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ABSTRACT

Many areas of physics, engineering and applied mathematics require solutions

of inhomogeneous biharmonic problems. For example, various problems on Stokes

flow and elasticity can be cast into biharmonic boundary value problems. Hence the

slow viscous flow problems are generally modeled using biharmonic boundary value

problems which have widespread applications in many areas of industrial problems

such as flow of molten metals, flow of particulate suspensions in bio-fluid dynamics,

just to mention a few. In this dissertation, we derive, implement, validate, and apply

fast and high order accurate algorithms to solve Poisson problems and inhomogeneous

biharmonic problems in the interior of a unit disc in the complex plane.

In particular, we use two methods to solve inhomogeneous biharmonic problems:

(i) the double-Poisson method which is based on transforming biharmonic prob-

lems into solving a sequence of Poisson problems (sometime also one homogeneous

biharmonic problem) and then making use of the fast Poisson solver developed in

this dissertation.; (ii) the direct method which uses the fast biharmoninc solver also

developed in this dissertation. Both of these methods are analyzed for accuracy,

complexity and efficiency. These biharmonic solvers have been compared with each

other and have been applied to solve several Stokes flow problems and elasticity

problems.

The fast Poisson algorithm is derived here from exact analysis of the Green’s

function formulation in the complex plane. This algorithm is essentially a recast of

the fast Poisson algorithm of Borges and Daripa from the real plane to the com-

plex plane. The fast biharmonic algorithms for several boundary conditions for use

in the direct method mentioned above have been derived in this dissertation from
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exact analysis of the representation of their solutions in terms of problem specific

Green’s function in the complex plane. The resulting algorithms primarily use fast

Fourier transforms and recursive relations in Fourier space. The algorithms have

been analyzed for their accuracy, complexity, efficiency, and subsequently tested for

validity against several benchmark test problems. These algorithms have an asymp-

totic complexity of O(logN ) per degree of freedom with very low constant which

is hidden behind the order estimate. The direct and double-Poisson methods have

been applied to solving the steady, incompressible slow viscous flow problem in a cir-

cular cylinder and some problems from elasticity. The numerical results from these

computations agree well with existing results on these problems.
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1. INTRODUCTION

The biharmonic equation arises in many fields of classical physics including com-

plex mechanical and physical processes involving solids and fluids. For example, its

applications include problems of clamped plate in elasticity, slow viscous flow of an

incompressible fluid, flow of particulate suspension and bio-fluid dynamics (see [38],

[25], [28]). We focus in this thesis on the inhomogeneous biharmonic equation in the

complex plane inside a unit disc for several boundary conditions (see [8], [7], [6]) and

its application.

We develop here fast algorithms for solving several biharmonic problems using

two different methods. Both of these methods require evaluation of domain integrals

involving singular integrands primarily due to Green’s functions and the inhomo-

geneous terms of the inhomogeneous biharmonic equations. Standard quadrature

methods of evaluation of these integrals result in limited accuracy and have asymp-

totic algorithmic complexity O(N2) per degree of freedom where N is the number

number of degrees of freedom. This results in prohibitive computational cost for

problems of large size. In order to improve upon this complexity we develop al-

gorithms based on the use of FFT and some recursive relations derived from exact

analysis. These new algorithms have asymptotic computational complexity O(logN)

per degree of freedom and are also very accurate. Similar algorithms have been de-

veloped before by Daripa et. al (see( [12], [15], [18])) for solving other kinds of elliptic

equations. For a review of these algorithms and some of their applications see Daripa

[17].

To evaluate the associated domain integrals, we first expand them in terms of

Fourier series. After some analysis, we express the radius dependent Fourier coef-
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ficients of the integrals (see [12],[15]) as one dimensional integrals with integrands

depending on the Fourier coefficients of the inhomogeneous term of the inhomoge-

neous biharmonic equation. These one-dimensional integrals involve integration in

the radial direction of the domain. As shown in this thesis, these one-dimensional in-

tegrals bear some recursive relations which are at the heart of the low computational

cost of the full algorithm for solving these inhomogeneous biharmonic equations. To

summarize,

(C.1) The fast algorithms are derived from exact analysis and properties of convolu-

tion integrals involving Green’s function.

(C.2) The algorithms are easily parallelizable (see [10]).

(C.3) It is easy to implement these algorithms.

(C.4) Weak singularity in the inhomogeneous term can be easily taken care of without

losing order of accuracy.

(C.5) The recursive relations allow one to define higher order integration methods in

the radial direction without the inclusion of additional grid points.

The extensive theory of biharmonic problems based on complex variables in [7,

4, 5, 2, 6, 3, 9, 1, 32] has laid the analytic foundation of these fast algorithms. We

solve here four important boundary value problems for the biharmonic equation using

the Green’s function method. Apart from using Simpson and Trapezoidal rules to

compute the integrals, we also use the Euler-Maclaurin expansion for Trapezoidal

approximation for higher order accuracy as in [39]. Although the direct approach (to

be discussed later) for numerical solution of the biharmonic problems within a unit

disc has been the thrust of this thesis, we also have developed a second approach

which involves decomposition of these boundary value problems into two Poisson
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problems and then making use of similar fast algorithms for equations. Thus some

sections of this thesis focus on fast algorithms to solve Poisson problems in a unit

disc in the complex plane. Numerical results for both these approaches are provided

in this thesis.

There has been extensive research on the numerical solution of biharmonic prob-

lems in the real plane by various methods such as finite difference/finite element

methods ([35], [13],[34], [14]) and integral equation methods (see([31], [22], [25], [28],

[24])). The major difficulties associated with the finite difference and finite element

methods are poor convergence rate and condition number proportional to N4 for N2

degrees of freedom in the domain. Thus these methods are computationally expensive

and less accurate. The boundary integral methods usually based on first or second

kind integral equations. The first kind integral equations are often ill posed and the

very high condition number of the resulting linear system poses difficulty for con-

structing an efficient algorithm. The second kind integral equation most commonly

used in the potential theory has been widely discussed in [31],[21],[22].

Our method differs from them in that it is analysis based and thus very accurate.

It is also very fast and paralleizable by construction. We focus on four types of

boundary value problems (D1), (D2), (D3), (D4) defined in sections to follow. We

solve them using both the direct and the double Poisson methods. The errors in

the actual implementation of these algorithm arise primarily from the numerical

evaluation of one dimensional integrals and the use of FFT (truncation of the Fourier

series).

We give a brief outline of the thesis in the following way. Section 2 describes the

fast algorithm to solve the Poisson problems in the complex plane in a unit disc. This

problem in the real plane has been treated in Borges & Daripa [12] and thus this

section is very similar to their work. Numerical solutions to several Poisson problems
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in the complex plane have been obtained in this section. This algorithm will be used

later to solve biharmonic problems by the method of double Poisson problems.

Section 3 contains the (D1) biharmonic problem and its solution. We discuss the

analytical foundation of the direct method in detail and outline the double Poisson

method towards the end of this section.

Section 4 and Section 5 discuss the (D2),(D3),(D4) biharmonic problems and the

mathematical foundation of the direct method. It also validates the method with an

example.

Section 6 builds the recursive relations for the singular integrals associated with

the Green’s function method for solving the biharmonic problems and thus paves the

way for the development of fast algorithms in this so-called direct approach.

Section 7 outlines the quadrature method briefly and focuses further on some

aspects of fast algorithms for the biharmonic problems. It also contains the results

on computational complexity of these algorithms.

Section 8 deals with biharmonic problems in an annular domain and Section

9 deals with application to steady, incompressible flow in two-dimension with low

and moderate Reynolds number. Validation and numerical implementation of the

algorithms have been performed in Section 10. We end this section by estimating

error in the evaluation of the singular integrals using the Euler-Maclaurin formula of

integration in 11 and finally conclude in Section 12.
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2. THEORETICAL FOUNDATION FOR THE POISSON PROBLEM

We consider here several biharmonic problems in a unit disc in the complex plane

and explore different methods using associated Green’s function to solve some of these

problems. Before considering the biharmonic problems we first focus on Dirichlet and

Neumann problems for the Poisson equation in a unit disc D in the complex plane.

In this section, we lay the mathematical foundation for an efficient fast algorithm

to solve inhomogeneous biharmonic problems in D (see [8],[7],[2]). We first consider

the Poisson equation with Dirichlet boundary conditions.

2.1 The Dirichlet Problem

The Dirichlet problem for the Poisson equation in a unit disc D in the complex

plane is given by

∂z∂z̄ω = f in D, ω = γ on ∂D (P1)

This problem is uniquely solvable for f ∈ L1(D,C), γ ∈ C(∂D;C) (see [7]). If u is

the solution of the homogeneous problem,

∂z∂z̄u = 0 in D, u = γ − v in ∂D, (2.1)

where v satisfies the equation

∂z∂z̄v = f, (2.2)

then the solution of problem (P1) is given by

ω = u+ v.
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A principal solution of (2.2) is obtained using the standard Green’s function method

(see[2],[12],[23]) and can be written as

v(z) = 4

∫∫
D

G(z, ζ)f(ζ)dξdη, (2.3)

where

G(z, ζ) =
1

2π
log |ζ − z|

is the Green’s function for the Poisson equation. Note here that f is a function of ζ

and ζ̄ . We introduce the following notations below.:

B(σ, r) = {z ∈ C : |z − σ| < r},

B̄(σ, r) = {z ∈ C : |z − σ| ≤ r},

Ωr
0 = B(0, r),

Ωr+ε
r−ε = B(0, r + ε)−B(0, r − ε),

Ω̆r+ε
r−ε = Ωr+ε

r−ε −B(z, ε).
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Hence,

v(z) =
2

π

∫∫
D

log |ζ − z|f(ζ)dξdη

=
2

π
lim
ε→0

∫∫
D−B(z,ε)

log |ζ − z|f(ζ)dξdη

=
2

π
lim
ε→0

∫∫
Ωr−ε0

log |ζ − z|f(ζ)dξdη +
2

π
lim
ε→0

∫∫
Ω̆r+εr−ε

log |ζ − z|f(ζ)dξdη

+
2

π
lim
ε→0

∫∫
Ω1
r+ε

log |ζ − z|f(ζ)dξdη.

Now we see if

Iε =
2

π

∫∫
Ω̆r+εr−ε

log |ζ − z|f(ζ)dξdη,

then

|Iε| ≤ 2

π
sup

ζ∈Ω̆r+εr−ε

(|f(ζ) log |ζ − z||)
(
π(r + ε)2 − π(r − ε)2

)
≤ −8 sup

ζ∈Ω̆r+εr−ε

|f(ζ)|ε log ε

We obtain
2

π
lim
ε→0

∫∫
Ω̆r+εr−ε

log |ζ−z|f(ζ)dξdη = 0.We derive here fast numerical algorithms

to compute the solution of the Poisson equation in D. For a similar algorithm

in the real plane see [12]. Use of quadrature method results in limited accuracy

and is computationally expensive. For a N2 set of grid points the complexity is

O(N4) which is computationally very expensive when N is very large. In order to

improve upon this, we develop a method which uses Fourier coefficients and recursive
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relations in Fourier space and reduces the complexity to O(logN) per point from

N2 per point. We expand ω(.) in terms of Fourier series and derive the Fourier

coefficients of the associated singular integrals in terms of recursive relations utilizing

one dimensional integrals in the radial direction. To demonstrate this, we evaluate

the singular integral v(z = reiα); 0 < α ≤ 2π. The Fourier coefficients vn(r) of

v(z = reiα) are given by

vn(r) =
1

π2
lim
ε→0

2π∫
0

e−inα
∫∫

Ωr−ε0

log |ζ − z|f(ζ)dξdηdα

+
1

π2
lim
ε→0

2π∫
0

e−inα
∫∫

Ω1
r+ε

log |ζ − z|f(ζ)dξdηdα (2.4)

Then it follows that

vn(r) =

∫∫
Ωr0

f(ζ)Qn(r, ζ)dξdη +

∫∫
Ω1
r

f(ζ)Qn(r, ζ)dξdη, (2.5)

where

Qn(r, ζ) =
1

π2

2π∫
0

e−inα log |ζ − z|dα. (2.6)
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Let z = reiα, ζ = ρeiθ, x = ρ
r
e−iτ for r > ρ and η = ρ

r
eiτ for r < ρ. Then

log |ζ − z| =
1

2
log |ζ − z|2

= log |r2 + ρ2 − 2r cos(τ)|
1
2

= log

∣∣∣∣r2(1 +
ρ2

r2
− 2

ρ

r
cos(τ)

∣∣∣∣ 12
= log

∣∣∣∣r2

(
1 +

ρ2

r2
− ρ

r
(eiτ + e−iτ )

)∣∣∣∣ 12
= log r + log |1− x|

= log r −
∑
n6=0

(ρ
r

)|n| 1

2|n|
einτ , if r > ρ.

Similarly for r < ρ we have

log |ζ − z| = log ρ−
∑
n6=0

(
r

ρ

)|n|
1

2|n|
einτ , if r < ρ.

Simple analysis shows that for r > ρ we have

Qn(r, ζ) =
1

π2

2π∫
0

e−inα

(
log r −

∑
m 6=0

(ρ
r

)|m| 1

2|m|
eimτ

)
dα

=
1

π2

2π∫
0

e−inα

(
log r −

∑
m 6=0

(ρ
r

)|m| 1

2|m|
eim(α−θ)

)
dα

=
1

π2

2π∫
0

e−inα log rdα− 1

π2

∑
m 6=0

(ρ
r

)|m| 1

2|m|
e−imθ

2π∫
0

ei(m−n)αdα.

Hence for r > ρ we have

Qn(r, ζ) =

 −
1
π|n|(

ρ
r
)|n|e−inθ, if n 6= 0,

2
π

log r, if n = 0.

Similarly for r < ρ we have
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Qn(r, ζ) =

 −
1
π|n|

(
r
ρ

)|n|
e−inθ, if n 6= 0,

2
π

log ρ, if n = 0.

For n > 0 we have

∫∫
D

f(ζ)Qn(r, ζ)dξdη =

∫∫
Ωr0

f(ζ)Qn(r, ζ)dξdη +

∫∫
Ω1
r

f(ζ)Qn(r, ζ)dξdη

= −
∫∫
Ωr0

f(ζ)

((ρ
r

)n 1

πn
e−inθ

)
dξdη

−
∫∫
Ω1
r

f(ζ)

((
r

ρ

)n
1

πn
e−inθ

)
dξdη

= − 1

πn

r∫
0

2π∫
0

f(ρeiθ)
(ρ
r

)n
e−inθρdθdρ

− 1

πn

1∫
r

2π∫
0

f(ρeiθ)

(
r

ρ

)n
e−inθρdθdρ

= − 1

πn

r∫
0

2π∫
0

∞∑
m=−∞

fm(ρ)eimθ
(ρ
r

)n
e−inθρdθdρ

− 1

πn

1∫
r

2π∫
0

∞∑
m=−∞

fm(ρ)eimθ
(
r

ρ

)n
e−inθρdθdρ

= − 1

πn

r∫
0

(ρ
r

)n
ρ

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

− 1

πn

1∫
r

(
r

ρ

)n
ρ

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

= −2

r∫
0

(ρ
r

)n ρ
n
fn(ρ)dρ− 2

1∫
r

(
r

ρ

)n
ρ

n
fn(ρ)dρ. (2.7)
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Similar calculation for n < 0 yields

∫∫
D

f(ζ)Qn(r, ζ)dξdη =
1

πn

r∫
0

2π∫
0

f(ρeiθ)
(ρ
r

)−n
e−inθρdρdθ

+
1

πn

1∫
r

2π∫
0

f(ρeiθ)

(
r

ρ

)−n
e−inθρdρdθ

=
1

πn

r∫
0

2π∫
0

∞∑
m=−∞

fm(ρ)eimθ
(ρ
r

)−n
e−inθρdρdθ

+
1

πn

1∫
r

2π∫
0

∞∑
m=−∞

fm(ρ)eimθ
(
r

ρ

)−n
e−inθρdρdθ

=
1

πn

r∫
0

(
r

ρ

)n
ρ

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

+
1

πn

1∫
r

(ρ
r

)n
ρ

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

= 2

r∫
0

(
r

ρ

)n
ρ

n
fn(ρ)dρ+ 2

1∫
r

(ρ
r

)n ρ
n
fn(ρ)dρ. (2.8)

Similarly for n = 0 we have

vn(r) = 4

r∫
0

ρ log rf0(ρ)dρ+ 4

1∫
r

ρ log ρf0(ρ)dρ. (2.9)

Therefore the Fourier coefficients of v(z) are given by

vn(r) =


4
∫ r

0
ρ log rf0(ρ)dρ+ 4

∫ 1

r
ρ log ρf0(ρ)dρ, if n = 0,

−2
∫ r

0

(
ρ
r

)n ρ
n
fn(ρ)dρ− 2

∫ 1

r

(
r
ρ

)n
ρ
n
fn(ρ)dρ, if n > 0,

2
∫ r

0

(
r
ρ

)n
ρ
n
fn(ρ)dρ+ 2

∫ 1

r

(
ρ
r

)n ρ
n
fn(ρ)dρ, if n < 0.
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The solution u(z = reiα) of the homogeneous problem (P1) is given by

u(r, α) =
1

2π

2π∫
0

φ(θ)K(r, α− θ)dθ,

where

φ(θ) = γ(θ)− v(θ) on ∂D.

The Poisson Kernel K(ρ, θ) for ζ = ρeiθ (see[23]) is given by

K(ρ, θ) =
1− ρ2

1 + ρ2 − 2ρ cos θ
0 ≤ ρ ≤ 1,

=
1− ρ2

(1− ρ cos θ)2 + (ρ sin θ)2
,

=
1− |ζ|2

|1− ζ|2
,

=
1− ζζ

(1− ζ)(1− ζ)
,

= Re

(
1 + ζ

1− ζ

)
,

= Re
(
1 + 2(ζ + ζ2 + ....)

)
,

=
∞∑

n=−∞

ρ|n|einθ.
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The Fourier coefficients un(r) of u(z) are given by,

un(r) =
1

2π

2π∫
0

e−inα

 1

2π

2π∫
0

φ(θ)K(r, α− θ)

 dθdα

=
1

2π

2π∫
0

φ(θ)

 1

2π

2π∫
0

K(r, α− θ)e−in(α−θ)dα

 e−inθdθ

=
1

2π

2π∫
0

Kn(r)e−inθdθ

= Kn(r)φn

= r|n|φn,

where φn are the Fourier coefficients of φ(θ).

2.2 The Neumann Problem

We now consider the Poisson equation with Neumann boundary condition. We

have the following theorem from [7].

Theorem 2.2.1. The Neumann problem for the Poissoin equation in a unit disc is

given by

∂z∂z̄w = f in D, ∂νw = g on ∂D (N1)

f ∈ L1(D;C), g ∈ (∂D;C), k ∈ C, 1
2πi

∫
∂D
w(z)dz

z
= k is uniquely solvable if

and only if

1

4i

∫
∂D

g(ζ)
dζ

ζ
=

∫
D

f(ζ)dξdη. (2.10)
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The solution is given by

w(z) = k +
1

4πi

∫
∂D

G3(z, ζ)g(ζ)
dζ

ζ
− 1

π

∫
D

G3(z, ζ)f(ζ)dξdη, (2.11)

where

G3(z, ζ) = log |(1− zζ̄)(ζ − z)|−2 (2.12)

is the Green function for the Neumann problem.

We expand w(.) in terms of Fourier series and derive its Fourier coefficients in

terms of one dimensional integrals in the radial direction.

Theorem 2.2.2. Let w(r, α) is the solution of the Neumann problem in Thm. 2.2.1,

z = reiα, f(reiα) =
∞∑

n=−∞

fn(r)einαand g(eiα) =
∞∑

n=−∞

gne
inα then the Fourier coeffi-

cients wn(r) of w(r, α) can be written as

wn(r) = IN1,n(r) + IN2,n(r) + uN1,n(r),

where

IN1,n(r) =


−2
∫ 1

0
fn(ρ) (rρ)n

n
ρdρ if n > 0,

2
∫ 1

0
fn(ρ) (rρ)−n

n
ρdρ if n < 0,

0 if n = 0,

IN2,n(r) =


−2
[∫ r

0
fn(ρ)(ρ

r
)n ρ

n
dρ+

∫ 1

r
fn(ρ)( r

ρ
)n ρ

n
dρ
]

if n > 0,

2
[∫ 0

r
fn(ρ)( r

ρ
)n ρ

n
dρ+

∫ r
1
fn(ρ)(ρ

r
)n ρ

n
dρ
]

if n < 0,

4
[∫ 0

r
f0(ρ)ρ log rdρ+

∫ r
1
f0(ρ)ρ log ρdρ

]
if n = 0,

and

uN1,n(r) =

 gn
r|n|

|n| if n 6= 0,

0 if n = 0.
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Proof. Let u(z) = uN1 (z) + IN1 (z) + IN2 (z) where

uN1 (z) = − 1

πi

∫
∂D

log |1− zζ̄|g(ζ)
dζ

ζ
, (2.13)

IN1 (z) =
2

π

∫∫
D

log |1− zζ̄|f(ζ)dξdη, (2.14)

IN2 (z) =
2

π

∫∫
D

log |ζ − z|f(ζ)dξdη. (2.15)

We recall that the singular integral IN2 (z) is same as v(z). Hence we obtain the

following,

IN2,n(r) =


−2
[∫ r

0
fn(ρ)(ρ

r
)n ρ

n
dρ+

∫ 1

r
fn(ρ)( r

ρ
)n ρ

n
dρ
]

if n > 0,

2
[∫ 0

r
fn(ρ)( r

ρ
)n ρ

n
dρ+

∫ r
1
fn(ρ)(ρ

r
)n ρ

n
dρ
]

if n < 0,

4
[∫ 0

r
f0(ρ)ρ log rdρ+

∫ r
1
f0(ρ)ρ log ρdρ

]
if n = 0.

Now we write IN1 (z) =
∞∑

n=−∞

IN1,n(r)einα and evaluate IN1,n(r) first. Let α − θ = τ .

Then,

IN1,n(r) =
1

π2

∫∫
D

f(ζ)

2π∫
0

log |1− zζ̄|e−inαdαdξdη

=
1

π2

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

log |1− zζ̄|e−inτρdτdθdρ

= −2

1∫
0

fn(ρ)G
(1)
1,n(r, ρ)ρdρ. (2.16)
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where fn(r) are the Fourier coefficients of f(z = reiα) and

G
(1)
1,n(r, ρ) =

1

π2

2π−θ∫
−θ

log |1− zζ̄|e−inτdτ

= − 1

π2

2π−θ∫
−θ

(
∑
m 6=0

(rρ)|m|

2|m|
eimτ )e−inτdτ

= − 1

π2

∑
n 6=0

(rρ)|n|

2|n|

2π−θ∫
−θ

ei(m−n)τdτ

= −(rρ)|n|

π|n|
, if n 6= 0. (2.17)

Hence substituting (2.17) in (2.16) we obtain,

IN1,n(r) =


−2
∫ 1

0
fn

(rρ)n

n
ρdρ if n > 0,

2
∫ 1

0
fn

(rρ)−n

n
ρdρ if n < 0,

0 if n = 0.

Now for the boundary integral uN1 (z) we see,

uN1 (z) = − 1

πi

∫
∂D

log |1− zζ̄|g(ζ)
dζ

ζ

=
1

πi

∫
∂D

∑
n6=0

|zζ̄||n|

2|n|
ein(α−θ)g(eiθ)

dζ

ζ

=
1

π

2π∫
0

∑
n6=0

r|n|

2|n|
g(eiθ)ein(α−θ)dθ

=
1

π

∑
n6=0

r|n|

2|n|
einα

∞∑
m=−∞

gm

2π∫
0

ei(m−n)θdθ

=
∑
n6=0

r|n|

|n|
gne

inα.
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Therefore the Fourier coefficients of uN1 (z = reiα) are given by

uN1,n(r) =

 gn
r|n|

|n| if n 6= 0,

0 if n = 0.

Thus we obtain the proof for the Thm.2.2.1.
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3. THEORETICAL FOUNDATION: DIRICHLET-1 BIHARMONIC PROBLEM

In this section, we develop the mathematical foundation of the fast algorithm

for the biharmonic equation with different boundary conditions in a unit disc D in

the complex plane. We first consider the biharmonic equation with the Dirichlet-

1 boundary condition (see [7]). We notice that this cannot be decomposed into

two Poisson equations directly and hence we first use the Green’s function for the

biharmonic equation in a unit disc to solve it directly. Also, a second approach based

on [24] is obtained but it is dependent on the direct method. In order to obtain fast

algorithm for the direct approach we use following theorem from [7].

3.1 Mathematical Formulation Of Dirichlet-1 Biharmonic Problem

Theorem 3.1.1. The Dirichlet-1 problem


(∂z∂z̄)

2ω = f, in D,

ω = h0, on ∂D,

∂z̄ω = h1, on ∂D,

(D1)

is uniquely solvable for f ∈ L2(D;C), h0 ∈ C2(∂D,C), h1 ∈ C(∂D,C). Its solu-

tion is given by

ω(z) =
1

2πi

∫
∂D

g1(z, ζ)h0(ζ)
dζ

ζ
+

(1− |z|2)

2πi

∫
∂D

zζ̄

(1− zζ̄)2
h0(ζ)

dζ

ζ

+
(1− |z|2)

2πi

∫
∂D

g1(z, ζ)h1(ζ)dζ̄ − 1

π

∫∫
D

G2(z, ζ)f(ζ)dξdη.

(3.1)
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where

G2(z, ζ) = |ζ − z|2 log

∣∣∣∣1− zζ̄ζ − z

∣∣∣∣2 − (1− |z|2)(1− |ζ|2),

is the Green’s function for the biharmonic equation in a unit disc with (D1) boundary

condition and

g1(z, ζ) = ∂νG1(z, ζ) =
1

1− zζ̄
+

1

1− z̄ζ
− 1.

Next we prove the following theorem.

Theorem 3.1.2. If ω(r, α) is the solution of the (D1) biharmonic problem, z = reiα,

f(reiα) =
∞∑

n=−∞

fn(r)einα, h0(eiα) =
∞∑

n=−∞

ane
inα, and h1(eiα) =

∞∑
n=−∞

bne
inα, then

the Fourier coefficients ωn(r) can be written as

ωn(r) = I3,n(r) + I4,n(r) + I5,n(r) + u2,n(r) + v2,n(r) + r2,n(r),

where

u2,n(r) =

 anr
|n|, if n 6= 0,

a0, if n = 0,
(3.2)

v2,n(r) =

 (1− r2) (2)n−1

(n−1)!
rnan, if n ≥ 1,

0, if n < 1,
(3.3)
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where (x)n = Γ(x+n)
Γ(x)

,

r2,n(r) =

 −b1+nr
|n|(1− r2), if n 6= 0,

−b1(1− r2), if n = 0,
(3.4)

I3,n(r) =

 2(1− r2)
∫ 1

0
ρ(1− ρ2)f0(ρ)dρ, if n = 0,

0, if n 6= 0.
(3.5)

Now we write I4,n(r) = I
(1)
4,n + I

(2)
4,n + I

(3)
4,n + I

(4)
4,n where,

I
(1)
4,n(r) =


2r2
∫ 1

0
fn(ρ) (rρ)n

n
ρdρ, if n > 0,

−2r2
∫ 1

0
fn(ρ) (rρ)−n

n
ρdρ, if n < 0,

0, if n = 0,

(3.6)

I
(2)
4,n(r) =


2
∫ 1

0
fn(ρ) (rρ)n

n
ρ3dρ, if n > 0,

−2
∫ 1

0
fn(ρ) (rρ)−n

n
ρ3dρ, if n < 0,

0, if n = 0,

(3.7)

I
(3)
4,n(r) =


− 2

(n+1)

∫ 1

0
fn(ρ)(rρ)n+2ρdρ, if n > −1,

2
(n+1)

∫ 1

0
fn(ρ)(rρ)−nρdρ, if n < −1,

0, if n = −1,

(3.8)
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I
(4)
4,n(r) =


− 2

(n−1)

∫ 1

0
fn(ρ)(rρ)nρdρ, if n > 1,

2
(n−1)

∫ 1

0
fn(ρ)(rρ)2−nρdρ, if n < 1,

0, if n = 1.

