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ABSTRACT

Because of the widely varying flight conditions in which hypersonic vehicles op-

erate and certain aspects unique to hypersonic flight, the development of control

architectures for these vehicles presents a challenge. Previous work on control design

for hypersonic vehicles often has involved linearized or simplified nonlinear dynam-

ical models of the aircraft. This dissertation retains the nonlinear dynamics in the

design of the controller for a generic hypersonic vehicle model and develops a nonlin-

ear adaptive dynamic inversion control architecture with a control allocation scheme.

A robustness analysis is performed on the initial controller design, which shows that

the controller is able to handle time delays, perturbations in stability derivatives,

and reduced control surface effectiveness while maintaining tracking performance.

One particular safety concern in hypersonic flight is inlet unstarts, which not only

produce a significant decrease in the thrust but also can lead to loss of control and

possibly the loss of the vehicle. This dissertation focuses on the prevention of inlet

unstarts that are triggered by an altered flow that fails to pass through the throat

of the engine because the aircraft has exceeded limits on angle-of-attack and sideslip

angle. To prevent undesirable inlet unstart events, the nonlinear adaptive dynamic

inversion control architecture is given the ability to enforce state constraints. Because

several phenomena can cause inlet unstarts, the control architecture also is tested to

determine if the controller is able to maintain reference trajectory tracking and to

prevent the loss of the vehicle should an inlet unstart occur. Additionally, a fault-

tolerant control capability is added to the control architecture so that the vehicle

can handle the failure of one or more control surfaces.

The tracking performance of the nonlinear adaptive dynamic inversion control
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architecture is analyzed for the cases of enforcement of state constraints, control

surface failures, and inlet unstarts. In all three cases, the control architecture is able

to track reference trajectories with minimal to no degradation in performance. Lim-

itations were discovered in the case of the controller that enforces state constraints

in terms of the trajectories that can be tracked when combined with fault-tolerant

control. However, the results indicate that the nonlinear adaptive dynamic inversion

controller is able to achieve tracking performance in the presence of the uncertainties

and inlet unstart conditions studied in this dissertation.

iii



DEDICATION

To Mom, Dad, Katie, and Frances,

who helped me to weather the storm

and who forever will know their elevators from their ailerons.

“Because the road was steep and long,

And through a dark and lonely land,

God set upon my lips a song

And put a lantern in my hand.

- Joyce Kilmer”

- A Lantern In Her Hand [1]

iv



ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dr. Valasek, for all of his help and

guidance throughout my graduate career. Three years ago, after seeing me review

an exam with a class for which I was a teaching assistant, he told me that I should

consider becoming a teacher. I had thought about teaching before, but it was his

words and the opportunity to work with him as his teaching assistant for two years

that brought me to the point where I am now. I have gained a solid foundation in

the education of undergraduates and in research with Dr. Valasek’s help, for which

I am grateful.

Second, I would like to thank all of my committee members who worked with my

fast-paced schedule during the past year and who have provided insightful input on

my dissertation work. Additionally, I would like to thank Dr. Michael Bolender and

Dr. Jonathan Muse of the Air Force Research Laboratory at Wright-Patterson Air

Force Base. They assisted me during this entire project, from the initial concept to

the technical details. I am appreciative of their advice and guidance and believe that

I have become a better researcher as a result of their influence. I also would like to

thank all of the graduate students who helped me along the way. A special thanks

is given to Anshu, who kindly listened to my ideas on state constraints and helped

to point me along the right path when I got lost in control theory.

One group whose contribution is not to be overlooked is everyone at Barrington

Living History Farm, whom I would like to thank as well. They provided me with a

haven at the farm on Saturdays to recharge for the coming week in graduate school.

I am thankful to them for all of their encouragement and for the opportunity to live

out one of my childhood dreams of being Laura Ingalls Wilder. Many people do not

v



get to live out their childhood dreams, so I feel especially lucky in that respect.

Finally, I want to thank my family and my friends. Four years ago, I was not

sure that I wanted to keep going in graduate school. You all remained with me every

step of the way, helping me over the rough spots, encouraging me to keep going, and

always believing that I would finish this dissertation. You always knew that I had

the strength to finish this degree, and thanks to your belief in me and your prayers,

I did. I love you all.

“ ‘So Potter . . . give us a shout if you need us.’ . . .

Harry nodded. He somehow could not find words to tell them what

it meant to him, to see them all ranged there, on his side. Instead he

smiled, . . . turned around, and led the way out of the station toward the

sunlit street . . . .”

- Harry Potter and the Order of the Phoenix [2]

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Open Research Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Scope and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 5

2. NONLINEAR ADAPTIVE DYNAMIC INVERSION CONTROL ARCHI-
TECTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The Generic Hypersonic Vehicle . . . . . . . . . . . . . . . . . . . . . 7
2.2 General Adaptive Dynamic Inversion Equations . . . . . . . . . . . . 9

2.2.1 Case with Equal Number of Controls and Controlled Variables 9
2.2.2 Case with a Greater Number of Controls than Controlled Vari-

ables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 P, Q, R Inversion Controller . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 α, β, µ Inversion Controller . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3. ENFORCING STATE CONSTRAINTS IN A NONLINEAR ADAPTIVE
DYNAMIC INVERSION CONTROL ARCHITECTURE . . . . . . . . . 42

3.1 Projection Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 General Adaptive Control Equations with State Constraints . . . . . 44
3.3 Application of Adaptive Control with State Constraints to Hypersonic

Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vii



3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4. FAULT-TOLERANT NONLINEAR ADAPTIVE DYNAMIC INVERSION
CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Model for the Applied Control . . . . . . . . . . . . . . . . . . . . . . 71
4.2 General Adaptive Control Equations with Fault Tolerance . . . . . . 72
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5. ANALYSIS OF THE NONLINEAR ADAPTIVE DYNAMIC INVERSION
CONTROL ARCHITECTURE DURING INLET UNSTARTS . . . . . . 84

5.1 Modeling an Inlet Unstart . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Flight Path Angle Reference Trajectory Generation . . . . . . . . . . 85
5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6. CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . . 102

6.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

APPENDIX A. TWO TIME-SCALES AND INTEGRATION METHODS . . 112

viii



LIST OF FIGURES

FIGURE Page

2.1 The Generic Hypersonic Vehicle (GHV). . . . . . . . . . . . . . . . . 8

2.2 Diagram of the adaptive dynamic inversion controllers for the GHV,
where s represents all of the states of the system. . . . . . . . . . . . 9

2.3 Open-loop poles for the linearized longitudinal dynamics. . . . . . . . 32

2.4 Open-loop poles for the linearized lateral/directional dynamics. . . . 33

2.5 State responses for the commands α = ±2 deg, β = 0 deg, and µ = 70
deg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Velocity responses for the commands α = ±2 deg, β = 0 deg, and
µ = 70 deg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Control responses for the commands α = ±2 deg, β = 0 deg, and
µ = 70 deg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Adaptive weight responses for the commands α = ±2 deg, β = 0 deg,
and µ = 70 deg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 “Visualization of the Projection Operator in R
2” [30]. . . . . . . . . . 43

