86 2.78 -2.65 3.94 4.91 -0.08 -11.41 -13.09 -1.12 0.07 0.61 -13.81 -2.93 
W10. 0.09 8.16 2.75 -2.22 1.56 1.27 1.26 0.13 -1.08 8.41 -0.19 -0.03 0.08 9.55 2.14 
W11. 0.11 14.70 -1.69 -3.42 -3.13 -13.86 2.47 -0.19 1.34 -26.43 5.13 0.08 2.81 -3.13 0.86 
W12. -0.13 0.29 2.23 1.61 -2.23 -25.98 -0.40 -0.01 0.50 23.70 -3.48 -0.17 -1.39 -7.37 2.97 
W13. 0.36 -28.30 4.68 -1.78 -7.09 3.17 1.69 0.06 -3.23 -11.35 4.27 -0.15 0.31 -1.20 -3.15 
W14. 0.07 -0.97 -0.33 -4.47 0.20 -17.24 6.59 0.10 1.72 2.11 -0.08 0.04 0.41 3.50 -3.32 
W15. -0.09 13.65 2.72 -0.76 3.04 3.30 16.41 0.18 -5.14 2.25 -0.96 0.14 -3.72 -8.27 -1.11 
W16. 0.16 10.75 -4.54 -0.70 -1.51 -12.57 3.23 0.03 -2.42 12.77 -10.94 -0.32 0.49 -0.73 10.06 
W17. -0.18 -7.88 4.20 3.16 4.52 -10.80 1.93 0.20 2.17 12.91 -2.84 0.16 -1.24 -1.71 -6.53 
W18. 0.19 13.40 -4.90 -6.83 -0.86 -14.44 6.50 0.03 0.75 -30.71 -1.76 -0.19 0.15 -0.69 -10.41 
W19. 0.00 -24.72 -1.06 2.70 -1.00 -0.78 -7.06 -0.12 -5.93 -17.39 2.87 0.06 0.29 -14.96 4.19 
W20. -0.12 -29.95 -4.77 3.05 3.57 -18.74 -14.17 -0.07 -5.79 -7.55 3.62 0.44 4.45 -22.61 4.00 
W21. 0.10 2.80 -2.81 -2.45 0.27 -1.82 -0.19 -0.17 -0.61 -8.24 -1.45 0.10 2.31 11.23 2.29 
W22. 0.08 -11.63 -3.70 -3.08 -4.16 9.49 -1.83 -0.05 -4.57 -13.91 -7.80 -0.24 3.27 7.35 -9.35 
W23. 0.02 24.03 9.77 2.96 -3.33 8.29 -11.22 -0.08 -3.73 -7.25 -1.08 0.14 -4.85 1.23 -5.06 
W24. -0.37 -3.98 -3.11 -0.27 0.35 -7.26 -2.74 -0.03 0.59 -17.76 -3.82 -0.07 10.48 -9.07 0.95 
W25. 0.21 2.57 -9.77 2.86 -1.92 15.24 -15.57 -0.06 14.09 5.39 -4.22 0.08 -3.40 2.80 3.49 
W26. -0.10 3.56 -7.12 0.14 0.10 7.23 4.54 0.00 -2.38 0.43 5.09 -0.03 4.26 -3.97 -13.06 
W27. -0.24 -8.23 -0.15 1.49 5.80 -14.22 13.22 -0.05 1.15 -13.04 1.87 -0.12 2.46 2.90 -6.66 
W28. 0.13 -29.15 -0.29 -0.19 0.40 -1.16 5.65 0.17 2.90 6.72 1.20 -0.18 0.20 2.90 -1.44 
W29. 0.02 29.70 -1.12 -0.97 7.03 2.46 -12.18 0.06 -1.38 -5.21 0.35 0.17 1.77 7.03 -1.48 
W30. 0.18 10.59 1.29 -2.48 -4.48 -15.04 -0.85 0.09 4.29 -3.23 4.47 0.06 3.59 0.61 1.83 
W31. 0.18 -5.20 -3.42 1.96 -1.05 3.59 -3.42 0.15 -5.44 -8.06 -8.22 0.05 1.17 -10.23 -1.78 
W32. 0.40 -1.98 1.45 0.55 -0.52 2.20 1.48 -0.38 0.41 1.18 -2.72 -0.66 -0.03 -0.12 -2.03 

 

Table C-8 Connection Weights between Hidden and Output Layers for Layout-3 

 L1. L2. L3. L4. L5. L6. L7. L8. L9. L10. L11. L12. L13. L14. L15. 

L.1 0.388 0.092 0.091 0.132 0.093 0.068 0.100 -0.477 0.093 0.108 -0.064 -1.186 0.097 -0.119 -0.081 

 

Table C-9 Biases for the Input and Hidden Neurons for Layout-3 

B1 0.32 28.61 -0.07 -3.36 -3.04 -5.15 6.60 -0.23 -0.63 7.56 -1.15 2.28 -8.75 -8.22 -1.15 

B2 0.531               

 

 



156 
 

Table C-10 Connection Weights between Input and Hidden Layers for Layout-4 
 w.1 w.2 w.3 w.4 w.5 w.6 w.7 w.8 w.9 w.10 w.11 w.12 w.13 w.14 w.15 

W1. -0.06 0.24 2.70 2.59 -1.76 -1.76 -4.48 4.10 2.51 2.11 -8.24 -2.04 -6.43 -0.38 0.56 
W2. 0.02 1.61 0.27 -0.12 4.03 -1.38 -2.98 -0.96 -0.05 -0.21 -0.44 -0.51 -0.86 -1.07 2.17 
W3. 0.08 2.73 2.80 1.91 -0.67 -0.58 -2.56 5.49 2.12 1.58 -11.06 4.29 3.88 -0.87 2.76 
W4. 0.06 -0.36 2.43 -0.20 2.07 1.41 -1.81 -4.31 -3.15 0.95 4.94 7.34 -2.48 0.65 1.64 
W5. 0.04 1.30 0.59 -0.25 -1.34 -2.62 1.87 -2.28 0.29 -1.58 -3.65 2.83 -0.45 1.90 0.25 
W6. -0.10 3.31 -0.69 -0.04 4.26 -0.44 0.49 0.80 -1.41 -0.33 3.13 -1.18 -4.82 -8.10 0.10 
W7. 0.03 3.46 1.14 -0.15 -8.81 -0.54 3.96 0.13 2.08 0.19 6.92 2.74 6.62 1.78 -0.75 
W8. 0.03 0.55 -2.09 -0.08 4.96 0.11 -0.67 3.98 0.19 -1.58 1.72 3.55 1.15 0.22 4.77 
W9. 0.01 -1.15 -3.90 -0.40 -0.35 -2.35 4.02 0.00 -2.07 0.74 -5.62 -7.27 -6.02 -0.70 2.16 
W10. 0.00 1.47 3.08 -0.24 0.57 0.30 -0.60 4.14 -2.96 -0.14 -5.25 -1.45 1.50 0.04 2.92 
W11. -0.01 5.46 -0.28 0.05 2.50 -3.08 -0.12 4.73 -1.35 1.10 4.89 -0.61 -4.94 1.18 4.17 
W12. 0.01 -4.95 -3.60 0.19 -1.74 -2.73 -1.69 5.51 -0.48 -1.43 1.61 0.97 -0.30 -0.28 0.84 
W13. -0.01 2.82 -0.28 -0.25 -2.78 3.39 5.18 4.37 0.51 1.77 -2.06 -5.31 -1.26 -0.23 -2.58 
W14. -0.03 0.71 -0.58 -0.02 -0.60 -3.27 3.75 5.12 1.12 -0.82 0.00 -0.43 -4.21 0.04 -1.20 
W15. -0.07 5.21 1.75 0.26 -0.06 5.82 0.27 0.42 1.77 0.16 -6.11 0.27 -3.16 -3.96 -0.69 
W16. 0.01 0.65 1.48 0.02 1.84 -0.52 7.95 2.73 0.77 0.03 -5.58 -1.17 8.00 0.04 5.19 
W17. 0.01 -3.97 -1.35 0.07 -1.29 -2.62 2.38 3.89 -0.83 3.00 0.40 -1.67 0.26 3.21 1.96 
W18. 0.01 0.87 -1.11 0.25 -3.28 1.45 1.67 6.31 3.39 0.63 0.44 -2.39 5.28 -0.14 0.33 
W19. 0.00 2.26 -1.21 0.19 -3.48 -0.89 -0.84 4.24 1.38 -0.43 4.84 -0.07 2.97 -0.10 -0.64 
W20. 0.01 -2.12 -0.41 0.07 5.18 -0.60 -2.19 -0.79 0.46 -0.66 0.33 2.81 3.12 -0.88 2.34 
W21. 0.00 -0.72 0.46 -0.21 1.55 -1.54 1.29 4.62 -3.62 1.21 2.14 -1.46 2.70 -0.79 3.09 
W22. 0.00 -1.24 -2.63 -0.06 -1.86 -1.04 3.02 2.53 -0.13 1.63 1.23 -1.06 3.41 0.25 -2.14 
W23. -0.02 -3.11 -0.25 -0.17 1.66 3.75 -1.06 1.09 1.19 -0.37 -3.47 -1.70 0.18 -0.71 -1.85 
W24. 0.00 1.02 1.28 0.11 6.66 -5.38 0.90 7.72 4.21 0.10 4.96 -1.75 -8.26 -0.55 6.88 
W25. 0.00 -0.02 -0.81 0.12 3.38 0.58 0.78 2.49 -0.76 1.81 -1.47 -0.98 2.11 0.36 5.02 
W26. -0.01 1.70 2.70 -0.48 -0.01 4.17 -1.68 1.95 -1.72 -1.18 -3.43 1.30 -1.87 -0.28 1.47 
W27. 0.00 -1.97 0.62 0.18 -2.45 -0.25 -1.64 -1.38 -1.91 1.51 2.40 -1.31 2.75 1.14 -1.83 
W28. 0.00 -3.68 0.61 -0.45 -5.29 3.70 4.02 1.11 0.20 -0.54 -4.90 -0.64 4.01 0.94 -3.78 
W29. -0.03 -0.67 -4.69 -0.16 10.17 0.37 -1.84 3.01 -1.83 -0.77 3.83 -4.09 0.31 -0.62 2.95 
W30. 0.04 -4.14 1.22 -0.15 -0.95 -8.25 5.99 3.76 1.64 0.52 -0.09 -1.73 -0.10 1.01 2.96 
W31. 0.03 1.34 0.18 0.16 -1.98 -8.58 5.98 1.01 3.65 2.82 0.53 -2.38 1.22 0.15 -1.66 
W32. 0.01 2.80 0.87 0.15 7.39 -1.92 0.75 0.02 1.24 1.42 2.38 -2.14 -5.08 -0.20 6.46 
W33. 0.00 0.68 0.17 -0.15 -0.65 3.90 0.49 -4.39 -1.14 2.72 3.79 -3.48 3.03 0.82 -1.13 
W34. 0.00 3.81 0.60 0.21 -1.05 0.18 -1.40 -1.47 -1.26 -0.58 -1.38 -0.29 1.12 -0.92 1.95 
W35. -0.01 1.19 0.21 -0.10 0.94 5.19 -0.13 -1.93 0.41 1.50 1.06 1.25 -1.10 0.03 -1.12 
W36. -0.01 -2.16 -3.33 0.27 -2.26 -3.93 5.72 0.32 -2.80 2.88 0.75 -0.36 1.51 0.29 -4.16 
W37. 0.02 -1.41 0.85 -0.32 9.17 2.22 -1.52 -6.58 0.94 1.62 -2.30 -4.97 -6.91 -0.07 6.99 
W38. -0.02 -3.11 0.54 -0.40 -0.44 3.05 -0.52 3.45 -0.06 -0.24 -1.71 -1.15 0.53 -0.39 0.33 
W39. -0.01 2.63 4.72 -0.57 0.87 -0.11 2.12 -2.48 -0.03 -0.60 1.72 -2.05 -5.54 -0.74 1.97 
W40. 0.05 1.44 -1.37 0.05 -3.74 1.93 -1.61 0.40 4.14 -0.68 4.29 4.24 0.19 0.50 -0.38 
W41. 0.00 0.65 -0.94 0.53 -2.95 0.37 -3.08 5.95 1.25 -1.99 -5.02 -2.16 2.53 0.60 2.23 
W42. 0.05 1.49 2.26 -0.35 0.42 3.75 -3.79 4.37 2.93 -1.70 -2.43 -1.20 -4.07 -0.16 3.86 

 

Table C-11 Connection Weights between Hidden and Output Layers for Layout-4 
 L1. L2. L3. L4. L5. L6. L7. L8. L9. L10. L11. L12. L13. L14. L15. 

L.1 1.694 -0.050 0.044 0.096 0.038 0.052 0.048 0.032 -0.047 -0.054 0.036 -0.045 -0.037 7.067 -0.056 

 

Table C-12 Biases for the Input and Hidden Neurons for Layout-4 
B1 -0.70 12.76 11.53 1.71 -8.73 -0.02 -1.64 0.72 1.27 -0.31 -3.73 2.10 -6.14 -12.66 -8.81 
B2 7.349               
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COMPUTER PROGRAMMING CODES WRITTEN IN THIS STUDY 
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LHS CODES USED FOR GENERATING MEPDG SIMULATION DATA 

The following Matlab codes were written for generating the MEPDG simulation 

datasets for pavement design layouts 1 through 4: 

function [X S_Class] = genFinalData(n,layout) 
%Generate final data sets for different pavement structural layouts. 
%   n = sample size of the data set to be generated. 
%   layout: 1 for OSL-GB-SS, 2 for OSL-BC-GB-SS, 3 for OSL-GB-SB-SS, and 4 for 
OSL-BC-GB-SB-SS. 
%   X = output for generated LHS sample data with a sample size of n. 
%   S_Class = soil classifications for data in X, in columns for 
base/subbase/subgrade layers depending on the layout. 
  
if layout~=1 && layout~=2 && layout~=3 && layout~=4 
    disp('please input a valid layout value, from 1, 2, 3, and 4.') 
    X=[];S_Class={}; 
else 
    disp('generating simulation data...') 
 