(3.9)

Now we write I5,n(r) = I
(1)
5,n + I

(2)
5,n + I

(3)
5,n + I

(4)
5,n where

I
(1)
5,n(r) =


−2r2

[∫ r
0
fn(ρ)(ρ

r
)n ρ

n
dρ+

∫ 1

r
fn(ρ)( r

ρ
)n ρ

n
dρ
]
, if n > 0

2r2
[∫ r

0
fn(ρ)( r

ρ
)n ρ

n
dρ+

∫ 1

r
fn(ρ)(ρ

r
)n ρ

n
dρ
]
, if n < 0

4r2
[∫ r

0
f0(ρ)ρ log rdρ+

∫ 1

r
f0(ρ)ρ log ρdρ

]
, if n = 0,

(3.10)

I
(2)
5,n(r) =


−2
n

[∫ r
0
fn(ρ)(ρ

r
)nρ3dρ+

∫ 1

r
fn(ρ)( r

ρ
)nρ3dρ

]
, if n > 0

2
n

[∫ r
0
fn(ρ)( r

ρ
)nρ3dρ+

∫ 1

r
fn(ρ)(ρ

r
)nρ3dρ

]
, if n < 0

4
[∫ r

0
f0(ρ)ρ3 log rdρ+

∫ 1

r
f0(ρ)ρ3 log ρdρ

]
, if n = 0,

(3.11)

I
(3)
5,n(r) =


2r

(n+1)

[∫ r
0
fn(ρ)(ρ

r
)(n+1)ρ2dρ+

∫ 1

r
fn(ρ)( r

ρ
)(n+1)ρ2dρ

]
, if n > −1

−2r
(n+1)

[∫ r
0
fn(ρ)( r

ρ
)(n+1)ρ2dρ+

∫ 1

r
fn(ρ)(ρ

r
)(n+1)ρ2dρ

]
, if n < −1

−4r
[∫ r

0
f−1(ρ)ρ2 log rdρ+

∫ 1

r
f−1(ρ)ρ2 log ρdρ

]
, if n = −1,

(3.12)

I
(4)
5,n(r) =


2r

(n−1)

[∫ r
0
fn(ρ)(ρ

r
)(n−1)ρ2dρ+

∫ 1

r
fn(ρ)( r

ρ
)(n−1)ρ2dρ

]
, if n > 1

−2r
(n−1)

[∫ r
0
fn(ρ)( r

ρ
)(n−1)ρ2dρ+

∫ 1

r
fn(ρ)(ρ

r
)(n−1)ρ2dρ

]
, if n < 1

−4r
[∫ r

0
f1(ρ)ρ2 log rdρ+

∫ 1

r
f1(ρ)ρ2 log ρdρ

]
, if n = 1,

(3.13)

Proof. From (3.1) we rewrite ω(z) as
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ω(z) = u2(z) + v2(z) + r2(z) + I3(z) + I4(z) + I5(z) where

u2(z) =
1

2πi

∫
∂D

g1(z, ζ)h0(ζ)
dζ

ζ
, (3.14)

v2(z) =
(1− |z|2)

2πi

∫
∂D

zζ̄

(1− zζ̄)2
h0(ζ)

dζ

ζ
, (3.15)

r2(z) =
(1− |z|2)

2πi

∫
∂D

g1(z, ζ)h1(ζ)dζ̄, (3.16)

I3(z) =
(1− |z|2)

π

∫∫
D

f(ζ)(1− |ζ|2)dξdη, (3.17)

I4(z) = − 2

π

∫∫
D

|ζ − z|2 log |1− zζ̄|f(ζ)dξdη, (3.18)

I5(z) =
2

π

∫∫
D

|ζ − z|2 log |ζ − z|f(ζ)dξdη. (3.19)

We evaluate first,

I4(z) = − 2

π

∫∫
D

|ζ − z|2 log |1− zζ̄|f(ζ)dξdη

= − 2

π

∫∫
D

(|ζ|2 + |z|2 − ζz̄ − ζ̄z) log |1− zζ̄|f(ζ)dξdη

= I
(1)
4 (z) + I

(2)
4 (z) + I

(3)
4 (z) + I

(4)
4 (z)
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where

I
(1)
4 (z) = −2r2

π

∫∫
D

log |1− zζ̄|f(ζ)dξdη,

I
(2)
4 (z) = − 2

π

∫∫
D

ρ2 log |1− zζ̄|f(ζ)dξdη,

I
(3)
4 (z) =

2

π

∫∫
D

z̄ζ log |1− zζ̄|f(ζ)dξdη,

I
(4)
4 (z) =

2

π

∫∫
D

zζ̄ log |1− zζ̄|f(ζ)dξdη.

Let I
(1)
4 (z) =

∞∑
n=−∞

I
(1)
4,n(r)einα and α− θ = τ. Then

I
(1)
4,n(r) = − r

2

π2

∫∫
D

f(ζ)

2π∫
0

log |1− zζ̄|e−inαdαdξdη

= − r
2

π2

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

log |1− zζ̄|e−inτρdτdθdρ

= 2r2

1∫
0

fn(ρ)G
(1)
4,n(r, ρ)ρdρ. (3.20)
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where,

G
(1)
4,n(r, ρ) = − 1

π

2π−θ∫
−θ

log |1− zζ̄|e−inτdτ

=
1

π

2π−θ∫
−θ

(
∑
m6=0

(rρ)|m|

2|m|
eimτ )e−inτdτ

=
1

π

∑
n6=0

(rρ)|m|

2|m|

2π−θ∫
−θ

ei(m−n)τdτ

=


(rρ)|n|

|n| , if n 6= 0

0. if n = 0.
(3.21)

Substituting (3.21) in (3.20) we recover the Fourier coefficients of I
(1)
4 (z). Similarly

we obtain the Fourier coefficients of I
(2)
4 (z). Let I

(3)
4 (z) =

∞∑
n=−∞

I
(3)
4,n(r)einα. Then,

I
(3)
4,n(r) =

1

π2

∫∫
D

f(ζ)

2π∫
0

ζz̄ log |1− zζ̄|e−inαdαdξdη

=
1

π2

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

ζz̄ log |1− zζ̄|e−inτρdτdθdρ

= 2π

1∫
0

fn(ρ)G
(3)
4,n(r, ρ)ρdρ. (3.22)
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where fn(ρ) is the Fourier coefficient of f and

G
(3)
4,n(r, ρ) =

1

π

2π−θ∫
−θ

ζz̄ log |1− zζ̄|e−inτdτ

=
1

2π

2π−θ∫
−θ

−
∑
m 6=0

(ρr)|m|+1

2|m|
ei(m−1)τe−inτdτ

= − 1

2π

∑
m6=0

(ρr)|m|+1

2|m|

2π−θ∫
−θ

ei(m−1−n)τdτ

=

 −
(ρr)|n+1|+1

|1+n| , if n 6= −1

0, if n = −1.
(3.23)

The Fourier coefficients of I
(3)
4 (z) are given by (3.8). Let I

(4)
4 (z) =

∞∑
n=−∞

I
(4)
4,n(r)einα.

Then,

I
(4)
4,n(r) =

1

π2

∫∫
D

f(ζ)

2π∫
0

zζ̄ log |1− zζ̄|e−inαdαdξdη

=
1

π2

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

zζ̄ log |1− zζ̄|e−inτρdτdθdρ

= 2π

1∫
0

fn(ρ)G
(4)
4,n(r, ρ)ρdρ, (3.24)
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where fn(ρ) is the Fourier coefficient of f and

G
(4)
4,n(r, ρ) =

1

π

2π−θ∫
−θ

zζ̄ log |1− zζ̄|e−inτdτ

=
1

π

2π−θ∫
−θ

−
∑
m6=0

(ρr)|m|+1

2|m|
ei(m+1)τe−inτdτ

= − 1

π

∑
m 6=0

(ρr)|m|+1

2|m|

2π−θ∫
−θ

ei(m+1−n)τdτ

=

 −
(ρr)|n−1|+1

|1−n| , if n 6= 1

0, if n = 1.
(3.25)

Substituting (3.25) in (3.24) we recover the Fourier coefficients of I4
4 (z). Now we

evaluate the singular integral I5(z) given by (3.19).

I5(z) =
2r2

π

∫∫
D

log |ζ − z|f(ζ)dξdη − 2

π

∫∫
D

z̄ζ log |ζ − z|f(ζ)dξdη

+
2

π

∫∫
D

|ζ|2 log |ζ − z|f(ζ)dξdη − 2

π

∫∫
D

zζ̄ log |ζ − z|f(ζ)dξdη (3.26)

= I
(1)
5 (z) + I

(2)
5 (z) + I

(3)
5 (z) + I

(4)
5 (z), (3.27)
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where

I
(1)
5 (z) =

2r2

π

∫∫
D

log |ζ − z|f(ζ)dξdη, (3.28)

I
(2)
5 (z) =

2

π

∫∫
D

|ζ|2 log |ζ − z|f(ζ)dξdη, (3.29)

I
(3)
5 (z) = − 2

π

∫∫
D

z̄ log |ζ − z|ζf(ζ)dξdη, (3.30)

I
(4)
5 (z) = − 2

π

∫∫
D

z log |ζ − z|ζ̄f(ζ)dξdη. (3.31)

Notice the singular integral associated with I
(1)
5 (z) is same as IN2 (z) (see (2.15))

except a r2 term and hence the analysis is similar. Now we focus on I
(2)
5 (z). Let

I
(2)
5 (z) =

∞∑
n=−∞

I
(2)
5,n(r)einα. As in (2.5), I

(2)
5,n(r) is given by

I
(2)
5,n(r) =

∫∫
Ωr0

|ζ|2f(ζ)Qn(r, ζ)dξdη +

∫∫
Ω1
r

|ζ|2f(ζ)Qn(r, ζ)dξdη,

where Qn(r, ζ) has been evaluated in Section.2. For n > 0 we have the following.

∫∫
D

|ζ|2f(ζ)Qn(r, ζ)dξdη =

∫∫
Ωr0

|ζ|2f(ζ)Qn(r, ζ)dξdη +

∫∫
Ω1
r

|ζ|2f(ζ)Qn(r, ζ)dξdη

= −
∫∫
Ωr0

|ζ|2f(ζ)

((ρ
r

)n 1

πn
e−inθ

)
dξdη

−
∫∫
Ω1
r

|ζ|2f(ζ)

((
r

ρ

)n
1

πn
e−inθ

)
dξdη
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= − 1

πn

r∫
0

2π∫
0

ρ2f(ρeiθ)
(ρ
r

)n
e−inθρdθdρ

− 1

πn

1∫
r

2π∫
0

ρ2f(ρeiθ)

(
r

ρ

)n
e−inθρdθdρ.

= − 1

πn

r∫
0

2π∫
0

∞∑
m=−∞

fm(ρ)eimθρ3
(ρ
r

)n
e−inθdθdρ

− 1

πn

1∫
r

2π∫
0

∞∑
m=−∞

fm(ρ)eimθρ3

(
r

ρ

)n
e−inθdθdρ

= − 1

πn

r∫
0

(ρ
r

)n
ρ3

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

− 1

πn

1∫
r

(
r

ρ

)n
ρ3

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

= −2

r∫
0

(ρ
r

)n ρ3

n
fn(ρ)dρ− 2

1∫
r

(
r

ρ

)n
ρ3

n
fn(ρ)dρ. (3.32)

Similar calculation for n < 0 yields,

∫∫
D

|ζ|2f(ζ)Qn(r, ζ)dξdη =
1

πn

r∫
0

2π∫
0

f(ρeiθ)
(ρ
r

)−n
e−inθρ3dρdθ

+
1

πn

1∫
r

2π∫
0

f(ρeiθ)

(
r

ρ

)−n
e−inθρ3dρdθ
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=
1

πn

r∫
0

2π∫
0

∞∑
m=−∞

fm(ρ)eimθ
(ρ
r

)−n
e−inθρ3dρdθ

+
1

πn

1∫
r

2π∫
0

∞∑
m=−∞

fm(ρ)eimθ
(
r

ρ

)−n
e−inθρ3dρdθ

= +
1

πn

r∫
0

(
r

ρ

)n
ρ3

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

+
1

πn

1∫
r

(ρ
r

)n
ρ3

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

= 2

r∫
0

(
r

ρ

)n
ρ3

n
fn(ρ)dρ+ 2

1∫
r

(ρ
r

)n ρ3

n
fn(ρ)dρ. (3.33)

Similarly, for n = 0 yields,

I
(2)
5,n(r) = 4

r∫
0

ρ3 log rf0(ρ)dρ+ 4

1∫
r

ρ3 log ρf0(ρ)dρ. (3.34)

From (3.32), (3.33), (3.34) we recover (3.11).

Let I
(3)
5 (z) =

∞∑
n=−∞

I
(3)
5,n(r)einα where I

(3)
5,n(r) is similarly given by

I
(3)
5,n(r) =

∫∫
Ωr0

z̄ζf(ζ)Q1
n(r, ζ)dξdη +

∫∫
Ω1
r

z̄ζf(ζ)Q1
n(r, ζ)dξdη. (3.35)

where

Q1
n(r, ζ) =

1

π2

2π∫
0

e−inαz̄ log |ζ − z|dα.
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For r > ρ, we have

Q1
n(r, ζ) =

1

π2

2π∫
0

e−inαre−iα

(
log r −

∑
m6=0

(ρ
r

)|m| 1

2|m|
eimτ

)
dα

=
r

π2

2π∫
0

e−i(n+1)α

(
log r −

∑
m 6=0

(ρ
r

)|m| 1

2|m|
eim(α−θ)

)
dα

=
r

π2

2π∫
0

e−i(n+1)α log rdα− 1

π2

∑
m 6=0

(ρ
r

)|m| 1

2|m|
e−imθ

2π∫
0

ei(m−n+1)αdα

=


r

π|n+1|(
ρ
r
)|n+1|e−i(n+1)θ if n 6= −1,

−2
π
r log r if n = −1.

(3.36)

Similarly we obtain for r < ρ,

Q1
n(r, ζ) =

 + r
π|n+1|

(
r
ρ

)|n+1|
e−i(n+1)θ, if n 6= −1,

− 2
π
r log ρ, if n = −1.

(3.37)
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Substituting (3.36), (3.37) in (3.35) we have for n > −1,

I
(3)
5,n(r) =

∫∫
Ωr0

ζf(ζ)Q1
n(r, ζ)dξdη +

∫∫
Ω1
r

ζf(ζ)Q1
n(r, ζ)dξdη

=

∫∫
Ωr0

ζf(ζ)

((ρ
r

)(n+1) r

π(n+ 1)
e−i(n+1)θ

)
dξdη

+

∫∫
Ω1
r

ζf(ζ)

((
r

ρ

)(n+1)
r

π(n+ 1)
e−i(n+1)θ

)
dξdη

=
r

π(n+ 1)

r∫
0

2π∫
0

ρeiθf(ρeiθ)
(ρ
r

)(n+1)

e−i(n+1)θρdθdρ

+
r

π(n+ 1)

1∫
r

2π∫
0

ρeiθf(ρeiθ)

(
r

ρ

)(n+1)

e−i(n+1)θρdθdρ

=
r

π(n+ 1)

r∫
0

2π∫
0

∞∑
m=−∞

fm(ρ)eimθρ2
(ρ
r

)(n+1)

eiθe−i(n+1)θdθdρ

+
r

π(n+ 1)

1∫
r

2π∫
0

∞∑
m=−∞

fm(ρ)eimθρ2

(
r

ρ

)(n+1)

e−inθdθdρ

=
r

π(n+ 1)

r∫
0

(ρ
r

)(n+1)

ρ2

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

+
r

π(n+ 1)

1∫
r

(
r

ρ

)(n+1)

ρ2

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

= 2r

r∫
0

(ρ
r

)n+1 ρ2

(n+ 1)
fn(ρ)dρ+ 2r

1∫
r

(
r

ρ

)(n+1)
ρ2

(n+ 1)
fn(ρ)dρ. (3.38)

Similarly we evaluate for n < −1 and n = −1 and obtain (3.12).
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Again let I
(4)
5 (z) =

∞∑
n=−∞

I
(4)
5,n(r)einα where I

(4)
5,n(r) is similarly given by

I
(4)
5,n(r) =

∫∫
Ωr0

zζ̄f(ζ)Q(2)
n (r, ζ)dξdη +

∫∫
Ω1
r

zζ̄f(ζ)Q2
n(r, ζ)dξdη.

where,

Q(2)
n (r, ζ) =

1

π2

2π∫
0

e−inαz log |ζ − z|dα.

For r > ρ we have,

Q(2)
n (r, ζ) =

1

π2

2π∫
0

e−inαreiα

(
log r −

∑
m6=0

(ρ
r

)|m| 1

2|m|
eimτ

)
dα

=
r

π2

2π∫
0

ei(1−n)α

(
log r −

∑
m 6=0

(ρ
r

)|m| 1

2|m|
eim(α−θ)

)
dα

=
r

π2

2π∫
0

ei(1−n)α log rdα− r

π2

∑
m 6=0

(ρ
r

)|m| 1

2|m|
e−imθ

2π∫
0

ei(m−n+1)αdα

=


r

π|n−1|(
ρ
r
)|n−1|e−i(n−1)θ, if n 6= 1,

−2
π
r log r, if n = 1.

(3.39)

Similarly for r < ρ,

Q(2)
n (r, ζ) =

 + r
π|n−1|

(
r
ρ

)|n−1|
e−i(n−1)θ, if n 6= −1,

− 2
π
r log ρ, if n = −1.

(3.40)
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For n > 1 we have,

I
(4)
5,n(r) =

∫∫
Ωr0

ζ̄f(ζ)

((ρ
r

)(n−1) r

π(n− 1)
e−i(n−1)θ

)
dξdη

+

∫∫
Ω1
r

ζ̄f(ζ)

((
r

ρ

)(n−1)
r

π(n− 1)
e−i(n−1)θ

)
dξdη

=
r

π(n− 1)

r∫
0

2π∫
0

ρe−iθf(ρeiθ)
(ρ
r

)(n−1)

e−i(n−1)θρdθdρ

+
r

π(n− 1)

1∫
r

2π∫
0

ρe−iθf(ρeiθ)

(
r

ρ

)(n−1)

e−i(n−1)θρdθdρ

=
r

π(n− 1)

r∫
0

2π∫
0

∞∑
m=−∞

fm(ρ)eimθρ2
(ρ
r

)(n−1)

e−iθe−i(n−1)θdθdρ

+
r

π(n− 1)

1∫
r

2π∫
0

∞∑
m=−∞

fm(ρ)eimθρ2

(
r

ρ

)(n−1)

e−inθdθdρ

=
r

π(n− 1)

r∫
0

(ρ
r

)(n−1)

ρ2

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

+
r

π(n− 1)

1∫
r

(
r

ρ

)(n−1)

ρ2

∞∑
m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

= 2r

r∫
0

(ρ
r

)n−1 ρ2

(n− 1)
fn(ρ)dρ+ 2r

1∫
r

(
r

ρ

)(n−1)
ρ2

(n− 1)
fn(ρ)dρ. (3.41)

Similarly we evaluate for n < 1 and n = 1 and obtain (3.13).
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Let I3(z) =
∞∑

n=−∞

I3,n(r)einα. Then,

I3,n(r)(r) =
(1− r2)

π

1∫
0

(1− ρ2)
∞∑

m=−∞

fm(ρ)

2π∫
0

eimθρdθdρ, m = 0

= 2(1− r2)

1∫
0

ρ(1− ρ2)f0(ρ)dρ

=

 2(1− r2)
∫ 1

0
ρ(1− ρ2)fn(ρ)dρ, if n = 0

0, if n 6= 0.
(3.42)

Thus we recover (3.5). Now for the boundary integrals u2(z) is same as u1(z) and

r2(z) can be similarly evaluated. For v2(z) we have,

v2(z) =
(1− |z|2)

2πi

∫
∂D

h0(ζ)
∞∑
k=0

(2)k
k!

(zζ̄)k+1dζ

ζ

=
(1− r2)

2π

2π∫
0

h0(eiθ)
∞∑
k=0

(2)k
k!

rk+1ei(α−θ)(k+1)dθ

=
(1− r2)

2π

∞∑
k=0

(2)k
k!

rk+1ei(k+1)α

∞∑
n=−∞

an

2π∫
0

ei(n−k−1)dθ

= (1− r2)
∞∑
k=0

(2)k
k!

rk+1ei(k+1)αa(k+1). (3.43)

Thus we recover (3.3). We see that the above calculations are exact. So the errors in

actual implementation will arise from finite truncation of the the Fourier series and

approximate evaluation of the one dimensional integrals. This concludes the proof of

Theorem 3.1.2 and provides the mathematical foundation to solve the (D1) problem

by the first approach.

The second approach to solve the (D1) problem is based on the decomposition
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of the problem into two Poisson problems and a corresponding homogeneous (D1)

biharmonic problem. (see[24]). The (D1) biharmonic problem can be decomposed

in the following way

ω = ω1 + ω2

where ω1 and ω2 satisfy

 (∂z∂z̄)u = f in D

u = 0 on ∂D

 (∂z∂z̄)ω1 = u in D

ω1 = h0 on ∂D

and


(∂z∂z̄)

2ω2 = 0, in D

ω2 = 0, on ∂D

∂z̄ω2 = h1 − ω1z̄, on ∂D.

The Poisson problems are solved as discussed in Section.2 and for the homogeneous

biharmonic problem we just need the boundary integral of the (D1) problem in The-

orem 3.1.2.
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4. THEORETICAL FOUNDATION: DIRICHLET-2 BIHARMONIC PROBLEM

In this section, we focus on the Dirichlet-2 (D2) biharmonic problem and develop

the mathematical foundation to obtain the fast algorithm for this problem. The

following theorem is taken from [7].

4.1 Mathematical Formulation Of Dirichlet-2 Biharmonic Problem

Theorem 4.1.1. The Dirichlet-2 problem for the biharmonic equation is given by


(∂z∂z̄)

2ω = f, in D,

ω = h0, on ∂D,

∂z∂z̄ω = h2, on ∂D.

(D2)

is uniquely solvable for f ∈ L1(D;C), h0 ∈ C(∂D,C), h2 ∈ C(∂D,C) and the solution

is given by

ω(z) = u2(z) + v3(z) +Gf(z).
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where

u2(z) =
1

2πi

∫
∂D

g1(z, ζ)h0(ζ)
dζ

ζ
,

v3(z) =
1

2πi

∫
∂D

H2(z, ζ)h2(ζ)
dζ

ζ
,

Gf(z) = − 1

π

∫
D

G12(z, ζ)f(ζ)dξdη,

H2(z, ζ) = (1− |z|2)

[
1

zζ̄
log(1− zζ̄) +

1

z̄ζ
log(1− z̄ζ) + 1

]
,

G12(z, ζ) = |ζ − z|2 log

∣∣∣∣1− zζ̄ζ − z

∣∣∣∣2 + (1− |z|2)(1− |ζ|2)

[
log(1− zζ̄)

zζ̄
+

log(1− z̄ζ)

z̄ζ

]
.

Here G12(z, ζ) is the Green’s function for (D2) biharmonic problem and g1(z, ζ) is

given in Section. 3.

Substituting the expression of H2(z, ζ) and G12(z, ζ) in the expression of v3(z)

and Gf(z) respectively we obtain the following expression.

v3(z) =
1

2πi
(1− |z|2)

∫
∂D

h2(ζ) log(1− zζ̄)

z|ζ|2
dζ +

1

2πi
(1− |z|2)

∫
∂D

h2(ζ) log(1− ζz̄)

z̄ζ2
dζ

+
1

2πi
(1− |z|2)

∫
∂D

h1(ζ)
dζ

ζ
.

Gf(z) = − 2

π

∫
D

|ζ − z|2 log |1− zζ̄|f(ζ)dξdη +
2

π

∫
D

|ζ − z|2 log |ζ − z|f(ζ)dξdη

− 1

π

(1− |z|2)

z

∫
D

(1− |ζ|2)
log(1− ζ̄z))

ζ̄
f(ζ)dξdη

− 1

π

(1− |z|2)

z̄

∫
D

(1− |ζ|2)
log(1− z̄ζ))

ζ
f(ζ)dξdη

= I4(z) + I5(z) + I6(z) + I7(z), (4.1)
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where

I4(z) = − 2

π

∫
D

|ζ − z|2 log |1− zζ̄|f(ζ)dξdη,

I5(z) =
2

π

∫
D

|ζ − z|2 log |ζ − z|f(ζ)dξdη,

I6(z) = − 1

π

(1− |z|2)

z

∫
D

(1− |ζ|2)
log(1− ζ̄z))

ζ̄
f(ζ)dξdη,

I7(z) = − 1

π

(1− |z|2)

z̄

∫
D

(1− |ζ|2)
log(1− z̄ζ))

ζ
f(ζ)dξdη.

Our goal is to develop fast and accurate algorithms to solve the singular integrals ap-

pearing above in the expression of Gf(z). This will lead to the desired fast algorithms

for solving (D2) biharmonic problem (see Thm. 4.1.1).

Theorem 4.1.2. If ω(r, α) is the solution of the (D2) biharmonic problem, z = reiα,

f(reiα) =
∞∑

n=−∞

fn(r)einα, h0(reiα) =
∞∑

n=−∞

ane
inα, and h2(eiα) =

∞∑
n=−∞

cne
inα

then the Fourier coefficients ωn(r) of ω(r, α) can be written as

ωn(r) = I4,n(r) + I5,n(r) + I6,n(r) + I7,n(r) + u2,n(r) + v3,n(r),

where I4,n(r), I5,n(r) and u2,n(r) are same as in Theorem (3.1.2) and

I6,n(r) =


2(1−r2)rn

(n+1)

∫ 1

0
ρ(n+1)(1− ρ2)fn(ρ)dρ, if n ≥ 0

0, if n < 0.
(4.2)

I7,n(r) =


2(1−r2)r−n

(1−n)

∫ 1

0
ρ(1−n)(1− ρ2)fn(ρ)dρ, if n ≤ 0

0. if n > 0.
(4.3)
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v3,n(r) =


cn(r|n|+2−r|n|)

n+1
, if n 6= 0

c0(1− r2), if n = 0.

Proof. We first compute I6,n(r) and I7,n(r). We first evaluate the Fourier coeffi-

cients I6,n(r) of I6(z).

I6,n(r) =
1

2π2

∫∫
D

f(ζ)Pn(r, ζ)dζdη, (4.4)

where

Pn(r, ζ) = (r2 − 1)(1− |ζ|2)

2π∫
0

e−inα
log(1− zζ̄)

zζ̄
dα. (4.5)

= (r2 − 1)(1− |ζ|2)

2π∫
0

e−inα
log(1− zζ̄)

zζ̄
dα

= (r2 − 1)(1− |ζ|2)

2π∫
0

e−inα
∞∑
m=1

− (zζ̄)m

m(zζ̄)
dα

= (1− r2)(1− |ζ|2)
∞∑
m=1

(rζ̄)(m−1)

m

2π∫
0

e−i(m−n−1)αdα

=

 2π (1−r2)(1−|ζ|2)(rζ̄)n

(n+1)
, if n ≥ 0,

0, if n < 0.
(4.6)

Substituting (4.6) in (4.4) we recover (4.2).

I6,n(r) =
(1− r2)rn

π(n+ 1)

1∫
0

ρ(n+1)(1− ρ2)
∞∑

m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

=


2(1−r2)rn

(n+1)

∫ 1

0
ρ(n+1)(1− ρ2)fn(ρ)dρ, if n ≥ 0

0, if n < 0.
(4.7)
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Similarly let,

I7,n(r) =
1

2π2

∫∫
D

f(ζ)Sn(r, ζ)dζdη. (4.8)

where

Sn(r, ζ) = (r2 − 1)(1− |ζ|2)

2π∫
0

e−inα
log(1− ζz̄)

ζz̄
dα

= (r2 − 1)(1− |ζ|2)

2π∫
0

e−inα
log(1− ζz̄)

ζz̄
dα

= (r2 − 1)(1− |ζ|2)

2π∫
0

e−inα
∞∑
m=1

− (ζz̄)m

m(ζz̄)
dα

= (1− r2)(1− |ζ|2)
∞∑
m=1

(rζ)(m−1)

m

2π∫
0

ei(1−m−n)αdα

=

 2π (1−r2)(1−|ζ|2)(rζ)−n

(1−n)
, if n ≤ 0,

0, if n > 0.
(4.9)

Hence substituting (4.9) in (4.8) we recover (4.3).

