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ABSTRACT 

 

The sum of all energy embedded in products and processes used in constructing a building is known as 

embodied energy.  According to the literature, the current state of embodied energy research suffers from 

three major issues. First, there is little agreement on the definition of embodied energy. Second, the 

existing embodied energy data suffers from variation and are regarded as incomplete and not specific to a 

product under study. Third, there are various methods for calculating embodied energy with varying levels 

of completeness and accuracy. According to the literature, the input-output-based hybrid method is the 

most appropriate method but it needs further improvements. Some of the studies also found a positive and 

strong correlation between the cost and embodied energy of a building but this correlation needs to be 

analyzed at a building material or product level. 

This research addressed the three issues identified by the literature. First, using a rigorous literature 

survey, it proposed an embodied energy definition, a complete system boundary model, and a set of data 

collection, embodied energy calculation, and result reporting guidelines. The main goal of proposing the 

guidelines was to streamline the process of embodied energy calculation to reduce variations in embodied 

energy data. Second, three improvements were carried out in the current input-output-based hybrid 

approach, which included process energy data inclusion, human and capital energy integration, and 

sectorial disaggregation to calculate material-specific embodied energy. Finally, the correlation between 

the embodied energy and cost and price was analyzed at a material level. 

The study concluded that an input-output-based hybrid method was the most appropriate method for 

calculating the embodied energy of a building material in a complete manner. Furthermore, 

incompleteness in the results of a process-based method was significant (3.3 to 52% of the total). The 

energy of human labor and capital inputs was up to 15% of the total embodied energy. It was also found 

that the sectorial disaggregation could provide results specific to a material under study. The results of this 

study indicated a strong and positive correlation between the embodied energy and cost (and price) of 

building materials under study.  
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CHAPTER I   

INTRODUCTION 

1.  

The natural capital of the earth is shrinking due to constant and unrestricted anthropogenic resource 

consumption as a result of population growth and increased affluence. Resources such as raw materials, 

fuels, biomass, and water are being drawn at a rate that has outrun the earth’s capacity to replenish them. 

Among the major impacts of this increased resource consumption are increased levels of pollution, 

greenhouse gas emission, waste generation, and land depletion (Hacker et al., 2008; Malla, 2009; 

Kofoworola and Gheewala, 2009). The increased concentration of greenhouse gases in the atmosphere, 

according to experts, has caused severe environmental problems such as global warming leading to 

phenomenon of climate change (Fernández-Solís, 2008).  According to some researchers (Nordhaus, 2010; 

Mendelsohn et al., 2012), among the most pronounced impacts of climate change on the atmosphere is the 

increased frequency of extreme weather events such as hurricanes, tornedos, flash floods, and storms, 

which not only are life-threatening but also have economic, social, and environmental consequences. One 

of the main constituents of greenhouse gases is carbon dioxide (CO2) resulting from resource consumption 

and waste generation (Dietz and Rosa, 1997; Jiang et al., 2008; Alcott, 2012). The consumption of energy 

in activities such as transportation, construction, and building operations is the major cause of global CO2 

emission. According to UNDESA (2011), the global population is projected to reach 10 billion by the end 

of 2050. It is crucial to note that most of this growth will occur in countries which are currently among the 

top contributors to the global CO2 emissions (Marland et al., 2010; EPI, 2010). 

The construction industry consumes enormous amounts of energy (40%) and nonenergy resources such as 

building materials, water (16%), fuels, electricity, and labor annually (Ding, 2004; Langston and 

Langston, 2008). As a result, it also contributes to the CO2 emissions and waste generation. Every year, 

nearly 40% of the global raw stone, sand and gravel supply, and 25% of the virgin wood supply is 

depleted by the construction activities (Ding, 2004; Dixit et al., 2010). The construction and demolition 

waste represented the largest share (40 - 50%) of the total annual waste generated in the United States 

(USEPA, 2009a). The construction sector, particularly the building sector, is responsible for more than 

39% of the United States’ annual carbon emission (USEPA, 2009a).  

Buildings consume energy in their life cycle stages of construction, operation, maintenance, renovation, 

and demolition. The energy is consumed when building materials are manufactured. Construction 

materials extensively used in building construction such as cement, steel, aluminum, and insulation are 

very energy intensive (Chen et al., 2001; Dixit et al., 2010).  When a building is constructed, energy is 

consumed directly in construction processes and indirectly in its constituent materials. The total energy 
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consumed in all products and processes that are used in constructing the building is known as the initial 

embodied energy (Cole and Wong, 1996; Kernan, 1996; Ding, 2004). When the building is occupied it is 

also maintained, renovated, and some of its components are replaced periodically. Such processes also 

consume energy directly and indirectly, which is termed the recurring embodied energy (Ding, 2007; 

Khasreen et al., 2009; Vukotic et al., 2010; Dixit et al., 2010). At the end-of-life phase, the building is 

demolished and its materials are salvaged for reuse, recycling or disposal, consuming direct and indirect 

energy. This fraction of energy is called the demolition energy (Cole, 1996; Cole and Wong, 1996; 

Vukotic et al., 2010). The total life cycle embodied energy is the sum of the building’s initial, recurring, 

and demolition embodied energy (Cole and Wong, 1996; Vukotic et al., 2010). The total life cycle energy 

use of the building constitutes embodied and operating energy. The operating energy is consumed in 

lighting, air-conditioning, and powering building appliances. In the literature (Treloar, 1998; Crawford, 

2004; Pullen, 2007; Dixit et al., 2010), it has been highlighted that for a comprehensive reduction in 

building energy use, a whole life cycle energy accounting should be performed including not only the 

operating but also the embodied energy. Until recently, the focus of building energy research was on 

operating energy assuming that the embodied energy is insignificant. However, recent studies have 

invalidated this assumption and have clearly underscored the significance of embodied energy in the 

whole building energy optimization (Ding, 2004). Due to an increased focus on operating energy, highly 

advanced and energy efficient building systems, controls, appliances, and envelope materials have been 

developed. As a result, the operating energy use of buildings is going down gradually (Ding, 2004; Sartori 

and Hestnes, 2007; Plank, 2008). However, no concrete efforts were made to substantially reduce the 

embodied energy (Dixit et al., 2010). Among the major reasons cited for this by literature (Ding, 2004; 

Pullen, 1996; Miller, 2001; Lenzen, 2000; Dixit et al., 2010) include the unavailability of consistent and 

complete embodied energy data and a lack of an established and standard embodied energy calculation 

method. 

Current embodied energy data of building materials differ across studies. Moreover, these data are 

regarded as incomplete, inaccurate, and inconsistent (Fernandez, 2006; Burnett, 2006; Dixit et al., 2010). 

These issues with embodied energy data make them questionable and practically unusable (Khasreen et 

al., 2009). There are parameters related to embodied energy calculation and energy data quality that cause 

serious variations in embodied energy data. Some of these parameters such as system boundary definition, 

energy inputs, and the embodied energy calculation approach are methodological issues. Completeness, 

inaccuracy, and representativeness of used energy and nonenergy data are among the major data quality 

parameters (Raynolds et al., 2000; Khasreen et al., 2009; Dixit et al., 2012).   

System boundary is a demarcation of a system under investigation (IFIAS, 1975; Peuportier, 2001; Dixit 

et al., 2013). It defines what is included and excluded from a study performing an embodied energy 

calculation. For instance, if the embodied energy of a building is being quantified, a system boundary 
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would delineate all the life cycle stages covered in the calculation. According to literature (Suh et al., 

2004; Dixit et al., 2012a), studies around the globe have been selecting the system boundaries subjectively 

making their calculation results incomparable. Some of the studies performed embodied energy 

calculations and reported their results in primary energy terms, whereas some did it in delivered energy 

terms (Sartori and Hestnes, 2007; Gustavsson and Joelsson, 2010; Ramesh et al., 2010). The primary 

energy, which is the energy extracted from the earth, is quite different from the delivered energy. To 

deliver an energy source for the end use, it is extracted, processed, transported, and distributed. During 

these processes, energy is consumed and lost. Hence, to distribute one unit of delivered energy, more than 

one unit of primary energy is either used or lost (Treloar, 1998; Deru and Torcellini, 2007; Dixit et al., 

2012). For instance, to deliver one unit of electricity, more than three units of primary fuel are burnt. If the 

embodied energy results of the two studies are given in primary and delivered energy forms, they cannot 

be compared before making appropriate adjustments. Another issue that causes significant variations in 

embodied energy values is related to the calculation methods. There are two established methods to 

compute the energy embodied in a building or its materials. The process-based method is accurate and 

provides results specific to the product under study but it is incomplete. The input-output-based method is 

complete but lacks specificity (Plank, 2008; Khasreen et al., 2009; Optis and Wild, 2010). The two 

methods have also been combined to develop hybrid approaches that are complete and more specific to the 

study. However, there is still no method that is standard and globally accepted. The results of these 

methods differ causing variations to embodied energy data (Nebel, 2007; Dixit et al., 2010).  

If no reliable data were available, studies applied secondary data to calculate the embodied energy (Dixit 

et al., 2012). In some cases, the data were sourced from a region entirely different from the region of the 

study. Sometimes, the data sourced is old and does not represent the study temporally (Khasreen et al., 

2009). These issues of data quality also contributed to the variations in embodied energy values. To 

resolve these issues, the literature (e.g., Pears, 1996; Menzies et al., 2007; Frey, 2008; Khasreen et al., 

2009; Dixit et al., 2012a) has clearly pointed out a need to establish a set of guidelines that governs the 

quality of data (representativeness) being used for the energy calculation. A need to propose a globally 

accepted definition and a standard embodied energy calculation method has also been highlighted by 

studies such as Dixit et al. (2012).  

The input-output-based hybrid method is regarded as the most appropriate approach to calculate the 

embodied energy in a complete manner. This method was improved earlier by Treloar (1998) and recently 

by Crawford (2004). They proposed inserting more reliable process data into an input-output model by 

extracting and replacing the comparable monetary data. These approaches are very useful especially when 

reliable energy use data are not available for all industry sectors. However, there is still a margin for 

improvement in the current form of input-output-based approach (Treloar, 1998; Crawford, 2004; 

Acquaye, 2010).  
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A positive and strong relationship of embodied energy and cost has been underlined by the literature (e.g. 

studies such as Bullard and Herendeen, 1975; Costanza, 1980; Cleveland et al., 1984; Ding, 2004; and 

Langston, 2006). The cost of a building is actually found to have a strong positive correlation with its 

embodied energy. This correlation, however, weakens if the analysis is performed at a more detailed level. 

This research focuses on streamlining the process of embodied energy calculation and proposing a method 

to calculate the energy embodied in a building material completely. It also investigates the correlation of 

embodied energy and cost at the individual material level. If a material’s cost or price is positively and 

strongly correlated to its embodied energy, a user-friendly and less resource-consuming approach based on 

cost may be developed in the future.  
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CHAPTER II   

LITERATURE REVIEW
*
 

2.  

2.1 STATE OF RESOURCE CONSUMPTION: DRIVERS 

2.1.1 Context 

Our home, the planet earth, holds finite resources such as raw materials, minerals, fresh water, and fossil 

fuels, which are either shrinking with time or facing a complete depletion in the future (Cairns, 2003; 

Wackernagel et al., 1999). These resources are collectively called the natural capital (Wackernagel et al., 

1999). The question of when these resources will be depleted depends on the current and future rate of 

anthropogenic consumption. The resource consumption is a transformative process in which a resource 

undergoes through physical and chemical changes (e.g. fuel combustion and food digestion). Each process 

of consumption (input) results in an end product (output) such as waste and emissions (Lehmann, 2011). 

For instance, use of raw materials for construction results in construction waste and using fossil fuels for 

energy purposes causes harmful emissions (Hacker et al., 2008; Malla, 2009; Kofoworola and Gheewala, 

2009). An increase in resource consumption could mean more waste, discharge, and emission to land, 

water, and air (Lehmann, 2011; Bruce, 2012).  

Nature has an inherent capacity called the biocapacity to deal with the resource depletion and the resulting 

waste, discharge, and emission (Wackernagel et al., 1999). It replenishes the consumed resources by 

processing the waste through a series of natural cycles. There used to be a balance between the rate of 

consumption and replenishment (Wackernagel et al., 1999; Holdren and Eherlich, 1974), which has been 

disturbed. Currently, the rate of consumption has outrun the rate of replenishment (Wackernagel et al., 

1999; Bruce, 2012). Nature also has an ability to recuperate from an adverse environmental impact as a 

                                                           
*
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result of anthropogenic activities. Brand (2009) discussed the concept of ecological resilience that is 

nature’s ability to return to equilibrium after an environmental disturbance has happened. Nature’s ability 

to absorb and process waste and emissions closely relates to the concept of ecological resilience. 

2.1.2 Drivers  

The two main determinants of the exponentially growing resource use are population and affluence 

(Holdren and Eherlich, 1974; Dietz and Rosa, 1997; Bruce, 2012; Fernández-Solís, 2008; Alcott, 2012). 

The consumption of resources increases with the growing number of people. Also, when people manage to 

afford a higher standard of living due to increased affluence, they consume more goods and services. The 

increased demand for goods and services exerts pressure on the natural capital (Holdren and Eherlich, 

1974; Dietz and Rosa, 1997; Bruce, 2012; Alcott, 2012). Holdren and Eherlich (1974) examined the 

relationship between population growth and environmental burden and proposed an equation to determine 

the environmental disruption caused by anthropogenic activities. According to the equation: 

                            

                                                                                 

Equation 2-1  

 

 
Figure 2-1: Growth in population, GDP, energy use, and resulting carbon emission 
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Dietz and Rosa (1997), Bruce (2012), and Alcott (2012) also supported the relationship of environmental 

disturbance to population growth and affluence as indicated by the above equation. The equation also 

highlights global population and increased affluence as the main drivers of environmental disturbance.  

Figure 2-1shows the growth in global population between 1950 and 2010 based on the data sourced from 

the United Nation’s Department of Economic and Social Affairs (UNDESA, 2011). It is evident that a 

steady growth in global population resulted in an increased energy consumption primarily from fossil fuel 

sources. The emission of carbon mainly due to fossil fuel combustion closely followed the energy use 

curve. It is interesting to note how a steady growth in per capita Gross Domestic Product (GDP) also 

followed the population growth curve closely. A growing GDP indicates an increased demand of goods 

and services (a rise in affluence) resulting in mounting emissions as seen in Figure 2-1.  

The UNDESA also provided the population projections for the future as shown in Figure 2-1. The global 

population, which is over 7 billion currently, is expected to reach 9-10 billion by the end of 2050 (Bruce, 

2012; UNDESA, 2011). With nearly 10 billion people on the earth in 2050, one can imagine the grave 

situation of resource consumption and emission. The most important aspect of the future global population 

is that most of its growth will occur in developing and underdeveloped countries (Bruce, 2012). The 

economy of the world’s most populated countries such as India and China is developing at a faster rate and 

the affluence level is also increasing (Bruce, 2012; Mendelsohn et al., 2012). Imagine how much resources 

would be consumed once the people in these countries attain the same standard of living as the developed 

countries (Fernández-Solís, 2008; Bruce, 2012). Figure 2-2 shows the historic carbon emission trends 

(1950-2009) for four of the top ten carbon emitters of the world (based on Marland et al., 2010; EPI, 

2010). It is scary to see the exponential increase in carbon emission in countries where the maximum 

population growth is projected to occur.  

2.1.3 Greenhouse Gas Emissions 

Among the major impacts of global population increase and rising affluence is the growing concentration 

of anthropogenic greenhouse gases (GHG) such as CO2, methane, and nitrous oxide in the atmosphere 

(Dietz and Rosa, 1997; Jiang et al., 2008; Alcott, 2012). A fraction of the emitted carbon is absorbed by 

the ocean and biomass (e.g. plants) and the remaining fraction is released to the atmosphere in a naturally 

occurring carbon cycle. Although the carbon cycle remained mostly balanced in the distant past, after the 

industrial revolution a significant rise in CO2 levels (36%) has disturbed its equilibrium (USEPA, 2011p). 

One of the major impacts of an increased level of GHG, particularly CO2, in the atmosphere is global 

warming leading to the phenomenon of climate change (Nordhaus, 2010; Mendelsohn et al., 2012; Bruce, 

2012). 

 



 

8 

 

 

 

Figure 2-2: Top carbon emitters of the world and carbon emissions 

IPCC (2007a) reported that the global CO2 concentration in the atmosphere has increased from 280 ppm in 

the preindustrial era to 379 ppm in 2005. Three signs of global warming are evident. First, the surface 

temperature of the earth has increased by 1.33
o
F (± 0.32

 o
F) in the last century (IPCC, 2007a). Second, an 

increase of 1.8 and 3.1 mm per year in the average sea level of the globe has been recorded between 1961 

to 2003 and 1993 to 2003 respectively (IPCC, 2007b). Third, an annual average decrease of 2.7% (7.4% in 

summer) in Arctic sea ice has been recorded (IPCC, 2007b). These evidences are enough to suggest a slow 

but steady warming of the planet. The current trend of global warming if it continues would cause intense 

ecological, social, and economic damages in the future (Urge-Vorsatz and Metz, 2009). According to 

Mendelsohn et al. (2012) and Nordhaus (2010), increased occurrences of extreme weather events such as 

hurricanes and storms were mainly due to the climate change. They also warned that these weather events 

would be more intense and frequent in the future.     

2.1.4 Energy Use and Carbon Emissions 

The primary source of CO2 emission is the use of fossil fuels for energy purposes (IPCC, 2007a). As 

reported by USEPA (2011p), nearly 95% of the United States’ total CO2 emissions, between 1990 and 

2009, were a result of fossil fuel combustion for electricity production, transportation, residential and 

commercial operation, and manufacturing purposes. In 2009, nearly 42% and 33% of the total CO2 

emissions was attributed to electricity production and transportation, respectively. Malla (2009) revealed 

that the share of electricity production in the total global CO2 emissions has increased from 36% in 1990 

to 41% in 2005. Moreover, this share was projected to reach 45% by the end of 2030. These values clearly 

underlined power generation as the major source of carbon emissions.  The population projection, as 
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shown in Figure 2-1, clearly demonstrated that with the growing population and affluence, the demand for 

electricity and fuel (mostly fossil fuel) would also build up leading to more carbon emissions to the 

atmosphere.  

How do we address the issue of mounting CO2 concentration in the atmosphere? The answer lies in the 

equation proposed by Holdren and Eherlich, (1974). A controlled population growth, optimized per capita 

consumption, and improved levels of efficiency in production could bring in significant environmental 

benefits.  In order to control the current and future rate of environmental degradation, it is critical that a 

balance between natural capital consumption and replenishment is gradually restored and the earth’s 

ecological resilience is reinforced.  

2.2 CONSTRUCTION INDUSTRY AND ENVIRONMENT 

2.2.1 Raw Material Consumption 

The construction industry is one of the largest consumers of renewable and nonrenewable resources (Palit, 

2004; Horvath, 2004; Holtzhausen, 2007; Dixit et al., 2010). It depletes 40% of global energy and 16% of 

global water annually. Every year, nearly two-fifths of the global raw stone, sand and gravel supply, and 

one-fourth of world’s total virgin wood supply is consumed in construction activities (Ding, 2004; 

Langston and Langston, 2008; Dixit et al., 2010). In the United States, between 1975 and 2003, the use of 

construction materials such as steel and cement increased by 108 and 57%, respectively (USGS, 2013). 

Table 2-1 lists the percent growth in the use of common construction materials in the United States.  

According to a study (Matos, 2009) conducted by the United States Geological Survey (USGS), the use of 

total raw materials reported in 2006 was over 26 times the consumption in the year 1900. This increase 

was 4.7 times more than the growth of the United States’ population in the last century (CSS, 2012).  

Figure 2-3 illustrates the exponential rise in raw material consumption in the United States in the last 106 

years. It is evident that construction materials held the largest share of the total raw material use. It is 

interesting to note that the only time the raw material use actually declined was during the events of 

adverse economic impacts such as a war, energy crisis, or an economic recession. Nearly 12% of the total 

material consumed annually was discharged as trash and 40% was released to the atmosphere (CSS, 

2012). Disappointingly, only 5% of the total material consumption was recycled (CSS, 2012).  

 

Table 2-1: Percent increase in the use of common construction materials 

Duration 
Percent Increase in Consumption: United States Construction Industry 

Gypsum Aluminum Steel Cement Lime Sand & Gravel Copper 

1975-2003 223.0% 12.1% 74.2% 76.8% 114.5% 67.9% 148.9% 

1991-2003 107.3% 18.2% 107.7% 56.6% 112.7% 63.8% 33.0% 
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A comparable growth in building construction was also recorded. A 94% increase is reported in the total 

number of building permits issued in the United States between 1990 and 2006 (USCB, 2012). Likewise, 

the value of total construction put in place rose by over 140% between 1993 and 2006 (USCB, 2013).  

 

 

Figure 2-3: Total raw material use in the United States by categories 

 

Table 2-2: Composition of building-related C&D waste 

Material Fraction in the total C&D waste 

Concrete and rubble mix 40-50% 

Wood 20-30% 

Drywall 5-15% 

Asphalt (roofing) 1-10% 

Metals 1-5% 

Bricks 1-5% 

Plastics 1-5% 

 

2.2.2 Waste Generation 

Use of raw materials in such enormous quantities also resulted in construction and demolition (C&D) 

waste. Most of the C&D waste came from the building and non-building sectors (e.g., heavy civil, 

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

1
9

0
0

1
9

0
5

1
9

1
0

1
9

1
5

1
9

2
0

1
9

2
5

1
9

3
0

1
9

3
5

1
9

4
0

1
9

4
5

1
9

5
0

1
9

5
5

1
9

6
0

1
9

6
5

1
9

7
0

1
9

7
5

1
9

8
0

1
9

8
5

1
9

9
0

1
9

9
5

2
0

0
0

2
0

0
5

R
a

w
 m

a
te

r
ia

l 
u

se
(m

il
li

o
n

 m
e
tr

ic
 t

o
n

s)
 

Year 

Agricultural Wood Paper & Particleboard Primary Metals

Recycled Metals Industrial Minerals Construction Materials Nonrenewable Organics



 

11 

 

 

transportation, energy). Table 2-2 provides a composition of building-related C&D waste generated each 

year (USEPA, 2012). 

On an average, a total of 160 million tons of building-related C&D waste is accumulated each year in the 

United States (USEPA, 2009a). Approximately half (48%) of the total C&D waste comes from building 

demolition activities. Building renovation and new construction activities constitute 44% and 8% of the 

total building-related C&D waste, respectively (USEPA, 2009a). Table 2-3 presents the amounts of 

building-related C&D waste reported by the USEPA for 1998 and 2003. The yearly estimate of the total 

C&D waste was not available, and the USEPA reported estimates for only 1998 and 2003 (Cochran and 

Townsend, 2010). Each year roughly 170,000 buildings are constructed and 45,000 buildings are 

demolished in the commercial sector (USEPA, 2009a). In the residential sector, nearly 245,000 buildings 

are demolished annually (USDOE, 2001). According to an online article by Granger (2009), the total 

building and non-building-related C&D waste could add up to 300 million tons each year.  

 

Table 2-3: 1998 and 2003 building-related C&D waste (USEPA, 1998 and 2009b) 

Study Year Type of Building Construction (lb/ft2) Renovation (million tons) Demolition (million tons) 

1998 
Residential 3.89 19.70 31.90 

Non-residential 4.27 45.10 28.04 

2003 
Residential 4.39 19.00 38.00 

Non-residential 4.34 65.00 29.00 

 

2.2.3 Greenhouse Gas Emission 

The building sector alone is responsible for 33% of the total global carbon emissions (Urge-Vorsatz and 

Novikava, 2007; Marszal et al., 2010). In the United States, buildings alone release roughly 39% of the 

total CO2 emission 21% of which comes from residential buildings (USEPA, 2009a). Levermore (2008) 

reported that, between 1971 and 2002, the annual growth rate in building-related carbon emissions was 1.4 

and 2.2% for the residential and commercial sectors, respectively. By the end of 2030, the emissions from 

building sector were projected to grow by nearly 72% from its 2002 levels (Levermore, 2008). Most of the 

carbon emission released by a building came from fossil fuel combustion. on-site. The total greenhouse 

gas emission resulting from a construction site in 2002 was 131 million tons of CO2 equivalent and 100 

million tons of that was attributed to fossil fuel combustion (USEPA, 2008; Zhu et al., 2010). Figure 2-4 

illustrates the pattern of CO2 emissions from various energy sources used in the residential and 

commercial sectors. As mentioned earlier, a decreasing trend in the emissions was probably due to the 

reduced energy use and economic activities during the economic meltdown.  
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According to the 2002 Economic Census (USCB, 2005), the use of electricity and natural gas in the 

United States’ construction industry has increased by 130% and 23%, respectively between 2002 and 

2007. As the electric power sector still remains the biggest contributor (33-34%) to the nation’s total CO2 

emissions, any increase in electrical demand would raise carbon emission proportionally (USEPA, 2013). 

For instance, in 2006, a 2.5% increase in electricity demand resulted in a 3% increase in CO2 emissions 

from the electric power sector (USDOE, 2008). Most of the values provided in the literature discussed so 

far included emissions resulting from only the direct use of energy (e.g., air-conditioning, lighting, 

powering building appliances). The indirect use of energy (e.g. energy of building materials and products) 

is seldom included in the calculation of emissions. 

 

 

Figure 2-4: Carbon emissions from various energy sources 

2.3 ENERGY USE IN BUILDINGS 

Buildings consume nearly 40% of global energy annually in their life cycle stages of construction, use, 

maintenance, and demolition. The energy is consumed by buildings directly or indirectly in a primary 

(e.g., natural gas, oil) or delivered (e.g. electricity) form (Dixit et al., 2010; Marszal et al., 2010). In the 

United States, the residential structures deplete an average 55% of the total primary energy consumed by 

the entire building sector each year (Otto et al., 2010). In the developing countries, the situation of energy 

consumption is grave. In China, the residential building sector is responsible for 20-27% of the nation’s 

total energy consumption and if the building material production and construction processes are included, 
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this figure reaches up to 37% (Xie, 2011). Gupta (2009) has revealed that the energy consumed in 

operating a building in the United Kingdom represented roughly 50% of the nation’s energy. This figure 

for a rapidly developing country such as India could be roughly 30% of the total national energy 

consumption. However, the situation could turn grave when the percentage of population currently living 

in urban areas jumps from 28% to 40% by the end of 2020 (Gupta, 2009). Moreover, the construction 

industry in India is currently growing at a 9.2% rate annually, which is nearly two times the global growth 

rate of 5.5% (Gupta, 2009). 

2.3.1 Life Cycle Energy Components: Embodied and Operating Energy 

The total energy consumed by a building over its service life is known as life cycle energy. The total life 

cycle energy is composed of two primary components: operating and embodied energy (Treloar, 1998; 

Hegner, 2007). During the use phase when the building is occupied, energy sources such as electricity and 

natural gas are used in the processes of space conditioning, lighting, and powering building appliances. 

This fraction of energy is called operating energy (Crowther, 1999; Hegner, 2007; Dixit et al., 2010). 

Electricity and fuels such as oil, natural gas, and coal are also consumed when not only the building but 

also its constituent materials are manufactured and delivered. This fraction of energy remains sequestered 

in the final product when the product is delivered for the end use. The total energy embedded in all 

products and processes that are used in constructing a building is known as embodied energy.  

2.3.1.1 Embodied Energy: Definition and Interpretation 

Buildings are constructed with a variety of building materials, each of which consumes energy throughout 

its life cycle stages of manufacture, use, deconstruction, and disposal. The energy consumed in these 

stages is known as the embodied energy of a building material (Vukotic et al., 2010; Dixit et al., 2010). 

Similarly, each building also consumes energy during its life cycle stages such as initial construction, use 

and maintenance, renovation, demolition, and disposal. Energy is also expended in various administration 

and transportation processes during the preconstruction phase. Post construction phases such as 

maintenance, renovation, demolition, and disposal also consume energy. The total energy consumed in all 

of these life cycle stages is collectively interpreted as the life cycle embodied energy of a building (Cole 

and Kernan, 1996; Vukotic et al., 2010).  

According to Miller (2001), the term “embodied energy” is subject to numerous interpretations rendered 

by different authors and its published measurements are found to be quite unclear. Table 2-4 presents 

embodied energy definitions given by various research studies. Studies such as Hegner (2007) and Upton 

et al. (2008) defined embodied energy as the nonrenewable fraction of the total embodied energy. Clearly, 

current embodied energy definitions represent differences of opinion about the material and energy inputs 

to be included in an energy analysis (Hegner, 2007; Nebel, 2007). The embodied energy of a building is 
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made up of two major components: direct energy and indirect energy (Treloar, 1998; Crawford and 

Treloar, 2003; Crawford et al., 2006; Khasreen et al., 2009; Dixit et al., 2010). 

 

Table 2-4: Embodied energy definitions 

Source Embodied Energy Definition Provided 

Crowther (1999) 

“The total energy required in the creation of a building, including the direct energy used in 

the construction and assembly process, and the indirect energy, that is required to 

manufacture the materials and components of the buildings.” 

Treloar et al. (2000) 

“Embodied energy (EE) is the energy required to provide a product (both directly and 

indirectly) through all processes upstream (i.e. traceable backwards from the finished 

product to consideration of raw materials).”  

Dewick and Miozzo 

(2002) 

“The total amount of energy used in the raw materials and manufacture of a certain quantity 

of material.” 

Sartori and Hestnes 

(2007) 

“The sum of all the energy needed to manufacture a good. It may or may not include 

feedstock energy. Generally expressed in term of primary energy.” 

Li et al. (2007) 

“Embodied energy is the total energy embodied in construction materials during extraction, 

manufacturing, transportation, assembly, maintenance, demolition, and final disposal 

processes.” 

Crawford et al. (2006) 

“The embodied energy of an entire building, or a building material or product in a building, 

comprises of indirect and direct energy. Indirect energy is used to create the inputs of goods 

and services to the main process, whereas direct energy is the energy used for the main 

process.” 

HUB (2009) 

“Embodied energy is the sum total of the energy used in a product from raw material 

extraction and transport to manufacturing, installation, use, disassembly, recycling and 

disposal and/or decomposition.” 

Crawford et al. (2010) 

“Embodied energy accounts for the energy associated with the manufacture of products and 

materials including those resulting from the manufacture of goods and services used during 

this process.” 

Uzsilaityte and 

Maitinaitis (2010) 

“Embodied energy is the amount of energy consumed to create a product, material or 

service.” 

Ramesh et al. (2010) 

“Embodied energy is the energy utilized during manufacturing phase of the building. It is 

the energy content of all the materials used in the building and technical installations, and 

energy incurred at the time of erection / construction and renovation of the building.” 

 

Direct Energy: Energy consumed directly in on-site and off-site operations such as construction, 

prefabrication, assembly, transportation, and administration is termed direct energy (Fay and Treloar, 

1998; Ding, 2004; Dixit et al., 2010). For instance, electricity consumed by stone cutters and drilling 

machines and oil used by earthmovers and other heavy equipment is a direct consumption of energy. 

When a building is occupied it is also maintained, and some of its components are replaced periodically 

(Cole, 1996; Ding, 2007; Dixit et al., 2012b). For example, carpet change, repainting of walls, repair of 

any physical damage, and building system maintenance are maintenance and replacement activities. Direct 

energy is used when these activities are performed during a building’s service life (Chen et al., 2001; 

Ding, 2007; Utama and Gheewala, 2009). At the end-of-life stage, when the building is dismantled and its 

materials and products are salvaged, electricity and fuels are consumed as direct inputs (Crowther, 1999; 
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Miller, 2001; Dixit et al., 2010; Vukotic et al., 2010). All of these energy inputs that are used directly are 

categorized as direct energy. 

Indirect Energy: Energy used indirectly by a building through nonenergy inputs is known as an indirect 

component. For instance, energy spent in manufacturing the building materials, assemblies, and equipment 

installed in the buildings is considered an indirect component (Boustead and Hancock, 1978; Treloar, 

1998; Crawford, 2004; Dixit et al., 2010; Marszal et al., 2010). A fraction of manufacturing energy of 

machines, equipment, and apparatus utilized to manufacture materials is also accounted for as an indirect 

energy component (Buchanan and Honey, 1994; Fay, 1999; Hammond and Jones, 2008; Hammond and 

Jones, 2010; Dixit et al., 2012a). Major quantities of materials, assemblies, and equipment are mainly 

utilized during a building’s initial construction. However, during the use phase, these products may also be 

consumed in the processes of maintenance and replacement. Therefore, a considerable portion of the 

indirect energy component may be spent during a building’s the use phase (Cole, 1996; Dixit et al., 2013).  

2.3.2 Life Cycle Energy Model 

The total life cycle energy used by a building includes direct and indirect components of embodied and 

operating energy. This energy use is distributed among three major stages of the life cycle: construction, 

use, and end-of-life stage. Figure 2-5 shows an embodied energy model and illustrates the energy use 

associated with each of the three stages. The energy used in manufacturing building materials, assemblies, 

and equipment and in processes such as construction, installation, fabrication, transportation, and 

administration during a building’s construction stage is collectively termed the Initial Embodied Energy 

(IEE) (Cole, 1996; Cole and Wong, 1996; Dixit et al., 2010; Vukotic et al., 2010; Dixit et al., 2013). The 

Recurrent Embodied Energy (REE) includes energy used in maintenance and replacement activities during 

the use phase of a built facility. At the end of its service life, when a facility is demolished and its 

materials are transported for reuse, recycling, and disposal, the total energy consumed is known as 

Demolition Energy (DE) (Cole, 1996; Cole and Wong, 1996; Dixit et al., 2010; Vukotic et al., 2010; Dixit 

et al., 2013). The total life cycle embodied energy (LCEE) of a building is the sum of its initial, recurrent, 

and demolition energy. The total life cycle energy (LCE) of a built facility includes LCEE and operating 

energy (OE) (Cole, 1996; Cole and Wong, 1996; Dixit et al., 2010; Vukotic et al., 2010; Dixit et al., 2013). 

2.3.2.1 Initial Embodied Energy (IEE) 

The IEE is composed of the total energy used during the building material production and building 

construction phase (Cole, 1996; Cole and Wong, 1996; Vukotic et al., 2010; Dixit et al., 2010). In the 

material production phase, the upstream processes such as raw material extraction, treatment, and 

transportation to production unit are quite energy intensive. The main production process involves use of 

both the electricity and fuels. Fuels are used both as an energy source and as a feedstock material. In the 

downstream, energy is expended when the final product is delivered to a construction site or a material 
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supplier. During construction phase, on-site and off-site processes such as material delivery, storage, 

construction, fabrication, administration, and project closeout also consume energy. The sum of all energy 

spent in delivering a building as a final product is known as IEE (Cole, 1996; Cole and Wong, 1996; 

Vukotic et al., 2010; Dixit et al., 2010). 

 

 

Figure 2-5: Embodied energy model for a building 

Building Material Production Stage: The process of manufacturing building materials and products 

consumes energy and nonenergy inputs such as electricity, fuel, raw materials, and water (Thormark, 

2000; Dixit et al., 2013). The overall manufacturing is completed in three main stages: main 

manufacturing, upstream, and downstream.  In the main production stage, direct (energy inputs) and 

indirect energy (nonenergy inputs) are used both as an energy source and as a feedstock material (Trusty, 

2006; Sartori and Hestnes, 2007; Ardente et al., 2008). Petroleum products such as oil and natural gas are 

utilized not only for energy purposes but also as a raw material in producing, for instance, petrochemical 

and plastic products. All of the on-site and off-site transportation related to manufacturing is also 

considered a direct energy input (Ding, 2004; Dixit et al., 2013). In the upstream stage, the processes of 
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raw material extraction, treatment, handling, storage, and transportation to the manufacturing unit also 

deplete energy and nonenergy sources that are counted as well (Cole, 1996; Ding, 2004; Vukotic et al., 

2010). In the downstream of the main production process, when a finished product is packaged, labeled, 

stored, and transported to a construction site or a material supplier, energy is consumed directly and 

indirectly (Cole, 1996; Cole and Wong, 1996; Ding, 2004; Dixit et al., 2013). In some cases, the delivery 

of finished building materials to their destination could be quite energy intensive depending on the 

distance and mode of transport (Ding, 2004). 

The sum of all energy used up directly and indirectly in the main production, upstream, and downstream 

processes until the final product reaches its destination is considered building materials’ production 

energy. The energy of material production represents the largest share of a building’s total LCEE (Chen et 

al., 2001; Scheuer et al., 2003; Vukotic et al., 2010). In an analysis of two high-rise residential buildings in 

Hong Kong, Chen et al. (2001) concluded that the manufacturing energy shared up to 90-92% of a 

building’s total LCEE. In a similar study of a six-story university building done by Scheuer et al. (2003), 

the total energy embodied in material production was found to be nearly 94% of the total LCEE 

(excluding construction and transportation). In Sweden, a study by Adalberth (1997b) found that nearly 

64-65% of the total LCEE (over 50 years’ service life) of three prefabricated single-family dwellings came 

from building materials’ production. Similarly, Leckner & Zmeureanu (2011) studied a base case and a 

net-zero energy version of a two-floor house in Canada and found the share of building materials as 70% 

of the total LCEE over 40 years’ service life. They used embodied energy data from Athena Impact 

Estimator developed by the Athena Sustainable Materials Institute. The proportions of building material 

manufacturing energy in the total LCEE calculated by Chen et al. (2001) and Scheuer et al. (2003) are 

higher than the ones calculated by Adalberth (1997b) and Leckner and Zmeureanu (2011). The value 

calculated by Scheuer et al. (2003) also included building materials used during replacement and 

maintenance processes over 75 years’ service life, whereas Chen et al. (2001) did not include building 

systems in the maintenance and replacement phase. As mentioned earlier, the most commonly-used 

materials such as aluminum, steel, and plastics have a higher embodied energy.  Table 2-5 shows the 

energy embodied in some of the commonly used building materials. Building materials such as cement 

(7.8 MJ/kg), glass (16-17 MJ/kg), plastics (70 MJ/kg), and insulation materials (16-105 MJ/kg) are quite 

energy intensive and contribute significantly to a building’s IEE (Chen et al., 2001; Dimoudi and Tompa, 

2008).  

It can be seen that there is a considerable variation in the reported values of embodied energy. Energy 

intensive materials such as aluminum and polystyrene insulation have a wider embodied energy range of 

130-379 MJ/kg and 58-116 MJ/kg, respectively. The embodied energy of one of the most widely used 

materials such as timber, ranged from 1.7-22.6 MJ/kg. According to Dixit et al. (2010), the embodied 
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energy of most building materials differed across studies even within the same geographic location and 

time.  

 

Table 2-5: Embodied energy of commonly used building materials as reported in literature 
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Honey & Buchanan (1992) 34.9 129.5 8.9 31.5 96.0 23.0 

  

3.1 18.9 1.7 0.3 

 

100.0 

Kernan (1996) 28.0 274.0 

 

18.7 

  

9.8 2.5 0.8 

 

9.9 0.3 

 

105.0 

Adalberth (1997a) 32.0 

  

26.0 88.7 

 

8.6 

 

2.0 

 

5.2 

  

106.7 

Blanchard & Reppe (1998) 37.3 207.8 

 

18.4 77.4 24.5 3.8 4.5 1.6 8.3 5.8 0.9 3.2 100.3 

Eaton Et al. (1998) 25.5 200.0 

    

2.7 5.8 0.8 

 

13.0 

   Chen et al. (2001) 32.0 191.0 7.8 16.1 70.0 30.3 8.6 2.5 1.0 18.9 5.2 0.1 3.3 105.0 

Alcorn (2003) 31.3 192.0 6.2 15.9 60.9 32.1 7.4 2.7 0.9 11.9 2.8 0.4 4.3 58.4 

Scheuer et al. (2003) 30.6 207.0 3.7 6.8 60.7 17.6 0.9 2.7 

  

10.8 0.2 

 

94.4 

Reddy (2004) 42.0 236.8 4.2 

    

1.4 

      Almeida et al. (2005) 10.1 160.2  18.4   4.0  1.1  0.7   100.4 

Yohanis & Norton (2006) 42.0 236.8 5.9 25.8 

          Pullen (2007) 55.5 378.5 6.6 83.6 121.5 

 

13.3 5.4 2.4 11.9 22.6 1.7 

  Crawford (2004) 97.5 259.1 14.5 

 

141.8 

         Huberman & Pearlmutter (2008) 35.0 211.0 

 

18.0 

    

1.2 

    

116.0 

Hammond & Jones (2008) 35.3  4.6 15.0     1.0 15.0 8.5    

Hammond and Jones (2011) 31.3 218.0 5.2 15.0 70.6 28.0 3.5 3.0 2.9 13.6 7.1 0.1 3.3 100.1 

Ramesh et al. (2013) 28.2 236.8 6.7 25.8 158.0 

          

The energy embodied in building materials is also dependent upon the type of construction such as a 

wood, steel, or concrete frame. Table 2-6 shows a comparison of embodied energy of various types of 

residential construction in different environments across the globe. According to the studies presented in 

Table 2-6, a reinforced concrete construction with brick masonry is the most energy intensive 

construction. It is critical to note that in the most populated regions of Asia, the conventional type of 

construction is a reinforced concrete frame with brick masonry (Ramesh et al., 2013). In an analysis of a 

conventional multi-family residential building in India, Ramesh et al. (2013) found that steel (34%), 

cement (25%), and bricks (24%) accounted for most of the building’s total embodied energy. It is also 

interesting to note that the dwellings constructed in a vernacular style and with locally available materials 

tend to have a smaller embodied energy value. Most of the vernacular materials produced locally involve 

more human labor than mechanical energy.  

A comparative analysis of steel and concrete frame buildings performed by Guggemos and Horvath (2005) 

revealed that the embodied energy of material production can be up to 77 - 86% of their LCEE. In a recent 
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study, Vukotic et al. (2010) analyzed the structure of steel and timber frame buildings and calculated the 

embodied energy of building materials as 79 - 88% of the total LCEE.  

 

Table 2-6: Residential buildings' embodied energy in different locations and environments 

Study Location Environment Material EE (MJ/m2) 

Almeida et al. (2005) Portugal Heating & Cooling 

Dominated (Temp Range: - 

3.5 to 35oC) 

Concrete & Timber with 

Sun-space & Trombe 

Wall 

5.3 

Almeida et al. (2005) Portugal Heating & Cooling 

Dominated (Temp Range: - 

3.5 to 35oC) 

RC & Brick with Sun-

space & Trombe Wall 

9.9 

Huberman & Pearlmutter 

(2004) 

Israel Desert Soil-cement Bricks with 

Insulation 

1.1 

Huberman & Pearlmutter 

(2004) 

Israel Desert Fire Bricks with 

Insulation 

3.8 

Renping & Zhenyu (2006) China Hot-humid, Earthquake Prone Vernacular: Stone, Wood, 

& Concrete 

1.9 

Renping & Zhenyu (2006) China Hot-humid, Earthquake Prone Vernacular: Wooden Log 

House 

0.2 

Renping & Zhenyu (2006) China Hot-humid, Earthquake Prone Vernacular: Brick & 

Concrete 

3.1 

Fossdal & Edvardsen (1995) Norway Cold Timber Frame House 2 

Fossdal & Edvardsen (1995) Norway Cold Log House 1.8 

Reddy & Jagdish (2003) India  RC Frame & Burnt Brick 4.2 

Reddy & Jagdish (2003) India  Brick Masonry & RC Slab 2.9 

Reddy & Jagdish (2003) India  Stabilized Mud Blocks 1.6 
Note: RC indicates reinforced concrete, EE denotes embodied energy 

 

Table A1-26 in Appendix A1 provides values of building material embodied energy reported by studies 

across the globe. As expected, embodied energy values differed considerably not only across different 

regions but also within the same region owing to a wide range of building and environmental parameters. 

The values calculated by Treloar et al. (2001b) and Duell and Martin (2005) are higher possibly due to a 

more comprehensive calculation method. Both the studies utilized data from the input-output-based hybrid 

approach proposed by Treloar (1998), which is considered relatively complete than the available process-

based approaches. Utama and Gheewala (2008) calculated smaller embodied energy due to a narrow scope 

of study that covered only building enclosure in the calculation. This points out differing scopes of studies 

and different calculation methods as other parameters that may cause variation in a building’s embodied 

energy.  

Strategies such as reuse and recycling could significantly lower the energy of manufacturing building 

materials (Chen, 2001; Thormark, 2001; Gao et al., 2001; Worth, 2007; Dixit et al., 2013). According to 

Chen et al. (2001), the use of recycled steel (EE: 10 MJ/kg) and aluminum (EE: 8 MJ/kg) can save up to 



 

20 

 

 

70 - 96% of the manufacturing energy of virgin steel (EE: 32 MJ/kg) and primary aluminum (EE: 191 

MJ/kg). Two types of recycling occur at this stage. A material can be recycled through a postconsumer or 

pre-consumer recycling. A postconsumer recycling involves obtaining a recycled material from a source 

external to the industry meaning the material is recycled after a consumer has already used it. Such a 

recycling across industries is also known as what Treloar et al. (2003) and Thormark (2002) have defined, 

an open loop recycling. In the pre-consumer recycling, recycled materials are sourced within the 

manufacturing industry. In this case, the material has not reached its final consumer before being recycled. 

Pre-consumer recycling is also termed closed loop recycling (Thormark, 2002; Treloar, 2003; Meil et al., 

2004). At least 60% of the total manufacturing energy can be conserved by using recycled materials (Chen 

et al., 2001). 

Transportation Energy: The finished building materials are transported from the manufacturing unit to a 

construction site or material supplier, which may be located in the same country or overseas. Hence, 

building materials could be distributed locally, imported from a foreign country, or exported to other 

locations involving a variety of transportation modes and consuming a wide range of energy sources 

(Peuportier, 2001; Chen et al., 2001; Miller, 2001; Lucuik et al., 2006). Building materials and products 

may be hauled to their point of use by surface (road and rail), water (boats and ships), or air transportation 

depending on the destination (Peuportier, 2001; Chen et al., 2001). According to Fay (1999), the energy 

used by sea vessels may be just 10% of the energy used in air transportation. Studies such as Chen et al. 

(2001) reported that energy use in domestic surface transportation of building material could be negligible, 

whereas exporting or importing building products could be very energy intensive. However, in an analysis 

of a modular home, Kim (2008) found that the energy consumed in domestic transportation of materials 

was nearly 8% of its total embodied energy. Peuportier (2001) questioned whether a return trip should be 

counted in the calculation, particularly in the case of a one-way trip delivery, as it is most likely that the 

delivery vehicle (e.g. trucks) may return empty.  Eventually, only half of the return distance was included, 

as chances of trains and ships returning empty are highly unlikely. Miller (2001) reported that if the return 

distance and road infrastructure are considered, the energy embodied in transporting building materials 

may increase drastically.   

The fraction of energy embodied in material transport is widely debated in the literature. Fay (1999) cited 

Miller (1996) who determined that the transportation energy consumed in a building was roughly 6% of 

the total LCEE.  Later, Miller (2001) determined that the transportation energy was 1 - 1.5% of the total 

life cycle embedded energy (based on published data) and it could increase if the energy of return trips, 

vehicle manufacture, construction of roads, and other transport infrastructure were included. Whether to 

include the indirect fraction of energy associated with the transport infrastructure, automobile production, 

and labor in the transport energy calculation is still a contentious issue. Chen et al. (2001) found a larger 

value of transportation energy (7% of the LCEE) due to inclusion of surface and sea transportation of 
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imported building materials. They also concluded that the energy embedded in surface transportation was 

negligible. This is particularly true in the case of Hong Kong where most raw materials come from 

overseas. Worth et al. (2007), on the other hand, excluded the transport energy of imports from the 

embodied energy calculations. Kim (2008) found a higher energy of transport as 7% of the total LCEE due 

to inclusion of both the material and employee transportation. This opens a new topic of debate, whether 

energy of transporting materials should be mixed with the transportation energy spent during the 

construction stage (Vukotic et al., 2010).  

Fay (1999) concluded that the amount of transportation energy depends on a variety of factors such as 

travel distance, type of vehicle and fuel, number of trips, truck payloads, traffic conditions, road 

conditions, and competence of vehicle drivers. According to Vukotic et al. (2010), energy of transport for 

materials such as sand and gravel could be much higher than their production or procurement energy. 

Vukotic et al. (2010) cited a study performed by Reddy and Jagdish (2003), who determined that in the 

case of some construction materials, the transportation energy was considerably higher. Figure 2-6 

illustrates production and transportation energy embodied in some of the construction materials. It can be 

seen that for materials such as sand and aggregates, the energy embodied in transportation was much 

higher than the production energy. Even for materials such as burnt clay bricks, the energy of transport 

was 4 - 8% of its manufacturing energy. Note that the production energy of burnt clay bricks, Portland 

cement, and steel was much higher and it is not shown completely in Figure 2-6 in order to show relatively 

lower transportation energy. Another reason for the differing energy of transportation is that some 

materials such as sand, gravel, stone, and bricks (70-100 km) may be sourced locally using trucks, whereas 

materials such as aluminum, steel, insulation, and plastic may be delivered from a long distance using rail 

transport (400-500 km) (Reddy and Jagdish, 2003). Trucks consuming diesel to haul much smaller 

quantities of materials than a train usually consume more energy per unit of material delivered (Reddy and 

Jagdish, 2003). Transportation energy can be much higher in the case of reused or recycled material due to 

relatively lower manufacturing energy (Chen et al., 2001; Vukotic et al., 2010). Chen et al. (2001) found 

that the fraction of energy of transporting recycled steel and aluminum was much higher.  

Figure B1-1 in Appendix B1 shows values of transportation energy as a percentage of the total material’s 

embodied energy calculated by various studies around the globe. As discussed earlier, transportation 

energy values associated with building material transport vary considerably (actual and percent values 

with a standard deviation of 0.2 and 7.8, respectively). Table 2-7 lists average transportation energy values 

calculated by published literature. The average values vary with a range of 0.01 - 0.66 GJ/m
2
 and a 

standard deviation of 0.18.  

Construction Energy: The construction energy is consumed mainly in on-site and off-site construction, 

installation, fabrication, transportation, and construction administration activities (Cole, 1999; Pullen, 
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2000a; Vukotic et al., 2010; Dixit et al., 2013). Resources such as labor, materials, equipment, and 

construction vehicles that are transported, maintained, and used during the construction phase deplete 

energy directly and indirectly (Cole, 1999; Vukotic et al., 2010). For instance, diesel burnt by an earth 

moving machine is a direct energy use, whereas the energy consumed in manufacturing the machine 

represents the indirect energy component. The food consumed by labor is a direct consumption, whereas 

the energy used to prepare the food and to keep the human body fit for work is an indirect consumption 

(Cleveland and Costanza, 2008; Alshboul and Azoubi, 2008; Dixit et al., 2013). In some geographic 

locations, conventional construction processes are labor intensive involving considerable amount of 

human energy (Huberman and Pearlmutter, 2008; Alshboul and Azoubi, 2008). Therefore, the total 

construction energy should be calculated as a sum of human and mechanical energy (Dixit et al., 2013). 

However, Gao et al. (2001) mentioned that human energy may be much smaller than mechanical energy. 

They also quantified that one liter of diesel is equivalent to two laborers working over six days. Pullen 

(2000a) found that at least 3% of construction energy can be attributed to labor and 28% to equipment. 

Current embodied energy methods fail to include the human energy component of total embodied energy 

(Langston and Langston, 2007) into the calculations. Moreover, a clear and straightforward method to 

estimate human energy is still lacking (Langston and Langston, 2007; Pulselli et al., 2009). 

 

 

Figure 2-6: Higher transportation energy of some construction materials 
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Table 2-7: Average embodied energy of materials and transportation energy 

Energy Values in GJ/m2 

Study Materials Embodied Energy Transportation Energy 

Adalberth (1997b) 3.00 0.13 

Sattler & Sperb (2000) 1.21 0.07 

Chen et al. (2001) 4.48 0.51 

Chulsukon et al. (2002) 3.04 0.17 

Thormark (2002) 5.17 0.20 

Scheuer et al. (2003) 5.40 0.31 

Almeida et al. (2005) 7.59 0.66 

Thormark (2006) 3.85 0.21 

Johnson (2006) 0.77 0.20 

Nassen et al. (2007) 3.10 0.65 

Thormark (2007) 3.85 0.26 

Kim (2008) 3.84 0.19 

John et al. (2008) 2.98 0.11 

Fridley et al. (2008) 8.64 0.05 

Utama & Gheewala (2009) 0.88 0.01 

Shiu et al. (2009) 3.11 0.12 

Sobotka & Rolak (2009) 0.74 0.22 

Vukotic et al. (2010) 2.49 0.19 

Leckner & Zmeureanu (2011) 3.30 0.06 

Ramesh et al. (2013) 6.94 0.27 

Average  0.23 

 

Most studies have a tendency to use a fixed value for determining the energy embodied in construction 

processes (Vukotic et al., 2010). One problem with that approach is that all of the building and 

construction types are assumed to use a similar amount of energy, which may not be the case. For 

instance, a residential and a commercial building would certainly have different construction energy 

values. The amount of construction energy involved in a building depends to some extent on the type of 

construction. Cole (1999) determined that steel structures consumed the least amount of construction 

energy (3 - 7 MJ/m2), whereas a concrete structure used higher construction energy (20 - 120 MJ/m2). 

Surprisingly, wood framed buildings, in Cole (1999), held more construction energy (8 - 20 MJ/m
2
) than 

the steel framed buildings. Recently, Vukotic et al. (2010) calculated construction energy as 6% and 8.5% 

of the IEE of steel and timber structures, respectively. These values substantiated the results of Cole 

(1999), who calculated more construction energy in wood than the steel frame buildings. Cole (1999) and 

Pullen (2000a) also asserted that construction energy is considered insignificant as compared to materials’ 

embodied energy. In addition, little information is available in the literature on how to quantify 

construction energy. 

According to Cole (1999), three types of energy use during a construction process are significant: energy 

use by construction equipment, transportation, and by space conditioning equipment. On-site and off-site 

construction-related transportation includes moving building materials as well as labor and equipment. 

According to a study by Pullen (2000a), transportation of equipment and labor accounted for 69% of the 
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total construction energy. Construction workers and administrative staff commute to construction sites and 

other places such as regional and corporate offices using mostly individual or sometimes shared vehicles 

(Cole, 1999). Heavy and light construction equipment such as cranes, loaders, and forklifts are also moved 

during the course of construction. Usually, the transportation of workers involves the use of gasoline, 

whereas moving and operating heavy equipment consumes fuels such as diesel. Fay (1999) cited studies 

by Stein et al. (1981), Baird et al. (1983) and Viljoen (1995), which determined the construction energy 

within a range of 6 - 17% of the total LCEE. In a similar study, Pullen (2000a) referred to studies by 

Ballantyne (1980), Lord (1994), and Lawson (1996) who found the construction energy within the range 

of 7 - 15% of the total LCEE. Cole (1999) included transportation of heavy equipment and workers in the 

calculation and found higher construction energy (7 - 10% of IEE). Much like Cole (1999), Vukotic et al. 

(2010) also counted the transportation of materials and labor during the materials’ production and 

construction stages.  

Figure 2-7 shows the average values of construction energy in various types of construction reported by 

studies mentioned in Table 2-8. Table 2-8 provides the average values of materials’ embodied energy and 

construction energy reported in the literature. The average results in Figure 2-7 further support the findings 

of Cole (1999) and Vukotic et al. (2010) that the steel frame buildings required less construction energy 

than the wood frame. In addition, concrete frame is the most energy intensive type of construction. 

Increased need of labor, equipment, and formwork for concrete construction may be among the possible 

reasons for its higher energy requirement. The average reported values ranged from 0.01 - 1.18 GJ/m
2
 and 

varied with a standard deviation of 0.34. 