3.2 State responses for the commands α = 7.9 deg, β = 0 deg, and µ = 0
deg with ∆Cmα

= 0.0007 deg−1 without state constraints. . . . . . . . 53

3.3 Velocity responses for the commands α = 7.9 deg, β = 0 deg, and
µ = 0 deg with ∆Cmα

= 0.0007 deg−1 without state constraints. . . . 54

3.4 Control responses for the commands α = 7.9 deg, β = 0 deg, and
µ = 0 deg with ∆Cmα

= 0.0007 deg−1 without state constraints. . . . 55

3.5 Adaptive weight responses for the commands α = 7.9 deg, β = 0 deg,
and µ = 0 deg with ∆Cmα

= 0.0007 deg−1 without state constraints. . 56

3.6 State responses for the commands α = 7.9 deg, β = 0 deg, and µ = 0
deg with ∆Cmα

= 0.0007 deg−1 with state constraints. . . . . . . . . 57

ix



3.7 Velocity responses for the commands α = 7.9 deg, β = 0 deg, and
µ = 0 deg with ∆Cmα

= 0.0007 deg−1 with state constraints. . . . . . 58

3.8 Control responses for the commands α = 7.9 deg, β = 0 deg, and
µ = 0 deg with ∆Cmα

= 0.0007 deg−1 with state constraints. . . . . . 59

3.9 Adaptive weight responses for the commands α = 7.9 deg, β = 0 deg,
and µ = 0 deg with ∆Cmα

= 0.0007 deg−1 with state constraints. . . 60

3.10 State responses for the commands α = ±3.9 deg, β = 3.9 deg, and
µ = 0 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with

state constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Velocity responses for the commands α = ±3.9 deg, β = 3.9 deg, and
µ = 0 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with

state constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.12 Control responses for the commands α = ±3.9 deg, β = 3.9 deg, and
µ = 0 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with

state constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.13 Adaptive weight responses for the commands α = ±3.9 deg, β = 3.9
deg, and µ = 0 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007

deg−1 with state constraints. . . . . . . . . . . . . . . . . . . . . . . . 64

3.14 State responses for the commands α = 0 deg, β = 0 deg, and µ = ±50
deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with state

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.15 Velocity responses for the commands α = 0 deg, β = 0 deg, and
µ = ±50 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1

with state constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.16 Control responses for the commands α = 0 deg, β = 0 deg, and
µ = ±50 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1

with state constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.17 Adaptive weight responses for the commands α = 0 deg, β = 0 deg,
and µ = ±50 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007

deg−1 with state constraints. . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 State responses for the commands α = ±2 deg, β = 0 deg, and µ = 70
deg with the failure of the left elevon at 7 sec. . . . . . . . . . . . . . 78

4.2 Velocity responses for the commands α = ±2 deg, β = 0 deg, and
µ = 70 deg with the failure of the left elevon at 7 sec. . . . . . . . . . 79

x



4.3 Control responses for the commands α = ±2 deg, β = 0 deg, and
µ = 70 deg with the failure of the left elevon at 7 sec. . . . . . . . . . 80

4.4 Adaptive weight responses for the commands α = ±2 deg, β = 0 deg,
and µ = 70 deg with the failure of the left elevon at 7 sec. . . . . . . 81

4.5 Adaptive weight responses for the applied control for the commands
α = ±2 deg, β = 0 deg, and µ = 70 deg with the failure of the left
elevon at 7 sec. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Flight path angle response compared with the generated flight path
angle trajectory during an inlet unstart at 10 sec. The subscript p
represents the flight path angle computed from the polynomial fit of ḣ. 90
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1. INTRODUCTION

On May 1, 2013, the X-51A Waverider, an autonomous hypersonic vehicle demon-

strator, reached Mach 5.1 on the fourth and final flight of the latest U. S. Air Force

hypersonic vehicle test program [3]. This event is the newest research highlight in a

field that has had a long and varied history [4], [5]. In the last decade, a resurgence

of interest in the area of hypersonic flight has been seen in the aerospace community,

and with this resurgence comes the need for control architectures that are able to

meet the unique challenges of hypersonic flight, including the risk of inlet unstarts,

which was an issue during the second flight of the X-51A [3].

1.1 Motivation

The design of control architectures for hypersonic vehicles is a current area of

research in the field of controls. Flight control of hypersonic vehicles is challenging

because of the wide range of operating conditions encountered and certain aspects

unique to high speed flight. A particular safety concern in hypersonic flight is the

risk of an inlet unstart, which not only produces a significant decrease in thrust

but also can lead to loss of the vehicle. There are three main reasons that cause a

hypersonic airbreathing engine to unstart: (1) a flow to the inlet that is slower than

the required Mach number for the engine to operate, (2) an altered flow that no

longer passes through the throat of the engine because of reasons such as exceeding

the limits on angle-of-attack (α) and sideslip angle (β), and (3) an increase in the

back pressure in the engine that causes the shock wave to move ahead of the throat

[6]. This dissertation will focus on the prevention of the second cause and develop a

control architecture that will limit angle-of-attack and sideslip angle for hypersonic

vehicles to prevent an inlet unstart.
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1.2 Literature Search

Many of the previous control designs for hypersonic vehicles have involved the use

of linearized models of the aircraft instead of the full nonlinear equations of motion

[7], [8], [9], [10]. Annaswamy, et.al. created adaptive controllers for hypersonic vehi-

cles; however, the controllers are designed based on linearized models of the aircraft

dynamics and require gain-scheduling for their implementation [7],[8]. Groves, et.al.

implemented control designs based on linear models of a hypersonic vehicle for set-

point and regulator tracking [9]. Bolender, et.al. designed adaptive control laws for

an experimental hypersonic vehicle based on a linearized model of the longitudinal

dynamics of the vehicle [10].

In terms of work with nonlinear models for control design in hypersonic vehicles,

Johnson, et.al. applied a neural network-based adaptive control architecture to a

model of the X-33 vehicle for the generation of ascent and abort trajectories as well

as the control of the aircraft [11]. Fiorentini, et.al. [12] and Parker, et.al. [13] both

used simplified nonlinear models of a hypersonic vehicle in their control design that

exhibited good tracking performance but a slow response. While Parker, et.al. de-

signed an approximate feedback linearization controller, the controller in that paper

is not adaptive; however, a case study of their approximate feedback linearization

controller showed that the controller was robust to mild plant parameter variations

in the moment of inertia Iyy, the vehicle length, and the mass of the vehicle [14].

Brocanelli, et.al. created a robust adaptive controller that determined trajectories

that would allow the vehicle to remain in hypersonic flight as long as possible follow-

ing an inlet unstart; however, the nonlinear model used for the hypersonic vehicle

only included the longitudinal equations of motion [15].