I7,n(r) =
(1− r2)r−n

π(1− n)

1∫
0

ρ(1−n)(1− ρ2)
∞∑

m=−∞

fm(ρ)

2π∫
0

ei(m−n)θdθdρ

=


2(1−r2)r−n

(1−n)

∫ 1

0
ρ(1−n)(1− ρ2)fn(ρ)dρ, if n ≤ 0.

0, if n > 0.
(4.10)

The boundary integrals are computed in a similar fashion as earlier but we provide

the details for the sake of completeness. Let

v3(z) = v
(1)
3 (z) + v

(2)
3 (z) + v

(3)
3 (z), (4.11)
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where

v
(1)
3 (z) =

1

2πi
(1− |z|2)

∫
∂D

h2(ζ) log(1− zζ̄)

z|ζ|2
dζ,

v
(2)
3 (z) =

1

2πi
(1− |z|2)

∫
∂D

h2(ζ) log(1− ζz̄)

z̄ζ2
dζ,

v
(3)
3 (z) =

1

2πi
(1− |z|2)

∫
∂D

h2(ζ)
dζ

ζ
.

We now evaluate the integrals v
(1)
3 (z), v

(2)
3 (z), v

(3)
3 (z) in terms of Fourier coefficients

of h2(eiα) =
∞∑

n=−∞

cne
inα in the the following way.

v
(1)
3 (z) =

1

2πz
(1− r2)

∫
∂D

h2(eiθ) log(1− rei(α−θ))eiθdθ

=
−1

2πz
(1− r2)

∞∑
n=1

rn

n

2π∫
0

h2(eiθ)ein(α−θ)eiθdθ

=
−1

2πz
(1− r2)

∞∑
n=1

rn

n

2π∫
0

∞∑
m=−∞

cme
imθein(α−θ)eiθdθ

=
−1

2πz
(1− r2)

∞∑
n=1

rn

n
einα

∞∑
m=−∞

cm

2π∫
0

ei(m−n+1)θdθ

=
∞∑
n=1

r(n−1)(r2 − 1)

n
ei(n−1)αcn−1

=
∞∑
n=0

rn(r2 − 1)

n+ 1
einαcn

=
∞∑
n=0

cn
n+ 1

(rn+2 − rn)einα.
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v
(2)
3 (z) =

(1− r2)

2πz̄

2π∫
0

h2(eiθ) log(1− rei(θ−α))e−iθdθ

=
(r2 − 1)

2πz̄

2π∫
0

h2(eiθ)
∞∑
n=1

rnein(α−θ)

n
e−iθdθ

=
(r2 − 1)

2πz̄

∞∑
n=1

rn

n
e−inα

2π∫
0

∞∑
m=−∞

cme
imθei(n−1)θdθ

=
(r2 − 1)

2πz̄

∞∑
n=1

rn

n
e−inα

∞∑
m=−∞

cm

2π∫
0

ei(m+n−1)θdθ

=
(r2 − 1)

z̄

∞∑
n=1

rn

n
e−inαc1−n

=
0∑

m=−∞

cm
1−m

(r2−m − r−m)eimα.

v
(3)
3 (z) =

(1− r2)

2π

2π∫
0

h2(eiθ)dθ

=
(1− r2)

2π

2π∫
0

∞∑
m=−∞

cme
imθdθ

=
(1− r2)

2π

∞∑
m=−∞

cm

2π∫
0

eimθdθ

= c0(1− r2).

Substituting these in (4.11) we find the Fourier coefficients of v3(z) =
∞∑

n=−∞

vn(r)einα

as

v3,n(r) =


cn(r|n|+2−r|n|)

1+|n| , if n 6= 0,

c0(1− r2), if n = 0.
(4.12)

Thus we obtain the proof for the Thm.4.1.2.
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We note here that the (D2) biharmonic problem can be decomposed into two

Poisson problems.

 (∂z∂z̄)u = f in D

u = h2 on ∂D
(4.13)

 (∂z∂z̄)ω = u in D

ω = h0 on ∂D
(4.14)

Hence it can be solved using the fast Poisson solver discussed in Section. 2. We

first solve (4.13) for u and then (4.14) to obtain ω. We implement both the methods

namely the direct and the double Poisson and compare our results in Section. 10.
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4.1.1 Validation Of The Method

We illustrate the direct method with an explicit example of the Dirichlet-2 (D2)

biharmonic problem. The main reason to do this is to give an explicit demonstration

of the operations if f is known explicitly and the ability of the algorithm to evaluate

the integrals analytically which is an advantage for this method. We consider

f(z) = zpz̄q

where p, q are constants and k = p − q ∈ Z. The Fourier coefficients of f are given

by

fn(r) =

 rp+q if n = k

0 if n 6= k

We notice the following.

I
(j)
4,n(r) = 0, for n 6= k, j = 1, 2, 3, 4

I
(j)
5,n(r) = 0, for n 6= k, j = 1, 2, 3, 4

I6,n(r) = 0, for n 6= k,

I7,n(r) = 0, for n 6= k.
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Now we compute the non zero Fourier coefficients for n = k.

For k > 0 the Fourier coefficients of I4,k(r) is

I
(1)
4,k(r) = 2r2

1∫
0

(rρ)k

k
ρp+q+1dρ

=
2rk+2

k(p+ q + k + 2)
when (p+ q + k + 2) 6= 0.

For k > 0 and (p + q + k + 2) = 0, I
(1)
4,k(r) = ∞. The integral is unbounded as

f is not in L1 and hence the condition for Thm.4.1.1 is not satisfied.

For k < 0,

I
(1)
4,k(r) = −2r2−k

1∫
0

(ρ)p+q+1−k

k
dρ

=
−2r2−k

k(p+ q − k + 2)
when (p+ q − k + 2) 6= 0.

For k < 0 and (p + q − k + 2) = 0, I
(1)
4,k(r) = ∞. As before f is not in L1 and

Thm.4.1.1 is not satisfied so the integral is unbounded.

For k = 0, I
(1)
4,k(r) = 0,

For k > 0,

I
(2)
4,k(r) = 2rk

1∫
0

(ρ)k

k
ρp+q+3dρ

=
2rk

k(p+ q + k + 4)
when (p+ q + k + 4) 6= 0.

For k > 0 and (p+ q + k + 4) = 0, I
(2)
4,k(r) =∞. The reason for unboundedness

is same as above.
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For k < 0,

I
(2)
4,k(r) = −2r−k

1∫
0

(ρ)p+q+3−k

k
dρ

=
−2r−k

k(p+ q − k + 4)
when (p+ q − k + 4) 6= 0.

For k < 0 and (p+ q − k + 4) = 0, I
(2)
4,k(r) =∞ as f is not in L1.

For k = 0, I
(2)
4,k(r) = 0.

For k > −1,

I
(3)
4,k(r) = −2r2

1∫
0

(rρ)k+2

k + 1
ρp+q+1dρ

= − 2rk+2

(k + 1)(p+ q + k + 4)
when (p+ q + k + 4) 6= 0.

For k > −1 and (p+ q + k + 4) = 0, I
(3)
4,k(r) =∞ as f is not in L1.

For k < −1,

I
(3)
4,k(r) = 2r−k

1∫
0

(ρ)p+q+1−k

k + 1
dρ

=
2r−k

(k + 1)(p+ q − k + 2)
when (p+ q − k + 2) 6= 0.

For k < −1 and (p+ q − k + 2) = 0, I
(3)
4,k(r) =∞ as f is not in L1.

For k = −1, I
(3)
4,k(r) = 0.
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For k > 1,

I
(4)
4,k(r) = −2

1∫
0

(rρ)k

k − 1
ρp+q+1dρ

= − 2rk

(k − 1)(p+ q + k + 2)
when (p+ q + k + 2) 6= 0.

For k > 1 and (p+ q + k + 2) = 0, I
(4)
4,k(r) =∞ as f is not in L1.

For k < 1,

I
(4)
4,k(r) = 2r2−k

1∫
0

(ρ)p+q+3−k

k − 1
dρ

=
2r2−k

(k − 1)(p+ q − k + 4)
when (p+ q − k + 4) 6= 0.

For k < 1 and (p+ q − k + 4) = 0, I
(4)
4,k(r) =∞ as f is not in L1.

For k = 1, I
(4)
4,k(r) = 0.

For k > 0 and (p+ q − k + 2)(p+ q + k + 2) 6= 0

I
(1)
5,k(r) = −2r2

r∫
0

(ρ
r

)k ρ
k
ρp+qdρ− r2

1∫
r

(
r

ρ

)k
ρ

k
ρp+qdρ,

= −2r2−k

k

r∫
0

ρp+q+k+1dρ− 2r2+k

k

1∫
r

ρp+q−k+1dρ,

=
4rp+q+4

(p+ q − k + 2)(p+ q + k + 2)
− 2rk+2

k(p+ q + 2− k)
.

For k > 0 and (p+ q − k + 2) = 0,

I
(1)
5,k(r) = −r

k+2

k2
+

2rk+2 log r

k
.
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For k > 0 and (p+ q + k + 2) = 0, I
(1)
5,k(r) =∞ as f is not in L1.

For k < 0 and (p+ q − k + 2)(p+ q + k + 2) 6= 0

I
(1)
5,k(r) = 2r2

r∫
0

(
r

ρ

)k
ρ

k
ρp+qdρ+ 2r2

1∫
r

(ρ
r

)k ρ
k
ρp+qdρ,

=
4rp+q+4

(p+ q − k + 2)(p+ q + k + 2)
+

2r2−k

k(p+ q + 2 + k)
.

For k < 0 and (p+ q + k + 2) = 0,

I
(1)
5,k(r) =

r2−k

k2
− 2r2−k log r

k
.

For k < 0 and (p+ q − k + 2) = 0, I
(1)
5,k(r) =∞ as f is not in L1.

For k = 0,

I
(1)
5,k(r) = 4r2

r∫
0

ρp+q+1 log rdρ+ 4r2

1∫
r

ρp+q+1 log ρdρ

=
−4r2

(p+ q + 2)2

[
1− rp+q+2] when (p+ q + 2) 6= 0.

For k = 0 and p+ q + 2 = 0, I
(1)
5,k(r) =∞.

For k > 0 and (p+ q − k + 4)(p+ q + k + 4) 6= 0,

I
(2)
5,k(r) = −2

r∫
0

(ρ
r

)k ρ3

k
ρp+qdρ− 2

1∫
r

(
r

ρ

)k
ρ3

k
ρp+qdρ,

= −2r−k

k

r∫
0

ρp+q+k+3dρ− 2rk

k

1∫
r

ρp+q−k+3dρ,

=
4rp+q+4

(p+ q − k + 4)(p+ q + k + 4)
− 2rk

k(p+ q + 4− k)
.
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For k > 0 and (p+ q − k + 4) = 0,

I
(2)
5,k(r) = −r

k

k2
+

2rk log r

k
.

For k > 0 and (p + q + k + 4) = 0, I
(2)
5,k(r) = ∞ as f is not in L1 and hence

Thm.4.1.1 is not satisfied.

For k < 0 and (p+ q − k + 4)(p+ q + k + 4) 6= 0,

I
(2)
5,k(r) = 2

r∫
0

(
r

ρ

)k
ρ3

k
ρp+qdρ+ 2

1∫
r

(ρ
r

)k ρ3

k
ρp+qdρ,

=
4rp+q+4

(p+ q − k + 4)(p+ q + k + 4)
+

2r−k

k(p+ q + 4 + k)
.

For k < 0 and (p+ q + k + 4) = 0,

I
(2)
5,k(r) =

r−k

k2
− 2r−k log r

k
.

For k < 0 and (p+ q − k + 4) = 0, I
(2)
5,k(r) =∞ as f is not in L1.

For k = 0,

I
(2)
5,k(r) = 4

r∫
0

ρp+q+3 log rdρ+ 4

1∫
r

ρp+q+3 log ρdρ

=
4

(p+ q + 4)2

[
rp+q+4 − 1] when (p+ q + 4) 6= 0.
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For k = 0 and p+ q + 4 = 0, I
(2)
5,k(r) =∞ as f is not in L1.

For k < −1 and (p+ q − k + 2)(p+ q + k + 4) 6= 0,

I
(3)
5,k(r) = − 2r

(k + 1)

r∫
0

(
r

ρ

)(k+1)

ρp+q+2dρ− 2r

(k + 1)

1∫
r

(ρ
r

)(k+1)

ρp+q+2dρ,

= − 2rk+2

(k + 1)

r∫
0

ρp+q−k+1dρ− 2r−k

(k + 1)

1∫
r

ρp+q+k+3dρ,

= − 2rp+q+4

(k + 1)(p+ q − k + 2)
+

2(rp+q+4 − r−k)
(k + 1)(p+ q + 4 + k)

.

For k < −1 and (p+ q + k + 4) = 0,

I
(3)
5,k(r) =

r−k

(k + 1)2
+ 2

2r−k log r

(k + 1)
.

For k < −1 and (p+ q − k + 2) = 0, I
(3)
5,k(r) =∞ as f is not in L1.

For k > −1 and (p+ q − k + 2)(p+ q + k + 4) 6= 0,

I
(3)
5,k(r) = − 2r

(k + 1)

r∫
0

(ρ
r

)(k+1)

ρp+q+2dρ+
2r

(k + 1)

1∫
r

(
r

ρ

)(k+1)

ρp+q+2dρ,

= − 2r−k

(k + 1)

r∫
0

ρp+q+k+3dρ+
2rk+2

(k + 1)

1∫
r

ρp+q−k+1dρ,

= − 4rp+q+4

(p+ q + k + 4)(p+ q − k + 2)
+

2r(k+2)

(k + 1)(p+ q + 2− k)
.

For k > −1 and (p+ q − k + 2) = 0,

I
(3)
5,k(r) =

rk+2

(k + 1)2
− 2rk+2 log r

(k + 1)
.
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For k > −1 and (p+ q + k + 4) = 0, I
(3)
5,k(r) =∞ as f is not in L1.

For k = −1,

I
(3)
5,k(r) = −4r

r∫
0

ρp+q+2 log rdρ+ 4r

1∫
r

ρp+q+2 log ρdρ

=
4r

(p+ q + 3)2

[
1− rp+q+3] when (p+ q + 3) 6= 0.

For k = −1 and p+ q + 3 = 0, I
(3)
5,k(r) =∞ as f is not in L1.

For k < 1 and (p+ q + k + 2)(p+ q − k + 4) 6= 0,

I
(4)
5,k(r) = − 2r

(k − 1)

r∫
0

(
r

ρ

)(k−1)

ρp+q+2dρ− 2r

(k − 1)

1∫
r

(ρ
r

)(k−1)

ρp+q+2dρ,

= − 2rk

(k − 1)

r∫
0

ρp+q−k+3dρ− 2r2−k

(k − 1)

1∫
r

ρp+q+k+1dρ,

= − 4rp+q+4

(p+ q + k + 2)(p+ q − k + 4)
− 2r2−k

(k − 1)(p+ q + 2 + k)
.

For k < 1 and (p+ q + k + 2) = 0,

I
(4)
5,k(r) =

r2−k

(k − 1)2
+ 2

2r2−k log r

(k − 1)
.
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For k < 1 and (p+ q − k + 4) = 0, I
(4)
5,k(r) =∞ as f is not in L1.

For k > 1, (p+ q + k + 2)(p+ q − k + 4) 6= 0,

I
(4)
5,k(r) =

2r

(k − 1)

r∫
0

(ρ
r

)(k−1)

ρp+q+2dρ+
2r

(k − 1)

1∫
r

(
r

ρ

)(k−1)

ρp+q+2dρ,

=
2r2−k

(k − 1)

r∫
0

ρp+q+k+1dρ+
2rk

(k − 1)

1∫
r

ρp+q−k+3dρ,

= − 4rp+q+4

(p+ q + k + 2)(p+ q − k + 4)
+

2rk

(k − 1)(p+ q + 4− k)
.

For k > 1 and (p+ q − k + 4) = 0,

I
(4)
5,k(r) =

rk

(k − 1)2
− 2rk log r

(k − 1)
.

For k > 1 and (p+ q + k + 2) = 0, I
(4)
5,k(r) =∞ as f is not in L1.

For k = −1,

I
(4)
5,k(r) = −4r

r∫
0

ρp+q+2 log rdρ+ 4r

1∫
r

ρp+q+2 log ρdρ

=
4r

(p+ q + 3)2

[
1− rp+q+3] when (p+ q + 3) 6= 0.

For k = −1 and p + q + 3 = 0, I
(4)
5,k(r) = ∞ as f is not in L1. So we have for

the nonzero Fourier coefficient of I6(z) and I7(z),

I6,k(r) = 2(1−r2)rk

(k+1)

∫ 1

0
ρ(k+1)(1− ρ2)fk(ρ)dρ k ≥ 0

= 2(1−r2)rk

(k+1)

∫ 1

0
ρ(k+1)(1− ρ2)ρp+qdρ

= 2(1−r2)rk

(k+1)

[
1

p+q+k+2
− 1

p+q+k+4
] k ≥ 0.
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Hence,

I6,k(r) =


2(1−r2)rk

(k+1)

[
1

p+q+k+2
− 1

p+q+k+4

]
, if p+ q + k 6= −2,−4,

0, if k < 0,

∞, if p+ q + k = −2,−4.

I7,k(r) = 2(1−r2)r−k

(1−k)

∫ 1

0
ρ(1−k)(1− ρ2)fk(ρ)dρ k ≤ 0

= 2(1−r2)r−k

(1−k)

∫ 1

0
ρ(1−k)(1− ρ2)ρp+qdρ

= 2(1−r2)r−k

(1−k)

[
1

p+q−k+2
− 1

p+q−k+4

]
k ≤ 0.

Hence,

I7,k(r) =


2(1−r2)r−k

(1−k)

[
1

p+q−k+2
− 1

p+q−k+4

]
, if p+ q − k 6= −2,−4

0, if k > 0,

∞, if p+ q − k = −2,−4.
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5. THEORETICAL FOUNDATION: DIRICHLET-NEUMANN BIHARMONIC

PROBLEMS

In this section, we explore the Neumann (D3) biharmonic problem given by the

following theorems [7],[8].

5.1 Mathematical Formulation Of Dirichlet-Neumann Biharmonic Problem

Theorem 5.1.1. The Dirichlet-Neumann1 (D3) problem for the biharmonic equation

is given by 
(∂z∂z̄)

2ω = f, in D,

ω = h0, on ∂D,

∂νω = h1, on ∂D,

(D3)

is uniquely solvable for f ∈ L1(D,C), h0 ∈ C2(∂D;C), h1∈ C1(∂D;C) and the

solution is given by

ω(z) =
(1 + |z|2)

4πi

∫
∂D

g1(z, ζ)h0(ζ)
dζ

ζ
+

(1− |z|2)

4πi

∫
∂D

g2(z, ζ)h0(ζ)
dζ

ζ

−(1− |z|2)

2πi

∫
∂D

g1(z, ζ)h1(ζ)
dζ

ζ
− 1

π

∫∫
D

G2(z, ζ)f(ζ)dξdη,

where

g2(z, ζ) =
1

(1− zζ̄)2
+

1

(1− z̄ζ)2
− 1,
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and G2(z, ζ) is the Green’s function for the biharmonic problem with (D3) boundary

condition given by

G2(z, ζ) = |ζ − z|2 log

∣∣∣∣1− zζ̄ζ − z

∣∣∣∣2 − (1− |z|2)(1− |ζ|2).

We write ω(z) as

ω(z) = u3(z) + h3(z) + r3(z) + I3(z) + I4(z) + I5(z) (5.1)

where

u3(z) =
(1 + |z|2)

4πi

∫
∂D

g1(z, ζ)h0(ζ)
dζ

ζ
, (5.2)

h3(z) =
(1− |z|2)

4πi

∫
∂D

g2(z, ζ)h0(ζ)
dζ

ζ
, (5.3)

r3(z) = −(1− |z|2)

4πi

∫
∂D

g1(z, ζ)h1(ζ)
dζ

ζ
. (5.4)

Notice that I3(z), I4(z), I5(z) are same as (3.17), (3.18), (3.19) as the Green’s function

associated is same as in the (D1) biharmonic problem and hence the associated

integrals are same. So, we focus on the boundary integrals here.

Theorem 5.1.2. If ω(r, α) is the solution of the (D3) biharmonic problem mentioned

in Thm. 5.1.1, z = reiα, f(reiα) =
∞∑

n=−∞

fn(r)einα, h0(reiα) =
∞∑

n=−∞

an(r)einα,

and h1(reiα) =
∞∑

n=−∞

bn(r)einα, then the Fourier coefficients ωn(r) of ω(r, α) can be
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written as

ωn(r) = I3,n(r) + I4,n(r) + I5,n(r) + u3,n(r) + h3,n(r) + r3,n(r),

where the boundary integrals are

u3,n(r) =


1+r2

2
r|n|an, if n 6= 0,

1+r2

2
a0, if n = 0,

h3,n(r) =


(1−r2)

2
(2)n
(n)
rnan, if n > 0,

(1−r2)
2

(2)−n
(−n)

r−nan, if n < 0,

(1−r2)
2

a0, if n = 0,

r3,n(r) =

 −
(1−r2)

2
bnr
|n|, if n 6= 0,

− (1−r2)
2

b0, if n = 0.

The Fourier coefficients I3,n(r), I4,n(r), I5,n(r) have already been evaluated in Section.4.

Proof. Let ω(z) = u3(z) + h3(z) + r3(z) + I3(z) + I4(z) + I5(z), where

u3(z) =
(1 + r2)

4πi

∫
∂D

g1(z, ζ)h0(ζ)
dζ

ζ
, (5.5)

h3(z) =
(1− |z|2)

4πi

∫
∂D

g2(z, ζ)h0(ζ)
dζ

ζ
, (5.6)

r3(z) = −(1− |z|2)

4πi

∫
∂D

g1(z, ζ)h1(ζ)
dζ

ζ
. (5.7)

I3(z), I4(z), I5(z) are same as in (3.17),(3.18),(3.19). Now we compute the above
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boundary integrals (5.5),(5.6), (5.7). Simple analysis for u3(z) shows that

u
(1)
3 (z) =

(1 + r2)

4π

2π∫
0

h0(eiθ)

1− rei(α−θ)
dθ

=
∞∑
n=0

(1 + r2)

4π

2π∫
0

h0(eiθ)rnein(α−θ)dθ

=
∞∑
n=0

(1 + r2)

4π

2π∫
0

∞∑
m=−∞

ame
imθrnein(α−θ)dθ

=
∞∑
n=0

(1 + r2)

4π
rneinα

∞∑
m=−∞

am

2π∫
0

ei(m−n)θdθ

=
∞∑
n=0

an
(1 + r2)

2
rneinα.
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u
(2)
3 (z) =

(1 + r2)

4π

2π∫
0

h0(eiθ)

1− rei(θ−α)
dθ

=
∞∑
n=0

(1 + r2)

4π

2π∫
0

h0(eiθ)rnein(θ−α)dθ

=
∞∑
n=0

(1 + r2)

4π

2π∫
0

∞∑
m=−∞

ame
imθrnein(θ−α)dθ

=
∞∑
n=0

(1 + r2)

4π
rne−inα

∞∑
m=−∞

am

2π∫
0

ei(m+n)θdθ

=
∞∑
n=0

a−n
1 + r2

2
rne−inα.

u
(3)
3 (z) = −(1 + r2)

4π

2π∫
0

h(eiθ)dθ

= −(1 + r2)

4π

2π∫
0

∞∑
m=−∞

ame
imθdθ

= −(1 + r2)

4π

∞∑
m=−∞

1 + r2

2
am

2π∫
0

eimθdθ

= −(1 + r2)

2
a0.

Hence,

u3,n(r) =


(1+r2)

2
r|n|an, if n 6= 0,

(1+r2)
2

a0, if n = 0.

Similar is the analysis for r3n(r). For h3(z) we write,

h3(z) = h
(1)
3 (z) + h

(2)
3 (z) + h

(3)
3 (z)
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where

h
(1)
3 (z) =

(1− |z|2)

4πi

∫
∂D

h0(ζ)

(1− zζ̄)2

dζ

ζ
, (5.8)

h
(2)
3 (z) =

(1− |z|2)

4πi

∫
∂D

h0(ζ)

(1− z̄ζ)2

dζ

ζ
, (5.9)

h
(3)
3 (z) = −(1− |z|2)

4πi

∫
∂D

h0(ζ)
dζ

ζ
. (5.10)

We first evaluate h
(1)
3 (z), h

(2)
3 (z) and h

(3)
3 (z) to compute h3(z). Let z = reiα, ζ = ρeiθ

where r, ρ 6= 0 and h0(eiθ) =
∞∑

m=−∞

ame
imθ and h3(z) =

∞∑
n=−∞

h3n(r)einα. Since

|r| < 1 and ρ = 1 on the boundary, we have

h
(1)
3 (z) =

(1− |z|2)

4π

2π∫
0

h0(eiθ)

(1− rei(α−θ))2
dθ

=
(1− r2)

4π

∞∑
n=0

(2)n
n
rn

2π∫
0

h0(eiθ)ein(α−θ)dθ

=
(1− r2)

4π

∞∑
n=0

(2)n
n
rneinα

∞∑
m=−∞

am

2π∫
0

ei(m−k)θdθ

=
(1− r2)

2

∞∑
n=0

(2)n
n
rneinαan,

where (x)n = x(x+ 1)(x+ 2)......(x+ n− 1).
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h
(2)
3 (z) =

(1− |z|2)

4π

2π∫
0

h0(eiθ)

(1− rei(θ−α))2
dθ

=
(1− r2)

4π

∞∑
n=0

(2)n
n
rn

2π∫
0

h0(eiθ)ein(α−θ)dθ

=
∞∑
n=0

1

2π

2π∫
0

∞∑
m=−∞

ame
imθrnein(θ−α)dθ

=
(1− r2)

4π

∞∑
n=0

(2)n
n
rne−inα

∞∑
m=−∞

am

2π∫
0

ei(m+k)θdθ

=
(1− r2)

2

∞∑
n=0

(2)n
n
rne−inαa−n

h
(3)
3 (z) = −(1− r2)

4π

2π∫
0

h0(eiθ)dθ

= −(1− r2)

4π

2π∫
0

∞∑
m=−∞

ame
imθdθ

= −(1− r2)

2
a0.

So,

h3,n(r) =


(1−r2)

2
(2)n
(n)
rnan, if n > 0,

(1−r2)
2

(2)−n
(−n)

r−nan, if n < 0,

(1−r2)
2

a0, if n = 0.

Hence we obtain the proof for Thm.5.1.2

The second approach for solving the Dirichlet-Neumann1(D3) problem is same

as in (D1) and for the sake of completeness we provide here the decomposition.

ω = ω1 + ω2
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where ω1 and ω2 satisfy

 (∂z∂z̄)u = f, in D

u = 0, on ∂D (∂z∂z̄)ω1 = u, in D

ω1 = h0, on ∂D

and


(∂z∂z̄)

2ω2 = 0, in D

ω2 = 0, on ∂D

∂νω2 = h1 − ∂νω1, on ∂D

As discussed earlier we solve the Poisson problems with our Poisson solver and for

the homogeneous biharmonic problem we just need the boundary integrals from the

first approach. We now consider Dirichlet-Neumann2((D4)) biharmonic problem and

we obtain the following theorem from ([7],[3]).