RandStream('mt19937ar','Seed',12); 
  
if layout == 1  % layout #1 AC-GB-SS 
    X=zeros(); 
    X(1:n,:)=1:n; 
    S_Class={}; 
     
    % site condition and traffic 
    X(:,2:3)=lhs_empirco(coordinate,n); 
    X(:,4)=lhsu(3,15,n);  % watertable depth, ft 
    X(:,5)=lhsu(5,3000,n); % AADTT 
    X(:,6)=lhsu(0,10,n); % growth rate (%) 
     
    % original surface layer 
    X(:,7)=lhsu(1,13,n);  % thickness, in. 
    X(:,8)=floor(lhsu(1,12,n));  % binder type 
    X(:,9:12)=genGradation(n,1); % generate surface layer aggregate gradation 
    X(:,13)=latin_hs(145.3,5.2,n,1); % unit weight, pcf 
    X(:,14)=latin_hs(5.5,0.8,n,1); % asphalt content 
    X(:,15)=lhs_empir(OSL_av,n); % air voids 
    for i=1:n 
        S_Class{i,3}=checkBinderType(X(i,8));  % OSL layer binder type 
    end 
     
    % base layer 
    X(:,21:27)=genGradation(n,3); % generate base aggregate gradation and PI/LL 
    for i=1:n 
        while (strcmp(checkSoilClass(X(i,21:27)),'A-4')~= 0) | 
(strcmp(checkSoilClass(X(i,21:27)),'A-6')~= 0) % for those 'A-4' or 'A-6' cases, 
the soil gradation needs to be regenerated. 
             X(i,21:27)=genGradation(1,3); 
        end 
    end 
    %X(:,16)={};   % base material type, will be filled from S_Class{:,1} 
    X(:,17)=lhsu(1,30,n);  % thickness 
    X(:,19)=latin_hs(135,7,n,1);  % max dry density, pcf 
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    X(:,20)=latin_hs(7.4,2,n,1);  % optimum moist content 
    for i=1:n 
        while X(i,20)./(62.4./X(i,19)-1/2.7)>=100   % regenerate data if the 
calculated degree of saturation >= 100% 
            X(i,19)=latin_hs(135,7,1,1);    
            X(i,20)=latin_hs(7.4,2,1,1); 
        end 
    end 
    for i=1:n 
        S_Class{i,1}=checkSoilClass(X(i,21:27));  % define checkSoilClass 
    end 
    for i=1:n 
        switch S_Class{i,1}         
            case 'A-1-a' 
                X(i,18)=lhsu(16000,42000,1); 
            case 'A-1-b' 
                X(i,18)=lhsu(16000,40000,1); 
            case 'A-2-4' 
                X(i,18)=lhsu(14000,37500,1); 
            case 'A-2-5' 
                X(i,18)=lhsu(14000,33000,1); 
            case 'A-2-6' 
                X(i,18)=lhsu(14000,31000,1); 
            case 'A-2-7' 
                X(i,18)=lhsu(14000,28000,1); 
            case 'A-3' 
                X(i,18)=lhsu(14000,35500,1); 
            case 'A-4' 
                X(i,18)=lhsu(13000,29000,1); 
            case 'A-5' 
                X(i,18)=lhsu(6000,25500,1); 
            case 'A-6' 
                X(i,18)=lhsu(12000,24000,1); 
            case 'A-7-5' 
                X(i,18)=lhsu(8000,17500,1); 
            case 'A-7-6' 
                X(i,18)=lhsu(5000,13500,1); 
        end 
    end 
     
    % subgrade 
    %X(:,28)=()  % subgrade material type, will be filled from S_Class{:,2} 
    X(:,30)=latin_hs(116,10.3,n,1);  % max dry density, pcf 
    X(:,31)=latin_hs(12.8,3.8,n,1);  % optimum moist content 
    for i=1:n 
        while X(i,31)./(62.4./X(i,30)-1/2.7)>=100   % regenerate data if the 
calculated degree of saturation >= 100% 
            X(i,30)=latin_hs(116,10.3,1,1);    
            X(i,31)=latin_hs(12.8,3.8,1,1); 
        end 
    end 
    X(:,32:38)=genGradation(n,5);    % generate subgrade gradation and PI/LL 
    for i=1:n 
        S_Class{i,2}=checkSoilClass(X(i,32:38));   
    end 
    for i=1:n 
        switch S_Class{i,2}         
            case 'A-1-a' 
                X(i,29)=lhsu(16000,42000,1); 
            case 'A-1-b' 
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                X(i,29)=lhsu(16000,40000,1); 
            case 'A-2-4' 
                X(i,29)=lhsu(14000,37500,1); 
            case 'A-2-5' 
                X(i,29)=lhsu(14000,33000,1); 
            case 'A-2-6' 
                X(i,29)=lhsu(14000,31000,1); 
            case 'A-2-7' 
                X(i,29)=lhsu(14000,28000,1); 
            case 'A-3' 
                X(i,29)=lhsu(14000,35500,1); 
            case 'A-4' 
                X(i,29)=lhsu(13000,29000,1); 
            case 'A-5' 
                X(i,29)=lhsu(6000,25500,1); 
            case 'A-6' 
                X(i,29)=lhsu(12000,24000,1); 
            case 'A-7-5' 
                X(i,29)=lhsu(8000,17500,1); 
            case 'A-7-6' 
                X(i,29)=lhsu(5000,13500,1); 
        end 
    end 
     
elseif layout==2  % layout #2  AC-AC-GB-SS 
    X=zeros(); 
    X(1:n,:)=1:n; 
    S_Class={}; % column 1 = base matl type; column 2 = subgrade matl type; 
column 3 = OSL asphalt type; column 4 = Binder asphalt type 
     
    % site condition and traffic 
    X(:,2:3)=lhs_empirco(coordinate,n); 
    X(:,4)=lhsu(3,15,n);  % watertable depth, ft 
    X(:,5)=lhsu(5,3000,n); % AADTT 
    X(:,6)=lhsu(0,10,n); % growth rate (%) 
     
    % original surface layer 
    X(:,7)=lhsu(1,13,n);  % thickness, in. 
    X(:,8)=floor(lhsu(1,12,n));  % binder type 
    X(:,9:12)=genGradation(n,1); % generate surface layer aggregate gradation 
    X(:,13)=latin_hs(145.3,5.2,n,1); % unit weight, pcf 
    X(:,14)=latin_hs(5.5,0.8,n,1); % asphalt content 
    X(:,15)=lhs_empir(OSL_av,n); % air voids 
    for i=1:n 
        S_Class{i,3}=checkBinderType(X(i,8));  % OSL layer binder type 
    end 
  
    % binder course layer 
    X(:,16)=lhsu(1,9,n);  % thickness, in. 
    X(:,17)=floor(lhsu(1,12,n));  % binder type 
    X(:,18:21)=genGradation(n,2); % generate surface layer aggregate gradation 
    X(:,22)=latin_hs(147.4,6.3,n,1); % unit weight, pcf 
    X(:,23)=latin_hs(4.9,0.8,n,1); % asphalt content 
    X(:,24)=lhs_empir(BC_av,n); % air voids 
    for i=1:n 
        S_Class{i,4}=checkBinderType(X(i,17));  % Binder course layer binder 
type 
    end 
     
    % base layer 
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    X(:,30:36)=genGradation(n,3); % generate base aggregate gradation and PI/LL 
    for i=1:n 
        while (strcmp(checkSoilClass(X(i,30:36)),'A-4')~= 0) | 
(strcmp(checkSoilClass(X(i,30:36)),'A-6')~= 0) % for those 'A-4' or 'A-6' cases, 
the soil gradation needs to be regenerated.. 
             X(i,30:36)=genGradation(1,3); 
        end 
    end 
    %X(:,25)={};   % base material type, will be filled from S_Class{:,1} 
    X(:,26)=lhsu(1,30,n);  % thickness 
    X(:,28)=latin_hs(135,7,n,1);  % max dry density, pcf 
    X(:,29)=latin_hs(7.4,2,n,1);  % optimum moist content 
    for i=1:n 
        while X(i,29)./(62.4./X(i,28)-1/2.7)>=100   % regenerate data if the 
calculated degree of saturation >= 100% 
            X(i,28)=latin_hs(135,7,1,1);    
            X(i,29)=latin_hs(7.4,2,1,1); 
        end 
    end 
    for i=1:n 
        S_Class{i,1}=checkSoilClass(X(i,30:36));  % define checkSoilClass 
    end 
    for i=1:n 
        switch S_Class{i,1}         
            case 'A-1-a' 
                X(i,27)=lhsu(16000,42000,1); 
            case 'A-1-b' 
                X(i,27)=lhsu(16000,40000,1); 
            case 'A-2-4' 
                X(i,27)=lhsu(14000,37500,1); 
            case 'A-2-5' 
                X(i,27)=lhsu(14000,33000,1); 
            case 'A-2-6' 
                X(i,27)=lhsu(14000,31000,1); 
            case 'A-2-7' 
                X(i,27)=lhsu(14000,28000,1); 
            case 'A-3' 
                X(i,27)=lhsu(14000,35500,1); 
            case 'A-4' 
                X(i,27)=lhsu(13000,29000,1); 
            case 'A-5' 
                X(i,27)=lhsu(6000,25500,1); 
            case 'A-6' 
                X(i,27)=lhsu(12000,24000,1); 
            case 'A-7-5' 
                X(i,27)=lhsu(8000,17500,1); 
            case 'A-7-6' 
                X(i,27)=lhsu(5000,13500,1); 
        end 
    end 
     
    % subgrade 
    %X(:,37)=()  % subgrade material type, will be filled from S_Class{:,2} 
    X(:,39)=latin_hs(116,10.3,n,1);  % max dry density, pcf 
    X(:,40)=latin_hs(12.8,3.8,n,1);  % optimum moist content 
    for i=1:n 
        while X(i,40)./(62.4./X(i,39)-1/2.7)>=100   % regenerate data if the 
calculated degree of saturation >= 100% 
            X(i,39)=latin_hs(116,10.3,1,1);    
            X(i,40)=latin_hs(12.8,3.8,1,1); 
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        end 
    end 
    X(:,41:47)=genGradation(n,5);    % generate subgrade gradation and PI/LL 
    for i=1:n 
        S_Class{i,2}=checkSoilClass(X(i,41:47));   
    end 
    for i=1:n 
        switch S_Class{i,2}         
            case 'A-1-a' 
                X(i,38)=lhsu(16000,42000,1); 
            case 'A-1-b' 
                X(i,38)=lhsu(16000,40000,1); 
            case 'A-2-4' 
                X(i,38)=lhsu(14000,37500,1); 
            case 'A-2-5' 
                X(i,38)=lhsu(14000,33000,1); 
            case 'A-2-6' 
                X(i,38)=lhsu(14000,31000,1); 
            case 'A-2-7' 
                X(i,38)=lhsu(14000,28000,1); 
            case 'A-3' 
                X(i,38)=lhsu(14000,35500,1); 
            case 'A-4' 
                X(i,38)=lhsu(13000,29000,1); 
            case 'A-5' 
                X(i,38)=lhsu(6000,25500,1); 
            case 'A-6' 
                X(i,38)=lhsu(12000,24000,1); 
            case 'A-7-5' 
                X(i,38)=lhsu(8000,17500,1); 
            case 'A-7-6' 
                X(i,38)=lhsu(5000,13500,1); 
        end 
    end 
     
elseif layout==3  % layout #3 AC-GB-GS-SS 
    X=zeros(); 
    X(1:n,:)=1:n; 
    S_Class={}; 
     
    % site condition and traffic 
    X(:,2:3)=lhs_empirco(coordinate,n); 
    X(:,4)=lhsu(3,15,n);  % watertable depth, ft 
    X(:,5)=lhsu(5,3000,n); % AADTT 
    X(:,6)=lhsu(0,10,n); % growth rate (%) 
     
    % original surface layer 
    X(:,7)=lhsu(1,13,n);  % thickness, in. 
    X(:,8)=floor(lhsu(1,12,n));  % binder type 
    X(:,9:12)=genGradation(n,1); % generate surface layer aggregate gradation 
    X(:,13)=latin_hs(145.3,5.2,n,1); % unit weight, pcf 
    X(:,14)=latin_hs(5.5,0.8,n,1); % asphalt content 
    X(:,15)=lhs_empir(OSL_av,n); % air voids 
    for i=1:n 
        S_Class{i,4}=checkBinderType(X(i,8));  % OSL layer binder type 
    end 
     
    % base layer 
    X(:,21:27)=genGradation(n,3); % generate base aggregate gradation and PI/LL 
    for i=1:n 
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        while (strcmp(checkSoilClass(X(i,21:27)),'A-4')~= 0) | 
(strcmp(checkSoilClass(X(i,21:27)),'A-6')~= 0) % for those 'A-4' or 'A-6' cases, 
the soil gradation needs to be regenerated.. 
             X(i,21:27)=genGradation(1,3); 
        end 
    end 
    %X(:,16)={};   % base material type, will be filled from S_Class{:,1} 
    X(:,17)=lhsu(1,30,n);  % thickness 
    X(:,19)=latin_hs(135,7,n,1);  % max dry density, pcf 
    X(:,20)=latin_hs(7.4,2,n,1);  % optimum moist content 
    for i=1:n 
        while X(i,20)./(62.4./X(i,19)-1/2.7)>=100   % regenerate data if the 
calculated degree of saturation >= 100% 
            X(i,19)=latin_hs(135,7,1,1);    
            X(i,20)=latin_hs(7.4,2,1,1); 
        end 
    end 
    for i=1:n 
        S_Class{i,1}=checkSoilClass(X(i,21:27));  % define checkSoilClass 
    end 
    for i=1:n 
        switch S_Class{i,1}         
            case 'A-1-a' 
                X(i,18)=lhsu(16000,42000,1); 
            case 'A-1-b' 
                X(i,18)=lhsu(16000,40000,1); 
            case 'A-2-4' 
                X(i,18)=lhsu(14000,37500,1); 
            case 'A-2-5' 
                X(i,18)=lhsu(14000,33000,1); 
            case 'A-2-6' 
                X(i,18)=lhsu(14000,31000,1); 
            case 'A-2-7' 
                X(i,18)=lhsu(14000,28000,1); 
            case 'A-3' 
                X(i,18)=lhsu(14000,35500,1); 
            case 'A-4' 
                X(i,18)=lhsu(13000,29000,1); 
            case 'A-5' 
                X(i,18)=lhsu(6000,25500,1); 
            case 'A-6' 
                X(i,18)=lhsu(12000,24000,1); 
            case 'A-7-5' 
                X(i,18)=lhsu(8000,17500,1); 
            case 'A-7-6' 
                X(i,18)=lhsu(5000,13500,1); 
        end 
    end 
     