The need for designing controllers that can enforce state constraints for aircraft
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has been a recent area of interest in the field of controls as well. Vaddi and Sengupta

constructed a model predictive controller for trajectory tracking in a hypersonic vehi-

cle that handled nonlinear state and control constraints [16]. Lavretsky and Gadient

examined the addition of state constraints to a dynamic inversion-based control ar-

chitecture for a second-order system [17], and Gadient, et.al. extended this work

to adjust the reference model appropriately when the system neared any state con-

straints, demonstrating their results in simulation and flight test for an X-48B aircraft

[18]. Bürger and Guay designed a switching controller that actively enforces output

constraints in one mode for nonlinear systems with parametric uncertainties that are

affine in the input [19]. Contrastingly, Muse developed a method for enforcing state

constraints in adaptive control laws without switching between modes [20].

1.3 Open Research Issues

• What type of control could be used for systems in which the dynamic equations

are nonlinear and in which there is significant parametric uncertainty in the

model of the aerodynamics when the system is a hypersonic vehicle?

Ideally, dynamic inversion would be one choice for a control structure since

this method would allow undesired dynamics to be cancelled and replaced with

desired dynamics. However, there is significant parametric uncertainty in the

model of the aerodynamics for a hypersonic vehicle, which is generated using

computational fluid dynamics. Therefore, adaptive dynamic inversion should

be used to account for the uncertatinty in the aerodynamics. Also, to retain

the most fidelity and accuracy in the inversion, the nonlinear dynamics of a

hypersonic vehicle should be used in the design of the control architecture.

• How can an inlet unstart as a result of exceeding limits on states be prevented?

An inlet unstart can lead to a reduction in thrust and the possible loss of the

3



vehicle. The focus of this dissertation is on the prevention of inlet unstarts

that are caused by an alteration of the flow by changes in angle-of-attack and

sideslip angle such that the flow no longer reaches the throat of the engine.

• Knowing that it is desired to fly in a manner such as to prevent inlet unstart,

how can a vehicle be protected should control surfaces fail?

In order to protect the vehicle if control surfaces fail, robustness must be added

to the control architecture. The addition of robustness should allow the vehicle

to continue flying after the loss of control surfaces in such a manner as to avoid

an inlet unstart.

• If an inlet unstart should occur, how will the hypersonic vehicle respond given

its control architecture?

For any given flight condition following an inlet unstart, the vehicle must be

able to determine the appropriate course of action to ensure its preservation.

This dissertation examines the ability of the developed control architecture for

a hypersonic vehicle to maintain reasonable tracking performance following an

inlet unstart.

1.4 Scope and Contribution

This dissertation presents a design of a nonlinear adaptive dynamic inversion

control architecture. A rigid-body model of a generic hypersonic vehicle will be used

as the plant for the design and analysis of this controller. Because the dynamic

equations for hypersonic vehicles are inherently nonlinear and the aerodynamic and

control derivatives for the aircraft have significant uncertainty associated with them,

an adaptive dynamic inversion controller is selected as the preferred control architec-

ture. One component of this dissertation will consist of using the complete coupled
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nonlinear dynamic equations for a hypersonic vehicle in the design of the nonlinear

adaptive dynamic inversion control architecture instead of a linearized form of the

equations or a subset of the nonlinear dynamics, which is a unique contribution of

this research. The second component of this dissertation will involve the addition of

state constraints to the control architecture in order to prevent inlet unstarts from

occurring. The third component of this dissertation is the inclusion of fault toler-

ant control to the control architecture. While fault tolerant control is not a novel

concept, for the purposes of this dissertation, this component will add a robustness

to the control architecture that will be beneficial for the vehicle. The final compo-

nent of this dissertation will investigate the subsequent performance of the nonlinear

adaptive dynamic inversion control architecture after an inlet unstart. The combina-

tion of designing an adaptive control architecture that accounts for state constraints,

adding fault tolerance into the control architecture, and studying the performance of

the control architecture following inlet unstarts constitutes my original contribution

to aerospace engineering through this dissertation work.

1.5 Outline of the Dissertation

The following chapters will develop the theory behind the technical approach out-

lined in the previous section and present simulation results to illustrate the theory.

Chapter 2 is the foundational chapter that outlines the nonlinear adaptive dynamic

inversion control architecture that is applied throughout this dissertation. The en-

forcement of state constraints within this control architecture is discussed in Chapter

3. Chapter 4 focuses on the addition of fault-tolerant control to the baseline nonlin-

ear adaptive dynamic inversion control architecture. In Chapter 5, the modeling of

an inlet unstart in a simulation and the generation of reference trajectories for flight

path angles is presented in conjunction with an examination of the performance of

5



the control architecture after an inlet unstart. Conclusions and recommendations for

future research directions are given in Chapter 6.
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2. NONLINEAR ADAPTIVE DYNAMIC INVERSION CONTROL

ARCHITECTURE

In order to deal with nonlinear dynamic equations of motion and parametric un-

certainties in the aerodynamics model for a hypersonic vehicle, a nonlinear adaptive

dynamic inversion control architecture was determined to be a candidate architec-

ture, as stated in Chapter 1. The current chapter describes the derivation of general

adaptive control laws and their application using the dynamic equations for a generic

hypersonic vehicle, followed by simulation results and a robustness analysis of the

control architecture.

2.1 The Generic Hypersonic Vehicle

The Generic Hypersonic Vehicle (GHV) [21], as shown in Figure 2.1, is an aca-

demic hypersonic aircraft vehicle model created at the Air Force Research Laboratory

as a platform for controls research. The GHV plant simulation is implemented us-

ing a Simulink model that contains the nonlinear, 6-DOF equations of motion for

an inelastic hypersonic vehicle without rotors. The aerodynamic and thrust forces

and moments acting on the vehicle are modeled using look-up tables; the tables for

the aerodynamic forces and moments were generated based on computational fluid

dynamics data using shock-expansion methods with a viscous correction. Reference

[21] contains a detailed description of the equations that are contained in the GHV

simulation.

Using two elevons and two ruddervators, it is desired to control angle-of-attack

(α), sideslip angle (β), and aerodynamic bank angle (µ). Figure 2.2 shows a diagram

of the GHV system with the adaptive dynamic inversion controllers. To simplify the

process of designing a nonlinear adaptive dynamic inversion control architecture, it is
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Figure 2.1: The Generic Hypersonic Vehicle (GHV).

assumed that the aircraft states can be divided into two timescale categories, which

are the fast states, which consist of the angular rates p, q, and r as noted in [22],

and the slow states, which consist of the angles α, β, and µ. An adaptive dynamic

inversion controller first must translate α, β, and µ commands into commands for

the body axis rates p, q, and r, which then are passed into another adaptive dynamic

inversion controller that determines the corresponding control surface deflections to

achieve the desired p, q, and r commands.