Theorem 5.1.3. The Dirichlet-Neumann2 (D4) problem for the biharmonic equa-

tion given by 
(∂z∂z̄)

2w = f in D,

w = h0 on ∂D,

∂νwzz = h2 on ∂D,

(D4)

is uniquely solvable for f ∈ L1(D,C) h0, h2∈ (∂D;C) if and only if 1
4i

∫
∂D
h2(ζ)dζ

ζ
=
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∫
D
f(ζ)dξdη and the solution obtained directly using the Green’s function is given by

w(z) =k(|z|2 − 1) +
1

2πi

∫
∂D

g1(z, ζ)g0(ζ)
dζ

ζ
+

1

4πi

∫
∂D

G13(z, ζ)g3(ζ)
dζ

ζ

− 1

π

∫∫
D

G13(z, ζ)f(ζ)dξdη, (5.11)

where

G13(z, ζ) = −|ζ − z|2 log |ζ − z|2

− (1− |z|2)

(
4 +

(1− zζ̄)

zζ̄
log(1− zζ̄) +

(1− z̄ζ)

z̄ζ
log(1− z̄ζ)

)
− (ζ − z)(1− zζ̄)

z
log(1− zζ̄)

− (ζ − z)(1− z̄ζ)

z̄
log(1− z̄ζ). (5.12)

In order to construct the algorithm we evaluate the following integrals to obtain

the solution of the (D4) problem.

u(1)(z) =
1

2πi

∫
∂D

g1(z, ζ)h0(ζ)
dζ

ζ
. (5.13)

V (z) =
1

4πi

∫
∂D

G13(z, ζ)h2(ζ)
dζ

ζ
. (5.14)

I(z) = − 1

π

∫
D

G13(z, ζ)f(ζ)dξdη. (5.15)

We notice here u(1)(z) is similar to (5.2). So we evaluate V (z) and I(z). We write

V (z) = V (1)(z) + V (2)(z) + V (3)(z) + V (4)(z)
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where

V (1)(z) = − 1

4πi

∫
∂D

|ζ − z|2 log |ζ − z|2h2(ζ)
dζ

ζ
,

V (2)(z) = −(1− |z|2)

4πi

∫
∂D

(
4 +

(1− zζ̄)

zζ̄
log(1− zζ̄) +

(1− z̄ζ)

z̄ζ
log(1− z̄ζ)

)
h2(ζ)

dζ

ζ
,

V (3)(z) = − 1

4πi

∫
∂D

(ζ − z)(1− zζ̄)

z
log(1− zζ̄)h2(ζ)

dζ

ζ
,

V (4)(z) = − 1

4πi

∫
∂D

(ζ − z)(1− z̄ζ)

z̄
log(1− z̄ζ)h2(ζ)

dζ

ζ
.

Also we write I(z) = I(1)(z) + I(2)(z) + I(3)(z) + I(4)(z) + I(5)(z) + I(6)(z)

where,

I(1)(z) =
2

π

∫
D

|ζ − z|2 log |ζ − z|f(ζ)dξdη,

I(2)(z) =
4

π
(1− |z|2)

∫
D

f(ζ)dξdη,

I(3)(z) =
(1− |z|2)

πz

∫
D

(1− zζ̄)

ζ̄
log(1− zζ̄)f(ζ)dξdη,

I(4)(z) =
(1− |z|2)

πz̄

∫
D

(1− z̄ζ)

ζ
log(1− z̄ζ)f(ζ)dξdη,

I(5)(z) =
1

πz

∫
D

(ζ − z)(1− zζ̄)

z
log(1− zζ̄)f(ζ)dξdη,

I(6)(z) =
1

πz̄

∫
D

(ζ − z)(1− z̄ζ)

z̄
log(1− z̄ζ)f(ζ)dξdη.
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5.1.1 Evaluation Of The Integrals

Now we evaluate each of the boundary integral V (i)(z) for i = 1, 2, 3, 4. We note

the following.

|1− zζ̄|2 log |1− zζ̄| = −(1− z̄ζ − zζ̄ + r2)

(∑
n 6=0

|zζ̄||n|

2|n|
einτ

)
.

Now,

V (1)(z) = − 1

4πi

∫
∂D

|ζ − z|2 log |ζ − z|2h2(ζ)
dζ

ζ

= − 1

2πi

∫
∂D

|1− zζ̄|2 log |1− zζ̄|h2(ζ)
dζ

ζ

=
1

2πi

∫
∂D

(1− z̄ζ − zζ̄ + r2)

(∑
n6=0

|zζ̄||n|

2|n|
einτ

)
h2(ζ)

dζ

ζ
.

Let V (1)(z) = V
(1)

1 (z) +V
(1)

2 (z) +V
(1)

3 (z) and h2(eiθ) =
∞∑

n=−∞

cne
inθ. Now we evaluate

the boundary integrals V
(1)
i (z) for i = 1, 2, 3 .

V
(1)

1 (z) =
(1 + r2)

2πi

∫
∂D

∑
n6=0

|zζ̄||n|

2|n|
einτh2(ζ)

dζ

ζ

=
(1 + r2)

2πi

∑
n6=0

r|n|

2|n|

2π∫
0

ein(α−θ)h2(eiθ)dθ

=
(1 + r2)

2π

∑
n6=0

r|n|

2|n|
einα

∞∑
m=−∞

cm

2π∫
0

ei(m−n)θdθ

= (1 + r2)
∑
n6=0

r|n|

2|n|
einαcn.
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Hence,

V
(1)

1,n (r) =


1+r2

2n
rncn, if n > 0,

−1+r2

2n
r−ncn, if n < 0,

0, if n = 0.

V
(1)

2 (z) = − z̄

2πi

∫
∂D

∑
n 6=0

|zζ̄||n|

2|n|
einτh2(ζ)dζ

= − z̄

2π

∑
n6=0

r|n|

2|n|

2π∫
0

einτh2(eiθ)eiθdθ

= − z̄

2π

∑
n6=0

r|n|

2|n|
einα

∞∑
m=−∞

cm

2π∫
0

ei(m+1−n)θdθ

= −z̄
∑
n6=0

r|n|

2|n|
einαcn−1

Hence,

V
(1)

2,n (r) =


− rn+2

2(n+1)
cn, if n > −1,

r−n

2(n+1)
cn, if n < −1,

0, if n = −1.

V
(1)

2 (z) = − z

2πi

∫
∂D

∑
n 6=0

|zζ̄||n|

2|n|
einτ ζ̄2h2(ζ)dζ

= − z̄

2π

∑
n6=0

r|n|

2|n|

2π∫
0

einτe−2iθh2(eiθ)eiθdθ

= − z̄

2π

∑
n6=0

r|n|

2|n|
einα

∞∑
m=−∞

cm

2π∫
0

ei(m−1−n)θdθ

= −z̄
∑
n6=0

r|n|

2|n|
einαcn−1.
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Hence,

V
(1)

3,n (r) =


− rn

2(n−1)
cn, if n > 1,

r2−n

2(n−1)
cn, if n < 1,

0, if n = 1.

We now evaluate V (2)(z). We write V (2)(z) = V
(2)

1 (z)+V
(2)

2 (z)+V
(2)

3 (z) and evaluate

each of V
(2)
i (z), i = 1, 2, 3.

V
(2)

1 (z) =
(|z|2 − 1)

πi

∫
∂D

h2(ζ)
dζ

ζ

=
(r2 − 1)

π

2π∫
0

h2(eiθ)dθ

=
(r2 − 1)

π

∑
m 6=0

2π∫
0

eimθdθ

= 2(r2 − 1)c0. (5.16)

V
(2)

2 (z) =
(|z|2 − 1)

4πiz

∫
∂D

(1− zζ̄) log(1− zζ̄)h2(ζ)dζ

=
(r2 − 1)

4πiz

∫
∂D

(1− zζ̄)
∞∑
n=1

−(zζ̄)n

n
h2(ζ)dζ

=
(1− r2)

4πz

∞∑
n=1

zn

n

2π∫
0

e−inθh2(eiθ)eiθdθ +
(r2 − 1)

4π

∞∑
n=1

zn

n

2π∫
0

e−inθh2(eiθ)dθ

=
(1− r2)

4πz

∞∑
n=1

zn

n

 ∞∑
m=−∞

cm

2π∫
0

ei(m+1−n)θdθ


+

(r2 − 1)

4π

∞∑
n=1

zn

n

 ∞∑
m=−∞

cm

2π∫
0

ei(m−n)θdθ
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Hence,

V
(2)

2,n (r) =


(1−r2)

2
c0, if n = 0,

(r2−1)rn

2n(1+n)
cn, if n ≥ 1,

0, if n < 0.

(5.17)

V
(2)

3 (z) = =
|z|2 − 1

4πiz̄

∫
∂D

(1− z̄ζ)

ζ2
log(1− z̄ζ)h2(ζ)dζ

=
(|z|2 − 1)

4πiz̄

∫
∂D

(1− z̄ζ)

ζ2

(
∞∑
n=1

−(z̄ζ)n

n
h2(ζ)dζ

)

=
(1− r2)

4πiz̄

 ∞∑
n=1

z̄n

n

∫
∂D

ζn−2h2(ζ)dζ


+

(r2 − 1)

4πiz̄

 ∞∑
n=1

z̄n

n

∫
∂D

ζn−1h2(ζ)dζ


=

(1− r2)

4π

∞∑
n=1

(z̄)n−1

n

 ∞∑
m=−∞

cm

2π∫
0

ei(m+n−1)θdθ


+

(r2 − 1)

4π

z̄n

n

 ∞∑
m=−∞

cm

2π∫
0

ei(m+n)θdθ


Hence,

V
(2)

3,n (r) =


(1−r2)

2
c0, if n = 0,

(1−r2)r−n

2n(1−n)
cn, if n ≤ −1,

0, if n > 0.

(5.18)
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Combining (5.16), (5.17), (5.18) we have,

V (2)
n (r) =


(r2 − 1)c0, if n = 0,

(1−r2)r−n

2n(1−n)
cn, if n ≤ −1,

(r2−1)rn

2n(1+n)
cn, if n ≥ 1.

(5.19)

We now evaluate V (3)(z) = − 1
4πi

∫
∂D

(ζ−z))1−zζ̄)
z

log(1−z̄ζ)h2(ζ)dζ
ζ
. We write V (3)(z) =

V
(3)

1 (z) + V
(3)

2 (z) + V
(3)

3 (z) and evaluate each of the integral V
(3)
i (z), i = 1, 2, 3.

V
(3)

1 (z) = − 1

4πiz

∫
∂D

log(1− ζ̄z)h2(ζ)dζ

=
1

4πiz

∞∑
n=1

zn

n

∫
∂D

ζ̄nh2(ζ)dζ

=
1

4π

∞∑
n=1

zn−1

n

∞∑
m=−∞

cm

2π∫
0

ei(m−n+1)θdθ

=
1

2

∞∑
n=1

zn−1

n
cn−1. (5.20)

V
(3)

2 (z) =
1

2πi

∫
∂D

ζ̄ log(1− ζ̄z)h2(ζ)dζ

= − 1

2πi

∞∑
n=1

zn

n

∫
∂D

ζ̄(n+1)h2(ζ)dζ

= − 1

2π

∞∑
n=1

zn

n

∞∑
m=−∞

cm

2π∫
0

ei(m−n)θdθ

= −1

2

∞∑
n=1

zn

n
cn. (5.21)
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V
(3)

3 (z) =
z

4πi

∫
∂D

ζ̄2 log(1− ζ̄z)h2(ζ)dζ

=
z

4πi

∞∑
n=1

zn

n

∫
∂D

ζ̄(n+2)h2(ζ)dζ

=
1

4π

∞∑
n=1

zn+1

n

∞∑
m=−∞

cm

2π∫
0

ei(m−n−1)θdθ

=
1

2

∞∑
n=1

zn+1

n
cn+1. (5.22)

Combining (5.20), (5.21), (5.22) we obtain,

V (3)
n (r) =



1
2
c0, if n = 0,

−3
4
rc1, if n = 1,

rn

2(n+1)
cn − rn

n
cn + rn

2(n−1)
cn, if n ≥ 2.

0, if n < 0.

(5.23)

We now evaluate, V (4)(z) = − 1
4πi

∫
∂D

(ζ−z)(1−zζ̄)
z

log(1−z̄ζ)h2(ζ)dζ
ζ
.We write V (4)(z) =

V
(4)

1 (z) + V
(4)

2 (z) + V
(4)

3 (z) and evaluate each of V
(4)
i (z), i = 1, 2, 3.

V
(4)

1 (z) = − 1

4πiz̄

∫
∂D

ζ̄2 log(1− z̄ζ)h2(ζ)dζ

=
1

4πiz̄

∞∑
n=1

z̄n

n

∫
∂D

ζn−2h2(ζ)dζ

=
1

4π

∞∑
n=1

z̄n−1

n

∞∑
m=−∞

cm

2π∫
0

ei(m+n−1)θdθ

=
1

2

∞∑
n=1

z̄n−1

n
c1−n. (5.24)
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V
(4)

2 (z) =
1

2πi

∫
∂D

ζ̄ log(1− z̄ζ)h2(ζ)dζ

= − 1

2πi

∞∑
n=1

z̄n

n

∫
∂D

ζ(n−1)h2(ζ)dζ

= − 1

2π

∞∑
n=1

z̄n

n

∞∑
m=−∞

cm

2π∫
0

ei(m+n)θdθ

= −1

2

∞∑
n=1

z̄n

n
c−n. (5.25)

V
(4)

3 (z) = − z̄

4πi

∫
∂D

log(1− z̄ζ)h2(ζ)dζ

=
z̄

4πi

∞∑
n=1

z̄n

n

∫
∂D

ζnh2(ζ)dζ

=
1

4π

∞∑
n=1

z̄(n+1)

n

∞∑
m=−∞

cm

2π∫
0

ei(m+n+1)θdθ

=
1

2

∞∑
n=1

z̄(n+1)

n
c−n−1. (5.26)

Combining (5.24), (5.25), (5.26) we obtain,

V (4)
n (r) =



1
2
cn, if n = 0,

3
4
rcn, if n = −1,

r−n

2(1−n)
cn − r−n

n
cn − rn

2(n+1)
cn, if n ≤ −2,

0, if n > 0.

(5.27)

Now we develop the integral I(z) here. The idea is same as the Dirichlet problem,

but we prove it here for the sake of clarity and completeness. Here the singular

integral I1(z) is the same as in (3.19) and we skip the details.
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So we start with the formulation of I(2)(z). Now,

I(2)(z) =
(1− |z|2)

π
Ĩ(2)(z) (5.28)

where

Ĩ(2)(z) =

∫
D

4f(ζ)dξdη.

The Fourier coeficients of Ĩ(2)(z) are given by

Ĩ(2)
n (r) =

1

2π

∫
D

f(ζ)

2π∫
0

4e−inαdαdξdη

=
1

2π

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

4e−inτdτρdθdρ

= 2π

1∫
0

fn(ρ)G̃(2)
n (r, ρ)ρdρ. (5.29)

where

G̃(2)
n (r, ρ) =

1

2π

2π−θ∫
−θ

4e−inτdτ

=

 4, if n = 0,

0, if n 6= 0.
(5.30)

Substituting (5.30) in (5.29) and using (5.28) we obtain,

I(2)
n (r) =

 8(1− r2)
∫ 1

0
fn(ρ)ρdρ, if n = 0,

0, if n 6= 0.
(5.31)
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Let

I(3)(z) =
1− |z|2

π
Ĩ(3)(z) (5.32)

where

Ĩ(3)(z) =

∫
D

(1− zζ̄)

zζ̄
log(1− zζ̄)f(ζ)dξdη.

The Fourier coefficients of Ĩ(3)(z) are given by

Ĩ(3)
n (r) =

1

2π

∫
D

f(ζ)

2π∫
0

(1− zζ̄)

zζ̄
log(1− zζ̄)e−inαdαdξdη

=
1

2π

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

(1− zζ̄)

zζ̄
log(1− zζ̄)e−inτdτρdθdρ

= 2π

1∫
0

fn(ρ)G̃3,n(r, ρ)ρdρ. (5.33)

where

G̃(3)
n (r, ρ) =

1

2π

2π−θ∫
−θ

(1− zζ̄)

zζ̄
log(1− zζ̄)e−inτdτ

= − 1

2π

2π−θ∫
−θ

(1− zζ̄)

zζ̄

∞∑
m=1

(zζ̄)
m

m
e−inτdτ

= − 1

2π

∞∑
m=1

2π−θ∫
−θ

(zζ̄)
m−1

m
e−inτdτ +

1

2π

∞∑
m=1

2π−θ∫
−θ

(zζ̄)
m

m
e−inτdτ
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= − 1

2π

∞∑
m=1

(rρ)m−1

m

2π−θ∫
−θ

ei(m−n−1)τdτ +
1

2π
displaystyle

∞∑
m=1

(rρ)m

m

2π−θ∫
−θ

ei(m−n)τdτ

=


− (rρ)n

(1+n)
, if n = 0,

(rρ)n

n
, if n ≥ 1,

0, if n < 0.

(5.34)

Substituting (5.34) in (5.33) and using (5.32) we obtain,

I(3)
n (r) =


2(r2 − 1)

∫ 1

0
fn(ρ)ρdρ, if n = 0,

2(1−r2)
n

rn
∫ 1

0
ρn+1fn(ρ)dρ, if n ≥ 1,

0, if n < 0.

(5.35)

Let

I(4)(z) =
1− |z|2

π
Ĩ(4)(z) (5.36)

where

Ĩ(4)(z) =

∫
D

(1− ζz̄)

ζz̄
log(1− ζz̄)f(ζ)dξdη.

The Fourier coefficients of Ĩ(4)(z) are given by

Ĩ(4)
n (r) =

1

2π

∫
D

f(ζ)

2π∫
0

(1− z̄ζ)

z̄ζ
log(1− z̄ζ)e−inαdαdξdη

=
1

2π

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

(1− z̄ζ)

z̄ζ
log(1− z̄ζ)e−inαdαdξdη

= 2π

1∫
0

fn(ρ)G̃4,n(r, ρ, θ)ρdρ (5.37)
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where

G̃(4)
n (r, ρ, θ) =

1

2π

2π−θ∫
−θ

(1− z̄ζ)

z̄ζ
log(1− z̄ζ)e−inτdτ

= − 1

2π

2π−θ∫
−θ

(1− z̄ζ)

z̄ζ

∞∑
m=1

( ¯z)ζ
m

m
e−inτdτ

= − 1

2π

∞∑
m=1

2π−θ∫
−θ

(z̄ζ)(m−1)

m
e−inτdτ +

1

2π

∞∑
m=1

2π−θ∫
−θ

(z̄ζ)m

m
e−inτdτ

= − 1

2π

∞∑
m=1

(rρ)m−1

m

2π−θ∫
−θ

ei(−m−n+1)τdτ +
1

2π

∞∑
m=1

(rρ)m

m

2π−θ∫
−θ

ei(−m−n)τdτ

=


− (rρ)−n

(1−n)
, if n ≤ 0,

(rρ)−n

−n , if n ≤ −1,

0, if n > 0.

(5.38)

Substituting (5.38) in (5.37) and using (5.36) we obtain,

I(4)
n (r) =


2(r2 − 1)

∫ 1

0
fn(ρ)ρdρ, if n = 0,

2(1−r2)
n(n−1)

r−n
∫ 1

0
ρ1−nfn(ρ)dρ, if n ≤ −1,

0, if n > 0.

(5.39)

We write I(5)(z) = I
(5)
1 (z) + I

(5)
2 (z) where,

I
(5)
1 (z) =

1

πz

∫
D

ζ(1− zζ̄) log(1− zζ̄)f(ζ)dξdη.

I
(5)
2 (z) = − 1

π

∫
D

(1− zζ̄) log(1− zζ̄)f(ζ)dξdη.
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Now we evaluate I
(1)
5,n(r).

I
(5)
1,n(r) =

1

2π2z

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

ζ(1− zζ̄) log(1− zζ̄)e−inτdτρdθdρ

= 2

1∫
0

fn(ρ)G
(5)
1,n(r, ρ)ρdρ, (5.40)

where

G
(5)
1,n(r, ρ) =

1

2π

2π−θ∫
−θ

ζ(1− zζ̄) log(1− zζ̄)

z
e−inτdτ

= − 1

2π

∞∑
m=1

2π−θ∫
−θ

ζ(1− zζ̄)

z

(zζ̄)m

m
e−inτdτ

= − 1

2π

∞∑
m=1

ρm+1rm−1

m

2π−θ∫
−θ

ei(m−n−1)τdτ +
1

2π

∞∑
m=1

ρm+2rm

m

2π−θ∫
−θ

ei(m−n)τdτ

=


−ρ2, if n = 0,

rnρn+2

n(n+1)
, if n ≥ 1,

0, if n < 0.

(5.41)

Substituting (5.41) in (5.40) we obtain,

I
(5)
1,n(r) =


−2
∫ 1

0
f0(ρ)ρ3dρ, if n = 0,

2rn

n(n+1)

∫ 1

0
ρn+3fn(ρ)dρ, if n ≥ 1,

0, if n < 0.

(5.42)
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I
(5)
2,n(r) = − 1

2π2

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

(1− zζ̄) log(1− zζ̄)e−inτdτρdθdρ

= −2

1∫
0

fn(ρ)G
(2)
5,n(r, ρ)ρdρ, (5.43)

where

G
(5)
2,n(r, ρ) =

1

2π

2π−θ∫
−θ

(1− zζ̄) log(1− zζ̄)e−inτdτ

= − 1

2π

∞∑
m=1

2π−θ∫
−θ

(1− zζ̄)
(zζ̄)m

m
e−inτdτ

= − 1

2π

∞∑
m=1

(rρ)m

m

2π−θ∫
−θ

ei(m−n)τdτ +
1

2π

∞∑
m=1

(rρ)m+1

m

2π−θ∫
−θ

ei(m+1−n)τdτ

=


−ρr, if n = 1,

(rρ)n

n(n−1)
, if n ≥ 2,

0, if n < 1.

(5.44)

Substituting (5.44) in (5.43) we obtain,

I
(5)
2,n(r) =


2r
∫ 1

0
fn(ρ)ρ2dρ, if n = 1,

− 2(rn)
n(n−1)

∫ 1

0
ρn+1fn(ρ)dρ, if n ≥ 2,

0, if n < 1.

(5.45)
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We now write I6(z) = I
(6)
1 + I

(6)
2 where,

I
(6)
1 (z) =

1

πz̄

∫
D

ζ̄(1− ζz̄) log(1− ζz̄)f(ζ)dξdη.

I
(6)
2 (z) = − 1

π

∫
D

(1− ζz̄) log(1− ζz̄)f(ζ)dξdη.

Now we focus onto the Fourier coefficients.

I
(6)
1,n(r) =

1

2π2

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

ζ̄

z̄
(1− ζz̄) log(1− ζz̄)e−inτdτρdθdρ

= 2

1∫
0

fn(ρ)G
(6)
1,n(r, ρ)ρdρ, (5.46)

where

G
(6)
1,n(r, ρ) =

1

2π

2π−θ∫
−θ

ζ̄

z̄
(1− ζz̄) log(1− ζz̄)e−inτdτ

= − 1

2π

∞∑
m=1

2π−θ∫
−θ

ζ̄

z̄
(1− ζz̄)

(z̄ζ)m

m
e−inτdτ

= − 1

2π

∞∑
m=1

ρm+1rm−1

m

2π−θ∫
−θ

e−i(m+n−1)τdτ +
1

2π

∞∑
m=1

ρm+2rm

m

2π−θ∫
−θ

e−i(m+n)τdτ

=


−ρ2, if n = 0,

r−nρ2−n

n(n−1)
, if n ≤ −1,

0, if n > 0.

(5.47)

77



Substituting (5.47) in (5.46) we obtain,

I
(6)
1,n(r) =


−2
∫ 1

0
f0(ρ)ρ3dρ, if n = 0,

2 r−n

n(n−1)

∫ 1

0
ρ3−nfn(ρ)dρ, if n ≤ −1,

0, if n > 0.

(5.48)

I
(6)
2,n(r) =

1

π2

1∫
0

2π∫
0

f(ρ, θ)e−inθ
2π−θ∫
−θ

ζ̄(1− ζz̄) log(1− ζz̄e−inτdτρdθdρ

= −2

1∫
0

fn(ρ)G
(6)
2,n(r, ρ)ρdρ, (5.49)

where

G
(6)
2,n(r, ρ) =

1

2π

2π−θ∫
−θ

(1− z̄ζ) log(1− z̄ζ)e−inτdτ

= − 1

2π

∞∑
m=1

2π−θ∫
−θ

(z̄ζ)m

m
e−inτdτ +

1

2π

∞∑
m=1

2π−θ∫
−θ

(z̄ζ)m+1

m
e−inτdτ

= − 1

2π

∞∑
m=1

2π−θ∫
−θ

(rρ)m

m
e−i(m+n)τdτ +

1

2π

∞∑
m=1

2π−θ∫
−θ

(rρ)m+1

m
e−i(m+n+1)τdτ

=


−rρ, if n = −1,

(rρ)−n

n(n+1)
, if n ≤ −2,

0, if n > −1.

(5.50)
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Substituting (5.50) in (5.49) we obtain,

I
(6)
2,n(r) =


2r
∫ 1

0
f−1(ρ)ρ2dρ, if n = 0,

−2 r−n

n(n+1)

∫ 1

0
ρ1−nfn(ρ)dρ, if n ≤ −2,

0, if n > −1.

(5.51)

The second approach to solve this system is the method of decomposition into two

Poisson problems as follows

 (∂z∂z̄)u = f, in D,

∂νu = h2, on ∂D,
(5.52)

 (∂z∂z̄)w = u, in D,

ω = h0, on ∂D.
(5.53)

The solution is obtained by solving the Poisson problem with Dirichlet boundary con-

dition and then with Neumann boundary condition. The evaluation of the integrals

lead us to the Fourier coefficients wn(r) of the solution w(z).
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6. RECURSIVE RELATIONS

In this section, we present the recursive relations necessary to build the fast al-

gorithm see ([12],[15], [16]). First we obtain the recursive relations for the singular

integral (2.3). From Section.2 we recall the epression for vn(r).

vn(r) =


4
∫ r

0
ρ log rf0(ρ)dρ+ 4

∫ 1

r
ρ log ρf0(ρ)dρ, if n = 0,

−2
∫ r

0

(
ρ
r

)n ρ
n
fn(ρ)dρ− 2

∫ 1

r

(
r
ρ

)n
ρ
n
fn(ρ)dρ, if n > 0,

2
∫ r

0

(
r
ρ

)n
ρ
n
fn(ρ)dρ+ 2

∫ 1

r

(
ρ
r

)n ρ
n
fn(ρ)dρ, if n < 0.

Now we define the following.

p
(1)
1,n(r) = −2

r∫
0

(ρ
r

)n ρ
n
fn(ρ)dρ,

p
(1)
2,n(r) = −2

1∫
r

(
r

ρ

)n
ρ

n
fn(ρ)dρ,

s
(1)
1,n(r) = 2

r∫
0

(
r

ρ

)n
ρ

n
fn(ρ)dρ,

s
(1)
2,n(r) = 2

1∫
r

(ρ
r

)n ρ
n
fn(ρ)dρ,

t
(1)
1,0(r) = 4

r∫
0

ρ log rf0(ρ)dρ,

t
(1)
2,0(r) = 4

1∫
r

ρ log ρf0(ρ)dρ.

Note that p
(1)
1,n(0) = 0, p

(1)
2,n(1) = 0, s

(1)
1,n(0) = 0, s

(1)
1,n(1) = 0. We see that vn(r)

can be written as
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vn(r) =


(log rt

(1)
1,n(r) + t

(1)
2,n(r)), if n = 0,

(p
(1)
1,n(r) + p

(1)
2,n(r)), if n > 0,

(s
(1)
1,n(r) + s

(1)
2,n(r)), if n < 0.