    % Subbase layer 
    X(:,33:39)=genGradation(n,4); % generate base aggregate gradation and PI/LL 
    for i=1:n 
        while (strcmp(checkSoilClass(X(i,33:39)),'A-4')~= 0) | 
(strcmp(checkSoilClass(X(i,33:39)),'A-6')~= 0) % for those 'A-4' or 'A-6' cases, 
the soil gradation needs to be regenerated.. 
            X(i,33:39)=genGradation(1,4); 
        end 
    end 
    %X(:,16)={};   % base material type, will be filled from S_Class{:,1} 
    X(:,29)=lhsu(3,40,n);  % thickness 
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    X(:,31)=latin_hs(128.5,13,n,1);  % max dry density, pcf 
    X(:,32)=latin_hs(9.1,3,n,1);  % optimum moist content 
    for i=1:n 
        while X(i,32)./(62.4./X(i,31)-1/2.7)>=100   % regenerate data if the 
calculated degree of saturation >= 100% 
            X(i,31)=latin_hs(128.5,13,1,1);    
            X(i,32)=latin_hs(9.1,3,1,1); 
        end 
    end 
    for i=1:n 
        S_Class{i,2}=checkSoilClass(X(i,33:39));  % define checkSoilClass 
    end 
    for i=1:n 
        switch S_Class{i,2}         
            case 'A-1-a' 
                X(i,30)=lhsu(16000,42000,1); 
            case 'A-1-b' 
                X(i,30)=lhsu(16000,40000,1); 
            case 'A-2-4' 
                X(i,30)=lhsu(14000,37500,1); 
            case 'A-2-5' 
                X(i,30)=lhsu(14000,33000,1); 
            case 'A-2-6' 
                X(i,30)=lhsu(14000,31000,1); 
            case 'A-2-7' 
                X(i,30)=lhsu(14000,28000,1); 
            case 'A-3' 
                X(i,30)=lhsu(14000,35500,1); 
            case 'A-4' 
                X(i,30)=lhsu(13000,29000,1); 
            case 'A-5' 
                X(i,30)=lhsu(6000,25500,1); 
            case 'A-6' 
                X(i,30)=lhsu(12000,24000,1); 
            case 'A-7-5' 
                X(i,30)=lhsu(8000,17500,1); 
            case 'A-7-6' 
                X(i,30)=lhsu(5000,13500,1); 
        end 
    end 
    
    % subgrade 
    %X(:,28)=()  % subgrade material type, will be filled from S_Class{:,2} 
    X(:,42)=latin_hs(116,10.3,n,1);  % max dry density, pcf 
    X(:,43)=latin_hs(12.8,3.8,n,1);  % optimum moist content 
    for i=1:n 
        while X(i,43)./(62.4./X(i,42)-1/2.7)>=100   % regenerate data if the 
calculated degree of saturation >= 100% 
            X(i,42)=latin_hs(116,10.3,1,1);    
            X(i,43)=latin_hs(12.8,3.8,1,1); 
        end 
    end 
    X(:,44:50)=genGradation(n,5);    % generate subgrade gradation and PI/LL 
    for i=1:n 
        S_Class{i,3}=checkSoilClass(X(i,44:50));   
    end 
    for i=1:n 
        switch S_Class{i,3}         
            case 'A-1-a' 
                X(i,41)=lhsu(16000,42000,1); 
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            case 'A-1-b' 
                X(i,41)=lhsu(16000,40000,1); 
            case 'A-2-4' 
                X(i,41)=lhsu(14000,37500,1); 
            case 'A-2-5' 
                X(i,41)=lhsu(14000,33000,1); 
            case 'A-2-6' 
                X(i,41)=lhsu(14000,31000,1); 
            case 'A-2-7' 
                X(i,41)=lhsu(14000,28000,1); 
            case 'A-3' 
                X(i,41)=lhsu(14000,35500,1); 
            case 'A-4' 
                X(i,41)=lhsu(13000,29000,1); 
            case 'A-5' 
                X(i,41)=lhsu(6000,25500,1); 
            case 'A-6' 
                X(i,41)=lhsu(12000,24000,1); 
            case 'A-7-5' 
                X(i,41)=lhsu(8000,17500,1); 
            case 'A-7-6' 
                X(i,41)=lhsu(5000,13500,1); 
        end 
    end     
  
elseif layout==4  %layout #4  AC-AC-GB-SB-SS 
    X=zeros(); 
    X(1:n,:)=1:n; 
    S_Class={}; 
     
    % site condition and traffic 
    X(:,2:3)=lhs_empirco(coordinate,n); 
    X(:,4)=lhsu(3,15,n);  % watertable depth, ft 
    X(:,5)=lhsu(5,3000,n); % AADTT 
    X(:,6)=lhsu(0,10,n); % growth rate (%) 
     
    % original surface layer 
    X(:,7)=lhsu(1,13,n);  % thickness, in. 
    X(:,8)=floor(lhsu(1,12,n));  % binder type 
    X(:,9:12)=genGradation(n,1); % generate surface layer aggregate gradation 
    X(:,13)=latin_hs(145.3,5.2,n,1); % unit weight, pcf 
    X(:,14)=latin_hs(5.5,0.8,n,1); % asphalt content 
    X(:,15)=lhs_empir(OSL_av,n); % air voids 
    for i=1:n 
        S_Class{i,4}=checkBinderType(X(i,8));  % OSL layer binder type 
    end 
    % binder course layer 
    X(:,16)=lhsu(1,9,n);  % thickness, in. 
    X(:,17)=floor(lhsu(1,12,n));  % binder type 
    X(:,18:21)=genGradation(n,2); % generate surface layer aggregate gradation 
    X(:,22)=latin_hs(147.4,6.3,n,1); % unit weight, pcf 
    X(:,23)=latin_hs(4.9,0.8,n,1); % asphalt content 
    X(:,24)=lhs_empir(BC_av,n); % air voids 
    for i=1:n 
        S_Class{i,5}=checkBinderType(X(i,17));  % Binder course layer binder 
type 
    end 
    % base layer 
    X(:,30:36)=genGradation(n,3); % generate base aggregate gradation and PI/LL 
    for i=1:n 
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        while (strcmp(checkSoilClass(X(i,30:36)),'A-4')~= 0) | 
(strcmp(checkSoilClass(X(i,30:36)),'A-6')~= 0) % for those 'A-4' or 'A-6' cases, 
the soil gradation needs to be regenerated.. 
             X(i,30:36)=genGradation(1,3); 
        end 
    end 
    %X(:,16)={};   % base material type, will be filled from S_Class{:,1} 
    X(:,26)=lhsu(1,30,n);  % thickness 
    X(:,28)=latin_hs(135,7,n,1);  % max dry density, pcf 
    X(:,29)=latin_hs(7.4,2,n,1);  % optimum moist content 
    for i=1:n 
        while X(i,29)./(62.4./X(i,28)-1/2.7)>=100   % regenerate data if the 
calculated degree of saturation >= 100% 
            X(i,28)=latin_hs(135,7,1,1);    
            X(i,29)=latin_hs(7.4,2,1,1); 
        end 
    end 
    for i=1:n 
        S_Class{i,1}=checkSoilClass(X(i,30:36));  % define checkSoilClass 
    end 
    for i=1:n 
        switch S_Class{i,1}         
            case 'A-1-a' 
                X(i,27)=lhsu(16000,42000,1); 
            case 'A-1-b' 
                X(i,27)=lhsu(16000,40000,1); 
            case 'A-2-4' 
                X(i,27)=lhsu(14000,37500,1); 
            case 'A-2-5' 
                X(i,27)=lhsu(14000,33000,1); 
            case 'A-2-6' 
                X(i,27)=lhsu(14000,31000,1); 
            case 'A-2-7' 
                X(i,27)=lhsu(14000,28000,1); 
            case 'A-3' 
                X(i,27)=lhsu(14000,35500,1); 
            case 'A-4' 
                X(i,27)=lhsu(13000,29000,1); 
            case 'A-5' 
                X(i,27)=lhsu(6000,25500,1); 
            case 'A-6' 
                X(i,27)=lhsu(12000,24000,1); 
            case 'A-7-5' 
                X(i,27)=lhsu(8000,17500,1); 
            case 'A-7-6' 
                X(i,27)=lhsu(5000,13500,1); 
        end 
    end 
    % Subbase layer 
    X(:,42:48)=genGradation(n,4); % generate base aggregate gradation and PI/LL 
     for i=1:n 
        while (strcmp(checkSoilClass(X(i,42:48)),'A-4')~= 0) | 
(strcmp(checkSoilClass(X(i,42:48)),'A-6')~= 0) % for those 'A-4' or 'A-6' cases, 
the soil gradation needs to be regenerated.. 
             X(i,42:48)=genGradation(1,4); 
        end 
    end 
    %X(:,16)={};   % base material type, will be filled from S_Class{:,1} 
    X(:,38)=lhsu(3,40,n);  % thickness 
    X(:,40)=latin_hs(128.5,13,n,1);  % max dry density, pcf 



167 
 

    X(:,41)=latin_hs(9.1,3,n,1);  % optimum moist content 
    for i=1:n 
        while X(i,41)./(62.4./X(i,40)-1/2.7)>=100   % regenerate data if the 
calculated degree of saturation >= 100% 
            X(i,40)=latin_hs(128.5,13,1,1);    
            X(i,41)=latin_hs(9.1,3,1,1); 
        end 
    end 
    for i=1:n 
        S_Class{i,2}=checkSoilClass(X(i,42:48));  % need to define 
checkSoilClass 
    end 
    for i=1:n 
        switch S_Class{i,2}         
            case 'A-1-a' 
                X(i,39)=lhsu(16000,42000,1); 
            case 'A-1-b' 
                X(i,39)=lhsu(16000,40000,1); 
            case 'A-2-4' 
                X(i,39)=lhsu(14000,37500,1); 
            case 'A-2-5' 
                X(i,39)=lhsu(14000,33000,1); 
            case 'A-2-6' 
                X(i,39)=lhsu(14000,31000,1); 
            case 'A-2-7' 
                X(i,39)=lhsu(14000,28000,1); 
            case 'A-3' 
                X(i,39)=lhsu(14000,35500,1); 
            case 'A-4' 
                X(i,39)=lhsu(13000,29000,1); 
            case 'A-5' 
                X(i,39)=lhsu(6000,25500,1); 
            case 'A-6' 
                X(i,39)=lhsu(12000,24000,1); 
            case 'A-7-5' 
                X(i,39)=lhsu(8000,17500,1); 
            case 'A-7-6' 
                X(i,39)=lhsu(5000,13500,1); 
        end 
    end 
    % subgrade 
    %X(:,28)=()  % subgrade material type, will be filled from S_Class{:,2} 
    X(:,51)=latin_hs(116,10.3,n,1);  % max dry density, pcf 
    X(:,52)=latin_hs(12.8,3.8,n,1);  % optimum moist content 
    for i=1:n 
        while X(i,52)./(62.4./X(i,51)-1/2.7)>=100   % regenerate data if the 
calculated degree of saturation >= 100% 
            X(i,51)=latin_hs(116,10.3,1,1);    
            X(i,52)=latin_hs(12.8,3.8,1,1); 
        end 
    end 
    X(:,53:59)=genGradation(n,5);    % generate subgrade gradation and PI/LL 
    for i=1:n 
        S_Class{i,3}=checkSoilClass(X(i,53:59));   
    end 
    for i=1:n 
        switch S_Class{i,3}         
            case 'A-1-a' 
                X(i,50)=lhsu(16000,42000,1); 
            case 'A-1-b' 
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                X(i,50)=lhsu(16000,40000,1); 
            case 'A-2-4' 
                X(i,50)=lhsu(14000,37500,1); 
            case 'A-2-5' 
                X(i,50)=lhsu(14000,33000,1); 
            case 'A-2-6' 
                X(i,50)=lhsu(14000,31000,1); 
            case 'A-2-7' 
                X(i,50)=lhsu(14000,28000,1); 
            case 'A-3' 
                X(i,50)=lhsu(14000,35500,1); 
            case 'A-4' 
                X(i,50)=lhsu(13000,29000,1); 
            case 'A-5' 
                X(i,50)=lhsu(6000,25500,1); 
            case 'A-6' 
                X(i,50)=lhsu(12000,24000,1); 
            case 'A-7-5' 
                X(i,50)=lhsu(8000,17500,1); 
            case 'A-7-6' 
                X(i,50)=lhsu(5000,13500,1); 
        end 
    end     
  
end 
end  
disp('Data generation completed!') 
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SAMPLE AUTOIT CODES FOR INPUTTING MEPDG SIMULATION DATA 

The following codes were used in AutoIt for inputting MEPDG simulation data 

for pavement design layout #1: 

#ce --------------------------------------------------------------------------- 
#include <Excel.au3> 
#include <GUIConstantsEx.au3> 
#include <TreeViewConstants.au3> 
#include <WindowsConstants.au3> 
  
Func _Au3RecordSetup() 
Opt('WinWaitDelay',100) 
Opt('WinDetectHiddenText',1) 
Opt('MouseCoordMode',0) 
EndFunc 
  
Func _WinWaitActivate($title,$text,$timeout=0) 
    WinWait($title,$text,$timeout) 
    If Not WinActive($title,$text) Then WinActivate($title,$text) 
    WinWaitActive($title,$text,$timeout) 
EndFunc 
  
_Au3RecordSetup() 
;#endregion --- Internal functions Au3Recorder End --- 
  
$filePath = "C:\Simulation\Layout1-" 
$sExcelFilePath="C:\Simulation\layout1.xls" 
$oExcel=_ExcelBookOpen($sExcelFilePath,1) 
  
$i=1 
  
For $i=1 TO 600 
    ; load site and traffic conditions 
    Local $Latitude = Round(_ExcelReadCell($oExcel, $i+2, 2),3) 
    Local $Longitude = Round(_ExcelReadCell($oExcel, $i+2, 3),3) 
    Local $WaterTable = Round(_ExcelReadCell($oExcel, $i+2, 4),1) 
    Local $AADTT = Int(_ExcelReadCell($oExcel, $i+2,5)) 
    Local $GrowthRate = Round(_ExcelReadCell($oExcel, $i+2, 6),1) 
  