A large amount of waste is generated when building materials are moved, installed, and transformed 

during the construction process (Chen et al., 2001; Treloar et al., 2003). Energy embedded indirectly in 

construction waste could be significant, and would be lost if not recovered by reuse and recycling 

(Vukotic et al., 2010; Treloar et al., 2003). Construction waste may be hazardous and may also carry 

adverse environmental impacts if not handled properly. The amount of waste generated in the construction 

processes depends on a waste factor, which is the percentage of a material that may be wasted during the 

material’s use (Worth et al., 2007; Treloar et al., 2003; Adalberth, 1997b; Blengini, 2009). Studies have 

derived different waste factors for different building materials. Table 2-9 presents the waste factors 

calculated by various studies. Materials can also be reused in the construction process without changing 

their current forms (Chen et al., 2001; Thormark, 2001). Building products that are made of materials such 

as wood and metals can be reused for the same or different purposes. The C&D debris that includes mostly 

concrete and brick can be reused as gravel in the construction of buildings (Thormark, 2001).  
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Figure 2-7: Construction energy as a percent of building materials' embodied energy 

 

Table 2-8: Construction energy as a fraction of embodied energy of building material production 

Study Construction 

Type 

Material EE 

GJ/m2 

Construction 

EE GJ/m2 

Fraction % 

Treloar (1993) Concrete 8.30 0.47 5.64 

Treloar et al. (2001e) Brick 9.86 0.88 8.88 

Chen et al. (2001) Steel 4.48 0.12 2.59 

Chulsukon et al. (2002) Brick 3.04 1.13 37.17 

Scheuer et al. (2003) Steel 5.40 0.31 5.74 

Junnila et al. (2006) Concrete 5.10 1.18 23.06 

Randolph et al. (2006) Brick 6.86 0.88 12.83 

Johnson (2006) Steel 0.77 0.12 15.82 

Johnson (2006) Concrete 0.76 0.15 19.13 

Nassen et al. (2007) Generic 3.10 0.35 11.29 

Haines et al. (2007) Wood 2.59 0.14 5.27 

Utama & Gheewala (2008) Brick 0.84 0.17 20.53 

Utama & Gheewala (2008) Concrete 0.82 0.15 17.83 

Fridley et al. (2008) Generic 9.24 0.07 0.74 

Yang et al. (2008b) Concrete 3.81 0.58 15.22 

Kahhat et al. (2009) Concrete 3.23 0.27 8.21 

Kahhat et al. (2009) Wood 2.91 0.26 8.85 

Kahhat et al. (2009) Steel 3.00 0.25 8.35 

Utama & Gheewala (2009) Brick 0.88 0.01 1.14 

Gustavsson et al. (2010) Wood 3.22 0.29 9.01 

Leckner & Zmeureanu (2011) Wood 3.30 0.20 6.06 
Note: EE denotes embodied energy 

 

2.3.2.2 Recurrent or Recurring Embodied Energy (REE) 

After a building is occupied and used, the processes of maintenance, replacement, and management 

consume energy and also nonenergy inputs such as building materials, assemblies, and equipment. Also, if 

any part of the building is refurbished or a system is retrofitted, considerable amount of energy and 
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material is expended. Sum of the energy spent directly and indirectly in the use phase maintenance, 

replacement, and renovation is termed recurrent or recurring embodied energy (REE) (Cole, 1996; Cole 

and Wong, 1996; Ding, 2007; Khasreen et al., 2009; Vukotic et al., 2010; Dixit et al., 2010). As the 

maintenance and replacement works occur periodically, the amount of REE depends mainly on the service 

life of a building, its materials, assemblies, and systems. It also depends on the maintenance requirements 

of products used in the building (Cole, 1996; Chen et al., 2001; Winistorfer et al., 2005; Chau et al., 2000). 

For instance, if a poor quality paint is applied on the walls to save the initial construction cost, more 

frequent repainting may be needed resulting in more use of material and energy. Similar to the 

construction phase, the maintenance and replacement activities require resources such as building 

materials, labor, and equipment. The processes of construction (e.g. repair), transportation, and 

management are also needed at this stage. 

 

Table 2-9: Waste factors for construction materials reported in literature 

Building Materials 
Adalberth, 

1997a 

Chen et al., 

2001 

Treloar et al., 

2003 

Worth et al., 

2007 

Chau et al., 

2007 
Blengini, 2009 

Steel 5% 5% 5% 6% a 5% 7% 

Aluminum - 2.5% 10% a 6% a 5% 5% 

Copper 5% 2.5% 10% a 6% a 5% 5% 

Concrete 10% 2.5% 5%  - 3% 7% 

Glass 0 0 3% - 5% 7% 

Brick  - 5% b - 3% 10% 

Insulation 5-10% 5% - 6% 8% 7% 

Finishes e.g. paints 5% - 5% 0 5% 7% 

Plaster - - 10%  5% 10% 

Timber 10% 2.5% 10% 11% - 7% 

Plastic - 5% 10%  3-5% 7% 

Equipment - - 0 - - - 
a % indicated for metals in actual study; b % indicated for masonry/clay in actual study 

 

According to Cole and Kernan (1996), a building material or component replaced 100% falls in the 

category of replacement and any replacement less than 100% is covered under maintenance. Building 

materials and components may not possess the same service life as the building, and may require one or 

multiple replacements over the building’s service life (Chen et al., 2001; Chau et al., 2007; Winistorfer et 

al., 2005; Cole, 1996).  These replacements, as in the building erection phase, involve building material 

use and construction processes (Utama and Gheewala, 2009). Each of these products and processes 

contributes to the total REE (Thormark, 2007; Chen et al., 2001; Ding, 2007; Pullen and Perkins, 1995). A 

replacement factor, which is the ratio of service life of a building to average service life of a building 

material or a component, is decisive in determining the amount of REE (Chen et al., 2001; Chau et al., 
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2007). Table 2-10 presents the replacement factors for some of the building materials and components 

determined by various studies.  

 

Table 2-10: Replacement factors for various building components reported by literature 

Building 

Component 

Treloar et al., 

1999  

Fay et al., 

2000  

Chen et al., 

2001 

Keoleian et al., 

2001 

Scheuer et al., 

2003 

Chau et al., 

2007 

Ding, 

2007 

Structure 1  1  1 1  

Ext./Int. Walls 1.1  1  1 1 1-2.4 

Doors   1.3  1.5  1.5-2 

Windows  2 1.3 2 1.9  1.5 

Wall/Roof Tiles  2-4 1.3 2 3.75** 2.5** 2.4 

Paints and Coat. 8 10 5 5 15 5 6-8.6 

Carpet   2.4 6.2 6.25 3.3 5 

Ceiling Finishes 2  2  3.75 2.5** 4 

Floor Finishes 4  3 2.5* 4.16* 2.5* 3* 

Insulation     1 1  
* indicates vinyl flooring; ** denotes acoustical tiles 

 

Functional, aesthetical, and end of service life of associated components are the most common reasons for 

replacements occurring in a building (Winistorfer et al., 2005). For instance, a window at the end of its 

service life needs to be assessed for its physical condition and replaced if required. If not replaced, it could 

adversely affect the annual energy consumption possibly due to an increased rate of heat transfer. An 

increased heat load due to the bad window eventually may exert pressure on the building’s heating and 

cooling systems. Aesthetics is also seen as one of the main reasons for replacements particularly in the 

case of tenancy change or office redesign (Cole, 1996). In such cases, modification of interior walls, floor 

and wall finishes, ceiling, electrical and plumbing fixtures, and furniture is seen as a common practice. 

Fashion is also seen as a major reason behind frequent replacements of building elements such as 

furniture, fixtures, and fittings (Treloar et al., 1999).  

In the case of maintenance, there are two types of maintenance activities: scheduled and unscheduled. The 

scheduled maintenance is also known as preventive maintenance that is performed to prevent a sudden 

breakdown of any building system or component (Lavy et al., 2013). The unscheduled maintenance, which 

is also termed corrective maintenance, is done when a system or a component has failed and now requires 

immediate repair (Lavy et al., 2013). Conventionally, both the types of maintenance activities occur in a 

building consuming labor, material, and energy (Chan et al., 2001; Shohet, 2006). According to Cole 

(1996), the LCEE should be updated periodically based on the completed maintenance and replacement 

works.  
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In 50 years of service life, a building’s REE could equalize its IEE (Cole, 1996). In the case of Australian 

Secondary Schools, Ding (2007) found that the REE, over a 60-year service life, was 72% of the school 

buildings’ total LCEE. Building components such as envelope, finishes, and services, which may not hold 

higher embodied energy initially, require a significant recurring energy (3.2 times the initial embodied 

energy in a 50-year service life) (Cole, 1996).  Similarly, Cole (1996) determined that for a service life of 

25, 50, and 100 years, the REE of these components was 1.3, 3.2, and 7.3 times their IEE, respectively. 

Treloar et al. (2000) and Adalberth (1997b) calculated recurring embodied energy as 45% (50-year service 

life) and 32% (30-year service life) of IEE, respectively. Pullen (2000a) determined an annual REE of 1% 

of the total IEE. This value is in accordance with the values suggested by Adalberth (1997b) and Treloar et 

al. (2000). In a study of 15 houses in the Adelaide region of Australia, Pullen and Perkins (1995) found the 

recurring embodied energy (for an 80-year service life) within a range of 36 - 84% of the total IEE 

(average 57%).  

A building’s REE increases with its service life. Factors such as durability, long service life, low 

maintenance requirements, functional suitability, and recycling and reuse potential of products installed in 

a building could significantly lower the amount of REE (Dixit et al., 2012b). Dixit et al. (2012b) 

conducted a rigorous analysis of 64 single and multi-family residential and 100 commercial case studies 

published in the literature. As buildings had differing service lives, for a fair comparison, REE values were 

annualized and expressed in MJ/m
2
/year (Dixit et al., 2012b). In the case of residential buildings, Dixit et 

al. (2012b) found a moderate and positive correlation of REE with the buildings’ service life (r
2
 = 0.50) 

but a strong positive correlation with their total LCEE (r
2
 = 0.94) and LCE (r

2
 = 0.73). Figure B1-2 and 

Figure B1-3 in Appendix B1 illustrate the correlation of REE with the buildings’ total LCE and LCEE, 

respectively. This means that the REE influences the LCE and LCEE more than any other life cycle 

embodied energy component. In the case of commercial buildings, the correlation of REE with the total 

LCEE (r
2
 = 0.96) and LCE (r

2
 = 0.83) was very strong and positive indicating a strong influence of REE 

over LCEE. The correlation of commercial buildings’ REE with their service life was moderate and 

positive (r
2
 = 0.68). According to Dixit et al. (2012b), the residential buildings conventionally do not 

involve very complex, modernized, and large size building systems and components requiring a greater 

degree of maintenance and replacements (Scheuer et al., 2003). This may be one of the reasons why REE 

of residential buildings showed a weaker correlation than the commercial buildings (Dixit et al., 2013).  

Figure B1-4 in Appendix B1shows the variations in the reported values of REE. The annual REE 

requirements for the residential buildings vary from 8 to 213 MJ/m
2
/year with an average of 

62.3MJ/m
2
/year. The REE values calculated by Barnes and Rankin (1975) were the lowest among the 

referred residential facilities. One reason for this may be the fixed percentage (0.9% of IEE) considered 

calculating the REE in the study. Fay and Treloar (1998) calculated a higher REE value (188 - 213 

MJ/m
2
/year) due to the inclusion of maintenance and replacement requirements for not only the building 
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and its components but also the landscaping and major building appliances (stove, microwave oven, 

dishwasher, clothes washer and dryer, heater etc.). The REE values ranged from 1.7 to 470 MJ/m
2
/year for 

commercial facilities with an average REE value of 157 MJ/m
2
/year. The lower annual REE values (1.7 - 

3.6 MJ/m
2
/year) calculated by Page (2006) are due to the fact that only exterior walls and roof paint were 

included under the maintenance and replacement works. The annual REE values reported by Langston and 

Langston (2007) were significantly higher (up to 470 MJ/m
2
/year), as they included the building, its 

components, services, fittings, site works and external services. They, like Fay and Treloar (1998), also 

used the input-output-based hybrid method to calculate the energy embodied, which usually results in 

higher energy values (Crawford et al., 2002). 

2.3.2.3 Demolition Energy (DE) 

At the end of its service life, a building is demolished and its constituent materials are sorted, treated, and 

transported for reuse, recycling, or disposal to landfills or incinerators. Both the electricity and fuel are 

consumed directly and indirectly in the demolition and disposal processes. The sum of total energy 

consumed is termed demolition energy (DE) (Cole, 1996; Cole and Wong, 1996; Vukotic et al., 2010; 

Dixit et al., 2010). Energy is consumed in four stages at the end-of-life phase of a building. The first stage 

involves complete demolition and disassembly of the building, and utilizes heavy equipment such as 

hydraulic hammers and hydraulic loaders consuming fuels such as oil (Miller, 2001; Blengini, 2009). In 

the second stage, on-site secondary demolition occurs, the purpose of which is to separate building 

materials and reduce their size for easy handling and sorting. Waste as well as salvaged materials are then 

transported to either landfills or to reuse and recycling facilities in the third stage. Finally, equipment such 

as jaw crushers and magnetic separators are used to separate and salvage reusable and recyclable materials 

at the recycling facilities. Sorted reusable or recyclable materials are then transported to manufacturing 

facilities or construction sites by means of trucks and trains (Blengini, 2009). One important activity at this 

stage includes recycling and reuse processes that could recover a major fraction of initial energy embodied 

in the building (Crowther, 1999; Tingley et al., 2012). Recycling and reuse may be an open loop or a 

closed loop type process (Tingley et al., 2012). In an open loop materials are recycled or reused between 

industries or life cycle stages of a building, whereas closed loop involves recycling and reuse within the 

same industry or life cycle stage (Thormark, 2002; Treloar et al., 2003). 

Studies (e.g., Cole and Kernan, 1996; Scheuer et al., 2003; Adalberth, 1997b; Kernan, 1996; Kofoworola 

and Gheewala, 2009; Shu-hua et al., 2010) performed detailed life cycle assessment of buildings and 

derived a percentage of IEE that could be used for demolition energy calculation. Adalberth (1997b) and 

Cole and Kernan (1996) calculated the demolition energy as 4% and 1 - 3% of a building’s total IEE, 

respectively. Scheuer et al. (2003) reported a higher demolition energy that was 12% of the total IEE of 

the study building. This higher value was probably due to the inclusion of the decommissioning of all 
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nonstructural building components (e.g. mechanical, electrical, plumbing, finishes etc.) in addition to the 

structural components. The higher fraction could also be due to accounting for differing transport 

distances. Recently, Kofoworola and Gheewala (2009) and Shu-hua et al. (2010) calculated the demolition 

energy equivalent to 2.5% and 4% of the total IEE, respectively. Figure B1-5 in Appendix B1illustrates 

the values of demolition energy reported by various studies involving both the residential and commercial 

buildings. The values ranged from 0.03 to 0.80 GJ/m
2
 and varied with a standard deviation of 0.2. The 

demolition energy as a fraction of the total IEE was in the range of 0.84 - 13.11%. On an average, the 

demolition energy represented nearly 4% of the total IEE. This value is very close to the values calculated 

by Cole and Kernan (1996), Adalberth (1997b), Kofoworola and Gheewala (2009), and Shu-hua et al. 

(2010). Table 2-11 lists average values calculated by some of the referred case studies. In the case of a 

wood frame building, the energy of demolition represented up to 2.7% of building’s total IEE, whereas 

this reaches 5.1% in the case of concrete buildings. This could be expected, as concrete building 

demolition would certainly require more use of heavy equipment in the initial demolition, debris removal 

and sizing, sorting, and hauling. It is also important to note that most of the concrete buildings were 

commercial buildings that are typically larger, more complex, and involve a wide variety of materials than 

a residential building.  

 

Table 2-11: Demolition energy as a fraction of embodied energy of building material production 

Study Building Type Construction 

Type 

Service 

Life 

(years) 

Building 

Material EE 

(GJ/m2) 

Demolition 

Energy 

(GJ/m2) 

Fraction of 

Building 

Material EE (%) 

Kohler et al. (1997b) Residential Brick 100 9.00 0.15 1.67 

Adalberth (1997b) Residential Wood 50 3.37 0.12 3.56 

Blanchard & Reppe (1998) Residential Wood 50 4.14 0.14 3.29 

Lippke et al. (2004) Residential Wood 75 3.13 0.04 1.20 

Winistorfer et al. (2005) Residential Wood 75 3.00 0.03 1.03 

Leckner & Zmeureanu (2011) Residential Wood 40 3.56 0.03 0.84 

Johnstone et al. (2001) Residential Wood 60 2.75 0.14 5.09 

Haines et al. (2007) Residential Wood 60 2.73 0.04 1.47 

Lippke et al. (2004) Residential Steel 75 3.36 0.04 1.19 

Lippke et al. (2004) Residential Concrete 75 1.98 0.04 1.77 

Winistorfer et al. (2005) Residential Concrete 75 2.20 0.04 1.59 

Humphrey et al. (2004) Residential Concrete 50 7.38 0.07 0.94 

Citherlet & Defaux (2007) Residential - 50 3.25 0.40 12.31 

Kernan (1996) Commercial Concrete 100 4.74 0.05 0.99 

Suzuki & Oka (1998) Commercial Concrete 40 8.95 0.49 5.47 

Citherlet & Hand (2002) Commercial Concrete 80 6.10 0.80 13.11 

Junnila et al. (2006) Commercial Concrete 50 6.27 0.47 7.42 

John et al. (2008) Commercial Concrete 60 3.38 0.32 9.33 

John et al. (2008) Commercial Steel 60 4.36 0.16 3.72 

John et al. (2008) Commercial Wood 60 2.31 0.12 4.97 
Note: EE denotes embodied energy 
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ACHP (1979) proposed a demolition energy figure of 136.3 MJ/m
2
 for a 5000 m

2
 concrete building. These 

energy values accounted for 1 - 3% of IEE as demolition energy (Cole and Wong, 1996; Cole and Kernan, 

1996). Table 2-11 provides the demolition energy values presented by ACHP (1979). 

2.3.3 Life Cycle Embodied Energy Components: Reported Values 

Among the three major life cycle embodied energy components are initial embodied energy (IEE), 

recurrent embodied energy (REE), and demolition energy (DE). Among them, according to the reported 

results in the literature, the most influential energy components are REE and IEE. As discussed earlier, the 

REE showed a strong and positive correlation to a building’s LCEE and LCE. This section of the literature 

review discusses and synthesizes various studies and their results in order to derive a range of proportions 

each component shares in the total LCEE. A rigorous review of literature was performed that included 

embodied energy case studies from 1976 through 2011.  

Figure 2-8 shows the breakup of IEE, REE, and DE in total LCEE reported by case studies that calculated 

all three components. The variation in the proportions of the energy components is due to the presence of 

both the residential and commercial type of buildings with brick, wood, steel, and concrete construction. 

Table A1-1, Table A1-2, Table A1-3, and Table A1-4 in Appendix A1 provide the life cycle energy 

breakup in terms of total IEE, REE, OE, and DE for brick, concrete, steel, and wood frame buildings. In 

the tables, IEE, REE, OE, and DE denote initial embodied energy, recurrent embodied energy, operating 

energy, and demolition energy, respectively.  

In the case of brick construction, the average value of REE was nearly half of the IEE values. It can be 

seen that for a 100 years’ service life, a building’s REE could be over 1.5 times its IEE as calculated by 

Kohler et al. (1997). This further supports the notion that REE and LCEE are dependent on a building’s 

service life. In the case of concrete construction, the annualized REE values calculated by Cole and 

Kernan (1996), Kernan (1996), Eaton et al. (1998), Citherlet and Hands (2002), and Humphrey et al. 

(2004) were considerably higher (1.3 - 1.6 times) than IEE. In the case of brick buildings, the average REE 

was 46% of the buildings’ IEE and it increased to 61% for concrete buildings.  Similarly in the case of 

wood and steel frame buildings, the REE calculated by Jacques (1996), Cole and Kernan (1996), and 

Eaton et al. (1998) easily surpassed the IEE values within a service span of 50 - 60 years. 
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Figure 2-8: Fraction of the three life cycle embodied energy components in total LCEE 

2.4 PROBLEM OF VARIATION IN EXISITNG EMBODIED ENERGY DATA 

Embodied energy values in building materials and buildings vary considerably across research studies and 

this variation could be up to 30 - 50%. Furthermore, some studies pointed out the inaccuracy and 

incompleteness of existing embodied energy data of building materials. These problems with energy data 

make the comparison of building materials and products difficult in embodied energy terms (Khasreen et 

al., 2009). Inaccurate, incomplete, and inconsistent data cannot be used for environmental decision-

making by building professionals such as designers, engineers, project managers, and contractors while 

selecting a low energy building material (Fernandez, 2006; Burnett, 2006). There are parameters that 

cause embodied energy values to differ across research studies (Dixit et al., 2010). Most of these 

parameters are related to embodied energy calculation methods, some of them are actually data quality-

related issues.  In this paper we categorize them into the two categories: methodological parameters and 

data quality parameters.  
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2.4.1 Methodological Parameters 

Parameters such as system boundary, methods of embodied energy measurement, and type and form of 

energy to be included relate closely to embodied energy calculation methodology.  

2.4.1.1 System Boundary: Problem of Incompleteness 

The system boundary demarcates a system of various products and processes related to the manufacturing 

of a product under study. A system boundary also determines the number and type of energy and material 

inputs included in the calculation of embodied energy (IFIAS, 1975; Peuportier, 2001). Miller (2001) and 

Khasreen et al. (2009) asserted that research studies often do not describe the system boundary adopted in 

their study clearly and it becomes difficult for the readers to determine what is included and excluded from 

the energy calculation. Suh et al. (2004) stated that studies often select the system boundary of the energy 

analysis subjectively and results of such studies cannot be compared. Raynolds et al. (2000) emphasized 

the need for a system that ensures consistent system boundary selection across different studies. System 

boundary definition differs across studies, which leads to variations in the calculated embodied energy 

values (Dixit et al., 2010).  

2.4.1.2 Method of Embodied Energy Calculation 

Among the major embodied energy calculation methods are input-output-based, process-based, hybrid and 

statistical analysis (Fay and Treloar, 1998; Lenzen, 2000; Crawford and Treloar, 2003; Ding, 2004; Plank, 

2008; Khasreen et al., 2009; Optis and Wild, 2010). Each of these methods has limitations and varying 

levels of accuracy. Consequently, results of these methods differ and affect their comparative evaluation 

(Miller, 2001; Crawford and Treloar, 2005; Nassen et al., 2007; Plank, 2008; Khasreen et al., 2009; Optis 

and Wild, 2010). Another method that is called hybrid analysis includes both the process and the input-

output data and is considered relatively complete and accurate. Research studies have applied different 

calculation methods and their embodied energy results differ significantly (Nebel, 2007; Dixit et al., 

2010).  

Nassen et al. (2007) performed a detailed analysis of input-output and process-based energy calculation 

methods and found that the results of an input-output-based analysis could be 90% higher than a process-

based analysis. Crawford and Treloar (2003) calculated embodied energy in a residential and a 

commercial building as 6.6 GJ/m
2
 and 9.0 GJ/m

2
, respectively using a process-based analysis. 

Furthermore, they also found that embodied energy in the same buildings could decrease by 14.5 - 23% if 

an input-output-based analysis is used. Crawford and Treloar (2005) later studied a commercial building 

and concluded that when an input-output-based calculation was performed, the calculated values increased 

by 56% from the building’s process-based values (8.0 GJ/m
2
). Optis and Wild (2010) concluded that 
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nearly 78% of published studies failed to provide an accurate and clear description of the calculation 

methodology adopted making interstudy comparisons difficult.  

2.4.1.3 Energy Inputs 

Primary and Delivered Energy: Energy embodied in buildings and building materials is reported in 

primary or delivered energy terms. Delivered energy (e.g. electricity) is the energy used by a consumer. It 

is also known as “end use,” “site,” or, “final” energy. Primary energy is the energy of fossil fuel extracted 

from the earth. Primary energy is extracted, processed, and converted to a form (delivered energy) that is 

usable for a range of purposes (Dixit et al., 2010). Primary energy varies from delivered energy (and is 

usually more) owing to factors such as fuel types (e.g. electricity, natural gas, oil, etc.) and the means of 

delivered energy production (e.g. coal fired, natural gas fired, nuclear or hydro power plants) (Fay et al., 

2000; Thormark, 2002; Sartori and Hestnes, 2007; Hernandez and Kenny, 2010). Each of these power 

plants holds differing efficiencies and uses relatively more primary energy to generate delivered energy. 

For example, as reported by Fay et al. (2000), for every single unit of electricity 3.4 units of primary 

energy is burnt in Australia. This factor of 3.4 is known as the “conversion factor” or “primary energy 

factor” and differs across countries and energy carriers (Fay et al., 2000; Sartori and Hestnes, 2007). While 

delivering end use energy to consumers, energy is also consumed and lost that also contributes to 

differences in primary and delivered energy values (Thormark, 2002; Sartori and Hestnes, 2007; 

Gustavsson and Joelsson, 2010). For instance, to move dry natural gas through pipelines, compressors are 

used that run on electricity and natural gas. Figure 2-9 illustrates a generic process of generating electricity 

from primary fuels. It can be seen that the efficiency of energy conversion and the type of fuels are the two 

key aspects that affect the amount of delivered energy generated and supplied to the end users.  

 

 

Figure 2-9: Process of electricity generation and related losses 

If embodied energy of a building is reported in delivered energy terms, there is a strong possibility that 

these values would be nearly similar across different countries for the same building (Sartori and Hestnes, 
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2007). Such data cannot be compared globally, as the actual amount of primary energy consumed and true 

environmental impacts remain covered under delivered energy values (Fay and Treloar, 1998; Thormark, 

2002; Sartori and Hestnes, 2007). Embodied energy presented in primary energy terms can portray a true 

picture of environmental burden, as primary energy values could provide a relatively accurate estimate of 

resulting greenhouse gas emissions (Pullen, 2007; Fridley et al., 2008; Gustavsson and Joelsson, 2010; 

Hernandez and Kenny, 2010). Studies have reported energy embodied in buildings and building materials 

either in a primary or delivered energy term or have not provided any indication of the energy term 

(Sartori and Hestnes, 2007; Gustavsson and Joelsson, 2010; Ramesh et al., 2010). Results of such studies 

differ considerably and cannot be compared. Pears (1996) revealed that embodied energy values could 

increase by 30 - 40% (from delivered energy term) if reported in a primary energy form. 

Feedstock Energy: ISO 14040 (2006) defined feedstock energy as “heat of combustion of a raw material 

input that is not used as an energy source to a product system, expressed in terms of higher heating value 

or lower heating value.” Feedstock energy is the heat of combustion or energy content of raw material 

input (e.g. wood and petrochemicals, such as oil and gas) used as ingredient in the process of 

manufacturing a product (e.g. wood components, plastics and rubber) (Trusty, 2006; Sartori and Hestnes, 

2007; Ardente et al., 2008).  

Embodied energy includes feedstock energy and the nonrenewable fraction of all direct and indirect 

energies consumed in manufacturing a product (Lucuik et al., 2006; Hegner, 2007; Krogmann et al., 2008; 

ASMI, 2009). Research studies have concluded that the feedstock energy could constitute a major fraction 

of the total embodied energy. Sartori and Hestnes (2007) argued that the embodied energy may or may not 

include the feedstock energy. However, studies such as Thormark (2002 and 2006), Lucuik et al. (2006), 

Trusty (2006), Ardente et al. (2008), Blengini (2009) and Gustavsson et al. (2010) accommodated 

feedstock energy into the total embodied energy calculations. Some of these studies (Thormark, 2002; 

Trusty, 2006; Thormark, 2007; Ardente et al., 2008) have presented the values of feedstock energy 

separately to highlight their importance. Thormark (2001) and (2007) found the feedstock energy as 27 - 

94% of the materials’ embodied energy (released materials). Ardente et al. (2008) conducted a “cradle to 

gate” LCA of the Kenaf-fiber insulation boards and revealed that nearly 50% of the total embodied energy 

was attributed to the material’s feedstock. In a similar study, Lazzarin et al. (2008) quantified the 

feedstock energy of stone wool, expanded polystyrene foam, expanded polyurethane foam, and cork 

panels as 16%, 48%, 59%, and 88% of the material’s total embodied energy, respectively. The feedstock 

component is the largest contributor to the total energy embodied in construction materials such as asphalt 

(Trusty, 2006). 

Feedstock energy is significant and hence, needs to be considered in the embodied energy calculation 

(Thormark, 2006; Nassen et al., 2007; Ardente et al., 2008; Hammond and Jones, 2008 and 2010). 
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Inclusion or exclusion of feedstock energy in embodied energy calculation could cause variations in 

embodied energy values (Pullen, 2000b; Nassen et al., 2007). Nassen et al. (2007) noted that calculation 

methods such as input-output-based analyses do not accommodate feedstock energy of raw material 

inputs. Furthermore, they had to exclude feedstock energy values from total embodied energy values 

rendered by referred studies in order to make genuine comparisons in their study.  

Nonrenewable Energy: Hegner (2007) presented an interesting explanation of embodied energy, citing 

Kasser and Poll (1998). According to them, only energy that is available in a limited amount should be 

considered embodied energy. Here, they relate the phenomenon of embodied energy to greenhouse gas 

emissions because a major fraction of primary energy available in a limited amount comes from fossil 

fuels. Recent studies (Citherlet and Hand, 2002; Holtzhausen, 2007; Upton et al., 2008; Fernandez, 2008; 

Verbeeck and Hens, 2010; De Meester et al., 2009; Pittet and Kotak, 2009; Black et al., 2010; Aste et al., 

2010; Leckner and Zmeureanu, 2011) presented their energy results separately in nonrenewable energy 

terms to emphasize the environmental significance of embodied energy as an evaluation parameter. 

Studies (Hegner, 2007; Joseph and Tretsiakova-McNally, 2010; Ramesh et al., 2010) also claimed that 

embodied energy (in nonrenewable terms) becomes a vital environmental indicator of the greenhouse gas 

emission impacts of manufacturing a product.  

Human Energy: In some geographic locations, conventional manufacturing processes of building 

materials and certain construction processes are labor intensive and involve considerable amount of human 

energy (Huberman and Pearlmutter, 2008; Alshboul and Alzoubi, 2008; Utama and Gheewala, 2008). 

Langston and Langston (2007) noted that some of the building’s life cycle activities such as maintenance 

and repair are more labor intensive than the initial construction and this fraction of human energy is often 

excluded from the embodied energy analysis. Studies (Langston and Langston, 2007; Pulselli et al., 2009) 

underscored a need to incorporate human energy in embodied energy analysis. However, it is often not 

accomplished due to the lack of a clear human energy calculation method. Dias and Pooliyadda (2004) 

discussed the importance of human energy but could not accommodate it in their calculations owing to the 

complexity and ambiguity involved in its analysis.  

One significant study that calculated human energy was done by Alshboul and Alzoubi (2008) who 

performed embodied energy analysis of the natural-dimensioned stone in Jordan. They measured human 

energy using work duration and metabolic rates. However, they found that the variability of individual 

metabolic rates poses difficulty in consistently calculating the human energy. Another important work by 

Cleveland and Costanza (2008) discussed human labor and identified three components, which should be 

accounted for while quantifying the human energy. These are: 1. the calorific value of food consumed by 

workers, 2. the embodied energy of food, and 3. fuel purchased with salaries or wages of workers.  
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Current embodied energy methods fail to include the human energy component of total embodied energy 

(Langston and Langston, 2007; Ulgiati et al., 2010). In developed countries such as the United States, a 

significant amount of energy is consumed in growing, harvesting, transporting, marketing, storing, and 

preparing human food (Cleveland and Costanza, 2008). Grondzik et al. (2009) noted that some building 

materials are more human energy intensive than others that consume more mechanical energy. This further 

adds to the variability of materials’ embodied energy.  

2.4.2 Data Quality Parameters 

Data quality is one of the key parameters, which differ within and across databases (Szaley and Nebel, 

2006; Optis and Wild, 2010). Ardente et al. (2011) discussed a Data Quality Index (DQI) to determine the 

quality of data on the basis of age and representativeness of data. Quality of data used governs the 

reliability of energy analysis (Menzies et al., 2007; Khasreen et al., 2009). According to Optis and Wild 

(2010), about 20% of the studies do not mention data sources clearly, making it difficult for researchers to 

use or analyze their results. The following factors affect the quality of data used in an energy analysis: 

2.4.2.1 Primary and Secondary Data 

Khasreen et al. (2009) and Crawford and Treloar (2005) argued that the success or failure of an embodied 

energy analysis depends upon the quality and source of the data referred. Studies applied different 

techniques to acquire data. Some studies utilized primary data sources such as economic input-output 

tables, process data, and datasets attached to software, whereas some sourced secondary data from other 

published studies (Dixit et al., 2010). Goggins et al. (2010) claimed that the accuracy of embodied energy 

data depends upon the methods of embodied energy measurement. Often, embodied energy is also 

calculated using  Life Cycle Assessment (LCA) tools and datasets such as Athena, BEES 4.0, Ecoinvent, 

Eco-Quantum, Envest 2, OPTIMIZE, LICHEE, and SimaPro. However, some of these tools do not cover 

all stages of a building’s life cycle and lack the capability to perform a full life cycle assessment (Ting, 

2006; Itard, 2007; Haapio and Viitaniemi, 2008; Khasreen, 2009). Plank (2008) also warned that most of 

these available tools act as a “black box”, as they lack transparency and flexibility. According to 

Hammond and Jones (2008), if it is difficult to discern the system boundary adopted by the secondary data 

sources, such data should not be trusted. 

2.4.2.2 Data Incompleteness  

According to Menzies et al. (2007) and Peereboom et al. (1998), research studies often do not have access 

to primary data sources and rely on secondary data sources that may or may not be complete. The 

incompleteness of data stems from either the lack of data, limitations of the calculation methods, or a 

subjective selection of system boundaries (Menzies et al., 2007; Reap et al., 2008; Goggins et al., 2010; 

Monahan and Powel, 2010). Studies that performed embodied energy calculations based on process 
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analysis often suffered from data incompleteness, as accounting for nearly all processes would have been a 

difficult task (Menzies et al., 2010; Hammond and Jones, 2010; Goggins et al., 2010). As a result, process 

analysis outcomes are underestimated and include data gaps (Menzies et al., 2007; Hammond and Jones, 

2010). Existing LCA and embodied energy inventories are seriously incomplete and poor in data quality 

(Reap et al., 2008; Khasreen et al., 2009). Researchers ignore, assume, or estimate missing data whenever 

they encounter data gaps in the inventory and often end up inferring data from the literature (Reap et al., 

2008; Monahan and Powel, 2010). Data incompleteness should be verified when choosing one material 

dataset over another (Alcorn, 1996; Crawford et al., 2006; Nebel, 2007; Khasreen et al., 2009). 

2.4.2.3 Data Representativeness 

Data representativeness is an important quality, which if lacking could make data irrelevant to the study 

and could change the direction of the analysis (Pittet and Kotak, 2009; Khasreen et al., 2009; Optis and 

Wild, 2010). Most of the current LCA studies used data that did not represent the local conditions 

(Huberman and Pearlmutter, 2008). According to literature, data should have the following 

representativeness: 

Geographical Representativeness: Geographic relevance of data is the only factor causing the largest 

variation in LCA or embodied energy results (Khasreen et al., 2009; Optis and Wild, 2010). Countries 

around the globe differ in terms of use of construction materials, construction and fabrication processes, 

mode of transportation, and transportation distances (Menzies et al., 2007; Pittet and Kotak, 2009; Rule et 

al., 2009; Goggins et al., 2010). Moreover, the technology of construction material production and 

construction also differs in terms of efficiency (Menzies et al., 2007; Pittet and Kotak, 2009; Goggins et 

al., 2010). The fuel and technology used for electricity production, electricity mix (renewable and 

nonrenewable), and economic systems vary significantly around the globe (Sartori and Hestnes, 2007; 

Menzies et al., 2007; Monahan and Powell, 2010; Hammond and Jones, 2010). According to Buchanan 

and Honey (1994), differing energy supply assumptions could cause embodied energy and carbon results 

to vary by a factor of three. Energy tariffs paid by material manufacturers and material prices are also 

different in various locations causing an error up to 2.5% in the calculations (Pullen, 1996).  

Temporal Representativeness: Studies often apply data that is obsolete and lacks temporal representation 

(Reap et al., 2008). In a paper focused on energy embodied in historic buildings, Frey (2008) discussed 

that old and outdated data should not be used directly for current situations. If possible, data should be 

modified to suit the current time. Studies based on input-output analysis often lacked the temporal 

relevance, as the analysis was based upon economic input-output tables, which most countries do not 

publish in a timely manner (Menzies et al., 2007).  Technology of electricity production as well as 

construction material manufacturing could change over time and old data, if used, may not represent the 
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study in current time (Buchanan and Honey, 1994; Pullen, 2000b; Crawford and Treloar, 2005; Menzies et 

al., 2007). 

Technological Representativeness: Different technologies of material manufacture consume a varied 

amount of energy, as the new advanced technologies are relatively more efficient than the older ones. A 

downward trend was also observed in the energy consumption of process energy involved in construction 

material manufacturing (Menzies et al., 2007). This indicates that the technology of manufacture is getting 

energy efficient over time. Pittet and Kotak (2009) noted that the low income countries tend to use less 

efficient technology (of manufacture and construction) than the developed countries. In the same 

geographic location and time period, two studies could generate different results if they are extracting 

information from two different manufacturers (Pears, 1996).  

2.5 EMBODIED ENERGY: SIGNIFICANCE 

2.5.1 Embodied Versus Operating Energy  

In the past, the main focus of building energy efficiency research was on operating energy and the relative 

fraction of embodied energy in the total life cycle energy was considered insignificant. However, recent 

research has revealed that embodied energy may account for a larger fraction of the total life cycle energy 

(Ding, 2004). Due to increased emphasis on operating energy research, the life cycle operating energy is 

getting optimized. In addition, a rise in readily available energy efficient appliances, advanced insulating 

materials, and the equipment of building performance optimization indicate that measures to optimize 

operating energy are already in place (Ding, 2004; Sartori and Hestnes, 2007; Plank, 2008). For example, 

data from the Building Energy Data book published annually by the United States Department of Energy 

clearly showed an increase in the number of Energy Star approved building appliances indicating a 

gradual decrease in operating energy use (USDOE, 2012) (see  Figure 2-10 ). Reducing embodied energy, 

however, requires a careful selection of low energy intensive materials and products at pre-design, design, 

and use phases.  

The proportion of embodied and operating energy in the total LCE varies depending on numerous factors 

such as geographic location, climate, socio-economic conditions, and energy sources used in the 

production of buildings (Nebel et al., 2011). Figure B1-6 and Figure B1-7 in Appendix B1 demonstrate the 

proportion of embodied energy in the total LCE of residential and commercial buildings, respectively on 

four geographic regions: North America, Asia, Europe, and Oceania. The data are collected by a rigorous 

literature review of published case studies of residential and commercial buildings across the globe. A 

description of the referred case studies can be found in Table A1-5 in Appendix A1. 
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Figure 2-10: Number of Energy Star approved building appliances (based on USDOE, 2012) 

The main purpose of the data presented in Figure B1-6 and Figure B1-7 is to show the variation in the 

relative proportion of embodied and operating energy that, as mentioned earlier, is contingent upon 

location, time, construction, and socio-economic parameters of the case study buildings. These data should 

not be taken as a thumb rule for estimating proportion of embodied and operating energy. The values of 

embodied energy fractions in total LCE of residential and commercial buildings reported by various 

studies are given in Table A1-5 in Appendix A1. The lowest value of embodied energy among the referred 

residential case studies is 1.1% of the total LCE calculated by Dodoo et al. (2010). There could be several 

reasons for this including the location of the study building in the heating dominated region. The study 

building is a multi-family structure having an electrical resistance type heating system that may increase 

the total life cycle operating energy use radically. Pearlmutter et al. (2007) calculated the highest 

proportion of embodied energy because no cooling load was included in the operating energy calculation. 

In addition, as the building was located in an arid region, the envelope construction with high thermal 

mass could result in a higher embodied energy. In a recent study, Huberman and Pearlmutter (2008) 

concluded that the embodied energy of a building designed with passive heating and cooling measures in 

the Negev desert region of Israel could be up to 60% of the total LCE (over 50 years’ service life). 

However, in a heating dominated region of the United Kingdom, Plank (2008) found that the total 

embodied energy shared only 10% of the total LCE. According to Nebel et al. (2011), in heating 

dominated cold regions embodied energy shared a smaller fraction of the total LCE, which might be 

higher in a region with moderate climate because of a low operational energy use.  The relative proportion 

of embodied and operating energy is still debated and due to a building’s large size, complex nature, and 

custom design, there is a greater chance that it would differ across studies (Frey, 2008). 
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Due to an increased focus on operating energy optimization, the amount of operating energy is going 

down over time, and as a result, the proportion of embodied energy in the total LCE is growing (Crowther, 

1999; Nebel et al., 2011; Plank, 2008; Frey, 2008; Gustavsson and Joelsson, 2010; Optis and Wild, 2010). 

Sartori and Hestnes (2007) reviewed and compared 60 case studies of conventional and energy efficient 

designs and determined that the energy embodied in an energy efficient building could be as high as 46% 

of its total LCE. According to Thormark (2007), the energy embodied in an energy efficient house could 

be as high as 40-60% of its total LCE. In the case of a conventional house, Buchanan and Honey (1994) 

calculated the total embodied energy as 38% of the total LCE. When they improved the operating energy 

performance, the fraction of embodied energy reached 84%. Similarly, in an energy analysis of a house in 

a heating dominated region of Norway, Winther and Hestnes (1999) found that if operating energy is 

optimized the fraction of embodied energy in the total LCE increased from 5% to 28%.   

2.5.2 Embodied Energy and Carbon Emission 

More than 80% of global and the United States’ energy demands are still satisfied by fossil fuel 

combustion (IEA, 2009; EIA, 2010). The fossil fuels such as gasoline and natural gas are organic 

compounds made of mainly carbon and hydrogen and created by the anaerobic decomposition of buried 

organisms. Among the top fossil fuel consuming sectors are electricity production, transportation, 

industrial, residential, and the commercial sector (USEPA, 2011). As discussed earlier, the production of 

building materials includes consumption of fossil fuels and electricity and involves considerable 

transportation (Treloar, 1998; Crawford, 2004; Dixit et al., 2010). Hence, the amount of energy embodied 

in a building material primarily comes from fossil fuels (Hegner, 2007; Black et al., 2010; Upton et al., 

2008). Figure 2-11 illustrates the fraction of fossil fuels in the total energy consumption in the United 

States. It is evident that we still depend mostly on fossil fuels for fulfilling our energy requirements. 

2.5.2.1 Energy and Carbon Content 

The process of fossil fuel combustion is a chemical reaction involving oxygen that results in release of 

water, carbon dioxide (CO2), and heat. For instance, combustion of isooctane (gasoline) and methane 

(natural gas) results in the following reactions: 

2C8 H8   25O2   16CO2   18H2O   Heat  

C H4   2O2   CO2   2H2O   Heat 

It can be seen from the above equations that carbon content in gasoline is more than the natural gas. Each 

fossil fuel possesses a different amount of carbon content (IPCC, 2006; USEPA, 2005). The process of 

fuel combustion is optimized to produce a maximum amount of energy per unit of fossil fuel combusted. 

The efficiency of fuel combustion relates to the oxidation of the maximum amount of carbon contained in 

the fuel. Hence, the amount of CO2 released depends on the carbon content of a fuel rather than the 

combustion process (IPCC, 2006; USEPA, 2005). Not all of the carbon contained in a fuel is oxidized 
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during the combustion process. A minute fraction (<1%) of the contained carbon escapes the oxidation 

process. However, IPCC guidelines assume 99 - 100% oxidation of the contained carbon in most of the 

fossil fuels (USEPA, 2005; IPCC, 2006). The CO2 emission factors published by the IPCC provide the 

amount of CO2 released per unit of energy produced. It is the emission factor that links the concept of 

embodied energy and embodied carbon (carbon content).  

 

 

Figure 2-11: Share of fossil fuels in the United States' total energy supply 

Embodied energy includes the consumption of both the nonrenewable primary and secondary energy, 

which involve fossil fuel combustion (Hegner, 2007; Black et al., 2010).  In addition, electricity is 

consumed in the production processes that may have come from both the renewable and nonrenewable 

energy sources (Hegner, 2007; Black et al., 2010). Embodied energy also includes the feedstock energy, 

which is the energy of fossil fuels used as a raw material rather than as an energy source (Thormark, 2002; 

Thormark, 2006). The feedstock energy remains stored in the product with carbon that is not oxidized. 

However, in a life cycle term, whenever such material is burnt (e.g. in an incinerator) at the end of its 

service life, the stored carbon is oxidized and CO2 is released. Literature (e.g. Alshboul and Alzoubi, 2008; 

Huberman and Pearlmutter, 2008) also suggested to include not only mechanical energy (equipment) but 

also human energy (of labor) used in material manufacturing. Human labor also consumes energy and has 

its own share in the total carbon emission.  

From the concept of fossil fuel combustion, it can be expected that the amount of embodied energy is 

correlated to the resulting carbon emission. Figure 2-12 demonstrates a strong positive correlation (r
2
 = 

0.90 - 1.00) between the values of embodied energy and embodied carbon reported by Hammond and 
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Jones (2008) and Gonzalez and Navarro (2006). This correlation indicates that both the embodied energy 

and carbon can be used as an effective parameter for the environmental evaluation of various products 

(Hegner, 2007; Acquaye, 2010). 

 

 

Figure 2-12: Correlation of embodied energy and carbon 

2.6 EMBODIED ENERGY CALCULATION 

Two issues are very important to discuss in the context of the embodied energy calculation process. The 

first issue is related to system boundary, whereas the second issue is associated with the existing embodied 

energy calculation methods. 

2.6.1 System Boundary Definition: Major Issues and Need for Improvement 

2.6.1.1 System Boundary Definitions in the Literature  

A system boundary demarcates a system of various products and processes used in the manufacturing of a 

product under study. The system boundary also determines the number and type of energy and material 

inputs and waste and emission outputs that are included in the embodied energy calculation (Peuportier, 

2001; IFIAS, 1975). A system boundary for a product can range from raw material extraction for its 

manufacturing in distant upstream to demolition and its disposal furthest downstream. Among common 

system boundaries for buildings and building products are “cradle to gate,” “cradle to site,” and “cradle to 

grave.” The cradle to gate system boundary includes upstream processes such as raw material extraction 
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through a point where the finished product leaves the factory gate (excluding transport of material to the 

building site) (Frey, 2008, Goggins et al., 2010). The cradle to site covers, in addition to the cradle to gate 

boundary, transportation of finished product to the construction site, on-site construction and assembly 

processes, wastage disposal, etc. (Hammond and Jones, 2008). The cradle to grave system boundary takes 

also into account the use phase with operations and maintenance, renovation and refurbishment, and 

retrofit activities. The end-of-life phase with processes such as building demolition, waste sorting and 

hauling, recycling and reuse, and disposal of discarded waste to landfills is also included (Hammond and 

Jones, 2010; Hammond and Jones, 2008). The cradle to grave boundary provides a whole life cycle 

perspective, which is important for a complete and accurate environmental assessment (Plank, 2008; 

Hammond and Jones, 2010; Khasreen et al., 2009; Vukotic et al., 2010). Figure B1-8 in Appendix B1 

provides an illustration of various boundary definitions discussed in the literature. 

The International Federation of Institutes of Advanced Studies (IFIAS) organized a workshop on the 

relationship of energy and economic analysis that included 27 economists and scientists from ten countries 

around the globe (IFIAS, 1975). The IFIAS workshop provided a simplified system boundary model with 

four levels of regression to include most of the energy and material inputs to a process under study. Figure 

2-13 illustrates the system boundary model as proposed in the IFIAS workshop. Level I regression 

included only direct inputs of primary and delivered energy to the main process. Materials and energy (e.g. 

electricity) involved in the main process might also have consumed energy in their acquisition and 

production which was accounted for in Level II regression. Level III analysis included production energy 

of direct energy input at Level II and also of capital equipment used in the main process. A Level IV 

regression covered the production energy of equipment that produced the capital equipment used in level 

III processes. Each of these levels also included the transportation energy of materials and equipment 

(IFIAS, 1975). Similarly, studies such as Hammond and Jones (2010), Hammond and Jones (2008), 

Buchanan and Honey (1994), and Fay (1999) also discussed multi-level system boundary definitions 

applicable to a building.  

Buchanan and Honey (1994) and Hammond and Jones (2010) discussed the four levels of system 

boundary regression. The first level of regression covered all direct energy inputs into the processes of a 

building’s life cycle such as construction, prefabrication, maintenance, replacement, demolition, and 

disposal. Energy embedded in the main production and all upstream and downstream processes of a 

building material were counted in the second level of regression. Nearly 90% of the energy inputs could be 

tracked and determined by a second level of regression (Hammond and Jones, 2010; IFIAS, 1975). 

Furthermore, analysis of inputs beyond this level becomes time and effort consuming, and as a result, 

studies conducting analyses beyond this level are rare (Hammond and Jones, 2010; Hammond and Jones, 

2008). A third regression level covered the energy embedded in production, delivery, and installation of 

machines used in building materials’ manufacturing and on-site and off-site construction processes. 
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Finally, the manufacturing energy of machines utilized to produce the machines of third level regression 

was covered in a fourth level of regression. The fourth regression level, however, is the most difficult one 

and is hard to achieve (Hammond and Jones, 2010; Buchanan and Honey, 1994). Likewise, Fay (1999) 

also proposed a multi-level system boundary model. 

 

 

Figure 2-13: System boundary model proposed by IFIAS, 1975 

Similar to the other models proposed, Atkinson (1996) suggested tracking all energy and nonenergy inputs 

to a building from its manufacturing stage back and forward to the biosphere (nature) as shown in Figure 

2-14. Each phase of the building’s life cycle involved the output of solid, liquid, or gaseous waste and 

emission affecting the ecosystems (Atkinson, 1996). Tracking inputs from the main production process 

back and forward to the biosphere actually depicted the upstream and downstream processes. Edwards and 

Bennett (2003) proposed a product system, which covered all water, primary and delivered energy inputs, 

and their acquisition in the upstream. Resulting wastes and emissions were shown in the downstream (see 

Figure 2-15). Likewise, Ries and Mahdavi (2001) defined a boundary that incorporated land use in 

addition to the energy embodied in the capital infrastructure (see Figure 2-16).  
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Figure 2-14: A simplified system boundary suggested by Atkinson, 1996 

Herendeen (1998) illustrated a similar system boundary model by stating an example of car production. 

According to the study, the 10% of the total car production energy was consumed during car 

manufacturing, whereas the remaining 90% of energy was expended in acquiring, processing, producing, 

and delivering its other constituent materials such as steel, plastic, glass and fabric. Koskela (2000) 

translated a production model to the construction industry, which included the production components 

such as transformation (e.g. of input to output), flow (e.g. storage, transportation and handling), and value 

(e.g. final product). This model also demonstrated a system boundary that covered all of the products 

(value component) and processes (transformation and flow component) involved in a building’s 

production. 

 

 

Figure 2-15: System boundary proposed by Edwards and Bennett, 2003 
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Figure 2-16: System boundary definition provided by Ries & Mahdavi, 2001 

A model proposed by Chang et al. (2012) included the embodied impacts of materials, equipment, 

transportation, and construction used to deliver a building as a finished product.  Interestingly, Deng et al. 

(2011) proposed a system in which all of the energy and material flows culminated into a stage that dealt 

with waste reuse, recycle, and treatment. Moreover, their model accounted for inputs such as food, human 

travel, and consumables that were used in the process building production. Murphy et al. (2011) suggested 

a multi-dimensional model incorporating five levels (inputs under study, energy inputs, material inputs, 

human labor, and other supportive activities). Figure 2-17 illustrates the system boundary model suggested 

by Murphy et al. (2011). An “extended system boundary” was another interesting definition of a system 

boundary proposed by Kua and Wong (2012), which also included the impacts of managing waste 

produced during a building’s operation.  Studies such as Kua and Wong (2012) and Matthews et al. (2008) 

also recommended expanding system boundaries beyond a building to its immediate surroundings. 

 

 

Figure 2-17: Model suggested by Murphy et al., 2011 
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2.6.1.2 System Boundary Definition: Difference of Opinion 

System boundary definition has been an important issue of discussion in existing literature (Horvath, 

2004). Studies such as Atkinson (1996), Ries and Mahdavi (2001), Ulgiati et al. (2010), Hammond and 

Jones (2010) exhibited differences of opinion on the extent of the system boundary. Furthermore, which 

energy and material inputs to include in the analysis is not always clear and consistent, and as a result, 

studies often select boundary definitions subjectively (Capper et al., 2012; Mpakati-Gama et al. 2011; Suh 

et al., 2004; Weidema et al., 2008; Zamagni et al., 2008; Heijungs et al., 2009; Abanda et al., 2012). 

System boundaries proposed by published studies differed in three ways. First, studies often included only 

one or few life cycle stages of a building in the embodied energy analysis (Edwards et al., 1994; Ding, 

2004). The transportation and transformation processes between two consecutive life cycle stages were 

seldom considered in the calculation. Second, how far in the upstream and downstream of each life cycle 

stage a study should go was unclear (Horvath, 2004; Weidema et al., 2008; Heijungs et al., 2009). Finally, 

not all studies considered the whole building in the embodied energy calculation and covered one or more 

building components such as building structure, envelope, finishes, services and site features (Ding, 2004; 

Edwards et al., 1994; Optis and Wild, 2010). These differences in boundary definition caused variation 

and incompleteness in embodied energy data due to the exclusion of important life cycle stages or building 

components (Ding, 2004; Khasreen et al., 2009). Literature (e.g., Hegner, 2007; Krogmann et al., 2008) 

repeatedly pointed out issues such as inclusion of human energy, capital energy, feedstock energy, and 

renewable energy need clarifications. Some studies (Crowther, 1999; Thormark, 2002; Worth et al., 2007) 

covered energy and resource recovery at the end of life in their energy analysis, some did not. Only few 

studies (e.g., Cole, 1999; Vukotic et al., 2010) incorporated processes such as transportation for materials, 

equipment, and labor. Others were limited to materials’ transportation only. Raynolds et al. (2000) 

emphasized a need for a system that ensures consistent system boundary selection across different studies. 

Capper et al. (2012), Abanda et al. (2012), Chang et al. (2012) and Deng et al. (2011) also suggested 

building a consensus on the issue of a consistent system boundary definition. 

2.6.2 Embodied Energy Calculation: Major Issues and Need for Improvement 

Among the main methods of embodied energy analysis are process analysis, statistical analysis, input-

output analysis and hybrid analysis (Treloar, 1998; Crawford and Treloar, 2003; Ding, 2004; Langston, 

2006). In the statistical analysis, the embodied energy is calculated using the total energy supply to a 

particular industry sector and its total output (Alcorn, 1996; Treloar, 1998; Langston, 2006). This type of 

analysis is similar to the process analysis and has the same limitations as the process analysis (Alcorn, 

1996; Treloar, 1998; Langston, 2006). Hence, the statistical analysis is not discussed separately in this 

section. The following sections discuss the most commonly used methods. 
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2.6.2.1 Process-based Embodied Energy Analysis 

Process-based analysis is one of the most widely used methods of embodied energy (EE) analysis, as it 

delivers more accurate (Ding, 2004) and reliable results (Alcorn and Baird, 1996; Pullen, 2000b; Crawford 

and Treloar, 2003). The process commences with the building material as a final product and works 

backward in the upstream of the main process, taking into account most of the direct and indirect energy 

inputs embodied in each constituent material (Treloar, 1998; Alcorn and Baird, 1996). As discussed in 

Section 1.3, the embodied energy of a product is the sum of directly and indirectly consumed energy in its 

production. Hence, for a complete calculation both the direct and indirect energy data are required 

(Treloar, 1998; Crawford, 2004).  

However, in the case of a process-based energy analysis, it is difficult to track most indirect energy inputs. 

For instance, take a generic example of using concrete and steel in a structure. Figure 2-18 illustrates the 

generic example. The construction of the structure shown in Figure 2-18 involves direct (Edi) and indirect 

energy use (spread over Stage 1 through n as marked in Figure 2-18). The direct energy requirements 

represent the construction energy consumed in operating construction vehicles, cranes, earthmovers, and 

power tools and in temporary space conditioning at the construction site. The indirect energy requirements 

account for the energy embedded in materials (e.g., concrete, rebar as shown in Figure 2-18) and services 

(architectural and engineering services as shown in Figure 2-18) used in building construction (Treloar, 

1998; Crawford, 2004; Acquaye, 2010). In the case of a process-based analysis, energy embodied in 

concrete can be calculated if the embodied energy of Portland cement is known. Similarly, the embodied 

energy of Portland cement can be determined if the data about energy contents of clinker are available. By 

going in the upstream of, for instance concrete, one can track most of the indirect energy inputs. However, 

after a certain point in the upstream, the tracking of energy inputs is truncated due to the unavailability of 

data (Treloar, 1998; Crawford, 2004; Acquaye, 2010) or enormous efforts required to identify and 

quantify each material and energy input to the complex upstream processes (Alcorn and Baird, 1996; 

Treloar et al., 2001b; Ding, 2004; Crawford and Treloar, 2005). This causes a truncation error, which is 

actually an issue of incompleteness. Technically, this is called a system boundary truncation. Even 

downstream truncation of system boundary occurs in a process-based analysis (Acquaye, 2010). For 

instance, in the case of steel mills, downstream processes of fabricating rebar are truncated because the 

weight of rebar is multiplied by the embodied energy coefficient of steel to calculate the embodied energy 

of rebar. This excludes the direct energy consumed by manufacturing units fabricating rebar and other 

structural shapes. Other services such as banking, insurance, architectural and engineering consultancy, 

construction management, and commissioning are mostly excluded from the calculation causing a 

complete truncation of services. 
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A process-based embodied energy intensity, which is also known as the embodied energy coefficient (Ei), 

is calculated or sourced for each building material. At Stage 1 all material quantities, represented by Qi, 

used in constructing the structure are quantified and multiplied by the materials’ waste factors to make 

adjustment for waste. The embodied energy coefficients of the materials are then multiplied to material 

quantities to cover some indirect requirements as shown in the Equation 2-2. The indirect requirements are 

then added to the total direct energy consumed during the construction. Assuming a waste factor for a 

material as Wi, the total energy embodied in a building is calculated as (Treloar, 1998; Crawford, 2004; 

Acquaye, 2010): 

 

 

Figure 2-18: Process-based analysis and system boundary truncation 

 

                    ∑   

 

   

              Equation 2-2 

Where Ed, Qi, and Ei, represent the direct energy use, quantity of material, material’s embodied energy 

coefficient, and material, respectively. The term “i” denotes the materials used in the structure. 