Now for rj > ri, n = 0, we define

Ai,j0,1 = 4

rj∫
ri

ρf0(ρ)dρ, (6.1)

Bi,j
0,1 = 4

rj∫
ri

ρ log ρf0(ρ)dρ. (6.2)

For rj > ri, n 6= 0, we define

Ai,jn,1 = 2

rj∫
ri

(
R

ρ

)n
ρ

n
fn(ρ)dρ, (6.3)

where,

R =

 ri if n > 0,

rj if n < 0,

Bi,j
n,1 = 2

rj∫
ri

( ρ
R

)n ρ
n
fn(ρ)dρ, (6.4)

where

R =

 rj if n > 0,

ri if n < 0.
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Algebraic computation with rl < ri < rj shows that,

p
(1)
1,n(ri) =

(
rl
ri

)n
p

(1)
1,n(rl)−Bl,i

n , n > 0, (6.5)

p
(1)
2,n(ri) =

(
ri
rj

)n
p

(1)
2,n(rj)− Ai,jn , n > 0, (6.6)

s
(1)
1,n(ri) =

(
ri
rl

)n
s

(1)
1,n(rl) + Al,in , n < 0, (6.7)

s
(1)
2,n(ri) =

(
rj
ri

)n
s

(1)
2,n(rj) +Bi,j

n , n < 0, (6.8)

t
(1)
1,0(ri) = t

(1)
1,0(rl) + Al,i0 , n = 0, (6.9)

t
(1)
2,0(ri) = t

(1)
2,0(rj) +Bi,j

0 , n = 0. (6.10)

6.1 Recursive Relations For Biharmonic Problem

Now we build the recursive relation for the Fourier coefficients of the singular

integral I5(z) in Section.3. We recall that I5,n(r) = I
(1)
5,n(r)+I

(2)
5,n(r)+I

(3)
5,n(r)+I

(4)
5,n(r).

We see that I
(1)
5,n(r) is same as vn(r). So we first compute I

(2)
5,n(r). Now

I
(2)
5,n(r) =


4
∫ r

0
ρ3 log rf0(ρ)dρ+ 4

∫ 1

r
ρ3 log ρf0(ρ)dρ, if n = 0,

−2
∫ r

0

(
ρ
r

)n ρ
n
fn(ρ)dρ− 2

∫ 1

r

(
r
ρ

)n
ρ
n
fn(ρ)dρ, if n > 0,

2
∫ r

0

(
r
ρ

)n
ρ
n
fn(ρ)dρ+ 2

∫ 1

r

(
ρ
r

)n ρ
n
fn(ρ)dρ, if n < 0.
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We define the following.

p
(2)
1,n(r) = −2

r∫
0

(ρ
r

)n ρ3

n
fn(ρ)dρ,

p
(2)
2,n(r) = −2

1∫
r

(
r

ρ

)n
ρ3

n
fn(ρ)dρ,

s
(2)
1,n(r) = 2

r∫
0

(
r

ρ

)n
ρ3

n
fn(ρ)dρ,

s
(2)
2,n(r) = 2

1∫
r

(ρ
r

)n ρ3

n
fn(ρ)dρ,

t
(2)
1,0(r) = 4

r∫
0

ρ3 log rf0(ρ)dρ,

t
(2)
2,0(r) = 4

1∫
r

ρ3 log ρf0(ρ)dρ.

Note that p
(2)
1,n(0) = 0, p

(2)
2,n(1) = 0, s

(2)
1,n(0) = 0, s

(2)
1,n(1) = 0. So we have,

I
(2)
5,n(r) =


(log rt

(2)
1,n(r) + t

(2)
2,n(r)), if n = 0

(p
(2)
1,n(r) + p

(2)
2,n(r)) if n > 0,

(s
(2)
1,n(r) + s

(2)
2,n(r)), if n < 0,

Now for rj > ri, n = 0 we define

Ai,j0,2 = 4

rj∫
ri

ρf0(ρ)dρ, (6.11)

Bi,j
0,2 = 4

rj∫
ri

ρ log ρf0(ρ)dρ. (6.12)

83



For rj > ri, n 6= 0 we define

Ai,jn,2 = 2

rj∫
ri

(
R

ρ

)n
ρ3

n
fn(ρ)dρ, (6.13)

where,

R =

 ri if n > 0,

rj if n < 0.

For rj > ri, n 6= 0 we define

Bi,j
n,2 = 2

rj∫
ri

( ρ
R

)n ρ3

n
fn(ρ)dρ, (6.14)

where

R =

 rj if n > 0,

ri if n < 0.
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Algebraic computation with rl < ri < rj shows that

p
(2)
1,n(ri) =

(
rl
ri

)n
p

(2)
1,n(rl)−Bl,i

n,2 n > 0, (6.15)

p
(2)
2,n(ri) =

(
ri
rj

)n
p

(2)
2,n(rj)− Ai,jn,2 n > 0, (6.16)

s
(2)
1,n(ri) =

(
ri
rl

)n
s

(2)
1,n(rl) + Al,in,2 n < 0, (6.17)

s
(2)
2,n(ri) =

(
rj
ri

)n
s

(2)
2,nrj) +Bi,j

n,2 n < 0, (6.18)

t
(2)
1,0(ri) = t

(2)
1,0(rl) + Al,i0,2 n = 0, (6.19)

t
(2)
2,0(ri) = t

(2)
2,0(rj) +Bi,j

0,2 n = 0. (6.20)

We similarly build the recursive relation for I
(3)
5,n(r) and I

(4)
5,n(r). Now I

(3)
5,n(r) is given

by

I
(3)
5,n(r) =


2r

(n+1)

[∫ r
0
fn(ρ)(ρ

r
)(n+1)ρ2dρ+

∫ 1

r
fn(ρ)( r

ρ
)(n+1)ρ2dρ,

]
if n > −1,

− 2r
(n+1)

[∫ r
0
fn(ρ)( r

ρ
)(n+1)ρ2dρ+

∫ 1

r
fn(ρ)(ρ

r
)(n+1)ρ2dρ,

]
if n < −1,

−2r
[∫ r

0
f−1(ρ)ρ2 log rdρ+

∫ r
1
f−1(ρ)ρ2 log ρdρ,

]
if n = −1.
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Now we define the following.

p
(3)
1,n(r) = 2

r∫
0

(ρ
r

)(n+1) ρ2

(n+ 1)
fn(ρ)dρ,

p
(3)
2,n(r) = 2

1∫
r

(
r

ρ

)(n+1)
ρ2

(n+ 1)
fn(ρ)dρ,

s
(3)
1,n(r) = −2

r∫
0

(
r

ρ

)(n+1)
ρ2

(n+ 1)
fn(ρ),

s
(3)
2,n(r) = −2

1∫
r

(ρ
r

)(n+1) ρ2

(n+ 1)
fn(ρ),

t
(3)
1,−1(r) = −4

r∫
0

ρ2 log rf−1(ρ)dρ,

t
(3)
2,−1(r) = −4

1∫
r

ρ2 log ρf−1(ρ)dρ.

Note that p
(3)
1,n(0) = 0, p

(3)
2,n(1) = 0, s

(3)
1,n(0) = 0, s

(3)
1,n(1) = 0. So we have for

I
(3)
5,n(r) =


r(log rt

(3)
1,n(r) + t

(3)
1,n(r)), if n = −1,

r(p
(3)
1,n(r) + p

(3)
2,n(r)), if n > −1,

r(s
(3)
1,n(r) + s

(3)
2,n(r)), if n < −1.

Now for rj > ri, n = −1 we define

Ai,j−1,3 = 4

rj∫
ri

ρ2f−1(ρ)dρ, (6.21)

Bi,j
−1,3 = 4

rj∫
ri

ρ2 log ρf−1(ρ)dρ. (6.22)
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For rj > ri, n 6= −1 we define

Ai,jn,3 = 2

rj∫
ri

(
R

ρ

)(n+1)
ρ2

(n+ 1)
fn(ρ)dρ, (6.23)

where

R =

 ri if n > −1,

rj if n < −1,

Bi,j
n,3 = 2

rj∫
ri

( ρ
R

)(n+1) ρ3

(n+ 1)
fn(ρ)dρ, (6.24)

where

R =

 rj if n > −1,

ri if n < −1.

Algebraic computation with rl < ri < rj shows that,

p
(3)
1,n(ri) =

(
rl
ri

)(n+1)

p
(3)
1,n(rl) +Bl,i

n,3, n > −1, (6.25)

p
(3)
2,n(ri) =

(
ri
rj

)(n+1)

p
(3)
2,n(rj) + Ai,jn,3, n > −1, (6.26)

s
(3)
1,n(ri) =

(
ri
rl

)(n+1)

s
(3)
1,n(rl)− Al,in,3, n < −1, (6.27)

s
(3)
2,n(ri) =

(
rj
ri

)(n+1)

s
(3)
2,nrj)−B

i,j
n,3, n < −1, (6.28)

t
(3)
1,−1(ri) = t

(3)
1,−1(rl) + Al,i−1,3, n = −1, (6.29)

t
(3)
2,−1(ri) = t

(3)
2,−1(rj) +Bi,j

−1,3. n = −1. (6.30)
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I
(4)
5,n(r) is given by

I
(4)
5,n(r) =


2r

(n−1)

[∫ r
0
fn(ρ)(ρ

r
)(n−1)ρ2dρ+

∫ 1

r
fn(ρ)( r

ρ
)(n−1)ρ2dρ

]
, if n > 1,

−2r
(n−1)

[∫ r
0
fn(ρ)( r

ρ
)(n−1)ρ2dρ+

∫ 1

r
fn(ρ)(ρ

r
)(n−1)ρ2dρ

]
, if n < 1,

−4r
[∫ r

0
f1(ρ)ρ2 log rdρ+

∫ 1

r
f1(ρ)ρ2 log ρdρ

]
, if n = 1.

We define the following.

p
(4)
1,n(r) = 2

r∫
0

(ρ
r

)(n−1) ρ2

(n− 1)
fn(ρ)dρ,

p
(4)
2,n(r) = 2

1∫
r

(
r

ρ

)(n−1)
ρ2

(n− 1)
fn(ρ)dρ,

s
(4)
1,n(r) = −2

r∫
0

(
r

ρ

)(n−1)
ρ2

(n− 1)
fn(ρ)dρ,

s
(4)
2,n(r) = −2

1∫
r

(ρ
r

)(n−1) ρ2

(n− 1)
fn(ρ)dρ,

t
(4)
1,1(r) = −4

r∫
0

ρ2 log rf1(ρ)dρ,

t
(4)
2,1(r) = −4

1∫
r

ρ2 log ρf1(ρ)dρ.

Note that p
(4)
1,n(0) = 0, p

(4)
2,n(1) = 0, s

(4)
1,n(0) = 0, s

(4)
1,n(1) = 0. So we have for

I
(4)
5,n(r) =


r(log rt

(4)
1,n(r) + t

(4)
2,n(r)), if n = 1,

r(p
(4)
1,n(r) + p

(4)
2,n(r)), if n > 1,

r(s
(4)
1,n(r) + s

(4)
2,n(r)), if n < 1.
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Now for rj > ri, n = 1 we define

Ai,j1,4 = 4

rj∫
ri

ρ2f1(ρ)dρ, (6.31)

Bi,j
1,4 = 4

rj∫
ri

ρ2 log ρf1(ρ)dρ. (6.32)

For rj > ri, n 6= 1 we define

Ai,jn,4 = 2

rj∫
ri

(
R

ρ

)(n−1)
ρ2

(n− 1)
fn(ρ)dρ, (6.33)

where,

R =

 ri if n > 1,

rj if n < 1,

Also define,

Bi,j
n,4 = 2

rj∫
ri

( ρ
R

)(n−1) ρ2

(n− 1)
fn(ρ)dρ, (6.34)

where,

R =

 rj if n > 1,

ri if n < 1,
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Algebraic computation with rl < ri < rj shows that

p
(4)
1,n(ri) =

(
rl
ri

)(n−1)

p
(4)
1,n(rl) +Bl,i

n,4, n > 1, (6.35)

p
(4)
2,n(ri) =

(
ri
rj

)(n−1)

p
(4)
2,n(rj) + Ai,jn,4, n > 1, (6.36)

s
(4)
1,n(ri) =

(
ri
rl

)(n−1)

s
(4)
1,n(rl)− Al,in,4, n < 1, (6.37)

s
(4)
2,n(ri) =

(
rj
ri

)(n−1)

s
(4)
2,n(rj)−Bi,j

n,4, n < 1, (6.38)

t
(4)
1,1(ri) = t

(4)
1,1(rl) + Al,i1,4, n = 1, (6.39)

t
(4)
2,1(ri) = t

(4)
2,1(rj) +Bi,j

1,4, n = 1. (6.40)
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7. FAST ALGORITHM AND QUADRATURE METHODS

In this section we discuss about the quadrature methods used to compute Ai,jn,k

and Bi,j
n,k. We use Trapezoidal, Simpson, and Euler-Maclaurin formula to compute

the integrals. Here we provide some important theorems from [39],[27],[37] for the

Euler-Maclaurin expansion.

7.1 Quadrature Methods

Let xl = a+ lh, l = 0, 1, ..M, h = b−a
M

and M a positive integer. We state the

following theorems from [39].

Theorem 7.1.1. If a function f(x) is 2n times differentiable on [a, b] then

b∫
a

f(x)dx = h
K̇∑
i=0

f(xi) +
n−1∑
ν=1

B2ν

2ν
[f (2ν−1)(a)− f (2ν−1)(b)]h2ν +R2n[f ; (a, b)],

where

R2n[f ; (a, b)] = h2n

b∫
a

B̄2n[(x− a)/h]−B2n

2n
f (2n)(x)dx.

Bν are the Bernoulli numbers and B̄ν(x) are periodic Bernoullian function of order

ν and
K̇∑
i=0

f(xi) is the summation with the first and the last terms multiplied with 1
2
.

If f(x) is infinitely differentiable on [a, b] then

b∫
a

f(x)dx = h
K̇∑
i=0

f(xi) +
∞∑
ν=1

B2ν

2ν!
[f (2ν−1)(a)− f (2ν−1)(b)]h2ν as h→ 0
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Theorem 7.1.2. If a function f(x) is 2n times differentiable on [a, b] and F (x) =

(x− a)sf(x), s > −1, then

b∫
a

F (x)dx = h
K̇∑
i=1

F (xi)−
n−1∑
ν=1

B2ν

(2ν)!
F (2ν−1)(b)h2ν −

2n−1∑
ν=0

ζ(−s− ν)

ν!
f (ν)(a)hν+s+1 + ρ2n

where ζ(t) is the Riemann zeta function for Re(t) > 1 and ρ2n = O(h2n) as h → 0.

If f(x) is infinitely differentiable on [a, b] then, as h→ 0

b∫
a

F (x)dx = h
K̇∑
i=0

F (xi)−
∞∑
ν=1

B2ν

(2ν)!
F (2ν−1)(b)h2ν −

∞∑
ν=0

ζ(−s− ν)

ν!
f (ν)(a)hν+s+1.

Theorem 7.1.3. If a function f(x) is 2n times differentiable on [a, b] and F (x) =

(x− a)s log(x− a)f(x), s > −1 then

b∫
a

F (x)dx = h
K̇∑
i=1

F (xi)−
n−1∑
ν=1

B2ν

(2ν)!
F (2ν−1)(b)h2ν

−
2n−1∑
ν=0

[ζ ′(−s− ν) + ζ(−s− ν) log h]
f (ν)(a)

ν!
hν+s+1 + ρ2n

where ζ ′(t) = dζ(t)
dt

and ρ2n = O(h2n) as h→ 0.

If f(x) is infinitely differentiable on [a, b] then

b∫
a

F (x)dx = h

K̇∑
i=0

F (xi)−
∞∑
ν=1

B2ν

(2ν)!
F (2ν−1)(b)h2ν

−
∞∑
ν=0

[−ζ ′(−s− ν) + ζ(−s− ν) log h]
f (ν)(a)

ν!
hν+s+1
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In our implementation to compute Ai,jn,k and Bi,j
n,k, we used two point quadrature

ie, K = 1 for each i = 1, 2...M and the first order derivative of the integrands of

Ai,jn,k and Bi,j
n,k are computed for ν = 1, to incorporate the correction term as given

in the theorems. These theorems provide a very high order accuracy for computing

Ai,jn,k and Bi,j
n,k.

7.2 Fast Algorithm

Now with the tools ready, we can build the fast, high order accurate algorithm

for solving the Poisson and biharmonic problems. We discretize the unit disk using

M ×N equidistant points, M in the radial direction and N in the angular direction

as in Fig. 7.1. To obtain a numerical method for evaluating the domain integral, the

interior of the disk is divided into a collection of annular regions. Let 0 = r1 < r2 <

.....rM = 1.

Figure 7.1: The unit disk with equidistant radial points

M

N
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7.2.1 Fast Algorithm For Poisson Problems

We consider the Poisson problem (P1) defined in Section. 2.

Initialization: Choose M and N. Define K = N
2
.

Inputs: M, N, γ(e
2πik
N ), f(rle

2πik
N ), l ∈ [1,M ], k = 1.....N and n ∈ [−K+1, K]

Step 1. Compute the Fourier coefficients γn(rl), fn(rl) using FFT for all n ∈

[−K + 1, K], l ∈ [1,M ].

Step 2. Compute un(rl) to obtain u(z) for n ∈ [−K + 1, K], l ∈ [1,M ]

Step 3. Compute Ai,i+1
n,1 , Ai,i+1

0,1 , Bi,i+1
n,1 , Bi,i+1

0,1 for i ∈ [1,M − 1], n ∈ [−K + 1, K]

using (6.3), (6.4),(6.1), (6.2)

Step 4. Compute p
(1)
1,n(rl), p

(1)
2,n(rl) for n ∈ [1, K], and s

(1)
1,n(rl), s

(1)
2,n(rl) for n ∈

[−K + 1,−1], t
(1)
1,0(rl), t

(1)
2,0(rl) and l ∈ [1,M ] using (6.5), (6.6), (6.7), (6.8), (6.9),

(6.10).

Set p
(1)
1,n(0) = 0

for n = 1........K

for l = 2....M

p
(1)
1,n(rl) =

(
rl−1

rl

)n
p

(1)
1,n(rl−1)−Bl−1,l

n,1

end

end

Set p
(1)
2,n(1) = 0

for n = 1........K

for l = M − 1....1

p
(1)
2,n(rl) =

(
rl
rl+1

)n
p

(1)
2,n(rl+1)− Al,l+1

n,1

end
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end

Set s
(1)
1,n(0) = 0

for n = −K........− 1

for l = 2....M

s
(1)
1,n(rl) =

(
rl
rl−1

)n
s

(1)
1,n(rl−1)− Al−1,l

n,1

end

end

Set s
(1)
2,n(1) = 0

for n = −K........1

for l = M − 1....1

s
(1)
2,n(rl) =

(
rl+1

rl

)n
s

(1)
2,n(rl+1) +Bl,l+1

n,1

end

end

for l = 2....M

t
(1)
1,0(rl) =

(
log rl

log rl−1

)
t
(1)
1,0(rl−1)− Al−1,l

0,1

end

for l = M − 1....1

t
(1)
2,0(rl) = t

(1)
2,0(rl+1) +Bl,l+1

0,1

end

Step 5. Finally compute ω(rle
2πik
N ) =

K∑
n=−K+1

(v(rl) + +un(rl)) e
2πink
N .

Similar is the sequential algorithm for the Poisson equation with the Neumann
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boundary condition.

7.2.2 Fast Algorithms For Biharmonic Problems

We present here the fast algorithm to solve the (D1) biharmonic problem in the

direct method (fast direct method). Let 0 = r1 < r2 < .....rM = 1.

Initialization: Choose M and N. Define K = N
2
.

Inputs: M,N, h0(e
2πik
N ), h1(e

2πik
N ), f(rle

2πik
N ), l ∈ [1,M ], k = 1.....N and n ∈

[−K + 1, K].

Step 1. Compute the Fourier coefficients an, bn, fn using FFT for all n ∈ [−K +

1, K].

Step 2. Compute u2,n(rl), v2,n(rl), r2,n(rl), I3,n(rl), I
(k)
4,n(rl) to obtain I3(z), I4(z),

u2(z), v2(z), r2(z) using (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9) re-

spectively for n ∈ [−K + 1, K], l ∈ [1,M ], k = 1, 2, 3, 4

Step 3. Compute Ai,i+1
n,k , Bi,i+1

n,k for i ∈ [1,M − 1], n ∈ [−K + 1, K], k = 1, 2, 3, 4 using

(6.3), (6.4), (6.1), (6.2), (6.13), (6.14), (6.11), (6.12), (6.23), (6.24), (6.21),

(6.22) (6.33), (6.34), (6.31), (6.32)

Step 4. Compute p
(j)
1,n(rl), p

(j)
2,n(rl), t

(j)
1,n(rl), t

(j)
2,n(rl) for n ∈ [0, K] and s

(j)
1,n(rl), s

(j)
2,n(rl)

for n ∈ [−K + 1,−1], j = 1, 2, 3, 4 and l ∈ [1,M ] using (6.5), (6.6), (6.7), (6.8),

(6.9), (6.10), (6.15), (6.16),(6.17),(6.18), (6.19), (6.20), (6.25), (6.26), (6.27), (6.28),

(6.29), (6.30),

(6.35), (6.36), (6.37), (6.38), (6.39), (6.40) with the following recursive relation.

Now for j = 1, 2 we have,
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Set p
(j)
1,n(0) = 0

for n = 1........K

for l = 2....M

p
(j)
1,n(rl) =

(
rl−1

rl

)n
p

(j)
1,n(rl−1)−Bl−1,l

n,j

end

end

Set p
(j)
2,n(1) = 0

for n = 1........K

for l = M − 1....1

p
(j)
2,n(rl) =

(
rl
rl+1

)n
p

(j)
2,n(rl+1)− Al,l+1

n,j

end

end

Set s
(j)
1,n(0) = 0

for n = −K........− 1

for l = 2....M

s
(j)
1,n(rl) =

(
rl
rl−1

)n
s

(j)
1,n(rl−1)− Al−1,l

n,j

end

end

Set s
(j)
2,n(1) = 0

for n = −K........1

for l = M − 1....1

s
(j)
2,n(rl) =

(
rl+1

rl

)n
s

(j)
2,n(rl+1) +Bl,l+1

n,j

end
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end

for l = 2....M

t
(j)
1,0(rl) = log rl

log rl−1
t
(j)
1,0(rl−1)− Al−1,l

0,j

end

for l = M − 1....1

t
(j)
2,0(rl) = t

(j)
2,0(rl+1) +Bl,l+1

0,j

end

For j = 3, 4 we have,

Set p
(3)
1,n(0) = 0

for n = 0........K

for l = 2....M

p
(3)
1,n(rl) =

(
rl−1

rl

)(n+1)

p
(3)
1,n(rl−1) +Bl−1,l

n,3

end

end

Set p
(3)
2,n(1) = 0

for n = 0........K

for l = M − 1....1

p
(3)
2,n(rl) =

(
rl
rl+1

)(n+1)

p
(3)
2,n(rl+1) + Al,l+1

n,3

end

end

Set s
(3)
1,n(0) = 0
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for n = −K........− 2

for l = 2....M

s
(3)
1,n(rl) =

(
rl
rl−1

)(n+1)

s
(3)
1,n(rl−1)− Al−1,l

n,3

end

end

Set s
(3)
2,n(1) = 0

for n = −K........− 2

for l = M − 1....1

s
(3)
2,n(rl) =

(
rl+1

rl

)(n+1)

s
(3)
2,n(rl+1)−Bl,l+1

n,3

end

end

for l = 2....M

t
(3)
1,−1(rl) = log rl

log rl−1
t
(3)
1,−1(rl−1)− Al−1,l

−1,3

end

for l = M − 1....1

t
(3)
2,−1(rl) = t

(3)
2,−1(rl+1)−Bl,l+1

−1,3

end

Set p
(4)
1,n(0) = 0

for n = 2........K

for l = 2....M

p
(4)
1,n(rl) =

(
rl−1

rl

)(n−1)

p
(4)
1,n(rl−1) +Bl−1,l

n,4

end
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end

Set p
(4)
2,n(1) = 0

for n = 2........K

for l = M − 1....1

p
(4)
2,n(rl) =

(
rl
rl+1

)(n−1)

p
(4)
2,n(rl+1) + Al,l+1

n,4

end

end

Set s
(4)
1,n(0) = 0

for n = −K........0

for l = 2....M

s
(4)
1,n(rl) =

(
rl
rl−1

)(n−1)

s
(4)
1,n(rl−1)− Al−1,l

n,4

end

end

Set s
(4)
2,n(1) = 0

for n = −K........0

for l = M − 1....1

s
(4)
2,n(rl) =

(
rl+1

rl

)(n−1)

s
(4)
2,n(rl+1)−Bl,l+1

n,4

end

end

for l = 2....M

t
(4)
1,1(rl) = log rl

log rl−1
t
(4)
1,−1(rl−1)− Al−1,l

1,4

end
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for l = M − 1....1

t
(4)
2,1(rl) = t

(4)
2,1(rl+1)−Bl,l+1

1,4

end

Step 5. Finally compute

ω(rle
2πik
N ) =

K∑
n=−K+1

(u2(rl) + v2(rl) + r2(rl) + I3(rl) + I4(rl) + I5(rl)) e
2πnik
N using in-

verse FFT for k ∈ [1, N ], l ∈ [1,M ].

Similar is the algorithm for the direct method of (D3) biharmonic problem. Now we

consider the algorithm for the (D2) biharmonic problem.

Let 0 = r1 < r2 < .....rM = 1.

Initialization: Choose M and N. Define K = N
2
.

Inputs: M, N, h0(e
2πik
N ), h1(e

2πik
N ), f(rle

2πik
N ), l ∈ [1,M ], k = 1.....N and

n ∈ [−K + 1, K], i = 1, 2, 3, 4.

Step 1. Compute the Fourier coefficient an, bn, fn using FFT for all n ∈ [−K+1, K].

Step 2. Compute u2,n(rl), v3,n(rl), I
(k)
4,n(rl), I6,n(rl), I7,n(rl), to obtain I4(z), I6(z), I7(z),

u2(z), v3(z) using (3.2), (4.12), (3.6), (3.7), (3.8), (3.9), (4.2), (4.3) respec-

tively for n ∈ [−K + 1, K], l ∈ [1,M ], k = 1, 2, 3, 4

Step 3. Compute Ai,i+1
n,k , Bi,i+1

n,k for i ∈ [1,M − 1], n ∈ [−K + 1, K], k = 1, 2, 3, 4

using (6.3), (6.4), (6.1), (6.2), (6.13), (6.14), (6.11), (6.12), (6.23), (6.24),

(6.21), (6.22) (6.33), (6.34), (6.31), (6.32)
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Table 7.1: The complexity at each step for the Poisson equation.

Step Operation Count
1 The M discrete Fourier transforms of N data sets con-

tribute O(MN logN ).

2 Computation of Ai,i+1
n,1 and Bi,i+1

n,1 , i ∈ [1,M − 1] con-
tribute O(MN ).

3 Computation of p
(1)
1,n, p

(1)
2,n, s

(1)
1,n, s

(1)
2,n, t

(1)
1,0, t

(1)
2,0 contribute

O(MN ).

4 Computation of ω(rle
2πik
N ), k ∈ [1, N ] by FFT con-

tribute O(MN logN ) for M ×N grid points.

Step 4. Compute p
(j)
1,n(rl), p

(j)
2,n(rl) for n ∈ [1, K] and s

(j)
1,n(rl), s

(j)
2,n(rl) for n ∈

[−K + 1,−1], tj1,0(rl), t
j
2,0(rl), j = 1, 2, 3, 4 and l ∈ [1,M ] as in (6.5), (6.6), (6.7),

(6.8), (6.9), (6.10), (6.15), (6.16), (6.17), (6.18), (6.19), (6.20), (6.25), (6.26),

(6.27), (6.28),

(6.29), (6.30), (6.35), (6.36), (6.37) (6.38), (6.39), (6.40) with the recursive re-

lation as in the algorithm with (D1) biharmonic problem.

Step 5. Finally compute ω(rle
2πik
N ) using inverse FFT.

The algorithm is similar for (D4) biharmonic problem. Note here for double Poisson

method we apply the algorithm for Poisson solver twice.

7.2.3 Algorithmic Complexity

The computational complexity of the fast algorithm for the Poisson equation

and the biharmonic problems in a unit disc in the complex plane has been presented

here. The asymptotic operation count and the asymptotic storage has been discussed

here and are shown in Tables. 7.1, 7.2. We consider first the algorithm for (D1)
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Table 7.2: The complexity at each step for the (D1) biharmonic problem .

Step Operation Count
1 The M discrete Fourier transforms of N data sets con-

tribute O(MN logN ).
2 Computation of I3,n, I4,n, u2,n, v2,n, r2,n contribute

O(MN ).