The following three sections will describe the equations found in the inversion

blocks in Figure 2.2. For the equations derived in Sections 2.3 and 2.4, the flat,

nonrotating earth assumption [23, p. 43] is made. It is acceptable to make this

assumption in this case because while the vehicle is flying fast enough for the round

rotating Earth effects to be significant, the time scale of the controlled dynamics are

sufficiently fast to neglect them.

8



Figure 2.2: Diagram of the adaptive dynamic inversion controllers for the GHV,
where s represents all of the states of the system.

2.2 General Adaptive Dynamic Inversion Equations

This section contains the derivation of the control laws for two cases of the adap-

tive nonlinear dynamic inversion controller. The first case involves dynamic equations

containing the same number of controls and controlled variables, and the second case

deals with dynamic equations with a greater number of controls than controlled vari-

ables. It should be noted in both cases, the general nonlinear equation of the system

is assumed to be affine in the control, which is reasonable for small deflection angles.

2.2.1 Case with Equal Number of Controls and Controlled Variables

Consider a general nonlinear equation of a system in the form

ẋ = f(x) + g(x)u (2.1)

where x ∈ R
n is the state, u ∈ R

n is the control, and f(x) : R
n 7→ R

n and g(x) :

R
n 7→ R

n are locally Lipschitz continuous. It is assumed that g(x) is nonsingular for

9



all x ∈ R
n. Suppose that the desired reference dynamics for the system are given by

ẋm = Axm +Br (2.2)

where xm ∈ R
n is the model state, r ∈ R

n is a bounded reference signal, A ∈ R
n×n

is Hurwitz, and B ∈ R
n×n. The equation for the error between the reference model

and the actual system is

e = xm − x. (2.3)

Taking the time derivative of equation (2.3) results in

ė = ẋm − ẋ = ẋm − f(x) − g(x)u. (2.4)

If the control u is chosen to be

u = [g(x)]−1[ẋm − f̂(x) +Ke− ν] (2.5)

where f̂(x) : R
n 7→ R

n is a model of the plant dynamics, K ∈ R
n×n such that K =

KT > 0 are the gains on the tracking errors, and ν ∈ R
n is a pseudo-control signal,

then substituting equation (2.5) into equation (2.4) produces the error dynamics

ė = −f(x) + f̂(x) −Ke+ ν. (2.6)

Defining the error between the model and the actual system as ∆ = f̂(x) − f(x),

equation (2.6) becomes

ė = −Ke+ ∆ + ν. (2.7)
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In this dissertation, it is assumed that ∆ can be represented in the form ∆ =

W Tβ(x; d), where W ∈ R
p×n is a set of unknown weights, and β ∈ R

p×1 is a set of

known basis functions composed of the states x and a vector d of bounded continuous

exogenous inputs. Using this representation for ∆, ν is chosen to be ν = −Ŵ Tβ(x; d),

where Ŵ ∈ R
p×n is an estimate of the weights. With these definitions, equation (2.7)

can be written as

ė = −Ke− W̃ Tβ(x; d) (2.8)

where W̃ = Ŵ −W is the weight estimation error.

The stability of the closed loop system under these assumptions can be established

using a candidate Lyapunov function of the form

V = eT e+ tr(W̃ TΓW
−1W̃ ) (2.9)

where ΓW ∈ R
p×p with ΓW = ΓW

T > 0. In order to determine the adaptation law

for the parameters in W and to prove that the error between the states of the actual

system and the reference model will converge, first, the derivative of equation (2.9)

along the system trajectories is taken, which gives the result

V̇ = 2eT ė+ 2tr(W̃ TΓW
−1 ˙̂
W

T

). (2.10)

Substituting equation (2.8) into equation (2.10) produces

V̇ = −2eTKe− 2eT W̃ Tβ(x; d) + 2tr(W̃ T ΓW
−1 ˙̂
W

T

). (2.11)
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Applying the trace identity that aT b = tr(baT ), equation (2.11) is determined to be

V̇ = −2eTKe+ 2tr(W̃ T (ΓW
−1 ˙̂
W

T

− β(x; d)eT )). (2.12)

Then, by choosing
˙̂
W as

˙̂
W = ΓW Proj(Ŵ , β(x; d)eT ) (2.13)

where Proj represents the projection operator, which is used to maintain specified

bounds on the weights [24], V̇ can be upper bounded as

V̇ ≤ −2eTKe ≤ 0 (2.14)

which implies that e is bounded. Because r is bounded by definition above, xm

is bounded. Since e and xm are bounded, x is bounded. Consequently, β(x; d) is

bounded as well. In order to use Barbalat’s lemma [25] to complete the proof, the

second derivative of equation (2.9) along the system trajectories is taken, which gives

the result

V̈ = −4eTKė. (2.15)

Substituting equation (2.8) into equation (2.15) produces

V̈ = −4eTK(−Ke− W̃ Tβ(x; d)). (2.16)

Because e, W̃ , and β(x; d) are bounded as proved above, V̈ is bounded, and therefore

V̇ is uniformly continuous.

Because V is lower bounded, V̇ is negative semi-definite, and V̇ is uniformly

continuous, by Barbalat’s lemma V̇ → 0 as t → ∞, and thus e → 0 as t → ∞ as
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desired.

2.2.2 Case with a Greater Number of Controls than Controlled Variables

Specifically for the GHV, the form of the general adaptive dynamic inversion

controller in the previous subsection applies to the α, β, µ inversion component,

in which the number of inputs to the system (α, β, µ) is equal to the number of

outputs (p, q, r). However, in the p, q, r inversion component, the number of inputs

to the system (p, q, r) is not the same as the number of outputs (δf,r, δf,l, δt,r, δt,l).

The fact that the number of outputs is greater than the number of inputs requires a

control allocation scheme to be integrated into the inversion control law. To frame

the problem in general terms, consider the given nonlinear equation of a system in

the form

ẋ = f(x) + g(x)Λu (2.17)

where x ∈ R
n is the state, u ∈ R

m is the control, f(x) : R
n 7→ R

n and g(x) : R
n 7→

R
n×m are locally Lipschitz continuous, and Λ ∈ R

m×m is a constant unknown positive

definite matrix. It is assumed that g(x) is full rank for all x ∈ R
n. Suppose that the

desired dynamics of the closed loop system are given by

ẋm = Axm +Br (2.18)

where xm ∈ R
n is the model state, r ∈ R

m is the bounded reference signal, A ∈ R
n×n

is Hurwitz, and B ∈ R
n×m.