Process-based embodied energy analysis is data-intensive and time-consuming and in order to ensure 

completeness, all major and minor inputs need to be tracked and recorded (Crawford, 2004; Acquaye, 

2010; Mattila et al., 2010). As huge efforts are required for collecting the energy data, a boundary is drawn 

to define the significant energy inputs for which data is available. However, it is assumed that all other 

inputs are insignificant and need not be included in the calculation (Treloar, 1998; Crawford, 2004; 

Acquaye, 2010). The process analysis is accurate but due to truncation of system boundary it suffers from 

the issues of incompleteness (Ting, 2006; Khasreen et al., 2009; Dixit et al., 2010). The magnitude of 

system incompleteness and error in process analysis results is estimated to be as high as 50% and 10%, 

respectively (Lenzen, 2000). According to Mattila et al. (2010), the impact of truncating a system 
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boundary could be up to 20% or more, particularly in sectors dominated by capital investments. Pullen 

(2000b) stated that the process analysis fails to capture not only some of the downstream processes but 

also the capital energy inputs (e.g. plants and equipment) required for building material production. If a 

system boundary model is developed based on the IFIAS recommendations (see Figure 2-13), it is more 

likely that the calculation remains incomplete if a process-based analysis is used. Even inventories based 

on a detailed and extensive process analysis failed to attain a reasonable completeness (Treloar et al., 

2001b; Crawford, 2004; Crawford and Treloar, 2005). Crawford (2004) also discussed a sideways 

truncation that occurred because of inputs to the main process extending sideways.  

According to literature (e.g., Treloar, 1998; Crawford, 2004; Acquaye, 2010), most process-based studies 

could go up to Stage 2 if extensive data is available. According to Baird et al. (1994), Stage 1, which 

mainly covered direct energy inputs, represented less than 50% of the total energy requirements. At Stage 

2, nearly 40% energy use was covered, whereas beyond Stage 2, only 10% of energy inputs were left. This 

meant that if an analysis was conducted up to Stage 2 completely, nearly 90% of the gross energy 

requirements of a building could have been covered.  

2.6.2.2 Input-output-based Embodied Energy Analysis  

An input-output-based analysis is conducted on the basis of economic data and it utilizes the monetary 

flows among different industry sectors to determine energy embodied in a particular product (Treloar, 

1998; Crawford, 2004; Acquaye, 2010). These economic data are published periodically by the 

governments in the form of input-output tables. An economic input-output table presents monetary flows 

among various industries of a given economy. An economy on the globe can be divided into numerous 

sectors that produce a variety of products. These sectors represent one industry or a group of industries 

that produce a similar product (e.g. steel products).  Each sector that manufactures a product also 

consumes goods and services produced by other sectors (Carter et al., 1981; Miller and Blair, 2009). This 

creates an interindustry flow of inputs and outputs where the sum of the inputs of a sector equals the sum 

of its outputs to other sectors. An input-output table demonstrates these interindustry transactions as well 

as consumption and purchases made by the final consumers and government. The input-output table 

contains sectors that produce goods and services and also consume goods and services produced by other 

sectors.  

An economic input-output table is always in equilibrium meaning that the inputs and the outputs of the 

industry sectors are balanced (Miernyk, 1965; Carter et al., 1981; Miller and Blair, 2009). This means that 

if an industry sector increases its output by one dollar, then by the input-output theory, it will require 

inputs worth one dollar more from its supplying sector. The demand from its supplying sector is known as 

the direct requirement. Each supplying sector also needs to buy more to meet the demand of this increased 

output. Hence, the impact of increasing output by one dollar can be felt throughout the economy. This 
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impact represents the indirect requirements. The sum of direct and indirect requirements is termed the total 

requirements (Miernyk, 1965; Miller and Blair, 2009). In an input-output-based energy analysis, the total 

impact of a one dollar increase in the output of an industry sector on the energy providing sectors is 

calculated from the total requirement coefficients. After determining the monetary inputs required from 

the energy sectors per dollar output, energy tariff can be used to derive the total energy consumption in 

energy units. The direct and total requirement coefficients are converted to direct and total energy 

requirement coefficients using fixed or variable energy prices. The input-output tables have been used to 

transcribe economic flows into energy flows by applying average energy tariffs (Fay and Treloar, 1998; 

Crawford and Treloar, 2003; Ding, 2004). Thus, in an input-output analysis, the cost of a product and its 

energy intensity (in MJ/$) are multiplied to compute its embodied energy (Crawford and Treloar, 2005). 

The input-output-based analysis accounts for most direct and indirect energy inputs used in the process of 

building material production and thus is considered complete (Fay and Treloar, 1998). Figure 2-19 

illustrates the same generic example in an input-output context. As the total requirement coefficients 

represent the sum of direct and indirect requirements, this method is assumed to be comprehensive and 

complete as it embraces nearly the entire system boundary as shown in Figure 2-19. If Ti and Di represent 

the total and direct requirement coefficient in $ input/$ output of an industry sector “i”, the total and direct 

energy requirements are given by: 

           

              

 

 

Figure 2-19: Input-output analysis and system boundary coverage 
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Where Fp is the energy price in MJ/$. The calculated energy coefficients provide total and direct energy 

use in MJ/$ industry output. The total energy requirements can be calculated by multiplying the TEi and 

total industry output Ot ($).  

                      Equation 2-3 

Although this method is considered complete, it also suffers from inherent problems such as errors and 

uncertainties of economic data (e.g. energy tariff and product cost) and aggregation of industry sectors. 

The issue of aggregation makes the end results less specific to the product under study. For example, a 

residential construction sector may represent all residential buildings including low-rise, high-rise, 

custom-designed, and mass housing. As per the input-output theory, all of them would have the same 

energy intensity as the residential sector, which may not be true. Although the results of an input-output-

based analysis are less study-specific than the process-based analysis, it is still considered straightforward, 

accessible, and representative (Langston, 2006; Pullen, 1996). Among the major limitations of input-

output-based methods include: 

Age of Data: The input-output tables are not published in a timely manner due to extensive efforts 

involved in collecting, analyzing, and balancing the economic data. Usually, economic input-output tables 

are five or more years old making its data nonrepresentative in time (Crawford, 2004; Langston, 2006; 

Miller and Blair, 2009). For instance, the United States’ detailed input-output accounts are published every 

seven years. The latest benchmark data that are available are from 2002 (USBEA, 2008). Two types of 

anomalies could arise due to the use of old data. First, the structure of the domestic and foreign monetary 

transaction might have changed over time. Second, the composition of labor and machine in the 

production function might have altered as a result of improved technology.   

National Average and Fixed Energy Tariff: To convert monetary transactions into energy terms, 

national average prices are used that may not represent the actual energy prices paid by the industry 

sectors. The fuel mix for electricity production and input composition for material production also differ 

with geographic location (Crawford, 2004) within the same country.  Some industries pay real-time 

electricity prices, whereas some end up paying peak rate charges. Also, energy buyers usually negotiate 

while purchasing energy in bulk. Using a national average price to convert monetary flows into energy 

flows may not be representative (Treloar, 1998; Crawford, 2004; Miller and Blair, 2009; Acquaye, 2010). 

Instead of using variable prices, fixed energy tariffs are used to derive a national average by converting 

monetary data to energy data. In reality, sectors may be paying different prices for different energy types 

such as oil, natural gas, and coal (Langston, 2006; Crawford et al., 2002; Carter et al., 1981; Crawford, 

2004). 

Proportionality Assumptions: The cost of the product of each sector in an input-output table is directly 

proportional to the amount of goods and services consumed by that sector. For instance, if 50 kilograms of 
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steel is needed to manufacture a refrigerator then 100 kilograms of steel would be needed to produce two 

refrigerators of the same cost (Langston, 2006; Crawford, 2004; Crawford et al., 2002). In energy terms, 

for instance, if 1 MBtu is consumed to produce 1 lb of steel then to produce 5 lbs. of steel, 5 MBtu of 

energy would be required. This may not hold true, as manufacturing industries use different production 

technologies and their energy and material input could be quite different from one another (Acquaye, 

2010). 

Homogeneity Assumptions: Input-output tables are built assuming that the same mix of inputs (product 

and services) is required by each product manufactured by an industry sector. This means that all products 

covered under the aluminum sector are manufactured using the same mix of inputs (e.g. bauxite, 

electricity, accounting services, etc.), which may not be true, especially for a sector that is highly 

aggregated (Langston, 2006; Crawford, 2004; Treloar, 1998; Crawford et al., 2002). Aluminum cans, for 

instance, would require a different mix of inputs than a cooking utensil of the same weight. According to 

the homogeneity assumption, the aluminum cans could be substituted for the cooking utensil, which may 

be accurate in monetary terms but may not be in physical terms (Treloar, 1998; Crawford, 2004) 

Aggregation Problem: Input-output tables are composed of sectors that are highly aggregated. These 

sectors represent more than one product and each product may have a different energy intensity and price 

(Langston, 2006; Crawford, 2004; Treloar, 1997). For instance, an industry sector manufacturing plastic 

goods would represent, in energy terms, all plastic products related to construction, medical supply, 

packaging, machinery, electronic items, etc. Given this assumption, each of these plastic products would 

share the same energy intensity as the industry sector as a whole. In reality, this assumption is not true, as 

each of the listed products has a different energy intensity (Crawford, 2004; Acquaye, 2010).  

Double Counting:  According to Treloar (1998) and Langston (2006), energy may be double counted 

while using input-output data for energy providing sectors. For instance, if 1 GJ of electricity is produced 

using 2 GJ of oil then the energy embodied in electricity would be 3 GJ as per input-output theory 

(Treloar, 1998). Another example of double counting is the energy intensity of an energy providing sector. 

For example, in the United States, the dry natural gas is distributed by the Natural Gas Distribution sector. 

If an industry sector purchased natural gas from the Natural Gas Distribution sector, the purchased natural 

gas would be double counted as an indirect impact because the Natural Gas Distribution sector also 

bought natural gas from the Oil and Gas Extraction sector.   

Exclusion of Inputs: Inputs such as capital goods are not purchased or replaced frequently. Such goods 

may not show up in the input-output tables for a given year (Treloar, 1998; Crawford, 2004; Langston, 

2006). In addition, since household expenditure is treated as a final demand component, the use of human 

energy by manufacturing sectors remains excluded from the input-output calculations. 
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The assumptions and various issues with economic input-output data make results of an input-output-

based analysis erroneous and unreliable (Fay and Treloar, 1998; Crawford and Treloar, 2003; Ting, 2006; 

Pearlmutter et al., 2007; Khasreen et al., 2009).  The resulting error in the measurement could be up to 

50% (Treloar et al., 2001a).  

2.6.2.3 Hybrid Analysis 

The process-based analysis is specific to the study but lacks completeness. The input-output-based 

analysis is complete but lacks specificity (Dixit et al., 2012a). A hybrid analysis is devised by unifying the 

benefits of the two methods to eliminate the fundamental errors and limitations of both the process and 

input-output-based analyses (Mattila et al., 2010; Acquaye, 2010; Dixit et al., 2012a). However, the results 

of a hybrid method also need to be compared and validated (Crawford and Treloar, 2003).  

The hybrid method starts with process analysis of readily available energy input data of the final 

production stage and likely one stage more in the upstream. In later upstream stages when it becomes 

difficult to achieve reliable and consistent information about complex upstream processes, the process 

analysis is substituted by the input-output-based analysis (Alcorn and Baird, 1996; Lenzen, 2000). There 

are many ways in which the two methods can be combined. The ultimate aim is to improve specificity, 

accuracy, and completeness of the method. Literature (e.g., Crawford, 2004; Treloar, 1998; Dixit et al., 

2010; Acquaye, 2010) categorized hybrid methods as: 

Process-based Hybrid Analysis: This method applies input-output-based analysis to complex parts of 

upstream processes of material production and thus, obviates the incompleteness inherent in process 

analysis. In this method, the material quantities used in a building are quantified using the process data 

(e.g. bill of quantities).  According to Treloar (1998), the calculated material quantities are then multiplied 

by input-output-based energy intensities of each material.  The input-output -based energy intensities that 

are in energy unit per $ (e.g. MJ/$) are converted into physical quantities using the price of the material 

(Treloar, 1998). Treloar (1998) also warned that if material prices are underestimated or overestimated, the 

embodied energy values would be grossly affected. However, using this method for a complex product, 

which is made of more than one material, could pose problems, as the manufacturing energy of the 

complex product is mostly excluded. Figure 2-20 illustrates this issue by an example of open web joists. 

For quantifying the energy embodied in an open web joist, the quantity of steel (Qi) is derived and 

multiplied by the input-output -based embodied energy coefficient of steel. However, in the process, other 

upstream inputs (as marked in the dashed box) are left behind. Also, as only steel quantities are used, the 

direct energy (Edi as shown in Figure 2-20) consumed in fabricating open web joists is also excluded from 

the calculation. According to Treloar (1998), incompleteness due to this issue could be 0-100%.  

Input-output-Based Hybrid Analysis: This method involves substitution of input-output data by process 

data in an input-output model in order to improve reliability of the energy calculation (Treloar, 1998; 
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Crawford and Treloar, 2003; Langston, 2006). In this method, the process-based direct energy use is 

derived first, data of which are readily available. These process-based direct energy data are then 

incorporated in an input-output -based model (see Figure 2-21). The assumption is that the more the 

inclusion of process data, the more reliable the model. The process data can be inserted in the input-output 

-based model in many ways. For instance, if energy use data are available for all industry sectors, they can 

be incorporated directly into the input-output model (Carter et al., 1981). If direct energy data are available 

only for a few sectors, then incorporating them into the input-output model may cause unwanted indirect 

impacts (Treloar, 1998). Treloar (1998) proposed a method for integrating energy use data into the 

economic model. This method involves the identification and extraction of direct energy paths from the 

input-output model in order to integrate the study-specific process data to avoid any unwanted indirect 

effects (Treloar, 1998). This method is discussed in detail in Section 2.6.2.4. According to Treloar (1997), 

the incompleteness or error in typical embodied energy calculation and analysis is approximately 20% and 

thus, no method is available that is fully efficient. However, an input-output-based hybrid analysis is 

considered better than other existing methods (Alcorn and Baird, 1996; Crawford and Treloar, 2003; 

Langston and Langston, 2008). 

 

 

Figure 2-20: Process-based hybrid analysis example 
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Figure 2-21: Input-output-based hybrid analysis 

2.6.2.4 Embodied Energy Path Extraction by Treloar (1998) 

Treloar (1998) proposed a unique way to extract significant energy paths (paths with energy values more 

than an arbitrarily selected value of 0.0001 GJ/$1000) from the input-output model and replace them with 

reliable process data.  According to Treloar (1998), there are three ways to improve reliability of an input-

output-based energy analysis. First, process-based direct requirement coefficients are inserted into the 

input-output matrix. This approach was found to be problematic, as it may cause unwanted indirect 

impacts, particularly if the process data are not available for all sectors. Second, a separate column of 

process-based coefficients could be added to the direct requirement matrix. According to Treloar (1998), 

in this method, efforts were more focused on quantifying smaller inputs at an early stage ignoring 

potentially larger inputs in distant upstream.  The third approach, that Treloar (1998) adopted, included 

tracing and extracting direct energy paths for which process data are available, calculating the total energy 

of the extracted path, and substituting the energy of the path by process data.  The input-output-based 

hybrid analysis that was further improved by Treloar (1998) is currently considered one of the most 

appropriate methods to calculate embodied energy (Langston, 2006). Crawford (2004) commented by 

citing Lenzen (2000) that an input-output-based hybrid method is “complete, more elegant, less data and 

labor intensive and easier to perform.” 

According to Crawford (2004), in spite of newly developed and improved hybrid methods, data 

uncertainty remains a major limitation. As the hybrid methods are a combination of process and input-

output data, these methods also carry the limitations and inaccuracies associated with these data. The 

method developed by Treloar (1998) also had certain limitations and errors (Crawford, 2004). For 

instance, while extracting a significant path for a product (e.g. metal deck roof), other paths (e.g. other 

types of roof products in the same category) remained in the input-output model. These paths should have 

been deleted if these products were not used in the study building (Crawford, 2004). Crawford and Treloar 
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(2003) demonstrated an approach to carefully extract all paths that were used or not used in the study 

building and then insert relevant process data. Treloar et al. (2000) also warned that even if significant 

energy paths were extracted and replaced with reliable process data, unimportant energy paths remained in 

the model that still acted as a “black box.” The input-output-based hybrid method proposed by Treloar 

(1998) requires process data, which may not be representative, accurate, or complete. For instance, Treloar 

(2001c) utilized the same method to calculate energy embodied in office buildings and obtained process 

data from a variety of sources. Although care was taken not to select process data that are more than five 

years old, the sourced process data may not be complete or representative.  In addition, if process energy 

data are available for most of the industry sectors, it would be much easier to modify a column of an input-

output model without unwanted indirect effects as shown by Carter et al. (1981). According to Treloar 

(1998), energy use data are only available for 25 industry sectors out of the total 113 sectors of the 

Australian economy. Hendrickson et al. (1997) concluded that life cycle assessment at a more refined level 

may not be meaningful given the uncertainty of life cycle data. Crawford (2004) (by citing Crawford et al., 

2003) believed that efforts to improve reliability and completeness are “still worthwhile.” 

2.6.2.5 Improvements in Treloar’s Method by Crawford (2004) 

Some of the problems identified in the embodied energy path extraction approach proposed by Treloar 

(1998) were resolved by Crawford (2004). Crawford’s approach was useful in calculating the embodied 

energy of particularly complex products that are made of multiple basic materials. For instance, in 

quantifying the energy embodied in concrete that is composed of cement, aggregates, steel, and water, this 

method ensured the inclusion of all direct and indirect inputs associated with a ready-mix plant in addition 

to the collective embodied energy of its constituent materials. The approach proposed by Crawford (2004) 

involved three main steps: 

Step I: Calculation of the process-based hybrid energy intensity of each constituent material (e.g. in the 

case of the concrete example, cement, aggregates, steel, and water) by adding the process-based energy 

intensity and extracting the total energy of the total energy path representing each constituent material 

from its input-output sector: 

             (       )            Equation 2-4 

Where: 

i Representing a constituent material (e.g. cement) 

      Process-based hybrid energy intensity of the constituent material 

     Process-based energy intensity of the constituent material 

     Total energy intensity of input-output sector manufacturing the constituent material 

   Total energy of the total energy path representing the constituent material 

   Price of the constituent material 
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Step II: The process-based hybrid embodied energy of a complex product “p” is calculated as: 

                                     Equation 2-5 

Where: 

p Representing a complex product (e.g. concrete) 

      Process-based hybrid energy intensity of the product 

   Quantity of the constituent material 

   Waste factor of the constituent material 

      Process-based hybrid energy intensity of the constituent material 

     Direct energy intensity of input-output sector manufacturing the product 

   Price of the product 

Step III: The IO-based hybrid embodied energy of a complex product is calculated as: 

                      (       )          Equation 2-6 

 

Where: 

p Representing a complex product (e.g. concrete) 

       IO-based hybrid energy intensity of the product 

   Quantity of the constituent material 

   Waste factor of the constituent material 

      Process-based energy intensity of the constituent material 

     Total energy intensity of IO sector manufacturing the product 

   Total energy of the total energy path representing the product 

   Price of the product 

 

2.6.2.6 Issue with the Proposed Hybrid Methods 

The input-output-based hybrid methods proposed by Treloar (1998) and Crawford (2004) were very 

useful, especially when determining the embodied energy of a complex product in an economy where 

process energy data are available for some of the industry sectors. However, there was an assumption that 

the process-based energy intensities were calculated in a complete and accurate manner. For instance, 

inputs such as human energy might not be included in the available process data. It is still not clear how to 

incorporate human and capital inputs in the calculation. In addition, while calculating the process-based 

hybrid energy intensity of a constituent material (Step I in the Crawford’s method), when the energy of the 

total energy path (Ti) was extracted, both the direct and indirect energy were excluded. However, the 

energy replaced by the process-based value (Ep, i) might not include the indirect energy of the constituent 
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material. Also, if a sector is highly aggregated, the calculated indirect impacts may not be representative. 

For calculating the upstream indirect impacts, both hybrid approaches proposed by Treloar (1998) and 

Crawford (2004) still depend on product prices, which, according to Treloar (1998), could distort the end 

results.  

Another variation of an input-output -based hybrid approach provided by Acquaye (2010) (based on 

Crawford, 2004) seemed more appropriate in which the energy of direct energy paths rather than the total 

energy paths were extracted. In Equation 2-7 - Equation 2-9, it can be seen that instead of extracting the 

total energy paths, as done by Crawford (2004), Acquaye (2010) extracted the direct energy paths. 

Acquaye (2010) also warned about a dual price error in Crawford’s method that may arise due to the use 

of energy, material, and product prices multiple times. According to Acquaye (2010):  

           (         )            Equation 2-7 

 

       ∑   

 

   

                        Equation 2-8 

 

              [ (      ∑    

 

   

)     ]         Equation 2-9 

 

Where: 

p Representing a complex product (e.g. concrete) 

     Process-based hybrid carbon intensity of the constituent material 

    Process-based carbon intensity of the constituent material 

      Total carbon intensity of IO sector manufacturing the constituent material 

    Direct carbon of the direct energy path representing the constituent material 

   Price of the constituent material 

   Quantity of the constituent material 

   Waste factor of the constituent material 

     Process-based hybrid carbon intensity of the product 

    Direct carbon intensity of IO sector manufacturing the product 

   Price of the product 

      IO-based hybrid carbon intensity of the product 

2.6.3 Proposed Improvements to Input-output Model 

As discussed in the embodied energy calculation section, the input-output-based energy calculations are 

affected by the limitations of the economic input-output data and models.  Although these limitations were 
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emphasized quite regularly in the literature (Treloar, 1998; Crawford, 2004; Acquaye, 2010), solutions to 

reduce or eliminate their impacts were also proposed. This section discusses briefly what solutions have 

been proposed and how they should be applied.  

2.6.3.1 Aggregation of Industry Sectors   

One major problem that has been repeatedly pointed out was that of highly disaggregated economic 

sectors. Although some countries around the globe have recently started publishing their economic 

accounts at a more detailed level (e.g. United States commodity-by-commodity requirement matrices), 

there are sectors that still represent multiple different products. One way to get results specific to a product 

under study is to disaggregate the product sector. As suggested by Joshi (1998) and (1999), a direct 

requirement matrix a (n by n size) can be broken down into matrix A (n+1 by n+1 size) in such a way that 

the added sector represents the product under study. Consider a and A as: 

    [

       

      
       

]    ;     

[
 
 
 
 

                     

        
                             

                     

                             ]
 
 
 
 

 

Where “i” indicates the sector from which sector n purchases its inputs. If      and       represent the 

output of sector n and the newly added sector n+1, respectively, then from the input-output theory (based 

on Joshi, 1998; Joshi, 1999): 

                                           

                                                                Equation 2-10 

 

Where                      and                      denote respective share of sectors n and n+1 

in the total output of the original aggregated sector. Similarly, purchases made by a sector k from the 

original aggregated sector would be equal to the sum of purchases from sector n and n+1. 

                 

                                                                                     

Equation 2-11 

If the breakup of the total output of an industry sector is known, it can be disaggregated into two or more 

sectors of interest. 

2.6.3.2 Double Counting of Energy Inputs  

As mentioned earlier, a conventional input-output model, if applied as it is, involves double counting of 

inputs especially in the case of energy providing sectors that purchase, process, and distribute energy (e.g., 
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electricity production, natural gas distribution) (Treloar, 1998; Crawford, 2004; Acquaye, 2010; Mo et al., 

2010). Treloar (1998) proposed using a factor that converts a delivered energy quantity into a primary 

energy quantity. The factor is known as the Primary Energy Factor (PEF), and it takes into account all 

process energy consumed (human and mechanical energy), energy losses incurred, and energy used 

indirectly (e.g. embodied energy of materials, plants, equipment, and other services used) in extracting, 

processing, transmitting, and distributing energy such as oil, gas, or electricity (Treloar, 1998; Deru and 

Torcellini, 2007; Mo et al., 2010). However, the basic assumption is that the calculated value of PEF takes 

into account all direct and indirect consumption related to a delivered energy source. Therefore, if PEF 

does not cover all the energy inputs, the final energy calculation may remain inaccurate or incomplete. 

According to Treloar (1998), all energy and nonenergy inputs to energy providing sectors are kept at zero 

meaning there is no direct and indirect consumption by the energy providing sectors. However, the output 

of the energy providing sector still goes to other industry sectors. The calculated direct and total 

requirements are then multiplied by PEF of each energy source in order to make adjustment for all direct 

and indirect energy use.  

2.6.3.3 Fixed Energy Tariff  

There are multiple energy providing sectors in an economy delivering energy sources such as oil, natural 

gas, coal, and electricity. Each industry sector of the economy pays a different price to these energy 

providing sectors for purchasing energy. One alternative to use and integrate variable price data into an 

input-output model is given by Carter et al. (1981). If the actual physical quantities of energy consumed by 

industry sectors are known, they can be inserted into an input-output model to derive the direct and total 

requirement coefficient in energy units (e.g. MJ/$). One big advantage of this approach is that energy 

prices are not used to convert monetary flows into energy flows. Any issues resulting from energy price 

variations would not affect the results of this approach. Weber et al. (2010) also created a vector of actual 

physical quantities of electricity use in order to determine the carbon emission intensities of various 

industry sectors. However, information of actual physical quantities of energy consumed by each industry 

sector may not be readily available (Weber et al., 2010). 

2.6.4 Embodied Energy Calculation: Energy and Cost Relationship 

In spite of many efforts to define a system boundary and derive an appropriate method to calculate 

embodied energy, studies such as Pears (1996), Ding (2004), Crawford et al. (2002), Frey (2008), Dixit et 

al. (2010) concluded that a reliable, consistent, and accurate embodied energy information is not readily 

available. An embodied energy analysis in its current form is expensive and time-consuming and is based 

on a number of assumptions (Langston, 2006). In addition, the energy analysis is still not well integrated 

into current design and construction practices and decisions are still made based on solely the capital cost. 

The following studies are worth discussing in the context of energy and cost relationship: 
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2.6.4.1 Costanza (1980) 

According to Costanza (1980), the linkage between the economic and energy flows across an economy can 

be utilized to determine the energy embodied in a product. In addition, it is claimed that efforts to save 

energy may mean saving one form of energy at the cost of other. The calculation approach proposed by 

Costanza (1980) was based on the energy balance of an economic system in which the energy embodied in 

energy and nonenergy inputs to a sector was balanced by the embodied energy of its total output. The 

system boundary proposed by Costanza (1980) included the household and government sector as 

endogenous to the intermediate transaction matrix. What this means that the energy embodied in human 

and government inputs were also accounted for. Costanza (1980) analyzed four types of economic systems 

that included a conventional system and three modifications to cover household sector, government sector, 

and solar energy inputs. Costanza (1980) differentiated the various energy forms. For instance, the 

electricity was considered higher quality energy than the fossil fuels, which was of higher quality than the 

solar energy. Costanza (1980) demonstrated a strong relationship between the energy embedded in a 

product and monetary output of its production sector. Literature (e.g., Costanza, 1980; Cleveland et al., 

1984) revealed a strong relationship of the nation’s energy to the Gross Domestic Product (GDP) and 

derived a ratio of energy to GDP. Costanza (1980) concluded that assuming appropriate system 

boundaries, “market determined dollar values” are proportional to the embodied energy values with an 

exception of the primary energy sector.  

2.6.4.2 Langston (2006) 

The research performed by Langston (2006) was inspired by the fact that current embodied energy 

calculation approaches are not only tedious but also time and resources-consuming. The difficult 

embodied energy calculation process hindered its wide-spread application as an important indicator of the 

energy and environmental impacts of production. Langston hypothesized that a building’s capital and 

recurring cost (operating and maintenance costs) had a strong and positive correlation with its embodied 

and operating energy. If a strong correlation was found, the estimation of embodied energy from the cost 

of a building could be possible. Langston used the approach proposed by Treloar (1998) to calculate the 

embodied energy of the study buildings. Cost data were collected from the study buildings’ bill of 

quantities. Langston (2006) found that there is a strong and positive correlation between the total energy 

(embodied and operating) and total cost (capital and recurring) of the buildings under study. However, 

when analysis was done at a more detailed level (individual work and material level) this correlation was 

positive but weak. 

Bullard and Herendeen (1975) also emphasized the relationship of product consumption and energy 

consumption by stating “when you consume anything, you are consuming energy.” Likewise, Costanza 
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(1980) and Langston (2006) both concluded that there was a strong and positive correlation between the 

cost and embodied energy of a building at the project level. 

2.7 RESEARCH GAPS 

The review of relevant literature about embodied energy modeling and analysis revealed several gaps in 

the current state of research, which are discussed in this section.  

2.7.1 Embodied Energy Definition and System Boundary Model 

The topic of energy embodied in a building and its constituent materials has been discussed widely in the 

literature. However, a consensus on its definition is still lacking. As the interpretation of embodied energy 

is tied to what is included in the calculation, a consistent and complete system boundary modeling 

becomes a crucial issue. Issues such as the extent of the system boundary in the upstream and downstream 

of a product are still not clearly defined. As mentioned in the literature (e.g. Raynolds et al., 2000), a 

model to define a system boundary consistently and completely needs to be developed in order to 

introduce comparability to embodied energy data. Differing system boundaries, due to their subjective 

selection, is a major methodological issue with the embodied energy research.   

2.7.2 Calculation Guidelines 

In spite of some remarkable efforts by researchers such as Treloar (1998), Crawford (2004), and Langston, 

(2006), the variation in embodied energy values is still an unresolved issue. There is no protocol that could 

be used to standardize the energy calculation in order to reduce some of these variations (Menzies et al., 

2007; NIST, 2010). The International Standardization Organization (ISO) developed standards (ISO14040 

and ISO 14044) for performing the Life Cycle Assessment (LCA) of a manufactured product. However, 

these standards have been criticized for not being able to provide the required guidance to streamline the 

LCA process (Zamagni et al., 2008; Weidema et al., 2008; Heijungs et al., 2009; Jeswani et al., 2010).  

Some of the parameters responsible for variations have been identified. These parameters can be used to 

develop a set of guidelines to streamline the process of embodied energy calculation (Dixit et al., 2010).  

2.7.3 Calculation Method 

The field of embodied energy research lacks a standard methodology to accurately and completely 

determine the energy embodied in a building (Ting, 2006; Menzies et al., 2007; Langston and Langston, 

2008; Frey, 2008; Khasreen et al., 2009). The existing methods are either incomplete or not specific to a 

product under study, and hence, produce different results. According to Ting (2006), current methods need 

to be improved in order to consistently measure the energy embodied in a product. Some of the 

improvements suggested include inclusion of process data, insertion of human and capital energy, sectorial 
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disaggregation for increased specificity, and avoiding double counting (Treloar, 1998; Joshi, 1998; 

Crawford, 2004; Langston and Langston, 2007; Ulgiati et al., 2010). 

2.7.4 Energy and Cost Relationship  

Langston (2006) performed research on the relationship between embodied energy and cost and found that 

a building’s embodied energy is highly correlated with its capital cost. However, it was found that this 

correlation is weak if the correlation analysis is performed at a material or process level (Langston, 2006). 

This relationship of building components and their cost needs more research. In addition, Langston (2006) 

suggested that the energy and cost relationship research needs to be extended to other geographic locations 

and to other building types. 

2.8 SUMMARY 

In CHAPTER II , we discussed the current state of research in the field of embodied energy of buildings. 

The review of literature revealed four major issues that need attention. First, the current interpretation of 

embodied energy is not clear and there is a little consensus on embodied energy definition. Second, the 

definition of system boundary was not consistent across studies. Studies proposed various models to 

define a system boundary in a complete manner but there were difference of opinion.  According to the 

review of literature, it was important to derive a system for consistently and completely defining a system 

boundary. Third, the analysis of existing embodied energy calculation methods revealed that the most 

appropriate method that was currently available had issues that need to be resolved. In addition, an 

urgency to develop a user-friendly approach for calculating the embodied energy was underlined. Finally, 

the current embodied energy data exhibited significant variations, and hence, were not comparable. To 

reduce the variations in embodied energy data due to methodological and data quality parameters, a need 

to standardize the embodied energy analysis process was also emphasized.  The review of literature 

revealed some research gaps in the current embodied energy research. 
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CHAPTER III   

RESEARCH DESIGN AND METHODS 

3.  

3.1 RESEARCH METHODOLOGY 

3.1.1 Aim and Objectives 

The review of relevant literature indicated that a large number of studies have been performed on topics 

such as embodied energy calculation, system boundary model, variations in embodied energy data, and 

relationship of energy and economic flows. This research collected, analyzed, and used relevant 

information from these studies in order to fill the identified research gaps. The aim of this study was to 

derive a less data-intensive and streamlined method to consistently calculate the energy embodied in a 

building and its constituent materials. This aim was achieved by meeting the following objectives: 

Objectives 

 Propose a set of guidelines for the embodied energy calculation for a building and its materials  

 Develop a comprehensive system boundary model for embodied energy analysis of a building 

and its materials  

 Develop a method to consistently and completely calculate the embodied energy of a building 

material based on the energy-cost relationship 

 Identify any correlation between the cost and price of a building material and its embodied energy 

3.1.2 Research Hypotheses 

After defining a consistent and complete system boundary model, an input-output-based hybrid method 

was developed and the energy embodied in commonly-used building materials was quantified. Table 3-1 

lists the study materials. 

 

Table 3-1: Building materials under study 

Virgin steel Stone Glass 

Primary aluminum Gypsum Paints & coatings 

Copper Wood, lumber Adhesives 

Cement Plywood & veneer, hardwood  Plastic pipes & fittings 

Bricks  Plywood & veneer, softwood Carpets & rugs 

Ceramic wall & floor tiles Mineral wool insulation Lime 

Polystyrene insulation Vitrified clay sewer pipes Concrete 
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Once the embodied energy of the above-mentioned materials was quantified, it was analyzed for its 

correlation with the cost and price of the study materials. The following hypotheses were tested using the 

calculated embodied energy values and the collected cost and price data:  

Hypothesis I: There is a strong positive correlation (r
2
>0.7) between the cost and the embodied energy of 

a product. 

Hypothesis II: There is a strong positive correlation (r
2
>0.7) between the price and the embodied energy 

of a product. 

The cost of a product was defined as the amount of money required to produce the product, whereas the 

amount of money paid by a consumer to buy the product was the price. The product, in the context of this 

study, was a building material. 

3.1.3 Scope and Limitations 

This research was solely focused on embodied energy and did not address any issue related to operating 

energy. Although the amount of embodied energy and embodied carbon in a product were found to be 

strongly related, this research aimed to determine only embodied energy. The scope of the research was 

limited to commonly-used building materials (see Table 3-1). As mentioned in the literature (e.g. Hegner, 

2007), the selection of a material based on its low embodied energy could affect a building’s operating 

energy. Any such analysis was out of the scope of this research. 

Because the United States’ economy was used as a basis for the development of the embodied energy 

calculation method, the results should be applied to a foreign economy with a caution. However, the steps 

proposed in the calculation method could be replicated with or without modifications if comparable data 

were available. When input-output tables are used for calculating the embodied energy, the definition of 

system boundary is conventionally assumed as “cradle to gate.” However, as most of the transportation 

among the various sectors of the United States’ economy was included in the input-output model, a 

“cradle to site” system boundary can be assumed for the calculated embodied energy values. 

The economic data used for developing the input-output model and the calculation method were sourced 

from the latest 2002 Benchmark Input-output Accounts published in 2008 by the United States Bureau of 

Economic Analysis (USBEA, 2008). All other relevant data collected, treated, and used were also from 

year 2002. Therefore, the results of the research need to be adjusted for economic and technological 

changes before being applied to a different time period. 

3.1.4 Research Methods 

A Literature-Based Discovery (LBD), an input-output-based hybrid method, and a correlation and 

regression analysis were performed to accomplish the research goals. The research methods adopted are 

discussed in four sections that are tied to the four study objectives.  The first two sections discuss the 
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method used for deriving a set of guidelines to streamline the embodied energy calculation process and to 

develop a comprehensive system boundary model. The third section provides a stepwise approach to 

developing the embodied energy calculation method and to quantifying the study materials’ embodied 

energy. The last section explains the evaluation of the embodied energy results and the process of 

hypothesis testing. 

3.1.4.1 Deriving a Set of Guidelines for Embodied Energy Calculation 

The process commenced with a survey of relevant literature to understand the current state of research and 

to identify the research gaps. The conclusions were derived by referring to various peer-reviewed 

bibliographic sources. This method is called Literature-Based Discovery (LBD), proposed by Dr. Don R. 

Swanson from the University of Chicago and widely used in the realm of biomedical science.  In 1986, 

Swanson adopted the LBD in biomedical science studies, and was successful in creating new knowledge 

(Weeber et al., 2001). Kenneth A. Cory from Wayne State University, Detroit, demonstrated that this 

method of creating new knowledge was valid outside of the biomedical science field (Weeber et al., 2001; 

Kostoff, 1999).  

In the next step, a set of guidelines for calculating embodied energy was proposed using the process of 

LBD. A previously developed matrix (Dixit et al., 2010) of embodied energy parameters was particularly 

referenced for developing the guidelines. Three types of literary sources were referred. First, peer-

reviewed papers on embodied energy methods and data quality issues were referred to seek literature 

opinion on how to standardize the calculation process. A survey of existing international standards (e.g., 

ISO 14040 & 14044 and SETAC: Code of Practice) was also conducted to comprehend the current state of 

standardization in the field of embodied energy analysis. The critical reviews of existing international 

standards were referred in order to identify the potential areas of improvements.  

3.1.4.2 Developing a System Boundary Model 

Extensive literature is available that provided guidance to select a system boundary for embodied energy 

calculation. From the review of literature, it was evident that various system boundary models were 

proposed with a varying degree of coverage. For instance, a model covered only a few stages of a 

building’s life cycle, whereas other models covered all but included only a few upstream processes. While 

some studies performed embodied energy analysis of an entire building, some only covered selected 

building components. All of these models were appropriate within the scope of their research.  The process 

of LBD was used to collect, analyze, and synthesize these models to propose a comprehensive system 

boundary definition. The comprehensiveness and completeness of the proposed model relates to the extent 

to which energy and material inputs are covered by a proposed model (Treloar, 1998; Raynolds et al., 

2000). The accuracy of the model is determined by the level of the details (Leedy, 2005) with which the 

proposed model covers each energy and material input.  
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3.1.4.3 Developing a Calculation Method and Quantifying Embodied Energy 

Literature was also available on a chronological development of current embodied energy calculation 

methods. Although an input-output-based hybrid analysis was regarded as appropriate and complete, its 

limitations and problems were also highlighted. It was also discussed that an input-output-based hybrid 

method was complete but its results were less specific to a study material than a process-based method. 

However, a process-based method was grossly incomplete and, consequently, its results might be 

erroneous. It was also found that the impact of incompleteness of process-based analyses was greater than 

the effect of reduced specificity of an input-output-based analysis.  Moreover, studies suggested various 

approaches (see Section 2.6.3) to make the results of an input-output-based analysis more product-specific.  

The reliability of a measurement tool or a method is related to its accuracy (Leedy, 2005). The validity is 

more relevant to the end results and answers questions such as does the proposed method actually measure 

the energy embodied in a product. Most of the studies (e.g., Treloar, 1998; Crawford, 2004; Langston, 

2006; Mo et al., 2010) have already discussed the reliability and validity of the input-output-based hybrid 

method and have regarded it as the most appropriate method currently available. The input-output-based 

hybrid method was used in this study. The following improvements were proposed in the input-output-

based hybrid method: 

 Calculating and using PEF for each type of delivered energy to avoid the double counting of 

energy inputs 

 Disaggregation of sectors representing more than one product using a detailed output and input 

data sourced from the United States Census Bureau (USCB).  

 Inserting the process data of energy use (including the feedstock use of fuel) in physical units into 

the input-output model 

 Quantifying the energy embodied in labor and capital inputs and including them into the input-

output model 

 Deriving energy intensities of study materials by each energy source to have a better 

understanding of their environmental impacts 

Figure 3-1 illustrates the approach to developing the calculation method and quantifying the embodied 

energy of study materials. The following steps were taken to develop the calculation method: 

Step I: Developing commodity-by-commodity direct and total requirement matrices using the raw make 

and use data sourced from the 2002 United States Benchmark Input-output Accounts published by the 

USBEA (USBEA, 2008). The matrices were adjusted for scrap as suggested by Horowitz and Planting 

(2009). The final matrices were checked for consistency with the direct and total requirement tables 

provided on USBEA website (USBEA, 2008).  
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Figure 3-1: Approach to developing an input-output-based hybrid method 
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Step II: Collecting data on energy use by industry sectors in physical or energy units for 2002. If the data 

were available in monetary units, sector-specific energy prices were used to convert them to energy units. 

In addition, if the energy data were in aggregated form, they were decomposed into different fuel 

categories (e.g., coal, oil, and natural gas). 

Step III: Quantifying PEF for each type of energy delivered for end use to industry sectors. Both the 

direct and indirect energy lost and spent in extracting, processing, transmitting, and distributing an energy 

source was included. 

Step IV: Calculating the energy embodied in human labor and capital inputs using the method 

recommended by the literature (e.g. Joshi, 1998). The calculated values were then inserted into the input-

output model as two separate columns similar to the five energy providing sectors of the United States’ 

economy (based upon  Penson, 2012 and 2013 and Dudensing, 2012 and 2013). All energy and nonenergy 

inputs to these two sectors were kept at zero to avoid double counting. 

Step V: Disaggregating industry sectors manufacturing more than one product using detailed composition 

of industry sector inputs and outputs. The sector disaggregation was based on the approach suggested by 

Joshi (1998) and Joshi (1999). The disaggregation coefficient used for sectorial inputs are provided in 

Table A1-23, Table A1-24, and Table A1-25 in Appendix A1. The process of disaggregation was also 

discussed with Penson (2012 and 2013) and Dudensing (2012 and 2013). 

Step VI: Applying Power Series Approximation approach to calculate the total embodied energy of study 

materials as recommended by Treloar (1998). This approach was preferred against the Leontief’s Inverse 

Matrix because it allowed calculating the energy intensities by upstream stages. In addition, the energy 

intensities were also calculated fuel wise so that an analysis of the environmental impacts of fuel use can 

be performed in the future. 

Main Assumptions 

Although assumptions are mentioned in the relevant chapters, some assumptions are important to mention 

in this section. 

 While calculating the human energy requirements, it was assumed that all of the energy of food 

consumed by an employee was allocated to the employment. It was assumed appropriate to derive 

input-output-based energy intensities for sectors producing capital goods in order to quantify 

capital energy. The fractions of various capital goods under the categories such as structures, 

automobiles, equipment, and software in the total capital investment were used to calculate 

weighted average energy intensities.  

 While calculating the Primary Energy Factors (PEFs) for various energy sources except 

electricity, the indirect energy use was calculated using an input-output-based analysis. As most 
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of the energy providing sectors produce only energy goods, their energy intensities were assumed 

specific to their primary products. In addition, it was assumed that energy cannot be gained and 

any energy gain reported in the year 2002 was ignored.  

 During the process of sectorial disaggregation, the total purchases of goods by each disaggregated 

sector were used to allocate the total input of goods of the aggregated sector. Similarly, the 

purchases of services were allocated using each disaggregated sector’s total purchases of services. 

The use of commodity by industries was disaggregated based upon each disaggregated 

commodity’s share in the total output of the aggregated commodity. In the make table, the make 

of disaggregated commodities was assumed same as the aggregated commodity.  

 While inserting the human and capital inputs, it was assumed that the two represented energy 

commodities with no industry sectors producing them. All of the energy and nonenergy inputs to 

these commodities were kept at zero. 

3.1.4.4 Hypotheses Testing and Result Evaluation 

Hypotheses Testing: Three types of information were needed for hypotheses testing: material cost, price, 

and embodied energy intensities. As material prices were obtained from multiple sources, it was important 

to convert them to the same units. From the review of literature, it was clear that most energy intensities 

were given in energy units per mass of materials (e.g. MJ/kg). Some material prices were also given in 

units of mass. Therefore, it was decided to convert the embodied energy of each material into energy unit 

per unit of its mass.  For some material such as steel, cement, and aluminum, the material quantities were 

available in mass units, whereas the quantities of materials such as carpets, paint, wood, and bricks were 

given in various units such as square foot, gallons, cubic foot, and also in numbers. Appropriate material 

density data were sourced and used. As material density was dependent on type of materials used, a 

weighted average was derived. For instance, in the case of saw wood, each species of hardwood and 

softwood had a different density and it became important to calculate a weighted average density. The 

average was weighted on each species’ share in the total wood production. In some cases such as carpets, a 

material thickness of 3/8 inch was assumed while calculating the material density.  

The cost of a material was interpreted as the total amount of expenditure incurred in manufacturing the 

material. Reliable cost data were not readily available and it was considered appropriate to calculate the 

material cost. One option to avoid the use of product prices was to gather the total commodity output or 

production quantity in physical units. The embodied energy per unit mass then can be calculated using the 

following equation: 

      
         

    
           Equation 3-1 
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Where et, i and Co, i are the total energy intensity of a sector (e.g. MBtu/$) and total sectorial output ($), 

respectively. Term Cm, i denotes the total commodity output in physical units (e.g. ton or cubic yards). The 

obtained values would provide the total embodied energy Et, i in energy units per mass of the product. To 

calculate the cost of a material, its material specific commodity output (in $) was divided by the material 

quantities (in physical units such as tons, cubit yards, square foot, etc.). As it avoids use of material prices, 

using cost to calculate embodied energy can be more reliable if the cost data are readily available. The 

total quantity of a material produced in 2002 was obtained from sources such as historical statistics 

provided by the USGS (USGS, 2013) and the Current Industrial Report series published by the USCB 

(2002b). However, material quantities were not available for all study materials. 

The material prices are volatile and keep changing throughout the year. One way to obtain the average 

material prices was to use the material shipments’ quantities and values. These data can be sourced from 

the Current Industrial Reports (USCB, 2002b) and also from the 2002 Economic Census (USCB 2002a). 

Material prices for most metals and minerals were also available in statistics provided by the USGS 

(2013). The missing data were obtained from the 2002 National Construction Estimator (Ogershok, 2002). 

Appropriate energy conversion factors were used to convert all prices to comparable units. Some of the 

material price and density data used in the study are provided in Table A1-12 and Table A1-15 in 

Appendix A1.  

Correlation Analysis: The calculated values of embodied energy per unit of mass were analyzed for their 

correlation with material prices and costs. A coefficient of determination (r
2
) less than 0.5, 0.5 - 0.7, 0.7-

0.9 and more than 0.9 is considered to show a weak, moderate, strong, and a very strong positive 

correlation, respectively (Ding, 2004; Crawford, 2004; Langston, 2006). According to Taylor (1990) and 

Chan (2003), a correlation coefficient (r) less than 0.3 and more than 0.8 indicates a week and strong 

positive correlation, respectively. Based on the literature opinion, the following criteria were used in 

evaluating the correlation and testing the hypotheses: 

Very Weak Weak Moderate Strong Very Strong 

r
2
 <0.3 0.3>r

2
 <0.5 0.5>r

2
 <0.7 0.7>r

2
<0.9 r

2
 >0.9 

Once a strong correlation was observed, a regression analysis was performed to test the hypotheses. A 

regression analysis also helped in deriving an equation for an energy and cost relationship. 

Result Evaluation: The input-output-based hybrid method in its current form was not comparable to other 

methods due to a varying degree of completeness and specificity.  Crawford (2004) noted that evaluations 

such as sensitivity and Monte Carlo analysis were not suitable to analyze a method that is a combination of 

two entirely different approaches (input-output and process-based). It was also said that the Monte Carlo 

analysis is appropriate to evaluate inputs rather than the output (or results) (Crawford, 2004). It was 

important to assess the completeness and specificity of the proposed method by comparing its results to 
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relatively incomplete methods such as process-based analyses. Treloar (1998) and Crawford (2004) 

recommended using a gap analysis to evaluate the completeness of an input-output-based hybrid method. 

The gap analysis assesses the completeness by determining the gap between the proposed method and a 

less complete method such as process-based analysis. To assess the reliability of the proposed method, a 

comparative analysis was appropriate because it analyzed the correlation between the replaced input-

output values and the inserted process data. The gap and comparative analyses were used in this research 

to evaluate the developed method. 

Gap Analysis: As the current form of input-output-based method was improved based on the literature 

recommendations (e.g., Joshi, 1998; Carter et al., 1981; Treloar, 1998), an input-output analysis was 

performed to create a benchmark. In addition, process-based values of embodied energy were collected 

from published studies. However, instead of using the process-based values, direct energy process data 

were used. As the system boundaries of most of the process data were not clear, it was more appropriate to 

analyze the gap with the direct energy intensities. Both the input-output-based and process-based values 

were analyzed for their gaps with the input-output-based hybrid values. The gap can be calculated as 

(based on Crawford, 2004): 

            
             

    

        Equation 3-2 

             
              

    

        Equation 3-3 

Where: 

           Gap between an input-output-based hybrid and process-based embodied energy 

     Input-output-based hybrid embodied energy 

   Process-based direct embodied energy 

            Gap between an input-output-based hybrid and input-output-based embodied energy 

    Input-output-based embodied energy 

 

Comparative Analysis: As the process energy data were inserted into the input-output model, the inserted 

values were compared to the replaced energy values. The comparison was performed by plotting both 

values on an x-y plot or by creating a scatter plot. The values then were analyzed for their correlation. 

Such comparative analysis provided an assessment of whether or not the process values closely 

represented the comparable input-output values. The correlation analysis was performed between the total 

energy coefficients of the industry sectors calculated using original input-output data and the comparable 

process data. This analysis was also performed for the calculated values of the embodied energy of the 

study materials per unit of mass. 
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The calculated values were also compared with the published values of the embodied energy of the study 

materials. The purpose of this comparison was to identify if there was any unusual pattern in the calculated 

embodied energy values. 

3.2 SUMMARY 

The research was designed to address the four major issues identified as research gaps. To propose a 

complete and consistent system boundary model and a set of embodied energy guidelines, the research 

method of LBD was used. As the current version of the input-output-based hybrid method was regarded as 

the most appropriate method for calculating the embodied energy, it was used as a basis for making 

improvements suggested by literature. The PEF for each energy source used in the United States’ economy 

was quantified. The method proposed by Treloar (1998) to avoid the double counting of energy inputs was 

used. The human and capital energy was calculated and inserted into the input-output model using the 

approach proposed by Joshi (1998). In addition, using the same approach (Joshi, 1998 and Joshi, 1999), 

the industry sectors were disaggregated to obtain more study-specific results.   
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CHAPTER IV   

INPUT-OUTPUT MODEL DEVELOPMENT 

4.  

4.1 INPUT-OUTPUT MODEL: BASIC FRAMEWORK 

4.1.1 Input-Output Tables: Major Components 

An economic input-output table shows monetary inflows and outflows among the various sectors of a 

nation’s economy. Current input-output framework and methodology are based on the work of Wassily 

Leontief in the 1930s, who in 1973 won the Nobel Prize of economics (Guo et al., 2002; Perese, 2010). 

Leontief’s work enabled the use of economic data for a wide range of purposes such as energy and 

environmental research. It soon became a tool to forecast not only economic indicators but also impact 

matrices of population and environmental degradation. The economy of a nation can be divided into 

numerous sectors that produce and consume a variety of products. These sectors also pay, for instance, 

taxes to government and receive payments from the buying sectors. There are three types of sectors in an 

economy: processing sector; final demand sector; and value added sector (Miernyk, 1965; Miller and 

Blair, 2009). These sectors are illustrated in Figure 4-1. 

 

 

Figure 4-1: Basic framework of an input-output table 

The processing sector may include one industry or a group of industries that produce a similar type of 

product (e.g. steel products).  Each processing sector that manufactures a product also consumes goods 

and services produced by other processing sectors (Carter et al., 1981; Miller and Blair, 2009). This 
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creates an interindustry flow of inputs and outputs among the sectors. In an input-output table, the 

processing sectors appear in both the rows and columns forming a symmetrical matrix. This matrix is a 

square matrix in which the number of rows equals the number of columns (Miernyk, 1965; Carter et al., 

1981; Miller and Blair, 2009). The column sectors are the buying sectors and the row sectors are the 

selling sectors. In the symmetrical matrix, the rows of a column contain the values of inputs required from 

the row sectors to produce a unit output of the column sector. The column sum represents the total value of 

purchases made by the column sector. The sum of rows shows the total output of a row sector that is sold 

to the column sectors (Miernyk, 1965; Carter et al., 1981; Miller and Blair, 2009). Figure 4-1 shows the 

basic framework of an input-output table. 

The final demand sector shows the total value of sales by the processing sectors to the final consumer such 

as private households and government agencies (Miernyk, 1965; Miller and Blair, 2009). It includes 

columns of gross inventory accumulation, personal consumption expenditure, gross private domestic 

investments, government purchases, and the total value of export (Miernyk, 1965; Miller and Blair, 2009) 

(see Figure 4-2).  Some final consumers such as retailers maintain an inventory of goods. Any addition to 

the inventory is recorded in the column of gross inventory accumulation. 

 

 

Figure 4-2: Various components of an input-output table 

The personal consumption expenditure includes purchases made by, for instance, residential consumers 

from the row sectors. The purchases of capital such as plants and equipment made for the purpose of 

replacement or addition are recorded as the gross private domestic investment. The industry sectors also 
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sell their products and services to the government agencies. These transactions are reported in the 

government purchases column of the final demand sector. The total value of goods and services exported 

to foreign economies is listed in the column of total exports (Miernyk, 1965; Miller and Blair, 2009). The 

sum of all components of a final demand sector is known as the total final demand, whereas the sum 

excluding the value of exports is termed domestic final demand (Miller and Blair, 2009). The sum of 

domestic final demand and the net of exports (export minus import) represents the Gross Domestic 

Product (GDP) (Horowitz and Planting, 2009). 

The payments such as salaries and wages to employees or taxes paid to the government by the column 

sectors to value added row sectors are recorded in the value added component (Miernyk, 1965; Miller and 

Blair, 2009). The value added sector is formed by rows showing values of gross inventory depletion, 

payments to private households, depreciation, payments to government, and the total value of imports (see 

Figure 4-2). Any subtraction from the inventory is recorded under the gross inventory depletion row. The 

salaries and wages paid by the column sectors to employees and workers are reported in the payments to 

private household rows. The capital payment row shows the value of depreciation of capital goods and 

also the interest paid towards such purchases. The taxes paid by the column sectors to the government are 

listed under the payment to government row. Finally the import row shows the purchases made by the 

column sectors from a foreign economy (Miernyk, 1965; Miller and Blair, 2009). Various components of a 

conventional input-output table are shown in detail in Figure 4-2. The totals of rows and columns are 

marked in the last column and last row. In a balanced economy, the sum of the total output column and the 

total gross outlays row is equal. Hence: 

                                                     

Equation 4-1 

Or 

                                 Equation 4-2 

                                   Equation 4-3 

Where: 

x Total output and total outlays ID Gross inventory depletion 

IA Gross inventory accumulation EC Employee compensation 

PC Personal consumption expenditure CP Capital payments 

GDI Gross private domestic investments GP Government payments 

G Government purchases M Total value of import 

E Total value of export   

 

The terms x1, x2, x3, and so on represent the total output and total outlays, which are equal in an input-

output table. The left-hand side term represents the total domestic and net foreign consumption and is 
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termed Gross Domestic Product (GDP). As total output and outlays are equal, Equation 4-1 can be written 

as Equation 4-3. In Equation 4-3, the right-hand side term denotes the income received and is known as 

Gross National Income (Miller and Blair, 2009; Horowitz and Planting, 2009).  

The following sections provide a detailed explanation of direct and indirect requirements based on 

Miernyk, (1965), Carter et al. (1981), Horowitz and Planting (2009), Miller and Blair (2009), and Perese 

(2010). 

4.1.1.1 Direct Requirements 

According to an input-output theory, when a production sector increases its output by one dollar, it will 

require inputs worth one dollar more from its supplying sectors. The demand for inputs from its supplying 

sector is known as the direct or technical requirement. The direct requirement is quantified as a technical 

coefficient or direct requirement coefficient, which is the ratio of input from a selling sector to the output 

of a buying sector. For instance, assume a hypothetical economy with n number of sectors such that zij 

represents the amount of input required from sector “i” to produce the output of sector “j.” In other words, 

zij shows intermediate sales from industry “i” to “j.” If the total output of sector “j” is denoted by xj then 

the technical coefficient: 

      
   

  
          Equation 4-4 

 

 

Figure 4-3: A typical input-output matrix with intermediate transactions 
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In a square matrix of n sectors, each cell contains direct requirement or technical coefficients that 

represent the amount of inputs required from row industry by industry at the top of the column to produce 

one dollar of column industry’s output. The square matrix shows the interindustry transactions or 

intermediate sales of intermediate sectors as shown in Figure 4-3.  These sectors buy and sell goods and 

services to each other for delivering their outputs to the final demand sector.  

It can be seen in Figure 4-3 that the total output of an industry sector is the sum of its total intermediate 

sales and its sales to final demand sectors. If inputs from sector “i” to sector “j” are denoted by zij then a 

square matrix Z of n sectors would represent the intermediate sales. If x and f represent a column vector of 

total output xj and total final demand fj then: 

    [

       
   

       

]         [
  
 
  

]         [

  

 
  

] 

                   Equation 4-5 

Where “i” is a column vector of only 1s and it is used for summing up the intermediate sales. 