3 Computation of Ai,i+1
n,j and Bi,i+1

n,j , i ∈ [1,M − 1] con-
tribute O(MN ).

4 Computation of each p
(j)
1,n, p

(j)
2,n, s

(j)
1,n, s

(j)
2,n, t

(j)
1,0, t

(j)
2,0 con-

tribute O(MN ).

5 Computation of ω(rle
2πik
N ), k ∈ [1, N ] by FFT con-

tributes O(MN logN ) for M ×N grid points.

biharmonic problem to analyse the complexity. The asymptotic operation count for

the (D2) biharmonic problem is similar and has same operation count as (D3) and

(D4) biharmonic problems discussed in Section. 3, Section. 4.

Remark 1. N must be a power of 2 for use of FFT. This algorithm is highly par-

allelizable and the estimates can be improved effectively if it is implemented on a

parallel machine.
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8. BIHARMONIC PROBLEMS IN ANNULAR DOMAIN

In this section, we consider (D2) and (D4) biharmonic problem in an annular disk

Ω = {z ∈ R2 : R1 < |z| < R2} and ∂Ω = {z ∈ R2 : R1 = |z| or |z| = R2}. We

employ the double Poisson method here.

8.1 Biharmonic Problem In The Concentric Annular Domain

In an annular domain, we decompose the biharmonic problem


(∂z∂z̄)

2ω = f, in Ω,

ω = γ0, on ∂Ω,

(∂z∂z̄)ω = γ2, on ∂Ω.

(8.1)

into two Poisson problems.

 ∂z∂z̄w
P = f, in Ω,

wP = γ2, on ∂Ω.
(8.2)

 ∂z∂z̄ω = wP , in Ω,

ω = γ0, on ∂Ω.
(8.3)

We use the free space Green’s function for the Laplace equation to solve the decom-

posed system here.
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Let wP (r, θ) = uP (r, θ) + vP (r, θ) where vP (r, θ) and uP (r, θ) satisfy

∂z∂z̄u
P = f in Ω (8.4)

and  ∂z∂z̄v
P = 0, in Ω.

vP = γ2 − uP (θ), on ∂Ω.

Also let

h1(θ) = γ2(θ)− uP (θ) on {z ∈ R2 : |z| = R1},

h2(θ) = γ2(θ)− uP (θ) on {z ∈ R2 : |z| = R2},

and an and bn be the Fourier coefficients of h1(θ) and h2(θ) respectively. A particular

solution of (8.4) for z ∈ Ω and ζ = ξ + iη can be expressed as

uP (z) =

∫∫
D

f(ζ)G(z, ζ)dξdη, (8.5)

where

G(z, ζ) =
1

2π
log |z − ζ|,

is the free space Green’s function for the Laplacian. We first solve for wP and then

employing the same technique we solve for ω. The particular solution for uP (z) is

given by

uP (z) =
2

π

∫∫
Ω

log |ζ − z|f(ζ)dξdη. (8.6)
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This singular integral is same as the one (2.3) and is given by

uPn (r) =


−2
[∫ r

R1
fn(ρ)(ρ

r
)n ρ

n
dρ+

∫ R2

r
fn(ρ)( r

ρ
)n ρ

n
dρ
]
, if n > 0,

2
[∫ r

R1
fn(ρ)( r

ρ
)n ρ

n
dρ+

∫ R2

r
fn(ρ)(ρ

r
)n ρ

n
dρ
]
, if n < 0,

4
[∫ r

R1
f0(ρ)ρ log rdρ+

∫ R2

r
f0(ρ)ρ log ρdρ

]
, if n = 0.

The solution of vP (z) can be found in any standard text book of applied math

(see([23],[19])) but we mention here for the sake of completeness.

Theorem 8.1.1. If h1,n and h2,n are the Fourier coefficient of h1(θ) and h2(θ) at

the boundary then the Fourier coefficient vPn (r) of vP (r, θ)is given by

vPn (r) =

 α0 log(r) + β0, if n = 0,

αnr
−n + βnr

n, if n 6= 0.
(8.7)

where,

α0 =
h1,0 − h2,0

log
(
R1

R2

) , β0 =
h2,0 logR1 − h1,0 logR2

log
(
R1

R2

)
and

αn =
(R1R2)n(h2,n(R1)n − h1,n(R2)n)

(R1)2n − (R2)2n
, βn =

(h1,n(R1)n − h2,n(R2)n)

(R1)2n − (R2)2n

Proof. The Fourier series representation of vP (z) is given by vP (r, θ) =
∞∑

n=−∞

vP (n, r)einθ

and the Fourier coefficient satisfies the differential equation

d2vPn
dr2

+
1

r

dvPn
dr
− n2

r2
vPn = 0
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with boundary conditions given by

vPn (r = R1) = h1,n and vPn (r = R2) = h2,n

The solution of the Euler differential equation is given by

vPn (r) =

 α0 log(r) + β0, if n = 0,

αnr
−n + βnr

n, if n 6= 0.

and using the boundary conditions the above system is solved to obtain,

α0 =
h1,0 − h2,0

log(R1

R2
)
, (8.8)

β0 =
h2,0 logR1 − h1,0 logR2

log(R1

R2
)

, (8.9)

αn =
(R1)n(R2)n(h2,n(R1)n − h1,n(R2)n)

(R1)2n − (R2)2n
, (8.10)

βn =
(h1,n(R1)n − h2,n(R2)n)

(R1)2n − (R2)2n
. (8.11)

Hence we obtain wP . Similarly using the technique above we obtain ω with this

decomposition

ω(r, θ) = uH(r, θ) + vH(r, θ) where vH(r, θ) and uH(r, θ) satisfy

∂z∂z̄u
H = f, in Ω. (8.12)

and  ∂z∂z̄v
H = 0, in Ω,

vH = γ2 − uH(θ), on ∂Ω.
(8.13)
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Next we consider the (D4) biharmonic problem on an annular disk Ω given by Ω =

{z ∈ R2 : R1 < |z| < R2} and ∂Ω = {z ∈ R2 : |z| = R1 or |z| = R2}. The (D4)

problem given by 
(∂z∂z̄)

2w = f, in Ω,

w = h0, on ∂Ω,

∂νwzz = g, on ∂Ω.

(8.14)

with k = 1
4πi

∫
∂Ω
wzz̄

dz
z

and satisfying the condition

1

4i

∫
∂Ω

g(ζ)
dζ

ζ
=

∫
Ω

f(ζ)dξdη,

can be decomposed into two Poisson problems

 ∂z∂z̄w
N = f, in Ω,

∂νw
N = g, on ∂Ω.

(8.15)

 ∂z∂z̄ω = wN , in Ω,

ω = h0, on ∂Ω.
(8.16)

Let wN(r, θ) = uN(r, θ) + vN(r, θ) where vN(r, θ) and uN(r, θ) satisfy

∂z∂z̄u
N = f in Ω (8.17)

and
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 ∂z∂z̄v
N = 0, in Ω,

vN = g − ∂νuN(θ), on ∂Ω.

We note that

∂

∂r
wN(R1) = −gn(R1) = −g(1)

n ,

∂

∂r
wN(R2) = gn(R1) = g(2)

n .

Now uN is same as uP and solved similarly using the free space Green’s function.

The solution of vN is easily obtained from any standard text book of applied math

and is given by the following theorem.

Theorem 8.1.2. If vNn (r) and g1
n(r), g2

n(r) are the Fourier coefficient of vN(z) and

g(θ) in the annular disc and at the boundary respectively then the Fourier coefficients

vNn (r) of vN(r, θ) for n = 0 and n 6= 0 are respectively given by

vNn (r) =


−R1 log r

(
g1

0 + dru
N
0 (R1)

)
+ k,(

(R2
r )
|n|

+
(
r
R2

)|n|
(
R2
R1

)|n|
−
(
R1
R2

)|n|
)

R1(druNn (R1)+g1n)
|n| +

(
(R1
r )
|n|

+
(
r
R1

)|n|
(
R1
R2

)|n|
−
(
R2
R1

)|n|
)

R2(druNn (R2)−g2n)
|n| .

(8.18)

Proof. The Fourier series representation of vNn (z) is given by

vN(r, θ) =
∞∑

n=−∞

vN(n, r)einθ
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and the Fourier coefficients satisfy the differential equation

d2vNn
dr2

+
1

r

dvNn
dr
− n2

r2
vNn = 0

with boundary conditions given by

∂nv
N
n (r = R1) = g

(1)
n − ∂nuNn (R1) and ∂nv

N
n (r = R2) = g

(2)
n − ∂nuNn (R2)

The solution of the Euler differential equation is given by

vNn (r) =

 C0 log(r) +D0, if n = 0,

Cnr
−n +Dnr

n, if n 6= 0.

Applying the boundary condition we get the above formulation of vNn (r).

Similarly taking ω = uNH + vNH we solve for uNH and vNH to obtain ω.

8.1.1 Fast Algorithm

For a grid with M ×N equidistant points, M in the radial and N in the circular

direction and rl = R1 + (l−1)(R2−R1)
M−1

, θn = 2πn
N
, l = 1...M we find wP for the (D2)

biharmonic problem first.

Initialization: Choose M and N. Define K = N
2
.

Inputs: f(rle
2πik
N ), γ2(e

2πik
N ), l ∈ [1,M ], k = 1.....N and n ∈ [−K + 1, K]

Step 1. Compute Ai,i+1
n,1 , Ai,i+1

0,1 , Bi,i+1
n,1 , Bi,i+1

0,1 for i ∈ [1,M − 1], n ∈ [−K + 1, K]

using (6.3), (6.4),(6.1), (6.2).

Step 2. Compute p
(1)
1,n(rl), p

(1)
2,n(rl) for n ∈ [1, K] and s

(1)
1,n(rl), s

(1)
2,n(rl) for n ∈

[−K + 1,−1], t
(1)
1,0(rl), t

(1)
2,0(rl) and l ∈ [1,M ] using (6.5), (6.6), (6.7), (6.8), (6.9),

(6.10) by setting in the following way:
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Set p
(1)
1,n(0) = 0

for n = 1........K

for l = 2....M

p
(1)
1,n(rl) =

(
rl−1

rl

)n
p

(1)
1,n(rl−1)−Bl−1,l

n,1

end

end

Set p
(1)
2,n(1) = 0

for n = 1........K

for l = M − 1....1

p
(1)
2,n(rl) =

(
rl
rl+1

)n
p

(1)
2,n(rl+1)− Al,l+1

n,1

end

end

Set s
(1)
1,n(0) = 0

for n = −K........− 1

for l = 2....M

s
(1)
1,n(rl) =

(
rl
rl−1

)n
s

(1)
1,n(rl−1)− Al−1,l

n,1

end

end

Set s
(1)
2,n(1) = 0

for n = −K........1

for l = M − 1....1

s
(1)
2,n(rl) =

(
rl+1

rl

)n
s

(1)
2,n(rl+1) +Bl,l+1

n,1

end
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end

for l = 2....M

t
(1)
1,0(rl) =

(
log rl

log rl−1

)
t
(1)
1,0(rl−1)− Al−1,l

0,1

end

for l = M − 1....1

t
(1)
2,0(rl) = t

(1)
2,0(rl+1) +Bl,l+1

0,1

end

Step 3. Compute,

uPn (rl) =


p

(1)
1,n(rl) + p

(1)
2,n(rl) if n > 0,

s
(1)
1,n(rl) + s

(1)
2,n(rl) if n < 0,

t
(1)
1,0(rl) + t

(1)
2,0(rl) if n = 0.

Step 4. Compute the Fourier coefficient h1,n(rl), h2,n(rl) using FFT.

Step 5. Compute α0, β0, αn, βn using (8.8), (8.9), (8.10), (8.11)

Step 6. Compute the Fourier coefficient vPn (rl), l = 1..M.

Step 7. Compute wP (rle
rl

2πik
N ) =

K∑
n=−K

(
vPn (rl) + uPn (rl)

)
e

2πink
N .

We repeat the same algorithm to obtain ω from uH and vH . The algorithm is similar

for (D4) biharmonic problem with changes in step 6 to compute vNn (r).

8.1.2 Algebraic Complexity

Each FFT of length N contributes N logN operations. There are 3M FFT’s of

length N. The computation of Ai,i+1
n,1 and Bi,i+1

n,1 , i ∈ [1,M − 1] in step 1, 2 and step

3, 4, 5, 6 require computation of O(MN ). Hence the asymptotic operation count is
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O(MN logN ) for M×N grid points. Numerical results will be added in Section.10.

8.2 Biharmonic Equation In An Eccentric Annular Domain

We now give an outline to solve (D2) and (D4) biharmonic problems in an ec-

centric annular domain. We here take advantage of the algorithm for the concentric

annular domain. This is obtained with the help of a conformal mapping which maps

the eccentric annular domain Ω1 into the concentric annular domain Ω. The confor-

mal mapping ζ = T (z) = z−R1

z− 1
R1

maps the circles ∂Ω1
1 : |z| = 1 and ∂Ω2

1 : |z − α| = r

to ∂Ω1 : |ζ| = R1 and ∂Ω2 : |ζ| = R2 respectively. R1 is given by the smallest root

of the equation αq2 + (r2−α2− 1)q+α = 0 and R2 =
√

R1(R1−α)
1−R1α

. It can be verified

that 0 < α < R1 < α + r < 1 if α + r < 1. The biharmonic problem

(∂z∂z̄)
2ω = f, in Ω1,

ω = γ0, on ∂Ω1,

ωzz̄ = γ2, on ∂Ω1.

decomposed into two Poisson problems

 ∂z∂z̄w
P = f, in Ω1,

wP = γ2, on ∂Ω1.

 ∂z∂z̄ω = wP , in Ω1,

ω = T (γ0), on ∂Ω1.
(8.19)

is  ∂z∂z̄w
P = T (r, θ)f, in Ω,

wP = γ2, on ∂Ω.

 ∂z∂z̄ω = T (r, θ)wP , in Ω,

ω = T (γ0), on ∂Ω,

(8.20)
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under the conformal map T. Here T (r, θ) is given by T (r, θ) =
∣∣∣ R2

1−1

4R1(ζ−1)2

∣∣∣ . Similarly

we treat the case of the (D3) biharmonic problem in an eccentric annular disk Ω1.
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9. STEADY, INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN

TWO-DIMENSIONS

In this section, we discuss the application of the fast biharmonic algorithms

developed in this thesis. We consider here flows within a circular cylinder (see (

[33],[26],[29],[24])). We study the steady state two-dimensional viscous motion within

a circular cylinder. Here we use our existing fast algorithm for the biharmonic prob-

lems and provide an algorithm to solve the steady, viscous, incompressible flow within

a circular cylinder. The practical application of these type of problems arise in re-

circulation of fluids in cavities and in confined ventilation. The governing equation

associated with the steady, viscous, incompressible flow is given by

(u · ∇)u = −∇p+∇ · (R−1∇u) (9.1)

∇ · u = 0 (9.2)

where p is the pressure, R is the Reynolds number, and u is the velocity vector of

the fluid motion. We consider flow in two dimensions with polar coordinates (r, θ).

The velocity vector is given by ur = 1
r
∂ψ
∂θ
, uθ = −∂ψ

∂r
which satisfy the equation of

continuity and ψ is the stream function. The vorticity for the planar flow is defined

as ϕ = ∇× u =ϕk̂ where ϕ is given by

ϕ =
1

r
∂r(ruθ)−

1

r
∂θ(ur) (9.3)

Substituting the values of ur and uθ in (9.3) we get,

ϕ = −∆ψ (9.4)
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Taking curl of both sides and simplifying we get the following vorticity equation (9.1)

we obtain,

u · ∇ϕ =
1

R
∆ϕ (9.5)

Substituting (9.4) in (9.5) we obtain,

∆2ψ = −RJ [ψ,∆ψ], (9.6)

where J is the Jacobian given by J [ψ,∆ψ] = 1
r
(∂rψ∂θ∆ψ−∂r∆ψ∂θψ). If R→ 0, then

(9.6) becomes the homogeneous biharmonic equation. Steady, incompressible,viscous

flow in a unit disc of the complex plane can be modeled using the following boundary

value biharmonic problem (see([33],[26],[29])).


(∂z∂z̄)

2ψ = − R
16
J [ψ, ψzz̄] in r < 1

ψ = f1(θ) on r = 1

∂ψ
∂r

= −f2(θ) on r = 1.

(9.7)

This is precisely the (D3) biharmonic boundary value problem. We use the fast

algorithm to solve the above problem (9.7).

9.1 Numerical Formulation

In this section, we develop an iteration scheme to solve (9.7). We use here the

solution of the (D3) biharmonic problem on a unit disc (see ([33], [24])).

9.1.1 Stokes Flow

We first consider the slow creeping flow in a disk when R → 0. So, the above

boundary value problem reduces to the homogeneous biharmonic problem associated
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with (D3) problem in Section. 5. It’s solution is given by

ψ(z) =
(1 + |z|2)

4πi

∫
∂D

g1(z, ζ)f1(ζ)
dζ

ζ
+

(1− |z|2)

4πi

∫
∂D

g2(z, ζ)f1(ζ)
dζ

ζ

− (1− |z|2)

2πi

∫
∂D

g1(z, ζ)f2(ζ)
dζ

ζ
.

The solution is obtained by computing the boundary integrals u3(z), h3(z), r3(z) as

in (5.2), (5.3), (5.4). This solution later will serve as the initial guess for solving the

problem in the iterative method.

9.1.2 Flow At Steady State With Low Reynolds Number

Now we seek the solution for flows with nonzero Reynolds number. We concen-

trate here on flows with low Reynolds number. We follow an iteration method here.

We start with an initial guess ψ(0) obtained from the solution of Stokes flow satisfying

ψ
(0)
zz̄zz̄ = 0,

and then at each (k + 1)th stage we solve

ψ
(k+1)
zz̄zz̄ = − R

16
J [ψ(k),ψ

(k)
zz̄ ] in r < 1,

ψk+1 = f1(θ), on r = 1,

∂ψ(k+1)

∂r
= −f2(θ), on r = 1.

The solution is obtained, using the fast algorithm for the (D3) biharmonic problem.

The vorticity ϕ is obtained through ϕ = −∆ψ. We continue the iteration until the

convergence criterion ||ψk+1||−||ψk||
||ψk+1|| < tol is met. The Jacobian is obtained using the

central difference formula on mesh points inside the disk and backward difference,

forward difference for points on the boundary.
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9.2 Fast Algorithm

We present here a fast algorithm to obtain the stream function for a steady,

slow,viscous, incompressible flow. Let 0 = r1 < r2 < .....rM = 1.

Initialization: Choose M and N. Define K = N
2
.

Inputs: M,N, f1(e
2πik
N ), f2(e

2πik
N ), k = 1.....N and n ∈ [−K + 1, K].

Step 1. Compute the Fourier coefficients f1,n, f2,n using FFT for all n ∈ [−K+1, K].

Step 2. Compute u3,n(rl), h3,n(rl), r3,n(rl) to obtain ψ(0)(z).

Step 3. Compute R
16
J [ψ(k),ψ

(k)
zz̄ ] and obtain it’s FFT. Here the superscript ‘k‘ refers

to the level of iteration after the suitable initial choice ψ(0)(z) is obtained.

Step 4. Compute the stream function ψ(k)(z) using the algorithm in section (7.2.2)

till ||ψ
k+1||−||ψk||
||ψk+1|| < tol is met.

9.3 Algorithmic Complexity

We consider the computational complexity of the above algorithm. In step 1

there are 2M FFT’s and in step 4 of the algorithm for each new fixed iterate ψk+1

the asymptotic operation count is O(MN logN ) for M × N points, with M be-

ing the grid point in radial direction and N in the circumferential direction. All

other computations in steps 2, 3 and 4 are of lower order. So the overall computa-

tional complexity for the algorithm is O(MN logN ). Also the above algorithms are

parallelizable on multi processor machines (see ([12],[11])) But with this iteration

procedure, there arises a serious convergence problem for higher Reynolds number.

This method converges only for problem with Reynolds number less than 4.
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9.4 Flow At Steady State With Moderate Reynolds Number

The previous iteration method fails for Reynolds number > 4. Therefore we

modify our iteration method for Reynolds number > 4. We precisely use a relaxation

factor as in the Gauss-Siedel SOR method (see [33]). We start with our initial guess as

before to obtain ψ(0)(z) and use the fast algorithm to compute the iterate ψ(k+1)(z).

For convergence we use two relaxation factors α and β for fields ϕ and ψ. To update

the values of ϕ and ψ we use

ϕ
(k+1)
n,l = αϕ

?(k+1)
n,l + (1− α)ϕ

(k)
n,l

ψ
(k+1)
n,l = βψ

?(k+1)
n,l + (1− β)ψ

(k)
n,l

The starred quantity denotes the value obtained at each iterative step. The relaxation

factor helps in convergence and suitable choices for α and β are taken to be 0.3, 0.5.

The convergence is continued until convergence criterion is met. We have applied

the algorithm on several numerical problems given in Section. 10.

9.5 Elasticity

We consider here elastic displacements that occur in planes parallel to the (x, y)

plane and the displacement components are independent of z. If ux and uy are the

components of displacement and σx, σy and τx,y are respectively the components of

stress, the governing equations of elasticity with equilibrium condition and stress
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strain relations (see([25]))are given by

∂σx
∂x

+
∂τxy
∂y

= 0, (9.8)

∂τxy
∂x

+
∂σy
∂y

= 0, (9.9)

σx = (λ+ 2µ)
∂u

∂x
+ λ

∂v

∂y
, (9.10)

σy = (λ+ 2µ)
∂v

∂y
+ λ

∂u

∂x
, (9.11)

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
. (9.12)

Here λ and µ are the Lamé coefficients. In our case, we consider the elastic re-

gion to be the unit disc D. We first find the state of elastic equilibrium when the

displacements on the boundary ∂D are given:

ux = f1(t), uy = f2(t) for t ∈ ∂D.

Also, if external forces are applied to the boundary ∂D and their components denoted

by X and Y , it is seen that

(
−∂x
∂s
,
∂y

∂s

)
· (−τx,y, σx) = X(

−∂x
∂s
,
∂y

∂s

)
· (σy, τx,y) = Y
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where s is the arc length and ∂
∂s

denotes the tangential derivative. We set the

following

σx =
∂2W

∂y2
(9.13)

σy =
∂2W

∂x2
(9.14)

τxy = − ∂
2W

∂x∂y
. (9.15)

The function W (x, y) is called the Airy function. Substituting (9.13)-(9.15) in (9.10)-

(9.12) yields the biharmonic equation:

∆2W = 0.

We also obtain here the following boundary condition:

∂

∂s

(
∂W

∂y

)
= X,

∂

∂s

(
∂W

∂x

)
= −Y

where

∂W

∂y
=

∫
Xds,

∂W

∂x
= −

∫
Y ds.

We consider here the complex plane and these equations together can be written in

the unit disc D in the complex plane as

(∂z∂z̄)
2W = 0, in D,

∂W
∂z̄

= γ0, on ∂D,

W = 0, on ∂D.
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10. NUMERICAL IMPLEMENTATION OF THE ALGORITHMS

In this section, the numerical results are presented and discussed. The error in the

numerical computation arises from the evaluation of the one dimensional integrals in

the algorithm and the truncation of the Fourier series. The numerical implementa-

tions were done in MATLAB and computation were performed using double precision

arithmetics. We provide here the numerical results for both the methods, namely

the double Poisson and the direct methods for the different biharmonic boundary

value problems. CPU time is also presented for the computations.

10.1 Numerical Results

Example 1. We consider the (D2) biharmonic problem

f(z) = 12z̄ + i12z

h0 = z̄ + iz

h2 = 6z̄ + i6z.

The Trapezoidal and Euler-Maclaurin formulas are used for numerical integration in

the radial direction and 64 Fourier coefficients are used to represent the functions.

Tables 10.1 and 10.2 show the relative error for this problem for different values of

M and fixed N = 64. In the double Poisson method, a second order convergence

using Trapezoidal rule and a fourth order convergence using Euler-Maclaurin rule are

observed in the Tables. 10.1 and 10.2. CPU time is also shown in the tables. The

Trapezoidal rule for the direct and double Poisson method gives quadratic conver-

gence. The error plot of f(z) = 12z̄ + 12iz using Euler-Maclaurin rule for M = 256

in double Poisson method is shown in Fig. 10.1 and the plot showing the order of
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Figure 10.1: The graph depicts the absolute error for (D2) problem with f = 12z̄ +
i12z, N = 64,M = 513 for the direct and the double Poisson methods respectively
using the Euler-Maclaurin formula. As the table suggests, the plots reflect the bounds
for error in D at N = 64,M = 513. This is a color plot on screen.

accuracy in the || · ||∞ norm is shown in Fig. 10.2. We observe that the double

Poisson method scores better in terms of accuracy and time here. The numerical

and analytical plots of the real and imaginary parts of the solution are depicted for

M = 256, N = 32 in Fig. 10.3, Fig. 10.4.

Example 2. We consider the homogeneous (D2) biharmonic problem given by

f(z) = 0

h0 = 1

h2 = 1.

We employ the two algorithms for the (D2) problem using Euler-Maclaurin rule

and Trapezoidal rule and we observe the relative errors for different values of M
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Table 10.1: Relative error for f(z) = 12z̄ + 12iz using Euler-Maclaurin formula.

Direct Method Double Poisson Method

M || · ||∞ order Tdir || · ||∞ order Tdoub
16 2.8× 10−2 0 0.5 3.7× 10−4 0 0.25

32 1.1× 10−2 1.4 0.56 1.7× 10−5 4.39 0.30

64 3.2× 10−3 1.7 0.64 1.1× 10−6 3.95 0.39

128 8.7× 10−4 1.8 0.83 6.6× 10−8 4.05 0.57

256 2.3× 10−4 1.9 1.25 4.2× 10−9 3.97 0.92

512 5.8× 10−5 1.7 2.07 2.6× 10−10 4.01 1.60

Table 10.2: Relative error for f(z) = 12z̄ + 12iz using Trapezoidal rule.

Direct Method Double Poisson Method

M || · ||∞ order Tdir || · ||∞ order Tdoub
17 1.2× 10−1 0 0.25 2.7× 10−2 0 0.16

33 3.2× 10−2 1.9 0.32 7.1× 10−3 1.9 0.20

65 8.2× 10−3 1.9 0.55 1.8× 10−3 1.9 0.26

129 2.1× 10−3 1.9 1.40 4.5× 10−4 2.0 0.41

256 5.2× 10−4 2.0 4.08 1.14× 10−4 1.9 0.71

513 1.3× 10−4 2.0 16.57 2.8× 10−5 2.1 1.4

124



10
1

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 
O(h4)

O(h2)

numerical plots for O(h4)

numerical plots for O(h2)

Figure 10.2: The order of accuracy using Euler-Maclaurin formula is plotted here
for the direct and the double Poisson method for f = 12z̄ + i12z. O(h2) for direct
method and O(h4) convergence for double Poisson method in || · ||∞ norm are noted
as the mesh is refined. This is a color plot in screen.

and fixed N = 64 in Tables. 10.3 and 10.4. The direct method gives us a highly

accurate and faster solution than the double Poisson method. The low accuracy in

double Poisson method is due to the logarithmic singularity involved and we obtain a

quadratic convergence using Euler-Maclaurin formula. First order convergence using

Trapezoidal rule in double Poisson method is observed. We notice, even with M as

small as 16 a highly accurate solution is obtained in the case of direct method. The

order of accuracy in the || · ||∞ norm is shown in Fig. 10.5 and the error plot using

Euler-Maclaurin rule is shown in Fig. 10.6.
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(a) imaginary part of the analytical solution (b) imaginary part of the numerical solution

Figure 10.3: The graph depicts the analytical and numerical plot of the imaginary
part of the solution for f = 12z̄ + i12z,N = 64,M = 256 in the double Poisson
method. This is a color plot on screen.

Table 10.3: Relative error for f(z) = 0 using Euler-Maclaurin formula.