The derivation of the control law and the adaptive laws, including one for the

unknown control effectiveness matrix Λ, proceeds similarly to the derivation in Sub-

section 2.2.1. The equation for the error between the reference model and the actual
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system is

e = xm − x. (2.19)

Taking the time derivative of equation (2.19) results in

ė = ẋm − ẋ = ẋm − f(x) − g(x)Λu. (2.20)

The desired final form for ė is

ė = −Ke− W̃ Tβ(x; d) + g(x)Λ̃u (2.21)

which is the same as the final form for ė in Subsection 2.2.1, except for the final term

g(x)Λ̃u. With the appropriate choice of adaptive law for Λ̂, the choice of the above

final form for ė will allow the stability of the system to be proven. In order to derive

this desired form of ė, first the term g(x)Λ̂u is added and subtracted from equation

(2.20), where Λ̂ ∈ R
m×m is an estimate of the control effectiveness matrix, and the

error equation becomes

ė = ẋm − f(x) − g(x)Λu+ g(x)Λ̂u− g(x)Λ̂u. (2.22)

Let Λ̃ = Λ̂ − Λ, which is the estimation error of the control effectiveness matrix.

Then, equation (2.22) simplifies to

ė = ẋm − f(x) − g(x)Λ̂u+ g(x)Λ̃u. (2.23)

Because of the fact that the number of controls is greater than the number of con-

trolled variables in this case, there sometimes are infinite choices for u at any instant

in time. In order to determine a specific control law for the system, a constrained op-
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timization problem is solved in which the cost function J = uTQu, where Q ∈ R
m×m

with Q = QT > 0, will be minimized, subject to the constraint g(x)Λ̂u = ℓ, which

must be satisfied at all times. The cost function is chosen to be J = uTQu so that

the control effort will be minimized, which consequently can be used to reduce the

amount of trim drag during flight. it is assumed by this formulation of the problem

that the control surfaces do not have position limits, and as a result, sufficient control

power will always exist. By choosing the term ℓ in the constraint equation to be

ℓ = ẋm − f̂(x) +Ke− ν (2.24)

where f̂(x) : R
n 7→ R

n is an estimate of the plant dynamics, K ∈ R
n×n with

K = KT > 0 contains the gains on the errors, and ν ∈ R
n is a pseudo-control

signal, the constraint g(x)Λ̂u = ℓ will ensure that when the derived control law

for this second case is substituted into the equation for ė, and the equation for the

error dynamics is simplified, the first two terms of equation (2.21) will appear in

the resulting equation for ė as desired. For simplicity in the control law derivation,

equation (2.24) will not be substituted into the constraint equation at the present

time.

To derive the control law, first the constraint must be included in the cost function

to form the augmented cost function

J̄ = uTQu+ λT (g(x)Λ̂u− ℓ) (2.25)

where λ ∈ R
n is a Lagrange multiplier. The necessary conditions for minimizing J̄

are given by

∂J̄

∂λ
= g(x)Λ̂u− ℓ = 0 (2.26)
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∂J̄

∂u
= 2Qu+ Λ̂TgT (x)λ = 0. (2.27)

Rearranging terms in equation (2.27) results in

u = −
1

2
Q−1Λ̂TgT (x)λ. (2.28)

Substituting equation (2.28) into equation (2.26) and solving for λ produces the

equation

λ = −2(g(x)Λ̂Q−1Λ̂TgT (x))−1ℓ. (2.29)

Finally, substituting equation (2.29) back into equation (2.28) results in the control

law

u = Q−1Λ̂TgT (x)(g(x)Λ̂Q−1Λ̂TgT (x))−1ℓ. (2.30)

In order for the control law given in equation (2.30) to be continuous, Q and

g(x)Λ̂Q−1Λ̂TgT (x) must be invertible. The projection bounds that will be applied in

the adaptive law for Λ must ensure that Λ̂ remains invertible. It should be noted that

for the case where the number of controls equals the number of controlled variables,

the control solution is unique, and the control law in equation (2.30) simplifies to

u = [g(x)]−1[ẋm − f̂(x) +Ke− ν] (2.31)

which is the control law that was chosen in Subsection 2.2.1.

Continuing with the derivation of ė, let ∆ = f̂(x) − f(x). Substituting equation

(2.30), equation (2.24), and into equation (2.23) produces the equation

ė = −Ke+ ∆ + ν + g(x)Λ̃u. (2.32)
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Again, assume that ∆ can be represented in the form ∆ = W Tβ(x; d), where W ∈

R
p×n is a set of unknown weights, and β ∈ R

p×1 is a set of known basis functions

composed of the states x and a vector d of bounded continuous exogenous inputs.

Also, the representation for ν is chosen to be ν = −Ŵ Tβ(x; d), where Ŵ ∈ R
p×n is

an estimate of the weights. Then, equation (2.32) can be written as

ė = −Ke− W̃ Tβ(x; d) + g(x)Λ̃u (2.33)

where W̃ = Ŵ −W , which is the weight estimation error.

As in Subsection 2.2.1, a Lyapunov analysis needs to be performed in order to

determine the adaptive laws for Λ̂ and Ŵ and to prove that the error between

the states of the actual system and the reference model will converge. Given the

candidate Lyapunov function

V = eT e+ tr(W̃ TΓW
−1W̃ ) + tr(Λ̃ΓΛ

−1Λ̃) (2.34)

where ΓW ∈ R
p×p with ΓW = ΓW

T > 0, and ΓΛ ∈ R
m×m with ΓΛ = ΓΛ

T > 0, the

derivative of equation (2.34) along the system trajectories is taken, which results in

the equation

V̇ = 2eT ė+ 2tr(W̃ TΓW
−1 ˙̂
W

T

) + 2tr(Λ̃ΓΛ
−1 ˙̂

Λ
T

). (2.35)

Substituting equation (2.33) into equation (2.35) produces

V̇ = −2eTKe− 2eT W̃ Tβ(x; d) + 2eTg(x)Λ̃

+ 2tr(W̃ TΓW
−1 ˙̂
W

T

) + 2tr(Λ̃ΓΛ
−1 ˙̂

Λ
T

)

(2.36)

and by applying the trace identity that aT b = tr(baT ) to equation (2.36), the equation
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for V̇ becomes

V̇ = −2eTKe+2tr(W̃ T (ΓW
−1 ˙̂
W

T

−β(x; d)eT ))+2tr(Λ̃(ΓΛ
−1 ˙̂

Λ
T

+ueTg(x))). (2.37)

Let the equation for
˙̂
W in this case be the same as equation (2.13), and let

˙̂
Λ be

˙̂
Λ = ΓΛ Proj(Λ̂,−ueTg(x)). (2.38)

In this case, the final equation for V̇ is is upper bounded by

V̇ ≤ −2eTKe ≤ 0 (2.39)

which implies that e is bounded. Since r is bounded by definition above and e is

bounded, xm is bounded, and thus x is bounded. Consequently, g(x) and β(x; d)

are bounded as well. In order to use Barbalat’s lemma [25] to complete the proof,

the second derivative of equation (2.34) along the system trajectories is taken, which

gives the result

V̈ = −4eTKė. (2.40)

Substituting equation (2.33) into equation (2.40) produces

V̈ = −4eTK(−Ke− W̃ Tβ(x; d) + g(x)Λ̃u). (2.41)

It should be noted that u is bounded because all of the the signals found in u, which is

given by equations (2.30) and (2.24) are bounded. Thus, because e, W̃ , β(x; d), g(x),

Λ̃, and u are bounded as proved above, V̈ is bounded, and therefore V̇ is uniformly

continuous.