4.1.1.2 Indirect Requirements  

When an industry sector raises its output by one dollar, it needs to buy more inputs from its supplying 

sectors. Each supplying sector also needs to buy more to meet the demand of increased output. Similarly, 

supplying sectors of supplying sectors also need to meet the increased demand of their outputs. One can 

keep on calculating the increased requirements of inputs by infinite times tracking each input of a 

supplying sector. Hence, the impact of increasing output by one dollar can be felt throughout the economy. 

This impact represents the indirect requirements. The sum of all requirements due to indirect impact is 

known as the indirect requirement, and the respective coefficient is known as the indirect requirement 

coefficient. The sum of direct and indirect requirements is the total requirement of a single dollar increase 

in a sector’s output. The indirect requirements can be quantified using two approaches: Leontief’s Inverse 

Matrix and Power Series Approximation method. In both of the approaches, the direct requirement 

coefficients are used as a carrier of indirect impacts.  

4.1.2 Leontief’s Inverse Matrix: Direct and Total Requirement Matrix 

Equation 4-4 provides the calculation of the direct requirement coefficient. Consider an n-sector square 

matrix of direct requirement coefficients: 

    [

       

   
       

]     

If Z and x denote a square matrix of intermediate sales and a vector of total outputs, respectively, then one 

can write: 
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                  Equation 4-6 

Or 

      

From Equation 4-5 we can write 

         

           

                     Equation 4-7 

Where “I” represents a square identity matrix of n sectors. Here, the right-hand side term (I – A)
-1

 is 

known as the Leontief’s Inverse Matrix representing the total requirements of increasing the output of an 

industry sector by one dollar. To find out the indirect requirements, the direct requirements are subtracted 

from the total requirements. Using Leontief’s Inverse Matrix for calculating the total requirements is easy, 

quick, and straightforward. If Leontief’s Inverse Matrix is denoted by L then: 

                Equation 4-8 

4.1.3 Power Series Approximation 

If a modification to indirect requirements is needed or a more detailed account of indirect requirements is 

sought, a Power Series Approximation approach provides a better option. For instance, consider a two-

sector hypothetical economy as shown in Table 4-1. There are two sectors: construction and 

manufacturing. If the construction sector increases its final demand by one dollar, it will force itself and 

the manufacturing sector to increase their output by 0.2 and 0.35 dollars, respectively. So the increased 

output for the construction and manufacturing sectors in round one would be 1.2 and 0.35, respectively. 

Similarly, an increased output of the manufacturing sector (+0.35) would cause manufacturing and 

construction sectors to raise their output by 0.25 X 0.35 and 0.1 X 0.35, respectively. Table 4-2 shows the 

indirect requirements for round 1 through 5, which can go up to round infinity. It is important to note that 

each time the calculation goes back in rounds, the result of the previous round is multiplied by the direct 

requirement coefficient.  This is the reason why with each round calculation the indirect impacts get 

smaller and become nearly zero at round infinity. The calculation of the indirect impact using this 

approach is known as the Power Series Approximation method. 

 

Table 4-1: Hypothetical economy 

Industry Sectors Construction Manufacturing 

Construction 0.2 0.1 

Manufacturing 0.35 0.25 
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Based on an n-sector economy, we can derive an expression that does require finding out an inverse of 

matrix (I – A) to calculate the total requirement matrix. According to the results of input demands of 

various rounds in Table 4-2, we can write: 

                                          Equation 4-9 

From the example in Table 4-2 we have seen that with each round going back to infinity, the indirect 

requirements get smaller and smaller. With n = ∞, we can assume that the indirect requirement for A
n+1

 

would be zero. Hence: 

                                

Or 

                                

Or 

                               Equation 4-10 

 

Table 4-2: Indirect requirements of the hypothetical economy 

Input Demands Construction Manufacturing 

Round 0 1.0+0.2=1.2 0.35 

Round 1 0.2*1.2+0.1*0.35=0.28 0.25*0.35+0.35*1.2=0.51 

Round 2 0.2*0.28+0.1*0.51=0.11 0.25*0.51+0.35*0.28=0.23 

Round 3 0.2*0.11+0.1*0.23=0.045 0.25*0.23+0.35*0.11=0.096 

Round 4 0.2*0.045+0.1*0.096=0.019 0.25*0.096+0.35*0.045=0.04 

Round 5 0.2*0.019+0.1*0.04=0.008 0.25*0.04+0.35*0.019=0.017 

….   

…. = Ci = Mi 

Round ∞ 0.2* Ci+0.1* Mi 0.25* Mi+0.35* Ci 

 

Using the Power Series Approximation approach, the indirect requirement associated with each individual 

round can be calculated for a more detailed analysis of monetary flows. It can be seen that, with each stage 

in the upstream, the indirect impacts are carried by the direct requirement coefficient. In other words, 

going back in each stage involves multiplying by A, which is less than one. Therefore, in each upstream 

stage, the indirect impacts get reduced. 

Conventionally, the input-output accounts are published with direct and total requirement tables. A 

discussion on open and closed input-output accounts is necessary before we proceed to discuss the United 

States industry accounts. The input-output tables are conventionally published with intermediate sectors as 

endogenous sectors and final demand sectors as exogenous sectors. The endogenous sectors are the 

producers that deliver goods and services to the final consumers of the exogenous final demand sectors. 

Such conventional tables are termed open input-output accounts. However, some final demand sectors 
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such as private households could be interpreted as intermediate sectors providing labor in return for 

receiving salaries and wages. In some economies, one or more of the exogenous final demand sectors are 

moved to intermediate sectors, making them endogenous to the economy. Such tables are known as closed 

input-output accounts.   

4.2 UNITED STATES INPUT-OUTPUT ACCOUNTS 

The United States Bureau of Economic Analysis (BEA) reports economic statistics in the form of Annual 

Industry Accounts and the Benchmark Input-Output Accounts published every five years (Rassier et al., 

2007; Horowitz and Planting, 2009). These accounts show monetary transactions between various sectors 

representing industries, net export (export minus import), value added, and final demand (GDP). 

According to Horowitz and Planting (2009), one main purpose of the economic input-output accounts is to 

calculate the GDP and Gross National Income of the country. According to Miernyk (1965), the input –

output accounts are used as an “analytical tool” for “economic planning” and for resource allocation and 

income distribution. The input-output accounts also help government, industry, business, the research 

community, and the public in decision-making and in deriving strategies for the future. For instance, these 

accounts can be used for predicting the impact of an increased final demand on the entire economy in 

order to identify potential congestion in the input supply.  These accounts are also widely used for 

quantifying energy flows and resulting greenhouse gas emissions (Miller and Blair, 2009).  

The Annual Industry Accounts provide a more aggregated form (65 industries and commodities) of the 

flow of goods and services between various industry sectors. The Benchmark Input-Output Accounts that 

include 428 commodity sectors and 426 industry sectors present a more detailed form of the flows of 

goods and services (Stewart et al., 2007; Rassier et al., 2007). The benchmark accounts are published each 

year ending with 2 and 7 (e.g., 1992, 1997, and 2002). Such detailed and comprehensive economic 

statistics provide a strong and credible source of information that can be used for the purpose of economic 

planning, forecasting, and a variety of other research (Stewart et al., 2007; Rassier et al., 2007). The latest 

Benchmark Input-Output Accounts were released in 2007 by BEA for the year 2002 (Stewart et al., 2007). 

These accounts were updated in 2008. The BEA publishes the benchmark accounts at a summary and 

detailed level. The latest summary level accounts included 133 industries and 135 commodities, whereas 

the detailed accounts presented economic data for 426 industries and 428 commodities (Stewart et al., 

2007).  

4.2.1 North American Industry Classification System (NAICS) 

The industry data are presented by a uniform code system known as the North American Industry 

Classification System (NAICS). To improve the comparability of the economic reporting and analysis, the 

United States, Canada, and Mexico developed the NAICS under the North American Free Trade 
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Agreement (NAFTA). The NAICS has replaced the earlier 1987 United States Standard Industrial 

Classification (SIC) system (Ambler, 1998). The NAICS categorized the industries based on their 

production methods. Each industry was denoted by a six-digit NAICS code reading left to right. The first 

two digits denoted the sector, the third digit represented the subsector, and the fourth and fifth digits 

indicated the industry group and the NAICS industry, respectively (Horowitz and Planting, 2009). Table 

4-3 illustrates an example of NAICS classification for iron and steel manufacturing. 

  

Table 4-3: NAICS code example 

NAICS Code Description 

33 Manufacturing 

331 Primary Metal Manufacturing 

3311 Iron and Steel Mills and Ferroalloy Manufacturing 

33122 Rolling and Drawing of Purchased Steel 

331221 Rolled Steel Shape Manufacturing 

 

It is evident from the NAICS that a double-digit classification is more aggregated than a four or six-digit 

classification. A six-digit classification is country specific and may not be comparable with other countries 

following the NAICS (Horowitz and Planting, 2009). It is also the most detailed categorization available 

in the NAICS. According to the NAICS, the United States’ economy is composed of 20 sectors as shown 

in Table 4-4 (based on Horowitz and Planting, 2009; USCB, 2002c). 

 

Table 4-4: Sectors of the United States economy as per NAICS 

NAICS Sector Description NAICS Sector Description 

11 Agriculture, Forestry, Fishing and Hunting 53 Real Estate and Rental and Leasing 

21 Mining 54 Professional, Scientific, and Technical Services 

22 Utilities 55 Management of Companies and Enterprises 

23 Construction 56 Administrative and Support and Waste 

Management and Remediation Services 

31-33 Manufacturing 61 Educational Services 

42 Wholesale Trade 62 Healthcare and Social Assistance 

44-45 Retail Trade 71 Arts, Entertainment, and Recreation 

48-49 Transportation and Warehousing 72 Accommodation and Food Services 

51 Information 81 Other Services (except Public Administration) 

52 Finance and Insurance 92 Public Administration 
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4.2.2 Establishments, Industries, and Commodities 

According to NAICS, an establishment is a physical location where a group of industries are performing 

various industrial operations or providing a range of services. For example, the agriculture sector consists 

of various establishments such as farms, ranches, and dairies (USCB, 2002c). Horowitz and Planting 

(2009) warned that the terms “establishment” and “enterprise” should not be confused, as they are 

different. An enterprise could be a corporation, a company, or an organization that is a legal entity. In 

addition, an enterprise may contain one or more establishments (USCB, 2002c; Horowitz and Planting, 

2009). An establishment contains one or more industries engaged in numerous activities and using a 

similar production method (Stewart et al., 2007; Horowitz and Planting, 2009). However, each industry is 

categorized according to its primary activity. The primary activity could be manufacturing a product or 

providing a service. The primary activity is determined by the industries’ primary product (goods or 

services) that holds the largest share in the production cost, capital investment, or other information such 

as revenue, sales, or employment of an establishment (Horowitz and Planting, 2009). In addition to the 

primary products, industries also produce or provide other goods or services that are termed secondary 

products (Stewart et al., 2007; Horowitz and Planting, 2009). 

The goods and services provided by the industries of an establishment are grouped in commodity groups 

based on product characteristics. The commodity represents a group of similar goods or similar services 

produced or provided by an industry. A commodity could be manufactured or provided by one or more 

industries and could be primary or secondary in those industries (Stewart et al., 2007; Horowitz and 

Planting, 2009). Hence, the output of a commodity code reports its total output regardless of whether the 

commodity is a primary or a secondary product in one or more establishments. In current NAICS, 

commodities are categorized by a six-digit NAICS code of industries in which they are primary (Horowitz 

and Planting, 2009).  

4.2.3 Reclassification and Redefinition 

As mentioned earlier, the establishments also produce secondary goods or provide secondary services 

other than the primary products. The USBEA treats the secondary products in three ways (based on Guo et 

al., 2002; Horowitz and Planting, 2009; Perese, 2010).  

4.2.3.1 Reclassification 

Under reclassification, the USBEA categorizes a primary product as a secondary product for the purpose 

of input-output accounts and reclassifies it to a commodity in which it is primary. Horowitz and Planting 

(2009) explained this using the newspaper industry as an example. The United States Census Bureau 

(USCB) assigns the newspaper and newspaper advertising both as a primary product. The USBEA, 

however, categorizes the newspaper advertising as a secondary product and reclassifies it as a primary 
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product to advertising commodity. When a product is primary to more than one industry due to different 

production methods, it is reclassified to a commodity in which it is primary. In the case of reclassification, 

only the commodity output changes and the industry output remain unmodified.  

4.2.3.2 Redefinition 

When the input requirements and structure of a secondary product of an industry differs considerably from 

its primary product, the secondary product is redefined to an industry where it is primary. The main 

purpose of redefinition is to make the input-product relationship more homogenous. One problem 

identified in the past by Bullard and Herendeen (1975), Casler and Wilbur (1984), and Suh and Huppes 

(2004) was that of aggregation of primary and secondary products that have a different input structure. 

The process of redefinition resolved this problem. In the process of redefinition, only the industry output 

changes as the product output is moved across industries. The commodity output remains unchanged after 

redefinition. 

4.2.3.3 Other Secondary Products 

This categorization is done to secondary products that have a similar input structure as the primary product 

of an industry. In such a case, the secondary product is included in the output of the primary product. After 

this classification neither industry nor commodity output changes.  

Two assumptions can be used in the treatment of the secondary product in input-output accounting. The 

first assumption is the industry-technology assumption under which a secondary product’s input structure 

is identified by the industry that is producing it. Hence, both the primary and secondary products will have 

the same inputs under industry-technology assumption. The second assumption is termed the commodity-

technology assumption. Under the commodity-technology assumption, the input structure of a secondary 

product is determined from an industry in which the secondary product is primary. Meaning under this 

assumption, the primary and secondary products of an industry would not have the same inputs. The 

USBEA uses both the assumptions. The commodity-technology assumption is used when secondary 

products are redefined, reclassified, or reallocated. The derivation of a symmetrical direct and total 

requirement matrix is done based on the industry-technology assumption (Guo et al., 2002; Horowitz and 

Planting, 2009; Perese, 2010). 

4.2.4 The United States 2002 Benchmark Input-Output Accounts (USBEA, 2008) 

The 2002 Benchmark Input-Output Accounts were released in two table formats: Standard and 

supplementary tables (Stewart et al., 2007; Horowitz and Planting, 2009). The standard tables provided 

industry accounts before redefinition, whereas the supplementary tables reported the industry accounts 

after redefinition in addition to other supplemental information. The input-output accounts consist of the 

flow of both the primary and secondary goods and services (Stewart et al., 2007; Horowitz and Planting, 
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2009). As supplementary tables provide industry accounts after redefinition, they are used for the purpose 

of creating a direct requirement matrix in this research. Three types of supplementary tables are used from 

the 2002 benchmark input-output accounts: make table, use table, and the total requirements table. The 

following sections describe the three tables (based on Guo et al., 2002; Horowitz and Planting, 2009; 

Perese, 2010). 

4.2.5 Make and Use Tables 

The make table is an Industry-by-commodity table (426 X 430 matrix) that presents production of 

commodities by each industry listed by their 6-digit NAICS codes. The rows of the make table show the 

industries producing one or more commodities listed at the top of the columns. Hence, the make table is 

composed of 426 industry rows and 430 commodity columns. Reading down a column, fractions of a 

column commodity produced by the row industries are listed. All of the commodities (of the column) 

produced by a row industry can be found reading across the rows. The basic framework of a make table is 

shown in Figure 4-4.  

 

 

Figure 4-4: The make and use table in input-output model 

The use table provides a “recipe” for producing a product. It shows the consumption of commodities listed 

in rows by the column industries for producing their unit output. The use table is a commodity-by-industry 

matrix (430 X 426) of 430 rows and 426 columns. Reading down the column, a composition of input 

commodities (in rows) required to produce the output of industries (in columns) can be found. The 
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consumption of a row commodity by column industries can be traced by reading across the rows. The 

industries and commodities are listed by their 6-digit NAICS codes.  

As industries are conventionally engaged in production of more than one commodity, both the make and 

use tables are used to derive a more detailed commodity-by-commodity matrix. The make and use tables 

are published before and after redefinition. The 2002 Benchmark Input-Output Accounts were released 

with a make table, a use table and a total requirement coefficient table (after redefinition). The total 

requirement coefficient table is a commodity-by-commodity matrix (430 X 430) and it provides the total 

(direct and indirect) requirements of commodities to produce a unit of each commodity. Reading down the 

column, each cell shows the input of the commodity required to produce a unit of the column commodity. 

The input-output-based hybrid method of energy analysis requires a commodity-by-commodity direct 

requirement coefficient matrix. As the direct requirement matrix is not published with the benchmark 

accounts, it needs to be calculated using the raw make and use tables.  

4.3 DIRECT REQUIREMENT COEFFICIENT CALCULATION 

Guo et al., (2002), Horowitz and Planting (2009), and Perese (2010) provided an approach to calculate a 

symmetrical direct and total requirement matrix for the United States’ economy. It is important to note that 

detailed make and use tables contain a total of 430 commodities. Unlike the other commodities, scrap, 

used and secondhand goods, non-comparable imports, and rest of the world adjustments do not have a 

corresponding industry. These commodities appear in the use table but, only scrap and used and 

secondhand goods commodities appear in the make table. According to Perese (2010), the rest of the 

world adjustments commodity indicates only adjustments to foreign transactions and can be removed from 

the calculation. The scrap is not produced by any industry and it is considered a by-product of the process 

of fulfilling demands of other industries. Horowitz and Planting (2009) suggested adjustment for scrap 

before creating a symmetrical direct requirement matrix so that a demand for scrap does not require an 

industry output. The following section explains the steps for creating a direct requirement matrix (based on 

Horowitz and Planting, 2009). 

Assuming: 

V: Industry-by-commodity make matrix (426 X 430) 

U: Commodity-by-industry use matrix (430 X 426) 

g: Industry output vector (426 X 1);  ̂ indicates a diagonal matrix of industry outputs 

q: Commodity output vector (430 X 1);  ̂ indicates a diagonal matrix of commodity outputs 

s: Scrap vector (426 X 1) 

I: Identity matrix 

First, a commodity-by-industry direct requirements matrix (use coefficient matrix) is calculated as: 

     ̂          Equation 4-11 
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Second, a matrix showing the market share of industries is derived. The market share matrix (make 

coefficient matrix): 

     ̂          Equation 4-12 

Next, an adjustment is made to remove the scrap commodity. This is done by calculating industry outputs 

without scrap. A vector for the non-scrap ratio is calculated by dividing the industry output excluding 

scrap by the total industry output. Each coefficient in the rows of the market share matrix B is then divided 

by the non-scrap ratio to make adjustment for scrap. The resulting scrap-adjusted market share matrix is 

termed transformation matrix. The industry output vector without scrap: 

         

           

                 Equation 4-13 

Where s, g, gs, Rs, and W terms are scrap value, industry output vector, industry output vector without 

scrap, scrap ratio, and transformation matrix, respectively. 

The symmetrical commodity-by-commodity direct requirement matrix can be calculated as: 

                Equation 4-14 

The total requirement matrix can be created by using the Leontief’s Inverse method. The symmetrical 

commodity-by-commodity total requirement matrix: 

                    Equation 4-15 

For a more detailed analysis of indirect requirements, the Power Series Approximation method can be 

applied using direct requirement coefficients.  

 

4.4 SUMMARY 

2002 Benchmark Input Output Accounts were used to create a commodity-by-commodity symmetrical 

matrix of the direct requirements. First, raw make and use tables were used to create make and use 

coefficient matrix, which were then used to derive the direct requirement matrix. All of the data referenced 

was after the process of redefinition. An adjustment for scrap was done in the symmetrical matrix as per 

the procedure given by Horowitz and Planting (2009).  
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CHAPTER V   

ENERGY DATA COLLECTION AND TREATMENT 

5.  

5.1 PROCESS DATA FOR ENERGY USE BY INDUSTRY SECTORS 

The United States’ economy is divided into 20 major sectors that provide goods and services to other 

industry sectors and also to final consumers (see also Table 4-4). These sectors are represented by 2-digit 

NAICS codes and contain other subsectors denoted by 3-6-digit NAICS codes. The data on energy used 

by these sectors were available either in monetary or energy units. Also, the energy consumption by some 

sectors was given in an aggregated form under the fuel use or purchased fuel category. Agencies such as 

the United States Department of Agriculture (USDA), United States Department of Energy (USDOE), 

USCB, and the USGS reported energy use by industry sectors periodically. All of the data available from 

diverse sources needed to be collected, disaggregated by fuel use, and converted into energy units.  

All establishments classified by the 2002 Annual Energy Review under industrial and commercial sectors 

consumed primary (e.g., crude oil) and secondary fuel (e.g., natural gas). Electricity was also purchased to 

be used for commercial or industrial operations. The establishments also generated electricity on-site using 

the purchased quantities of primary or secondary fuel in Combined Heat and Power (CHP) or electricity 

generation plants. A fraction of this on-site generated electricity was consumed by the establishment itself, 

the remaining fraction was either sold out or transferred to other establishments within or across sectors. 

Figure 5-1 illustrates the energy input and output system of a typical industrial or commercial 

establishment. If the net energy consumed by an establishment was included in the calculation, potential 

for double counting could exist. For example, the net electricity demand of an establishment represented 

the total electrical energy used minus the energy transferred and sold out. As any on-site generation of 

energy utilized the purchased quantities of fuel, inclusion of the on-site generated electricity was avoided 

in calculating the total energy consumption. If only the purchased quantities of fuel and electricity are 

included in the calculation, a potential double counting of energy can be eliminated. In this study, only 

quantities that were purchased were included in the calculation. The following sections describe the 

energy use data collection and treatment for each major sector.  

5.1.1 Energy Consumption: Agriculture Sector (NAICS 11) 

The United States agriculture sector is comprised of subsectors involved in two primary operations: crop 

production, and animal production. Among the major products delivered by the United States agriculture 

sectors are crops, livestock, and poultry. The agriculture sectors consumed energy such as fuel and 

electricity directly and indirectly in farm operations related to crop and animal production. The direct 
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energy use included mostly petroleum-based fuels and electricity, whereas the energy of fertilizers and 

chemicals used on farms was categorized as indirect energy (Schenpf, 2004). Most of the direct fuel use 

involved diesel, gasoline, natural gas, and liquid propane consumed in operating vehicles, crop dryers, and 

irrigation equipment. Electricity was mainly utilized in irrigation operations, dairy and poultry operations, 

and lighting and space conditioning of farm facilities such as barns, stores, and farm homes. The farm 

machinery also required use of oils and lubricants regularly.  

 

 

Figure 5-1: Energy flow to and from an establishment 

For over 150 years, the agriculture statistics were published by the USCB under the Census of Agriculture. 

Since 1997, the Census of Agriculture data were published by the USDA, National Agricultural Statistics 

Service (NASS). There were two main sources of energy data in the agriculture sector: the Census of 

Agriculture, and agricultural statistics. The Census of Agriculture was conducted every five years (e.g., 

1992, 1997, 2002 and 2007), whereas the agricultural statistics were published annually by NASS.   

5.1.1.1 Data Collection and Disaggregation 

The fuel and electricity consumption by the agriculture sectors was reported in the 2002 Census of 

Agriculture published by the USDA. The 2002 Census of Agriculture (NASS, 2004) also reported 

electricity consumption under the utilities category that also included telephone charges, internet charges, 

and purchased water. These data were provided in monetary units ($) and required energy prices in order 

to convert them to energy units. Energy prices paid by farmers for some fuels in 2002 are reported in 

NASS (2005). In addition, the fuel consumption was reported in aggregated form without providing the 

breakup by individual fuel such as diesel, natural gas, and gasoline. Although the USDA energy use was 

for the entire agriculture sector, it could be used to disaggregate the total fuel consumption into energy use 
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by each fuel. The USDA website provides the Quickstat tool that reports the total energy use under the 

categories of gasoline, diesel, liquefied petroleum gas (LPG), and other fuels (kerosene, motor oil, grease 

etc.). There was no separate category for natural gas use and it was reported under the other fuels category 

in this dataset. The total natural gas and electricity use was reported in the 2002 farm fuel expenses 

category in the 2002 Agricultural Resource Management Survey (ARMS) (USDA, 2002). The ARMS and 

some additional data were also received through personal electronic communication with NASS 

representatives (personal communication, 6 November, 2012; 31 October, 2012; 23 October, 2012). The 

additional data included total fuel and electricity expenses by the animal and crop production sectors. The 

total electricity use for the entire agriculture sector was given in the 2005 Agriculture Statistics published 

by NASS (NASS, 2005). The total electricity use can be decomposed into electricity use by each 

individual agriculture sector on the basis of the 1997 census data (NASS, 1999). Table 5-1 lists all energy 

prices used in converting monetary values to energy units. 

 

Table 5-1: Energy prices paid by farmers 

Fuel/Energy Price ($/MBtu) Source 

Diesel fuel 6.95 NASS (2005) 

Gasoline, service station, unleaded 10.93 NASS (2005) 

Gasoline, service station, bulk delivery  10.93 NASS (2005) 

L. P. gas, bulk delivery  10.75 NASS (2005) 

Natural gas  6.44 EIA, 2007 

Other 8.97 Average value 

Electricity 24.76 Miranowski (2004)  

 

Figure 5-2 illustrates the total energy use and energy use by farm operation (animal and crop production) 

and Table 5-2 compares the calculated values (in primary energy units) to those provided in the literature. 

The total energy use by fuel category can be verified by comparing the calculated values to data provided 

by Miranowski (2004) and Schnepf (2004). According to these sources, the electricity use by the 

agriculture sector was 351 - 356 trillion Btu in 2002. However, it was not clear whether the electrical 

energy use was given in a primary energy term. If calculated using the electricity prices provided by 

Schnepf (2004), the electricity consumption was approximately 133 trillion Btu. This indicated a 

possibility of electricity use given in a primary energy term by Miranowski (2004) and Schnepf (2004). If 

the combustion energy factor (2.5 to 3.0) was applied, the calculated electricity use is comparable to the 

published values given in Table 5-2. 

The total fuel use reported by NASS included the energy consumed by vehicles engaged in agriculture 

related transportation. Schnepf (2004) listed various fuels by their use.  According to the list, gasoline was 

primarily used in operating small vehicles such as cars and pickup trucks and diesel was consumed by 
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most farm machinery and irrigation equipment. As vehicle energy use was already accounted for in the 

transportation sector, the use of gasoline needed to be removed to avoid double counting. The final fuel 

use data used in this research excluded the quantity of gasoline consumed by the agriculture sector.  

 

  

Figure 5-2: Energy expenditure in United States agriculture 

 

Table 5-2: Comparison of calculated values of energy use to reported values 

Fuel/Energy Calculated Values (MBtu) Miranowski, 2004 (MBtu) % Diff Schnepf, 2004 (MBtu) % Diff 

Diesel fuel 470,454,208.7 469,000,000.00 -0.3% 464,100,000.0 -1.4% 

Gasoline 150,104,019.7 146,000,000.00 -2.8% 144,500,000.0 -3.9% 

LPG  79,978,893.2 79,000,000.00 -1.2% 76,500,000.0 -4.5% 

Natural gas  67,938,962.6 62,000,000.00 -9.6% 61,200,000.0 -11.0% 

Electricity 132,681,943.6 356,000,000.00 3.0% 351,900,000.0 1.9% 

Total 1,113,738,546.85 1,112,000,000.00 -0.2% 1,098,200,000.0 -1.4% 

 

5.1.2 Energy Consumption: Mining Sector (NAICS 21) 

The United States’ mining sector is comprised of subsectors that mine, process, and deliver a range of raw 

materials such as metals, minerals, gravel, sand, and stone. Some subsectors supply primary fuels such as 
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coal, oil, and gas that are further processed, converted, or refined into delivered energy products (USDOE, 

2007). Mining raw materials involves processes such as extraction, transport, handling, and beneficiation, 

which require considerable amount of energy. Most of the extraction processes include digging, drilling, 

blasting, ventilation, and dewatering. Material transport and handling processes consume mainly diesel in 

vehicle use and electricity in load haul dumps, conveyers, and pumps. Crushing and grinding equipment 

such as crushers and mills also use energy. The process of physical and chemical separation of raw 

materials is also quite energy intensive. Among the major primary and secondary fuels or energy sources 

consumed by the mining sectors are electricity, diesel, natural gas, gasoline, and a mix of other fuels such 

as lubricating oil, LPG, and coke.  

The mining energy consumption was reported in the industry series of mining published by the Census 

Bureau (USCB, 2002a). The energy data were listed under the purchased fuels category for fuels such as 

coal, distillate oil, residual oil, gasoline, natural gas and other fuels. Electricity use was provided under 

quantity of purchased electricity and quantity of electricity generated less sold category. Mining sectors 

also generated electricity on-site and sold a fraction of it.  The category of quantity of electricity generated 

less sold represented the fraction of on-site generated electricity used by a mining sector.  As mentioned 

earlier, to avoid double counting, the on-site generated energy was excluded from the total energy 

calculation. The purchased fuel category of other fuels denoted a mix of fuels such as LPG and coke. 

Another category of purchased fuels was undistributed fuels, which indicated aggregated monetary data 

from those establishments that failed to provide detailed fuel use data. The fuel consumption data were 

reported either in physical quantity or in monetary units. The electricity use was provided in both physical 

and monetary units. The energy use information was published for 29 mining sectors that include metal, 

non-metal, fuel, and non-fuel sectors. Among the primary fuel sectors were the oil, gas, and coal 

extraction sectors. 

The energy use was reported by fuel breakup but in some cases values were withheld due to 

confidentiality. The total fuel expenditure was given, which in some cases can be used to estimate the 

missing values. To decompose the total fuel expenditure or to derive the missing values, the previous 

year’s data can be utilized (Weber et al., 2010). In some cases, data from 2007, 1997, 1992 and 1987 were 

used to decompose the total fuel purchased quantity (USCB, 1995; USCB, 1999; USCB, 2004; USCB, 

2007). Only the fraction of a fuel as a percentage of the total fuel expenditure was calculated and used to 

estimate the missing values. After filling in the missing values using the disaggregation factors, any 

difference between the total fuel expenditures before and after filling the missing values was adjusted.  

The undistributed fuels were also decomposed using the calculated fractions. Some of the fuels (e.g. coal, 

natural gas, etc.) were extracted and used in the same plant. Such fuels were reported separately by the 

USCB (2004) and therefore not considered a part of the purchased fuels.  
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Table 5-3: Energy prices used for mining sector 

Fuel/Energy Price  

Distillate oil ($/bbl.) 38.52 

Residual oil ($/bbl.) 36.22 

Gasoline ($/bbl.) 49.4 

Coal ($/short ton) 36.97 

Natural gas ($/1000 CF) 3.20 

Other fuel ($/MBtu) 4.27 

Electricity ($/kWh) 0.053 

 

  

Figure 5-3: Energy use in mining (left: excluding oil & gas, right: including oil & gas) 

The energy prices for fuels, data of which were given in both physical quantity and monetary terms, were 

calculated by dividing the monetary values by physical quantities. The fuel prices were found to differ 

across mining subsectors. Only monetary values of fuel consumption were provided in the case of some 

sectors. In such a case, an average value of fuel prices from all other mining sectors was used. Prices for 

petroleum products such as lubricants were sourced from the 2002 Annual Energy Review (EIA, 2002c). 

Table 5-3 lists energy prices of major energy sources as calculated and used in this study. The price paid 

for the purchased electricity was calculated using the electricity use data in kilowatt hour and in the United 

States dollars. The heat content of various fuels were sourced from the EIA publications such as 2002 

Annual Energy Review (EIA, 2002c), Monthly Energy Review (EIA, 2012), and Electric Power Annual 
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2010 (EIA, 2011). Figure 5-3 provides the energy breakup for the entire mining sector (all fuel use) and 

for all subsectors excluding oil and gas extraction (only purchased fuel).  

5.1.3 Energy Consumption: Utilities Sector (NAICS 22) 

There are three major subsectors under the utilities sector supplying electricity, natural gas, steam, and 

water and treating and removing wastewater and sewage. The electric power is generated, transmitted, and 

distributed by the Electric Power Generation, Transmission, and Distribution subsector. The subsector 

Natural Gas Distribution includes establishments operating natural gas distribution system (e.g., meters 

and mains). The establishments are known as gas marketers or gas brokers and are mainly engaged in 

transmitting and distributing the consumer grade natural gas. Water is supplied to end users by the Water, 

Sewage, and Other Systems subsector using pumps, aqueducts, and distribution lines. This subsector also 

includes establishments that deliver steam, hot water and air, and chilled water. Establishments engaged in 

wastewater and sewage removal and treatment are also included in this subsector (USCB, 2002c).  

The consumption of energy in Electric Power Generation, Transmission, and Distribution subsector 

includes fuels combusted to generate electricity and energy consumed in operating the power plants, 

transmission and distribution system, and related facilities. The transmission and distribution of consumer 

grade natural gas consumes natural gas and electricity to pressurize and move the gas through pipelines. 

The water supply and wastewater treatment plants also consume a considerable amount of energy in their 

operations. The sources of fuel consumption data for the subsectors delivering natural gas and electricity 

are discussed in detail in CHAPTER VI  describing primary energy factor calculation. The electrical use 

for 2002 by the Water, Sewage, and Other Systems subsector was 50,000 million kWh (Weber et al., 

2010). Other fuel use data for this subsector were not available and were calculated from the use table 

provided in the 2002 Benchmark Input-Output Accounts (USBEA, 2008). Table 5-4 lists the energy use 

by fuel for the three subsectors of the utilities sector. 

 

Table 5-4 Primary and delivered energy consumption by utilities subsectors 

NAICS & Subsector Coal (Quad. 

Btu) 

Electricity 

(Quad. Btu) 

Natural Gas 

(Quad. Btu) 

Petroleum 

(Quad. Btu) 

2211: Electric Power Generation, Transmission, and 

Distribution 

19.996 0.69 6.249 1.013 

2212: Natural Gas Distribution 0.000 0.027 0.021 0.016 

2213: Water, Sewage, and Other Systems 0.000 0.171 0.012 0.009 
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5.1.4 Energy Consumption by the Construction Sector (NAICS 23) 

The construction sector is comprised of subsectors performing new construction, specialty construction, 

renovation, maintenance, and repair. The subsectors are also categorized by the type of construction such 

as residential, commercial, manufacturing, healthcare, and other nonresidential. Among the major products 

of this sector are various buildings (e.g., houses, apartments, malls, hospitals, schools, university 

buildings, public buildings etc.) and non-building construction projects (e.g., highways, crossovers, utility 

systems, power plants, dams, etc.) (USCB, 2002c).  

Establishments engaged in construction activities are known as general contractors. Based on the 

contractual arrangements, general contractors are also termed design-builders, construction managers, 

turnkey contractors, and joint venture contractors. Establishments providing specific construction services 

or products are known as specialty contractors, trade contractors, or subcontractors. Subcontractors either 

work directly for the owner (e.g., renovation, maintenance, and repair work) or for the general contractors 

(USCB, 2002c). All of these establishments use electricity and fuels such as diesel, gasoline, and 

lubricants in operating on-site and off-site construction equipment and vehicles. The energy use data 

provided by the 2002 Economic Census (USCB, 2005) were listed by 31 subsectors represented by 6-digit 

NAICS codes (see Table A1-6). However, these subsectors were aggregated into only 7 subsectors in the 

2002 Benchmark Input-output Accounts (see Table A1-6 in Appendix A1). The pie chart in Figure 5-4 

shows the breakup of the total energy sources consumed in the construction sector in 2002 in monetary 

($1000) and energy units (MBtu).  

 

 

Figure 5-4: Energy use in the construction sector 

Electricity, 

8.3% 

Natural & 

Other Gas, 

11.9% 

Gasoline & 

Diesel, 76.4% 

Lubricants & 

Other Fuels, 

3.4% 



 

98 

 

 

No mapping was provided to relate the subsector classification of the economic census to benchmark 

input-output accounts. Sharrard (2007) made efforts to map the census bureau subsectors to the input-

output subsector using the total value of construction put in to place. The value of construction put into 

place was provided under the three categories:  new construction; additions, alterations, or reconstruction; 

and maintenance and repair. However, it became difficult to allocate the value of construction by specialty 

trade to input-output subsectors. According to Weber et al. (2010), the input-output data can be used to 

disaggregate the total fuel use by sector into fuel use by subsector. In this study, the total energy 

consumption of the construction sector provided by the USCB was disaggregated into consumption by 

input-output subsectors using the use table data from the benchmark input-output accounts (use table data 

from USBEA, 2008). The coefficients of energy use were calculated for each subsector and were used to 

disaggregate the total energy consumption. For calculating the disaggregation coefficient the monetary 

data were used, as the total energy consumption was also reported in monetary terms. It was assumed that 

the use table represented the actual use of energy commodity by industries. Table 5-5 provides the 

disaggregated energy use by input-output subsector. 

 

Table 5-5: Disaggregated energy use in the construction sector 

NAICS & Subsectors Energy Use in MBtu 

Natural Gas On-highway 

Petroleum 

Off-highway 

Petroleum 

Electricity 

230101 Nonresidential commercial & health care 

structures 

29,663,924 118,101,369 44,023,480 25,774,598 

230102 Nonresidential manufacturing structures 5,250,252 20,913,784 7,795,825 3,811,736 

230103 Other nonresidential structures 91,091,873 513,002,823 191,226,993 55,905,465 

230201 Residential permanent site single & multi-family 

structures 

68,778,302 282,951,198 105,472,922 52,275,240 

230202 Other residential structures 29,401,411 116,871,147 43,564,902 23,233,440 

230301Nonresidential maintenance & repair 32,026,537 147,626,712 55,029,350 16,336,013 

230302 Residential maintenance & repair 6,300,302 30,755,565 11,464,448 4,356,270 

 

The calculated values of petroleum consumption as listed in Table 5-5 included both the on-highway and 

off-highway fuel use. To avoid the double counting, only off-highway petroleum use was included in the 

calculation. 

5.1.5 Energy Consumption: Manufacturing Sectors (NAICS 31 & 33) 

The manufacturing sectors are comprised of establishments such as plants, mills, and factories that are 

engaged in manufacturing a range of products by physically, chemically, or mechanically transforming 

raw materials. The raw materials are extracted, processed and supplied to the manufacturing sector by 

industry sectors such as agriculture, mining, forestry, and fishing. There are 21 subsectors indicated by 3-
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digit NAICS codes in the manufacturing sectors producing a variety of products. These 21 subsectors are 

listed in Table 5-6. Each of the 21 subsectors is further divided into subsectors represented by 3 - 6-digit 

NAICS codes. The grouping is done on the basis of material inputs, outputs, production processes, 

production equipment, and skills of employees. Conventionally, establishments in each of 21 subsectors 

manufacture similar products. For instance, establishments under the Food Manufacturing (NAICS 311) 

subsector manufacture food items such as flour, starch, vegetable oil, sugar, chocolate, frozen food, etc. 

Similarly, subsector Primary Metal Manufacturing includes establishments that manufacture metals such 

as steel, aluminum, copper, and metal products such as steel pipes, steel bars, aluminum window sections, 

aluminum sheets, copper wire etc. (USCB, 2002c).    

 

Table 5-6: Manufacturing subsectors in the United States economy 

NAICS Subsector NAICS Subsector 

311 Food 326 Plastics and Rubber Products 

312 Beverage and Tobacco Products 327 Nonmetallic Mineral Products 

313 Textile Mills 331 Primary Metal 

314 Textile Product Mills 332 Fabricated Metal Products 

315 Apparel 333 Machinery 

316 Leather and Allied Products 334 Computer and Electronic Products 

321 Wood Products 335 Electrical Equip., Appliances, and Components 

322 Paper 336 Transportation Equipment 

323 Printing and Related Support 337 Furniture and Related Products 

324 Petroleum and Coal Products 339 Miscellaneous 

325 Chemicals   

 

All of the subsectors of the manufacturing sector consume a range of energy sources such as primary fuels, 

secondary fuels, and electricity. In 2002, the manufacturing sector consumed nearly 32.5 quadrillion Btu 

of total energy representing one third of the total United States’ energy use. Energy is used in numerous 

transformation and transportation processes within and across the establishments. Some of the most energy 

intensive subsectors are petroleum and coal products, chemical, and primary metal manufacturing. The 

manufacturing sector consumes energy sources for both the fuel and nonfuel purposes. Under fuel 

purposes, fuels are burnt to produce heat or to operate a piece of equipment. Electricity is mostly used to 

produce heat (e.g., primary aluminum production) or to operate manufacturing machinery. Fuel such as 

coal, oil, and natural gas are also consumed as raw material for manufacturing products such as steel, 

rubber, plastic, and other synthetic products. The fuel and electricity use data are available from three 

major sources: the 2002 Economic Census (USCB, 2002a), the Annual Survey of Manufacturers (ASM) 

(USDOC, 2005), and the Manufacturing Energy Consumption Survey (MECS) (EIA, 2002b).  
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The fuel consumption for the manufacturing subsectors (by 6-digit NAICS codes) was reported in the 

2002 Economic Census performed every five years by the United States Census Bureau. However, the fuel 

use was provided in an aggregated form and in monetary units as fuel purchased. The fuel and electricity 

use information was also published in the ASM by the United States Department of Commerce, 

Economics and Statistics Administration. The electricity use was reported in both the monetary units and 

physical units (kWh). ASM also reported the amount of net electricity generated on-site (total electricity 

generated less sold). It should be noted that only fuels that are purchased were reported in the ASM and 

any amount of energy (e.g., biomass, waste, by-product fuel) that is generated on-site may not be included 

in the reported value. Another source of fuel and electricity consumption data was the 2002 Manufacturing 

Energy Consumption Survey (MECS) administered by the United States Department of Energy (USDOE), 

Energy Information Administration (EIA) (EIA, 2002b). Although the MECS data were reported by 

individual fuel use in both the physical and energy units, energy use for only the major sectors (by 3, 4, 5, 

6-digit NAICS codes) was reported.  

Four types of energy data are published by the EIA in the 2002 MECS (EIA, 2002b). Table 5-7 illustrates 

the types of data with the energy components reported in the MECS data. The first type of energy data 

referred was First Use for All Purposes. In this type of energy data, all fuel and nonfuel use of energy was 

reported except the use of any energy produced on-site from energy inputs. It also reported the amount of 

energy shipped to other establishments. Energy data type Energy Use for Fuel Purposes listed quantities 

of all energy produced on-site or off-site from energy or nonenergy inputs consumed as a fuel.  

Consumption of energy produced off-site for nonfuel purposes was included in the third energy data type 

Energy Use for Nonfuel Purposes. It also included the nonfuel use of energy produced on-site from 

nonenergy inputs. The nonfuel use of energy generated on-site from energy sources was not reported in 

any of the three data types. If Energy Use for Fuel Purposes and Energy Use for Nonfuel Purposes are 

summed, the total would include all energy that is consumed on-site for fuel and nonfuel purposes. In 

order to estimate the amount of energy generated on-site from energy sources and used as a fuel, First Use 

for All Purposes should be subtracted from the total of Energy Use for Fuel Purposes and Energy Use for 

Nonfuel Purposes.  

                                                                           

                                                            

For calculating the total energy use, the category First Use for All Purposes is used, as it excludes all on-

site energy consumed on-site, transferred, or sold out. 
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Table 5-7: Various energy use components reported in the 2002 MECS 

Energy Component Reported in 2002 MECS 

Type of Energy Data 

First Use, All 

Purposes 

Energy Use, 

Fuel Purposes 

Energy Use, 

Nonfuel 

purposes 

Off-site generated energy used as a fuel √ √ X 

Off-site generated energy used as a nonfuel √ X √ 

On-site generated energy from nonenergy sources & used on-site as 

a fuel 
√ √ X 

On-site generated energy from nonenergy sources & used on-site as 

a non-fuel 
√ X √ 

On-site generated energy from energy sources & used on-site as a 

fuel 
X √ X 

On-site generated energy from energy sources & used on-site as a 

non-fuel 
X X X 

On-site generated energy from energy sources & sold out to other 

establishments 
√ X X 

 

5.1.5.1 Disaggregation of Fuel  

The fuel and electricity consumption that was reported in aggregated form needed to be decomposed into 

energy uses by fuel type for each industry sector (USEPA, 2008). The decomposition of total fuel use into 

individual fuel use can be done on the basis of either MECS data or input-output data (USEPA, 2008; 

Upadhyaya, 2010; Weber et al., 2010). The 2002 use table published by the USBEA listed the amount of 

commodity purchases by each industry sector. The fuel purchase made by each lower level sector 

represented by a 6-digit NAICS can be compared with the total fuel purchases of the main sector 

represented by a higher level 3-digit NAICS code (Weber et al., 2010). According to Upadhyaya (2010), 

the total amount of value added by each manufacturing sector can also be used to disaggregate the total 

fuel purchases into purchases by fuel type. However, as the reported values (EIA, 2002b) of the energy 

price paid by each manufacturing sector differ considerably (with a standard deviation in the range of 0.2 - 

30.4), using monetary data to decompose the total fuel was not considered accurate. Another approach to 

disaggregate the total fuel data was to use earlier or later years’ data as a basis to decompose the total fuel 

into individual fuel. For instance, Weber et al. (2010) utilized the 1997 fuel breakup to decompose the 

2002 aggregated fuel use in the agriculture sector.  

The 2002 MECS data were used to disaggregate the total fuel use reported by the 2003 ASM for the year 

2002. The purchased fuel data provided by 6-digit NAICS codes in the 2003 ASM were used to calculate 

the total fuel use (fuel and nonfuel use) for subsectors with 6-digit NAICS codes. Figure 5-5 illustrates the 

use of ASM and MECS data for deriving disaggregated fuel consumption by 6-digit NAICS code.  

The MECS 2002 reported detailed energy use by seven fuel types (coal, natural gas, residual oil, distillate 

oil, LPG & LNG, coal & breeze and other) for some manufacturing subsectors (EIA, 2002b). These fuel 
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types were categorized into three categories of coal, natural gas and petroleum that coincide well with the 

energy providing sectors of the economic input-output table. Table 5-8 presents the three categories with 

the included fuel types.  

 

 

Figure 5-5: Disaggregation of fuel using the 2002 MECS and 2003 ASM data 

 

Table 5-8: Fuel categorization by sectors 

Categories Relevant Input-output Sector MECS 2002 Fuel Type (EIA, 2002b) 

Coal Coal mining Coal 

Natural gas Oil & gas extraction, Natural gas distribution Natural gas 

Petroleum Oil & gas extraction, Petroleum refineries Residual & distillate oil, LPG & LNG, and Others 

 

Weber et al. (2010) categorized the fuel type of coke and breeze under the petroleum category. As 

indicated by the MECS data (EIA, 2002b), coke is actually the coal coke, and hence, it should not be 

included under the petroleum category. The fuel category of coke and breeze was not included under any 

of the above three categories because none of the four energy providing sectors (column two of the above 

table) produced coke or breeze as a primary product. In addition, coal coke was produced using coal by 

manufacturing industries such as iron and steel mills. Counting coke and breeze use may result in double 

counting. To avoid the double counting, the fuel generated on-site and shipped to other establishments 

from coke producing subsectors was excluded from the calculation and use of coke and breeze was 

included. Other on-site generated energy such as oil-based fuels that were sold out to other subsectors was 

also excluded from the calculation.  According to the MECS document (EIA, 2002a), the other category of 
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fuel included a range of other energy sources such as asphalts, lubricants, naphtha, other oils, kerosene, 

motor gasoline, petroleum coke, still gas/waste gas, waxes, other nonfuel sources, biomass, steam etc. As 

nearly 80% of the energy of the other category came from petroleum or petroleum related products, the 

other category was included in the petroleum category. Weber et al. (2010) also included the category of 

others in petroleum.  

5.1.5.2 Treatment of Missing Data 

The 2002 MECS data of fuel, nonfuel, and first use for all purposes contained cells with missing values 

due to confidentiality or poor data quality.  Row sums and column sums were used to calculate the missing 

values. According to Weber et al. (2010), previous years’ data can be used to derive the disaggregation 

coefficients to estimate the missing values. Some cells were marked with an * meaning the values in the 

cells were less than 0.5. In such cases, an average value of 0.25 was assumed if the missing value could 

not be calculated. The 2006 (EIA, 2009a) and 1998 MECS (EIA, 1998) energy data were referred to 

derive the fractions to calculate the missing values.  

Figure 5-6 shows that the ratio of total coal use to the total fuel use was consistent in 1998, 2002, and 

2006. Ratios for other fuels can be seen in Figure B1-9, Figure B1-10, and Figure B1-11 in Appendix B1. 

These ratios can be used to estimate or interpolate the missing energy values. The ratios varied with a 

standard deviation in the range of 0 - 0.25.   

 

       

Figure 5-6: Ratio of coal use to total fuel use in selected manufacturing sectors 
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The amount of coal, natural gas and petroleum as a fraction of the total fuel is also found to have a strong 

to very strong correlation. The correlation can be seen in scatter plots provided in Figure B1-12, Figure 

B1-13, Figure B1-14, and Figure B1-15 in Appendix B1. The value of r
2 
for correlation of 2002 fractions 

to 2006 and 1998 fractions for fuel used for all purposes was within the range of 0.86 - 0.97 and 0.91 - 

0.99, respectively. These values showed a strong to very strong positive correlation.  

Three types of electricity use data were available: purchased electricity, net electricity demand, and first 

use of electricity. The purchased electricity was the amount of electrical power bought from other sectors. 

The net demand of electricity equaled the total of purchases, on-site generation, and transfer (to the sector) 

of electrical power minus the electricity sold out to other establishments. As for on-site electricity 

generation, purchased fuels were consumed, only purchased electricity data (excluding any on-site 

electricity generation) were used to avoid double counting of energy inputs. The 2002 purchased 

electricity data of manufacturing sectors were provided in ASM 2003 and MECS 2002 in both the 

monetary ($) and in energy units (kWh). Some of the electricity data in the MECS 2002 were withheld due 

to confidentiality. The purchased electricity data from the ASM 2003 or MECS 2006 (EIA, 2009b) can be 

used as a basis to estimate the missing electricity data. The correlation of purchased electricity data in 

MECS 2002 to ASM 2003 was found to be very strong and positive (r2 value of 0.93) as shown in Figure 

5-7 . However, as the ASM 2003 data were complete and given in energy units, they are used for final 

calculation.  

 

 
 

Figure 5-7: Correlation of 2002 MECS and 2003 ASM electricity data 
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After deriving the amounts of energy use by fuel type for all relevant subsectors with 6-digit NAICS, the 

total fossil fuel and electricity used by the manufacturing sector was equal to 19.8 and 2.8 quadrillion Btu, 

respectively. The calculated values of energy use for subsectors with 6-digit NAICS were disaggregated 

using the 2002 MECS data.  The final disaggregated values of energy use are given in Table 5-9. 

 

Table 5-9: Final disaggregated primary energy use in the manufacturing sectors 

NAICS 

Subsector 
Subsector Description 

Final Disaggregated Fuel Use (Trillion Btu) 

Coal  Natural Gas  Petroleum  

311 Food 185.00 582.00 126.00 

312 Beverage and Tobacco Products 17.00 46.00 16.00 

313 Textile Mills 22.00 75.00 23.00 

314 Textile Product Mills 7.00 29.00 7.00 

315 Apparel 0.00 16.00 1.75 

316 Leather and Allied Products 0.00 4.00 1.00 

321 Wood Products 1.00 57.00 247.00 

322 Paper 240.00 504.00 1395.00 

323 Printing and Related Support 0.00 46.00 2.50 

324 Petroleum and Coal Products 289.00 878.00 5505.00 

325 Chemicals 350.00 2307.00 3285.00 

326 Plastics and Rubber Products 22.00 128.00 20.00 

327 Nonmetallic Mineral Products 320.00 422.00 176.00 

331 Primary Metal 727.00 704.00 197.00 

332 Fabricated Metal Products 4.75 210.00 12.25 

333 Machinery 1.00 82.00 10.25 

334 Computer and Electronic Products 0.25 65.00 5.25 

335 Electrical Equip., Appliances, and Components 0.50 53.00 72.25 

336 Transportation Equipment 10.00 203.00 44.00 

337 Furniture and Related Products 1.00 25.00 13.25 

339 Miscellaneous 0.00 32.00 4.25 

Total  2,196.00  6,468.00 11,165.00 

 

Table 5-10 documents the energy use by fuel type and by energy component as mentioned earlier in Table 

5-7. As seen in the table, the nonfuel use of coal, natural gas, and petroleum comprised nearly 40%, 10%, 

and 55% of the total fuel use, respectively. This was critical to note, as most of the embodied energy 

calculations fail to account for the feedstock use of energy sources, which could be substantial. The first 

use of energy for all purposes was the same as the total fuel and nonfuel use of energy in the case of coal 

and natural gas. This, however, was different in the case of petroleum due to the use of on-site generated 

fuel from energy sources, which totals to 854 trillion Btu. As mentioned earlier, the use of on-site 

generated fuel (from energy sources) was not included in the first use of energy for all purposes. It is also 

important to note that the nonfuel use of on-site generated fuel from energy inputs was not included in any 

of the reported energy components. This energy component was not required to be counted, as it was 

produced using the purchased fuel. 
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Table 5-10: Energy use accounting by energy component 

Energy Component (TBtu) Coal & Coke Natural Gas Petroleum 

Fuel Use: On-site & Off-site Generated Fuel 1,567 5794 5,036 

Non-fuel Use: On-site & Off-site Generated Fuel 774 674 6715 

First Use for All Purposes 2,341 6,468 11,751 

Energy Shipments 143 0 587 

Actual Energy Use (Without Double Counting) 2,198 6,468 11,164 

Fuel Use: Energy Produced On-site from Energy Sources  0 0 854 

Total 2,341 6,468 12,605 

Nonfuel Use % 35% 10% 60% 

 

Table 5-11: Comparison of disaggregated energy use with input-output data 

NAICS 

Subsector 
Subsector Description 

Electricity Use Based on MECS 

& ASM Data  

(Trillion Btu) 

Electricity Use Based on 

Input-Output Data 

(Trillion Btu) 

Net Demand Purchased Purchased 

311 Food 251 230 264 

312 Beverage & Tobacco Products 29 26 34 

313 Textile Mills 87 86 54 

314 Textile Product Mills 18 17 12 

315 Apparel 12 12 11 

316 Leather & Allied Products 2 2 2 

321 Wood Products 77 72 60 

322 Paper 391 223 157 

323 Printing & Related Support 51 50 49 

324 Petroleum & Coal Products 187 127 82 

325 Chemicals 691 522 328 

326 Plastics & Rubber Products 184 181 155 

327 Nonmetallic Mineral Products 144 141 102 

331 Primary Metals 514 493 227 

332 Fabricated Metal Products 162 161 128 

333 Machinery 84 84 74 

334 Computer & Electronic Products 131 131 105 

335 Electrical Equip., Appliances etc. 48 47 36 

336 Transportation Equipment 181 172 139 

337 Furniture & Related Products 27 24 26 

339 Miscellaneous 35 35 34 

 Total 3,304 2,836 2,078 

 

The net electricity demand, which is the total use of electricity in the manufacturing sector, was calculated 

as 3.0 quadrillion Btu that includes the quantity of purchased, on-site produced, and transferred electricity 

less the quantity that was sold out to other establishments. The total amount of electricity purchased by the 

manufacturing sector was 2.84 quadrillion Btu. The difference between the net demand and purchased 

electricity denoted the quantity of electrical power generated on-site and/or transferred to the subsector. 

The quantities of net electricity demand and purchased electricity are tabulated in Table 5-11.  The 

quantities of purchased electricity using input-output data are also listed in Table 5-11. A strong positive 
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correlation (r
2
 = 0.90) was found between the purchased electricity use calculated using the MECS data 

and the input-output data. This makes sense, as the input-output data represented only monetary 

transactions (energy sold or purchased). The value of r
2
 rose to 0.95 when the net electricity demand was 

compared with the input-output-based data.  

Figure 5-8 shows the strong positive correlation between the calculated values and the input-output-based 

values of purchased electricity and net demand of electricity. In this research, only the quantity of 

electricity that was purchased by the manufacturing establishments is included in the total energy 

calculation. 

 

 

Figure 5-8: Correlation of disaggregated electricity use 
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to reach their customers. Two types of wholesalers operate in the United States economy. Wholesalers 

selling merchandise on their account are merchant wholesalers. Establishments arranging the sales of 

products within wholesalers and between wholesalers and retailers are business to business electronic 

markets, brokers, agents, or commission merchants. Such establishments work for a fee or commission for 

facilitating a product’s sale. Although wholesalers deal with sales of large volumes of capital and durable 

goods to wholesalers and retailers, they also sell non-consumer capital and durable goods such as farm 

equipment, industrial machinery, and vehicles used in the production and processing of goods and 

services.  

The Retail trade sector is made of subsectors that sell their merchandise to the final consumers such as 

private households, institutional customers, and other commercial customers. They also provide incidental 

and after sales services such as maintenance and repair. The sales of products occur in small quantities 

from locations such as stores.  Extensive advertising is used to promote their products and stores. Just like 

wholesalers, retailers mostly do not transform their merchandise. However, in some cases such as optical 

stores, the merchandise such as lenses may be grinded, cut, and transformed into another type of product 

(e.g., prescription and sunglasses). There are two types of retailers: store retailers and non-store retailers. 

The store retailers have a fixed point-of-sale location designed to handle a large crowd of customers. Such 

stores use extensive amount of display and advertising in and out of stores. The non-stores include 

retailers that are engaged in selling merchandise door-to-door and from portable stalls using electronic or 

print catalogues, home demonstration, and direct response marketing (USCB, 2002c).  