Direct Method Double Poisson Method

M || · ||∞ Tdir || · ||∞ order Tdoub
16 7.22× 10−15 0.37 7.2× 10−3 0 0.18

32 7.22× 10−15 0.39 1.4× 10−3 2.4 0.21

64 7.22× 10−15 0.43 3.2× 10−4 2.1 0.35

128 7.22× 10−15 0.51 7.2× 10−5 2.4 0.55

256 7.22× 10−15 0.66 1.7× 10−5 2.1 0.88

512 7.22× 10−15 0.90 5.7× 10−6 1.6 1.42
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(a) real part of the analytical solution (b) real part of the numerical solution

Figure 10.4: The graph depicts the analytical and numerical plot of the real part of
the solution for f = 12z̄ + i12z,N = 64,M = 256 in the double Poisson method.
This is a color plot on screen.

Table 10.4: Relative error for f(z) = 0 using Trapezoidal rule.

Direct Method Double Poisson Method

M || · ||∞ Tdir || · ||∞ order Tdoub
17 1.98× 10−15 0.15 1.9× 10−1 0 0.14

33 1.92× 10−15 0.20 9.5× 10−2 1.0 0.17

65 1.96× 10−15 0.30 4.7× 10−2 1.0 0.23

129 1.94× 10−15 0.67 2.3× 10−2 1.0 0.37

256 1.92× 10−15 2.24 1.1× 10−2 1.1 0.66

513 1.92× 10−15 7.15 4.9× 10−3 1.2 1.09
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Figure 10.5: The order of accuracy is plotted here using Trapezoidal and Euler-
Maclaurin rule in the double Poisson method with f = 0. O(h) with Trapezoidal
rule and O(h2) convergence with Euler-Maclaurin rule in || · ||∞ norm are noted as
the mesh is refined. This is a color plot in screen.

Example 3. We consider the (D2) problem given by

f(z) = z2z̄

h0 = 0

h2 = 0.

This example is of the form zpz̄q whose exact solution has been worked out in Section.

4. Trapezoidal rule and Euler-Maclaurin rule were used for numerical integration in

128



Figure 10.6: The graph depicts the absolute error for (D2) problem with f = 0 in the
double Poisson method using the Euler Maclaurin expansion for M = 64, N = 64.
As the table suggests, the plots reflect the bounds for error in D at N = 64,M = 64.
This is a color plot on screen.

the radial direction and 64 Fourier coefficients has been used to represent the relative

errors in Tables. 10.5, 10.6 for different values of M . The variation in the tables are

noted with increase in M and the accuracy too improves thereon. The Trapezoidal

rule for direct and double Poisson method gives quadratic convergence. The double

Poisson method gives fourth order convergence and direct method shows a quadratic

convergence with Euler-Maclaurin formula as is reflected in the Tables. 10.5, 10.6.

Although the direct method gives quadratic convergence in both the cases but higher

accuracy is obtained with the application of Euler-Maclaurin formula. The relative

error plot of f(z) = z2z̄ using Euler-Maclaurin rule for M = 256 using double Poisson

and direct method is shown in Fig. 10.7 and the order of accuracy in the || · ||∞ norm

is shown in Fig. 10.8. The CPU timings are also included in the table. We observe

better accuracy in case of double Poisson method.
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Table 10.5: Relative error for f(z) = z2z̄ using Euler-Maclaurin formula.

Direct Method Double Poisson method

M || · ||∞ order Tdir || · ||∞ order Tdoub
16 4.07× 10−2 0 0.48 2.7× 10−4 0 0.25

32 1.09× 10−2 1.9 0.53 1.99× 10−5 3.8 0.3

64 3.7× 10−3 1.5 0.61 1.56× 10−6 3.7 0.38

128 1.1× 10−3 1.8 0.83 1.08× 10−7 3.9 0.57

256 3.02× 10−4 1.9 1.23 7.58× 10−9 3.8 0.93

512 7.85× 10−5 1.9 1.98 5.24× 10−10 3.9 1.71

Table 10.6: Relative error for f(z) = z2z̄ using Trapezoidal rule.

Direct Method Double Poisson method

M || · ||∞ order Tdir || · ||∞ order Tdoub
16 1.8× 10−1 0 0.24 1.4× 10−2 0 0.15

32 4× 10−2 2.2 0.30 3.7× 10−3 1.9 0.18

64 1.1× 10−2 1.9 0.53 9.1× 10−4 2.0 0.26

128 2.8× 10−3 1.9 1.37 2.3× 10−4 1.9 0.39

256 6.7× 10−4 2.1 4.73 5.6× 10−5 2.0 0.68

512 1.7× 10−4 2.0 16.58 1.4× 10−5 1.9 1.21

Figure 10.7: The graph depicts the absolute error for (D2) problem with f = z2z̄,
N = 64,M = 256 for the direct and the Double Poisson method respectively using
the Euler Maclaurin formula. As the table suggests, the plots reflect the bounds for
error in D at N = 64,M = 256. This is a color plot in screen.
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Figure 10.8: The order of accuracy using Euler-Maclaurin formula is plotted here for
the direct and the double Poisson method for f = z2z̄. O(h2) for direct method and
O(h4) convergence for double Poisson method in || · ||∞ norm are noted as the mesh
is refined. This is a color plot in screen.

Example 4. We now consider the (D4) biharmonic problem

f(z) = 72z2z̄ + 72zz̄2

h0 = z̄ + z

h2 = 60z̄ + 60z.

This is a similar kind of example as the previous one and Euler-Maclaurin formula is

used for numerical integration. Tables. 10.7 and 10.8 reflect the relative error with
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Table 10.7: Relative error for f(z) = 72zz̄2 + 72z2z̄ using Euler-Maclaurin.

Direct Method Double Poisson Method

M || · ||∞ order Tdir || · ||∞ order Tdoub
16 7.5× 10−1 0 0.49 6.4× 10−5 0 0.25

32 1.2× 10−1 2.7 0.54 7.6× 10−6 3.1 0.30

64 3.1× 10−2 1.9 0.63 4.6× 10−7 4.0 0.38

128 8.8× 10−3 1.9 0.84 2.7× 10−8 4.1 0.56

256 2.2× 10−3 2.0 1.27 1.6× 10−9 4.1 0.94

512 5.8× 10−4 1.9 1.98 1.02× 10−10 4.0 1.61

Table 10.8: Relative error for f(z) = 72zz̄2 + 72z2z̄ using Trapezoidal rule.

Direct Method Double Poisson method

M || · ||∞ order Tdir || · ||∞ order Tdoub
16 1.2 0 0.24 9.1× 10−2 0 0.16

32 3.5× 10−1 1.8 032 2.4× 10−2 1.9 0.20

64 9.2× 10−2 1.9 0.55 6.2× 10−3 2.0 0.27

128 2.3× 10−2 2.0 1.37 1.6× 10−3 2.0 0.41

256 5.6× 10−3 2.0 4.7 3.9× 10−4 2.0 0.72

512 1.5× 10−3 1.9 16.54 9.9× 10−5 2.0 1.21

f(z) = 72z2z̄+72zz̄2, different values of M and fixed N = 64. CPU time is also given

in the tables. The double Poisson method gives an almost fourth order convergence

and the direct method shows a quadratic convergence. The Trapezoidal rule gives a

quadratic convergence for both the methods as shown in the Tables. 10.7 and 10.8

but higher accuracy for the direct method is obtained using the Euler-Maclaurin

formula. The error plot for f(z) = z2z̄ using Euler-Maclaurin formula for M = 512

using double Poisson and direct method is shown Fig. 10.9. Like the above example

the double Poisson method gives better accuracy than the direct one. The order of

accuracy in the || · ||∞ norm is shown in the Fig. 10.10.
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Figure 10.9: The graph depicts the absolute error for the (D4) biharmonic problem
with f = 72zz̄2 + 72z2, N = 64,M = 512 in the direct and the double Poisson
method respectively using the Euler-Maclaurin formula. As the table suggests, the
plots reflect the bounds for error in D at N = 64,M = 512. This is a color plot in
the screen.
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Figure 10.10: The order of accuracy using Euler-Maclaurin formula is plotted here
for the direct and the double Poisson method for f(z) = 72zz̄2 + 72z2z̄. O(h2) for
direct method and O(h4) convergence for double Poisson method in || · ||∞ norm are
noted as the mesh is refined. This is a color plot in the screen.

Example 5. Next we consider the following (D4) problem

f(z) =
45

16
z
−1
2 z̄

1
2 +

45 · 16

21
z

1
2 z̄

5
2

h0 = z̄2 + z̄

h2 =
15

2
z̄ +

225

4
z̄2.

We test the performance of the function f(z) = 45
16
z
−1
2 z̄

1
2 + 45·16

21
z

1
2 z̄

5
2 using direct

and double Poisson method for different values of M and constant Fourier coefficient
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Table 10.9: Relative error for f(z) = 45
16
z−

1
2 z̄

1
2 + 45·16

21
z

1
2 z̄

5
2 using Euler-Maclaurin

expansion.

Direct Method Double Poisson Method

M || · ||∞ order Tdir || · ||∞ order Tdoub
16 6.2× 10−2 0 0.43 1.8× 10−4 0 0.22

32 1.6× 10−2 1.9 0.47 2.3× 10−5 3.0 0.25

64 4.1× 10−3 1.9 0.52 1.4× 10−6 4.0 0.28

128 1.01× 10−3 2.0 0.59 1.7× 10−7 3.0 0.33

256 2.6× 10−4 1.9 0.78 2.1× 10−8 3.0 0.49

512 6.4× 10−5 2.02 1.1 2.6× 10−9 3.0 0.71

Table 10.10: Relative error for f(z) = 45
16
z−

1
2 z̄

1
2 + 45·16

21
z

1
2 z̄

5
2 with Trap rule.

Direct Method Double Poisson Method

M || · ||∞ order Tdir || · ||∞ order Tdoub
17 2.4× 10−1 0 0.23 2.01× 10−2 0 0.12

33 1.2× 10−1 1.0 0.27 5.01× 10−3 2.0 0.14

65 5.7× 10−2 1.1 0.37 1.3× 10−3 1.9 0.17

129 2.8× 10−2 1.0 0.79 3.12× 10−4 2.1 0.23

256 1.4× 10−2 1.0 2.46 7.8× 10−5 2.0 0.32

513 7.1× 10−3 2.0 8.05 1.9× 10−5 2.0 0.48

N = 32. The accuracy of the computations are noted in the error Tables. 10.9, 10.10

and Fig. 10.11 respectively. Using Euler-Maclaurin formula the direct method gives

a quadratic error convergence and the double Poisson method shows a third order

convergence in error owing to the logarithmic singularity involved at the ‘0’ th coeffi-

cient. In case of Trapezoidal rule, first order convergence of error in direct method is

observed and second order convergence for double Poisson method is observed. The

absolute error plot using Euler-Maclaurin formula is shown in Fig. 10.12. The tables

also depict the CPU time taken for the computation.
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Figure 10.11: The order of accuracy is plotted here for the direct and the double Pois-
son method using Euler-Maclaurin formula for f(z) = f(z) = 45

16
z
−1
2 z̄

1
2 + 45·16

21
z

1
2 z̄

5
2 .

O(h2) for direct method and O(h3) convergence for double Poisson method in || · ||∞
norm are noted as the mesh is refined. This is a color plot in screen.

Example 6. Now we consider a (D2) problem whose solution is given by

ω(z) = z3z̄ cos2 θ + z7/2z5/2 sin θ

h0 =

(
1

4
− i1

2

)
+

1

4
e−4iθ +

(
1

2
+
i

2

)
e−2iθ

h2 =

(
1− 9i

2

)
+

(
3

2
+ 4i

)
e−2iθ

Relative error for different values of M and fixed N = 64 are shown in Table. 10.11.

The error plots for direct and double Poisson method using Euler-Maclaurin formula
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Figure 10.12: The graph depicts the absolute error for (D4) problem with f(z) =
45
16
z
−1
2 z̄

1
2 + 45·16

21
z

1
2 z̄

5
2 , N = 64,M = 512 for the double Poisson method and the direct

method respectively using Euler-Maclaurin formula. As the table suggests, the plots
reflect the bounds for error in D at N = 64,M = 512. This is a color plot in screen.

are shown in Fig. 10.13. We note here a quadratic convergence in the both the

methods owing to the logarithmic singularity involved in the ‘0’th coefficient. The

order of accuracy in the || · ||∞ norm is shown in Fig. 10.14.

We now focus on (D1) and (D3) problems.

Example 7. We consider the following biharmonic problem on (D3) biharmonic prob-

lem.

f(z) = 72zz̄2

h0 = z̄

h1 = 7z̄

We test the performance of the function f(z) = 72zz̄2 using the direct and the double

Poisson method for the (D3) biharmonic problem, the Table. 10.12 shows relative
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Table 10.11: Relative error for ω(z) = z3z̄ cos2 θ+z7/2z5/2 sin θ using Euler-Maclaurin
formula.

Direct Method Double Poisson Method

M || · ||∞ order Tdir || · ||∞ order Tdoub
16 3.5× 10−1 0 0.48 2.9× 10−2 0 0.27

32 9.5× 10−2 1.9 0.54 7.2× 10−3 2.0 0.33

64 2.4× 10−2 2.0 0.61 1.8× 10−3 2.0 0.42

128 6.1× 10−3 2.0 0.81 4.4× 10−4 2.0 0.63

256 1.5× 10−3 2.0 1.2 1.1× 10−4 2.0 1.01

512 3.7× 10−4 2.0 1.88 2.7× 10−5 2.0 1.57

Figure 10.13: The graph depicts the absolute error for (D2) problem with the solution
ω(z) = z3z̄ cos2 θ + z7/2z5/2 sin θ, N = 64,M = 512 in the direct and the Double
Poisson method respectively using Euler-Maclaurin formula. As the table suggests,
the plots reflect the bounds for error in D at N = 64,M = 512. This is a color plot
in screen.
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Figure 10.14: The order of accuracy is plotted here for the direct and the double
Poisson method using Euler-Maclaurin formula for ω(z) = z3z̄ cos2 θ + z7/2z5/2 sin θ.
O(h2) for direct method and O(h2) convergence for double Poisson method in || · ||∞
norm are noted as the mesh is refined. This is a color plot in screen.

error for different values of M and N = 64. Using the Euler-Maclaurin formula, we

notice that a second order convergence of error for the direct method and an almost

fourth order convergence for the double Poisson method is shown in Fig. 10.15. The

table also depicts the CPU time taken for the computation.

Several more computations of (D3) problems has been demonstrated in the steady

state flow problems later.

Example 8. We now test the performance of the (D1) problem with f(z) = 12z̄+i12z

and note the relative errors for different values ofM and fixedN = 64 in Table. 10.13.
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Table 10.12: Relative error for f(z) = 72zz̄2 using Euler-Maclaurin expansion.

Direct Method Double Poisson method

M || · ||∞ order Tdir || · ||∞ order Tdoub
16 7.5× 10−1 0 0.50 4.3× 10−3 0 0.27

32 9.8× 10−2 2.9 0.64 3.8× 10−4 3.5 0.36

64 2.3× 10−2 2 0.85 2.6× 10−5 3.8 0.45

128 7.3× 10−3 1.7 1.27 1.8× 10−6 3.8 0.63

256 2.01× 10−3 1.9 2.19 1.3× 10−7 3.7 1.03

512 5.4× 10−4 1.9 3.83 8.4× 10−9 3.9 1.78
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Figure 10.15: The order of accuracy is plotted here for the direct and the double
Poisson method using Euler-Maclaurin formula for f(z) = 72zz̄2 on (D3) biharmonic
problem. O(h2) for direct method and O(h4) convergence for double Poisson method
in || · ||∞ norm are noted as the mesh is refined.
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Table 10.13: Relative error for f(z) = 12z̄ + i12z using Euler-Maclaurin formula.

Direct Method Double Poisson method

M || · ||∞ order Tdir || · ||∞ order Tdoub
16 3.3× 10−2 0 0.52 1.2× 10−3 0 0.31

32 6.8× 10−3 2.3 0.61 6.9× 10−5 4.1 0.38

64 3.1× 10−3 1.1 0.85 4.8× 10−6 3.9 0.52

128 9.1× 10−4 1.8 1.27 3.4× 10−7 3.8 0.81

256 2.1× 10−4 2.1 2.18 2.1× 10−8 4.0 1.36

512 5.7× 10−5 1.9 3.80 1.7× 10−9 3.6 2.60

We observe a second order convergence for Trapezoidal method and a fourth order

convergence using Euler-Maclaurin for the double Poisson method. CPU timings are

also shown in the Table. 10.13. The error plots for different values of M are shown

in Fig. 10.16 and the order of accuracy is shown in Fig. 10.17.

f(z) = 12zz̄ + i12z

h0 = z + iz̄

h1 = 3 + 2iz

Next we consider another example of (D1) biharmonic problem.

Example 9. We implement a (D1) biharmonic problem given by

f(z) =
45

16
z
−1
2 z̄

1
2 +

45 · 16

21
z

1
2 z̄

5
2

h0 = z̄2 + z.

h1 =
9

2
z̄ +

5

2
.

We observe the relative error in Table.10.14 for different values of M and fixed

N = 64. We observe a second order convergence for Trapezoidal rule and an almost
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Figure 10.16: The graph depicts the error plot for f(z) = 12z̄ + i12z, N = 64,M =
512 on (D1) biharmonic problem in the double Poisson method using Euler-Maclaurin
formula. As the table suggests, the plots reflect the bounds for error in D at N =
64,M = 512.

fourth order convergence for the decomposition method, both using Euler-Maclaurin

formula. The error plot is shown in Fig. 10.18 and the order of accuracy is shown

in Fig. 10.19.

10.1.1 Annular Domain

We now focus on problems in an annular domain Ω = {z ∈ R2 : R1 < |z| <

R2} with (D2) and (D4) biharmonic boundary value problems. We set Ω1 =
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Figure 10.17: The order of accuracy is plotted here for the direct and the double
Poisson method using Euler-Maclaurin formula for f(z) = 12z̄+ i12z on (D3) bihar-
monic problem. O(h2) for direct method and O(h4) convergence for double Poisson
method in || · ||∞ norm are noted as the mesh is refined.

z ∈ R2 : |z| < R1 and Ω2 = z ∈ R2 : |z| < R2.

Example 10. We consider the following (D2) and (D4) problem respectively in Ω.

f(z) = 12z̄ + i12z

 h0 = (R1)5e−iθ + i(R1)5e−iθ on ∂Ω1

h0 = (R2)5e−iθ + i(R2)5e−iθ on ∂Ω2

(D2)
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Table 10.14: Relative error for f(z) = 45
16
z
−1
2 z̄

1
2 + 45·16

21
z

1
2 z̄

5
2 using Euler-Maclaurin

expansion.

Direct Method Double Poisson Method

M || · ||∞ order Tdir || · ||∞ order Tdoub
16 2.3× 10−2 0 0.51 1.2× 10−3 0 0.29

32 6.02× 10−3 1.9 0.63 1.1× 10−4 3.4 0.34

64 1.6× 10−3 1.9 0.86 9.3× 10−6 3.6 0.47

128 4.8× 10−4 1.7 1.29 7.9× 10−7 3.6 0.64

256 1.2× 10−4 2.0 2.17 7.3× 10−8 3.4 1.05

512 3.4× 10−5 1.8 3.82 7.3× 10−9 3.3 1.81

Figure 10.18: The graph depicts the error plot for f(z) = 45
16
z
−1
2 z̄

1
2 + 45·16

21
z

1
2 z̄

5
2 ,

N = 64,M = 512 on (D1) biharmonic problem in the double Poisson method using
Euler-Maclaurin expansion. As the table suggests, the plots reflect the bounds for
error in D at N = 64,M = 512.

 h2 = 6(R1)3e−iθ + 6i(R1)3e−iθ on ∂Ω1

h2 = 6(R2)2e−iθ + 6i(R2)2e−iθ on ∂Ω2

(D2)

 h0 = (R1)5e−iθ + i(R1)5e−iθ on ∂Ω1

h0 = (R2)5e−iθ + i(R2)5e−iθ on ∂Ω2

(D4)
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Figure 10.19: The order of accuracy is plotted here for the direct and the double
Poisson method using Euler-Maclaurin formula for f(z) = 45

16
z
−1
2 z̄

1
2 + 45·16

21
z

1
2 z̄

5
2 on

(D3) biharmonic problem. O(h2) for direct method andO(h4) convergence for double
Poisson method in || · ||∞ norm are noted as the mesh is refined.

 h2 = −18(R1)2e−iθ − 18i(R1)2e−iθ on ∂Ω1

h2 = 18(R2)2e−iθ + 18i(R2)2e−iθ on ∂Ω2

(D4)

Taking R1 = 3/4, R2 = 1 the performance of the algorithm using the Trapezoidal rule

is shown in the Tables. 10.15, 10.16. We obtain here quadratic convergence using

the Trapezoidal rule and this is reflected in the Tables.10.15, 10.16. CPU timings

and the order of accuracy are also observed.

145



Table 10.15: Relative error for f(z) = 12z̄+ i12z in (D2) problem using Trapezoidal
rule.

Relative error for f(z) = 12z̄ + i12z in a (D2) problem.

M || · ||∞ order Tdoub
17 3.01× 10−5 0 0.18

33 7.8× 10−6 2.0 0.21

65 1.9× 10−6 2.0 0.27

129 5.01× 10−7 1.9 0.46

265 1.2× 10−7 2.1 0.74

513 3.2× 10−8 1.9 1.35

Table 10.16: Relative error for f(z) = 12z̄ + i12z in (D4) problem.

Relative error of (D2) biharmonic problem.

M || · ||∞ order Tdoub
17 2.8× 10−3 0 0.21

33 9.37× 10−4 1.5 0.27

65 2.65× 10−4 1.8 0.38

129 7.04× 10−5 1.9 0.62

265 1.81× 10−5 1.9 1.2

513 4.6× 10−6 1.9 2.1
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Example 11. We consider the second (D2) and (D4) problems in Ω.

f(z) = 72z̄2z

 h0 = (R1)7e−iθ + (R1)7e−iθ on ∂Ω1

h0 = (R2)7e−iθ + (R2)7e−iθ on ∂Ω2

(D2)

 h2 = 12(R1)5e−iθ + 12(R1)5e−iθ on ∂Ω1

h2 = 12(R2)5e−iθ + 12(R2)5e−iθ on ∂Ω2

(D2)

 h0 = (R1)7e−iθ + i(R1)7e−iθ on ∂Ω1

h0 = (R2)7e−iθ + i(R2)7e−iθ on ∂Ω2

(D4)

 h2 = −60(R1)4e−iθ − 60(R1)4e−iθ on ∂Ω1

h2 = 60(R2)4e−iθ + 60(R2)4e−iθ on ∂Ω2

(D4)

Taking R1 = 3/4, R2 = 1 the performance of the algorithm using the Trapezoidal rule

is shown in the following Tables. 10.17, 10.18. We obtain here quadratic convergence

using the Trapezoidal rule and CPU timings for computations are observed. The

actual and the numerical plots of the absolute values of the solution is shown in Fig.

10.20.

Example 12. We now consider the (D2) and (D4) problems respectively in Ω with

f(z) =
45

16
z
−1
2 z̄

1
2 +

45 · 16

21
z

1
2 z̄

5
2 ,

 h0 = (R1)4e−iθ + i(R1)7e−iθ on ∂Ω1,

h0 = (R2)4e−iθ + i(R2)7e−iθ on ∂Ω2,
(D2)
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Table 10.17: Relative error for f(z) = 72z̄2z using Trapezoidal rule on double Poisson
method in a (D2) problem.

Relative error in (D2) problem with f(z) = 72z̄2z.

M || · ||∞ order Tdoub
17 1.59× 10−4 0 0.19

33 4.13× 10−5 1.9 0.22

65 1.05× 10−5 1.9 0.28

129 2.66× 10−6 1.9 0.47

265 6.68× 10−7 1.9 0.75

513 1.67× 10−7 2 1.37

Table 10.18: Relative error for f(z) = 72z̄2z using Trapezoidal rule on double Poisson
method for (D4) problem.

Relative error (D4) problem with f(z) = 72z̄2z.

M || · ||∞ order Tdoub
17 1.59× 10−4 0 0.21

33 4.13× 10−5 1.9 0.28

65 1.05× 10−5 1.9 0.39

129 2.66× 10−6 1.9 0.61

265 6.68× 10−7 1.9 1.3

513 1.67× 10−7 1.9 2.2
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Figure 10.20: The graph depicts the numerical solution and the actual solution plot
respectively of f(z) = 72z̄2z, N = 64,M = 513 for the (D2) biharmonic problem
respectively using Trapezoidal expansion.

 h2 = 15
4

(R1)2e−iθ + 45
4

(R1)5e−2iθ on ∂Ω1,

h2 = 15
4

(R2)2e−iθ + 45
4

(R2)5e−2iθ on ∂Ω2,
(D2)

 h0 = (R1)4e−iθ + i(R1)7e−iθ on ∂Ω1,

h0 = (R2)4e−iθ + i(R2)7e−iθ on ∂Ω2,
(D4)

 h2 = −15
2

(R1)e−iθ − 225
4

(R1)4e−2iθ on ∂Ω1,

h2 = −15
2

(R2)e−iθ − 225
4

(R2)4e−2iθ on ∂Ω2.
(D4)

Taking R1 = 3/4, R2 = 1 the performance of the algorithm using the Trapezoidal

rule is shown in the Tables. 10.19, 10.20. We obtain here quadratic convergence

using the Trapezoidal rule and CPU time is observed.
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Table 10.19: Relative error for f(z) = 45
16
z
−1
2 z̄

1
2 + 45·16

21
z

1
2 z̄

5
2 using Trapezoidal rule

for double Poisson method in a (D2) problem.

Relative error using double Poisson method in a (D2) problem

M || · ||∞ order Tdoub
17 5.99× 10−5 0 0.18

33 1.55× 10−5 1.9 0.23

65 3.95× 10−6 1.9 0.29

129 9.99× 10−7 1.9 0.45

265 2.51× 10−7 1.9 0.74

513 6.29× 10−8 1.9 1.35

Table 10.20: Relative error for f(z) = 45
16
z
−1
2 z̄

1
2 + 45·16

21
z

1
2 z̄

5
2 using Trapezoidal rule

for double Poisson method on (D4) problem.

double Poisson method on (D4) problem.

M || · ||∞ order Tdoub
17 1.59× 10−4 0 0.22

33 4.13× 10−5 1.9 0.28

65 1.05× 10−5 1.9 0.37

129 2.66× 10−6 1.9 0.63

265 6.68× 10−7 1.9 1.5

513 1.67× 10−7 2 2.3
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10.1.2 Steady Flow

Now we consider several examples of incompressible flows at steady state with

low and moderate Reynolds numbers within circular cylinder of unit radius. The

main thrust of this application in this section lies in the implementation of our fast

algorithms hence we have worked on flows with low and moderate Reynolds numbers.

This numerical scheme is unstable for flows with higher Reynolds number. As in [33]

we consider first, flows generated by rotation of part of the circumference. The

Reynolds number R of the flow here is defined by the radius ‘r’ of the cylinder and

the speed U of the rotation of the part of the circumference. This Reynolds number

is then given by

R =
Ur

ν
(10.1)

where ν is the kinematic viscosity coefficient of the fluid. For studies on similar

problem refer [30] and [36]. To solve this flow we make use of our fast algorithm for

(D3) biharmonic problem. We consider here several examples of this type of flow see

([29], [33] , [24]).

Example 13. We first consider the following flow problem with smooth boundary

data.

ψzz̄zz̄ = − R
16
J [ψ, ψzz̄] in r < 1

ψ = 0 on r = 1

∂ψ
∂r

= −1+cos θ
2

on r = 1.

We employ the numerical methods as stated in the previous section and obtain the

streamlines for different values of Reynolds number. The streamlines as shown in Fig.

10.21 with a 64× 64 grid are in agreement as in [29]. Also the results were verified

against the solution obtained from the solution of the (D3) biharmonic problem.

The streamlines are plotted for R = 0, 30, 64 as shown in Fig. 10.21. This flow is
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investigated for 0 ≤ R ≤ 64.

Example 14. We consider another moving wall problem with the following smooth

boundary condition (see [29]).

ψ = 0 on r = 1

∂ψ
∂r

= −1+2 cos θ
3

on r = 1.

The streamlines for this flow is plotted R = 5 and R = 40 shown in Fig. 10.22.