    ; load original surface layer properties 
    Local $OSLThick = Round(_ExcelReadCell($oExcel, $i+2, 7),1) 
    Local $OSLBinder = _ExcelReadCell($oExcel, $i+2, 8) 
    Local $OSLR34 = Round(_ExcelReadCell($oExcel, $i+2, 9),1) 
    Local $OSLR38 = Round(_ExcelReadCell($oExcel, $i+2, 10),1) 
    Local $OSLR4 = Round(_ExcelReadCell($oExcel, $i+2, 11),1) 
    Local $OSLPP200 =Round( _ExcelReadCell($oExcel, $i+2, 12),1) 
    Local $OSLUW = Round(_ExcelReadCell($oExcel, $i+2, 13),1) 
    Local $OSLAC = Round(_ExcelReadCell($oExcel, $i+2, 14),1) 
    Local $OSLAV = Round(_ExcelReadCell($oExcel, $i+2, 15),1) 
  
    ; load base layer properties 
    Local $BaseMaterial = _ExcelReadCell($oExcel, $i+2, 16) 
    Local $BaseThick = Round(_ExcelReadCell($oExcel, $i+2, 17),1) 
    Local $BaseResMod = Int(_ExcelReadCell($oExcel, $i+2, 18)) 
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    Local $BaseDensity = Round(_ExcelReadCell($oExcel, $i+2, 19),1) 
    Local $BaseMoist = Round(_ExcelReadCell($oExcel, $i+2, 20),1) 
    Local $BasePP200 = Round(_ExcelReadCell($oExcel, $i+2, 21),1) 
    Local $BasePP40 = Round(_ExcelReadCell($oExcel, $i+2, 22),1) 
    Local $BasePP10 = Round(_ExcelReadCell($oExcel, $i+2, 23),1) 
    Local $BasePP4 = Round(_ExcelReadCell($oExcel, $i+2, 24),1) 
    Local $BasePP1 =Round(_ExcelReadCell($oExcel, $i+2, 25),1) 
    Local $BasePI = Int(_ExcelReadCell($oExcel, $i+2, 26)) 
    Local $BaseLL = Int(_ExcelReadCell($oExcel, $i+2, 27)) 
  
    Local $SubgradeMaterial = _ExcelReadCell($oExcel, $i+2, 28) 
    Local $SubgradeResMod = Int(_ExcelReadCell($oExcel, $i+2, 29)) 
    Local $SubgradeDensity = Round(_ExcelReadCell($oExcel, $i+2, 30),1) 
    Local $SubgradeMoist = Round(_ExcelReadCell($oExcel, $i+2, 31),1) 
    Local $SubgradePP200 = Round(_ExcelReadCell($oExcel, $i+2, 32),1) 
    Local $SubgradePP40 =Round(_ExcelReadCell($oExcel, $i+2, 33),1) 
    Local $SubgradePP10 = Round(_ExcelReadCell($oExcel, $i+2, 34),1) 
    Local $SubgradePP4 = Round(_ExcelReadCell($oExcel, $i+2, 35),1) 
    Local $SubgradePP1 = Round(_ExcelReadCell($oExcel, $i+2, 36),1) 
    Local $SubgradePI = Int(_ExcelReadCell($oExcel, $i+2, 37)) 
    Local $SubgradeLL = Int(_ExcelReadCell($oExcel, $i+2, 38)) 
  
Run('C:\DG2002\Dg2k2.exe') 
_WinWaitActivate("Untitled - Mechanistic Empirical Pavement Design Guide","") 
Send("{ALTDOWN}{ALTUP}fn") 
_WinWaitActivate("Create New Project","") 
Send("{ENTER}") 
_WinWaitActivate("Untitled - Mechanistic Empirical Pavement Design Guide","") 
MouseClick("left",110,105,2) 
_WinWaitActivate("General Information","") 
Send("30{TAB}{SHIFTDOWN}j{SHIFTUP}uly{TAB}1978{TAB}{SHIFTDOWN}a{SHIFTUP}ugust{T
AB}1978{TAB}{TAB}{SHIFTDOWN}{TAB}{TAB}{TAB}{TAB}{TAB}{TAB}{TAB}{SHIFTUP}1978{SH
IFTDOWN}{TAB}{SHIFTUP}{SHIFTDOWN}a{SHIFTUP}pril") 
MouseClick("left",72,288,1) 
Send("{Enter}") 
MouseClick("left",110,125,2) 
_WinWaitActivate("Site/Project Identification","") 
MouseMove(170,340) 
MouseDown("left") 
MouseMove(169,340) 
MouseUp("left") 
_WinWaitActivate("Untitled - Mechanistic Empirical Pavement Design Guide","") 
;MouseClick("left",72,138,2) 
;_WinWaitActivate("Analysis Parameters","") 
;MouseClick("left",223,486,1) 
;_WinWaitActivate("Untitled - Mechanistic Empirical Pavement Design Guide","") 
Send("{CTRLDOWN}s{CTRLUP}") 
_WinWaitActivate("Save As","") 
Send("{DEL}") 
Sleep(1000) 
Send($filePath & $i & "{ENTER 2}") ;  
_WinWaitActivate("Layout1-"& $i &".dgp - Mechanistic Empirical Pavement Design 
Guide","") 
  
;Input Module 
;Traffic 
MouseClick("left",53,265,2) 
_WinWaitActivate("Traffic","") 
Send($AADTT) 
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MouseClick("left",248,423,1) 
IF $AADTT<100 Then WinWaitActive("Traffic - Warning","") 
If WinActive("Traffic - Warning","") Then 
    ControlClick("Traffic - Warning","","[Class:Button;ID:1]","left",1) 
EndIf 
_WinWaitActivate("Traffic Volume Adjustment Factors","") 
MouseClick("left",457,288,1) 
Send("{BACKSPACE}" & $GrowthRate) 
MouseClick("left",353,38,1) 
MouseClick("left",242,36,1) 
MouseClick("left",65,36,1) 
MouseClick("left",229,473,1) 
_WinWaitActivate("Traffic","") 
MouseClick("left",207,317,1) 
IF $AADTT<100 Then WinWaitActive("Traffic - Warning","") 
If WinActive("Traffic - Warning","") Then 
    ControlClick("Traffic - Warning","","[Class:Button;Instance:1;ID:1]","",1) 
EndIf 
_WinWaitActivate("Traffic Volume Adjustment Factors","") 
MouseClick("left",229,480,1) 
_WinWaitActivate("Traffic","") 
MouseClick("left",211,350,1) 
_WinWaitActivate("Axle Load Distribution Factors","") 
MouseClick("left",269,412,1) 
_WinWaitActivate("Traffic","") 
MouseClick("left",207,377,1) 
_WinWaitActivate("General Traffic Inputs","") 
MouseClick("left",212,189,1) 
MouseMove(312,188) 
MouseDown("left") 
MouseMove(313,188) 
MouseUp("left") 
MouseMove(201,456) 
MouseDown("left") 
MouseMove(202,456) 
MouseUp("left") 
_WinWaitActivate("Traffic","") 
MouseMove(175,477) 
MouseDown("left") 
MouseMove(176,477) 
MouseUp("left") 
IF $AADTT<100 Then WinWaitActive("Traffic - Warning","") 
If WinActive("Traffic - Warning","") Then 
    ControlClick("Traffic - Warning","","[Class:Button;ID:1]","left",1) 
EndIf 
_WinWaitActivate("Layout1-"& $i &".dgp - Mechanistic Empirical Pavement Design 
Guide","") 
  
;Climate 
MouseClick("left",69,464,2) 
_WinWaitActivate("Environment/Climatic","") 
MouseClick("left",76,128,1) 
MouseClick("left",50,126,1) 
MouseClick("left",439,55,1) 
Send($Latitude & "{TAB}" & $Longitude & "{TAB}500") 
MouseClick("left",548,178,1) 
Send($WaterTable) 
;_ChooseClimate($i) 
MouseClick("left",134,298,1) 
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MouseClick("left",134,321,1)   
MouseClick("left",134,344,1) 
MouseClick("left",134,367,1) 
MouseClick("left",134,390,1) 
MouseClick("left",134,413,1) 
MouseClick("left",58,468,1) 
;_CheckClimate($i); 
_WinWaitActivate("Save generated climatic data file.","") 
Sleep(1000) 
Send("Layout1-"& $i &".icm{ENTER}") 
  
  
;Pavement Structural Properties 
_WinWaitActivate("Layout1-"& $i &".dgp - Mechanistic Empirical Pavement Design 
Guide","") 
MouseClick("left",59,480,2) 
_WinWaitActivate("Structure","") 
MouseMove(596,302) 
MouseDown("left") 
MouseMove(597,302) 
MouseUp("left") 
  
; 1. Original HMA Surface 
_WinWaitActivate("Asphalt Material Properties","") 
MouseClick("left",315,84,1) 
Send("{BACKSPACE}{BACKSPACE}" & $OSLThick) 
_ACLayerBinderType($OSLBinder) ; input the asphalt binder types used in the OSL 
layer. 
MouseClick("left",61,145,1) 
Send($OSLR34 & "{TAB}" & $OSLR38 & "{TAB}" & $OSLR4 & "{TAB}" & $OSLPP200) 
MouseClick("left",295,149,1) 
MouseClick("left",228,403,1) 
Send("{BACKSPACE}{BACKSPACE}{BACKSPACE}{BACKSPACE}" & $OSLAC & "{TAB}" & $OSLAV 
& "{TAB}" & $OSLUW & "{ENTER}") 
If $OSLThick<1 Then WinWaitActive("Asphalt Material Properties - Error","") 
If WinActive("Asphalt Material Properties - Error","") Then 
    ControlClick("Asphalt Material Properties - 
Error","","[Class:Button;ID:2]","",1) 
    Send("{BACKSPACE 5}" & (1+$OSLThick) & "{Enter}") 
EndIf 
_WinWaitActivate("Dg2k2","") 
Send("{ENTER}") 
_WinWaitActivate("Structure","") 
MouseClick("left",74,311,1) 
_WinWaitActivate("Insert Layer After","") 
  
; 2. Granular Base 
_InputBaseMaterial($BaseMaterial)  ; call function _InputBaseMaterial to select 
Base material type 
MouseClick("left",175,184,1) ; select "Thickness (in)" 
Send($BaseThick) ; send Base thickness 
MouseClick("left",129,234,1) 
_WinWaitActivate("Structure","") 
MouseClick("left",616,313,1) ; select "Edit" to modify Base layer properties 
_WinWaitActivate("Unbound Layer - Layer #2","") 
MouseClick("left",452,397,1) 
Send("{BACKSPACE}{BACKSPACE}{BACKSPACE}{BACKSPACE}{BACKSPACE}{BACKSPACE}" & 
$BaseResMod) 
MouseClick("left",178,72,1) 
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MouseClick("left",180,140,1) 
Send("{DEL}") 
MouseClick("left",157,205,1) 
Send($BasePP200 & "{DOWN}{DOWN}{DOWN}{DOWN}{DOWN}" & $BasePP40 & 
"{DOWN}{DOWN}{DOWN}{DOWN}" & $BasePP10 & "{DOWN}{DOWN}" & $BasePP4 & 
"{DOWN}{DOWN}{DOWN}{DOWN}" & $BasePP1) 
MouseClick("left",482,140,1) 
Send($BasePI & "{DOWN}" & $BaseLL) 
MouseClick("left",438,376,1) 
MouseClick("left",434,419,1) 
MouseClick("left",486,376,1) 
Send($BaseDensity) 
MouseMove(489,421) 
MouseDown("left") 
MouseMove(490,421) 
MouseUp("left") 
Send($BaseMoist) 
MouseClick("left",451,102,1) 
If WinActive("Change Material Warning","Changing the unbound material") Then 
ControlClick("Change Material Warning","Changing the unbound 
material","[Class:Button;ID:2]","left",1) 
Send("{ENTER}") 
If WinActive("Dg2k2","The input sieve") Then ControlClick("Dg2k2","The input 
sieve","[Class:Button;ID:7]","left",1) ; if the input gradation and PI values 
don't agree with the pre-selected Material type, a message will pop up; here we 
just choose "No" to close it. 
;Send("{ENTER}") 
_WinWaitActivate("Structure","") 
  
; 3. Subgrade 
MouseClick("left",83,307,1) 
_WinWaitActivate("Insert Layer After","") 
_InputSubgradeMaterial($SubgradeMaterial) ; call _InputSubgradeMaterial 
function to select Subgrade material type. 
MouseClick("left",216,187,1) 
MouseClick("left",129,240,1) 
_WinWaitActivate("Structure","") 
MouseClick("left",602,313,1) 
_WinWaitActivate("Unbound Layer - Layer #3","") 
MouseClick("left",419,398,2) 
Send($SubgradeResMod) 
MouseClick("left",174,82,1) 
MouseClick("left",158,136,1) 
Send("{DEL}") 
MouseClick("left",150,208,1) 
Send($SubgradePP200 & "{DOWN}{DOWN}{DOWN}{DOWN}{DOWN}" & $SubgradePP40 & 
"{DOWN}{DOWN}{DOWN}{DOWN}" & $SubgradePP10 & "{DOWN}{DOWN}" & $SubgradePP4 & 
"{DOWN}{DOWN}{DOWN}{DOWN}" & $SubgradePP1) 
MouseClick("left",485,142,1) 
Send($SubgradePI & "{DOWN}" & $SubgradeLL) 
MouseClick("left",437,376,1) 
MouseClick("left",490,371,1) 
Send($SubgradeDensity) 
MouseClick("left",435,421,1) 
MouseClick("left",482,421,1) 
Send($SubgradeMoist) 
MouseClick("left",462,106,1) 
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IF WinActive("Dg2k2","") Then MouseClick("left",401,221,1)  ; if the input 
gradation and PI values don't agree with the pre-selected Material type, a 
message will pop up; here we just choose "No" to close it. 
Send("{Enter}") 
If WinExists("Change Material Warning","") Then 
    ControlClick("Change Material Warning","","[Class:Button;ID:2]","left",1) 
    Send("{Enter}") 
    If WinExists("Dg2k2","The input sieve and index propeties") Then 
ControlClick("Dg2k2","The input sieve and index 
propeties","[Class:Button;ID:7]","left",1) 
EndIf 
;MouseClick("left",214,587,1) 
_WinWaitActivate("Structure","") 
MouseClick("left",520,370,1) 
_WinWaitActivate("Layout1-"& $i &".dgp - Mechanistic Empirical Pavement Design 
Guide","") 
MouseClick("left",101,500,2) 
_WinWaitActivate("HMA Design Properties","") 
MouseClick("left",166,343,1) 
_WinWaitActivate("Layout1-"& $i &".dgp - Mechanistic Empirical Pavement Design 
Guide","") 
MouseClick("left",114,591,2) 
_WinWaitActivate("Thermal Cracking","") 
MouseClick("left",189,483,1) 
_WinWaitActivate("Layout1-"& $i &".dgp - Mechanistic Empirical Pavement Design 
Guide","") 
Send("{CTRLDOWN}s{CTRLUP}") 
Send("{ALTDOWN}{ALTUP}fx") 
  