Among the major energy uses in the trade sectors are fuel use for heating and generating electrical power 

and consumption of electricity in operating the business facilities such as warehouses, offices, stores, and 

other related buildings. Fuel is also consumed by automobiles involved in trade activities.  Energy use in 

the wholesale and retail trade sectors was given in two categories: purchased fuel, and purchased 

electricity. The cost of purchased fuel and electricity was reported in the business expenses report 

published under the annual Economic Census by the United States Census Bureau. The fuel consumed by 

motor vehicles was not included in the purchased fuel category.  

Two main issues were found in the business expenses data. First, some energy data were missing because 

the information was either unavailable or withheld due to poor data quality. In such cases, the known 

quantities of fuel use given by the lower level NAICS codes were subtracted from those provided by the 

higher level NAICS code. In some cases, where energy use for more than one subsector was missing, the 

input-output data were used to disaggregate the fuel use of a higher level subsector and derive the energy 

use for a lower level subsector. As mentioned earlier, the 2002 Benchmark Input-Output Accounts data 

can be used to disaggregate the total energy use. However, as wholesale and retail trade establishments 

may purchase energy to sell out to final consumers, using input-output data may be inaccurate. The 2002 
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Annual Energy Review provided fuel wise energy use data for the commercial sector, which included all 

the trade, service, government, nongovernment, and utilities sectors. This information can be used to 

decompose the total energy use. Using the commercial fuel use provided by the 2002 AER, the monetary 

quantities of purchased energy were decomposed into individual fuel use. The total quantity of each fuel 

was disaggregated into fuel use by subsector by utilizing the amounts of energy purchases made by the 

subsectors. Input-output data was used for those subsectors for which no process data was available. 

Commercial sector energy prices referred from the 2002 Annual Energy Review were used to convert the 

energy or fuel use from monetary units to energy units. After disaggregation, the amounts of energy 

consumed by the wholesale and retail trade sectors are shown in Table 5-12.  

 

Table 5-12: Final disaggregated energy use in wholesale and retail trade 

Disaggregated Energy Use (MBtu) 

NAICS Sector Coal Natural Gas Petroleum Electricity 

420000 Wholesale Trade 9,404,104.38 231,887,424.22 51,723,801.54 199,380,301.07 

4A0000 Retail Trade 10,804,289.02 266,413,328.84 59,424,999.85 728,662,715.77 

 

 

  

Figure 5-9: Final energy use in wholesale and retail sectors 
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Figure 5-9 provides a breakdown of fuel use by fuel type for the wholesale and retail sectors, respectively. 

It is evident from the pie charts that use of natural gas and electricity dominates the wholesale and retail 

sectors’ total energy use, respectively. As most retail trade establishments maintain large size stores and 

use extensive use of electronic displays, dominance of electricity in total energy use seems reasonable.  

5.1.7 Energy Consumption: Transportation and Warehousing Sectors (NAICS 48 & 49) 

The transportation and warehousing sectors are made of subsectors involved in moving goods such as the 

final products of manufacturing, mining, agriculture, information, and service sectors across cities and 

states. These sectors also include scheduled and unscheduled human travel using rented vehicles such as 

cars, buses, taxicabs, and trucks or through public transportation such as mass transit rail and road 

systems. The transportation may be domestic or international. The subsectors are characterized by mode of 

transportation such as land, water, and air. Railroad and road transportation are among the major surface 

transportation modes. Airlines involved in passenger and cargo transportation are covered under air 

transportation. Transporting goods and human labor using ships, barges, and boats are included in lake, 

river, or deep seawater transportation. All travel activities for leisure, sightseeing, and recreational 

purposes are included in scenic and sightseeing transportation (USCB, 2002c).  

In addition, to move liquids and gases such as crude and refined petroleum and natural gas products, a 

network of pipelines is used, which is categorized under pipeline transportation. Subsectors operating 

warehouses and storage facilities for general merchandise, refrigerated products, and other products such 

as equipment are represented by the warehousing and storage subsector. The warehousing and storage 

subsectors may provide logistic services to distribute merchandise. They do not, however, sell any 

product. All transportation subsectors require support activities such as vehicle maintenance and repair, 

which are covered by a representing subsector. The movement of goods or information also involves 

postal and courier services covered under subsectors: postal services, and courier and messenger services. 

Table 5-13 lists the major subsectors that are engaged in transportation across geographic regions (USCB, 

2002c). 

 

Table 5-13: Major transportation sub-sectors (USCB, 2002c) 

NAICS  Sector and Subsector NAICS  Sector and Subsector 

481000 Air transportation 487000 Scenic and sightseeing transportation  

482000 Rail transportation  488000 Support activities for transportation 

483000 Water transportation 491000 Postal services 

484000 Truck transportation 492000 Couriers and messengers 

485000 Transit and ground passenger transportation  493000 Warehousing and storage 

486000 Pipeline transportation   
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The United States’ transportation sector consumed over 27% (28.6 quadrillion Btu) of the nation’s total 

energy in 2002. Among the major fuels consumed in transportation include gasoline, diesel, and jet fuel. 

Other energy sources such as LPG, natural gas, residual fuel oil, and electricity were also used in 

transportation activities. A significant amount of gasoline (95%) and diesel (68%) was used in highway 

transportation and represented nearly 75% of the total transportation energy in 2002.  

Figure 5-10 illustrates the dominance of gasoline and diesel (in monetary units) in highway, non-highway, 

and off-highway transportation (in monetary units). Highway transportation included vehicles such as 

motorcycles, cars, light trucks, buses, medium trucks, and heavy trucks or trailers. The non-highway mode 

included all railroad, air, water, and pipeline transportation involving the use of pipelines and vehicles 

such as trains, aircrafts, ships, barges, and boats. Fuel used by vehicles or moving equipment used in 

personal and recreational activities (e.g., sports and leisure), and by the agriculture, construction, mining, 

industrial, and commercial sectors was covered under the off-highway mode of transportation.  

Figure 5-10 shows the breakdown of total transportation energy consumption by energy types (in energy 

units). The transportation energy data were provided by the United States Department of Transportation 

(USDOT) and Department of Energy by the mode of transportation (USDOT, 2012). A major issue with 

these data was that no system was available for mapping the energy use by mode to energy use by NAICS 

codes. Although subsectors such as air, rail, truck, and pipeline transportation were easy to map, 

subsectors such as transit and ground passenger, scenic and sightseeing transportation, and support 

activities for transportation were difficult to map due to overlapping activities. For instance, light vehicles 

such as motorcycles, cars, and light trucks consumed a total of 16.2 quadrillion Btu of energy. These 

vehicles included personal vehicles as well as taxicabs, limousines, emergency vehicles, and rented cars 

and light trucks. All vehicles other than the personal ones needed to be mapped to the transit and ground 

passenger transportation subsector. Similarly, the total energy consumed in air, water, and ground 

transportation also included energy use in travel for sightseeing and scenic activities. This total energy was 

also required to be decomposed into transportation energy for general and sightseeing purposes. Energy 

use of support activities for transportation was not given in the transportation statistics provided by the 

USDOT. 

The fuel use data from the transportation statistics data were mapped directly to the input-output sectors of 

air, rail, water, truck, and pipeline transportation. The passenger rail transportation was given by the 

breakdown of transit, commuter, and intercity travel. The transit and commuter travel was allocated to 

transit and ground passenger transportation. According to the 2002 vehicle fleet data from the National 

Transportation Statistics (USDOT, 2012), nearly 31 and 4% of the total cars and light trucks, respectively 

represented taxi or rental vehicles. Therefore, only 31 and 4% of the total fuel used by cars and light trucks 

was counted in transit and ground passenger transportation. Other transportation components such as 
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transit and school buses were also mapped to transit and ground passenger transportation. Table 5-14 lists 

information provided by the USCB that was utilized to map the energy use to input-output subsectors. 

 

  

Figure 5-10: Energy use breakdown in monetary (left-hand) and energy units (right-hand) in the transportation sector 
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To estimate the energy consumed by the scenic and sightseeing transportation and support activities for 

transportation subsectors, use table data from the benchmark accounts were used (USBEA, 2008). 

However, the use table provided energy data for both sectors together under one subsector: scenic and 

sightseeing transportation and support activities for transportation (48A000). The 2002 Benchmark Input-

output Accounts were published with a table outlining the detailed output of industries. For the subsector 

48A000, the output was given by land, water, and other scenic and sightseeing transportation and support 

activities for transportation. The fraction of scenic and sightseeing transportation in the total output was 

used to disaggregate the total energy consumed by subsector 48A000. The energy consumed in sightseeing 

and scenic transportation was nearly 4% of the total energy use of subsector 48A000. 

 

Table 5-15: Disaggregated energy use in transportation 

NAICS  Commodity 
Energy Use in Trillion Btu 

Coal Natural Gas Petroleum Electricity 

481000 Air transportation 0.00 0.00 2,212.36 0.00 

482000 Rail transportation  0.00 0.00 536.30 9.60 

483000 Water transportation 0.00 0.00 995.07 0.00 

484000 Truck transportation 0.00 0.00 5,026.80 0.00 

485000 Transit and ground passenger transportation  0.00 11.60 3,292.85 65.70 

486000 Pipeline transportation 0.00 687.70 0.00 247.70 

48A000 
Scenic and sightseeing transportation and 

support activities for transportation 
0.36 58.28 289.24 13.45 

 
Total 0.00 699.30 12,254.53 323.20 

 

As energy use of air, water, and ground transportation subsectors provided by the USDOT included all 

kinds of travel, energy use in sightseeing and scenic transportation was subtracted to avoid double 

counting. Table 5-15 provides the final energy use disaggregated by individual fuel and total electricity 

use by the transportation subsectors. 

5.1.8 Energy Consumption: Service Sectors (NAICS 51-81) 

This section discusses the energy consumed by various service providing sectors represented by NAICS 

51 through 81. These sectors include subsectors providing a range of services as listed in Table A1-7 in 

Appendix A1. Energy is used in operating facilities, equipment, machinery, and in related transportation. 

Energy consumption data were published for most of the service subsectors by the USCB in the Annual 

Business Expense report under the categories of purchased fuel and electricity (USCB, 2006b). These data 

were in monetary terms and did not include motor vehicle fuel. Similar to the wholesale and retail trade 

sectors, energy data were decomposed and converted to energy units using 2002 AER data of commercial 

sector energy use and relevant energy prices. Energy use by postal services was sourced from 2002 AER 

(EIA, 2002c). Table 5-16 lists the final energy use by each service sector.  
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Figure 5-11 shows the breakup of total energy consumption of all service sectors. It was clear that the total 

energy use of this sector is dominated by natural gas and electricity. As most of the energy was consumed 

in operating the related facilities (e.g. lighting and air-conditioning), the dominance of natural gas and 

electricity seemed reasonable. 

 

 

Figure 5-11: Final disaggregated energy use in the service sectors 

 

Table 5-16: Disaggregated energy use in service sector 

NAICS & Sector Description Energy Consumption in MBtu 

Coal Natural Gas Petroleum Electricity 

51 Information 1,828,071 45,302,941 10,036,032 209,002,843 

52 Finance and Insurance 1,017,188 28,145,852 5,342,697 71,962,024 

53 Real Estate and Rental and Leasing 2,055,416 55,249,716 10,929,470 712,117,851 

54 
Professional, Scientific, and Technical 

Services 
2,254,402 55,589,280 12,399,503 105,758,789 

55 Management of Companies and Enterprises 1,184,203 32,767,202 6,219,930 114,814,890 

56 
Administrative and Support,  and Waste 

Management and Remediation Services 
3,530,250 87,049,292 19,416,837 55,555,936 

61 Educational Services 3,282,204 90,819,420 17,239,507 132,900,538 

62 Healthcare and Social Assistance 12,787,557 315,316,968 70,333,233 342,213,717 

71 Arts, Entertainment, and Recreation 3,332,853 82,181,844 18,331,125 125,386,129 

72 Accommodation and Food Services 14,452,708 356,376,434 79,491,779 452,669,023 

81 Other Services (except Public Administration) 8,049,990 198,861,742 44,246,045 166,521,999 

 
Total 93,438,582 2,445,166,340 502,316,667 2,488,903,740 
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5.1.9 Energy Consumption: Public Administration Sector (NAICS 91) 

The public administration sector is composed of subsectors representing various federal, state, and local 

government agencies overseeing, managing, and administering public programs and providing executive, 

legislative, and judicial authority over a range of institutions. This sector includes establishments such as 

executive offices, legislative bodies, municipal authorities, police departments, courts, prosecution offices, 

correctional institutions, fire departments, public health offices, veteran’s affairs, transportation, utilities, 

community development, housing authorities, national security, space program, and other national and 

international affairs departments (USCB, 2002c). Detailed energy use data for some of the federal 

government defense and non-defense agencies were reported in 2002 AER. Energy use data of the 

remaining subsectors were sourced from the 2002 input-output use table. The total energy purchases by all 

nondefense subsectors were decomposed using the energy use data from the 2002 AER for commercial 

sector category. It was assumed that the general federal defense government services subsector was not a 

part of the commercial sector as defined in the 2002 AER. Table 5-17 provides the decomposed energy 

use for the public administration subsectors. 

 

Table 5-17: Disaggregated energy use in public administration sector 

NAICS & Subsector Description 

Energy Consumption in MBtu 

Coal 
Natural 

Gas 
Petroleum Electricity 

S00101 Federal electric utilities 0 5,495,515 38,480,362 4,195,002 

S00102 Other federal government enterprises 826,733 22,875,914 4,342,347 2,525,590 

S00201 State and local government passenger transit 1,248,599 34,549,044 6,558,162 16,187,131 

S00202 State and local government electric utilities 1,137,044,882 0 48,153,518 109,245 

S00203 Other state and local government enterprises 1,699,825 47,034,590 8,928,191 48,799,247 

S00500 General federal defense government services 28,000,000 78,000,000 579,000,000 102,200,000 

S00600 
General federal nondefense government 

services 
9,100,000 45,900,000 46,000,000 68,600,000 

S00700 General state and local government services 724,744 20,053,839 3,806,656 317,329,172 

 

5.1.10 2002 Total Energy Flow: United States 

The flow of energy through various industry sectors was reported in the 2002 Annual Energy Review 

published by the EIA. According to the 2002 AER, the residential sector included all household and 

personal energy use associated with living quarters. Energy was consumed mainly in lighting, heating, air-

conditioning, and powering home appliances. Energy used by all equipment and facilities of service 

providing agencies; businesses; federal, state, and local entities; public and private organizations; 

institutional living quarters; and waste treatment agencies were covered under the commercial sector in the 
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2002 AER. The industrial sector included energy used to operate facilities and equipment of 

manufacturing sector; the agriculture, forestry, fishing, and hunting sector; the mining sectors (including 

oil and gas); the construction sector; the natural gas distribution sector; and the water supply and irrigation 

sector. All of the land, water, and air transportation (public and private) related energy consumption was 

covered under the transportation sector. The total energy use and individual fuel use provided by the 2002 

AER was compared with the calculated values.  

Figure 5-12 provides a breakup of the total energy consumption by fuel type as provided by the 2002 AER 

and as calculated using the process data. The total quantities of coal, natural gas, petroleum, and electricity 

use were within 0.2%, 4.3%, 9.7%, and 3.4% of the value reported in the 2002 AER, respectively. In the 

case of petroleum use, the other fuel category (manufacturing sector) also included wood, biomass, steam, 

and hot water energy. When this fraction was excluded, the total petroleum use came within 5.5% of the 

2002 AER values. Another reason for an increased petroleum use was the fuel used by motor vehicles in 

sectors for which input-output data have been used. As motor vehicle energy use was already accounted 

for in the transportation sector, it needed to be removed from either the transportation sector or from the 

industry sectors. No information was available that could have been utilized to disaggregate the vehicle 

and non-vehicle fuel use. As the calculated values were within 5.5% of the reported values, they were 

assumed appropriate for the energy analysis. The reported and calculated value of the total electricity use 

is 12.55 and 12.98 quadrillion Btu, respectively.  

 

   

Figure 5-12: Total energy use in the United States reported by 2002 AER (left-hand) and as calculated (right-hand) 
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5.2 SUMMARY 

The process data of energy used by energy sources were collected for nearly all industry sectors. Some 

data such as electricity use were given in energy units (kWh), whereas some data were provided in 

monetary units. Appropriate energy prices were used to convert the energy use from monetary data to 

energy units. Three primary fuels, namely coal, natural gas, petroleum dominated the total energy supply 

in the United States in 2002. According to the calculations of this study, nearly 22.8, 23.4, and 40.4 

quadrillion Btu of coal, natural gas, and petroleum was consumed in the United States, respectively. The 

total fossil fuel based energy supply was calculated as 86.6 quadrillion Btu, which was within 1% of the 

value reported by the 2002 Annual Energy Review. The total consumption of electricity was calculated as 

12.98 quadrillion Btu, which was within 3% of the 2002 Annual Energy Review. The energy used by each 

industry sector was calculated by energy source. Since some industry sectors purchased energy directly 

from the oil and gas sector, a separate energy row of such purchases was estimated.  

The energy use data was available for more than half of the industry sectors in physical units. However, in 

the case of some industry sectors such as service industries, the data was in monetary units. Although, the 

monetary data was used only to proportionately allocate the total energy use, availability of detailed 

energy use data in energy units would have been better. In the future, one can expect an availability of 

detailed energy use data by each energy source for the service sectors.  
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CHAPTER VI   

PRIMARY ENERGY FACTOR CALCULATION 

6.  

6.1 PRIMARY AND SECONDARY ENERGY 

The energy consumed by various economic sectors is either in a primary or a secondary energy form 

(Deru and Torcellini, 2007; Dixit et al., 2010). The primary energy is the energy of a fuel extracted 

directly from earth. Fossil fuels such as coal, crude oil, and gas are extracted directly from the earth and 

are known as primary fuels.  The secondary energy (also known as delivered energy) is the energy that is 

generated by processing the primary fuels. For instance, gasoline that is processed and refined from crude 

oil is a secondary or delivered fuel, whereas the crude oil is a primary fuel. Another example of secondary 

energy is electricity, which is generated mostly by combusting primary fuels such as coal, petroleum, and 

natural gas. The primary and secondary energies are also known as source and site energy, respectively. It 

is important to distinguish primary energy from secondary energy, as the two are not comparable and 

represent different amounts of energy. For example, it will be inaccurate to compare the energy use of two 

buildings if one is expressed in a primary (source energy e.g. in Btu) and the other in a secondary energy 

term (e.g. electricity in kWh). The amount of electricity use could be significantly higher when converted 

to a primary energy term. It is due to the energy conversion and transmission and distribution (T&D) 

losses that incur while producing and distributing the electricity. The process of generating electricity 

could use 2 - 3 times more coal, oil, or natural gas in generating one unit of electricity. Similarly, the 

process of producing and distributing other secondary fuels such as consumer grade natural gas and 

gasoline also involves energy use and energy losses (or gains), which should also be accounted for when 

converting them to primary energy terms. All secondary energy use quantities should be converted to a 

primary or source energy term before a comparison is made.    

6.2 PRIMARY ENERGY FACTOR (PEF) 

In this research, the term primary energy means the sum of energy consumed by an economic sector and 

the energy that is required to extract, process, convert, transmit, and distribute the consumed energy. Both, 

the primary and secondary energy sources have consumed a significant amount of energy before they 

reach to the end users. In the process of their extraction and delivery, primary fuels such as coal also 

consume a considerable amount of energy.  The ratio of the total amount of energy delivered to the end 

users to the total amount of energy consumed (including the delivered energy) in delivering that energy is 

termed the Primary Energy Factor (PEF). A PEF represents the total primary energy needed to produce a 

unit of energy delivered for end use.  Hence: 
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  Equation 6-1 

 

The above expression should be adjusted for the energy losses that incur during extraction, processing, and 

delivery of an energy source. The numerator in the above equation denotes the delivered energy, for 

instance, electricity or consumer grade natural gas. The denominator represents the total primary energy 

used and lost in the process of delivery (including the energy spent in extraction, processing, conversion, 

and distribution). This total primary energy used in the process of delivering the energy for end use is 

made of one or more of the three major components as shown in Figure 6-1. The following sections 

describe these components: 

6.2.1 Primary Fuel Use  

At this stage, a primary fuel is either burnt (e.g. in power plants) or used as a raw material (e.g. in oil 

refineries) to be processed or refined further. The total energy consumed at this stage has a direct and an 

indirect component. The direct fraction includes combustion energy, whereas the indirect energy fraction 

consists of pre-combustion energy. 

Combustion Energy: The combustion energy represents the calorific value of a fuel or energy source that 

is released when the fuel is burnt. The process of fossil fuel combustion is a chemical reaction involving 

oxygen that results in release of water, CO2, and heat. The amount of heat energy produced in the fuel 

combustion process represents the combustion energy of a fuel (see Figure 6-1). 

Pre-combustion Energy: The pre-combustion energy is the energy consumed in extracting, processing, 

converting, and distributing a fossil fuel that is being combusted, processed, or refined. This fraction of 

energy covers all fuel and nonfuel inputs. The use of primary fuel as an energy input and as a feedstock 

material is included under the fuel input category. The nonfuel inputs cover the energy embodied in raw 

materials, equipment, and labor that are used in processing, refining, and delivering the energy for end use.  

6.2.2 Energy Use in Plant or Lease Operation and Energy Delivery 

The plants such as natural gas processing facilities, petroleum refineries, and power plants consume 

energy in their operations. Energy is also used when energy source or fuel is distributed to end users.  

Similarly, operations of oil and gas wells, coal and uranium mines, and related facilities also use a 

significant amount of energy. Such operations also need built structures, equipment, and raw materials, 

which also have consumed energy when they were manufactured or installed.  

Direct Energy: The primary and secondary energy used by plants, lease operations, or mine facilities and 

equipment in their operations is accounted for in this fraction. The energy consumed in distributing the 
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processed fuel is also added to the total operating energy. The energy of labor is also included (see Figure 

6-1).  

Indirect Fraction of Operating Energy: The amount of energy that is consumed in extracting, processing, 

converting, and distributing the operating energy is included in this fraction. In addition, the energy 

embodied in built facilities, materials, equipment, and labor is also accounted for (see Figure 6-1).  

 

 

Figure 6-1: Energy components used in delivering energy for end use 

6.2.3 Energy Lost and Gained 

In the process of energy extraction, processing, refining, conversion, and distribution, a significant amount 

of energy is either lost or gained (in the case of petroleum refineries). Just like any other primary energy, 

this fraction of energy also has a direct and an indirect component. 
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Energy Lost or Gained: This direct component includes energy lost while extracting, processing, and 

distributing the energy. For instance, when oil and gas are extracted, a fraction of gas is vented or flared. 

Similarly, when primary fuels are processed or refined, some energy is either lost or gained. In 2002, 

petroleum refineries actually gained some energy while refining the crude petroleum. The losses due to 

transmission and distribution are also accounted for in this fraction. Electricity distribution involves 

significant transmission and distribution (T&D) losses (nearly 10%), which are also included in this 

fraction of energy. 

Indirect Fraction of Lost or Gained Energy: This fraction includes the amount of energy that is consumed 

in extracting, processing, converting, and distributing the lost or gained energy including the energy 

embodied in structures, materials, equipment, and labor. 

 

 

Figure 6-2: Primary to delivered energy and resulting PEFs 

The PEF should be calculated for each category of primary and secondary fuels. When a primary fuel 

exists in its natural form in the earth, it has a PEF that equals nearly one representing only its energy of 

combustion. When this fuel is extracted from the earth, energy is consumed and lost in the process 

resulting in a PEF that is more than one (see Figure 6-2). It’s further processing, refining, and distribution 

requires building facilities, installing equipment, and procuring labor in addition to the direct energy use. 

Therefore, any additional processing of an energy source in the downstream results in an increase in its 

PEF (see Figure 6-2).  Each of the major primary fuels such as coal, natural gas, petroleum, and uranium 

oxide has a PEF greater than one. The process of electricity generation utilizes one of the major primary 

fuels mentioned earlier and should include their PEFs in the calculation of PEF for electricity.   
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6.3 ENERGY IN THE UNITED STATES’ ECONOMY 

Energy supply in the United States is dominated by three categories of fossil fuels: coal, oil, and natural 

gas. As per 2002 Annual Energy Review, nearly 86% (83.5 quads out of 97.4 quads) of the total energy 

use in the United States can be attributed to the three fossil fuels (see  

Figure 6-3). Nearly 70% of the nation’s total electricity supply came from fossil fuel-based power plants 

(see  

Figure 6-3).  There are mainly five energy providing sectors in the United States’ economy (Mo et al., 

2010; Mo et al., 2011):  

 Oil and gas extraction 

 Coal mining 

 Electric power generation, transmission, and distribution 

 Natural gas distribution 

 Petroleum refineries 

 

  

Figure 6-3: Fuel mix of the total energy use and electricity production 

The first two sectors are primary energy sectors extracting, processing, and delivering  coal, crude oil and 

gas, whereas the last three sectors are the secondary energy sectors supplying electricity, natural gas and 

refined petroleum to the end users as shown in Figure 6-4. Each of the energy sectors mentioned above 

supplies either primary or delivered energy to end users and other industry sectors of the economy. The 
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primary energy sectors such as coal mining deliver their output for final use (e.g. residential and 

commercial use), for inter-industry use (e.g. industrial use in iron and steel mills), and for producing the 

electrical power. Other primary energy sectors such as oil and gas extraction distribute their products 

mostly to other industries, electric power plants, natural gas distribution, and petroleum refineries for 

further processing. In 2002, the United States imported over 66% of its crude oil supply from other 

countries (EIA, 2002c). The nuclear fuel is mined, processed, and delivered to power plants by subsector 

Uranium-Radium-Vanadium Ore Mining under the main mining sector Other Metal Ore Mining. In 2002, 

nearly 92% of the uranium loaded into nuclear power plants in the United States was imported from 

various countries around the globe (EIA, 2002c; EIA, 2004a). 

 

 

Figure 6-4: Primary and delivered energy flow in the United States' economy 

6.4 PRIMARY ENERGY FACTOR CALCULATION FOR PRIMARY FUELS 

If an input-output-based energy analysis is performed, particularly in an economy with a mix of primary 

and delivered energy, the energy inputs could be counted twice (Treloar, 1998). For example, if a 

delivered energy such as electricity (1 MBtu) is produced using amounts of coal (2 MBtu), natural gas (5 

MBtu), and oil (4 MBtu), then as per the input-output theory the energy embodied in electricity would be 

the total of energy contents of all the fuels plus the energy contents of the produced electricity (1+2+5+4 

MBtu). This is inaccurate because the actual amount of energy embodied would be the sum of all the fuels 
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(11 MBtu) that were consumed. One must be careful to do some adjustments to avoid double counting 

before using the input-output framework (Treloar, 1998). In addition, it is important to note that the 

indirect fraction of energy due to all energy and nonenergy inputs should not remain excluded from the 

calculation.  

In this research, the PEFs for all major fuels were calculated using three approaches. In the first approach, 

the direct energy fraction was calculated on the basis of process data of energy use and losses. The indirect 

energy fraction was calculated and added using the input-output framework. The direct requirements were 

subtracted from the total requirements to estimate the indirect energy fraction. The direct energy process 

data and indirect energy input-output data were then totaled and adjusted for the energy losses. The PEFs 

for fuels such as coal, natural gas, petroleum, and nuclear fuel were calculated first. The PEF for 

electricity was then computed using the direct energy data and the calculated values of PEFs for the four 

fuels. There was no need to use the input-output data for electricity, as the PEFs represented the indirect 

impacts of its production. Both the human and capital energy inputs were included in the calculation. The 

following sections describe the first approach in detail, as the results of this approach were adopted in this 

research. 

It is assumed that nearly all of the natural gas supplied to the end users was distributed through the natural 

gas distribution sector. Additionally, all refined petroleum products were assumed to come from the 

petroleum refineries sector. It is important to calculate the PEFs separately for oil and gas extraction, 

natural gas distribution, and petroleum refineries sectors, as some industry sectors made purchases directly 

from all three sectors. Hence, a set of PEFs representing each energy providing sector must be derived for 

those purchases.  The PEFs of the coal mining, oil and gas extraction, natural gas distribution, petroleum 

refineries, and the uranium-radium-vanadium ore mining were used to compute the PEF of electricity 

production.  

6.4.1 Oil and Gas Extraction 

The fuel and electricity consumption data were sourced from the 2002 Economic Census (USCB, 2004) 

for the two sectors involved in oil and gas extraction. The sectors were:  

 Crude petroleum and natural gas extraction 

 Natural gas liquid extraction 

This sector drew crude oil and natural gas from the earth and processed the natural gas into a dry and 

consumable form in order to distribute it for the end use. In the natural gas processing plants, dry 

consumer-grade natural gas was produced. To produce dry natural gas, the liquefiable hydrocarbons and 

non-hydrocarbon gases (e.g., water vapor, carbon dioxide (CO2), helium, hydrogen sulfide and nitrogen) 

were removed from the extracted volume of natural gas (EIA, 2004b; NPC, 2011). There were only two 

components of total primary energy use in these sectors. First, the energy used in lease and plant 
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operations and second, the energy lost while extracting and processing the oil and gas. The fuel 

consumption data were provided in energy and monetary terms. In the case of missing data in energy 

terms, appropriate energy prices were used to convert the monetary data to energy terms.  

Total direct energy use (Ed, og) is the sum of the energies of all types of fuels consumed in the operations of 

oil and gas extraction facilities. The total energy consumed in processing and distributing dry natural gas 

included both the direct (Ed, og) and indirect fraction (Ein, og). The consumption of fuel from the energy 

providing sectors caused the other industry sectors to increase their production to meet the demand. This 

increase in production represented the indirect requirements. The 2002 Benchmark Input-output Accounts 

were referred (USBEA, 2008) and direct requirement coefficients are subtracted from the total 

requirement coefficients for estimating the indirect energy requirements (Ein, og) of the oil and gas 

extraction sector. The indirect requirements were in monetary units, and hence, converted to energy units 

by using energy prices. There are two options for using energy prices: the annual average wellhead price 

($2.95/1000 CF) for natural gas and domestic first purchase price ($24.65/bbl.) for crude oil. According to 

the 2002 Annual Energy Review (EIA, 2002c), the wellhead price included all costs before shipping the 

natural gas from the lease. In addition, a United States average for consumer grade natural gas and refined 

petroleum could be derived and used. However, this was difficult, particularly in the case of refined 

petroleum that included multiple products with varying prices and varying levels of uses. Another option 

was to derive an average energy price as a ratio of the total monetary output to the total energy output of 

the energy providing sector. Such a price was assumed to be a better representative of the national energy 

economy.  

Table 6-1 lists major energy parameters used for calculating the PEF for major energy sources. Human 

energy and the energy embodied in capital inputs is then added to the calculated direct and indirect energy 

values for coal, natural gas, petroleum, and electricity. The extraction of natural gas and oil also incurs 

production and processing losses. The production losses include the volume of natural gas that is vented 

and flared during the extraction process. The processing results in extraction losses. The extraction loss 

data were sourced from (EIA, 2002c; EIA, 2004b). The total amount of natural gas leakage was sourced 

from the California Air Resources Board report (ARB, 2009). The sum of all extraction and processing 

losses is termed total oil and gas loss (Log). 

If the combustion and pre-combustion energy factors are represented by EFC, og and EFP, og, respectively, 

then: 

                   Equation 6-2 

 

      ∑       
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        Equation 6-3 

 

The PEF for oil and gas extraction is calculated as: 

                                         Equation 6-4 

Where: 

EFC,og - Combustion energy factor for oil & gas extraction 

EFP,og - Pre-combustion energy factor for oil & gas extraction 

Ed,og - Direct energy use by oil & gas extraction 

Ein,og - Indirect energy use by oil & gas extraction 

Eo,og - Total energy output of oil & gas extraction 

Ei ,d,,og - Total direct energy consumed by oil & gas extraction including pipeline transportation 

Ei, in,,og - Total indirect energy consumed by oil & gas extraction including pipeline transportation 

n - Number of energy sources or fuels used by oil & gas extraction 

i - Represents an energy source or a fuel 

Log - Ratio of net energy loss or gain to the total energy output of oil & gas extraction 

 

Table 6-1: Major energy parameters used for the PEF Calculation 

Fuel Heat Contents IO Price 

($/MBtu) 

Price 

($/MBtu) 

Source 

Crude oil 5.800 MBtu/bbl. 2.59 3.88 EIA, 2002c (AER) 

Natural gas at wellhead: Marketed 1.105 MBtu/1000 CF 2.59 2.95 EIA, 2002c (AER) 

Natural gas: Consumer grade, 

national weighted average 

1.029 MBtu/1000 CF 4.04 5.05 EIA, 2002c (AER) 

Coal, national weighted average 20.892 MBtu/short ton 0.92 1.05 EIA, 2002c (AER); EIA, 

2002 (ACR) 

Petroleum refined, national 

weighted average 

5.322 MBtu/bbl. 5.02 6.21 EIA, 2002c (AER) 

Electricity --- 20.03 21.07 EIA, 2002c (AER) 

 



 

127 

 

 

6.4.2 Coal Mining 

In 2002, the total monetary output of the coal mining sector was 20,371.8 million dollars representing a 

total of nearly 1094 million short tons of coal. The processes of extracting, processing, and transporting 

coal are quite energy intensive and each unit of energy delivered by coal has some amount of embodied 

energy (EERE, 2002). Three ranks of coal are mined in the United States: anthracite, bituminous, and 

lignite. These ranks differ in hardness and the amount of fixed carbon and volatile matter in the coal 

(EERE, 2002). Coal is mined either by surface or underground mining depending on the depth of the coal 

seam. Coal beds that are below 100 - 200 feet were mined using the underground mining approach (EERE, 

2002). Both of the approaches use equipment, materials, and labor extensively in mining, loading, and 

removing coal from a surface or underground mine. The quality of mined coal, termed run-of-mine, is not 

suitable for fuel use.  The end users require pure and consistently sized coal. The process of coal 

beneficiation includes processing, washing, and sizing the mined coal. After the run-of-mine coal is 

extracted, its impurities are removed and it is sized consistently (EERE, 2002).  

Over 92% of the total coal consumption went to electricity generation alone in 2002 (EIA, 2002c). Most of 

the remaining quantities were consumed by coke plants and other manufacturing plants. The processed 

coal was transported to end users by water, railroad, or road transportation. The transportation of coal by 

water was more economical than the railroad and road. Approximately 58% of the coal was transported by 

railroads in the United States (EERE, 2002; BESR, 2007). Waterborne and truck transportation carried 

roughly 17% and 12% of the total coal, respectively to end users.  

The energy use data for coal mining sector were provided by the 2002 Economic Census (USCB, 2004) 

under purchased fuel, supplies, and electricity. The coal transportation energy use was calculated from the 

2002 Benchmark Input-output Accounts (USBEA, 2008). The supply and disposition accounting of coal 

was provided by 2002 Annual Energy Review, which was used as a basis for identifying the quantities of 

coal produced, consumed, and unaccounted for. The total direct energy, indirect energy, and lost energy 

was calculated by summing the process and input-output data. Similar to the oil and gas extraction, the 

combustion energy factor for coal was also assumed as one. The pre-combustion energy factor and PEF 

for coal is calculated in the same manner as oil and gas. 

6.4.3 Natural Gas Distribution 

The natural gas processing consumed direct energy in natural gas transmission and distribution. The 

energy was consumed mainly in the process of compressing and moving the gas in the pipeline (NPC, 

2011). As it is assumed that nearly the entire natural gas supply to the end users came from the natural gas 

distribution sector, the calculation of PEF for natural gas included the energy consumed and lost while 

extracting, processing, and distributing the natural gas. Figure 6-5 shows the flow of natural gas from its 

extraction to its delivery to the end users. In 2002, the oil and gas extraction sector yielded 57% and 43% 
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(in energy terms) of its output as natural gas and crude oil (including NGPL), respectively. Hence, 57% of 

the total energy (direct and indirect) used in the oil and gas extraction sector was allotted to natural gas in 

calculating its PEF. All of the natural gas loss from the oil and gas extraction sector was allocated to the 

calculation of PEF for the natural gas. The calculated value of PEF of natural gas represented the total 

energy consumed and lost in its extraction, processing, transmission, and distribution to the end users. 

Similar to the oil and gas extraction, the combustion energy factor for natural gas is assumed as one. The 

total electricity consumed in transmitting and distributing dry natural gas was sourced from USDOT 

(2012). The data were reported for both the oil and gas transportation together. The relative share of 

natural gas and oil in the total oil and gas supply was used to disaggregate the total pipeline transportation 

energy. The PEF for natural gas distribution was calculated in the following steps: 

 

 

Figure 6-5: System boundary for PEF calculation for natural gas 

                   Equation 6-5 
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        Equation 6-6 

 

The PEF for natural gas is estimated as: 

                                         Equation 6-7 

Where: 

EFC,ng - Combustion energy factor for natural gas 

EFP,ng - Pre-combustion energy factor for natural gas 

Ed,ng - Direct energy use by natural gas 

Ein,ng - Indirect energy use by natural gas 

Eo,ng - Total energy output of natural gas 

Ei ,d,,ng - Total direct energy consumed by natural gas including pipeline transportation 

Ei ,d,,og - Total direct energy consumed by oil & gas extraction sector  

Ei, in,,ng - Total indirect energy consumed by natural gas including pipeline transportation 

Ei ,in,,og - Total indirect energy consumed by oil & gas extraction sector 

Fng,og - Natural gas as a fraction of total energy output of oil and gas extraction sector 

n - Number of energy sources or fuels used by natural gas 

i - Represents an energy source or a fuel 

Lng - Ratio of net energy loss or gain to the total energy output of natural gas 

6.4.4 Petroleum Refineries 

In 2002, the United States produced and imported 5.82 and 9.05 million bbl. of crude oil every day, 

respectively. Petroleum refineries used crude oil and produced a range of fuel and chemical products such 

as gasoline, kerosene, and naphtha. Petroleum refining is a complex process that involves separating, 

cracking, restructuring, treating, and mixing hydrocarbons to produce the refined products. These 

processes consume energy and also result in energy losses or gains. In 2002, the refining of petroleum 

resulted in 0.117 million bbl. of unaccounted crude oil. In addition, a total of 349.15 million bbl. of 

petroleum was reported as an energy gain. Similar to the natural gas sector, it was assumed that all of the 

petroleum products supplied to the national economy came only from the petroleum refineries sector. It 

means that all of the upstream energy use should also be taken into account in the PEF calculation. As 

nearly 43% of the oil and gas sector output consisted of crude oil, 43% of the energy use was allocated to 

petroleum products and added to the total direct and indirect energy use. The PEF was calculated in the 

same steps as the natural gas distribution. 
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6.4.5 Nuclear Fuel 

In 2002, nearly 52.7 million pounds of uranium oxide was imported against 2.34 million pounds of 

domestic production. The total uranium purchases made by electric power plants from domestic suppliers 

in the United States totaled 22.7 million pounds. A total of 57.3 million pounds of uranium was loaded 

into the nuclear power reactors as a fuel in 2002 (EIA, 2004b). The uranium-radium-vanadium ore mining, 

a subsector of the gold, silver, and other metal ore mining sector, extracts the uranium used by the nuclear 

power plants. The total amount of uranium extracted, processed and consumed domestically for generating 

electricity can be used to disaggregate the sector to calculate the indirect energy use for nuclear fuel.  It is 

assumed that the imported quantities of nuclear fuel were extracted, processed, and delivered domestically. 

Process data of energy required to extract, process, and deliver 1000 pounds of uranium were used to 

calculate the direct energy use. These data were sourced from the Oregon Department of Environmental 

Quality report (ODEQ, 2004). The indirect energy fraction was calculated using the input-output approach 

similar to other primary fuels. The energy contents of uranium were calculated using the amount of total 

nuclear energy consumed and the total quantity of uranium consumed in nuclear power plants in 2002. 

6.4.6 Electricity 

Electricity is produced in electric power plants using a range of nonrenewable fuels such as coal, natural 

gas, oil, and nuclear fuel. Most of the fossil fuel-based power plants burn fossil fuels for producing steam 

to run the turbines. In nuclear power plants, the fission process of nuclear fuel in nuclear reactors is used 

to generate steam. Renewable energy sources such as wind, solar energy, hydropower, biomass, 

geothermal, and tidal energy are also utilized to generate electrical power. The fuel mix used for 

generating the electricity differs in different regions depending on the availability of energy sources. The 

production of one unit of electricity from fossil fuel combustion usually requires 2 - 3 times more energy 

due to lower energy conversion efficiency. The combustion energy factor, which is assumed as one for 

primary fuel is more than one in the case of electricity production.  

Approximately 50% of the electricity generated in the United States came from fossil fuel-based power 

plants in 2002. Figure B1-16 in Appendix B1 illustrates the trends in the use of energy sources for 

producing electrical power in the United States from 1949 through 2011. Fossil fuels clearly dominated 

the electricity generation sector in the country. Furthermore, a detailed look at the fossil fuel use for 

electricity production revealed the clear dominance of coal from 1949 - 2011(see Figure B1-17 in 

Appendix B1). In 2002, over 50% of electricity was produced using coal alone. Nearly 70% of the total 

United States’ electricity generation was attributed to fossil fuels. It can be concluded that electricity 

generation is still primarily a fossil fuel-based process in the United States. The total quantities of fuel 

used in generating electricity in the United States for 2002 were sourced from EIA monthly data (EIA, 

2002d).  Each of the 50 states and the District of Columbia (D.C.) used different fuel mixes to produce 
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electrical power.  The quantity of electricity consumed in power plant operations and the total transmission 

and distribution losses were referenced from the 2002 Annual Energy Review (EIA, 2002c).  

Figure 6-6 shows the fuel mixes used by the states and the D.C. for generating electricity in 2002. If 

calculated, each of the states and the D.C. would have a different combustion energy factor due to a 

varying fuel mix. However, an average combustion energy factor weighted by the states’ share in the total 

national electricity production was calculated for the entire nation. 

 

 

Figure 6-6: 2002 Fuel mix for electricity production in different states and the D.C. 

The calculation of PEF for electricity included the direct and indirect energy of combusted fuel, energy 

used in power plant operations, and energy lost in energy conversion and electricity transmission and 

distribution. Figure 6-7 illustrates the system boundary for calculating the PEF for electricity. The 

calculation started from the primary fuel extraction, includes all direct and indirect energy use and loss 

during electricity production, and ended by covering the energy lost in transmission and distribution. 
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Figure 6-7: System boundary for PEF calculation for electricity 

Deru and Torcellini (2007) proposed an approach for calculating the PEF of electricity in the United 

States. According to this procedure, three energy components, namely combustion energy, pre-combustion 

energy, and the total energy loss were included in the calculation of PEF. The combustion energy 

represented a direct energy component, which is the energy of fuel being combusted in a power plant. The 

pre-combustion energy included all energy consumed in the upstream processes of extracting, processing, 

converting, and delivering primary fuels to the power plant. Both of these energy components also had an 

indirect fraction that resulted from the energy and nonenergy requirements of the energy providing sectors. 

The total amount of energy lost in the process of transmission and distribution of electricity was also 

accounted for in the calculation. To calculate the combustion energy factor, the approach suggested by 

Deru and Torcellini (2007) was applied, whereas to calculate the indirect component, the calculated values 

of PEF of primary fuels were used. To compute the combustion energy factors, the following information 

and variables were used (based on Deru and Torcellini, 2007): 

Eo - Total annual net generation of electricity in the United States 

Ej - Total annual generation of electricity by states 

EFC, i, j - Combustion energy factor by fuel or energy type and region 

EFC, j - Combustion primary energy factor for electricity by region 

Ltd - Ratio of transmission and distribution losses to total electricity generation 

PEFelec - Total primary energy factor for delivered electricity  

Qi,j - Quantity of energy of fuel used for electricity generation by fuel or energy type and region 



 

133 

 

 

δi, j - Fraction of total electricity generation by fuel or energy type and region 

ϑi, j - Combustion energy factor for a unit of composite electricity by fuel/energy type and region 

εi, j - Electricity generation by fuel or energy type and region 

εpe - Total plant energy used 

CEFe - Combustion energy factor for all fuels 

CEFpe  - Combustion energy factor for plant energy 

CEFelec - Combustion energy factor for electricity 

PCFelec - Pre-combustion energy factor for electricity 

FRFin, i - Indirect fuel requirement factor by fuels 

Qi - Quantity of energy of fuel used for electricity generation by fuels 

Lelec - Energy loss factor for electricity 

Qloss - Energy of electricity lost during transmission and distribution 

i - Represents an energy source or a fuel 

j - Represents a region 

6.4.6.1 Combustion Energy Factor Calculation: Electricity 

Apart from four major fossil fuel sectors that provided primary fuels to the electricity generating sector, 

the gold, silver, and other metal ore mining sector consisted of a subsector that extracted the uranium used 

as nuclear fuel by the nuclear power plants. The total amount of uranium extracted, processed and 

consumed domestically for generating electricity was used to disaggregate the sector to calculate the 

indirect energy use for nuclear fuel.  
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          Equation 6-9 

                                Equation 6-10 
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6.4.6.2 Pre-combustion Energy Factor Calculation: Electricity 

The pre-combustion energy of fuels combusted for electricity generation was calculated by multiplying 

their quantities to their indirect fuel requirement factor. The indirect fuel requirement factor of a fuel was 

equal to its PEF minus one (see Equation 6-11). No input-output data was used for the purpose of 

calculating the pre-combustion energy factor to avoid double counting of fuel inputs. Major fuels that were 

considered in the calculation included coal, natural gas, petroleum, and nuclear fuel, as these fuels together 

constituted over 94% of the energy used for generating electricity in 2002. It was assumed that the PEF for 

all other fuels including renewable energy sources was one. The following calculations were done to 

derive pre-combustion energy factor: 

 

                         Equation 6-11 

  ∑       

 

   

    

        
 

  

          Equation 6-12 

 

Q represents the total pre-combustion energy of electricity production. 

 

6.4.6.3 Primary Energy Factor Calculation: Electricity 

An energy loss factor for electricity was derived using the total transmission and distribution loss data for 

2002. The calculated values of the combustion and pre-combustion energy factors were summed and 

multiplied by the energy loss factor to derive the PEF for electricity production.  

 

          
     

  
           Equation 6-13 

 

                                      Equation 6-14 

 

The calculation steps discussed so far were for the first approach. In the second approach, the monetary 

flows from the energy providing sectors to other industry sectors were replaced by the direct energy 

process data. The energy inputs to all five energy providing sectors were also replaced with the process 

data. As some energy uses (e.g., energy used in repressuring reservoir) and energy losses (e.g., T&D 

losses) did not show up in the input-output table, the calculated PEFs were adjusted to accommodate these 

inputs. The PEFs calculated for major fuels were used to compute the PEF for electricity. The third 

approach was purely input-output-based. In this approach, the total requirement matrix was used to 



 

135 

 

 

estimate the energy requirement (in $) per $ output of the energy providing sector. Energy prices were 

used to convert the energy requirements from $ to energy units. The calculated values of PEFs for primary 

fuel was adjusted for energy use and losses not covered in the input-output table. Similar to the first two 

approaches, the calculated PEFs were used to quantify the PEF for electricity generation.  

Table 6-2 shows the results of the three approaches. It was clear that the results of the primary fuel sector 

representing oil and gas extraction and coal mining are consistent. However, results of the PEF for natural 

gas distribution and petroleum refining were quite different. It can be seen that the PEFs calculated using 

the third approach were higher than the other two approaches. The main reason for this was the double 

counting of natural gas and crude oil that was supplied by the oil and gas extraction sector. The quantity of 

natural gas supplied to the natural gas distribution sector was not consumed entirely but pressurized and 

distributed to end users. Similarly, the entire crude oil quantity delivered to petroleum refineries was not 

consumed but refined to produce a range of petroleum products. It could be misleading to interpret any 

monetary flow as consumption in an input-output framework. The results from the first approach were 

used in this research. 

 

Table 6-2: PEF values calculated using the three approaches 

Fuel/Energy Type Approach 1 Approach 2 Approach 3 

Coal Mining 1.04 1.03 1.09 

Oil & Gas Extraction 1.23 1.21 1.22 

Natural Gas Distribution 1.43 1.53 1.90 

Petroleum Refineries 1.44 1.27 2.55 

Electricity Generation 4.12 4.22 4.64 

  

6.5 SUMMARY 

To avoid the double counting of delivered energy sources such as natural gas, refined petroleum, and 

electricity, a set of PEFs were calculated for each energy source. First, PEFs for primary fuels such as 

coal, crude oil, and natural gas were calculated. These PEFs were used to calculate the PEF for consumer 

grade natural gas, refined petroleum, and electricity. The calculation of PEF was done using the three 

approaches. In the first approach, direct energy was calculated using the process energy data, whereas to 

calculate the indirect energy, input-output data were used. The process energy data were inserted into an 

input-output matrix to calculate the direct and indirect energy in the second approach. The third approach 

was based on an input-output analysis. From the results, it was clear that the PEF values calculated using 

only the input-output data were high due to the double counting issue. The PEF values obtained from the 

first approach were adopted in the study. 
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CHAPTER VII   

HUMAN AND CAPITAL ENERGY CALCULATION 

7.  

7.1 HUMAN ENERGY 

The process of manufacturing and construction are labor intensive and the energy embodied in labor needs 

to be included in embodied energy calculations. In some regions of the world, the industry sectors such as, 

manufacturing, construction, mining, agriculture, and business employ extensive labor due to low wages, 

high labor availability, and limited energy sources. If the final products are to be compared in embodied 

energy terms, it should be ensured that both the mechanical and human energy are accounted for. The 

energy requirements of human labor vary with factors such as age, sex, weight, lifestyle, and also the 

socio-economic conditions (FAO, 2001; Held, 2010). The energy requirements of labor can be categorized 

in three parts. The first part is the energy required to perform the basal metabolism that is a series of basic 

body functions such as respiration, brain function, body temperature maintenance, secretion of hormones 

and enzymes, and heart and lung functions. This fraction represents the threshold of energy that is required 

for the basic functioning of a human body and is termed basal metabolic rate (BMR). According to FAO 

(2001), the BMR could represent up to 45-70% of the total daily energy requirements of a human body. 

The second part includes the energy required to eat and digest the food, and to absorb, transform, 

transport, and deposit essential nutrients. This fraction is known as the metabolic response to food and 

could constitute energy up to 10% of the BMR. The third part relates to the activity an individual is 

engaged in. Depending upon the activities such as exercising, biking, working in an office, loading and 

unloading, and working in a manufacturing unit, the energy requirement may vary. Human beings are 

engaged in physical activities that are either obligatory or discretionary. The obligatory activities can 

hardly be avoided due to the socio-economic and cultural settings.  Discretionary activities are the 

activities an individual is not obligated to engage in due to social, economic, and cultural settings. In 

addition, other human body functions such as growth of tissues also need energy. The following 

definitions are important to know (FAO, 2001; Held, 2010): 

Total Energy Expenditure (TEE): The average amount of total energy expended by an individual in 24 

hours of a typical day.  

Basal Metabolic Rate (BMR): The minimum energy rate required to support the basal metabolism, 

measured in an individual who is awake, immobile, thermo-neutral, mentally relaxed, is in a supine 

position, has rested for at least 8 hours, and fasted for a minimum 12 hours. The rate of energy required is 
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derived per minute, per hour, or per day. The BMR is affected by factors such as body weight, sex, and 

age. FAO (2001) provides the following equations to calculate the BMR: 

Males, age 18 - 30 years 

                             Equation 7-1 

Males, age 30 - 60 years 

                             Equation 7-2 

Females, age 18 - 30 years 

                             Equation 7-3 

Females, age 30 - 60 years 

                             Equation 7-4 

Wtbd - Body weight of individual in Kg 

BMR - Basal metabolic rate in MJ/day 

Physical Activity Level (PAL): PAL indicates the lifestyle of individuals based on their 24-hour activity 

schedule. It is used to express the TEE in the multiple of BMR. According to FAO (2001), in the case of 

an adult, the PAL can be quantified based on 24-hour activities, as growth energy requirements, at his age, 

are nearly zero.  

      
   

   
          Equation 7-5 

The PAL can be categorized based on the duration and intensity of activities an individual is involved in. 

FAO provides three categories of PAL and respective ranges of PAL values as shown in Table 7-1. 

 

Table 7-1: PAL values for different activities 

PAL Category PAL Range 

Sedentary or light activities 1.40-1.69 

Active or moderate activities 1.70-1.99 

Vigorous activities 2.00-2.40 

 

Physical Activity Ratio (PAR): PAR is the energy spent by a human body in performing an activity. It is 

usually expressed in energy units per minute or per hour. FAO (2001) lists PAR values for major activities 

that are routine such as personal care, transportation, cooking, domestic chores, and yard work. It also lists 

activities occurring in various sectors such as agriculture, business, mining, manufacturing, construction, 

and public administration.  
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7.1.1 Human Energy Requirement Calculation 

Three types of data were required to quantify the TEE of an average working individual in the United 

States. First, the average range of weight and age by sex was needed to calculate the BMR values. Next, 

an hourly activity schedule of a typical day for a worker employed in sectors relevant to the United States’ 

economy was to be derived. Finally, the PAR values of the activities were needed to calculate an average 

PAL value for the workers. Table 7-2 presents the demographics of employed individuals in 2002. These 

data were used to make assumptions about the age, sex, and weight characteristics of the employed 

population. 

 

Table 7-2: Physical characteristics of the employed population in the United States in 2002 

Age Group Total Population Employed % of Total Source 

16 years and over 136,485,000 100 BLS (2002) 

20 years and over 130,154,000 95 BLS (2002) 

25 years and over 116,802,000 86 BLS (2002) 

45 years and over 51,261,000 38 BLS (2002) 

55 years and over 19,980,000 15 BLS (2002) 

65 years and over 4,306,000 3 BLS (2002) 

    

Age adjusted Mean Body Mass (kg), 20 years and older: 87.3 Borrud et al., 2010 

Full-time Wage & Salaried Workers, Female (% of total): 44 BLS, 2003 

Full-time Wage & Salaried Workers, Male (% of total): 56 BLS, 2003 

 

Based on statistics from Table 7-2, it is assumed that the two age groups, 18 - 30 years and 30 - 60 years 

represented the working population in the United States in 2002. Moreover, the mean weight of an 

individual employed in the mentioned age groups was 87.3 kilograms. Equation 7-1 and Equation 7-2 

were used to calculate the BMR of an average employee in 2002.  

The next step was to account for the average PAL values for individuals employed in different industry 

sectors. Table 7-3 illustrates the activity schedule of an average employee by sector derived for 2002. The 

hours and PAR values were based on FAO (2001) and the American Time Use Survey Data for 2003 (data 

for 2002 were not available) from the United States Bureau of Labor Statistics (USBLS) (BLS, 2004a). 

The computed values of PAL for each sector are also shown in Table 7-3. According to FAO (2001), a 

PAL value over 2.4 cannot be sustained for a long time. Hence, a PAL of 2.4 was selected for the 

agriculture sector instead of the calculated value of 2.7. The rest of the PAL values were used as 

calculated. The total energy requirement of an average American employee in 2002 was calculated as: 

                    Equation 7-6 
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The TEE values were calculated for both the male and female employees separately and were then 

averaged using their percent share in the total employment (% share sourced from BLS, 2003). It was 

assumed that the entire day’s activities may be required to sustain the employment and hence, the total 

energy requirement of one full day is allocated to work hours at the job. Finally, the value of TEE per hour 

per employee was calculated.  

 

Table 7-3: Activity schedule of an average employee by industry sector 

Activity Activity Duration (Hrs.) 

Agriculture Sector  Mining, Construction  & 

Manufacturing Sector 

Business & 

Government Sector 

Sleeping 8 8 8 

Personal care 1 1 1 

Cooking and/or eating 2 2 2 

Household work/ chores 1 1 1 

Commute to work 1 1 1 

Working at job 6 8 8 

Support activities for work/job 2 0 0 

Physical exercise/workout 0 0 1 

Leisure 3 3 2 

Mean PAL, Calculated 2.7 2.2-2.4 1.7 

 

The total number of employees was sourced from the USCB (USCB, 2006c; USDOC, 2005; USCB, 

2005), USBLS (BLS, 2012), and USDA (NASS, 2004) for each six-digit NAICS code. Although most of 

the numbers were available for industry sectors by 6-digit NAICS codes, some of the numbers were 

provided by 2 or 3-digit NAICS codes, particularly in the agriculture sector. These numbers were 

disaggregated to a six-digit NAICS code on the basis of criteria such as number of farms or total land area 

harvested. Table 7-4 lists the total number of employees in the United States in 2002 reported by various 

agencies and also the number calculated by this study. The number calculated in this research is within 2 - 

6% of the numbers reported by various agencies.  

 

Table 7-4: Comparison of the total number of employees in 2002 

Source Number of Employees, 2002 % Diff 

National Income & Products Accounts, 2002, (USBEA, 2005) 137,306,000 -1.88% 

Bureau of Labor Statistics, 2002 Data, (BLS, 2002) 142,297,000 1.70% 

American Community Survey, 2002, (USCB, 2002a) 132,390,104 -5.66% 

Calculated in this study 139,882,199 0.00% 

 



 

140 

 

 

It was important to make a distinction between the production workers and other staff due to their varying 

daily energy requirements. The USBLS reported the number of employees as well as the number of 

production workers (USBLS, 2012). The total energy requirements calculated on the basis of Table 7-3 

should be applied to production workers only. The remaining employees were assumed as technical or 

managerial staff and their TEE was derived using a PAL value of 1.7. The total annual energy consumed 

by an individual employee was calculated by multiplying the per hour TEE values to the annual work 

hours data (per employee) provided by the USBLS by industry sector (USBLS, 2012). 