Finally, Barbalat’s lemma can be applied. Because V is lower bounded, V̇ is
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negative semi-definite, and V̇ is uniformly continuous, by Barbalat’s lemma V̇ → 0

as t→ ∞, and thus e→ 0 as t→ ∞ as desired.

2.3 P, Q, R Inversion Controller

The first designed controller was the inversion controller for the angular body

rates of the GHV since these variables are linked directly to the control surface

deflections, which control the vehicle. The reference inputs to the controller are the

commanded angular body rates pc, qc and rc, and the output states of the controller

are the control surface deflections δf,r, δf,l, δt,r, and δt,l. Therefore, in this case,

Equation (2.17) represents the current system. In order for the adaptive dynamic

inversion controller to be designed for the angular body rates, f(x) and g(x) must

be determined from the general nonlinear equations for ṗ, q̇, and ṙ, which in vector-

matrix form, are

[J ]
dωB,I

dt

∣∣∣∣
B

+ ωB,I × JωB,I = Maero +MT (2.42)

where

[J ] =




Jx 0 −Jxz

0 Jy 0

−Jxz 0 Jz




(2.43)

and

ωB,I =




p

q

r



. (2.44)
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Substituting these equations into Equation (2.42) and simplifying produces the result

[J ]




ṗ

q̇

ṙ




+




−Jxzpq + (Jz − Jy)qr

(Jx − Jz)pr + Jxz(p
2 − r2)

Jxzqr + (Jy − Jx)pq




= Maero +MT . (2.45)

Therefore, the nonlinear equations for the angular body accelerations can be written

as 


ṗ

q̇

ṙ




= [J ]−1



−




−Jxzpq + (Jz − Jy)qr

(Jx − Jz)pr + Jxz(p
2 − r2)

Jxzqr + (Jy − Jx)pq




+Maero +MT



. (2.46)

After having determined the nonlinear equations for the angular body accelera-

tions, the next step is to write those equations in the form of Equation (2.17). In

order to accomplish this task, the terms related to the control surfaces, which will

form g(x), must be extracted from Equation (2.46). The control surfaces terms are

included in the aerodynamic moment terms MA, which can be written as

Maero =




LA

MA

NA




=




q̄SbCℓ

q̄Sc̄Cm

q̄SbCn




(2.47)

where

Cℓ = Cℓ,baseline + ∆Cℓ,surfaces +
b

2VT

(
Cℓp

p
)

Cm = Cm,baseline + ∆Cm,surfaces +
c̄

2VT

(
Cmq

q + Cmα̇
α̇
)

Cn = Cn,baseline + ∆Cn,surfaces +
b

2VT

(Cnr
r)

(2.48)

20



and

∆Ci,surfaces = ∆Ci,δf,r
(M,α, β, δf,r) + ∆Ci,δf,l

(M,α, β, δf,l)

+ ∆Ci,δt,r
(M,α, β, δt,r) + ∆Ci,δt,l

(M,α, β, δt,l)

(2.49)

for i = ℓ, m, n.

As seen in Equation (2.48), the moment coefficients are comprised of three parts.

The baseline term is the moment coefficient for the base airframe, and the second

and third terms adjust for the effects on the moment coefficients due to the control

surfaces and damping, respectively. In Equation (2.48), the first and third terms

do not depend on the control surfaces; therefore, those two terms belong to the

f(x) term in Equation (2.17). In order to determine g(x), the second term in each

equation in Equation (2.48) must be examined to determine what portion of the term

is control-dependent and thus belongs in g(x). For this particular control design for

the GHV, it is assumed that a linear approximation with respect to the control

surface deflection δ can be made for each of the terms in Equation (2.49). The linear

approximation can be expressed as

∆Ci,δs
(M,α, β, δs) = Ci,δs

(M,α, β, [δs = 0]) +
∂Ci,δs

∂δs

∣∣∣∣
M,α,β constant

∆δs (2.50)

for i = N , Y , A, ℓ, m, n and δs = δf,r, δf,l, δt,r, δt,l. In this paper, it is assumed

that all interactions between each control surface are negligible, which at high Mach

numbers is approximately true. Deflections of the right and left control surfaces

will generate summative forces and moments in the XZ-plane of symmetry of the

aircraft, whereas in the other planes, the deflections will generate canceling forces

and moments. In equation form, for both the flaps and the tail control surfaces, the
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relationships between right and left elevon deflections are expressed as

CN,δf,r
= CN,δf,l

−CY,δf,r
= CY,δf,l

CA,δf,r
= CA,δf,l

−Cℓ,δf,r
= Cℓ,δf,l

Cm,δf,r
= Cm,δf,l

−Cn,δf,r
= Cn,δf,l

(2.51)

and the relationships between right and left rudder deflections are expressed similarly

as

CN,δt,r
= CN,δt,l

−CY,δt,r
= CY,δt,l

CA,δt,r
= CA,δt,l

−Cℓ,δt,r
= Cℓ,δt,l

Cm,δt,r
= Cm,δt,l

−Cn,δt,r
= Cn,δt,l

.

(2.52)

Consequently, in Equation (2.50), the term where δs = 0 can be written for the

combined effect of both the right and left control surfaces collectively as

Ci,δf
(M,α, β, [δf,r, δf,l = 0]) =





2Ci,δf,r
(M,α, β, [δf,r = 0]) for i = N,A,m

0 for i = Y, ℓ, n

(2.53)

Ci,δt
(M,α, β, [δt,r, δt,l = 0]) =





2Ci,δt,r
(M,α, β, [δt,r = 0]) for i = N,A,m

0 for i = Y, ℓ, n.

(2.54)

Given Equations (2.50), (2.53), and (2.54), Equation (2.49) can be rewritten for i =

ℓ, m, n as

∆Cℓ =
∂Cℓ,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂Cℓ,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂Cℓ,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂Cℓ,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(2.55)
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∆Cm = 2Cm,δf,r
(M,α, β, [δf,r = 0]) + 2Cm,δt,r

(M,α, β, [δt,r = 0])

+
∂Cm,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂Cm,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂Cm,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂Cm,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(2.56)

∆Cn =
∂Cn,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂Cn,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂Cn,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂Cn,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l.

(2.57)

Since the first two terms of Equation (2.56) are for fixed values of δs, they constitute

bias terms and therefore belong in the f(x) portion of Equation (2.17). As a result,

only the terms represented by
∂Ci,δs

∂δs

∣∣∣∣
M,α,β constant

in Equations (2.55), (2.56), and

(2.57) belong in the g(x) term in Equation (2.17).