Run('cmd.exe') 
_WinWaitActivate("C:\Windows\system32\cmd.exe","") 
Sleep(1000) 
Send("taskkill /f /im Excel.exe /t {Enter}")  
Sleep(1000) 
Send("exit{Enter}") 
  
Sleep(4000) 
$oExcel=_ExcelBookOpen($sExcelFilePath,0) 
;_ExcelBookClose($oExcel,0) 
Sleep(3000) 
Next 
 
  
  
Func _ACLayerBinderType($x) 
Switch $x 
    Case "AC-2.5" 
        MouseClick("left",212,207,1) 
        MouseClick("left",244,304,1) 
    Case "AC-5" 
        MouseClick("left",212,207,1) 
        MouseClick("left",244,319,1) 
    Case "AC-10" 
        MouseClick("left",212,207,1) 
        MouseClick("left",244,338,1) 
    Case "AC-20" 
        MouseClick("left",212,207,1) 
        MouseClick("left",244,359,1) 
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    Case "AC-30" 
        MouseClick("left",212,207,1) 
        MouseClick("left",244,377,1) 
    Case "AC-40" 
        MouseClick("left",212,207,1) 
        MouseClick("left",244,392,1) 
    Case "PEN 40-50" 
        MouseClick("left",211,233,1) 
        MouseClick("left",226,300,1) 
    Case "PEN 60-70" 
        MouseClick("left",211,233,1) 
        MouseClick("left",227,318,1) 
    Case "PEN 85-100" 
        MouseClick("left",211,233,1) 
        MouseClick("left",233,340,1) 
    Case "PEN 120-150" 
        MouseClick("left",211,233,1) 
        MouseClick("left",236,360,1) 
    Case "PEN 200-300" 
        MouseClick("left",211,233,1) 
        MouseClick("left",236,378,1) 
    Case Else 
        MsgBox(0,"Error","Asphalt binder type needs to be specified...") 
EndSwitch 
EndFunc 
  
Func _InputBaseMaterial($y) 
    Switch $y 
        Case "A-1-a" 
            MouseClick("left",331,93,1)  ; select "Material Type" 
            MouseClick("left",139,139,1) ; select "Granular Base" 
            MouseClick("left",330,126,1) ; select "Material" 
            MouseClick("left",131,219,1) ; select "A-1-a" 
        Case "A-1-b" 
            MouseClick("left",331,93,1) 
            MouseClick("left",139,139,1) 
            MouseClick("left",330,126,1) 
            MouseClick("left",131,233,1) 
        Case "A-2-4" 
            MouseClick("left",331,93,1) 
            MouseClick("left",139,139,1) 
            MouseClick("left",330,126,1) 
            MouseClick("left",131,247,1) 
        Case "A-2-5" 
            MouseClick("left",331,93,1) 
            MouseClick("left",139,139,1) 
            MouseClick("left",330,126,1) 
            MouseClick("left",131,261,1) 
        Case "A-2-6" 
            MouseClick("left",331,93,1) 
            MouseClick("left",139,139,1) 
            MouseClick("left",330,126,1) 
            MouseClick("left",131,275,1) 
        Case "A-2-7" 
            MouseClick("left",331,93,1) 
            MouseClick("left",139,139,1) 
            MouseClick("left",330,126,1) 
            MouseClick("left",131,289,1) 
        Case "A-3" 
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            MouseClick("left",331,93,1) 
            MouseClick("left",139,139,1) 
            MouseClick("left",330,126,1) 
            MouseClick("left",131,303,1) 
        Case Else 
            MsgBox(0,"Error","Base material type needs to be specified...") 
    EndSwitch 
EndFunc 
  
Func _InputSubgradeMaterial($z) 
    Switch $z 
        Case "A-1-a" 
            MouseClick("left",333,90,1) ; select "Material Type" 
            MouseClick("left",160,152,1) ; select "Subgrade" 
            MouseClick("left",333,124,1) ; select "Material" 
            MouseClick("left",236,140,1) ;A-1-a 
        Case "A-1-b" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
            MouseClick("left",333,124,1) 
            MouseClick("left",261,154,1) 
        Case "A-2-4" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
            MouseClick("left",333,124,1) 
            MouseClick("left",195,168,1) 
        Case "A-2-5" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
            MouseClick("left",333,124,1) 
            MouseClick("left",165,182,1) 
        Case "A-2-6" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
            MouseClick("left",333,124,1) 
            MouseClick("left",149,196,1) 
        Case "A-2-7" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
            MouseClick("left",333,124,1) 
            MouseClick("left",145,210,1) 
        Case "A-3" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
            MouseClick("left",333,124,1) 
            MouseClick("left",129,224,1) 
        Case "A-4" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
            MouseClick("left",333,124,1) 
            MouseClick("left",139,238,1) 
        Case "A-5" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
            MouseClick("left",333,124,1) 
            MouseClick("left",139,252,1) 
        Case "A-6" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
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            MouseClick("left",333,124,1) 
            MouseClick("left",141,265,1) 
        Case "A-7-5" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
            MouseClick("left",333,124,1) 
            MouseClick("left",131,278,1) 
        Case "A-7-6" 
            MouseClick("left",333,90,1) 
            MouseClick("left",160,152,1) 
            MouseClick("left",333,124,1) 
            MouseClick("left",140,291,1) 
        Case Else 
            MsgBox(0,"error","Subgrade material needs to be specified...") 
    EndSwitch 
EndFunc 
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MATLAB CODES USED FOR EXTRACTING MEPDG SIMULATION 

RESULTS 

The following Matlab codes were used for reading MEPDG simulation results, 

which were stored in separate Excel spreadsheets. Using Matlab, the output can then be 

aggregated into one summary spreadsheet. 

function [x y] = readMEPDGdata(layout) 
% Read MEPDG simulation results into matrix 'x' and array 'y'. 
% x contains numbers and y contains text. 
% layout = layout type:  
%                 1 for SS-GB-OSL 
%                 2 for SS-GB-BC-OSL 
%                 3 for SS-SB-GB-OSL 
%                 4 for SS-SB-GB-BC-OSL 
% MEPDG generated performance data are also extracted into 'x'. 
 
x=[]; 
y={}; 
if layout == 1 
    disp('Layout = 1. Please wait for data to be read from the spreadsheets. It 
may take a few hours to complete!'); 
        % y is an array containing the names of each column. 
    y{1,1} = 'Avg_Annual_Air_Temp'; y{1,2} = 'Avg_Annual_Rainfall'; y{1,3} = 
'Freeze_Index'; y{1,4} = 'Water_Table_Depth'; y{1,5} = 'AADTT'; y{1,6} = 
'Growth_Rate'; y{1,7} = 'OSL_Thick'; y{1,8} = 'Eff_Binder_Content'; y{1,9} = 
'Air_Voids'; y{1,10} = 'Unit_Weight'; y{1,11} = 'R34'; y{1,12} = 'R38';         
y{1,13} = 'R4'; y{1,14} = 'PP200'; y{1,15} = 'A'; y{1,16} = 'VTS';         
y{1,17} = 'Avg_Tensile_Strength'; y{1,18} = 'Mix_VMA'; y{1,19} = 'Base_Thick'; 
y{1,20} = 'Base_Res_Modulus'; y{1,21} = 'Base_PI'; y{1,22} = 'Base_LL'; y{1,23} 
= 'Base_PP200'; y{1,24} = 'Base_PP40'; y{1,25} = 'Base_PP4'; y{1,26} = 
'Base_D60'; y{1,27} = 'Base_Max_Dry_Unit_Weight'; y{1,28} = 
'Base_Opt_Grav_Water_Content'; y{1,29} = 'Sugrade_Res_Modulus'; y{1,30} = 
'Subgrade_PI'; y{1,31} = 'Subgrade_LL'; y{1,32} = 'Subgrade_PP200';        
y{1,33} = 'Sugrade_PP40'; y{1,34} = 'Subgrade_PP4'; y{1,35} = 'Sugrade_D60'; 
y{1,36} = 'Subgrade_Max_Dry_Unit_Weight'; y{1,37} = 
'Subgrade_Opt_Grav_Water_Content'; y{1,38} = 'Age'; y{1,39} = 
'Longitudinal_Crack'; y{1,40} = 'Alligator_Crack'; y{1,41} = 'Transverse_Crack'; 
y{1,42} = 'Total_Rutting'; y{1,43} = 'IRI'; y{1,44} = 'IRI_Std'; y{1,45} = 
'Subtotal_AC_Rutting'; 
         
    for i = [1:93 95:98 103:177 210:527 534:572 598:600] 
        tic; 
        filePath = ['C:\MEPDG Simulation\Layout', int2str(layout),'\Layout', 
int2str(layout), '-', int2str(i), '.xls']; 
        % reading climatic data 
        x(((i-1)*30+1):i*30,1) = checkTemp(filePath);  % mean annual air temp, 
F 
        x(((i-1)*30+1):i*30,2) = checkRain(filePath);  % mean annual rainfall, 
in. 
        x(((i-1)*30+1):i*30,3) = checkFreeze(filePath);  % freezing index, F-
days 
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        [a, b]=xlsread(filePath,'Input Summary','B13:O328'); % read numeric 
data in 'Input Summary' sheets into 'a' and text data into 'b' 
        x(((i-1)*30+1):i*30,4) = a(1382); % depth of water table, ft 
         
        % reading traffic data 
        x(((i-1)*30+1):i*30,5) = a(1601);  % AADTT, veh/day 
        x(((i-1)*30+1):i*30,6) = a(383);  % Growth rate 
         
        % reading OSL layer data 
        x(((i-1)*30+1):i*30,7) = a(1395); % thickness, in. 
        x(((i-1)*30+1):i*30,8) = a(1402); % effective binder content, % 
        x(((i-1)*30+1):i*30,9) = a(1403); % air voids, % 
        x(((i-1)*30+1):i*30,10) = a(1404); % total unit weight, pcf 
        x(((i-1)*30+1):i*30,11) = a(1413); % R34 
        x(((i-1)*30+1):i*30,12) = a(1414); % R38 
        x(((i-1)*30+1):i*30,13) = a(1415); % R4 
        x(((i-1)*30+1):i*30,14) = a(1416); % PP200 
        A = b(2058); x(((i-1)*30+1):i*30,15) = str2num(A{1,1}(1:8));     % A 
(for calculating binder viscosity) 
        VTS = b(2059); x(((i-1)*30+1):i*30,16) = str2num(VTS{1,1}(1:6)); % VTS 
(for calculating binder viscosity) 
        x(((i-1)*30+1):i*30,17) = a(1740); % avg tensile strength at 14F, psi 
        x(((i-1)*30+1):i*30,18) = a(1741); % mixture VMA (%) 
     
        % reading base data 
        x(((i-1)*30+1):i*30,19) = a(1442); % base thickness, in. 
        x(((i-1)*30+1):i*30,20) = a(1449); % base res modulus, psi 
        x(((i-1)*30+1):i*30,21) = a(1768); % plasticity index 
        x(((i-1)*30+1):i*30,22) = a(1769); % liquid limit 
        x(((i-1)*30+1):i*30,23) = a(1771); % PP200 (%) 
        x(((i-1)*30+1):i*30,24) = a(1772); % PP40 (%) 
        x(((i-1)*30+1):i*30,25) = a(1773); % PP4 (%) 
        x(((i-1)*30+1):i*30,26) = a(1777); % D60, mm 
        b_uw = b(2447); x(((i-1)*30+1):i*30,27) = str2num(b_uw{1,1}(1:5)); % 
max dry unit weight, pcf 
        b_wc = b(2450); x(((i-1)*30+1):i*30,28) = str2num(b_wc{1,1}(1:4)); % 
opt. gravimetric water content (%) 
         
        % reading subgrade data 
        x(((i-1)*30+1):i*30,29) = a(1518); % subgrade res modulus, psi 
        x(((i-1)*30+1):i*30,30) = a(1837); % plasticity index 
        x(((i-1)*30+1):i*30,31) = a(1838); % liquid limit 
        x(((i-1)*30+1):i*30,32) = a(1840); % PP200 (%) 
        x(((i-1)*30+1):i*30,33) = a(1841); % PP40 (%) 
        x(((i-1)*30+1):i*30,34) = a(1842); % PP4 (%) 
        x(((i-1)*30+1):i*30,35) = a(1846); % D60, mm 
        ss_uw = b(2516); x(((i-1)*30+1):i*30,36) = str2num(ss_uw{1,1}(1:5)); % 
max dry unit weight, pcf 
        ss_wc = b(2519); x(((i-1)*30+1):i*30,37) = str2num(ss_wc{1,1}(1:4)); % 
opt. gravimetric water content (%) 
         