The number of employees who worked for the industry also used private transportation to commute to 

work. The inputs and outputs used by private households were not a part of the direct and total 

requirement matrix. The private transportation used by individuals was not accounted for in calculating the 

energy use of various transportation sectors. Hence, the transportation energy consumed by each 

individual employee, who commuted to work using private vehicles, needs to be included in the total 

human energy. In addition, a fraction of the total expenditure of an average household belonged to the 

industry of employment. Expenses on items such as clothes, accessories, housing, appliances, automobile, 

and health should also be allotted to the employment industry (Cleveland and Costanza, 2008). How 

should we allocate these expenses to the industry of employment? Cleveland and Costanza (2008) 

suggested that the difference between the expenses of an earner and non-earner can be used to identify 

expenses incurred due to the employment.  

The transportation energy data for 2002 were sourced from the USDOT (USDOT, 2012). The total energy 

consumed by cars and light trucks in 2002 was 21,410 trillion Btu. A fraction of this energy was consumed 

by taxicabs and other rental vehicles, which should be subtracted in order to estimate the energy 

specifically used by personal vehicles. The fraction of taxicabs and rental vehicles was calculated from the 

National Transportation Statistics data published by the USDOT (USDOT, 2012). The transportation 

energy of personal vehicles was estimated to be nearly 13 quadrillion Btu. Not all of the personal 

transportation was used for work related purposes. The Federal Highway Administration (USDOT) 

published data on work-related trips for the years 1983, 1990, 1995, 2001, and 2009 (Santos et al., 2011). 

Figure 7-1 shows the trends of work related trips by Vehicle Miles of Travel (VMT) and Person Miles of 

Travel (PMT). The percentage of total work-related trips was consistently between 22 - 30% of the total 

trips. For 2002, 27% of the total trips were considered work-related and 27% of the energy consumed in 

personal transportation was allocated to the industry of employment (Santos et al., 2011).  
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Figure 7-1: Work-related and other trips by average working population 

The USBLS provided the consumer expenditure for single and more than 2 consumers under the category 

of no earner and one earner (USBLS, 2004b). Excluding the food and utilities expenses, the difference 

between the earner and non-earner for single and multiple consumers was in the range of 26 - 35%. An 

average 30% of the total personal consumption expenditure (excluding food, utilities, and transportation) 

was allocated to the industry of employment. The personal consumption expenditure data were sourced 

from the USBEA’s 2002 Benchmark Input-Output Accounts. To account for the energy embodied in 

personal consumption items, the 2002 Benchmark Input-output direct and total requirements tables were 

used (USBEA, 2008). The collected process data was inserted into these tables and the total energy 

intensity was calculated for each industry sector. As the direct energy of food, transportation, and utilities 

was already quantified, the industry sectors related to these items were excluded from the personal 

consumption calculation. The indirect energy, however, for all the sectors was included in the calculation, 

as this was not counted while accounting for food, transportation, and utilities. As the human energy was 

added while calculating the PEFs, the PEFs published in the literature (Deru and Torcellini, 2007) were 

applied to the total energy use. The residential energy consumption data for electricity, natural gas, and 

petroleum were sourced from the 2002 Annual Energy Review to account for the household energy use. 
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Figure 7-2: Breakup of calculated human energy 

The total annual energy consumed by an employee that was allocated to the industry of employment was 

calculated as nearly 66.7 MBtu per year (excluding work-related transport). This energy use included 

energy of food, household energy, and all other nonenergy items such as consumables. The pie chart 

shown in Figure 7-2 presents the breakup of this total energy by various items consumed by an employee 

in 2002. The total energy embodied in human inputs consumed in 2002 was equal to 13.95 quadrillion 

Btu.  

7.2 CAPITAL INPUTS 

The national economy of the United States is divided into various industry sectors engaged in activities 

such as agriculture, mining, construction, utility distribution, manufacturing, trade, services, and public 

administration. Each of the industry sectors requires considerable investment in capital goods in addition 

to labor. The capital goods include all building and non-building structures such as administration 

buildings, warehouses, workshops, electrical yards, loading and unloading areas, etc. The construction of 

such built facilities is energy intensive and should be taken into account while calculating the capital 

energy. Industry sectors also make purchases of a range of equipment to be used in offices, manufacturing 

units, buildings, job sites, workshops, etc. Other capital inputs such as software purchases, office 

purchases, and building furniture are also a part of the total capital expenditure. Purchases of a range of 

automobiles form another significant portion of the capital inputs. All of these capital expenditures would 

have consumed energy during their installation, construction, or manufacturing.  
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The annual and benchmark input-output accounts conventionally include only transactions of goods and 

services that are consumed in the current year and do not include the capital flow in input-output tables 

(Horowitz and Planting, 2009). The capital inputs are treated as final purchases made as an investment and 

usually do not show up in the input-output tables (Horowitz and Planting, 2009; Treloar, 1998). Although 

the USBEA publishes capital flow data for the national economy as supplemental information to the 

benchmark accounts, the latest data available were for 1997, and hence, could not be utilized for 

quantifying capital inputs in 2002. Data relating to capital expenditures of various industries needed to be 

collected from diverse sources such as the USCB and USBLS. The USCB reported data on capital 

spending in the Annual Capital Expenditure Survey of non-farm businesses and include capital expenses 

in the category of used and new structures and equipment (USCB, 2002d). The 2003 Annual Survey of 

Manufacturers (USDOC, 2003) also reported detailed data on capital spending on structures and 

equipment. Additional information regarding capital spending was sourced from the Fixed Assets 

Accounts (under National Income & Products Accounts) published by the USBEA (USBEA, 2012; 

USBEA, 2011). The Fixed Assets Accounts also listed the current cost of the net stock of private fixed 

assets that helped derive the percent spent on capital inputs such as structures, equipment, software, and 

automobiles. Other capital expenditure related data were sourced from USDA (2004) and USCB (2002e). 

Detailed data with breakup by capital inputs such as buildings, automobile, computer equipment, and other 

equipment were available for nearly the entire manufacturing sector. For most other sectors the capital 

input information was available only by the buildings and equipment categories. Some of the capital 

spending data was available by the 2 or 3-digit NAICS code and these numbers were disaggregated to a 

six-digit NAICS code on the basis of criteria such as number of establishments, annual capital expenses, 

annual revenue, or total annual output. Capital expenditure data of the USPS was difficult to obtain, as a 

freeze on capital commitment was put into effect in 2002. The total expenditure was estimated from a 

graph presented in USPS (2011) and the total value was disaggregated into the categories of buildings and 

equipment using the data for federal non-defense spending on capital.  

 

Table 7-5: Various capital inputs in the building category and their average energy intensities 

NAICS Year-end Change in Fixed Assets: Structure Category, 2002 % of Total Avg. Energy Intensity 

230101 Nonresidential commercial and health care structures 12.4 0.0110 MBtu/$ 

230102 Nonresidential manufacturing structures 1.6 0.0089 MBtu/$ 

230103 Other nonresidential structures 17.1 0.0137 MBtu/$ 

230201 Residential permanent site single- and multi-family structures 56.5 0.0142 MBtu/$ 

230202 Other residential structures 12.4 0.0132 MBtu/$ 

 Average Energy Intensity: Structure Category 0.0135 MBtu/$ 
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After gathering the capital spending data for all relevant sectors, the total capital spending was roughly 

1204 billion dollars. This amount was verified by calculating the change in the fixed assets value from the 

USBEA’s Fixed Assets Accounts (USBEA, 2011). The change in fixed assets at the end of 2002 was 

reported at roughly 1165 billion dollars, which is within 3.5% of the calculated value. The breakup of 

change in year-end fixed assets from 2001 to 2002 in the equipment and building categories was used to 

calculate the energy intensity for building and equipment category. The energy intensity was averaged on 

the basis of relative share of capital inputs in the total net change in the fixed assets’ value at the end of 

2002. Table 7-5 and Table 7-6 show the breakup of the structure and equipment categories with their 

average energy intensities and percent share in the total change in the value of fixed assets.   

The total energy embodied in capital inputs at the end of 2002 was calculated as 16.3 quadrillion Btu. The 

share of equipment and structure in the total capital energy was equal to 8.4 and 7.9 quadrillion Btu, 

respectively. A more detailed account of capital flow was needed in order to quantify the capital energy 

more accurately and consistently. If the capital flow accounts were published concurrently with the 

national input-output accounts, it would be easier to accurately calculate the energy embodied in capital 

expenditure. It was interesting to know that the energy intensities of capital equipment and structure input 

were nearly the same. Although the economic input-output framework was used for the calculation, the 

input-output energy data were replaced by the process energy data.  

 

Table 7-6: Other capital inputs and their average energy intensities 

NAICS Yearend Change in Fixed Assets: Equipment Category, 2002 % of Total Avg. Energy 

intensity 

334 Computer and Electronic Product Manufacturing 17.3 0.0110 MBtu/$ 

3391 Medical Equipment and Supplies Manufacturing 18.3 0.0103 MBtu/$ 

333293 Printing Machinery and Equipment Manufacturing 0.3 0.0141 MBtu/$ 

3332 Industrial Machinery Manufacturing 

20.2 0.0149 MBtu/$ 

3334 
Ventilation, Heating, Air-Conditioning, and Commercial Refrigeration 

Equipment Manufacturing 

3335 Metalworking Machinery Manufacturing 

3336 Engine, Turbine, and Power Transmission Equipment Manufacturing 

3339 Other General Purpose Machinery Manufacturing 

3353 Electrical Equipment Manufacturing 

3359 Other Electrical Equipment and Component Manufacturing 

336 Transportation Equipment Manufacturing 11.4 0.0141 MBtu/$ 

3331 Agriculture, Construction, and Mining Machinery Manufacturing 4.6 0.0153 MBtu/$ 

3333 Commercial and Service Industry Machinery Manufacturing 16.6 0.0145 MBtu/$ 

3351 Electric Lighting Equipment Manufacturing 
1.0 0.0171 MBtu/$ 

3352 Household Appliance Manufacturing 

3371 Household and Institutional Furniture and Kitchen Cabinet Manufacturing 
10.3 0.0170 MBtu/$ 

3372 Office Furniture (including Fixtures) Manufacturing 

 Average Energy Intensity: Equipment/Other Category 0.0135 MBtu/$ 
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7.3 SUMMARY 

The calculation of human energy involved three components, namely energy of food, energy of 

consumables, and household energy use. The amount of food energy consumed by an individual depends 

upon various factors such as age, gender, and body mass. To calculate the energy of food consumed by an 

average worker, a national average for age and body mass was derived. A schedule of activities was also 

established for various work categories such as farming, labor, office work, etc. Using the average 

physical parameters for the 2002 working population and its activity schedule, the energy of food was 

quantified. The energy embodied in other consumables was calculated using the 2002 personal 

consumption expenditure data and input-output-based energy intensities. The energy used by an average 

household was sourced from the 2002 Annual Energy Review. The fraction of the total energy consumed 

by an average working individual that can be attributed to the employment was calculated as 67 MBtu per 

year excluding transportation. The energy embodied in capital investments was calculated by gathering the 

capital investment data by categories such as structure, equipment, automobile, and software. Using the 

input-output-based energy intensities, the total energy embodied in capital goods was quantified. Overall, 

nearly 16 quadrillion Btu of capital energy was consumed in the United States in 2002. Although, the data 

on total capital investment was gathered from a variety of sources, availability of capital input accounts in 

a timely manner would certainly improve the quality of capital input data in the future. 
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CHAPTER VIII   

EMBODIED ENERGY CALCULATION 

8.  

8.1 DISAGGREGATION OF INDUSTRY SECTORS 

8.1.1 Data for Disaggregation  

The disaggregated industry sectors corresponding to the study materials are given in Table 8-1. Industry 

sectors such as iron and steel mills and ferroalloy manufacturing were disaggregated into two sectors. The 

first sector was iron and steel mills that produced one of the study materials. The second sector 

represented all other products manufactured by the aggregated sector. Based on the recommended 

approaches discussed in the research method section, the industry sectors were disaggregated. Two types 

of data were required for disaggregating an aggregated industry sector. 

 

Table 8-1: Study materials and relevant disaggregated industry sectors 

Study Material 
Aggregated Sector Disaggregated Sector 

NAICS Sector NAICS Sector 

Virgin steel 331110 
Iron and steel mills and ferroalloy 

manufacturing 
331111 Iron and steel mills 

Primary aluminum 33131A 
Alumina refining and primary 

aluminum production 
331312 Primary aluminum production 

Bricks & other clay 

products 
32712A 

Brick, tile, and other structural clay 

product manufacturing 
327121 Brick and structural clay tile 

Ceramic wall & floor 

tiles 
32712A 

Brick, tile, and other structural clay 

product manufacturing 
327122 Ceramic wall and floor tile 

Vitrified Sewer Pipes 32712A 
Brick, tile, and other structural clay 

product manufacturing 
327123 

Vitrified clay sewer pipe and 

fittings 

Gypsum 3274A0 
Lime and gypsum product 

manufacturing 
327420 Gypsum product manufacturing 

Lime 3274A0 
Lime and gypsum product 

manufacturing 
327410 Lime manufacturing 

Wood, lumber 321100 Sawmills and wood preservation 321113 Sawmills 

Plywood & veneer, 

hardwood 
32121A 

Veneer and plywood 

manufacturing 
321211 

Hardwood veneer and plywood 

manufacturing 

Plywood & veneer, 

softwood 
32121A 

Veneer and plywood 

manufacturing 
321212 

Softwood veneer and plywood 

manufacturing 

 

8.1.1.1 Detailed Sectorial Output 

The output of an industry sector is comprised of primary and secondary products. Because we used input-

output tables after redefinition, the secondary products have been reallocated to the industry sectors in 
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which they were primary. This was done through a process of redefinition. A detailed breakup of sectorial 

output was published by the USBEA as a part of its benchmark accounts. Table 8-2 illustrates an example 

of a detailed output of sector veneer and plywood manufacturing provided by the USBEA. It can be seen 

that each item that was produced as a part of the sector’s total output was listed along with its share in the 

output. Using this data, the share of hardwood and softwood products can be extracted. Similar breakup of 

the total output was provided for most other sectors that also can be used to disaggregate the industry 

sectors. 

 

Table 8-2: Detailed item output for veneer and plywood manufacturing 

2002 

Commodity 

Code 

Commodity Item Code Item Description  
Item 

Output 

32121A  Veneer and plywood manufacturing                                                                                              3212111 Hardwood veneer 1121.2 

32121A  Veneer and plywood manufacturing                                                                                              3212113 
Hardwood plywood, except prefinished 

hardwood plywood 
1049.9 

32121A  Veneer and plywood manufacturing                                                                                              3212115 
Prefinished hardwood plywood made from 

purchased hardwood plywood 
132.0 

32121A  Veneer and plywood manufacturing                                                                                              3212117 Hardwood plywood type products 476.0 

32121A  Veneer and plywood manufacturing                                                                                              321211AO       
Hardwood veneer and plywood 

manufacturing, other miscellaneous receipts 
9.4 

32121A  Veneer and plywood manufacturing                                                                                              321211CW       
Hardwood veneer and plywood 

manufacturing, contract work 
25.0 

32121A  Veneer and plywood manufacturing                                                                                              321211IC       
Hardwood veneer and plywood 

manufacturing, inventory change 
18.2 

32121A  Veneer and plywood manufacturing                                                                                              321211RSL      
Hardwood veneer and plywood 

manufacturing, value of resales 
-0.1 

32121A  Veneer and plywood manufacturing                                                                                              321211W        
Hardwood veneer and plywood 

manufacturing, nsk* 
272.1 

32121A  Veneer and plywood manufacturing                                                                                              3212121 Softwood veneer 867.2 

32121A  Veneer and plywood manufacturing                                                                                              321212AO       
Softwood veneer and plywood 

manufacturing, other miscellaneous receipts 
26.3 

32121A  Veneer and plywood manufacturing                                                                                              321212CW       
Softwood veneer and plywood 

manufacturing, contract work 
7.6 

32121A  Veneer and plywood manufacturing                                                                                              321212IC       
Softwood veneer and plywood 

manufacturing, inventory change 
12.7 

32121A  Veneer and plywood manufacturing                                                                                              321212RSL      
Softwood veneer and plywood 

manufacturing, value of resales 
-0.2 

32121A  Veneer and plywood manufacturing                                                                                              321212W        
Softwood veneer and plywood 

manufacturing, nsk* 
64.4 

32121A  Veneer and plywood manufacturing                                                                                              321212X        
Softwood plywood products: rough, sanded, 

and specialties 
3581.3 

 *nsk indicates not specified by kind 
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8.1.1.2 Detailed Sectorial Inputs 

The monetary flows among various industry sectors included goods and services. Any raw material 

consumed by an industry was covered the under goods’ flow. For instance, glue and adhesives consumed 

by sawmills was a flow of goods. To decompose the total inputs used by an industry sector, the proportion 

of both the goods and services in the total input was required. The USCB published a series entitled the 

Materials Summary as a part of its five-year Economic Census (USCB, 2006a). This summary provided 

few detailed input data under the category of materials consumed by kind. These data were specific to a 

subsector of the main aggregated sector. Under the 2002 Economic Census, the USCB published a data 

series entitled the Industry Series for each sector and subsector (USCB, 2002a). Under Detailed Statistics 

by Industry, the industry series report listed various expenses such as material consumed, fuel consumed, 

services used, etc.  A set of disaggregation coefficients was developed for decomposing the total inputs of 

energy and nonenergy goods and services.  

8.1.2 Applying Disaggregation to Economic Data 

For calculating the embodied energy, a commodity-by-commodity square matrix of direct requirements 

was used. However, the disaggregated inputs were given by industry and therefore could not be inserted 

directly into the direct requirement matrix representing commodities. For the purpose of obtaining a 

disaggregated commodity-by-commodity square matrix, few adjustments were made to both the use and 

make table.  

8.1.2.1 Use Table Modifications 

The use table listed the consumption of the commodity of goods and services by industry sectors. The 

values in the row represented the commodity used by the industry at the top of the column. To 

disaggregate the industry column, a disaggregation coefficient for materials and services consumed was 

used. An existing sector was broken down into two columns. The first column vector depicted the 

disaggregated sector producing the study material. The second column contained the remaining inputs 

consumed in manufacturing all other products. The actual input data for the disaggregated sector were 

obtained from the economic census report and then inserted into the first column. As input data were not 

available for most of the sectors, a disaggregation coefficient (k) was calculated using the 2002 Economic 

Census data for materials and services consumed by the study material sector.  If w denotes the share of 

study material sector n+1 in the total input of the aggregated sector n, then: 

                                Equation 8-1 

 

Where a and A represent the original aggregated and disaggregated matrix, respectively.  

                       Equation 8-2 
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                         Equation 8-3 

 

The above equations became a constraint for disaggregating an input-output industry sector. The column 

vector of the disaggregated sector contained all of its inputs drawn from other industry sectors. 

The row entries in the use table contained the value of the row commodity used by the industry at the top 

of the column. As the purpose was to create a decomposed commodity-by-commodity square matrix of 

direct requirements, it was important to create a row commodity to represent the disaggregated industry 

sector n+1. In this study it was assumed that the use of the disaggregated commodity by the column 

industries can be depicted by the disaggregated commodity’s share in the total output of the aggregated 

commodity.  

8.1.2.2 Make Table Modifications 

The row entries in the make table represented industries making various commodities listed in the 

columns. The row representing the aggregated industry sector n was divided into two rows. The first row 

defined the disaggregated industry and its make of column commodities. It was assumed that the share (w) 

of the disaggregated industry in the output of the aggregated industry would represent its proportion in 

making the column commodities. Therefore, the amount of a commodity produced by the aggregated 

sector was multiplied by w to compute the commodities made by the disaggregated sector n+1.The 

column vectors of the make table defined the amount of a commodity manufactured by each row industry. 

The sum of a column is always 1.0, as each cell in the column is a fraction of commodity produced by 

each row. It was considered that the disaggregated commodity was produced in the same proportion as the 

original aggregated commodity.  

8.2 INSERTING HUMAN AND CAPITAL ENERGY  

The calculated values of human and capital energy inputs were for each industry sector. However, we 

needed to apply these values to a square matrix representing commodities. Therefore, make table and use 

table adjustments were necessary to obtain a commodity-by-commodity direct requirement matrix with 

human and capital energy. A new commodity for each, the human and capital input category, was added to 

the make table and use table. In the use table there were two new rows with values of human and capital 

energy consumed by the industry at the top of the columns. In make table, there were two new columns 

representing the make of human and capital energy by industry sectors. As human and capital inputs were 

not a part of intermediate transactions, it was assumed that no industry made any of the two inputs. This 

meant that all values in the newly added columns of the make table would contain zero entries. The 

original 428 X 426 use table matrix now became a 430 X 426 matrix and the 426 X 428 make table matrix 
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turned into a 426 X 430 matrix. If modified use tables and make tables are denoted by u and v, 

respectively, then: 

 

  

[
 
 
 
 

         

   
         

             

             ]
 
 
 
 

   and     [
                     

     
                     

] 

 

Where, the first n x n matrix was unchanged in both the use table and make table. Cells An+1 1 and An+2 1 

depicted the use of human and capital energy commodities by the industry sector at the top of column 1. 

Cells of make table such as A1 n+1 to An n+1 and A1 n+2 to A1 n+2 contained zero values representing make of 

human and capital energy by the industry sectors. The process of inserting human and capital inputs was 

discussed with Penson (2012 and 2013) and Dudensing (2012 and 2013). 

8.3 CALCULATING DIRECT ENERGY INTENSITIES 

To calculate the direct energy intensities of industry sectors, a commodity-by-commodity direct 

requirement matrix was derived with process data of energy use. The collected process data of energy use 

were in physical units (MBtu). However, to replace the monetary data of the original use table by energy 

data, some adjustments were needed in the energy data. There were two approaches to insert process data. 

In the first approach, energy use data could be converted to monetary data using national average prices of 

different energy sources and then inserted into the use table. After multiplying the use and make tables, 

the energy data could be converted back to energy units using the same energy prices. In the second 

approach (based on Carter et al., 1981), the energy data could be included into the use table in energy units 

(e.g. MBtu) only. The row commodities representing energy providing sectors would have MBtu/$ units, 

whereas the energy providing industry sectors in the columns would have data in units $/$. Cells at the 

cross-section of energy providing commodities and corresponding industry sectors would also contain 

values in MBtu/$. In this approach, the calculated direct requirement coefficient for each industry sector 

would be in MBtu/$. If the following matrix represented a portion of the use table and if the middle row 

and middle column depict the energy commodity and energy providing industry, then as per the second 

approach: 
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As the make table provided the fraction of a commodity manufactured by various industries, no changes 

were made to the make table. In the second approach, as the energy data were in physical units (MBtu), 

not changing the make table meant that the proportions of energy commodities made by industry sectors is 

the same in both the monetary and energy units. It can be seen that both the approaches are actually 

similar. The only difference is that in the first approach, there is no assumption of commodity fractions in 

monetary or energy terms. In this research, we adopted the second approach. 

The second matrix shows the various units after inserting process data as per approach two as discussed in 

the earlier paragraph. One major advantage of using process data in physical units was that no average 

energy prices were used to convert the monetary data into energy intensities.  As energy prices may vary 

and may not be representative of the actual prices paid by the industries, they could seriously affect the 

embodied energy calculations (Crawford, 2004; Acquaye, 2010). By avoiding the use of average energy 

prices, the reliability of input-output-based energy analysis was further improved. 

After modifying the use table, it was multiplied by the make table to derive a commodity-by-commodity 

square matrix of direct requirements. The direct requirement matrix provided the direct energy intensity of 

each commodity by five energy providing sectors: 

 Oil and gas extraction 

 Coal mining 

 Electric power generation, transmission, and distribution 

 Natural gas distribution 

 Petroleum refineries 

In addition, there were two other energy sources, namely human and capital energy. It can be seen that 

calculating and using separate energy intensity values for different energy providing sectors eliminates the 

error caused by using a single representative energy commodity and a fixed energy price that is a national 

average.  

8.4 CALCULATING INDIRECT ENERGY INTENSITIES 

There were two ways to calculate the indirect fraction of the total energy intensity of an industry sector. 

First, it could be calculated using Leontief’s Inverse Matrix that represents the total requirements of the 

sectors of an economy. The direct requirement matrix was subtracted from an identity matrix and inverted 

to find Leontief’s total requirement matrix. The difference of total and direct requirements would provide 

the indirect requirements. However, this approach was like a “black box.” We had no idea how the total 

energy was calculated (Treloar, 1998). In other words, we could not determine how much energy is 

embodied in each stage upstream of the main product.  The second approach utilized the Power Series 
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Approximation method, which could provide us with energy intensities by each upstream stage. If more 

detailed product quantities were available, then those quantities could replace the monetary flows in a 

Power Series Approximation method (Treloar, 1998; Crawford, 2004). For example, if quantities of major 

ingredients of a complex product such as concrete were known, any monetary flow from sectors producing 

ingredients to the sector of the complex product could be replaced with physical flows. Treloar (1998) and 

Crawford (2004) adopted a similar approach called embodied energy path extraction.  

If A represented the direct requirement matrix, then the energy intensity by stage (Treloar, 1998): 

      ∑    

 

   

                  Equation 8-4 

Where s, n, i indicated the number of stage, sector of study material, and input sector, respectively. The 

terms Esn, Ain, and Ei, (s-1) were energy intensity of study material at stage s, direct input from sector i to n, 

and energy intensity of sector i one stage downstream, respectively. It should be noted that energy 

intensity of sector i was a product of direct energy intensity and PEF. The energy intensity of sector i: 

    ∑    

 

   

               Equation 8-5 

Where “e” represents the number of energy providing sectors. Unlike Treloar (1998) and Crawford (2004), 

we did not use energy prices, as we calculated energy intensities in energy units (MBtu/$). According to 

Acquaye (2010), in Treloar’s (2004) and Crawford’s (2004) work, energy prices were used multiple times 

increasing chances of error if energy products were underestimated or overestimated. Since we did not use 

energy prices at this stage, the chances of error were minimized. The process of indirect energy calculation 

was also discussed with Penson (2012 and 2013) and Dudensing (2012 and 2013). 

In this research, we did not calculate a single energy intensity for sector i as shown in Equation 8-4. 

Instead, we calculated embodied energy intensity using Equation 8-5 for each fuel category including 

human and capital energy. There were two advantages in doing so. First, the relative fraction of various 

energy types in the total embodied energy was clear. Second, energy source wise embodied energy 

calculation was more appropriate if carbon emissions were to be determined using embodied energy 

values. 

After calculating the direct energy intensity of industry sectors of the economy, the total energy intensities 

were calculated using the Power Series Approximation. The total energy intensities were calculated for oil 

and gas extraction, coal, natural gas, oil, electricity, human energy, and capital energy up to 12 stages in 

the upstream. The total embodied energy was the sum of total energy embodied in all 12 stages. According 

to Treloar (1998) and Miller and Blair (2009), up to the 12
th

   stage most of the indirect inputs can be 

covered. In a test conducted in this research prior to developing the calculation model, we found that if 

calculated up to the 12
th

 stage, more than 99.5% of the inputs were covered (see Appendix A1).  
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CHAPTER IX   

RESULTS 

9.  

9.1 EMBODIED ENERGY CALCULATION GUIDELINES 

The literature clearly pointed out serious issues with the way embodied energy calculations have been 

planned, carried out, and their results were reported. The guidelines for calculating embodied energy can 

be tied to the four major issues with the current embodied energy research. These issues include lack of 

embodied energy definition, inconsistent system boundary model, poor data quality, and a lack of a 

standard calculation method. The following sections describe the embodied energy guidelines. 

9.1.1 Embodied Energy: General Interpretation 

The term “embodied energy” is interpreted as a net value of all types of primary energy consumed in 

various products (goods) and processes (services) used in manufacturing a building or its materials. The 

term “all types of primary energy” includes heat of combustion of all materials used as an energy source 

and as a feedstock. It also covers the energy embedded in human labor, plant facilities, and other capital 

expenditure. The use of an energy source as a raw material in the process of delivering goods and services 

is considered a feedstock use. The amount of energy wasted or lost during the process is also considered 

energy consumption. The final embodied energy value is a net consumption of primary energy use 

meaning it excludes any energy recovered by the reuse or recycling of resources. The term “primary 

energy” signifies the importance of tracking a delivered energy back to its point of extraction.  

9.1.2 Embodied Energy: Definitions 

A set of standard definitions of embodied energy terms is important to build a consensus on embodied 

energy interpretation. The following four terms are defined based on the literature opinion: 

Embodied Energy of a Product 

The net sum of all primary energy, including human and mechanical energy, consumed directly or 

indirectly in products (goods) and processes (services) used in manufacturing and delivering a final 

product for end use is termed the embodied energy. 

Life Cycle Embodied Energy: Building 

The net sum of embodied energy of all products (goods) and processes (services) consumed by a building 

in the life cycle stages of initial construction, occupancy and use, and demolition and material disposal is 

known as the life cycle embodied energy. 

Life Cycle Operating Energy: Building 
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The net total primary energy, including direct and indirect components, used by a building in its operation 

over its service life is called the life cycle operating energy. 

Life Cycle Energy: Building 

The sum of a building’s total life cycle embodied and operating energy is termed the life cycle energy. 

9.1.3 System Boundary Definition  

The system under study is defined using a boundary that starts from and returns to the biosphere. The goal 

is to define a boundary in a complete manner. An in-depth analysis of system boundary models proposed 

in the literature showed two distinct dimensions defining the length and width of a system under study (see 

Figure 9-1). The longitudinal dimension (“X” dimension) covers the upstream and downstream of a 

product such as a building (e.g. life cycle stages). The cross sectional dimension (“Y” dimension) defines 

the upstream and downstream of each stage covered by the longitudinal dimension. The cross sectional 

dimension “Y” is also applied to transition between the stages of the longitudinal dimension. The 

following guidelines apply: 

 Defining a boundary in the “X” dimension means tracking each input from its point of extraction 

in the upstream of a building to its disposal or recovery in the distant downstream. The “X” 

dimension (length) stretches across the life cycle of a building starting with the material 

production stage, going through initial construction and use, and ending with the end-of-life 

phase. All transportation and transformation of resources are also included. The term “resources” 

includes energy and nonenergy raw materials, labor, and machines. 

 Each life cycle stage of the “X” dimension consumes energy and nonenergy inputs in its upstream 

and causes emission, pollution, and waste generation in the downstream. The upstream of a life 

cycle stage covers all primary energy inputs, whereas the downstream deals with the primary 

energy used in remediation of emission, pollution, and waste generation. The term “all primary 

energy inputs” means total primary energy of all energy and nonenergy inputs. This dimension 

(“Y” dimension) defines the width of a system boundary.    

In the case of a complex product such as a building, a system under investigation may include the building 

in its entirety or in parts. For instance, the scope of study may be limited to only the structure, envelope, or 

building services or may be extended to the site, surroundings or neighborhood. The differing levels of 

study scope indicate the “Z” dimension. For a basic material (e.g., cement, aggregate, glass etc.) including 

both the “X” and “Y” dimensions is recommended. In the case of a complex product (e.g., windows, 

equipment, buildings), it is recommended that all three dimensions (X, Y, and Z) are covered as shown in 

Figure 9-1. A complex product is a product that is made of multiple basic materials. For instance, a 

window assembly is fabricated using metal, glass, rubber, coatings, and gases filled between the glass 

layers. Another example of a complex product is a material such as concrete that is made of cement, 

additives, aggregate, sand, and water. 
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Figure 9-1: The three dimensions of a system boundary for a building 

9.1.3.1 Explanation of the Three Dimensions 

The process of defining a system boundary starts with the production of building materials stage (see 

block “A” in Figure 9-2), which is made of the main production process, upstream processes such as raw 

material extraction, treatment, and transportation,  and the downstream processes such as finished product 

packaging, storage, and delivery. Block “A” analysis is repeated for each material (e.g., fuels, building 

materials, water, etc.) and product (building assemblies, equipment, machines, etc.) used in constructing a 

building.  
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Figure 9-2: System in the Y dimension 
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Each block “A” analysis is divided into block “B” and “C” analysis defining the input and output side of 

“Y” dimension as shown in Figure 9-2. The input side (block “B”) determines the products and processes 

entering each life cycle stage including the transitional stages. The product category consists of raw 

materials (including feedstock energy), equipment and machines, and capital infrastructure (e.g., 

automobiles, software, temporary or permanent structures) that are fed into each life cycle stage. For each 

item involved in the product input category, the block “A” analysis is done.   

The process category represents the transformation or transportation of resources such as material, labor, 

and equipment. Each input and output side incorporates mechanical as well as human energy use including 

losses due to acquisition (primary fuel extraction or electricity generation), storage, and supply 

(transmission and distribution of primary or electrical energy) of energy sources. The losses due to 

efficiency of equipment and the productivity of human labor are also accounted for. Block “A” analysis is 

repeated for each primary fuel used by machines and each food item consumed by labor. The output side 

(block “C”) covers the consumption of resources and energy in the remediation of the environmental 

consequences of resource use (input side). Similar to block “B,” each item in the product and process 

category is tied back to block “A” analysis. Hence, we can visualize that the system boundary starts with 

block “A” analysis, covers blocks “B” and “C,” and finally returns to block “A” analysis at a micro level. 

This seems an unending process with each block “A” analysis getting relatively insignificant (in terms of 

its relative impact on the product under study) than the earlier one.  

Each life cycle stage of a building incorporates blocks “B” and “C” as shown in Figure 9-3, which 

illustrates a building’s system boundary comprehensively. As indicated in Figure 9-3, transition from one 

stage to another includes each activity of transportation, loading and unloading, temporary storage, etc. 

The block “B” and “C” calculations for all products (cranes, trucks, loaders, dumpers, etc.) and processes 

(transportation, loading, and unloading) involved in transitional stages are done. Two types of recycling or 

reuse of resources are considered: open or closed loop. Resources may also be recovered from combustion 

of products that contained feedstock energy (e.g. wood, plastic and other petrochemical products). The 

open loop recycling includes recycling and reuse between the life cycle stages or between the various 

industry sectors. The closed loop includes reuse or recycling within a life cycle stage or an industry sector. 

9.1.4 Embodied Energy: Data Quality 

The data utilized in the embodied energy calculation are of two types, the energy and nonenergy inputs. 

Two aspects of data used in embodied energy calculation are paramount. First, the data are complete with 

respect to the system boundary defined. Second, they are representative of the study with respect to the 

location and time.  
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Figure 9-3: Complete system boundary for a building
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9.1.4.1 Data Completeness 

The completeness relates to the purpose the data serve in embodied energy analysis. For instance, if 

process-based energy intensities are used to replace the direct energy components of an input-output 

analysis, they should completely cover all relevant direct inputs. Before incorporating primary data in the 

calculation, it is important to apply a calculation method that does not result in incomplete values.  If 

secondary data are used, it is important to verify their completeness. If the data is found to be incomplete, 

it is recommended that necessary adjustments are made to attain completeness. 

9.1.4.2 Data Representativeness  

The representativeness of data is measured with respect to geographic location, time, and technology. If 

primary data are calculated, their representativeness needs to be verified. For instance, data are from the 

same region and year as the study, and data represent the technology of manufacture and construction in 

terms of resource use. If for any reason old data are used, adjustments are required to convert them to the 

current time. If no adjustments can be made, a study for the old time can be performed. However, in such a 

case, all other data should also come from the same time period. When using data from a region other than 

the study, adjustments are needed based upon the socio-economic and technological aspects.  

The technology of manufacture and construction differs with the location. In addition, economic systems 

and policies are also different within and across geographic boundaries. Sourcing data from a non-

representative region can produce erroneous results. Even within the same geographic region, if two 

manufacturing units apply different technology, their energy intensities are not comparable, and hence, 

cannot be substituted for each other. The third aspect relates to the temporal representation of data. If old 

data are used, they may not demonstrate the time of the study accurately.  

9.1.4.3 Secondary Data 

Secondary data can be used if the information about how the data were originally derived is available. 

Using data from a source that lacked transparency can seriously hamper the reliability of the energy 

results. In addition to transparency, completeness and representativeness of secondary data are also needs 

to be verified. 

9.1.5 Embodied Energy: Calculation Method 

The most commonly used method for embodied energy calculation is the process-based approach. 

However, incompleteness due to the truncation of the system boundary is a major issue with this method. 

The input-output-based methods are regarded as complete but their results, in most cases, are not specific 

to the product under study. Looking at the system boundary model proposed in Section 9.1.3, an input-

output analysis seems the only approach to account for all indirect inputs. The chances that the 

incompleteness of a process-based analysis would be improved to an extent that all indirect inputs are 
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counted are rare. In the view of current research, it can be expected that the specificity of an input-output-

based method would improve significantly over time.  

An input-output-based hybrid method is appropriate to conduct the embodied energy calculation. The 

process data on energy inputs can be collected and inserted into the input-output model to improve its 

reliability. The following guidelines apply to an input-output-based hybrid approach: 

 Avoiding the use of energy and product prices is recommended, as it would improve the 

reliability of the method. If possible, replacing direct requirement coefficients of energy use by 

process data can avoid relying on energy prices, which vary across industry sectors and 

geographic boundaries. In such a case, the direct energy requirement coefficients are calculated 

directly in energy units. 

 Ensure that the inputs such as human energy and capital investment that are not covered in a 

conventional input-output model are quantified and added to the economic model. 

 If disaggregated data on main inputs and outputs of commodities are available, the process of 

sector disaggregation is a recommended way to make the results of an input-output-based method 

more study specific. 

 There are multiple chances of double counting due to the way economic input-output accounts 

are prepared. One approach used to avoid the double counting of energy is keeping all energy and 

nonenergy inputs to zero and multiplying energy intensities with Primary Energy Factors (PEFs) 

by fuel. There are sectors such as wholesale and retail trades, which buy energy goods and sell 

them for a profit. However, when their energy intensity is quantified based on how much they 

bought from the energy providing sectors, the results may be inaccurate because most of the 

energy purchased was not consumed but traded.  

 When using PEFs, the assumption is that the PEFs take into account all indirect energy inputs 

consumed by an energy providing sector. Therefore, it is important to calculate PEF for each 

energy source in a complete manner by covering all direct and indirect inputs. An input-output-

based hybrid approach is appropriate for calculating the PEFs. 

 If all energy sources used in an economy are averaged into one energy source for the purpose of 

calculating the embodied energy, its relevance to environmental issues is lost. Embodied energy 

results by fuel type can be used to further quantify other environmental impacts such as carbon 

emission and pollution.  

 Once the embodied energy intensities of industry sectors are calculated, product prices are used to 

convert the energy intensities to embodied energy values per unit of mass or volume. If suitable 

data are readily available, using the production quantity of a finished product and the total 

embodied energy of the sector manufacturing the product, embodied energy per unit of mass or 
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volume can be calculated without using the price of the product. Using product prices for 

converting energy intensities to energy units poses serious problems, as product prices also vary 

and may be underestimated or overestimated. For instance, iron and steel mills sector not only 

manufactures virgin steel but also produces a wide range of structural shapes each of which has 

quite different prices. One way to avoid this is collecting data on total production of the product 

in physical quantities. The calculated embodied energy values then can be multiplied by the 

monetary sectorial output to obtain total embodied energy of the entire industry sector. This value 

if divided by the total embodied energy would give embodied energy per unit of mass or volume. 

9.1.6 Embodied Energy: Reporting 

It is recommended that the reporting of the embodied energy process and results is done in a transparent 

manner so that the reader can make informed decisions about analyzing or applying the study with or 

without modifications. The following information must be supplied in order to attain a reasonable degree 

of transparency: 

 System boundary: A boundary defining the extent of the study is graphically supplied and 

explained in the text in detail. Each input, major or minor, is reported if included or excluded 

from the system. Any recovery of resources is mentioned in the text. As mentioned in Section 

8.1.3, a complete coverage of the system boundary is recommended. If the product under study is 

a complex product such as a building, a detailed account of its and its constituent materials’ 

service life is given. Factors such as a waste factor and replacement factor, if used in the 

calculation, are listed clearly by each material and assembly. Any schedule of maintenance or 

renovation, if applied, needs to be explained while reporting the system boundary. 

 Calculation method: The method applied for the calculation is explained step by step stating and 

explaining each variable. If any modification is done to an established method, it needs 

explanation so that a reader can evaluate the applicability of the modified method. All major 

assumptions regarding energy and nonenergy inputs and calculation process are listed. It is also 

recommended that the approach to evaluate the study results is explained clearly.  

 Data sources: Any primary or secondary source referred in the study needs to be listed along with 

a way to approach them if needed. Three types of information are included in data source 

reporting: date, geographic location, and the details of the publishing organization or agency. If 

any modification is done to the sourced data to improve its representativeness, it needs detailed 

explanation. 

 Study results: The embodied energy results are presented in primary energy units only. If 

secondary energy units are used, a factor to convert them into primary units is supplied and 
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explained. Embodied energy results are reported collectively and also by each fuel or energy 

source used in the region.  

 Case study description: In the case of a research conducting case studies of materials or products, 

a detailed description of their physical, spatial, and environmental characteristics is 

recommended. For instance, if the study object is a building, information about its construction 

(at a minimum, structural frame, envelope, and interiors), design (representative floor plans and 

sections), and surroundings (site, climate, and socio-economic conditions) is mentioned briefly in 

the report.  

9.2 EMBODIED ENERGY OF STUDY MATERIALS 

This chapter provides the results of the embodied energy calculation performed for the study materials. 

The calculated values are presented as energy intensities per unit of monetary output and also as embodied 

energy per unit of mass. The results are also reported by each energy source so that the share of each in the 

total carbon emission can be analyzed at a later date. Reporting of results by each stage is also provided to 

demonstrate how energy intensities get smaller with each stage in the upstream. Here, upstream stages 

indicate the subcomponents of a material. For instance, the use of cement in the production of concrete is 

stage I input to concrete.  Similarly the use of limestone in manufacturing cement is the stage II input to 

concrete production and so on. It is also important to analyze the share of direct and indirect components 

in the total embodied energy. For some materials, the direct energy could be significantly less than the 

indirect fraction of the total embodied energy. As the calculations were performed in steps indicating 

gradual improvements, the results are also presented by each step to observe the impact on embodied 

energy.  

9.2.1 Embodied Energy of Study Materials 

Table 9-1 provides the values of embodied energy calculated for each study material. The values are listed 

for each calculation approach. The first column lists embodied energy calculated using a basic input-

output approach in which the total energy coefficients were calculated by dividing the total requirements 

with average energy prices. In the second approach, in order to avoid the use of average energy prices, 

process data of energy use were inserted into the input-output model. The human and capital energy were 

added in the next approach. Finally, some sectors were disaggregated to quantify the material specific 

embodied energy for materials such as wood, plywood, brick, clay tiles, vitrified clay pipes, gypsum 

building products, lime, steel, and primary aluminum. Materials such as wood lumbers are manufactured 

by a sector that is also engaged in wood preservation activities, and hence, embodied energy specific to 

wood lumber production should be calculated separately. The embodied energy of wood lumber changed 

slightly from 2.7 to 2.8 kBtu/lb after the sector disaggregation. However, in the case of hardwood plywood 
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(-30%), clay tiles (-25%), and gypsum (-28%), the embodied energy actually decreased considerably. This 

change in material’s embodied energy was due to the different energy intensities of various products that 

were manufactured by the disaggregated sector. For instance, in the case of steel, due to a higher energy 

intensity of ferro-alloy sector, the energy intensity of primary steel decreased by 1%. Surprisingly the 

energy embodied in carpet per unit of its mass was the highest among the study materials. The calculated 

embodied energy of carpet supports the literature opinion (Winistorefer et al., 2005) that the carpet is the 

“largest energy consumer” among the commonly used building materials. Treloar et al. (2001a) also found 

that the embodied energy of carpet was the largest among the major building materials when calculated 

per unit of its area. 

 

Table 9-1: Calculated values of embodied energy of study materials 

 Final Embodied Energy (kBtu/lb) 

Study Material IO-based Method Hybrid Method Hybrid with Human & 

Capital Method 

After 

Disaggregation 

Carpet (3/8" Thk.), Level Loop 235.3 228.2 242.1 242.1 

Wood Lumber 2.2 2.4 2.7 2.8 

Hardwood Plywood & Veneer 11.5 14.0 15.2 10.6 

Softwood Plywood & Veneer 3.0 3.6 4.0 4.0 

Paints & Coatings 29.0 22.8 24.1 24.1 

Adhesives  56.2 21.6 23.0 23.0 

Plastic Pipes & Fittings  42.2 46.9 48.7 48.7 

Polystyrene Foam Insulation 104.8 104.7 110.1 110.1 

Bricks  2.1 1.6 1.7 1.9 

Clay Wall & Floor Tiles (1/4” Thk.) 19.0 14.4 15.2 11.3 

Vitrified Clay Sewer Pipes  8.4 6.4 6.7 6.1 

Flat Glass  10.6 10.3 10.6 10.6 

Cement  1.9 3.1 3.2 3.2 

Concrete  0.5 0.5 0.6 0.6 

Gypsum, Bldg. Products  9.1 10.1 10.4 7.5 

Lime  1.7 1.9 1.9 3.2 

Stone  1.3 1.2 1.4 1.4 

Mineral Wool Insulation  11.8 11.9 12.6 12.6 

Virgin Steel 35.2 34.2 35.2 34.9 

Primary Aluminum  29.2 79.3 80.2 82.0 

Copper  18.8 24.7 25.8 25.8 

 

It was evident that the embodied energy values calculated using the input-output-based approach were 

within 25% of the hybrid analysis values in most cases. However, in the case of adhesives, cement, and 

aluminum the difference was considerable (61 - 171%). A possible explanation for the less embodied 

energy of cement and aluminum could be the higher electricity consumption of the aluminum and cement 

sector, which is actually four times if converted to primary energy terms. As input-output analysis is based 

upon the monetary data, if electricity prices are underestimated, the calculated values of embodied energy 

would be much smaller. Similarly in the case of adhesives, a higher petroleum intensity of the input-output 

analysis caused the embodied energy to increase sharply. There could be several reasons for a larger 
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embodied energy of chemical products such as adhesives. The chances of double counting and a large 

share of feedstock energy use are among them.  Based on these results, it can be concluded that the results 

of an input-output-based analysis are quite different than the other hybrid methods. Although the increase 

in embodied energy due to the inclusion of human and capital inputs was within 10% for most materials, 

in the case of wood lumber and stone, it actually increased by 11 - 17%. The least change occurred in the 

case of aluminum, where embodied energy increased by just one percent as a result of human and capital 

energy inclusion. 

9.2.2 Energy Intensities by Energy Source 

Figure 9-4, Figure 9-5, and Figure 9-6 demonstrate the energy intensities in MBtu/$ output of the study 

material sector by energy source calculated using the three approaches. It can be seen that the fuel 

intensities were quite different in the input-output-based and input-output-based hybrid approaches. In the 

input-output-based approach, the electricity use was mostly within 0.005 MBtu/$ except for the aluminum 

production. However, in the hybrid approaches, it increased to a range of 0.007 - 0.08 MBtu/$. The most 

electricity-intensive sector was the primary aluminum production, which consumed 0.08 MBtu of energy 

per dollar of its output. Other sectors producing materials such as cement (0.026 MBtu/$), gypsum (0.012 

MBtu/$), and lime (0.012 MBtu/$) also consumed considerable electricity. The cement manufacturing 

sector was the most coal-intensive sector. Other sectors producing steel, gypsum, and lime also consumed 

coal in relatively large quantities per dollar of their outputs. Interestingly, the aluminum and plastic 

industries were among the most petroleum-consuming industries. 

The effect of sectorial disaggregation is clearly visible in Figure 9-6 . The seemingly flat energy use of 

gypsum, lime, and clay product manufacturing as seen in Figure 9-5 , disappeared in Figure 9-6. The 

significance of reporting energy use by energy source is that one can identify sectors that are critical to 

combating the increased levels of carbon emissions. Sectors producing aluminum, steel, and cement 

consume considerably higher quantities of electricity and coal energy, the key contributors to global 

carbon emissions.  

Figure 9-7 shows the share of each fuel in the total energy used by sectors producing the study materials. 

Figure 9-7 only presents the results of the input-output-based hybrid analysis with human and capital 

inputs after disaggregation.  It can be observed that nearly 25% of the total energy requirements of all 

sectors came from the electricity and coal supply. Materials such as aluminum, steel, and cement used 

extensively in building construction, came from manufacturing sectors that were the largest consumers of 

electricity and coal (>50% of the total energy use collectively). The fraction of human energy in the total 

embodied energy ranged from 0.7-9.3%, whereas it was within 1.2 - 5.2% for the capital energy. The 

calculated energy intensities per dollar of sectorial output by each energy source are listed in Table A1-16, 

Table A1-17, Table A1-18, and Table A1-19 in Appendix A1. 
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Figure 9-4: Energy intensities using input-output analysis 

 

Figure 9-5: Energy intensities using input-output-based hybrid approach with human and capital inputs 
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Figure 9-6: Energy intensities using input-output-based hybrid approach with sector disaggregation 

 

Figure 9-7: Relative share of energy sources in the total embodied energy intensities of study materials 
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Table 9-2: Final embodied energy values by energy source using hybrid approach after sector disaggregation 

Study Material Final Embodied Energy Breakup by Energy Source (kBtu/lb) 

Oil & 

Gas 

Coal  Electricity Natural 

Gas 

Petroleum Human 

Energy 

Capital 

Energy 

Total Embodied 

Energy 

Carpet (3/8" Thk), Level Loop 3.871 10.195 87.994 55.945 70.203 8.604 5.285 242.096 

Wood Lumber 0.038 0.022 0.795 0.283 1.385 0.157 0.119 2.800 

Hardwood Plywood & Veneer 0.175 0.102 3.477 1.548 4.143 0.730 0.401 10.577 

Softwood Plywood & Veneer 0.024 0.030 1.609 0.660 1.286 0.214 0.131 3.953 

Paints & Coatings 0.665 1.073 5.756 5.227 10.099 0.662 0.633 24.116 

Adhesives  0.582 1.072 5.984 4.942 9.055 0.720 0.644 23.000 

Plastic Pipes & Fittings  1.596 1.034 11.335 9.819 23.074 0.895 0.987 48.740 

Polystyrene Foam Insulation 2.822 3.385 26.803 27.107 44.578 2.884 2.545 110.125 

Bricks  0.005 0.039 0.391 1.055 0.331 0.057 0.042 1.920 

Clay Wall & Floor Tiles  (1/4" Thk) 0.052 0.226 3.563 4.571 1.949 0.569 0.413 11.343 

Vitrified Clay Sewer Pipes  0.023 0.134 1.120 3.210 1.177 0.281 0.192 6.137 

Flat Glass  0.029 0.125 3.012 5.943 1.178 0.157 0.175 10.619 

Cement  0.007 1.235 0.908 0.195 0.786 0.023 0.071 3.225 

Concrete  0.002 0.123 0.141 0.085 0.192 0.018 0.021 0.583 

Gypsum, Bldg. Products  0.027 1.780 1.515 2.109 1.906 0.093 0.074 7.503 

Lime  0.008 0.756 0.543 0.863 0.873 0.062 0.064 3.169 

Stone  0.010 0.054 0.481 0.245 0.433 0.133 0.075 1.430 

Mineral Wool Insulation  0.066 0.481 4.914 4.477 1.957 0.309 0.391 12.595 

Virgin Steel 0.064 9.282 13.143 8.672 2.773 0.532 0.415 34.881 

Primary Aluminum  2.151 0.243 59.275 6.143 13.162 0.546 0.431 81.952 

Copper  0.034 1.622 13.167 6.946 2.896 0.565 0.539 25.769 

 

Table 9-2 provides the final values of embodied energy per unit of study materials’ mass calculated using 

the input-output-based hybrid approach after sector disaggregation including human and capital energy. 

The values of embodied energy are listed by energy source. The relative share of human and capital inputs 

was significant in the case of study materials such as stone (nearly 15% of the total energy). 

9.2.3 Energy Intensities by Upstream Stages: Direct and Indirect Energy 

The indirect energy component includes the energy embodied in materials and processes that are used to 

produce a product. For instance, for calculating the embodied energy of cement, the energy embodied in 

clinker needs to be determined (stage one in the upstream). To compute the embodied energy of clinker, 

the energy of limestone extraction and delivery is determined (stage two in the upstream). Hence, one can 

go up to infinite stage in the upstream to count all of the indirect energy.  In the system boundary model 

proposed in Section 9.1.3, it was discussed that the indirect inputs, due to repetition of block “A” analysis, 

get smaller with each stage in the upstream. The same pattern can be seen in economic input-output-based 

hybrid analysis while calculating the total requirements using the Power Series Approximation approach. 

With each stage in the upstream, the indirect energy requirements become smaller. To verify and illustrate 

this assertion, the indirect energy intensities were also presented by upstream stages. Figure 9-8 shows the 

distribution of indirect energy intensities of sectors by each upstream stage producing the materials under 

study. The intensities shown were calculated using the hybrid approach with human and capital inputs. 

The energy intensities of most sectors became nearly zero after Stage 8. The first four stages covered more 
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than 90 - 98% of the total indirect energy, whereas stage 12 consisted of only 0.002 - 0.02%. The pattern 

of stage wise decreasing energy intensities differed due to different direct energy coefficients. As seen in 

the Power Series Approximation equation, the indirect impacts are actually a function of the direct 

requirement coefficients. The pattern of indirect energy distribution clearly demonstrated the direct 

requirement coefficients as carriers of indirect impacts of a dollar increase in the output of a sector.  

 

 

Figure 9-8: Stage wise energy intensity distribution 

A careful look at the share of direct and indirect components in the total embodied energy revealed that in 

some cases the indirect component was actually larger than the direct component. Figure 9-9 illustrates the 

direct and indirect energy components of the total embodied energy calculated using the input-output-

based hybrid approach with human and capital inputs. Materials such as concrete are expected to have a 

larger share of indirect energy (>87%) due to the use of cement, which according to this study had the 

third largest total energy intensity per dollar of its output (0.09 MBtu/$). Other materials such as paints, 

adhesives, plastics, and Styrofoam also had a significantly larger indirect energy component (72 - 92%) 

probably due to the use of petroleum as a feedstock material. Due to the larger share of indirect energy 

(>83%), the embodied energy of carpet was quite high.  The calculated indirect energy intensities by each 

upstream stage are presented in Table A1-20, Table A1-21, and Table A1-22 in Appendix A1. 
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Figure 9-9: Direct and indirect energy in total embodied energy before sector disaggregation 

 

Figure 9-10: Direct and indirect energy in total embodied energy after sector disaggregation 
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Figure 9-10 shows the direct and indirect energy after disaggregating some of the industry sectors. Sectors 

producing lime and gypsum products, which initially shared the same energy intensity (0.067 MBtu/$), 

now had different ones after sector disaggregation. After sector disaggregation, the energy intensity of 

lime increased to 0.11 MBtu/$, whereas it decreased to 0.05 MBtu/$ for gypsum products. The highest 

indirect energy intensity (0.046 MBtu/$) was calculated for sectors producing plastic products. As 

mentioned earlier, the plastic industry consumes fuel not only as an energy source but also as a raw 

material resulting in higher indirect energy intensities. The sectors manufacturing clay products shared the 

lowest indirect embodied energy (0.007 MBtu/$) due to the use of relatively low energy intensive raw 

materials such as clay in their production. The higher embodied energy of carpet as discussed in section 

9.2.1 was partly due to a larger indirect energy component (83% of the total energy) as seen in Figure 9-9 

and Figure 9-10 

9.3 HYPOTHESES TESTING 

9.3.1 Energy and Cost Relationship 

It was hypothesized that the energy embodied in a building material share a positive and strong correlation 

with its cost and price. Such types of hypotheses are one-tailed, as increasing one variable means a 

proportionate increase to the other.  