To complete the analysis of the terms in Equation (2.46), the effect of the center

of gravity shift must be accounted for in the nonlinear equations for the angular

body accelerations. The shift of a set of moments from a given reference point to

the center of gravity is given by the equation

Mcg = Maero − rcg/aero × Faero (2.58)

and in this particular simulation, rcg/aero is defined to be

[
xcg 0 0

]T

. In the simu-

lation, Faero is calculated similarly to Maero in Equation (2.47) above, which means

that Faero has the form

Faero =




XA

YA

ZA




=




−q̄SCA

q̄SCY

−q̄SCN



. (2.59)
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Therefore, given Equation (2.59) and the definition of rcg/aero, Equation (2.58) can

be written as

Mcg = Maero −




xcg

0

0



×




−q̄SCA

q̄SCY

−q̄SCN




(2.60)

Mcg = Maero −




0

−q̄SCNxcg

−q̄SCY xcg




(2.61)

where Maero is defined in Equation (2.47). It should be noted that the terms CN

and CY in Equation (2.61) can be written like the moment coefficients in Equations

(2.55), (2.56), and (2.57) as

∆CN = 2CN,δf,r
(M,α, β, [δf,r = 0]) + 2CN,δt,r

(M,α, β, [δt,r = 0])

+
∂CN,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂CN,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂CN,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂CN,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(2.62)

∆CY =
∂CY,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂CY,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂CY,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂CY,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(2.63)

Similarly to the moment coefficients as shown above, since the first two terms of

Equation (2.62) are for fixed values of δs, they constitute bias terms and therefore

belong in the f(x) portion of Equation (2.17). As a result, only the terms represented

by
∂Ci,δs

∂δs

∣∣∣∣
M,α,β constant

in Equations (2.62) and (2.63) belong in the g(x) term in

Equation (2.17).

Having examined all of the terms in the nonlinear equations for the angular body
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accelerations, Equation (2.46) can be written in the final form of Equation (2.17) as




ṗ

q̇

ṙ




= [J ]−1



−




−Jxzpq + (Jz − Jy)qr

(Jx − Jz)pr + Jxz(p
2 − r2)

Jxzqr + (Jy − Jx)pq




+MT

+q̄SG+ q̄SH




δf,r

δf,l

δt,r

δt,l







(2.64)

where

G =




b

(
Cℓ,baseline + b

2VT
(Cℓp

p)

)

c̄

(
Cm,baseline +

c̄

2VT

(Cmq
q + Cmα̇

α̇) + 2Cm,δf,r
(δf,r = 0) + 2Cm,δt,r

(δt,r = 0)

)

− 2CN,δf,r
(δf,r = 0)xcg − 2CN,δt,r

(δt,r = 0)xcg

b

(
Cr,baseline + b

2VT
(Cnr

r)

)




(2.65)

and

H =




b ∂Cℓ

∂δf,r
b ∂Cℓ

∂δf,l
b ∂Cℓ

∂δt,r
b ∂Cℓ

∂δt,l(
c̄ ∂Cm

∂δf,r
− xcg

∂CN

∂δf,r

) (
c̄∂Cm

∂δf,l
− xcg

∂CN

∂δf,l

) (
c̄∂Cm

∂δt,r
− xcg

∂CN

∂δt,r

) (
c̄∂Cm

∂δt,l
− xcg

∂CN

∂δt,l

)

(
b ∂Cn

∂δf,r
− xcg

∂CY

∂δf,r

) (
b ∂Cn

∂δf,l
− xcg

∂CY

∂δf,l

) (
b ∂Cn

∂δt,r
− xcg

∂CY

∂δt,r

) (
b ∂Cn

∂δt,l
− xcg

∂CY

∂δt,l

)



.

(2.66)

It should be noted that the partial derivatives in Equation (2.64) are taken with

respect to a constant value of M , α, and β from the current flight condition and that

the control surface bias terms, where δs = 0, are evaluated at a constant value of M ,

α and β from the current flight condition as well.

25



Given Equation (2.64), which is now in the form of Equation (2.17), the adap-

tive dynamic inversion controller can be constructed using Equations (2.13), (2.24),

(2.30), and (2.38).

2.4 α, β, µ Inversion Controller

As with the p, q, r inversion controller, equations for α̇, β̇, and µ̇ must be de-

termined in order for the adaptive dynamic inversion controller to be constructed.

It should be noted that for this section, Sx will represent sin(x), Cx will represent

cos(x), and Tx will represent tan(x), where x is an angle. The derivations for α̇ and

β̇ are based on the derivations for those terms on pages 110-112 in Reference [26].

The starting point of the derivations is the basic force equations in the stability axes

under the flat Earth assumption, which are

bv̇rel = (1/m)FA,T + g − ωb/e × vrel. (2.67)

Taking the time derivative of the relative velocity in the wind axes instead of in the

body axes and converting the right hand side of Equation (2.67) to the wind axes

produces the result

mV̇T = FTCα+αT
Cβ −D −mgSγ (2.68)

mβ̇VT = − FTCα+αT
Sβ − C +mg(CαSβSθ + CβSφCθ − SαSβCφCθ)

−mVT (pSα − rCα)

(2.69)

mα̇VTCβ = − FTSα+αT
− L+mg(SαSθ + CαCφCθ)

+mVT (−pSβCα + qCβ − rSβSα)

(2.70)

where D, L, and C represent drag, lift, and cross-wind force, respectively, in the

wind axes.

26



In order to simplify Equations (2.69) and (2.70) and to express them in terms of

µ, which is one of the commanded states, the gravity terms in those equations are

transformed using relationships given by the following direction cosine matrices from

Chapter 4 of Reference [23] as

TW,H(µ, γ, χ) = T T
B,W (0,−α, β)TB,H(φ, θ, ψ) (2.71)

where W represents the wind axes, B represents the body axes, and H represents

the local horizon axes. Each direction cosine matrix has the general form

T2,1(θx, θy, θz) =




Cθy
Cθz

Cθy
Sθz

−Sθy

Sθx
Sθy

Cθz
− Cθx

Sθz
Sθx

Sθy
Sθz

+ Cθx
Cθz

Sθx
Cθy

Cθx
Sθy

Cθz
+ Sθx

Sθz
Cθx

Sθy
Sθz

− Sθx
Cθz

Cθx
Cθy



. (2.72)

as shown on page 9 of Reference [27]. By examining the elements of the matrices in

Equation (2.71), the following relationships involving µ and γ were determined to be

TW,H(2, 3) = SµCγ = CαSβSθ + CβSφCθ − SαSβCφCθ (2.73)

TW,H(3, 3) = CµCγ = SαSθ + CαCφCθ (2.74)

which can be substituted into Equations (2.69) and (2.70) in the gravity terms.