        % age 
        x(((i-1)*30+1):i*30,38) = 1:30; % age, years  
         
        % reading distress/performance values 
        [c, d] = xlsread(filePath,'Distress Summary','B2:N364'); % read 
distress summary into 'a'. 
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        for j=1:30 
            x((i-1)*30+j,39) = c(find(c(:,2)==j),4);  % longitudinal cracking 
            x((i-1)*30+j,40) = c(find(c(:,2)==j),5);  % alligator cracking 
            x((i-1)*30+j,41) = c(find(c(:,2)==j),8);  % transverse cracking 
            x((i-1)*30+j,42) = c(find(c(:,2)==j),10); % total rutting 
            x((i-1)*30+j,43) = c(find(c(:,2)==j),11); % IRI 
            x((i-1)*30+j,44) = (c(find(c(:,2)==j),13)-
c(find(c(:,2)==j),11))/1.6449; % IRI standard deviation 
            x((i-1)*30+j,45) = c(find(c(:,2)==j),9);  % subtotal AC rutting 
(may not be used as a performance indicator, just in case!!! 
        end 
        %!taskkill /f /im Excel.exe /t 
        t(i) = toc; 
        disp(['Case #', int2str(i), ' was done. It consumed ', num2str(t(i)/60), 
' minutes for this case!']); 
    end 
        disp(['Data extraction process is done. It took ', 
num2str(round(sum(t)/60)),' minutes for this whole process!!!']); 
 
elseif layout == 2 
    disp('Layout = 2. Please wait for data to be read from the spreadsheets. It 
may take a few hours to complete!'); 
        % y is an array containing the names of each column. 
        y{1,1} = 'Avg_Annual_Air_Temp'; y{1,2} = 'Avg_Annual_Rainfall'; y{1,3} 
= 'Freeze_Index'; y{1,4} = 'Water_Table_Depth'; 
        y{1,5} = 'AADTT'; y{1,6} = 'Growth_Rate'; y{1,7} = 'OSL_Thick'; y{1,8} 
= 'OSL_Eff_Binder_Content'; 
        y{1,9} = 'OSL_Air_Voids'; y{1,10} = 'OSL_Unit_Weight'; y{1,11} = 
'OSL_R34'; y{1,12} = 'OSL_R38'; 
        y{1,13} = 'OSL_R4'; y{1,14} = 'OSL_PP200'; y{1,15} = 'OSL_A'; y{1,16} = 
'OSL_VTS'; 
        y{1,17} = 'OSL_Avg_Tensile_Strength'; y{1,18} = 'OSL_Mix_VMA'; y{1,19} 
= 'BC_Thick'; y{1,20} = 'BC_Eff_Binder_Content'; 
        y{1,21} = 'BC_Air_Voids'; y{1,22} = 'BC_Unit_Weight'; y{1,23} = 
'BC_R34'; y{1,24} = 'BC_R38'; 
        y{1,25} = 'BC_R4'; y{1,26} = 'BC_PP200'; y{1,27} = 'BC_A'; y{1,28} = 
'BC_VTS'; 
        y{1,29} = 'Base_Thick'; y{1,30} = 'Base_Res_Modulus'; 
        y{1,31} = 'Base_PI'; y{1,32} = 'Base_LL'; y{1,33} = 'Base_PP200'; 
y{1,34} = 'Base_PP40'; 
        y{1,35} = 'Base_PP4'; y{1,36} = 'Base_D60'; y{1,37} = 
'Base_Max_Dry_Unit_Weight'; y{1,38} = 'Base_Opt_Grav_Water_Content'; 
        y{1,39} = 'Sugrade_Res_Modulus'; y{1,40} = 'Subgrade_PI'; y{1,41} = 
'Subgrade_LL'; y{1,42} = 'Subgrade_PP200'; 
        y{1,43} = 'Sugrade_PP40'; y{1,44} = 'Subgrade_PP4'; y{1,45} = 
'Sugrade_D60'; y{1,46} = 'Subgrade_Max_Dry_Unit_Weight'; 
        y{1,47} = 'Subgrade_Opt_Grav_Water_Content'; y{1,48} = 'Age'; y{1,49} = 
'Longitudinal_Crack'; y{1,50} = 'Alligator_Crack'; 
        y{1,51} = 'Transverse_Crack'; y{1,52} = 'Total_Rutting'; y{1,53} = 
'IRI'; y{1,54} = 'Subtotal_AC_Rutting'; 
         
    for i = [1:69 71:75 77:118 120:299 301:320 322:354 356:359 362:378 381:398 
400:435 437:652 654:700] 
        tic; 
        filePath = ['C:\MEPDG Simulation\Layout', int2str(layout),'\Layout', 
int2str(layout), '-', int2str(i), '.xls']; 
        % reading climatic data 
        x(((i-1)*30+1):i*30,1) = checkTemp(filePath);  % mean annual air temp, 
F 
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        x(((i-1)*30+1):i*30,2) = checkRain(filePath);  % mean annual rainfall, 
in. 
        x(((i-1)*30+1):i*30,3) = checkFreeze(filePath);  % freezing index, F-
days 
         
        [a, b]=xlsread(filePath,'Input Summary','B13:O435'); % read numeric 
data in 'Input Summary' sheets into 'a' and text data into 'b' 
        x(((i-1)*30+1):i*30,4) = a(1810); % depth of water table, ft 
         
        % reading traffic data 
        x(((i-1)*30+1):i*30,5) = a(2136);  % AADTT, veh/day 
        x(((i-1)*30+1):i*30,6) = a(490);  % Growth rate 
         
        % reading OSL layer data 
        x(((i-1)*30+1):i*30,7) = a(1823); % thickness, in. 
        x(((i-1)*30+1):i*30,8) = a(1830); % effective binder content, % 
        x(((i-1)*30+1):i*30,9) = a(1831); % air voids, % 
        x(((i-1)*30+1):i*30,10) = a(1832); % total unit weight, pcf 
        x(((i-1)*30+1):i*30,11) = a(1841); % R34 
        x(((i-1)*30+1):i*30,12) = a(1842); % R38 
        x(((i-1)*30+1):i*30,13) = a(1843); % R4 
        x(((i-1)*30+1):i*30,14) = a(1844); % PP200 
        A = b(2700); x(((i-1)*30+1):i*30,15) = str2num(A{1,1}(1:8));     % A 
(for calculating binder viscosity) 
        VTS = b(2701); x(((i-1)*30+1):i*30,16) = str2num(VTS{1,1}(1:6)); % VTS 
(for calculating binder viscosity) 
        x(((i-1)*30+1):i*30,17) = a(2275); % avg tensile strength at 14F, psi 
        x(((i-1)*30+1):i*30,18) = a(2276); % mixture VMA (%) 
  
        % reading BC layer data 
        x(((i-1)*30+1):i*30,19) = a(1870); % thickness, in. 
        x(((i-1)*30+1):i*30,20) = a(1877); % effective binder content, % 
        x(((i-1)*30+1):i*30,21) = a(1878); % air voids, % 
        x(((i-1)*30+1):i*30,22) = a(1879); % total unit weight, pcf 
        x(((i-1)*30+1):i*30,23) = a(1888); % R34 
        x(((i-1)*30+1):i*30,24) = a(1889); % R38 
        x(((i-1)*30+1):i*30,25) = a(1890); % R4 
        x(((i-1)*30+1):i*30,26) = a(1891); % PP200 
        A = b(2747); x(((i-1)*30+1):i*30,27) = str2num(A{1,1}(1:8));     % A 
(for calculating binder viscosity) 
        VTS = b(2748); x(((i-1)*30+1):i*30,28) = str2num(VTS{1,1}(1:6)); % VTS 
(for calculating binder viscosity) 
  
        % reading base data 
        x(((i-1)*30+1):i*30,29) = a(1902); % base thickness, in. 
        x(((i-1)*30+1):i*30,30) = a(1909); % base res modulus, psi 
        x(((i-1)*30+1):i*30,31) = a(2335); % plasticity index 
        x(((i-1)*30+1):i*30,32) = a(2336); % liquid limit 
        x(((i-1)*30+1):i*30,33) = a(2338); % PP200 (%) 
        x(((i-1)*30+1):i*30,34) = a(2339); % PP40 (%) 
        x(((i-1)*30+1):i*30,35) = a(2340); % PP4 (%) 
        x(((i-1)*30+1):i*30,36) = a(2344); % D60, mm 
        b_uw = b(3228); x(((i-1)*30+1):i*30,37) = str2num(b_uw{1,1}(1:5)); % 
max dry unit weight, pcf 
        b_wc = b(3231); x(((i-1)*30+1):i*30,38) = str2num(b_wc{1,1}(1:4)); % 
opt. gravimetric water content (%) 
         
        % reading subgrade data 
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        x(((i-1)*30+1):i*30,39) = a(1978); % subgrade res modulus, psi 
        x(((i-1)*30+1):i*30,40) = a(2404); % plasticity index 
        x(((i-1)*30+1):i*30,41) = a(2405); % liquid limit 
        x(((i-1)*30+1):i*30,42) = a(2407); % PP200 (%) 
        x(((i-1)*30+1):i*30,43) = a(2408); % PP40 (%) 
        x(((i-1)*30+1):i*30,44) = a(2409); % PP4 (%) 
        x(((i-1)*30+1):i*30,45) = a(2413); % D60, mm 
        ss_uw = b(3297); x(((i-1)*30+1):i*30,46) = str2num(ss_uw{1,1}(1:5)); % 
max dry unit weight, pcf 
        ss_wc = b(3300); x(((i-1)*30+1):i*30,47) = str2num(ss_wc{1,1}(1:4)); % 
opt. gravimetric water content (%) 
         
        % age 
        x(((i-1)*30+1):i*30,48) = 1:30; % age, years  
         
        % reading distress/performance values 
        [c, d] = xlsread(filePath,'Distress Summary','B2:N364'); % read 
distress summary into 'a'. 
        for j=1:30 
            x((i-1)*30+j,49) = c(find(c(:,2)==j),4);  % longitudinal cracking 
            x((i-1)*30+j,50) = c(find(c(:,2)==j),5);  % alligator cracking 
            x((i-1)*30+j,51) = c(find(c(:,2)==j),8);  % transverse cracking 
            x((i-1)*30+j,52) = c(find(c(:,2)==j),10); % total rutting 
            x((i-1)*30+j,53) = c(find(c(:,2)==j),11); % IRI 
            x((i-1)*30+j,54) = c(find(c(:,2)==j),9);  % subtotal AC rutting 
(may not be used as a performance indicator, just in case!!! 
        end 
        %!taskkill /f /im Excel.exe /t 
        t(i) = toc; 
        disp(['Case #', int2str(i), ' was done. It consumed ', num2str(t(i)/60), 
' minutes for this case!']); 
    end 
        disp(['Data extraction process is done. It took ', 
num2str(round(sum(t)/60)),' minutes for this whole process!!!']); 
 
elseif layout == 3 
    disp('Layout = 3. Please wait for data to be read from the spreadsheets. It 
may take a few hours to complete!'); 
        % y is an array containing the names of each column. 
        y{1,1} = 'Avg_Annual_Air_Temp'; y{1,2} = 'Avg_Annual_Rainfall'; y{1,3} 
= 'Freeze_Index'; y{1,4} = 'Water_Table_Depth'; 
        y{1,5} = 'AADTT'; y{1,6} = 'Growth_Rate'; y{1,7} = 'OSL_Thick'; y{1,8} 
= 'OSL_Eff_Binder_Content'; 
        y{1,9} = 'OSL_Air_Voids'; y{1,10} = 'OSL_Unit_Weight'; y{1,11} = 
'OSL_R34'; y{1,12} = 'OSL_R38'; 
        y{1,13} = 'OSL_R4'; y{1,14} = 'OSL_PP200'; y{1,15} = 'OSL_A'; y{1,16} = 
'OSL_VTS'; 
        y{1,17} = 'OSL_Avg_Tensile_Strength'; y{1,18} = 'OSL_Mix_VMA'; y{1,19} 
= 'Base_Thick'; y{1,20} = 'Base_Res_Modulus'; 
        y{1,21} = 'Base_PI'; y{1,22} = 'Base_LL'; y{1,23} = 'Base_PP200'; 
y{1,24} = 'Base_PP40'; 
        y{1,25} = 'Base_PP4'; y{1,26} = 'Base_D60'; y{1,27} = 
'Base_Max_Dry_Unit_Weight'; y{1,28} = 'Base_Opt_Grav_Water_Content'; 
        y{1,29} = 'Subbase_Thick'; y{1,30} = 'Subbase_Res_Modulus'; 
        y{1,31} = 'Subbase_PI'; y{1,32} = 'Subbase_LL'; y{1,33} = 
'Subbase_PP200'; y{1,34} = 'Subbase_PP40'; 
        y{1,35} = 'Subbase_PP4'; y{1,36} = 'Subbase_D60'; y{1,37} = 
'Subbase_Max_Dry_Unit_Weight'; y{1,38} = 'Subbase_Opt_Grav_Water_Content'; 
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        y{1,39} = 'Sugrade_Res_Modulus'; y{1,40} = 'Subgrade_PI'; y{1,41} = 
'Subgrade_LL'; y{1,42} = 'Subgrade_PP200'; 
        y{1,43} = 'Sugrade_PP40'; y{1,44} = 'Subgrade_PP4'; y{1,45} = 
'Sugrade_D60'; y{1,46} = 'Subgrade_Max_Dry_Unit_Weight'; 
        y{1,47} = 'Subgrade_Opt_Grav_Water_Content'; y{1,48} = 'Age'; y{1,49} = 
'Longitudinal_Crack'; y{1,50} = 'Alligator_Crack'; 
        y{1,51} = 'Transverse_Crack'; y{1,52} = 'Total_Rutting'; y{1,53} = 
'IRI'; y{1,54} = 'Subtotal_AC_Rutting'; 
         
    for i = [1:119 121:171 173:183 185:187 189:208 210:264 266:280 283:359 
361:365 367:436 438:615 617:625 627:700] 
        tic; 
        filePath = ['C:\MEPDG Simulation\Layout', int2str(layout),'\Layout', 
int2str(layout), '-', int2str(i), '.xls']; 
        % reading climatic data 
        x(((i-1)*30+1):i*30,1) = checkTemp(filePath);  % mean annual air temp, 
F 
        x(((i-1)*30+1):i*30,2) = checkRain(filePath);  % mean annual rainfall, 
in. 
        x(((i-1)*30+1):i*30,3) = checkFreeze(filePath);  % freezing index, F-
days 
         
        [a, b]=xlsread(filePath,'Input Summary','B13:O472'); % read numeric 
data in 'Input Summary' sheets into 'a' and text data into 'b' 
        x(((i-1)*30+1):i*30,4) = a(1958); % depth of water table, ft 
         
        % reading traffic data 
        x(((i-1)*30+1):i*30,5) = a(2321);  % AADTT, veh/day 
        x(((i-1)*30+1):i*30,6) = a(527);  % Growth rate 
         
        % reading OSL layer data 
        x(((i-1)*30+1):i*30,7) = a(1971); % thickness, in. 
        x(((i-1)*30+1):i*30,8) = a(1978); % effective binder content, % 
        x(((i-1)*30+1):i*30,9) = a(1979); % air voids, % 
        x(((i-1)*30+1):i*30,10) = a(1980); % total unit weight, pcf 
        x(((i-1)*30+1):i*30,11) = a(1989); % R34 
        x(((i-1)*30+1):i*30,12) = a(1990); % R38 
        x(((i-1)*30+1):i*30,13) = a(1991); % R4 
        x(((i-1)*30+1):i*30,14) = a(1992); % PP200 
        A = b(2922); x(((i-1)*30+1):i*30,15) = str2num(A{1,1}(1:8));     % A 
(for calculating binder viscosity) 
        VTS = b(2923); x(((i-1)*30+1):i*30,16) = str2num(VTS{1,1}(1:6)); % VTS 
(for calculating binder viscosity) 
        x(((i-1)*30+1):i*30,17) = a(2460); % avg tensile strength at 14F, psi 
        x(((i-1)*30+1):i*30,18) = a(2461); % mixture VMA (%) 
  