9.3.1.1 Correlation of Embodied Energy and Material Cost 

The scatter chart shown in Figure 9-11demonstrates the correlation of the cost of study materials with their 

embodied energy. The cost was calculated in physical units for materials for which the production 

quantities were available (using Equation 3-1). For the remaining materials without production quantities, 

their prices were used. Table 9-3 lists the cost and the calculated values of embodied energy of each study 

material. According to the scatter plot, the input-output-based results showed a very strong and positive 

correlation (r
2
 = 0.96) with the cost of study materials. Since an input-output analysis is based on 

monetary transactions, a strong correlation with the cost was expected. When the correlation of cost was 

analyzed with the input-output-based hybrid analysis results, the correlation was positive and strong (r
2
 = 

0.77). A similar correlation (r
2
 = 0.78) was found after including the human and capital energy fractions to 

the input-output-based hybrid model. This correlation remained strong and positive (r
2
 = 0.78) even after 

the disaggregation of some of the industry sectors. For testing the hypotheses, a simple regression analysis 

was performed in Microsoft Excel 2010. Table 9-4 and Table 9-5 list the results of simple regression 

analysis for the results of the input-output-based and the hybrid approach. 
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Table 9-3: The cost and embodied energy of study materials 

Study Materials Embodied Energy (kBtu/lb) 

 Cost $/lb IO-based 

Method 

Hybrid 

Method 

Hybrid with Human & 

Capital Method 

After 

Disaggregation 

Carpet (3/8" Thk), Level Loop 7.39 235.25 228.21 242.10 242.10 

Wood Lumber 0.16 2.72 3.01 3.36 3.48 

Hardwood Plywood & Veneer 0.68 12.54 15.17 16.51 11.50 

Softwood Plywood & Veneer 0.13 2.44 2.95 3.22 3.20 

Paints & Coatings 0.79 28.99 22.82 24.12 24.12 

Adhesives  0.84 56.16 21.64 23.00 23.00 

Plastic Pipes & Fittings  0.92 42.23 46.86 48.74 48.74 

Polystyrene Foam Insulation 2.67 104.84 104.70 110.12 110.12 

Bricks  0.05 2.11 1.60 1.69 1.96 

Clay Wall & Floor Tiles  (1/4" Thk) 0.48 21.73 16.46 17.40 12.98 

Vitrified Clay Sewer Pipes  0.16 7.37 5.58 5.90 5.39 

Flat Glass  0.20 11.09 10.77 11.11 11.11 

Cement  0.04 2.04 3.35 3.45 3.45 

Concrete  0.01 0.35 0.42 0.45 0.45 

Gypsum, Bldg. Products  0.08 4.67 5.22 5.36 3.87 

Lime  0.03 1.53 1.71 1.75 2.90 

Stone  0.83 11.92 11.14 13.03 13.03 

Mineral Wool Insulation  0.34 11.83 11.90 12.60 12.60 

Virgin Steel 0.27 16.59 16.11 16.56 16.43 

Primary Aluminum  1.42 63.65 172.93 174.82 178.71 

Copper  0.88 21.68 28.51 29.79 29.79 

 

Table 9-4: Regression analysis results for cost and input-output-based results 

SUMMARY OUTPUT Cost & Input-output-based Embodied Energy 

Regression Statistics        

Multiple R 0.986314        

R Square 0.972816        

Adjusted R 

Square 

0.922816        

Standard Error 10.29948        

Observations 21        

ANOVA         

  df SS MS F Significance F    

Regression 1 75922.91 75922.91 715.719 1.52E-16    

Residual 20 2121.584 106.0792      

Total 21 78044.49          

 
  Coefficients Standard 

Error 
t Stat P-value Lower 95% Upper 

95% 
Lower 
95.0% 

 

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A  

X Variable 1 33.31446 1.245264 26.75293 3.93E-17 30.71688 35.91204 30.71688  

 

Two observations in the correlation plot shown in Figure 9-11 are important to discuss. First, since the 

embodied energy of a material such as aluminum was very high and its cost per unit of mass was low, it 

was way off the trend line. In addition, a material such as carpet with its high embodied energy could 

influence the trend line as shown in Figure 9-11. A further validation of this linear, positive, and strong 

correlation of cost and embodied energy is needed before making any judgment about using cost to predict 

the embodied energy of a material. 
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Figure 9-11: Correlation of cost with embodied energy results from the input-output-based and hybrid approaches 

 

Table 9-5 Regression analysis results for cost and input-output-based hybrid analysis results 

SUMMARY OUTPUT Cost & Input-output-based Hybrid Embodied Energy 

Regression Statistics       

Multiple R 0.909106       

R Square 0.826474       

Adjusted R Square 0.776474       

Standard Error 29.18558       

Observations 21       

ANOVA        

  df SS MS F Significance F   

Regression 1 81139.41 81139.41 95.25662 7.77E-09   

Residual 20 17035.96 851.7981     

Total 21 98175.37         

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% 

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A 

Cost 34.43993 3.5287 9.75995 4.75E-09 27.07919 41.80067 27.07919 

 

Two criteria were used for testing the hypotheses. First, the coefficient of determination was strong and 

positive as mentioned in Section 3.1.5.4. Second, the p-value for the cost of study materials was less than 

0.05 for a 95% interval. This regression analysis assumed that the value of intercept (constant) is zero, as 

seen in the scatter plots (Langston, 2006). Looking at the values of r
2
 and p-value, the null hypothesis can 
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be rejected in favor of the alternative hypothesis. The same is found true for the embodied energy results 

obtained after adding the human and capital inputs and disaggregating the industry sectors. Based on the 

results, a strong and positive correlation was found between the cost and the embodied energy of study 

materials calculated using an input-output-based hybrid analysis. The regression analysis results can be 

seen in Table A1-8 and Table A1-9 in Appendix A1 for other hybrid approaches.  

9.3.1.2 Correlation of Embodied Energy and Material Price 

To test the second hypothesis, the correlation between the study materials’ price and embodied energy was 

evaluated. Table 9-6 provides the materials’ price and embodied energy data. The correlation of the price 

of study materials was checked with the energy results of all four approaches (one input-output-based and 

three input-output-based hybrid methods). The material prices were plotted on the x-axis, whereas the 

embodied energy values on the y-axis. The initial scatter plot, as shown in Figure 9-12, exhibited a very 

strong and positive correlation of the study materials’ price and embodied energy. In the case of the results 

of input-output-based analysis, the value of r
2
 was 0.97, which decreased to 0.92 when the hybrid analysis 

results were used. After adding the human and capital energy, the correlation remained very strong and 

positive (r
2
= 0.93). The value of r

2
 was 0.93 for embodied energy values calculated after disaggregating 

the industry sectors.  

To test the second hypothesis, a simple regression analysis was performed using Microsoft Excel 2010. 

Again, the origin was assumed as zero and the values of r
2
 and p-value were used to reject or accept the 

null hypothesis. The results of regression analysis are shown in Table 9-7 and Table 9-8 for the input-

output-based and input-output-based hybrid embodied energy values. Similar to the cost and embodied 

energy correlation, the higher embodied energy of carpet tends to influence the trend line. However, in the 

case of material price and embodied energy correlation, the point representing aluminum came close to the 

trend line as seen in Figure 9-12. As mentioned earlier, a further validation of this correlation is required in 

the future. 

The values of r
2
 were found greater than 0.9 in both the cases indicating a very strong and positive 

correlation. In the case of input-output-based hybrid method, the p-value for material prices was less than 

0.05 at 95% confidence interval. Hence, observing the value of r
2
 and p-value, the null hypothesis can be 

rejected in favor of the alternative hypothesis. The results of regression analysis for other hybrid 

approaches can be seen in Table A1-10 and Table A1-11 in Appendix A1. 
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Table 9-6: The price and embodied energy of study materials 

Study Materials Embodied Energy (kBtu/lb) 

 Price$/lb IO-based 

Method 

Hybrid 

Method 

Hybrid with Human & 

Capital Method 

After 

Disaggregation 

Carpet (3/8" Thk), Level Loop 7.39 235.25 228.21 242.10 242.10 

Wood Lumber 0.13 2.19 2.42 2.70 2.80 

Hardwood Plywood & Veneer 0.63 11.54 13.95 15.19 10.58 

Softwood Plywood & Veneer 0.16 3.01 3.64 3.97 3.95 

Paints & Coatings 0.79 28.99 22.82 24.12 24.12 

Adhesives  0.84 56.16 21.64 23.00 23.00 

Plastic Pipes & Fittings  0.92 42.23 46.86 48.74 48.74 

Polystyrene Foam Insulation 2.67 104.84 104.70 110.12 110.12 

Bricks  0.05 2.07 1.57 1.66 1.92 

Clay Wall & Floor Tiles  (1/4" Thk) 0.42 18.99 14.38 15.20 11.34 

Vitrified Clay Sewer Pipes  0.19 8.39 6.36 6.72 6.14 

Flat Glass  0.19 10.60 10.29 10.62 10.62 

Cement  0.03 1.91 3.13 3.23 3.23 

Concrete  0.02 0.46 0.54 0.58 0.58 

Gypsum, Bldg. Products  0.15 9.05 10.12 10.38 7.50 

Lime  0.03 1.67 1.87 1.92 3.17 

Stone  0.09 1.31 1.22 1.43 1.43 

Mineral Wool Insulation  0.34 11.83 11.90 12.60 12.60 

Virgin Steel 0.17 10.41 10.11 10.39 10.31 

Primary Aluminum  0.65 29.19 79.30 80.17 81.95 

Copper  0.76 18.76 24.67 25.77 25.77 

 

 

 

Figure 9-12: Correlation of price with embodied energy results from the input-output-based and hybrid approaches 

R² = 0.9719 

R² = 0.923 

R² = 0.9313 

R² = 0.9274 
0

50

100

150

200

250

300

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

C
a

lc
u

la
te

d
 e

m
b

o
d

ie
d

 e
n

e
r
g

y
 (

k
B

tu
/l

b
) 

Price of the study materials ($/lb) 

IO-based Method

Hybrid Method

Hybrid with Human & Capital Method

After Disaggregation

Linear (IO-based Method)

Linear (Hybrid Method)

Linear (Hybrid with Human & Capital Method)

Linear (After Disaggregation)

Aluminum 

Carpet 



 

175 

 

 

Table 9-7: Regression analysis results for price and input-output-based results 

SUMMARY OUTPUT Price & Input-output-based Embodied Energy 

Regression Statistics        

Multiple R 0.989212        

R Square 0.978541        

Adjusted R Square 0.928541        

Standard Error 8.931565        

Observations 21        

ANOVA         

  df SS MS F Significance F    

Regression 1 72754.63 72754.63 912.0224 1.6E-17    

Residual 20 1595.457 79.77286      

Total 21 74350.09          

         
  Coefficients Standard Error t Stat P-value Lower 95% Upper 95%   

Intercept 0 #N/A #N/A #N/A #N/A #N/A   

X Variable 1 33.25343 1.101118 30.19971 3.68E-18 30.95654 35.55032   

 

Table 9-8: Regression analysis results for price and input-output-based hybrid analysis results 

SUMMARY OUTPUT Price & Input-output-based Hybrid Embodied Energy 

Regression Statistics        

Multiple R 0.970574        

R Square 0.942013        

Adjusted R Square 0.892013        

Standard Error 14.65269        

Observations 21        

ANOVA         

  df SS MS F Significance F    

Regression 1 69757.66 69757.66 324.9057 2.09E-13    

Residual 20 4294.026 214.7013      

Total 21 74051.69          

         
  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0%  

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A  

X Variable 1 32.56132 1.80644 18.02514 7.78E-14 28.79316 36.32949 28.79316  

 

Because the price data were obtained from a range of sources, a correlation analysis was also done for 

material prices selected from the 2002 National Construction Estimator, 50
th

 Edition (Ogershok, 2002). 

This was done to ensure that correlation is tested for material prices that were published by the 

construction cost guides. Since the study utilized the input-output data from the year 2002, the 2002 

version of the cost guide was used. For a few materials, the prices could not be calculated in per unit of 

mass, and therefore, prices from Table 9-6 were used. Table A1-12 in Appendix A1 lists the prices 

obtained from the National Construction Estimator. Figure 9-13 shows a strong and positive correlation of 

material prices and embodied energy calculated using the four approaches. The correlation weakened 

slightly due to several reasons. The material prices given in the cost guide included waste factors and also 

the cost of additional materials such as glue, nails etc. Hence a different correlation could be expected. The 

results of the simple regression analysis are shown in Table 9-9 for the input-output-based hybrid method. 
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The values of r
2
 and p-value in this case also supported the alternative hypothesis that the materials’ prices 

were strongly and positively correlated to their embodied energy.  

 

 

Figure 9-13: Correlation of construction cost guide price with the calculated embodied energy values 

From the correlation and simple regression analysis of the study materials’ cost and input-output-based 

hybrid embodied energy values, it can be concluded that the cost of the study materials was positively and 

strongly correlated to their embodied energy. This correlation was found very strong and positive in the 

case of material prices. When material prices were sourced from a construction cost guide, the correlation 

remained strong and positive. However, the correlation in the case of materials such as aluminum and 

carpet showed that a further validation is required by including more materials in the calculation. As seen 

in all three scatter plots, most of the study materials are gathered near the origin. Using the calculation 

method proposed by this study, more building materials can be added to further validate the correlation 

between a material’s embodied energy and its price and cost 
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Table 9-9: Regression analysis results for the construction cost guide prices and input-output-based hybrid results 

SUMMARY OUTPUT 2002 National Construction Estimator Price & Input-output-based Hybrid Embodied Energy 

Regression Statistics        

Multiple R 0.955835        

R Square 0.913621        

Adjusted R 
Square 

0.863621        

Standard Error 15.9976        

Observations 21        

ANOVA         

  df SS MS F Significance F    

Regression 1 54137.36 54137.36 211.5374 9.46E-12    

Residual 20 5118.467 255.9233      

Total 21 59255.82          

         
  Coefficients Standard 

Error 

t Stat P-value Lower 95% Upper 95% Lower 

95.0% 

Upper 

95.0% 

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

X Variable 1 33.64688 2.313402 14.54433 4.24E-12 28.82121 38.47255 28.82121 38.47255 

 

9.4 EVALUATION OF RESULTS 

9.4.1 Gap Analysis 

The gap analysis was performed in order to evaluate the differences the calculated values have with other 

methods. As mentioned in the literature review, studies irrespective of what methods they adopted defined 

their system boundaries subjectively.  This made their results incomparable across studies with different 

system boundaries. If the gap is analyzed for process-based embodied energy values with differing system 

boundaries, the analysis may not be comparable. In this research, we considered it appropriate to analyze 

the gap of process-based (direct energy) and input-output-based energy values with the values calculated 

using the hybrid analyses. Such analysis is more valuable because it provides a range of embodied energy 

value calculated using a relatively incomplete and a more complete method. In addition, we can measure 

how much incompleteness the process-based values might have due to a system boundary truncation.  

Table 9-10 shows the results of the gap analysis. The first three columns list the gap between the process-

based energy values and the three hybrid approaches (calculated using Equation 3-2). In these columns, it 

was evident that the gaps in the embodied energy values of study materials ranged from 10% to 99% of 

the hybrid values, which was significant.  
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Table 9-10: Gap analysis results 

Study Materials Gap with Process-based Data (Direct Energy) Gap with IO-based Data 

IO-based 

Hybrid  

With Human & 

Capital Inputs  

Disaggregated 

Sectors 

IO-based 

Hybrid  

With Human & 

Capital Inputs  

Disaggregated 

Sectors 

Carpet (3/8" Thk), Level Loop 83.4% 89.5% 88.1% -3.1% 3.0% 3.0% 

Wood Lumber 49.5% 61.0% 56.1% 9.8% 21.2% 25.3% 

Hardwood Plywood & Veneer 44.3% 53.1% 46.6% 17.3% 26.2% -6.9% 

Softwood Plywood & Veneer 44.3% 53.1% 49.9% 17.3% 26.2% 25.8% 

Paints & Coatings 92.8% 98.5% 96.8% -27.0% -21.3% -21.3% 

Adhesives  82.7% 89.0% 86.8% -159.6% -153.3% -153.3% 

Plastic Pipes & Fittings  88.0% 92.0% 90.2% 9.9% 13.9% 13.9% 

Polystyrene Foam Insulation 73.7% 78.9% 76.4% -0.1% 5.0% 5.0% 

Bricks  15.2% 20.9% 17.4% -32.0% -26.3% -9.5% 

Clay Wall & Floor Tiles  (1/4" Thk) 15.2% 20.9% 20.3% -32.0% -26.3% -53.2% 

Vitrified Clay Sewer Pipes  15.2% 20.9% 22.2% -32.0% -26.3% -35.5% 

Glass 20.1% 23.3% 21.4% -3.0% 0.2% 0.2% 

Cement  10.0% 13.0% 10.8% 39.0% 42.0% 42.0% 

Concrete  89.4% 96.5% 93.7% 16.3% 23.5% 23.5% 

Gypsum, Bldg. Products  26.4% 29.0% 14.6% 10.5% 13.1% -15.3% 

Lime  26.4% 29.0% 32.5% 10.5% 13.1% 80.2% 

Stone  70.4% 87.3% 77.7% -7.0% 10.0% 10.0% 

Mineral Wool Insulation  36.3% 42.2% 38.9% 0.5% 6.4% 6.4% 

Virgin Steel 32.0% 34.8% 33.9% -3.0% -0.2% -1.0% 

Primary Aluminum  24.4% 25.5% 25.4% 63.2% 64.3% 66.5% 

Copper  62.9% 67.4% 66.4% 23.9% 28.4% 28.4% 

 

Table 9-11: Gap with process-based analysis up to two upstream stages 

Study Materials Process Analysis up to Stage 1 Process Analysis up to Stage 2 

% Indirect 
Energy 

% Total 
Energy 

Incompleteness 
(kBtu/lb) 

% Indirect 
Energy 

% Total 
Energy 

Incompleteness 
(kBtu/lb) 

Carpet (3/8" Thk), Level Loop 62.6% 52.0% 125.85 32.3% 26.9% 65.04 

Wood Lumber 56.1% 27.2% 0.76 33.4% 16.2% 0.45 

Hardwood Plywood & Veneer 45.4% 27.9% 2.95 24.5% 15.0% 1.59 

Softwood Plywood & Veneer 57.4% 26.4% 1.04 33.6% 15.4% 0.61 

Paints & Coatings 44.6% 40.8% 9.85 18.0% 16.5% 3.98 

Adhesives  45.1% 36.9% 8.48 18.3% 15.0% 3.44 

Plastic Pipes & Fittings  42.0% 36.4% 17.76 15.9% 13.8% 6.73 

Polystyrene Foam Insulation 45.8% 33.3% 36.68 17.2% 12.5% 13.80 

Bricks  52.7% 7.5% 0.14 24.9% 3.5% 0.07 

Clay Wall & Floor Tiles  (1/4" Thk) 52.6% 13.5% 1.53 24.6% 6.3% 0.72 

Vitrified Clay Sewer Pipes  51.4% 11.8% 0.72 24.5% 5.6% 0.34 

Glass 27.4% 5.7% 0.60 11.9% 2.5% 0.26 

Cement  31.2% 3.3% 0.11 12.9% 1.4% 0.04 

Concrete  17.5% 15.3% 0.09 6.4% 5.6% 0.03 

Gypsum, Bldg. Products  44.5% 8.8% 0.66 19.5% 3.9% 0.29 

Lime  22.5% 4.3% 0.14 8.8% 1.7% 0.05 

Stone  36.7% 24.4% 0.35 16.2% 10.7% 0.15 

Mineral Wool Insulation  39.0% 14.3% 1.80 16.3% 6.0% 0.75 

Virgin Steel 33.2% 3.3% 1.14 12.6% 1.2% 0.43 

Primary Aluminum  29.1% 7.2% 5.86 9.9% 2.4% 1.99 

Copper  50.3% 32.0% 8.24 24.9% 15.9% 4.09 

 

According to the literature (e.g., Treloar, 1998; Crawford, 2004; Acquaye, 2010), the process-based 

analysis could go up to one stage in the upstream in the case of a building material. With this in mind, 
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consider a case of the lowest gap (11%), which was for the hybrid values of cement production.  If a 

process-based analysis is performed covering the indirect inputs up to stage 1, then according to the results 

of this study, nearly 69% of the indirect inputs would be accounted for. This leaves a gap or 

incompleteness of 31% in the total indirect impacts.  If the highest gap (99% for paints and coating) is 

considered, this incompleteness could reach up to 45% of the total indirect impacts. Table 9-11 provides 

the incompleteness as a percentage of the study materials’ indirect energy and the total embodied energy if 

a process-based analysis is carried out up to stage 1 and 2 in the upstream. According to Lenzen (2000) 

and Mattila et al. (2010), the process-based analyses could have up to 50% incompleteness in the 

embodied energy calculation due to system boundary truncation. The results of this study support their 

assertion. 

Based on the results of this study, it can be asserted that a process-based analysis, even if performed up to 

stage 2, could have significant incompleteness. It is important to note that the values of incompleteness in 

embodied energy given in Table 9-11 are per mass of the study material. Looking at the quantities of these 

materials routinely used in the construction industry, the incompleteness could be large enough to cause 

serious errors in the calculation of the total embodied energy of a building.  

The last three columns of Table 9-10 present the gap in the results of the three hybrid approaches and the 

input-output-based analysis (calculated using Equation 3-3). The gap ranged from -160% to 80% of the 

compared hybrid values. The input-output-based embodied energy values of chemical industries producing 

products such as paints and adhesives were quite higher than the hybrid values. One reason for this could 

be the variation of energy prices paid by the industry sectors. The chemical industries also consumed large 

amounts of petroleum products as an energy source and as a feedstock material. Looking at the chances of 

double counting highlighted by the literature (Treloar, 1998; Crawford, 2004), high energy intensity could 

be expected. The manufacturing sectors also purchased fuel to generate electricity on-site, which could be 

counted twice if the produced electricity and fuel use both were counted in the indirect energy calculation. 

In the case of most study materials, the hybrid analysis-based values were higher than the input-output-

based results. This was expected due to two reasons. First, the calculated PEFs for various energy sources 

accounted for the direct energy of human and capital inputs and most of the indirect energy inputs. In 

addition, the indirect impacts of the imported energy source were included. Therefore, the calculated 

values of PEFs were comprehensive. Using these PEFs to convert delivered energy into primary energy 

could raise the total energy values. Second, the human and capital energy was counted for each industry 

sector that may also have contributed to the total energy intensity.  

As a part of the gap analysis, the trend in calculated embodied energy values was examined for 

determining the range of embodied energy. Figure 9-14 shows the pattern of embodied energy values 

calculated using the three hybrid approaches for some of the study materials. It can be seen that some 
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materials such as polystyrene foam insulation and copper showed a wider range of embodied energy. In 

the case of polystyrene foam insulation, the process-based lower value of 27.5 kBtu/lb reached 110 

kBtu/lb as a result of hybrid analysis. For materials such as cement, gypsum, and glass, the embodied 

energy range was narrower. For instance, the process-based embodied energy of glass, which was 8.2 

kBtu/lb, changed to 10.3 - 10.6 kBtu/lb if calculated using the hybrid methods. The pattern of embodied 

energy values was irregular in the case of materials such as paints, adhesives, and primary aluminum. 

Figure 9-15 illustrates the irregular pattern of embodied energy values calculated using various 

approaches. Table A1-14 in Appendix A1 lists the results of process, input-output and hybrid-based 

analyses.  

  

 

 

Figure 9-14: Pattern of embodied energy values calculated using different approaches 
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Figure 9-15: Irregular pattern of embodied energy values calculated using different approaches 

9.4.2 Comparative Analysis 

The comparative analysis evaluates the relationship of process energy data that replaced the comparable 

input-output-based values.  Figure 9-16 shows a scatter plot showing the correlation of process-based 

energy use data with the replaced input-output-based values for all commodities produced in the United 

States’ economy. The monetary direct requirement coefficients were converted to energy requirements by 

dividing them with fuel specific prices averaged over the industry sectors. These prices were calculated 

using the total output of the energy commodity in monetary and physical units. From Figure 9-16, it is 

clear that the correlation between the process energy values and the replaced input-output data was 

positive but weak (r
2
=0.36). From the correlation analysis, it was concluded that the replaced values did 

not represent the actual energy use data. This meant that the input-output-based energy requirement 

coefficients may not represent the actual energy use. This also validated the argument (by Treloar, 1998; 

Crawford, 2004) that the input-output-based analysis should be augmented by inserting more process data 

to improve the specificity of its results.  
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Figure 9-16: Correlation of process energy data and replaced input-output values 

When process-based energy requirement coefficients were used to calculate the total energy requirements, 

the relationships of total energy values obtained from the input-output and hybrid analyses were also 

examined. Figure 9-17 demonstrates the correlation of input-output-based total energy coefficients with 

hybrid-based coefficients for the entire economy. The correlation (r
2
=0.52) improved probably due to the 

fact that the variations of direct energy coefficients were lost in the aggregated total energy values. When 

human and capital energy inputs were added to the input-output-based hybrid model, the correlation 

weakened slightly (r
2
=0.48). In the case of study materials such as concrete, brick, glass, stone, and 

mineral wool insulation, the input-output-based total embodied energy values were very close to the 

hybrid values (standard deviation of 0.1 - 0.4). However, when analyzed by energy source, the energy use 

values differed significantly (see Table 9-2). This indicated another problem with using input-output-based 

total energy intensities. The input-output-based total embodied energy values may not provide an accurate 

representation of the true environmental loadings of fuel use in the economy.  
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Figure 9-17: Correlation of input-output and hybrid analysis based total energy requirements 

The values of total energy embodied in study materials were examined for their correlation with input-

output results. Figure 9-18 shows a very strong and positive correlation (r
2
=0.93-0.94) indicating that in 

totality, the input-output analysis may represent the trend of the total energy use. However, for 

quantification of embodied energy at a material or product level, an input-output analysis may not produce 

product specific results. The calculated values of embodied energy per unit of study materials’ mass were 

also compared with the Inventory of Carbon and Energy (ICE) (Hammond and Jones, 2011) database 

originally developed by Geoffrey P. Hammond and Craig I. Jones at the University of Bath, United 

Kingdom. A set of the average values of embodied energy reported in the literature was also prepared for a 

comparison with the calculated hybrid values. The sourced average embodied energy values can be seen in 

Table A1-13 in Appendix A1. Figure 9-19 and Figure 9-20 demonstrate the correlation of the calculated 

values with the ICE and the average values from the literature, respectively. It was evident that the results 

of this study from the input-output-based hybrid analyses showed a positive and very strong correlation 

(r
2
=0.9) with the ICE data. However, when the average values from the literature were compared, the 

correlation was found to be positive and strong (r
2
=0.71 - 0.72). The embodied energy of carpet and 

polystyrene insulation differed in the referred literature. After removing the two outliers, the correlation 

became positive and very strong (r
2
=0.95-0.96).  
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Figure 9-18: Correlation of final embodied energy values from input-output and hybrid analysis 

 

 

Figure 9-19: Correlation of calculated and Hammond and Jones (2011) embodied energy values 
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Figure 9-20: Correlation of calculated and average values of embodied energy sourced from literature 

The comparative analysis indicated that the embodied energy values calculated using the three hybrid 

approaches in this study are positively and strongly correlated with the values published in literature. A 

positive and strong correlation meant a similar trend of embodied energy values. Therefore, in absolute 

embodied energy terms, the results of this study may differ considerably from the published values. The 

comparative analysis also revealed that the correlation between the total embodied energy values 

calculated in this study and the ones sourced from the literature was very strong and positive. However, it 

was concluded that the input-output-based values may not be representative of the actual environmental 

impacts of building materials. 
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CHAPTER X   

DISCUSSION 

10.  

10.1 GUIDELINES FOR EMBODIED ENERGY CALCULATION 

The review of literature revealed a need for a set of guidelines for streamlining the embodied energy 

calculation process. The international standards such as ISO 14040 and ISO 14044 were developed 

originally for providing guidance to the process of Life Cycle Assessment (LCA). Some studies mentioned 

applying these standards to their research. However, literature (Suh et al., 2004; Weidema et al., 2008; 

Zamagni et al., 2008) supported that the ISO standards in their current form provide very little guidance to 

an embodied energy analysis or LCA.  Some critics also said that some of the requirements mentioned in 

the ISO standards are open to interpretation; as a result, subjectivity has become a major issue with LCA. 

In this research, the four most important embodied energy parameters were streamlined. First, a definition 

of embodied energy was proposed based on the opinion of literature. Other related terms such as life cycle 

embodied energy, operating energy, and life cycle energy were also defined. The main purpose of defining 

these terms was to clarify and standardize their meaning. The second parameter relates to the system 

boundary model. A building is a large and complex product, and its design and construction is unique to 

each case. In defining a system to calculate the embodied energy of the building, various aspects need to 

be considered. If the energy use of the building is analyzed on the basis of just the initial embodied energy, 

the analysis may not be valid. For a comprehensive and genuine energy evaluation, it is important to 

perform the energy accounting of the whole life cycle of the building. In this study, various system 

boundary models were synthesized to propose one model that is complete.      

The third parameter is embodied energy calculation method. Various methods have been proposed 

including process-based and input-output-based analyses. Each method has both advantages and 

disadvantages. As a result, various combinations of these methods were developed in order to reduce their 

disadvantages. However, there is still no consensus on which method to use for calculating the embodied 

energy. Looking at the system boundary model emphasized by the literature, an input-output-based hybrid 

analysis seems more appropriate. The biggest advantage of an input-output-based hybrid analysis is that it 

is complete. Although its results, in some cases, are regarded as less specific to the study, various 

approaches to address this issue were also proposed. Economic input-output models across the globe are 

becoming more disaggregated, and with the readily available energy data, a more robust input-output-

based model could be developed in the future. Based on the results of this study, it would be fair to say 

that the chances of improving the specificity of an input-output-based method are greater than making a 
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process-based analysis complete. To standardize the calculation of embodied energy, an input-output-

based hybrid approach was proposed in this study.  

The last parameter is about using energy and nonenergy data in the calculation. Two aspects of the used 

data are important: completeness and representativeness. If these aspects of the data are not clear, they 

should not be incorporated in the study. The guidelines for reporting results of the study were also 

proposed. One major issue with energy reporting is that the energy results are provided in either delivered 

or primary energy form without describing any conversion factors. Such results in different energy units 

cannot be compared, and hence, could not be applied.  

10.2 EMBODIED ENERGY CALCULATION METHOD 

10.2.1 Input-output Model 

The latest input-output data published by the United States Bureau of Economic Analysis is available from 

2002. The commodity-by-commodity matrix is highly disaggregated, and hence, provides a robust model 

in terms of specificity. Although assumptions of proportionality and homogeneity still exist, the process of 

redefinition helps reduce some of the impacts of these assumptions. The coefficient of direct requirements 

is the most influential parameter for calculating the total requirements. If an industry sector buys more to 

produce a unit dollar of its output, its indirect requirements also increase. This assertion assumes that the 

direct requirements govern the total requirements. While creating the model, it was observed that there 

may be serious issues with this assumption. For instance, there are sectors that do not consume everything 

they purchase, as they may be reselling the purchased materials. In monetary terms, this may be 

appropriate but for the energy use analysis, it may cause double counting. For sectors such as retail and 

wholesale trade, the total purchases from energy providing sectors are quite large. However, most of the 

energy may be purchased to be traded. Such aspects are not clear in the direct and total requirements.  

10.2.2 Process Data of Direct Energy Use 

The energy data provided for most manufacturing industries were in both the monetary and energy units, 

whereas for other sectors they were mostly in monetary units. However, some sector specific energy prices 

were also available to convert the energy use from monetary to energy units. One major issue with the 

energy data is that some of the data are either missing or are highly aggregated. However, input-output-

based monetary flows can be used to disaggregate the total energy use.  Some manufacturing sectors 

purchased fuel and used a fraction of it in on-site electricity production. According to MECS data, this 

electricity is either used by the sector completely, sold out to other sectors, or transferred to other 

industries within the sector. If no monetary transactions occurred, the flow of electricity may not be 

recorded in the input-output model. To avoid the double counting and completely account for each energy 

input it is important to consider only inputs that are primary energy. For instance, if all fuel purchases of 
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an industry sector are counted, then any on-site generation of electricity can be ignored, as this energy is 

generated using the purchased fuel. Only the electricity purchased by the sector should be included in the 

calculation. Another important issue is of feedstock use of energy sources. Fossil fuels such as petroleum 

are extensively used as raw materials. In 2002, nearly 60%, 35%, and 10% of the total use of petroleum, 

coal, and natural gas was as raw materials, respectively. As these purchases are recorded in the input-

output model, they are assumed as consumption and counted in the total energy intensity of a sector. 

However, the fraction of a fuel that is used as a raw material is actually not combusted. Hence, from a 

carbon emission standpoint, including feedstock energy may not be relevant. However, if carbon emission 

is counted in the life cycle terms, inclusion of feedstock energy makes sense because the stored fuel would 

release carbon whenever it would be burnt or disposed of to the landfills. In this study, we counted all 

energy and nonenergy use of fuels.   

10.2.3 Primary Energy Factors (PEFs) 

The values of PEFs were calculated using the input-output-based hybrid approach for each energy source. 

Using PEFs can avoid the counting of energy inputs multiple times. As mentioned earlier, if a PEF is 

applied to embodied energy calculation, it should be calculated rather than obtained from a secondary 

source. As all of the energy and nonenergy inputs were kept at zero in the input-output model, a PEF 

should account for all these inputs.  

In this study, the PEFs for primary fuels such as coal, crude oil, and natural gas were calculated first and 

used later in deriving PEFs for delivered electricity, dry natural gas, and refined petroleum. One of the 

important aspects of PEF calculation was the treatment of energy imports. For instance, more than 60% of 

the United States’ daily total supply of oil came from other countries in 2002. The imported energy was 

assumed to be extracted and processed domestically. This assumption was reasonable to account for all 

energy used in extracting and delivering the imported primary energy. In addition, the energy of human 

and capital inputs was also added to the total PEF calculation. The values of PEF were calculated using 

three approaches. Figure 10-1 shows the calculated PEFs by fuel using the three approaches. The first two 

approaches were process-based and input-output-based hybrid analyses in which input-output and process 

data were used to fill the gap in the energy impacts of energy sectors. The third approach was purely input-

output-based and utilized the average energy prices. The results of the first two approaches seemed 

consistent, whereas they varied in the third approach. Major variations occurred in the case of delivered 

energy such as dry natural gas, refined petroleum, and electricity. This was due to the double counting of 

energy inputs inherent in an input-output model, as the delivered energy sectors received large quantities 

of primary fuel. Table 10-1 provides a comparison of the calculated values with those published in the 

literature. It can be seen that the values of PEF calculated in this study are higher than the reported values. 

The PEF calculation, in this research, accounted for all indirect energy impacts, human energy, capital 
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energy, and energy of imports. Inclusion of these inputs caused the calculated values of PEF to differ from 

the published values. As indicated in the literature, the energy conversion efficiency is getting better with 

time due to improved technology. This means that the PEFs for years later than 2002 are expected to be 

smaller. In addition, the system boundary differences also caused variations in the reported values of 

PEFs. 

 

 

Figure 10-1: The calculated values of PEFs for various energy sources 

 

Table 10-1: Calculated and published values of PEFs 

United States Primary Energy Factors: Comparison with Published Values 

Sources Electricity Coal Oil Natural Gas 

This Study (2002) 4.12 1.04 1.44 1.43 

Energy Star, 2011 3.34 1.00 1.01 1.05 

Ueno & Straube, 2010 3.37  1.16 1.09 

Czachorski et al., 2009 3.13  1.13 1.09 

Deru & Torcellini, 2007 3.32 1.06 1.18 1.09 

DEQ, 2004 3.20 1.12 1.05 1.12 

AGA, 2000 3.10  1.20 1.10 
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10.2.4 Modifications to Input-output Matrix 

Although the United States’ economic input-output accounts were highly disaggregated, three 

improvements were performed in the model. First, the process energy data were directly inserted in the use 

table. This avoided using the national average energy prices. However, in the case of the sectors such as 

service industries, energy data were available in monetary units. Instead of using energy prices, we allotted 

the total energy use to each sector using the share of each in the total energy purchases using the input-

output data.  

Second, human and capital energy inputs were also added to each industry. Although the energy of food 

was calculated in detail, the energy embodied in other expenses was estimated deriving a fixed percentage. 

For instance, nearly 27 - 30% of other expenses such as clothing and transportation were allotted to the 

employment. This area of research still needs a lot of work, as estimation based on a fixed percentage may 

not be representative. The capital investment accounts are not published in a timely manner. The energy 

embodied in capital goods can be calculated by gathering the data about the capital investments in 

buildings, automobiles, equipment, and software using a variety of sources. A detailed account of capital 

expenses was only available for a few sectors such as manufacturing. The argument given in the literature 

(e.g., Gao et al., 2001; Alcorn, 1997 cited by Crawford, 2004) that the energy embodied in human and 

capital goods may not be significant was not supported by the results of this study. In some sectors, 

producing items such as dimension stone, the embodied energy of human and capital inputs accounted for 

nearly 15% of the total embodied energy. This is significant especially in the case of countries such as 

India and China where the industry sectors are still more labor intensive. In this study, the lowest fraction 

of human and capital energy was 1.1% for primary aluminum, which was probably due to a much higher 

use of other energy sources.  

Third, some of the industry sectors that produced more than one item were disaggregated to produce 

material-specific embodied energy results. Joshi (1998) discussed various models that can be introduced to 

modify the input-output tables for obtaining the desired results. The detailed input and output information 

was available from the USCB. However, this information was of little help, as most inputs were clumped 

together under the category of “not specified by kind” or “nsk.” The change in total embodied energy due 

to disaggregation was within a range of 0.4% to 66%. Table 10-2 lists values of various embodied energy 

components before and after disaggregation. It can be seen that in some cases, the disaggregation may 

result in significant changes to the total energy intensities.  

It was observable that the energy intensity was reduced only when the other products manufactured by the 

industry sectors were more energy intensive than the material under study. For instance, the intensity of 

virgin steel production reduced slightly due to a higher energy intensity of ferro-alloy products. The 
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energy intensity per dollar of a material’s output is governed by not only the material’s share in the total 

energy use but also its share in the total output.  

 

Table 10-2: Embodied energy components before and after disaggregation 

Study Material Direct Energy (kBtu/$) Indirect Energy (kBtu/$) Total Energy (kBtu/$) % 

Change 

in Total 
Energy 

Before Disagg. After Disagg. Before Disagg. After Disagg. Before Disagg. After 

Disagg. 

Wood, Lumber 10.2 11.1 10.6 10.5 20.8 21.6 -3.6% 

Hardwood Plywood & Veneer  13.2 6.5 11.0 10.3 24.2 16.8 30.4% 

Softwood Plywood & Veneer  13.2 13.0 11.0 11.1 24.2 24.1 0.4% 

Bricks 30.2 35.7 5.7 5.9 35.9 41.6 -15.9% 

Clay Wall & Floor Tiles  30.2 19.9 5.7 6.9 35.9 26.8 25.4% 

Vitrified Sewer Pipes 30.2 25.2 5.7 7.5 35.9 32.8 8.7% 

Gypsum, Building Products  49.1 39.1 18.3 9.6 67.4 48.8 27.7% 

Lime  49.1 90.2 18.3 21.4 67.4 111.6 -65.5% 

Steel  40.7 40.2 19.9 20.0 60.6 60.1 0.8% 

Aluminum  92.8 95.2 30.7 31.1 123.5 126.3 -2.2% 

 

10.2.5 Embodied Energy Results and Evaluation 

The calculated values of embodied energy intensities were provided for each fuel by the upstream stages 

of the study material. Reporting of energy results by energy source has environmental significance, as 

these intensities can be used to determine the total carbon emission due to the manufacturing of study 

materials. However, issues such as the feedstock energy of study materials should be taken into account 

while estimating the emissions. The energy reporting by energy source also points out the critical 

materials, production of which involves more use of energy sources such as coal and electricity, which are 

among the largest contributors to the total carbon emission. It also shows the opportunities for 

improvements in the manufacturing process in order to reduce the consumption of carbon intensive fuels. 

The reporting of results by stage was done to highlight the importance of completeness that an input-

output-based hybrid analysis provides. As mentioned in Section 9.4.1, even if a process-based analysis is 

conducted completely up to stage 1 in the upstream, a considerable fraction of the total indirect energy 

could be left behind. For a complex product such as a building, due to the enormity of indirect inputs, this 

incompleteness could be large enough to cause serious errors in the final embodied energy results.  

The final results of embodied energy were listed per unit of mass of the materials under study. As energy 

prices and costs were used, some issues such as price variations could influence the quality of the end 

results. One option to avoid the use of product prices is to gather the total commodity output in physical 

units. If this data are readily available, it can then divide the total energy use of the commodity sector to 

quantify the embodied energy per unit of mass or volume using Equation 3-1. Unfortunately, data on 
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actual quantities of production in physical units are not readily available for most of the materials. 

Availability of detailed monthly product prices can also help reduce the uncertainties associated with using 

the product prices for energy calculation.  

The calculated values were found to be in accordance with the published values. Their strong and positive 

correlation demonstrated a similar pattern of energy intensities to the published results. Some values 

varied most probably due to the product price variations. For instance, the embodied energy of aluminum, 

when calculated using the aluminum price, was roughly 80.0 kBtu/lb. When the aluminum cost (calculated 

using Equation 3-1) was used, the total embodied energy was approximately 175 kBtu/lb. These results 

pointed out a serious problem with converting energy intensities per unit of dollar to per unit of mass. 

Solving this problem does not require more research at the embodied energy calculation level but a 

detailed and accurate reporting of production data in physical units. The energy intensities resulted from 

the hybrid approaches were complete and consistent in their results. The problem arises when these are 

converted to embodied energy per unit of mass. Another issue with using product prices relates to the 

aggregated sectorial output. For instance, in the case of steel manufacturing, both the raw steel and other 

structural shapes (rebar, I-section, round pipe, etc.) were manufactured. If the price of steel is used, it may 

underestimate the embodied energy of structural shapes. There may be an overestimation of embodied 

energy of raw steel if the price of structural shapes is used. A weighted average price can be calculated on 

the basis of proportion of each in the total output and used in the calculation but it may not be 

representative of their actual prices.  

The input-output data on energy use did not represent the actual energy use as indicated by the 

comparative analysis. There could be several reasons for this as stated earlier in Section 9.2.1. The double 

counting of energy inputs and the complexity of energy transfer within the sectors are among them. If the 

total embodied energy calculated by input-output analysis and by input-output-based hybrid analysis are 

compared, they were positively and strongly correlated. Their absolute values per unit of mass may not be 

close, but the pattern of energy per unit of mass was quite similar. The hypotheses’ tests revealed a 

positive and strong correlation between the price (and cost) and the embodied energy of the study 

materials. This finding is significant, especially looking at the studies that suggested a strong and positive 

correlation between the energy and the cost. However, the correlation of material cost and price with the 

embodied energy needs further validation in order to use the material cost and price as predictors of the 

embodied energy. 
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CHAPTER XI   

CONCLUSIONS 

11.  

The impact of a growing global population and a rising standard of living are exerting pressure on the 

globe’s capacity to maintain a balanced natural capital. With more people migrating from rural to urban 

areas in the future, the situation of resource consumption would only get worse.  The use of energy, mostly 

fossil fuels, for fuel and non-fuel purposes is getting bigger and bigger. The construction industry, 

particularly buildings that currently consume an extensive amount of energy can bring a significant change 

if the whole life cycle energy use of buildings is optimized. For this purpose, both the operating and 

embodied energy use over a building’s life cycle should be reduced. However, the focus of energy 

research remained mostly on the optimization of operating energy. There were several reasons for this. 

The existing embodied energy data are either not available or available with issues of inconsistency, 

incompleteness, and non-representativeness. To add to the problems, no efforts have been made to define 

the term “embodied energy.” Very little guidance is available to calculate embodied energy in a standard 

manner. There are no guidelines that can streamline the embodied energy calculation by consistently 

defining the system boundaries and by using quality data. The available methods for energy calculation 

have various advantages and disadvantages. Some remarkable efforts by Stein et al. (1981), Treloar 

(1998), and Crawford (2004), helped in developing a method that is complete and can provide more study-

specific results. However, there were still areas of improvement in the proposed methods. 

In this research, an input-output-based hybrid approach was developed to calculate the embodied energy 

of construction materials. A set of guidelines for standardizing the process of embodied energy analysis 

was also proposed. The current form of input-output-based hybrid analysis can be improved by inserting 

process energy data. A thorough understanding of input-output accounts and energy flows in the economy 

is vital to avoid issues such as double counting of inputs. It was found that the use of PEFs, originally 

proposed by Treloar (1998), can avoid the issue of double counting of energy sources. It was also 

concluded that the PEFs should be calculated in a complete manner ensuring that all direct and indirect 

inputs associated with an energy source extraction, processing, and delivery are included in the factors. In 

addition, human and capital energy inputs not only can be quantified but also can be incorporated into the 

economic model.  Based on the results of this study, it was concluded that the energy embodied in these 

inputs could be significant (up to 15% of the total), and hence, should not be ignored. It was also found 

that the results of an input-output-based hybrid approach can be made more product-specific in the future. 

However, achieving the same degree of completeness in a process-based analysis seems impractical. For 

instance, it was demonstrated that if detailed information on sectorial inputs and outputs is available, the 
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process of sector disaggregation can be used to improve the specificity of the embodied energy results. 

Currently, the availability of detailed information on inputs and outputs of industry sectors is limited. 

However, in the future, this information may be readily available.   

Conventionally, prices of products are sourced to convert the energy intensities per dollar to energy use 

per mass or volume. As the prices could be underestimated or overestimated, the end results may have 

uncertainties. An approach to calculate the energy intensity per unit of mass was also proposed but it 

requires reliable data on the total production in physical units, which is only available for some industry 

sectors currently. A significant portion of the total fuel use was consumed as a raw material, which should 

be noted especially when using the embodied energy to quantify the resulting carbon emissions. 

The relationship of embodied energy and cost of a product has been highlighted in the literature. Costanza 

(1980) had supported the positive correlation of cost and embodied energy. Recently, Ding (2004) and 

recently Langston (2006) found a strong and positive correlation between the capital cost and the total 

embodied energy of a building. However, when the analysis was performed at a component or product 

level the correlation weakened. In this research, it was hypothesized that there is a strong and positive 

correlation between the price (and cost) and embodied energy of a product. The input-output-based hybrid 

approach was modified to calculate the energy embodied in 21 commonly used building materials to test 

the hypotheses. Based on the results, it was concluded that the price and cost of a product shared a strong 

and positive correlation with its total embodied energy. Hence, the cost or a price of a product can be used 

for determining the total energy impacts of manufacturing and using a product. This finding is significant 

especially when looking at the three dimensions of a sustainable system: economics, environment, and 

society. In a life cycle term, monetary savings could mean proportional savings in the energy use. 

However, before prediction the embodied energy form the cost and price, a validation of positive 

correlation by incorporating more materials should be done. In addition, it should also be checked if the 

relationship is linear or nonlinear. A widely used information tool such as the Computer-Aided Design 

(CAD) or Building Information Model (BIM) can be used to estimate the total embodied energy of a 

construction project, if embodied energy can be predicted from the cost data. This not only can simplify 

the whole embodied energy calculation process but also help in its widespread application in the process 

of whole building energy accounting.  

To summarize, three main improvements were done to the current form of the input-output-based hybrid 

analysis. First, the actual energy use data in energy units was inserted into the input-output model. Second, 

the energy embodied in human and capital inputs was quantified and added to the input-output model. 

Third, the process of sector disaggregation was demonstrated using the 2002 Benchmark Input-output 

data. In addition, in this research, the PEF for each energy source was calculated in a complete manner. 

Also, A method is proposed to convert the energy intensities per unit of monetary output into the 
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embodied energy per unit of mass without using the volatile material and energy prices. Among the most 

significant values of this research was the demonstration that the energy embodied in a product can be 

calculated in a complete and standardized manner with results specific to the product under study. One of 

the biggest surprises of this study was the positive and strong correlation of a material’s price and its 

embodied energy. The fact that the correlation became stronger after adding the human and capital inputs 

was also surprising. This fact also suggested that adding more and more missing inputs (e.g. human and 

capital inputs) to the input-output-model would make it more robust for the use of embodied energy 

analysis.  

11.1 FUTURE RESEARCH 

A further investigation into the correlation of cost and price with embodied energy is necessary. A 

correlation analysis by material types such as metal, minerals, and plastic products may also be useful in 

deriving an equation to predict embodied energy from cost and price data. This study can also be extended 

to include more construction materials in the research to test the correlation of material prices and costs 

with embodied energy. A series of equations then can be derived to develop a tool that can be used to 

calculate the energy embodied in a product using its cost or price. At this stage, a rigorous evaluation of 

results would be necessary. A case study of a wide range of construction materials can be performed to 

investigate whether the results of the tool are reliable.  

Such tools can be integrated into a CAD or a BIM platform. Currently, there is no single tool that can 

perform the whole building energy accounting. For instance, if an embodied energy tool is used to select a 

low embodied energy material, it is still not known what effects this material may have on a building’s 

operating energy. For doing that, one needs to use another tool that can simulate the operating energy 

performance. In the whole process one may end up switching back and forth between the embodied and 

operating energy tools. The whole process becomes not only tedious but also time and resource 

consuming. If a single information tool, such as BIM, can be augmented with capabilities to evaluate the 

embodied and operating energy performance, it could save a significant amount of time and resources. 

Another venue for future research lies in the field of input-output analysis. A more robust approach can be 

developed to disaggregate the industry sectors so that more product-specific values of embodied energy 

can be calculated in a complete manner. If capital expenditure accounts are available in a timely manner, 

they can be inserted into the economic model to account for capital energy in the total embodied energy in 

a more reliable manner.  
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APPENDIX A1 

TABLES 
 

Table A1-1: Life cycle energy of brick buildings 

 Reported Service Life (Years) and Embodied Energy (MJ/m2/year) 

Study Building Type Construction Service Life  IEE  REE  OE  DE  

Barnes & Rankin 

(1975) 

Residential Brick 25 92.27 20.80 449.07  

Kohler et al. (1997b) Residential Brick 100 90.00 140.00 1200.00 1.50 

Newton et al. (2000) Residential Brick 80 62.33 53.75 121.67  

Treloar et al. (2001b) Residential Brick 30 390.67 125.00 840.00  

Randolph et al. (2006) Residential Brick 60 127.50 67.64 274.31  

Utama & Gheewala 

(2008) 

Residential Brick 40 25.25 20.00 273.75  

Utama & Gheewala 

(2009) 

Residential Brick 40 22.60 1.60 84.88  

Fay et al. (2000) Residential Brick 25 305.21 179.25 1005.33  

Treloar et al. (2000b) Residential Brick 30 390.67 125.00 840.00  

Shukla et al. (2009) Residential Brick 40 104.00 14.75 0.00  

Fay & Treloar (1998) Commercial Brick 25 298.96 179.25 1005.33  

Average Values    173.59 84.28   

 

 
 

Table A1-2: Life cycle energy of concrete buildings 

 Reported Service Life (Years) and Embodied Energy (MJ/m2/year) 

Study Building Type Construction Service Life  IEE  REE  OE  DE  

Fay et al. (2000b) Residential Concrete 100 169.60 120.00 90.00  

Lippke et al. (2004) Residential Concrete 75 26.40 7.33 305.33 0.47 

Winistorfer et al. (2005) Residential Concrete 75 29.33 7.33 315.00 0.47 

Newton et al. (2000) Residential Concrete 80 64.96 50.08 144.44  

DINCEL (2009) Residential Concrete 50 89.10 42.80 148.00  

Utama & Gheewala 

(2008) 

Residential Concrete 40 24.13 1.85 310.75  

Utama & Gheewala 

(2009) 

Residential Concrete 40 21.80 0.55 112.75  

Humphrey et al. (2004) Residential Concrete 50 147.66 201.80 305.69 1.39 

Kernan (1996) Commercial Concrete 100 47.37 71.37 666.53 0.47 

Suzuki & Oka (1998) Commercial Concrete 40 223.75 38.50 1210.00 12.25 

Citherlet & Hand (2002) Commercial Concrete 80 76.25 130.00 512.50 10.00 

Junnila et al. (2006) Commercial Concrete 50 125.40 70.70 1140.00 9.30 

John et al. (2008) Commercial Concrete 60 56.30 6.75 533.17 5.25 

Cole & Kernan (1996) Commercial Concrete 50 93.10 128.70 1351.50  

Jaques (1996) Commercial Concrete 50 89.00 44.20 360.00  

Eaton et al. (1998) Commercial Concrete 60 150.00 243.33 1158.33  

Treloar et al. (2001d) Commercial Concrete 40 434.50 143.50 401.50  

Junnila et al. (2006) Commercial Concrete 50 125.40 70.70 1140.00 9.30 

Page (2006) Commercial Concrete 50 61.20 1.85 416.20  

Fernandez (2008) Commercial Concrete 60 72.58 11.17 301.67  

Shen (2010) Commercial Concrete 50 222.00 37.60 630.00  

Average Values    111.90 68.10   
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Table A1-3: Life cycle energy of steel buildings 

 Reported Service Life (Years) and Embodied Energy (MJ/m2/year) 

Study Building Type Construction Service Life  IEE  REE  OE  DE  

Lippke et al. (2004) Residential Steel 75 44.80 5.33 541.60 0.53 

John et al. (2008) Commercial Steel 60 72.58 8.63 543.17 2.70 

Cole & Kernan (1996) Commercial Steel 50 99.90 131.60 1351.50  

Eaton et al. (1998) Commercial Steel 60 149.58 243.33 1159.58  

Pullen (2000c) Commercial Steel 60 201.67 141.67 1570.00  

Page (2006) Commercial Steel 50 46.60 3.15 416.20  

Fernandez (2008) Commercial Steel 60 103.33 13.67 308.33  

Average Values    102.64 78.20   

 

 

Table A1-4: Life cycle energy of wood buildings 

 Reported Service Life (Years) and Embodied Energy (MJ/m2/year) 

Study Building Type Construction Service Life  IEE  REE  OE  DE  

Adalberth, 1997b Residential Wood 50 67.44 26.87 501.60  

Barnes & Rankin, 1975 Residential Wood 25 34.80 8.00 510.40  

Blanchard & Reppe, 

1998 

Residential Wood 50 82.77 53.07 1219.37  

Lippke et al., 2004 Residential Wood 75 41.67 6.33 423.47  

Winistorfer et al., 2005 Residential Wood 75 40.00 6.20 423.33  

Leckner & Zmeureanu, 

2011 

Residential Wood 40 89.00 30.50 470.00  

Jaques, 1996 Residential Wood 50 73.80 115.00 300.00  

Johnstone et al., 2001 Residential Wood 60 45.83 24.57 334.00  

Thormark, 2002 Residential Wood 50 107.37 16.64 164.10  

Thormark, 2006 Residential Wood 50 81.16 23.37 219.80  

Thormark, 2007 Residential Wood 40 91.71 23.54 213.75  

John et al., 2008 Commercial Wood 60 38.53 6.68 554.67  

Cole & Kernan, 1996 Commercial Wood 50 88.00 126.40 1351.50  

Page, 2006 Commercial Wood 50 40.50 3.15 428.00  

Fernandez, 2008 Commercial Wood 60 53.75 12.08 313.33  

Average Values    65.09 32.16   

 

 

Table A1-5: Description of referred case studies and % of embodied energy in the total LCE 

Study % of EE Study % of EE Study % of EE 

Malin, 1993 15.8 Itard, 2007 28.0 Pullen, 2000a 23.6 

Malin, 1993 12.2 Citherlet & Defaux, 2007 18.6 Pullen, 2000a 31.9 

Malin, 1993 26.3 Citherlet & Defaux, 2007 29.7 Pullen, 2000a 36.0 

Malin, 1993 20.7 Citherlet & Defaux, 2007 51.5 Pullen, 2000a 29.6 

Blanchard & Reppe, 1998 10.2 Citherlet & Defaux, 2007 14.8 Pullen, 2000a 36.8 

Blanchard & Reppe, 1998 25.8 Citherlet & Defaux, 2007 20.8 Pullen, 2000a 25.3 

Shaw et al., 1998 4.7 Citherlet & Defaux, 2007 42.0 Fay et al., 2000 100.0 

Keoleian et al., 2001 9.6 Karlsson & Moshfegh, 2007 16.6 Fay et al., 2000 38.8 

Keoleian et al., 2001 26.5 Karlsson & Moshfegh, 2007 38.5 Fay et al., 2000 30.9 

Olgyay & Herdt, 2004 36.4 Thormark, 2007 36.5 Fay et al., 2000 27.6 

Olgyay & Herdt, 2004 23.2 Thormark, 2007 33.7 Fay et al., 2000 25.2 

Lippke et al., 2004 8.6 Thormark, 2007 37.0 Fay et al., 2000 100.0 

Lippke et al., 2004 9.8 Sobotka & Rolak, 2009 1.6 Fay et al., 2000 42.6 

Lippke et al., 2004 10.1 Bribian et al., 2009 18.1 Fay et al., 2000 33.9 

Lippke et al., 2004 11.2 Blengini, 2009 7.1 Fay et al., 2000 30.2 

Winistorfer et al., 2005 10.8 Anastaselos et al., 2009 1.8 Fay et al., 2000 27.5 
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Winistorfer et al., 2005 10.5 Anastaselos et al., 2009 2.0 Vale et al., 2000 31.6 

Winistorfer et al., 2005 9.4 Gustavsson & Joelsson, 2010 25.7 Vale et al., 2000 37.4 

Baouendi et al., 2005 6.3 Gustavsson & Joelsson, 2010 10.3 Vale et al., 2000 69.2 

Baouendi et al., 2005 7.2 Gustavsson & Joelsson, 2010 8.7 Fay et al., 2000b 43.3 

Norman et al., 2006 14.5 Gustavsson & Joelsson, 2010 16.8 Fay et al., 2000b 76.3 

Norman et al., 2006 12.9 Gustavsson & Joelsson, 2010 28.8 Newton et al., 2000 73.8 

Haines et al., 2007 9.2 Gustavsson et al., 2010 9.9 Newton et al., 2000 69.6 

Haines et al., 2007 11.5 Dodoo et al., 2010 1.1 Newton et al., 2000 49.7 

Haines et al., 2007 15.1 Dodoo et al., 2010 1.9 Newton et al., 2000 70.2 

Kim, 2008 6.8 Dodoo et al., 2010 2.4 Newton et al., 2000 62.2 

Kim, 2008 5.2 Dodoo et al., 2010 2.6 Newton et al., 2000 54.7 

Leckner & Zmeureanu, 2011 20.4 Dodoo et al., 2010 3.4 Newton et al., 2000 71.5 

Leckner & Zmeureanu, 2011 36.8 Dodoo et al., 2010 3.7 Newton et al., 2000 62.5 

Chulsukon et al., 2002 30.9 Dodoo et al., 2010 1.3 Newton et al., 2000 42.2 

Chulsukon et al., 2002 30.3 Dodoo et al., 2010 2.2 Newton et al., 2000 70.7 

Humphrey et al., 2004 44.4 Dodoo et al., 2010 3.0 Newton et al., 2000 59.3 

Humphrey et al., 2004 62.0 Dodoo et al., 2010 3.0 Newton et al., 2000 51.6 

Jeyasingh & Sam, 2004 41.5 Dodoo et al., 2010 3.9 Newton et al., 2000 45.2 

Huberman & Pearlmutter, 2004 4.6 Dodoo et al., 2010 4.4 Newton et al., 2000 37.0 

Huberman & Pearlmutter, 2004 26.2 Blengini & Di Carlo, 2010 18.3 Newton et al., 2000 29.4 