The number of iterations is respectively given by 1, 30 with CPU time taken 31.19

for R = 40. The streamlines shown in Fig. 10.22 are in agreement with [29] and the

results can also be verified from the solution of the (D3) biharmonic problem. The

flow pattern is not symmetric about the x axis and the vortex center is shifted to

the direction of the flow.

Example 15. We consider the next flow problem with the following boundary con-

dition (see([29], [24])) and obtain the streamline patterns for different values of

Reynolds number.

ψzz̄zz̄ = − R
16
J [ψ, ψzz̄] in r < 1

ψ = 0 on r = 1

∂ψ
∂r

= − cos θ on r = 1.

The streamline pattern for this flow for R = 16, 45 are shown in Fig. 10.23 and the

vorticity for Reynolds number 15 and 30 are shown respectively in Fig. 10.24. We

observe here a symmetrical flow on either side of the y axis. The number of iterations

is 32 for R = 40 and a CPU time of 19.03 were required to compute the solution.

This flow is investigated for 0 ≤ R ≤ 45.

The next flow problem is given by the following boundary condition see ([29],
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(a) streamline patterns for R=0
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(b) streamline patterns for R=30
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(c) streamline patterns for R=64

Figure 10.21: The streamline pattern computed for ∂ψ
∂r

= −1+cos θ
2

, and parameter
values of N = 64,M = 64, R = 0, 30, 64 respectively using the direct method of the
algorithm in (D3) biharmonic problem.
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(a) streamline pattern for R=5
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(b) streamline pattern for R=40

Figure 10.22: The streamline computed for ∂ψ
∂r

= −1+2 cos θ
3

, and parameter values of
N = 64,M = 64, R = 5(left), R = 40(right) using the direct method of the algorithm
in a (D3) problem.
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(a) streamline patterns for R=16
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(b) streamline patterns for R=45

Figure 10.23: The streamlines computed for ∂ψ
∂r

= − cos θ, and parameter values of
N = 64,M = 64, R = 16(left), 45(right) respectively using the direct method of the
algorithm in (D3) biharmonic problem.
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(a) vorticity patterns for R=15
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(b) vorticity patterns for R=30

Figure 10.24: The vorticity pattern computed for ∂ψ
∂r

= − cos θ, and parameter values
of N = 64,M = 64, R = 15(left), 30(right) respectively using the direct method of
the algorithm in (D3) biharmonic problem.

[24]).

Example 16.

ψ = 0 on r = 1

∂ψ
∂r

= − cos θ sin θ on r = 1.

We plot the streamlines and vorticity pattern for R = 10, 80, 150. as in Fig. 10.25,

10.26 respectively. We see symmetrical streamlines in the four quadrants of the axes

owing to the four times velocity change in the velocity in θ direction. The number of

iterations taken for R = 10, 80, 150 are 4, 20 and 26 respectively with the CPU time of

27.03 for R = 150. Sharp change in the vorticity is observed with increasing Reynolds

number and the plots agree with those obtained in [24]. This flow is investigated for

0 ≤ R ≤ 150.

Now we consider the moving wall problem with discontinuous boundary condition

and investigate the flow for low Reynolds number.
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(a) streamline patterns for R=0
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(b) streamline patterns for R=80
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(c) streamline patterns for R=150

Figure 10.25: The streamlines computed for ∂ψ
∂r

= − cos θ sin θ, and parameter values
of N = 64,M = 64, R = 10, 80, 150 respectively using the direct method of the
algorithm in (D3) biharmonic problem.
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(a) vorticity patterns for R=10
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(b) vorticity patterns for R=80

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) vorticity patterns for R=150

Figure 10.26: The streamlines and the vorticity pattern are computed for the
bondary condition ∂ψ

∂r
= − cos θ sin θ and parameter values of N = 64,M = 64, R =

10 (left), 80 (right), 150 (middle) respectively using the direct method of the algo-
rithm in (D3) biharmonic problem.
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(a) streamline patterns for R=0 (b) streamline patterns for R=10

Figure 10.27: The streamlines computed for the discontinuous boundary data for
parameter values of N = 128,M = 129, R = 0(left), 10(right) respectively using the
direct method of the algorithm in (D3) biharmonic problem.

Example 17.

ψ = 0, r = 1

∂ψ

∂r
=

−1, 0 ≤ θ < π

0, π ≤ θ < 2π

We investigate the flow for 0 ≤ R ≤ 20 and we plot the streamlines for R = 0, 10 as

in Fig. 10.27. We observe a non symmetric flow here and the center of the vortex

is shifted to the direction of the flow. The number of iterations taken for R = 0, 10

are 1, 27 with a CPU time of 96.05 The grid points were increased and we have used

M = 129, N = 128. This problem was also studied by [33], [30] and our results are

in agreement with them.

Next we investigate simple, slow, viscous outflow inflow problems [33]. We con-

sider here the following boundary data. This problem is an example of the inflow-
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outflow problems where ψ is specified along the boundary.

∂ψ

∂r
= 0 0 < θ < 2π.

ψ =



1 + (θ−α)
ε
, α− ε < θ < α + ε

2, α + ε < θ < β − ε

1 + (β−θ)
ε
, β − ε < θ < β + ε

0, β + ε < θ < 2π + α− ε.

We take α = 0, ε = π
32
, β = π. The Reynolds number of the flow here is given by

R =
Uε

ν
.

where U is the speed, Uε the flow across the arc intercepted by ε. The streamline

for the motions are plotted for very low Reynolds number as shown in Fig. 10.28.

The number of iterations taken to compute the flow for R = 0.02, 0.009 are 20, 13

with CPU time 15.3, 10.5 respectively. This flow is studied by [20] and the results

can also be verified from the exact solution of the (D3) biharmonic problem.
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(a) streamline patterns for R=0.009
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(b) streamline patterns for R=0.02

Figure 10.28: The streamlines computed for the discontinuous boundary data in the
outflow inflow problem for parameter values of N = 64,M = 65, R = 0.009, R = 0.02
respectively using the direct method of the algorithm on (D3) problem.
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11. ERROR ESTIMATE FOR THE SINGULAR INTEGRALS

In this section, we provide an error estimate that results from the computation

of the singular integrals I5(z) in step 3 of the fast algorithm of the direct method of

the biharmonic problem in sec.(7.2.2).

Lemma 11.0.1. For nonzero r and an analytic function f in D, if each integral

in step 3 of the fast algorithm in sec.(7.2.2), is computed with an error bounded by

δ, then the resulting error ε to compute the singular integrals (Ik5 (z), k = 1, 2, 3, 4)

in the fast algorithm of the direct method is bounded by 4δ(M−1)(K+4)
K

where N is the

total number of points in the azimuthal direction, M is the total number of points in

the radial direction and K = N
2

.

We provide some notations here before going to the proof.

εi,i+1
1n,1 = error in computing the integral

ri+1∫
ri

fn(ρ)

(
R

ρ

)n
ρdρ,

εi,i+1
2n,1 = error in computing the integral

ri+1∫
ri

fn(ρ)
( ρ
R

)n
ρdρ,

εi,i+1
20,1 = error in computing the integral

ri+1∫
ri

f0(ρ)ρ log ρdρ,

εi,i+1
1n,2 = error in computing the integral

ri+1∫
ri

fn(ρ)

(
R

ρ

)n
ρ3dρ,
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εi,i+1
2n,2 = error in computing the integral

ri+1∫
ri

fn(ρ)
( ρ
R

)n
ρ3dρ,

εi,i+1
20,2 = error in computing the integral

ri+1∫
ri

f0(ρ)ρ3 log ρdρ,

εi,i+1
1n+1,3 = error in computing the integral

ri+1∫
ri

fn−1(ρ)

(
R

ρ

)n
ρ2dρ,

εi,i+1
2n+1,3 = error in computing the integral

ri+1∫
ri

fn−1(ρ)
( ρ
R

)n
ρ2dρ,

εi,i+1
2−1,3 = error in computing the integral

ri+1∫
ri

f−1(ρ)ρ2 log ρdρ,

εi,i+1
1n−1,4 = error in computing the integral

ri+1∫
ri

fn+1(ρ)

(
R

ρ

)n
ρ2dρ,

εi,i+1
2n−1,4 = error in computing the integral

ri+1∫
ri

fn+1(ρ)
( ρ
R

)n
ρ2dρ,

εi,i+1
21,4 = error in computing the integral

ri+1∫
ri

f1(ρ)ρ2 log ρdρ,

(
Ai,i+1
n,k

)
app

= the approximate value of Ai,i+1
n,k(

Bi,i+1
n,k

)
app

= the approximate value of Bi,i+1
n,k

It is trivial to show the following relations from the recursive relations obtained in

Section.6. For similar relation see [12].

p
(1)
1n (rl) = −

l∑
i=2

(
ri
rl

)n
Bi−1,i
n,1 ,

p
(1)
2n (rl) = −

M−1∑
i=l

(
rl
ri

)n
Ai,i+1
n,1 ,
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s
(1)
1n (rl) =

l∑
i=2

(
rl
ri

)n
Ai−1,i
n,1 ,

s
(1)
2n (rl) =

M−1∑
i=l

(
ri
rl

)n
Bi,i+1
n,1 ,

t
(1)
10 (rl) = −

M−1∑
i=l

Ai−1,i
0,1 ,

t
(1)
20 (rl) = −

M−1∑
i=l

Bi,i+1
0,1 ,

p
(2)
1n (rl) = −

l∑
i=2

(
ri
rl

)n
Bi−1,i
n,2 ,

p
(2)
2n (rl) = −

M−1∑
i=l

(
rl
ri

)n
Ai,i+1
n,2 ,

s
(2)
1n (rl) =

l∑
i=2

(
rl
ri

)n
Ai−1,i
n,2 ,

s
(2)
2n (rl) =

M−1∑
i=l

(
ri
rl

)n
Bi,i+1
n,2 ,

t
(2)
10 (rl) =

M−1∑
i=l

Ai−1,i
0,2 ,

t
(2)
20 (rl) =

M−1∑
i=l

Bi,i+1
0,2 ,

p
(3)
1n−1(rl) =

l∑
i=2

(
ri
rl

)n
Bi−1,i
n−1,3,

p
(3)
2n−1(rl) =

M−1∑
i=l

(
rl
ri

)n
Ai,i+1
n−1,3,
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s
(3)
1n−1(rl) = −

l∑
i=2

(
rl
ri

)n
Ai−1,i
n−1,3,

s
(3)
2n−1(rl) = −

M−1∑
i=l

(
ri
rl

)n
Bi,i+1
n−1,3,

t
(3)
1−1(rl) = −

M−1∑
i=l

Ai−1,i
−1,3 ,

t
(3)
2−1(rl) = −

M−1∑
i=l

Bi,i+1
−1,3 ,

p
(4)
1n+1(rl) =

l∑
i=2

(
ri
rl

)n
Bi−1,i
n+1,4,

p
(4)
2n+1(rl) =

M−1∑
i=l

(
ri
rl

)n
Ai,i+1
n+1,4,

s
(4)
1n+1(rl) = −

l∑
i=2

(
rl
ri

)n
Ai−1,i
n+1,4,

s
(4)
2n+1(rl) = −

M−1∑
i=l

(
ri
rl

)n
Bi,i+1
n+1,3,

t
(4)
11 (rl) = −

M−1∑
i=l

Ai−1,i
1,4 ,

t421(rl) = −
M−1∑
i=l

Bi,i+1
1,4 .

Now we show here, the proof for the lemma.

Proof. We consider the integral I5(rle
2πij
N ) for l 6= 1, r 6= 0, j = 1, 2....N . Notice that

for l = M and m = 1, 2, 3, 4 we have p
(m)
2n (rM) = 0, s

(m)
2n (rM) = 0, t

(m)
20 (rM) = 0.
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Thus,

I5(rle
2πij
N ) =

K∑
n=−K+1

(
r2
l I

1
5,n(rl) + I2

5,n(rl) + rlI
3
5,n(rl) + rlI

4
5,n(rl)

)
e

2πnij
N

=
K∑

n=−K+1

(
r2
l (p

(1)
1n (rl) + p

(1)
2n (rl) + s

(1)
1n (rl) + s

(1)
2n (rl) + log rlt

(1)
10 (rl)

+t
(1)
20 (rl)) + p

(2)
1n (rl) + p

(2)
2n (rl) + s

(2)
1n (rl) + s

(2)
2n (rl) + log r1t

(2)
10 (rl) + t

(2)
20 (rl)

+rl((p
(3)
1n−1(rl) + p

(3)
2n−1(rl) + s

(3)
1n−1(rl) + s

(3)
2n−1(rl) + log rlt

(3)
10 (rl)

+t
(3)
20 (rl)) + rl((p

(4)
1n+1(rl) + p

(4)
2n+1(rl) + s

(4)
1n+1(rl) + s

(4)
2n+1(rl)

+ log rlt
(4)
10 (rl) + t

(4)
20 (rl))

)
e

2πnij
N

=
K∑
n=1

r2
l

(
−

l∑
i=2

(
ri
rl

)n
[(Bi−1,i

n,1 )app +
2

n
εi−1,i

2n,1 ])

)
e

2πnij
N

+
K∑
n=1

r2
l

(
−

M−1∑
i=l

(
ri
rl

)n
[(Ai,i+1

n,1 )app +
2

n
εi,i+1

1n,1 ])

)
e

2πnij
N

+
K∑
n=1

(
−

l∑
i=2

(
ri
rl

)n
[(Bi−1,i

n,2 )app +
2

n
εi−1,i

2n,2 ]

)
e

2πnij
N

+
K∑
n=1

(
−

M−1∑
i=l

(
rl
ri

)n
[(Ai,i+1

n,2 )app +
2

n
εi,i+1

1n,2 ]

)
e

2πnij
N

+
K∑
n=1

rl

(
l∑

i=2

(
ri
rl

)n
[(Bi−1,i

n−1,3)app +
2

n
εi−1,i

2n−1,3]

)
e

2πnij
N

+
K∑
n=1

rl

(
M−1∑
i=l

(
rl
ri

)n
[(Ai,i+1

n−1,3)app +
2

n
εi,i+1

2n−1,3]

)
e

2πnij
N

+
K∑
n=1

rl

(
l∑

i=2

(
ri
rl

)n
[(Bi−1,i

n+1,4)app +
2

n
εi−1,i

2n+1,4]

)
e

2πnij
N

+
K∑
n=1

rl

(
M−1∑
i=l

(
rl
ri

)n
[(Ai,i+1

n+1,4)app +
2

n
εi,i+1

2n+1,4]

)
e

2πnij
N

+
−1∑

n=−K+1

r2
l

(
l∑

i=2

(
rl
ri

)n
[(Ai−1,i

n,1 )app +
2

n
εi−1,i

1n,1 ]

)
e

2πnij
N
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+
−1∑

n=−K+1

r2
l

(
M−1∑
i=l

(
ri
rl

)n
[(Bi,i+1

n,1 )app +
2

n
εi,i+1

2n,1 ]

)
e

2πnij
N

+
−1∑

n=−K+1

(
l∑

i=2

(
rl
ri

)n
[(Ai−1,i

n,2 )app +
2

n
εi−1,i

1n,2 ]

)
e

2πnij
N

+
−1∑

n=−K+1

(
M−1∑
i=l

(
ri
rl

)n
[(Bi,i+1

n,2 )app +
2

n
εi,i+1

2n,2 ]

)
e

2πnij
N

+
−1∑

n=−K+1

rl

(
−

l∑
i=2

(
rl
ri

)n
[(Ai−1,i

n−1,3)app +
2

n
εi−1,i

1n−1,3]

)
e

2πnij
N

+
−1∑

n=−K+1

rl

(
−

M−1∑
i=l

(
ri
rl

)n
[(Bi,i+1

n−1,3)app +
2

n
εi,i+1

2n−1,3]

)
e

2πnij
N

+
−1∑

n=−K+1

rl

(
−

l∑
i=2

(
rl
ri

)n
[(Ai−1,i

n+1,4)app +
2

n
εi−1,i

1n+1,4]

)
e

2πnij
N

+
−1∑

n=−K+1

rl

(
−

M−1∑
i=l

(
ri
rl

)n
[(Bi,i+1

n+1,4)app +
2

n
εi,i+1

2n+1,4]

)
e

2πnij
N

+
l∑

i=2

r2
l log rl

[
(Ai−1,i

0,1 )app + εi−1,i
10,1

]
+

M−1∑
i=l

r2
l

[
(Bi,i+1

0,1 )app + εi,i+1
20,1

]
+

l∑
i=2

log rl
[
(Ai−1,i

0,2 )app + εi−1,i
10,2

]
+

M−1∑
i=l

[
(Bi,i+1

0,2 )app + εi,i+1
20,2

]
−

l∑
i=2

rl log rl
[
(Ai−1,i
−1,3 )app + εi−1,i

1−1,3

]
−

M−1∑
i=l

rl
[
(Bi,i+1
−1,3 )app + εi,i+1

2−1,3

]
−

l∑
i=2

rl log rl
[
(Ai−1,i

1,4 )app + εi−1,i
11,4

]
−

M−1∑
i=l

rl
[
(Bi,i+1

1,4 )app + εi,i+1
21,4

]
.
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Error(ε) ≤
K∑
n=1

2r2
l

n

l∑
i=2

(
ri
rl

)n
|εi−1,i

2n,1 |+
K∑
n=1

2r2
l

n

M−1∑
i=l

(
rl
ri

)n
|εi,i+1

1n,1 |

+
K∑
n=1

2

n

l∑
i=2

(
ri
rl

)n
|εi−1,i

2n,2 |+
K∑
n=1

2

n

M−1∑
i=l

(
rl
ri

)n
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n
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(
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n
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(
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ri

)n
|εi,i+1
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+
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2rl
n
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(
ri
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2rl
n
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i=l

(
rl
ri

)n
|εi,i+1

1n+1,4|

+
−1∑

n=−K+1

2r2
l

n

l∑
i=2

(
rl
ri

)n
|εi−1,i

1n,1 |+
−1∑

n=−K+1

2r2
l

n

M−1∑
i=l

(
ri
rl

)n
|εi,i+1

2n,1 |

+
−1∑

n=−K+1

2

n

l∑
i=2

(
rl
ri

)n
|εi−1,i

1n,2 |+
−1∑

n=−K+1

2

n

M−1∑
i=l

(
ri
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)n
|εi,i+1

2n,2 |

+
−1∑
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2rl
n

l∑
i=2

(
rl
ri

)n
|εi−1,i

1n−1,3|+
−1∑
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2rl
n
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i=l

(
ri
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)n
|εi,i+1
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+
−1∑
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2rl
n

l∑
i=2

(
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)n
|εi−1,i

1n+1,4|+
−1∑

n=−K+1

2rl
n

M−1∑
i=l

(
ri
rl

)n
|εi,i+1

2n+1,4|

+
l∑

i=2

r2
l log rl|εi−1,i

10,1 |+
l∑

i=2

r2
l |ε

i,i+1
20,1 |+

l∑
i=2

log rl|εi−1,i
10,2 |+

M−1∑
i=l

|εi,i+1
20,2 |

+
l∑

i=2

rl log rl|εi,i+1
1−1,3|+

M−1∑
i=l

rl|εi,i+1
2−1,3|

l∑
i=2

rl log rl|εi,i+1
11,4 |+

M−1∑
i=l

rl|εi,i+1
21,4 |.

We have for 2 ≤ i ≤ l, ri ≤ rl and for l ≤ i ≤ M − 1, rl ≤ ri. If each integral is

computed with an error bounded by δ where

δ = max
i,n,ρ

{
|εi−1,i

10,1 |, |ε
i,i+1
20,1 |, |ε

i−1,i
2n,1 |, |ε

i,i+1
1n,1 |, |ε

i,i+1
2n,1 |, |ε

i−1,i
1n,1 |, |ε

i−1,i
10,2 |, |ε

i,i+1
20,1 |,

|εi−1,i
2n,2 |, |ε

i,i+1
1n,2 |, |ε

i,i+1
2n,2 |, |ε

i−1,i
1n,2 |, |ε

i−1,i
1−1,3|, |ε

i−1,i
2−1,3|, |ε

i−1,i
2n−1,3|, |ε

i,i+1
1n−1,3|, |ε

i,i+1
2n−1,3|,

|εi−1,i
1n−1,3|, |ε

i−1,i
11,4 |, |ε

i−1,i
21,4 |, |ε

i,i+1
2n+1,4|, |ε

i,i+1
2n+1,4|, |ε

i−1,i
1n+1,4|,

}
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then

Error(ε) ≤
K∑
n=1

4δr2
M

n
(M − 1) +

K∑
n=1

4δ

n
(M − 1)

K∑
n=1

8δrM
n

(M − 1)

+
−1∑

n=−K+1

4δr2
M

n
(M − 1) +

−1∑
n=−K+1

4δ

n
(M − 1)

+
−1∑

n=−K+1

8δrM
n

(M − 1) + 4δ(M − 1)

= 4δ(M − 1) + 16δ(M − 1)

(
K∑
n=1

1

n
−

K−1∑
n=1

1

n

)

=
4δ(M − 1)(K + 4)

K
.

We note that for l = M ,

p
(1)
2n (rM) = 0, p

(2)
2n (rM) = 0, p

(3)
2n−1(rM) = 0, p

(4)
2n+1(rM) = 0, s

(1)
2n (rM) = 0, s

(2)
2n (rM) =

0, s
(3)
2n−1(rM) = 0, s

(4)
2n+1(rM) = 0, t

(1)
20 (rM) = 0, t

(2)
20 (rM) = 0, t

(3)
21 (rM) = 0, t

(4)
2−1(rM) =

0.

It can be similarly shown that for l = M,

Error ≤ 8δ(M − 1)

K
.

We focus on the Trapezoidal rule and the Simpson rule to implement the error

estimate in various test examples.
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Note. In the case of Trapezoidal rule the error bound δ is given by

δ = max
i,n,ρ

∆3r

12

{
∂2

∂ρ2

(
ρfn(ρ)

(
ri+1

ρ

)n)
,
∂2

∂ρ2

(
ρfn(ρ)

(
ρ

ri

)n)
,

∂2

∂ρ2
(ρ log ρf0(ρ)) ,

∂2

∂ρ2

(
ρ3fn(ρ)

(
ri+1

ρ

)n)
,
∂2

∂ρ2

(
ρ3fn(ρ)

(
ρ

ri

)n)
,

∂2

∂ρ2

(
ρ3 log ρf0(ρ)

)
,
∂2

∂ρ2

(
ρ2fn−1(ρ)

(
ri+1

ρ

)n)
,
∂2

∂ρ2

(
ρ2fn−1(ρ)

(
ρ

ri

)n)
,

∂2

∂ρ2

(
ρ3 log ρf−1(ρ)

)
,
∂2

∂ρ2

(
ρ2fn+1(ρ)

(
ri+1

ρ

)n)
,
∂2

∂ρ2

(
ρ2fn+1(ρ)

(
ρ

ri

)n)
,

∂2

∂ρ2

(
ρ3 log ρf1(ρ)

)}
.

The error bound δ in the case of Simpson rule is given by

δ = max
i,n,ρ

∆5r

90

{
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(
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(
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ρ

)n)
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ρ
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∂ρ4
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(
ρ3fn(ρ)

(
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ρ

)n)
,
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(
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(
ρ

ri

)n)
,
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∂ρ4

(
ρ3 log ρf0(ρ)

)
,
∂4

∂ρ4

(
ρ2fn−1(ρ)

(
ri+1

ρ

)n)
,
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(
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(
ρ
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)n)
,

∂4

∂ρ4

(
ρ3 log ρf−1(ρ)

)
,
∂4

∂ρ4

(
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(
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ρ

)n)
,
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∂ρ4

(
ρ2fn+1(ρ)

(
ρ
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)n)
,

∂4

∂ρ4

(
ρ3 log ρf1(ρ)

)}
.

11.1 Examples

Several problems are tested to determine the bounds of M , the number of circles

required to obtain a desired accuracy. We here consider the error estimates for the

following functions.

Problem 1. We consider the function f(z) = 12z̄. Here
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fn(ρ) =

 12ρ if n = −1

0 if n 6= −1.

For Trapezoidal rule the error bound δ is

δ = max
i,n,ρ

∆3r

12

{
∂2

∂ρ2

(
12ρ3

ri+1

)
,
∂2

∂ρ2
(12riρ) ,

∂2

∂ρ2

(
12ρ5

ri+1

)
,
∂2

∂ρ2

(
12riρ

2
)
,

∂2

∂ρ2

(
12ρ3

)
,
∂2

∂ρ2

(
12ρ4 log ρ

)
,
∂2

∂ρ2

(
12ρ5

r2
i+1

)
,
∂2

∂ρ2

(
12r2

i ρ
)
,

}
= 20∆3r.

Now if the error (ε) = .001 and K is given we see from our analysis that

(M − 1) ≥ εK

80∆3r(K + 4)
.

Hence we obtain the following which agrees with our computation result in Fig.11.1.

We notice that the dominant parameter is the number of circles M and the variation

in the estimate occurs when we increase the number of circles and it improves the

accuracy of the integration

M ≤ 317 for N=32

M ≤ 301 for N=64

M ≤ 293 for N=128

M ≤ 288 for N=256

For error (ε) = .0001 and K given we see

M ≤ 397 for N=64
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(a) error plot of singular integrals (b) error plot of singular integrals

Figure 11.1: The graph depicts the error plot of the singular integrals for f = 12z̄,
with parameters N = 32, 64,M = 129, 389 respectively using the trapezoidal rule.

The error bound δ in the case of Simpson rule is given by

δ = max
i,n,ρ

∆5r

90

{
∂4

∂ρ4

((
12ρ5

ri+1

)n)
∂4

∂ρ4

(
12ρ4 log ρ

)}
= 16∆5r.

Now using the estimate we obtain the following bounds for M which agrees with the

computation in Fig.11.2

(M − 1) ≥ εK

4∆5r(K + 4)

⇒M ≤ 17 for K = 16.
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Figure 11.2: The graph depicts the error plot of the singular integrals for f = 12z̄,
with parameters N = 32,M = 17 using Simpson rule.

Problem 2. We next consider the function f(z) = z2z̄. The error bound for δ in the

case of trapezoidal rule is given by

δ ≤ max
i,n,ρ

∆3r

12

{
∂2

∂ρ2

(
ρ4ri
ρ

)
,
∂2

∂ρ2

(
ρ

ri+1

ρ4

)
,
∂2

∂ρ2

(
ρ7

ri+1

)
,
∂2

∂ρ2

(
riρ

5
)
,

∂2

∂ρ2

(
ρ5
)
,
∂2

∂ρ2

(
ρ7

r2
i+1

)
,
∂2

∂ρ2

(
ρ7

ri+1

)
,
∂2

∂ρ2

(
r2
i ρ

3
)
,

}
≤ 42

12
∆3r.

Now if the error (ε) = .0001 and K is given we see from our analysis that

(M − 1) ≥ 12εK

42∆3r(K + 4)

⇒M ≤ 397 for K = 32.

172



It is in agreement with our computation result in Fig.11.3.

Figure 11.3: The graph depicts the error plot of the singular integrals for f = z2z̄,
N = 32,M = 393 using Trapezoidal rule.
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12. CONCLUSION AND FUTURE WORK

We have developed several FFT and recursive-relation-based accurate and fast al-

gorithms for the Poisson and biharmonic problems in a unit disc in the complex plane

using the direct method and the double Poisson method. We performed numerical

implementation and application of the fast methods on several test problems. The

direct method when compared with the double Poisson method give better accuracy

for the homogeneous problems. However for nonhomogeneous problems, the double

Poisson method achieved better accuracy when compared to the direct method. The

loss of order of accuracy in the direct method seems to come from the discretization

near the origin in the four singular integrals when compared with the two singular

integrals in the double Poisson method. This problem can be overcome and we are

working on it. Both the methods have asymptotic computational complexity of the

order O(logN ) per degree of freedom.

These algorithms also serve as important tools to solve steady, incompressible flow

problems with low to moderate Reynolds number within circular cylinders. However

our future plan is to use these fast algorithms for flows with high Reynolds number.

Future work includes development of fast algorithms for the variable coefficient dif-

fusion equation and investigate non-homogeneous Poisson problem with singularity

imposed on the source term.
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