        % reading base data 
        x(((i-1)*30+1):i*30,19) = a(2018); % base thickness, in. 
        x(((i-1)*30+1):i*30,20) = a(2025); % base res modulus, psi 
        x(((i-1)*30+1):i*30,21) = a(2488); % plasticity index 
        x(((i-1)*30+1):i*30,22) = a(2489); % liquid limit 
        x(((i-1)*30+1):i*30,23) = a(2491); % PP200 (%) 
        x(((i-1)*30+1):i*30,24) = a(2492); % PP40 (%) 
        x(((i-1)*30+1):i*30,25) = a(2493); % PP4 (%) 
        x(((i-1)*30+1):i*30,26) = a(2497); % D60, mm 
        b_uw = b(3455); x(((i-1)*30+1):i*30,27) = str2num(b_uw{1,1}(1:5)); % 
max dry unit weight, pcf 



184 
 

        b_wc = b(3458); x(((i-1)*30+1):i*30,28) = str2num(b_wc{1,1}(1:4)); % 
opt. gravimetric water content (%) 
         
        % reading subbase data 
        x(((i-1)*30+1):i*30,29) = a(2087); % base thickness, in. 
        x(((i-1)*30+1):i*30,30) = a(2094); % base res modulus, psi 
        x(((i-1)*30+1):i*30,31) = a(2557); % plasticity index 
        x(((i-1)*30+1):i*30,32) = a(2558); % liquid limit 
        x(((i-1)*30+1):i*30,33) = a(2560); % PP200 (%) 
        x(((i-1)*30+1):i*30,34) = a(2561); % PP40 (%) 
        x(((i-1)*30+1):i*30,35) = a(2562); % PP4 (%) 
        x(((i-1)*30+1):i*30,36) = a(2566); % D60, mm 
        b_uw = b(3524); x(((i-1)*30+1):i*30,37) = str2num(b_uw{1,1}(1:5)); % 
max dry unit weight, pcf 
        b_wc = b(3527); x(((i-1)*30+1):i*30,38) = str2num(b_wc{1,1}(1:4)); % 
opt. gravimetric water content (%) 
  
        % reading subgrade data 
        x(((i-1)*30+1):i*30,39) = a(2163); % subgrade res modulus, psi 
        x(((i-1)*30+1):i*30,40) = a(2626); % plasticity index 
        x(((i-1)*30+1):i*30,41) = a(2627); % liquid limit 
        x(((i-1)*30+1):i*30,42) = a(2629); % PP200 (%) 
        x(((i-1)*30+1):i*30,43) = a(2630); % PP40 (%) 
        x(((i-1)*30+1):i*30,44) = a(2631); % PP4 (%) 
        x(((i-1)*30+1):i*30,45) = a(2635); % D60, mm 
        ss_uw = b(3593); x(((i-1)*30+1):i*30,46) = str2num(ss_uw{1,1}(1:5)); % 
max dry unit weight, pcf 
        ss_wc = b(3596); x(((i-1)*30+1):i*30,47) = str2num(ss_wc{1,1}(1:4)); % 
opt. gravimetric water content (%) 
         
        % age 
        x(((i-1)*30+1):i*30,48) = 1:30; % age, years  
         
        % reading distress/performance values 
        [c, d] = xlsread(filePath,'Distress Summary','B2:N364'); % read 
distress summary into 'a'. 
        for j=1:30 
            x((i-1)*30+j,49) = c(find(c(:,2)==j),4);  % longitudinal cracking 
            x((i-1)*30+j,50) = c(find(c(:,2)==j),5);  % alligator cracking 
            x((i-1)*30+j,51) = c(find(c(:,2)==j),8);  % transverse cracking 
            x((i-1)*30+j,52) = c(find(c(:,2)==j),10); % total rutting 
            x((i-1)*30+j,53) = c(find(c(:,2)==j),11); % IRI 
            x((i-1)*30+j,54) = c(find(c(:,2)==j),9);  % subtotal AC rutting 
(may not be used as a performance indicator, just in case!!! 
        end 
        %!taskkill /f /im Excel.exe /t 
        t(i) = toc; 
        disp(['Case #', int2str(i), ' was done. It consumed ', num2str(t(i)/60), 
' minutes for this case!']); 
    end 
        disp(['Data extraction process is done. It took ', 
num2str(round(sum(t)/60)),' minutes for this whole process!!!']); 
 
elseif layout == 4 
    disp('Layout = 4. Please wait for data to be read from the spreadsheets. It 
may take a few hours to complete!'); 
        % y is an array containing the names of each column. 
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        y{1,1} = 'Avg_Annual_Air_Temp'; y{1,2} = 'Avg_Annual_Rainfall'; y{1,3} 
= 'Freeze_Index'; y{1,4} = 'Water_Table_Depth'; 
        y{1,5} = 'AADTT'; y{1,6} = 'Growth_Rate'; y{1,7} = 'OSL_Thick'; y{1,8} 
= 'OSL_Eff_Binder_Content'; 
        y{1,9} = 'OSL_Air_Voids'; y{1,10} = 'OSL_Unit_Weight'; y{1,11} = 
'OSL_R34'; y{1,12} = 'OSL_R38'; 
        y{1,13} = 'OSL_R4'; y{1,14} = 'OSL_PP200'; y{1,15} = 'OSL_A'; y{1,16} = 
'OSL_VTS'; 
        y{1,17} = 'OSL_Avg_Tensile_Strength'; y{1,18} = 'OSL_Mix_VMA'; y{1,19} 
= 'BC_Thick'; y{1,20} = 'BC_Eff_Binder_Content'; 
        y{1,21} = 'BC_Air_Voids'; y{1,22} = 'BC_Unit_Weight'; y{1,23} = 
'BC_R34'; y{1,24} = 'BC_R38'; 
        y{1,25} = 'BC_R4'; y{1,26} = 'BC_PP200'; y{1,27} = 'BC_A'; y{1,28} = 
'BC_VTS'; 
        y{1,29} = 'Base_Thick'; y{1,30} = 'Base_Res_Modulus'; 
        y{1,31} = 'Base_PI'; y{1,32} = 'Base_LL'; y{1,33} = 'Base_PP200'; 
y{1,34} = 'Base_PP40'; 
        y{1,35} = 'Base_PP4'; y{1,36} = 'Base_D60'; y{1,37} = 
'Base_Max_Dry_Unit_Weight'; y{1,38} = 'Base_Opt_Grav_Water_Content'; 
        y{1,39} = 'Subbase_Thick'; y{1,40} = 'Subbase_Res_Modulus'; 
        y{1,41} = 'Subbase_PI'; y{1,42} = 'Subbase_LL'; y{1,43} = 
'Subbase_PP200'; y{1,44} = 'Subbase_PP40'; 
        y{1,45} = 'Subbase_PP4'; y{1,46} = 'Subbase_D60'; y{1,47} = 
'Subbase_Max_Dry_Unit_Weight'; y{1,48} = 'Subbase_Opt_Grav_Water_Content'; 
        y{1,49} = 'Sugrade_Res_Modulus'; y{1,50} = 'Subgrade_PI'; y{1,51} = 
'Subgrade_LL'; y{1,52} = 'Subgrade_PP200'; 
        y{1,53} = 'Sugrade_PP40'; y{1,54} = 'Subgrade_PP4'; y{1,55} = 
'Sugrade_D60'; y{1,56} = 'Subgrade_Max_Dry_Unit_Weight'; 
        y{1,57} = 'Subgrade_Opt_Grav_Water_Content'; y{1,58} = 'Age'; y{1,59} = 
'Longitudinal_Crack'; y{1,60} = 'Alligator_Crack'; 
        y{1,61} = 'Transverse_Crack'; y{1,62} = 'Total_Rutting'; y{1,63} = 
'IRI'; y{1,64} = 'Subtotal_AC_Rutting'; 
         
    for i = [1:1000] 
        tic; 
        filePath = ['C:\MEPDG Simulation\Layout', int2str(layout),'\Layout', 
int2str(layout), '-', int2str(i), '.xls']; 
        % reading climatic data 
        x(((i-1)*30+1):i*30,1) = checkTemp(filePath);  % mean annual air temp, 
F 
        x(((i-1)*30+1):i*30,2) = checkRain(filePath);  % mean annual rainfall, 
in. 
        x(((i-1)*30+1):i*30,3) = checkFreeze(filePath);  % freezing index, F-
days 
         
        [a, b]=xlsread(filePath,'Input Summary','B13:O504'); % read numeric 
data in 'Input Summary' sheets into 'a' and text data into 'b' 
        x(((i-1)*30+1):i*30,4) = a(2086); % depth of water table, ft 
         
        % reading traffic data 
        x(((i-1)*30+1):i*30,5) = a(2481);  % AADTT, veh/day 
        x(((i-1)*30+1):i*30,6) = a(559);  % Growth rate 
         
        % reading OSL layer data 
        x(((i-1)*30+1):i*30,7) = a(2099); % thickness, in. 
        x(((i-1)*30+1):i*30,8) = a(2106); % effective binder content, % 
        x(((i-1)*30+1):i*30,9) = a(2107); % air voids, % 
        x(((i-1)*30+1):i*30,10) = a(2108); % total unit weight, pcf 
        x(((i-1)*30+1):i*30,11) = a(2117); % R34 
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        x(((i-1)*30+1):i*30,12) = a(2118); % R38 
        x(((i-1)*30+1):i*30,13) = a(2119); % R4 
        x(((i-1)*30+1):i*30,14) = a(2120); % PP200 
        A = b(3114); x(((i-1)*30+1):i*30,15) = str2num(A{1,1}(1:8));     % A 
(for calculating binder viscosity) 
        VTS = b(3115); x(((i-1)*30+1):i*30,16) = str2num(VTS{1,1}(1:6)); % VTS 
(for calculating binder viscosity) 
        x(((i-1)*30+1):i*30,17) = a(2620); % avg tensile strength at 14F, psi 
        x(((i-1)*30+1):i*30,18) = a(2621); % mixture VMA (%) 
  
        % reading BC layer data 
        x(((i-1)*30+1):i*30,19) = a(2146); % thickness, in. 
        x(((i-1)*30+1):i*30,20) = a(2153); % effective binder content, % 
        x(((i-1)*30+1):i*30,21) = a(2154); % air voids, % 
        x(((i-1)*30+1):i*30,22) = a(2155); % total unit weight, pcf 
        x(((i-1)*30+1):i*30,23) = a(2164); % R34 
        x(((i-1)*30+1):i*30,24) = a(2165); % R38 
        x(((i-1)*30+1):i*30,25) = a(2166); % R4 
        x(((i-1)*30+1):i*30,26) = a(2167); % PP200 
        A = b(3161); x(((i-1)*30+1):i*30,27) = str2num(A{1,1}(1:8));     % A 
(for calculating binder viscosity) 
        VTS = b(3162); x(((i-1)*30+1):i*30,28) = str2num(VTS{1,1}(1:6)); % VTS 
(for calculating binder viscosity) 
  
        % reading base data 
        x(((i-1)*30+1):i*30,29) = a(2178); % base thickness, in. 
        x(((i-1)*30+1):i*30,30) = a(2185); % base res modulus, psi 
        x(((i-1)*30+1):i*30,31) = a(2680); % plasticity index 
        x(((i-1)*30+1):i*30,32) = a(2681); % liquid limit 
        x(((i-1)*30+1):i*30,33) = a(2683); % PP200 (%) 
        x(((i-1)*30+1):i*30,34) = a(2684); % PP40 (%) 
        x(((i-1)*30+1):i*30,35) = a(2685); % PP4 (%) 
        x(((i-1)*30+1):i*30,36) = a(2689); % D60, mm 
        b_uw = b(3711); x(((i-1)*30+1):i*30,37) = str2num(b_uw{1,1}(1:5)); % 
max dry unit weight, pcf 
        b_wc = b(3714); x(((i-1)*30+1):i*30,38) = str2num(b_wc{1,1}(1:4)); % 
opt. gravimetric water content (%) 
  
        % reading subbase data 
        x(((i-1)*30+1):i*30,39) = a(2247); % base thickness, in. 
        x(((i-1)*30+1):i*30,40) = a(2254); % base res modulus, psi 
        x(((i-1)*30+1):i*30,41) = a(2749); % plasticity index 
        x(((i-1)*30+1):i*30,42) = a(2750); % liquid limit 
        x(((i-1)*30+1):i*30,43) = a(2752); % PP200 (%) 
        x(((i-1)*30+1):i*30,44) = a(2753); % PP40 (%) 
        x(((i-1)*30+1):i*30,45) = a(2754); % PP4 (%) 
        x(((i-1)*30+1):i*30,46) = a(2758); % D60, mm 
        b_uw = b(3780); x(((i-1)*30+1):i*30,47) = str2num(b_uw{1,1}(1:5)); % 
max dry unit weight, pcf 
        b_wc = b(3783); x(((i-1)*30+1):i*30,48) = str2num(b_wc{1,1}(1:4)); % 
opt. gravimetric water content (%) 
  
        % reading subgrade data 
        x(((i-1)*30+1):i*30,49) = a(2323); % subgrade res modulus, psi 
        x(((i-1)*30+1):i*30,50) = a(2818); % plasticity index 
        x(((i-1)*30+1):i*30,51) = a(2819); % liquid limit 
        x(((i-1)*30+1):i*30,52) = a(2821); % PP200 (%) 
        x(((i-1)*30+1):i*30,53) = a(2822); % PP40 (%) 
        x(((i-1)*30+1):i*30,54) = a(2823); % PP4 (%) 
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        x(((i-1)*30+1):i*30,55) = a(2827); % D60, mm 
        ss_uw = b(3849); x(((i-1)*30+1):i*30,56) = str2num(ss_uw{1,1}(1:5)); % 
max dry unit weight, pcf 
        ss_wc = b(3852); x(((i-1)*30+1):i*30,57) = str2num(ss_wc{1,1}(1:4)); % 
opt. gravimetric water content (%) 
         