Huberman & Pearlmutter, 2004 14.8 Blengini & Di Carlo, 2010 54.0 Newton et al., 2000 35.0 

Huberman & Pearlmutter, 2004 55.5 Aste et al., 2010 14.1 Newton et al., 2000 28.6 

Pearlmutter et al., 2007 81.5 Aste et al., 2010 18.8 Newton et al., 2000 25.0 

Pearlmutter et al., 2007 79.4 Aste et al., 2010 46.8 Treloar et al., 2000b 38.0 

Pearlmutter et al., 2007 90.9 Buchanan & Honey, 1994 38.3 Johnstone et al., 2001 17.9 

Pearlmutter et al., 2007 77.3 Buchanan & Honey, 1994 73.3 Troy et al., 2003 17.3 

Huberman & Pearlmutter, 2008 66.6 Buchanan & Honey, 1994 84.2 Troy et al., 2003 13.3 

Huberman & Pearlmutter, 2008 54.2 Pullen, 1996 19.1 Troy et al., 2003 18.9 

Huberman & Pearlmutter, 2008 57.0 Pullen, 1996 32.7 Troy et al., 2003 18.1 

Huberman & Pearlmutter, 2008 53.4 Pullen, 1996 37.2 Troy et al., 2003 16.7 

Huberman & Pearlmutter, 2008 53.4 Pullen, 1996 32.3 Troy et al., 2003 74.1 

Huberman & Pearlmutter, 2008 57.6 Pullen, 1996 29.4 Troy et al., 2003 16.9 

Utama & Gheewala, 2008 14.2 Pullen, 1996 47.6 Troy et al., 2003 14.4 

Utama & Gheewala, 2008 7.7 Pullen, 1996 87.4 Mithraratne & Vale, 2004 26.0 

Utama & Gheewala, 2009 16.5 Pullen, 1996 40.7 Mithraratne & Vale, 2004 29.3 

Utama & Gheewala, 2009 31.4 Pullen, 1996 31.1 Mithraratne & Vale, 2004 42.6 

Chel & Tiwari, 2009 12.2 Pullen, 1996 27.0 Duell & Martin, 2005 66.7 

Barnes & Rankin, 1975 10.7 Pullen, 1996 42.3 Duell & Martin, 2005 69.3 

Barnes & Rankin, 1975 7.7 Pullen, 1996 46.7 Duell & Martin, 2005 71.2 

Barnes & Rankin, 1975 29.0 Pullen, 1996 40.7 Duell & Martin, 2005 66.7 

Barnes & Rankin, 1975 25.4 Pullen, 1996 33.3 Duell & Martin, 2005 69.3 

Fossdal & Edwardson, 1995 4.9 Pullen, 1996 55.2 Duell & Martin, 2005 71.5 

Fossdal & Edwardson, 1995 3.6 Jaques, 1996 6.2 Page, 2006 21.2 

Feist, 1996 53.7 Jaques, 1996 38.6 Page, 2006 20.3 

Feist, 1996 31.5 Fay & Treloar, 1998 100.0 Page, 2006 28.4 

Feist, 1996 17.3 Fay & Treloar, 1998 38.4 Page, 2006 7.8 

Kohler et al., 1997b 16.2 Fay & Treloar, 1998 30.6 Page, 2006 6.3 

Adalberth, 1997b 17.1 Fay & Treloar, 1998 27.4 Page, 2006 8.6 

Adalberth, 1997b 15.8 Fay & Treloar, 1998 25.1 Randolph et al., 2006 37.5 

Adalberth, 1997b 15.6 Fay & Treloar, 1998 100.0 Randolph et al., 2006 35.9 

Winther & Hestnes, 1999 28.3 Fay & Treloar, 1998 42.2 Randolph et al., 2006 38.2 

Winther & Hestnes, 1999 11.3 Fay & Treloar, 1998 33.6 Randolph et al., 2006 34.4 

Winther & Hestnes, 1999 7.7 Fay & Treloar, 1998 30.0 Randolph et al., 2006 44.9 

Winther & Hestnes, 1999 5.1 Fay & Treloar, 1998 27.4 Randolph et al., 2006 49.7 

Winther & Hestnes, 1999 8.8 Pullen, 2000a 22.4 Randolph et al., 2006 44.3 

Thormark, 2002 49.6 Pullen, 2000a 29.1 Randolph et al., 2006 50.3 

Thormark, 2002 39.8 Pullen, 2000a 16.7 Randolph et al., 2006 40.3 

Thormark, 2002 38.4 Pullen, 2000a 21.3 Randolph et al., 2006 32.6 

Citherlet & Hand, 2002 27.6 Pullen, 2000a 29.7 Randolph et al., 2006 50.5 

Citherlet & Hand, 2002 31.9 Pullen, 2000a 31.9 Randolph et al., 2006 53.7 

Almeida et al., 2005 29.9 Pullen, 2000a 24.3 Langston & Langston, 2007 20.5 

Almeida et al., 2005 40.1 Pullen, 2000a 15.0 Langston & Langston, 2007 19.9 

Almeida et al., 2005 41.5 Pullen, 2000a 31.3 Langston & Langston, 2007 21.4 
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Almeida et al., 2005 47.8 Pullen, 2000a 32.9 Langston & Langston, 2007 25.4 

Thormark, 2006 39.8 Pullen, 2000a 25.2 Langston & Langston, 2007 20.4 

Thormark, 2006 30.4 Pullen, 2000a 34.1 Langston & Langston, 2007 21.3 

Thormark, 2006 28.7 Pullen, 2000a 25.5 Langston & Langston, 2007 15.7 

Thormark, 2006 41.6 Pullen, 2000a 21.5 Perkins et al., 2009 32.9 

Thormark, 2006 31.3 Pullen, 2000a 39.0 Perkins et al., 2009 38.2 

Thormark, 2006 28.9 Pullen, 2000a 32.9 Perkins et al., 2009 44.5 

Thormark, 2006 36.5 Pullen, 2000a 34.3 DINCEL, 2009 32.8 

Thormark, 2006 25.1 Pullen, 2000a 26.7 DINCEL, 2009 56.4 

Thormark, 2006 22.8 Pullen, 2000a 22.4   

 

Table A1-6: Comparing construction sub-sector classification by USBEA and USCB 

2002 Economic Census Construction Subsectors 

2002 NAICS Description 

236115 New single-family housing construction (except operative builders) 

236116 New multifamily housing construction (except operative builders) 

236117 New housing operative builders 

236118 Residential remodelers 

236210 Industrial building construction 

236220 Commercial and institutional building construction 

237110 Water and sewer line and related structures construction 

237120 Oil and gas pipeline and related structures construction 

237130 Power and communication line and related structures construction 

237210 Land subdivision 

237310 Highway, street, and bridge construction 

237990 Other heavy and civil engineering construction 

238110 Poured concrete foundation and structure contractors 

238120 Structural steel and precast concrete contractors 

238130 Framing contractors 

238140 Masonry contractors 

238150 Glass and glazing contractors 

238160 Roofing contractors 

238170 Siding contractors 

238190 Other foundation, structure, and building exterior contractors 

238210 Electrical contractors and other wiring installation contractors 

238220 Plumbing, heating, and air-conditioning contractors 

238290 Other building equipment contractors 

238310 Drywall and insulation contractors 

238320 Painting and wall covering contractors 

238330 Flooring contractors 

238340 Tile and terrazzo contractors 

238350 Finish carpentry contractors 

238390 Other building finishing contractors 

238910 Site preparation contractors 

238990 All other specialty trade contractors 

2002 Benchmark Input-Output  Construction Subsectors 

230101 Nonresidential commercial and health care structures 

230102 Nonresidential manufacturing structures 

230103 Other nonresidential structures 

230201 Residential permanent site single- and multi-family structures 

230202 Other residential structures 

230301 Nonresidential maintenance and repair 

230302 Residential maintenance and repair 
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Table A1-7: Service sectors and major service activities 

NAICS Sector Description Activities 

51 Information Creating, processing, and distributing or transmitting the information and 

cultural products and rendering related services. Products and services 

include print and electronic media such as newspapers, magazines, 

periodicals, books, directories, music, sound recording, movies, other 

videos, videography, software, broadcasting, internet publishing, 

telecommunication, internet services, data processing services, libraries, and 

other information services. 

52 Finance and insurance Financial transactions such as creating, liquidating, and modifying 

ownership status of financial assets. Included are establishments such as 

central and other banks, lending establishments (e.g., credit unions, 

mortgage & real estate loans, credit card companies), securities, commodity 

contract establishments, insurance companies, and other related industries. 

53 Real Estate, and Rental and 

Leasing 

Renting, leasing, and selling tangible and intangible assets for others (e.g., 

clients) and rendering related services. Included in this sector are 

establishments such as lesser, real estate agents, brokers, real estate 

appraisers, and rental and leasing agencies. 

54 Professional, Scientific, and 

Technical Services 

Providing professional, scientific, and technical services such as legal; 

accounting, bookkeeping, and payroll; architectural, engineering, and 

related; other specialized design services; computer design; management, 

scientific, and technical consulting; research and development; advertising 

and related services; and other similar services.  

55 Management of Companies and 

Enterprises 

Include establishments such as equity holders and those who oversee, 

manage, or administer a company or a portfolio of companies of a 

government or non-government organization.  

56 Administrative and Support,  and 

Waste 

Management and Remediation 

Services 

Administering and supporting routine operations of various organizations 

(e.g., facilities, employment, business, travel, investigation, security, 

building support and management). Also included are establishments 

engaged in waste collection, sorting, treatment, and disposal and waste 

remediation services.   

61 Educational Services Providing education by instruction and training in a variety of disciplines. 

Included are schools, junior colleges, professional schools, community 

colleges, and universities.  

62 Healthcare and Social Assistance Establishments such as health practitioners, clinics, hospitals, nursing 

homes, medical & diagnostic laboratories, blood banks, ambulance services, 

child & youth services, elderly care services, community food services, and 

child daycare centers providing healthcare and social assistance. 

71 Arts, Entertainment, and 

Recreation 

Establishments producing, organizing, promoting, or participating in live 

events or exhibits. Also included are establishments operating and 

maintaining facilities to exhibit objects and sites of historical, cultural, or 

educational importance. Other leisure, recreational, cultural, or hobby-

related organizations are also covered in this sector. Museums, historical 

sites, sports arena, theaters, performing art centers, racetracks, zoos, 

botanical gardens, theme parks, nature parks, casinos, golf courses, country 

clubs, skiing facilities, marinas, bowling centers, fitness centers, and similar 

establishments.  

72 Accommodation and Food 

Services 

Providing accommodation and or food and beverages for immediate 

consumption. Included are hotels, motels, bed-and-breakfast inns, RV parks, 

restaurants, cafeterias, bars & drinking places, caterers, and mobile eating 

joints. 

81 Other Services (except Public 

Administration) 

Providing services not covered under other service sectors. Services such as 

equipment and machinery repair and maintenance; religious activities 

promotion and administration; advocacy; grant-making; dry-cleaning and 

laundries, personal care; death care; pet care; dating, and other similar 

services. 
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Table A1-8: Regression analysis results for cost and input-output-based hybrid results with human and capital inputs 

SUMMARY OUTPUT Cost & IO-Based Hybrid with Human & Capital Inputs 

         
Regression Statistics        

Multiple R 0.917937        

R Square 0.842608        

Adjusted R 

Square 

0.792608        

Standard Error 29.02843        

Observations 21        

         
ANOVA         

  df SS MS F Significance 

F 

   

Regression 1 90223.58 90223.5

8 

107.071

3 

3.03E-09    

Residual 20 16853 842.649

8 

     

Total 21 107076.6          

         
  Coefficient

s 

Standard 

Error 

t Stat P-value Lower 95% Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

X Variable 1 36.3167 3.509699 10.3475

2 

1.78E-

09 

28.99559 43.6378 28.99559 43.6378 

 

 

Table A1-9: Regression analysis results for cost and input-output-based hybrid results after sector disaggregation 

SUMMARY OUTPUT Cost & IO-Based Hybrid with Human & Capital Inputs After Disaggregation 

         
Regression Statistics        

Multiple R 0.913238        

R Square 0.834004        

Adjusted R 

Square 

0.784004        

Standard Error 29.96184        

Observations 21        

         
ANOVA         

  df SS MS F Significance 

F 

   

Regression 1 90206.28 90206.2

8 

100.484

7 

5.06E-09    

Residual 20 17954.23 897.711

7 

     

Total 21 108160.5          

         
  Coefficient

s 

Standard 

Error 

t Stat P-value Lower 95% Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

X Variable 1 36.31322 3.622553 10.0242

1 

3.04E-

09 

28.7567 43.86973 28.7567 43.86973 
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Table A1-10: Regression analysis results for price and input-output-based hybrid results with human and capital inputs 

SUMMARY OUTPUT Price & Input-output-based Hybrid with Human & Capital Inputs 

         
Regression Statistics        

Multiple R 0.973701        

R Square 0.948093        

Adjusted R 

Square 

0.898093        

Standard Error 14.61958        

Observations 21        

         
ANOVA         

  df SS MS F Significance 

F 

   

Regression 1 78076.82 78076.8

2 

365.302

2 

7.25E-14    

Residual 20 4274.643 213.732

1 

     

Total 21 82351.46          

         
  Coefficient

s 

Standard 

Error 

t Stat P-value Lower 95% Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

X Variable 1 34.44825 1.802358 19.1128

8 

2.56E-

14 

30.6886 38.2079 30.6886 38.2079 

 

Table A1-11: Regression analysis results for price and input-output-based hybrid results after sector disaggregation 

SUMMARY OUTPUT Price & Input-output-based Hybrid with Human & Capital Inputs After 

Disaggregation 

         
Regression Statistics        

Multiple R 0.971943        

R Square 0.944673        

Adjusted R 

Square 

0.894673        

Standard Error 15.09479        

Observations 21        

         
ANOVA         

  df SS MS F Significance 

F 

   

Regression 1 77809.47 77809.4

7 

341.490

3 

1.33E-13    

Residual 20 4557.053 227.852

7 

     

Total 21 82366.53          

         
  Coefficient

s 

Standard 

Error 

t Stat P-value Lower 95% Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

X Variable 1 34.38922 1.860943 18.4794

6 

4.86E-

14 

30.50736 38.27108 30.50736 38.27108 
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Table A1-12: Material prices sourced from 2002 National Construction Estimator and embodied energy values 

Study Material Final Embodied Energy (kBtu/lb) 

Price 

$/lb 

IO-based 

Method 

Hybrid 

Method 

With Human & 

Capital Method 

After 

Disaggregation 

Base grade, 3/8" level loop, 20 oz 5.60 178.27 172.93 183.46 183.46 

Softwood average price, 2 by 4 0.15 2.52 2.80 3.12 3.23 

Birch Plywood, 1/4" 1.01 18.59 22.49 24.48 17.05 

1/4 " Western plywood int. grade AB grade 0.89 16.43 19.87 21.63 21.56 

House paint interior, acrylic enamel 1.60 58.49 46.05 48.66 48.66 

Adhesive, general 0.84 56.16 21.64 23.00 23.00 

Plastic pipe 0.92 42.23 46.86 48.74 48.74 

Foam Insulation 2.67 104.84 104.70 110.12 110.12 

Brick 0.07 3.06 2.32 2.45 2.84 

Wall tile 0.75 33.39 25.29 26.74 19.95 

Vitrified sewer pipe 0.19 8.39 6.36 6.72 6.14 

Glass, 1/4" float 1.13 61.38 59.59 61.51 61.51 

Cement, Portland, 94 lb 0.09 5.18 8.48 8.74 8.74 

Concrete 0.02 0.42 0.50 0.54 0.54 

Gypsum drywall 3/8" plain board 0.15 9.05 10.12 10.38 7.50 

Lime (hydrated), 50lb sack 0.13 7.77 8.68 8.90 14.73 

Stone 0.09 1.31 1.22 1.43 1.43 

Mineral wool 0.34 11.83 11.90 12.60 12.60 

Steel, rebar #2 0.58 35.21 34.20 35.15 34.88 

Aluminum 0.65 29.19 79.30 80.17 81.95 

Copper 0.76 18.76 24.67 25.77 25.77 

 

 

Table A1-13: Embodied energy values sourced from Hammond and Jones (2011) and literature 

Study Material Final Embodied Energy (kBtu/lb) 

Hammond and Jones, 2011 Literature Average 

Carpet (3/8" Thk), Level Loop 378 209.5 

Wood Lumber 5.55 7.6458333 

Hardwood Plywood & Veneer 12 13.842857 

Softwood Plywood & Veneer 12 13.842857 

Paints & Coatings 86.91 67.054 

Adhesives  61.67 0 

Plastic Pipes & Fittings  105.3 98.03 

Polystyrene Foam Insulation 100.09 98.63 

Bricks  3 3.3888889 

Clay Wall & Floor Tiles (1/4” Thk) 12 17.578333 

Vitrified Clay Sewer Pipes  7.9 4.1402751 

Flat Glass  15 23.928571 

Cement  5.32 6.7654545 

Concrete  0.75 1.3875 

Gypsum, Bldg. Products  6.75 6.585 

Lime  5.3 7.1066667 

Stone  1.26 0.8075 

Mineral Wool Insulation  28 25.916667 

Virgin Steel 35.1 37.194118 

Primary Aluminum  218 222.56667 

Copper  69.02 70.3775 
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Table A1-14: Embodied energy values calculated using the five approaches 

Study Material Embodied Energy of Study Materials (kBtu/lb) 

Process-based 

Direct Intensities 

IO-based 

Method 

Hybrid 

Method 

Hybrid with Human & 

Capital Method 

After 

Disaggregation 

Carpet (3/8" Thk), Level Loop 37.9 235.3 228.2 242.1 242.1 

Wood Lumber 1.2 2.2 2.4 2.7 2.8 

Hardwood Plywood & Veneer 7.8 11.5 14.0 15.2 10.6 

Softwood Plywood & Veneer 2.0 3.0 3.6 4.0 4.0 

Paints & Coatings 1.6 29.0 22.8 24.1 24.1 

Adhesives  3.7 56.2 21.6 23.0 23.0 

Plastic Pipes & Fittings  5.6 42.2 46.9 48.7 48.7 

Polystyrene Foam Insulation 27.5 104.8 104.7 110.1 110.1 

Bricks  1.3 2.1 1.6 1.7 1.9 

Clay Wall & Floor Tiles  (1/4" 

Thk) 

12.2 19.0 14.4 15.2 11.3 

Vitrified Clay Sewer Pipes  5.4 8.4 6.4 6.7 6.1 

Glass 8.2 10.6 10.3 10.6 10.6 

Cement  2.8 1.9 3.1 3.2 3.2 

Concrete  0.1 0.5 0.5 0.6 0.6 

Gypsum, Bldg. Products  7.4 9.1 10.1 10.4 7.5 

Lime  1.4 1.7 1.9 1.9 3.2 

Stone  0.4 1.3 1.2 1.4 1.4 

Mineral Wool Insulation  7.6 11.8 11.9 12.6 12.6 

Virgin Steel 23.3 35.2 34.2 35.2 34.9 

Primary Aluminum  60.0 29.2 79.3 80.2 82.0 

Copper  9.1 18.8 24.7 25.8 25.8 

 

 

Table A1-15: Weight/density of study materials 

Study Material Weight/Density 

Carpets (lb/ft2) 0.093 

Wood (lb/ft3) 38.5 

Hardwood Plywood & Veneer (lb/ft3) 37.4 

Softwood Plywood & Veneer (lb/ft3) 36.5 

Paints & Coatings (gm/cm3) 1.5 

Polystyrene Foam Insulation (lb/ ft3)  1.6 

Concrete (lb/ft3) 150 

Gypsum, Bldg. Products, 3/8 inch (lb/ft2) 1.56 

Mineral Wool Insulation (lb/ft3) 2.0 

Bricks, 3 5/8 inch (lb/no.) 4.53 

Plastic Pipe 4" (267-110 psi)  (lb/ft) 2.46 

Glass (lb/ft2) 3.0 
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Table A1-16: Energy intensities using input-output-based analysis by energy source 

NAICS Study Material Input-output-based Energy Intensities (MBtu/$) 

Oil & Gas Coal  Electricity Natural Gas Petroleum Total Energy 

314110 Carpets 0.015345856 0.003849343 0.001903391 0.00424457 0.00649083 0.031833989 

321100 Wood, Lumber 0.007265618 0.002337288 0.001343232 0.001922913 0.00397017 0.016839221 

321211 Hardwood Plywood & Veneer  0.007673649 0.002755383 0.0015896 0.002444314 0.00389527 0.018358213 

321212 Softwood Plywood & Veneer  0.007673649 0.002755383 0.0015896 0.002444314 0.00389527 0.018358213 

325510 Paints & Coatings  0.020179229 0.003156752 0.001323586 0.003417933 0.00853234 0.036609842 

325520 Adhesives  0.036366486 0.003276948 0.001466163 0.00347961 0.02254213 0.067131334 

326122 Plastic Pipes & Fittings 0.02578542 0.004440479 0.002244788 0.004600544 0.0086727 0.045743927 

326140 Polystyrene Foam Insulation 0.020860745 0.004313477 0.001917279 0.00530993 0.00685004 0.039251472 

32712A Bricks 0.013816594 0.013901385 0.001742213 0.01226008 0.00309546 0.044815733 

32712A  Clay Wall & Floor Tiles  0.013816594 0.013901385 0.001742213 0.01226008 0.00309546 0.044815733 

32712A Vitrified Sewer Pipes 0.013816594 0.013901385 0.001742213 0.01226008 0.00309546 0.044815733 

327211 Flat Glass 0.016930626 0.016675191 0.002446676 0.014272347 0.00415665 0.05448149 

327310 Cement  0.015778373 0.01873328 0.004340106 0.013191423 0.00338819 0.055431371 

327320 Concrete 0.009722269 0.00657355 0.001592723 0.004876628 0.00390471 0.026669877 

3274A0 Gypsum, Building Products  0.01841063 0.017590877 0.002529873 0.015330795 0.0049935 0.058855671 

3274A1 Lime  0.01841063 0.017590877 0.002529873 0.015330795 0.0049935 0.058855671 

327991 Stone  0.005635799 0.003148127 0.001119531 0.001852826 0.00251621 0.01427249 

327993 Mineral Wool Insulation 0.011679903 0.009792543 0.002369314 0.007085096 0.00358591 0.034512765 

331110 Steel  0.011835217 0.03537021 0.002797481 0.006594307 0.00411796 0.060715177 

33131A Aluminum  0.012267572 0.016308839 0.006815836 0.006862862 0.00271996 0.044975067 

331411 Copper 0.007390519 0.008082278 0.002430598 0.004786428 0.00207645 0.024766271 

 

Table A1-17: Energy intensities using input-output-based hybrid analysis by energy source 

NAICS Study Material Input-output-based Hybrid Energy Intensities (MBtu/$) 

Oil & Gas Coal  Electricity Natural Gas Petroleum Total Energy 

314110 Carpets 0.000523766 0.001379514 0.011907255 0.00757035 0.00949984 0.03088072 

321100 Wood, Lumber 0.000281068 0.000169407 0.005685562 0.002176061 0.01035303 0.018665124 

321211 Hardwood Plywood & Veneer  0.000291114 0.000271736 0.007962986 0.003386458 0.01029243 0.022204728 

321212 Softwood Plywood & Veneer  0.000291114 0.000271736 0.007962986 0.003386458 0.01029243 0.022204728 

325510 Paints & Coatings  0.000840462 0.001355329 0.007270166 0.006601917 0.01275521 0.028823084 

325520 Adhesives  0.000696037 0.001281845 0.007152518 0.005907463 0.01082305 0.025860912 

326122 Plastic Pipes & Fittings 0.001728769 0.001120028 0.012276705 0.010635346 0.02499163 0.050752477 

326140 Polystyrene Foam Insulation 0.001056556 0.001267267 0.010035077 0.010148759 0.01668984 0.039197494 

32712A Bricks 0.000112376 0.000766309 0.008324705 0.018628364 0.00610876 0.033940513 

32712A  Clay Wall & Floor Tiles  0.000112376 0.000766309 0.008324705 0.018628364 0.00610876 0.033940513 

32712A Vitrified Sewer Pipes 0.000112376 0.000766309 0.008324705 0.018628364 0.00610876 0.033940513 

327211 Flat Glass 0.000150829 0.00064161 0.015486734 0.030557117 0.00605834 0.052894631 

327310 Cement  0.00020174 0.035829532 0.026344653 0.005643552 0.02280218 0.09082166 

327320 Concrete 0.000141528 0.007191011 0.008292172 0.004990808 0.01126587 0.031881392 

3274A0 Gypsum, Building Products  0.000203742 0.015169683 0.012477651 0.017913986 0.01999574 0.065760801 

3274A1 Lime  0.000203742 0.015169683 0.012477651 0.017913986 0.01999574 0.065760801 

327991 Stone  0.000112376 0.000586861 0.005248459 0.002669475 0.00472301 0.013340185 

327993 Mineral Wool Insulation 0.000191827 0.0014035 0.014331884 0.013059308 0.00570756 0.034694082 

331110 Steel  0.000110496 0.016020768 0.023071288 0.014969071 0.00479174 0.058963364 

33131A Aluminum  0.004370913 0.000593918 0.079907677 0.011324482 0.02599323 0.122190222 

331411 Copper 4.55148E-05 0.002141199 0.017381736 0.009170104 0.0038231 0.032561656 
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Table A1-18: Energy intensities using input-output-based hybrid analysis with human and capital inputs by energy 

source 

NAICS Study Material Input-output-based Hybrid Energy Intensities With Human and Capital Energy (MBtu/$) 

Oil & Gas Coal  Electricity Natural 

Gas 

Petroleum Human 

Energy 

Capital 

Energy 

Total 

Energy 

314110 Carpets 0.00052 0.00138 0.01191 0.00757 0.00950 0.00116 0.00072 0.03276 

321100 Wood, Lumber 0.00028 0.00017 0.00569 0.00218 0.01035 0.00122 0.00092 0.02080 

321211 Hardwood Plywood & Veneer  0.00029 0.00027 0.00796 0.00339 0.01029 0.00124 0.00073 0.02417 

321212 Softwood Plywood & Veneer  0.00029 0.00027 0.00796 0.00339 0.01029 0.00124 0.00073 0.02417 

325510 Paints & Coatings  0.00084 0.00136 0.00727 0.00660 0.01276 0.00084 0.00080 0.03046 

325520 Adhesives  0.00070 0.00128 0.00715 0.00591 0.01082 0.00086 0.00077 0.02749 

326122 Plastic Pipes & Fittings 0.00173 0.00112 0.01228 0.01064 0.02499 0.00097 0.00107 0.05279 

326140 Polystyrene Foam Insulation 0.00106 0.00127 0.01004 0.01015 0.01669 0.00108 0.00095 0.04123 

32712A Bricks 0.00011 0.00077 0.00832 0.01863 0.00611 0.00106 0.00088 0.03589 

32712A  Clay Wall & Floor Tiles  0.00011 0.00077 0.00832 0.01863 0.00611 0.00106 0.00088 0.03589 

32712A Vitrified Sewer Pipes 0.00011 0.00077 0.00832 0.01863 0.00611 0.00106 0.00088 0.03589 

327211 Flat Glass 0.00015 0.00064 0.01549 0.03056 0.00606 0.00080 0.00090 0.05460 

327310 Cement  0.00020 0.03583 0.02634 0.00564 0.02280 0.00067 0.00207 0.09356 

327320 Concrete 0.00014 0.00719 0.00829 0.00499 0.01127 0.00107 0.00121 0.03416 

3274A0 Gypsum, Building Products  0.00020 0.01517 0.01248 0.01791 0.02000 0.00082 0.00087 0.06744 

3274A1 Lime  0.00020 0.01517 0.01248 0.01791 0.02000 0.00082 0.00087 0.06744 

327991 Stone  0.00011 0.00059 0.00525 0.00267 0.00472 0.00145 0.00082 0.01560 

327993 Mineral Wool Insulation 0.00019 0.00140 0.01433 0.01306 0.00571 0.00090 0.00114 0.03674 

331110 Steel  0.00011 0.01602 0.02307 0.01497 0.00479 0.00092 0.00072 0.06061 

33131A Aluminum  0.00437 0.00059 0.07991 0.01132 0.02599 0.00072 0.00062 0.12353 

331411 Copper 0.00005 0.00214 0.01738 0.00917 0.00382 0.00075 0.00071 0.03402 

 

Table A1-19: Energy intensities using input-output-based hybrid analysis after sector disaggregation by energy source 

NAICS Study Material Input-output-based Hybrid Energy Intensities After Sector Disaggregation(MBtu/$) 

Oil & Gas Coal  Electricity Natural 

Gas 

Petroleum Human 

Energy 

Capital 

Energy 

Total 

Energy 

314110 Carpets 0.00052 0.00138 0.01191 0.00757 0.00950 0.00116 0.00072 0.03276 

321100 Wood, Lumber 0.00029 0.00017 0.00612 0.00218 0.01067 0.00121 0.00092 0.02156 

321211 Hardwood Plywood & Veneer  0.00028 0.00016 0.00553 0.00246 0.00659 0.00116 0.00064 0.01683 

321212 Softwood Plywood & Veneer  0.00015 0.00018 0.00980 0.00402 0.00783 0.00130 0.00080 0.02409 

325510 Paints & Coatings  0.00084 0.00136 0.00727 0.00660 0.01276 0.00084 0.00080 0.03046 

325520 Adhesives  0.00070 0.00128 0.00715 0.00591 0.01082 0.00086 0.00077 0.02749 

326122 Plastic Pipes & Fittings 0.00173 0.00112 0.01228 0.01064 0.02499 0.00097 0.00107 0.05279 

326140 Polystyrene Foam Insulation 0.00106 0.00127 0.01004 0.01015 0.01669 0.00108 0.00095 0.04123 

32712A Bricks 0.00012 0.00085 0.00847 0.02286 0.00716 0.00123 0.00092 0.04161 

32712A  Clay Wall & Floor Tiles  0.00012 0.00053 0.00841 0.01079 0.00460 0.00134 0.00097 0.02678 

32712A Vitrified Sewer Pipes 0.00012 0.00071 0.00598 0.01714 0.00628 0.00150 0.00102 0.03276 

327211 Flat Glass 0.00015 0.00064 0.01549 0.03056 0.00606 0.00080 0.00090 0.05460 

327310 Cement  0.00020 0.03583 0.02634 0.00564 0.02280 0.00067 0.00207 0.09356 

327320 Concrete 0.00014 0.00719 0.00829 0.00499 0.01127 0.00107 0.00121 0.03416 

3274A0 Gypsum, Building Products  0.00018 0.01157 0.00985 0.01371 0.01239 0.00061 0.00048 0.04877 

3274A1 Lime  0.00028 0.02663 0.01911 0.03041 0.03075 0.00219 0.00224 0.11160 

327991 Stone  0.00011 0.00059 0.00525 0.00267 0.00472 0.00145 0.00082 0.01560 

327993 Mineral Wool Insulation 0.00019 0.00140 0.01433 0.01306 0.00571 0.00090 0.00114 0.03674 

331110 Steel  0.00011 0.01600 0.02266 0.01495 0.00478 0.00092 0.00071 0.06014 

33131A Aluminum  0.00331 0.00038 0.09133 0.00947 0.02028 0.00084 0.00066 0.12627 

331411 Copper 0.00005 0.00214 0.01738 0.00917 0.00382 0.00075 0.00071 0.03402 
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Table A1-20: Energy intensities using input-output-based hybrid analysis by upstream stages 

Study Material Input-output-based Hybrid Energy Intensities by Upstream Stages (MBtu/$) Total 

Energy 0 1 2 3 4 5 6 7 8 9 10 11 12 

Carpets 5.1 9.6 7.8 4.6 2.2 0.90 0.37 0.15 0.06 0.027 0.012 0.005 0.0023 30.88 

Wood, Lumber 9.4 4.1 2.0 1.3 0.9 0.48 0.24 0.11 0.05 0.022 0.010 0.004 0.0020 18.67 

Hardwood Plywood & Veneer  12.4 4.9 2.1 1.3 0.8 0.42 0.21 0.10 0.04 0.019 0.009 0.004 0.0017 22.20 

Softwood Plywood & Veneer  12.4 4.9 2.1 1.3 0.8 0.42 0.21 0.10 0.04 0.019 0.009 0.004 0.0017 22.20 

Paints & Coatings  2.1 15.0 7.1 2.8 1.1 0.45 0.19 0.08 0.03 0.015 0.007 0.003 0.0013 28.82 

Adhesives  4.5 11.8 5.7 2.3 0.9 0.37 0.15 0.07 0.03 0.012 0.005 0.002 0.0011 25.86 

Plastic Pipes & Fittings 6.1 26.1 11.6 4.3 1.6 0.61 0.25 0.10 0.04 0.019 0.008 0.004 0.0016 50.75 

Polystyrene Foam Insulation 10.3 15.7 8.3 3.0 1.1 0.45 0.18 0.08 0.03 0.015 0.006 0.003 0.0013 39.20 

Bricks 28.8 2.5 1.4 0.7 0.3 0.14 0.06 0.03 0.01 0.006 0.002 0.001 0.0005 33.94 

Clay Wall & Floor Tiles  28.8 2.5 1.4 0.7 0.3 0.14 0.06 0.03 0.01 0.006 0.002 0.001 0.0005 33.94 

Vitrified Sewer Pipes 28.8 2.5 1.4 0.7 0.3 0.14 0.06 0.03 0.01 0.006 0.002 0.001 0.0005 33.94 

Flat Glass 42.3 7.8 1.6 0.7 0.3 0.14 0.06 0.03 0.01 0.006 0.003 0.001 0.0005 52.89 

Cement  81.7 6.3 1.6 0.6 0.3 0.13 0.06 0.03 0.01 0.005 0.002 0.001 0.0005 90.82 

Concrete 3.4 23.8 3.0 1.0 0.4 0.19 0.08 0.04 0.02 0.008 0.003 0.002 0.0007 31.88 

Gypsum, Building Products  48.4 13.9 2.1 0.8 0.3 0.17 0.08 0.04 0.02 0.007 0.003 0.001 0.0006 65.76 

Lime  48.4 13.9 2.1 0.8 0.3 0.17 0.08 0.04 0.02 0.007 0.003 0.001 0.0006 65.76 

Stone  4.0 6.0 1.9 0.8 0.4 0.17 0.08 0.03 0.02 0.007 0.003 0.001 0.0006 13.34 

Mineral Wool Insulation 22.1 7.7 2.8 1.2 0.5 0.21 0.09 0.04 0.02 0.008 0.003 0.002 0.0007 34.69 

Steel  40.1 12.8 3.8 1.3 0.5 0.23 0.10 0.04 0.02 0.009 0.004 0.002 0.0008 58.96 

Aluminum  92.4 21.3 5.8 1.8 0.6 0.23 0.09 0.04 0.02 0.007 0.003 0.001 0.0007 122.19 

Copper 12.1 10.3 5.2 2.6 1.3 0.62 0.30 0.14 0.07 0.032 0.015 0.007 0.0034 32.56 

 

Table A1-21: Energy intensities using input-output-based hybrid analysis with human and capital inputs by upstream 

stages 

Study Material Input-output-based Hybrid Energy Intensities With Human and Capital Energy by Upstream Stages 

(MBtu/$) 

Total 

Energy 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Carpets 5.5 10.2 8.2 4.9 2.3 0.96 0.40 0.17 0.07 0.030 0.013 0.006 0.0025 32.76 

Wood, Lumber 10.2 4.6 2.4 1.6 1.0 0.54 0.26 0.12 0.06 0.025 0.011 0.005 0.0022 20.80 

Hardwood Plywood & Veneer  13.2 5.4 2.5 1.4 0.9 0.47 0.23 0.11 0.05 0.022 0.010 0.004 0.0019 24.17 

Softwood Plywood & Veneer  13.2 5.4 2.5 1.4 0.9 0.47 0.23 0.11 0.05 0.022 0.010 0.004 0.0019 24.17 

Paints & Coatings  2.5 15.5 7.4 3.0 1.2 0.49 0.20 0.09 0.04 0.016 0.007 0.003 0.0014 30.46 

Adhesives  5.0 12.3 6.0 2.4 1.0 0.40 0.17 0.07 0.03 0.014 0.006 0.003 0.0012 27.49 

Plastic Pipes & Fittings 7.0 26.6 11.9 4.5 1.7 0.66 0.27 0.11 0.05 0.021 0.009 0.004 0.0018 52.79 

Polystyrene Foam Insulation 11.3 16.2 8.6 3.1 1.2 0.48 0.20 0.09 0.04 0.016 0.007 0.003 0.0014 41.23 

Bricks 30.2 2.8 1.6 0.8 0.3 0.15 0.07 0.03 0.01 0.006 0.003 0.001 0.0005 35.89 

Clay Wall & Floor Tiles  30.2 2.8 1.6 0.8 0.3 0.15 0.07 0.03 0.01 0.006 0.003 0.001 0.0005 35.89 

Vitrified Sewer Pipes 30.2 2.8 1.6 0.8 0.3 0.15 0.07 0.03 0.01 0.006 0.003 0.001 0.0005 35.89 

Flat Glass 43.3 8.2 1.8 0.7 0.3 0.15 0.07 0.03 0.01 0.006 0.003 0.001 0.0006 54.60 

Cement  83.7 6.8 1.8 0.7 0.3 0.14 0.06 0.03 0.01 0.006 0.003 0.001 0.0005 93.56 

Concrete 4.3 24.6 3.3 1.1 0.5 0.21 0.09 0.04 0.02 0.008 0.004 0.002 0.0007 34.16 

Gypsum, Building Products  49.1 14.4 2.3 0.9 0.4 0.19 0.09 0.04 0.02 0.008 0.004 0.002 0.0007 67.44 

Lime  49.1 14.4 2.3 0.9 0.4 0.19 0.09 0.04 0.02 0.008 0.004 0.002 0.0007 67.44 

Stone  5.2 6.6 2.1 0.9 0.4 0.19 0.08 0.04 0.02 0.007 0.003 0.001 0.0007 15.60 

Mineral Wool Insulation 23.2 8.2 3.1 1.3 0.5 0.23 0.10 0.04 0.02 0.009 0.004 0.002 0.0008 36.74 

Steel  40.7 13.3 4.1 1.5 0.6 0.25 0.11 0.05 0.02 0.010 0.004 0.002 0.0009 60.61 

Aluminum  92.8 21.7 6.1 1.9 0.6 0.25 0.10 0.04 0.02 0.008 0.004 0.002 0.0007 123.53 

Copper 12.4 10.8 5.5 2.7 1.4 0.67 0.32 0.16 0.07 0.035 0.017 0.008 0.0037 34.02 
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Table A1-22: Energy intensities using input-output-based hybrid analysis after sector disaggregation by upstream 

stages 

Study Material Input-output-based Hybrid Energy Intensities After Sector Disaggregation by Upstream Stages (MBtu/$) Total 

Energy 0 1 2 3 4 5 6 7 8 9 10 11 12 

Carpets 5.5 10.2 8.2 4.9 2.3 0.96 0.40 0.17 0.07 0.030 0.013 0.006 0.0025 32.76 

Wood, Lumber 11.1 4.6 2.4 1.5 1.0 0.52 0.25 0.12 0.05 0.024 0.011 0.005 0.0021 21.56 

Hardwood Plywood & Veneer  6.5 5.6 2.2 1.2 0.7 0.37 0.18 0.09 0.04 0.018 0.008 0.004 0.0016 16.83 

Softwood Plywood & Veneer  13.0 4.7 2.6 1.7 1.0 0.54 0.26 0.12 0.05 0.025 0.011 0.005 0.0022 24.09 

Paints & Coatings  2.5 15.5 7.4 3.0 1.2 0.49 0.20 0.09 0.04 0.016 0.007 0.003 0.0014 30.46 

Adhesives  5.0 12.3 6.0 2.4 1.0 0.40 0.17 0.07 0.03 0.014 0.006 0.003 0.0012 27.49 

Plastic Pipes & Fittings 7.0 26.6 11.9 4.5 1.7 0.66 0.27 0.11 0.05 0.021 0.009 0.004 0.0018 52.79 

Polystyrene Foam Insulation 11.3 16.2 8.6 3.1 1.2 0.48 0.20 0.09 0.04 0.016 0.007 0.003 0.0014 41.23 

Bricks 35.7 2.8 1.6 0.8 0.4 0.17 0.08 0.03 0.01 0.007 0.003 0.001 0.0006 41.61 

Clay Wall & Floor Tiles  19.9 3.3 1.9 0.9 0.4 0.19 0.09 0.04 0.02 0.008 0.003 0.002 0.0007 26.78 

Vitrified Sewer Pipes 25.2 3.7 2.0 1.0 0.5 0.21 0.10 0.04 0.02 0.009 0.004 0.002 0.0008 32.76 

Flat Glass 43.3 8.2 1.8 0.7 0.3 0.15 0.07 0.03 0.01 0.006 0.003 0.001 0.0006 54.60 

Cement  83.7 6.8 1.8 0.7 0.3 0.14 0.06 0.03 0.01 0.006 0.003 0.001 0.0005 93.56 

Concrete 4.3 24.6 3.3 1.1 0.5 0.21 0.09 0.04 0.02 0.008 0.004 0.002 0.0007 34.16 

Gypsum, Building Products  39.1 5.3 2.4 1.1 0.5 0.20 0.09 0.04 0.02 0.008 0.003 0.002 0.0007 48.77 

Lime  90.2 16.6 2.9 1.0 0.5 0.22 0.10 0.05 0.02 0.009 0.004 0.002 0.0009 111.60 

Stone  5.2 6.6 2.1 0.9 0.4 0.19 0.08 0.04 0.02 0.007 0.003 0.001 0.0007 15.60 

Mineral Wool Insulation 23.2 8.2 3.1 1.3 0.5 0.23 0.10 0.04 0.02 0.009 0.004 0.002 0.0008 36.74 

Steel  40.2 13.3 4.1 1.5 0.6 0.25 0.11 0.05 0.02 0.010 0.004 0.002 0.0009 60.14 

Aluminum  95.2 22.0 6.0 1.9 0.7 0.27 0.11 0.05 0.02 0.009 0.004 0.002 0.0009 126.27 

Copper 12.4 10.8 5.5 2.7 1.4 0.67 0.32 0.16 0.07 0.035 0.017 0.008 0.0037 34.02 

 

Table A1-23: Disaggregation coefficients for energy sources and services 

NAICS 
Aggregated  

Product/Subsector NAICS 
Disaggregate

d 

Fraction in 
Total Material 

Inputs 

Fraction in Total 
Other Inputs 

(services & tax) 

Fraction in Total 
Electricity 

Inputs 

Fraction in Total 
Fuel Inputs 

321100 Wood Preservation 321114 0.20 0.12 0.05 0.11 

Sawmills 321113 0.80 0.88 0.95 0.89 

32121A Hardwood Plywood & 

Veneer 

321211 0.36 0.72 0.21 0.25 

Softwood Plywood & Veneer 321212 0.64 0.28 0.79 0.75 

331110 Iron & Steel Mills 331111 0.98 0.97 0.95 0.98 

Ferroalloy 331112 0.02 0.03 0.05 0.02 

3274A0 Lime 327410 0.18 0.25 0.35 0.36 

Gypsum Building Materials 327420 0.82 0.75 0.65 0.64 

32712A Brick & Structural Clay Tiles 327121 0.57 0.71 0.64 0.77 

Ceramic Floor & Wall Tiles 327122 0.36 0.29 0.31 0.17 

Other Structural Clay 
Products 

327123 0.07 0.13 0.04 0.06 

33131A Primary Aluminum 331312 0.90 0.64 0.99 0.62 

Alumina Production 331311 0.10 0.36 0.01 0.38 
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Table A1-24: Disaggregation coefficients for services 

NAICS 

Aggregate

d  

Product/Subsector NAICS 

Disaggregate

d 

Repair and 

maintenance 

services of 
buildings 

and/or 

machinery 

Commun

ications 

services 

Legal 

service

s 

Accounting, 

auditing, and 

bookkeeping 
services 

Advertising 

and 

promotional 
services 

321100 Wood Preservation 321114 0.09 0.10 0.10 0.17 0.20 

Sawmills 321113 0.91 0.90 0.90 0.83 0.80 

32121A Hardwood Plywood & 

Veneer 

321211 
0.32 0.59 0.74 0.78 0.42 

Softwood Plywood & 
Veneer 

321212 
0.68 0.41 0.26 0.22 0.58 

331110 Iron & Steel Mills 331111 0.98 0.98 0.98 0.98 0.98 

Ferroalloy 331112 0.02 0.02 0.02 0.02 0.02 

3274A0 Lime 327410 0.25 0.34 0.26 0.26 0.06 

Gypsum Building Materials 327420 0.75 0.66 0.74 0.74 0.94 

32712A Brick & Structural Clay 

Tiles 

327121 
0.71 0.49 0.45 0.62 0.20 

Ceramic Floor & Wall Tiles 327122 0.21 0.37 0.36 0.26 0.61 

Other Structural Clay 
Products 

327123 
0.08 0.13 0.19 0.12 0.19 

33131A Primary Aluminum 331312 0.60 0.99 0.60 0.99 0.60 

Alumina Production 331311 0.40 0.01 0.40 0.01 0.40 

 

Table A1-25: Disaggregation coefficients for services 

NAICS 

Aggregate

d  

Product/Subsector NAICS 

Disaggregate

d 
Expensed 

computer 

hardware and 
supplies and 

purchased 

computer 
services 

Refuse 

removal 

(includin
g 

hazardou

s waste) 
services 

Manag

ement 

consult
ing 

and 

admini
strativ

e 

service
s 

Taxes and 

license fees 

All other 

expenses 

321100 Wood Preservation 321114 0.16 0.25 0.17 0.09 0.13 

Sawmills 321113 0.84 0.75 0.83 0.91 0.87 

32121A Hardwood Plywood & 
Veneer 

321211 
0.59 0.60 0.70 0.94 0.68 

Softwood Plywood & 

Veneer 

321212 
0.41 0.40 0.30 0.06 0.32 

331110 Iron & Steel Mills 331111 0.99 0.98 0.99 0.98 0.98 

Ferroalloy 331112 0.01 0.02 0.01 0.02 0.02 

3274A0 Lime 327410 0.10 0.11 0.58 0.40 0.22 

Gypsum Building Materials 327420 0.90 0.89 0.42 0.60 0.78 

32712A Brick & Structural Clay 

Tiles 

327121 
0.42 0.34 0.26 0.68 0.68 

Ceramic Floor & Wall Tiles 327122 0.39 0.59 0.63 0.24 0.18 

Other Structural Clay 

Products 

327123 
0.18 0.07 0.10 0.09 0.13 

33131A Primary Aluminum 331312 0.60 0.97 0.60 0.60 0.60 

Alumina Production 331311 0.40 0.03 0.40 0.40 0.40 
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Table A1-26: Embodied energy of building materials as reported in literature 

Study Construction Region 
Building Material 

Embodied Energy (GJ/m2) 

Hammond & Jones, 2010 Mixed Europe 6.6 

Hammond & Jones, 2010 Mixed Europe 6.3 

Hammond & Jones, 2010 Mixed Europe 4.9 

Hammond & Jones, 2010 Mixed Europe 5.6 

Hammond & Jones, 2010 Mixed Europe 8.2 

Hammond & Jones, 2010 Mixed Europe 5.5 

Troy et al., 2003 Mixed Oceania 7.85 

Troy et al., 2003 Mixed Oceania 6.8 

Troy et al., 2003 Mixed Oceania 8.5 

Troy et al., 2003 Mixed Oceania 7.4 

Troy et al., 2003 Mixed Oceania 6.21 

Troy et al., 2003 Mixed Oceania 9.3 

Troy et al., 2003 Mixed Oceania 6.3 

Troy et al., 2003 Mixed Oceania 6.2 

Borjesson & Gustavsson, 2000 Concrete Europe 1.73 

Borjesson & Gustavsson, 2000 Concrete Europe 2 

Lenzen & Treloar, 2002 Concrete Europe 2.4 

Lenzen & Treloar, 2002 Concrete Europe 3.65 

Gustavsson et al., 2006 Concrete Europe 2.5 

Gustavsson et al., 2006 Concrete Europe 2.73 

Gustavsson & Joelsson, 2010 Concrete Europe 2.792 

Gartner & Smith, 1976 Concrete Europe 4.5 

Winistorfer et al., 2005 Concrete North America 2.2 

Kahhat et al., 2009 Concrete North America 3.17 

Kahhat et al., 2009 Concrete North America 3.075 

Kahhat et al., 2009 Concrete North America 3.435 

Shiu et al., 2009 Concrete North America 3.23 

Mithraratne & Vale, 2004 Concrete Oceania 4.764 

Duell & Martin, 2005 Concrete Oceania 18.47 

Duell & Martin, 2005 Concrete Oceania 14.64 

Vale et al., 2000 Concrete Oceania 2.68 

Debnath et al., 1995 Concrete Asia 4.3 

Debnath et al., 1995 Concrete Asia 3.1 

Chulsukon et al., 2002 Concrete Asia 3.21 

Reddy, 2004 Concrete Asia 4.21 

Gumaste, 2006 Concrete Asia 3.7 

Gumaste, 2006 Concrete Asia 2.91 

Gumaste, 2006 Concrete Asia 3.61 

Utama & Gheewala, 2008 Concrete Asia 0.819 

Utama & Gheewala, 2009 Concrete Asia 0.862 

Shaw et al., 1998 Steel North America 0.57 

Lippke et al., 2004 Steel North America 3.36 

Lucuik et al., 2006 Steel North America 4.83 

Kahhat et al., 2009 Steel North America 2.995 

O'Brien & Soebarto, 2000 Steel Oceania 3.56 

O'Brien & Soebarto, 2000 Steel Oceania 1.91 

Fossdal & Edwardson, 1995 Wood Europe 1.97 

Adalberth, 1997 Wood Europe 3.384 

Adalberth, 1997 Wood Europe 3.274 

Adalberth, 1997 Wood Europe 2.74 

Winther & Hestnes, 1999 Wood Europe 1.62 

Borjesson & Gustavsson, 2000 Wood Europe 1.1 

Lenzen & Treloar, 2002 Wood Europe 2.05 

Lenzen & Treloar, 2002 Wood Europe 3.41 

Gustavsson et al., 2006 Wood Europe 1.96 

Gustavsson et al., 2006 Wood Europe 0 

Gustavsson et al., 2006 Wood Europe 2.47 

Gustavsson et al., 2006 Wood Europe 0 

Gustavsson & Joelsson, 2010 Wood Europe 2.33 
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Gustavsson & Joelsson, 2010 Wood Europe 2.36 

Gustavsson et al., 2010 Wood Europe 3.22 

Verbeeck & Hens, 2010 Wood Europe 2 

Verbeeck & Hens, 2010 Wood Europe 2.52 

Verbeeck & Hens, 2010 Wood Europe 2.93 

Verbeeck & Hens, 2010 Wood Europe 3.83 

Verbeeck & Hens, 2010 Wood Europe 2.41 

Verbeeck & Hens, 2010 Wood Europe 2.78 

Verbeeck & Hens, 2010 Wood Europe 2.94 

Verbeeck & Hens, 2010 Wood Europe 4.17 

Almeida et al., 2005 Wood Europe 5.72 

Almeida et al., 2005 Wood Europe 5.72 

Asif et al., 2007 Wood Europe 1.62 

Sobotka & Rolak, 2009 Wood Europe 0.71 

Malin, 1993 Wood North America 2.72 

Malin, 1993 Wood North America 2.72 

Malin, 1993 Wood North America 2.93 

Malin, 1993 Wood North America 2.93 

Blanchard & Reppe, 1998 Wood North America 4.138658 

Keoleian et al., 2001 Wood North America 6.62 

Winistorfer et al., 2005 Wood North America 2.2 

Winistorfer et al., 2005 Wood North America 3.8 

Baouendi et al., 2005 Wood North America 1.3 

Baouendi et al., 2005 Wood North America 1.326 

Norman et al., 2006 Wood North America 5.47 

Norman et al., 2006 Wood North America 4.58 

Kim, 2008 Wood North America 4.63 

Kim, 2008 Wood North America 3.41 

Kahhat et al., 2009 Wood North America 2.905 

Kahhat et al., 2009 Wood North America 2.915 

Leckner & Zmeureanu, 2011 Wood North America 3.36 

Edwards et al._1994 Wood Oceania 3.91 

Edwards et al._1994 Wood Oceania 4.45 

Vale et al., 2000 Wood Oceania 2.42 

Mithraratne & Vale, 2004 Wood Oceania 4.425 

Gartner & Smith, 1976 Brick Europe 1.75 

Gartner & Smith, 1976 Brick Europe 1.52 

Gartner & Smith, 1976 Brick Europe 2.19 

Sobotka & Rolak, 2009 Brick Europe 0.73 

Verbeeck & Hens, 2010 Brick Europe 2 

Verbeeck & Hens, 2010 Brick Europe 2.52 

Verbeeck & Hens, 2010 Brick Europe 2.93 

Verbeeck & Hens, 2010 Brick Europe 3.83 

Verbeeck & Hens, 2010 Brick Europe 2.41 

Verbeeck & Hens, 2010 Brick Europe 2.78 

Verbeeck & Hens, 2010 Brick Europe 2.94 

Verbeeck & Hens, 2010 Brick Europe 4.17 

Aste et al., 2010 Brick Europe 4 

Feist, 1996 Brick Europe 4.22 

Edwards et al., 1994 Brick Oceania 5.62 

Treloar et al., 2001 Brick Oceania 11.72 

Treloar et al., 2001e Brick Oceania 9.82 

Treloar et al., 2001e Brick Oceania 10.42 

Treloar et al., 2001e Brick Oceania 9.34 

Randolph et al., 2006 Brick Oceania 6.4 

Randolph et al., 2006 Brick Oceania 6.4 

Randolph et al., 2006 Brick Oceania 6.5 

Randolph et al., 2006 Brick Oceania 6.5 

Randolph et al., 2006 Brick Oceania 7.1 

Randolph et al., 2006 Brick Oceania 7 

Randolph et al., 2006 Brick Oceania 6.8 

Randolph et al., 2006 Brick Oceania 6.5 

Randolph et al., 2006 Brick Oceania 5.4 
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Randolph et al., 2006 Brick Oceania 8.3 

Randolph et al., 2006 Brick Oceania 7.9 

Randolph et al., 2006 Brick Oceania 6.7 

Debnath et al., 1995 Brick Asia 5 

Debnath et al., 1995 Brick Asia 4.2 

Debnath et al., 1995 Brick Asia 4.1 

Debnath et al., 1995 Brick Asia 3.7 

Chulsukon et al., 2002 Brick Asia 3.21 

Reddy, 2004 Brick Asia 4.21 

Reddy, 2004 Brick Asia 2.92 

Reddy, 2004 Brick Asia 1.61 

Jeyasingh & Sam, 2004 Brick Asia 6.44 

Gumaste, 2006 Brick Asia 3.67 

Utama & Gheewala, 2008 Brick Asia 0.838 

Utama & Gheewala, 2009 Brick Asia 0.862 

Utama & Gheewala, 2009 Brick Asia 0.926 

Huberman & Pearlmutter, 2004 Brick Asia 0.77 

Huberman & Pearlmutter, 2004 Brick Asia 1.06 

Huberman & Pearlmutter, 2004 Brick Asia 3.52 

Huberman & Pearlmutter, 2004 Brick Asia 3.8 
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APPENDIX B1 

FIGURES  

 

Figure B1-1: Transportation energy as% of total materials' embodied energy 

 

 

Figure B1-2: Correlation of LCEE with the total REE of residential and commercial buildings 
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Figure B1-3: Correlation of LCE with the total REE of commercial buildings 

 

 

 

Figure B1-4: Annualized REE of the referred case studies 
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Figure B1-5: Demolition energy reported by the referred studies 

 

 

 

Figure B1-6: Embodied energy fraction in the total REE of referred residential buildings 
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Figure B1-7: Embodied energy fraction in the total REE of referred commercial buildings 
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Figure B1-8: Various boundary definitions provided in the literature 
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Figure B1-9: Ratio of natural gas use to total fuel use in selected manufacturing sectors 

 

Figure B1-10: Ratio of petroleum use to total fuel use in selected manufacturing sectors 
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Figure B1-11: Ratio of coke use to total fuel use in selected manufacturing sectors 

 

 

Figure B1-12: Correlation of coal fraction in total fuel use 1998, 2002, and 2006 
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Figure B1-13: Correlation of natural gas fraction in total fuel use 1998, 2002, and 2006 

 

 

Figure B1-14: Correlation of petroleum fraction in total fuel use 1998, 2002, and 2006 
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Figure B1-15: Correlation of coke fraction in total fuel use 1998, 2002, and 2006 

 

 

Figure B1-16: Electricity production in the United States by source from 1949-2011 
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Figure B1-17: Dominance of coal in the fossil fuel use for the United States electricity production 
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