        % age 
        x(((i-1)*30+1):i*30,58) = 1:30; % age, years  
         
        % reading distress/performance values 
        [c, d] = xlsread(filePath,'Distress Summary','B2:N364'); % read 
distress summary into 'a'. 
        for j=1:30 
            x((i-1)*30+j,59) = c(find(c(:,2)==j),4);  % longitudinal cracking 
            x((i-1)*30+j,60) = c(find(c(:,2)==j),5);  % alligator cracking 
            x((i-1)*30+j,61) = c(find(c(:,2)==j),8);  % transverse cracking 
            x((i-1)*30+j,62) = c(find(c(:,2)==j),10); % total rutting 
            x((i-1)*30+j,63) = c(find(c(:,2)==j),11); % IRI 
            x((i-1)*30+j,64) = c(find(c(:,2)==j),9);  % subtotal AC rutting 
(may not be used as a performance indicator, just in case!!! 
        end 
        %!taskkill /f /im Excel.exe /t 
        t(i) = toc; 
        disp(['Case #', int2str(i), ' was done. It consumed ', num2str(t(i)/60), 
' minutes for this case!']); 
    end 
        disp(['Data extraction process is done. It took ', 
num2str(round(sum(t)/60)),' minutes for this whole process!!!']); 
else 
    disp('Other layout types have not been developed!!!'); 
end 
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SAMPLE MATLAB CODES USED FOR DEVELOPING ANNS 

The following is the Matlab codes used for developing the ANNs for predicting 

IRI in existing pavement that has Layout-1 pavement design: 

 

% The ANNs has the architecture of 30-15-1. 
% Work directory = “c:\ANNs\Layout1” 
Layout1_Input = 
xlsread('c:\ANNs\Layout1\Layout1.xls','Layout1_IRI','A2:AD18001');   
Layout1_IRI = 
xlsread('c:\ANNs\Layout1\Layout1.xls','Layout1_IRI','AE2:AE18001');   
  
net = feedforwardnet(15);        
net.layers{1}.transferFcn = 'tansig';    
net.layers{2}.transferFcn = 'satlins';   
 
[net_L1_30_15_1 tr_L1_30_15_1] = train(net, Layout1_Input', Layout1_IRI'); 
iri_pred = net_L1_30_15_1(Layout1_Input');   
 
% plot ANNs prediction against MEPDG prediction for the three sub-datasets 
figure(1); plotregression(Layout1_IRI(tr_L1_30_15_1.trainInd)', 
iri_pred(tr_L1_30_15_1.trainInd), 'Training') 
figure(2); plotregression(Layout1_IRI(tr_L1_30_15_1.valInd)', 
iri_pred(tr_L1_30_15_1.valInd), 'Validation') 
figure(3); plotregression(Layout1_IRI(tr_L1_30_15_1.testInd)', 
iri_pred(tr_L1_30_15_1.testInd), 'Testing') 
 
 

 

 

 

  



189 
 

SAMPLE SAS CODES FOR DEVELOPING BAYESIAN LINEAR MODEL 

The following SAS codes were written to develop Bayesian linear models for 

pavement design layout #1: 

libname Bayesian 'C:\Modeling\Bayesian regression\SAS modeling\library'; 
 
PROC IMPORT OUT= WORK.Layout1  
            DATAFILE= "C:\Modeling\Bayesian regression \Layout1.xlsx"  
            DBMS=EXCEL REPLACE; 
     RANGE="Layout1";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
data Bayesian.Layout1; 
 set work.Layout1; 
 logIRI = log(Delta_IRI); 
run; 
 
proc reg data=Bayesian.Layout1; 
 model logIRI = Rain FI AADTT Thick PP8 PP200 UW AC AV IRI0 Age;  
 model logIRI = Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 IRI0 Age;  
 model logIRI = Rain FI AADTT PP200 UW AC AC2 AV AV2 Thick_UW Rain_AC 
FI_AC IRI0 Age;  

model logIRI = Rain AADTT PP8 PP200 UW AC AC2 AV AV2 Thick_UW Rain_AC 
FI_AC FI_AV IRI0 Age;  
 model logIRI = Rain FI AADTT Thick PP8 PP200 AC AC2 AV AV2 Thick_UW 
Rain_AC FI_AC FI_AV IRI0 Age;  
 model logIRI = Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 Thick_UW 
Rain_AC FI_AC FI_AV IRI0 Age;  
 model logIRI = Temp Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 
Thick_UW Rain_AC FI_AC FI_AV IRI0 Age;  

model logIRI = Temp Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 AC_AV 
Thick_UW Rain_AC FI_AC FI_AV IRI0 Age;  
 model logIRI = Temp Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 AC_AV 
Thick_UW Rain_AC FI_AC FI_AV IRI0 Age / selection = stepwise;  
run; 
 
title 'Bayesian Regression Modeling for Layout-1'; 
ods graphics on; 
proc genmod data=Bayesian.Layout1; 
 model logIRI = Rain FI AADTT Thick PP8 PP200 UW AC AV IRI0 Age;  
 model logIRI = Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 IRI0 Age;  
 model logIRI = Rain FI AADTT PP200 UW AC AC2 AV AV2 Thick_UW Rain_AC 
FI_AC IRI0 Age;  
 model logIRI = Rain AADTT PP8 PP200 UW AC AC2 AV AV2 Thick_UW Rain_AC 
FI_AC FI_AV IRI0 Age;  
 model logIRI = Rain FI AADTT Thick PP8 PP200 AC AC2 AV AV2 Thick_UW 
Rain_AC FI_AC FI_AV IRI0 Age;  
 model logIRI = Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 Thick_UW 
Rain_AC FI_AC FI_AV IRI0 Age;  
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 model logIRI = Temp Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 
Thick_UW Rain_AC FI_AC FI_AV IRI0 Age;  
 model logIRI = Temp Rain FI AADTT Thick PP8 PP200 UW AC AC2 AV AV2 AC_AV 
Thick_UW Rain_AC FI_AC FI_AV IRI0 Age;  
 bayes seed=1 OutPost=Bayesian.BayesInfo_Layout1;  
run; 
ods graphics off; 
 
PROC EXPORT DATA= BAYESIAN.Bayesinfo_layout1    
            OUTFILE= "C:\Modeling\Bayesian regression\SAS 
modeling\MCMC_weights.xlsx"  
            DBMS=EXCEL REPLACE; 
     SHEET="Layout1";  
RUN; 
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SAMPLE EXCEL VBA CODES FOR DEVELOPING THE PRS FRAMEWORK 

The following are some sample Excel VBA codes used for developing the PRS 

framework: 

'Predicting the IRI of Pre-Treatment Pavement using the ANNs 
Sub Layout1_IRI_Pred_V1() 
If (Worksheets("DemoLayout1").Range("U1").Value <> "Layout-1") Then 
MsgBox ("Please check your pavement design.") 
GoTo Ende 
Else 
    Worksheets("NN-inExcel").Cells(21, 2) = Worksheets("DemoLayout1").Cells(3, 
7)   'air temp 
    Worksheets("NN-inExcel").Cells(22, 2) = Worksheets("DemoLayout1").Cells(4, 
7)   'rainfall 
    Worksheets("NN-inExcel").Cells(23, 2) = Worksheets("DemoLayout1").Cells(5, 
7)   'freeze index 
    Worksheets("NN-inExcel").Cells(24, 2) = Worksheets("DemoLayout1").Cells(8, 
7)   'AADTT 
    Worksheets("NN-inExcel").Cells(25, 2) = Worksheets("DemoLayout1").Cells(9, 
7) / 100 'growth rate 
    Worksheets("NN-inExcel").Cells(26, 2) = Worksheets("DemoLayout1").Cells(14, 
7)  'OSL thick 
    Worksheets("NN-inExcel").Cells(27, 2) = Worksheets("DemoLayout1").Cells(15, 
7)  'eff AC% 
    Worksheets("NN-inExcel").Cells(28, 2) = Worksheets("DemoLayout1").Cells(16, 
7)  'AV% 
    Worksheets("NN-inExcel").Cells(29, 2) = Worksheets("DemoLayout1").Cells(17, 
7) 'unit weight 
    Worksheets("NN-inExcel").Cells(30, 2) = Worksheets("DemoLayout1").Cells(18, 
7) 'R34 
    Worksheets("NN-inExcel").Cells(31, 2) = Worksheets("DemoLayout1").Cells(19, 
7) 'R38 
    Worksheets("NN-inExcel").Cells(32, 2) = Worksheets("DemoLayout1").Cells(20, 
7) 'R4 
    Worksheets("NN-inExcel").Cells(33, 2) = Worksheets("DemoLayout1").Cells(21, 
7) 'PP200 
    Worksheets("NN-inExcel").Cells(34, 2) = Worksheets("DemoLayout1").Cells(25, 
7) 'Viscosity 
    Worksheets("NN-inExcel").Cells(35, 2) = Worksheets("DemoLayout1").Cells(42, 
7) 'Base thick 
    Worksheets("NN-inExcel").Cells(36, 2) = Worksheets("DemoLayout1").Cells(43, 
7) 'PI 
    Worksheets("NN-inExcel").Cells(37, 2) = Worksheets("DemoLayout1").Cells(44, 
7) 'LL 
    Worksheets("NN-inExcel").Cells(38, 2) = Worksheets("DemoLayout1").Cells(45, 
7) 'PP200 
    Worksheets("NN-inExcel").Cells(39, 2) = Worksheets("DemoLayout1").Cells(46, 
7) 'PP40 
    Worksheets("NN-inExcel").Cells(40, 2) = Worksheets("DemoLayout1").Cells(47, 
7) 'PP4 
    Worksheets("NN-inExcel").Cells(41, 2) = Worksheets("DemoLayout1").Cells(48, 
7) 'max dry unit weight 
    Worksheets("NN-inExcel").Cells(42, 2) = Worksheets("DemoLayout1").Cells(49, 
7) 'opt grav. water content 
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    Worksheets("NN-inExcel").Cells(43, 2) = Worksheets("DemoLayout1").Cells(62, 
7) 'subgrade PI 
    Worksheets("NN-inExcel").Cells(44, 2) = Worksheets("DemoLayout1").Cells(63, 
7)  'LL 
    Worksheets("NN-inExcel").Cells(45, 2) = Worksheets("DemoLayout1").Cells(64, 
7)  'PP200 
    Worksheets("NN-inExcel").Cells(46, 2) = Worksheets("DemoLayout1").Cells(65, 
7)  'PP40 
    Worksheets("NN-inExcel").Cells(47, 2) = Worksheets("DemoLayout1").Cells(66, 
7) 'PP4 
    Worksheets("NN-inExcel").Cells(48, 2) = Worksheets("DemoLayout1").Cells(67, 
7) 'max dry unit weight 
    Worksheets("NN-inExcel").Cells(49, 2) = Worksheets("DemoLayout1").Cells(68, 
7) 'opt grav water content 
     
    For i = 1 To Worksheets("DemoLayout1").Cells(3, 10) 
        Worksheets("DemoLayout1").Cells(i + 12, 9) = i 
        Worksheets("NN-inExcel").Cells(50, 2) = i 
        Worksheets("DemoLayout1").Cells(i + 12, 10) = Worksheets("NN-
inExcel").Cells(60, 2) 
        With Worksheets("DemoLayout1") 
        If .Cells(i + 12, 10) > .Cells(8, 10) Then 
            .Cells(i + 12, 10).Interior.ColorIndex = 3 
            .Cells(i + 12, 9).Interior.ColorIndex = 3 
        End If 
        End With 
    Next i 
End If 
Ende: 
End Sub 
 

'Predicting IRI reduction using the Bayesian model 
Sub Bayes_Layout1_Pred()   
If (Worksheets("DemoLayout1").Range("U1").Value <> "Layout-1") Then 
MsgBox ("Please check your pavement design.") 
GoTo Ende 
Else        
    Worksheets("DemoLayout1").Range("K13:O62").Interior.ColorIndex = 2 
    Worksheets("DemoLayout1").Range("K13:O62") = "" 
    Worksheets("DemoLayout1").Cells(5, 17) = ""   
    Worksheets("DemoLayout1").Cells(5, 18) = ""   
    age = Worksheets("DemoLayout1").Cells(5, 10)  
    RL = Worksheets("DemoLayout1").Cells(3, 17)  
    For i = 1 To (Worksheets("DemoLayout1").Cells(3, 10) - age + 1) 
        Worksheets("Layout1").Cells(4, 17) = i          
        Worksheets("DemoLayout1").Cells(11 + age + i, 11) = i 
        Worksheets("DemoLayout1").Cells(11 + age + i, 12) = 
Worksheets("Layout1").Cells(7, 19)  
        Worksheets("DemoLayout1").Cells(11 + age + i, 13) = 
Worksheets("Layout1").Cells(8, 19)  
        Worksheets("DemoLayout1").Cells(11 + age + i, 14) = 
Worksheets("DemoLayout1").Cells(11 + age + i, 10) - 
Worksheets("DemoLayout1").Cells(11 + age + i, 12) 
        Worksheets("DemoLayout1").Cells(11 + age + i, 15) = 
WorksheetFunction.Norm_Dist(Worksheets("DemoLayout1").Cells(8, 10), 
Worksheets("DemoLayout1").Cells(11 + age + i, 14), 
Worksheets("DemoLayout1").Cells(11 + age + i, 13), True) 
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        With Worksheets("DemoLayout1") 
        If .Cells(11 + age + i, 15) <= RL Then  
            .Cells(11 + age + i, 15).Interior.ColorIndex = 3 
            .Cells(11 + age + i, 11).Interior.ColorIndex = 3 
        End If 
        If .Cells(11 + age + i, 15) < (1 - RL) Then 
            .Cells(11 + age + i, 15).Interior.ColorIndex = 2 
            .Cells(11 + age + i, 11).Interior.ColorIndex = 2 
        End If 
        End With 
    Next i 
    For i = 1 To 50 
        With Worksheets("DemoLayout1") 
        If .Cells(11 + age + i, 15) <= RL Then   
            .Cells(5, 17) = .Cells(11 + age + i, 11) 
            Exit For 
        End If 
        End With 
    Next i 
    For i = 1 To 50 
        With Worksheets("DemoLayout1") 
        If .Cells(11 + age + i, 15) < (1 - RL) Then 
            .Cells(5, 18) = .Cells(10 + age + i, 11) 
            Exit For 
        End If 
        End With 
    Next i 
End If 
    
Ende: 
End Sub 
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