Additionally, the thrust force FT terms are converted into the wind frame and

expressed in terms of the vector

[
FTx

FTy
FTz

]T

, which is given in the body frame.
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The transformation of the FT terms results in




FTCα+αT
Cβ

−FTCα+αT
Sβ

−FTSα+αT




=




CαCβ Sβ SαCβ

−CαSβ Cβ −SαSβ

−Sα 0 Cα







FTx

FTy

FTz




=




FTx
CαCβ + FTy

Sβ + FTz
SαCβ

−FTx
CαSβ + FTy

Cβ − FTz
SαSβ

−FTx
Sα + FTz

Cα



.

(2.75)

Finally, the forces D, C, and L must be written in terms of the corresponding

forces in the stability axes, which can be calculated directly from information in the

model, as 


D

C

L




=




Cβ Sβ 0

−Sβ Cβ 0

0 0 1







Ds

Ys

Ls




=




DsCβ + YsSβ

−DsSβ + YsCβ

Ls



.

(2.76)

It is assumed that the Ds terms are absorbed into the thrust terms in Equation

(2.75).

Substituting Equations (2.73), (2.74), (2.75), and (2.76) into Equations (2.69)

and (2.70) gives the final equations for β̇ and α̇ to be

β̇ =
1

mVT

(
(Ys + FTy

)Cβ +mgSµCγ − FTx
CαSβ − FTz

SαSβ

)
+ (pSα − rCα) (2.77)

α̇ =
1

mVTCβ

(−Ls +mgCµCγ − FTx
Sα + FTz

Cα) + (−pCαTβ + q − rSαTβ) (2.78)
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which agree with the equations for β̇ and α̇ in Reference [22].

Now, the equation for µ̇ can be derived since the derivation involves the results

given in Equations (2.77) and (2.78). Starting from Equation (57) on page 56 of

Reference [23], where, for this document β = −σ in Reference [23], the relationship

between the angular body accelerations and the local horizon angular accelerations

are expressed as




p− β̇Sα

q − α̇

r + β̇Cα




=




CαCβ −CαSβ −Sα

Sβ Cβ 0

SαCβ −SαSβ Cα







1 0 −Sγ

0 Cµ SµCγ

0 −Sµ CµCγ







µ̇

γ̇

χ̇



. (2.79)

Taking the inverse of Equation (2.79), the equation for µ̇ is determined to be

µ̇ = (p− β̇Sα) (CαCβ − TγCαSβSµ − TγSαCµ) + (q − α̇) (Sβ + TγCβSµ)

+ (r + β̇Cα) (SαCβ + TγCαCµ − TγSαSβSµ) .

(2.80)

Substituting Equations (2.77) and (2.78) into Equation (2.80) and simplifying gives

the final equation for µ̇, which is

µ̇ =
1

mVT

(
Ls(Tβ + TγSµ) + (Ys + FTy

)TγCµCβ −mgCγCµTβ

+ (FTx
Sα − FTz

Cα)(TγSµ + Tβ) − (FTx
Cα + FTz

Sα)TγCµSβ

)

+ pCα sec(β) + rSα sec(β).

(2.81)

Once the equation for µ̇ has been determined, Equations (2.77), (2.78), and (2.81)

29



are combined together in vector-matrix equation form as




β̇

α̇

µ̇




=




1

mVT

(
(Ys + FTy

)Cβ +mgSµCγ − FTx
CαSβ − FTz

SαSβ

)

1

mVTCβ
(−Ls +mgCµCγ − FTx

Sα + FTz
Cα)

1

mVT

(
Ls(Tβ + TγSµ) + (Ys + FTy

)TγCµCβ −mgCγCµTβ

+ (FTx
Sα − FTz

Cα)(TγSµ + Tβ)

− (FTx
Cα + FTz

Sα)TγCµSβ

)




+




Sα 0 −Cα

−TβCα 1 −TβSα

sec(β)Cα 0 sec(β)Sα







p

q

r




(2.82)

where p, q, and r are the desired angular body rates. It should be noted that

it is assumed that the forces due to control surface deflections are negligible, and

therefore, the force terms in Equation (2.82) are approximated from look-up tables

for the force and moment coefficients at points where the control surface deflections

are equal to 0. Also, it is assumed that for the desired angular body rates that the

inner loop p, q, r controller is perfect, which means that the desired angular rates

equal the commanded angular rates.

Given Equation (2.82), which is now in the form of Equation (2.1), the adaptive

dynamic inversion controller can be constructed using Equations (2.5) and (2.13).

2.5 Simulation Results

Based on the control and adaptive laws derived in the previous sections, a sim-

ulation of the entire GHV system with the adaptive nonlinear dynamic inversion

controllers was created in Simulink. In order to make the simulation more realistic,

second-order actuator dynamics with damping ratio ζ = 0.7 and natural frequency
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ωn = 25 Hz are included in the current simulation, and position and rate limits are

placed on the control surfaces of 30 deg and 100 deg/s, respectively. Additionally, a

time delay of 0.03 s is included in the simulation; however, it should be noted that the

simulation can tolerate time delays of up to 0.04 s without the responses becoming

significantly oscillatory. Commands to α, β, and µ are given as ramp signals from

0 degrees to a commanded angle in fixed time. For the α, β, µ inversion controller,

the basis function β(x; d) is chosen to be β(x; d) =

[
c α β µ M

]T

, where c is

a constant bias term. For the p, q, r inversion controller, the basis function β(x; d)

is chosen to be β(x; d) =

[
c p q r α β M

]T

, where c is a constant bias term.

For a discussion on the Matlab integration solvers used for the GHV simulation, see

Appendix A.

The total velocity of the vehicle is controlled using a PID controller. The input

to the controller is the commanded total velocity of the GHV, and the output of

the controller is the equivalence ratio. The equivalence ratio is the fifth control, and

along with the four control surfaces, completes the the control complement for the

vehicle. Additionally, a saturation limiter has been added after the velocity PID

controller to constrain the equivalence ratio to be between 0 and 1.

In the derivation of the adaptive dynamic controllers in Section 2.2, a reference

model was described. The difference between this reference model and the actual

system dynamics constitutes the tracking error of the system. In order to determine

the reference states of the system, the reference signal r must be defined. For the

α, β, µ inversion controller, the reference signal consists of the commanded values of

α, β, and µ. For the p, q, r inversion controller, the reference signal consists of the

commanded angular body rates from the α, β, µ inversion controller. Both of the
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Figure 2.3: Open-loop poles for the linearized longitudinal dynamics.

reference models have the general form




ẋ1

ẋ2

ẋ3




=




ξ1 0 0

0 ξ2 0

0 0 ξ3







x1

x2

x3




+




η1 0 0

0 η2 0

0 0 η3







r1

r2

r3




(2.83)

where ξ1, ξ2, ξ3, η1, η2, and η3 are scalars that define the desired time constants of

each control channel.

The open-loop poles of the linearized dynamics at the flight condition of Mach

6 at 80,000 ft for both the longitudinal and lateral-directional states are shown in
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Figure 2.4: Open-loop poles for the linearized lateral/directional dynamics.

Table 2.1: Eigenvalues for the linearized longitudinal dynamics.

Eigenvalue Damping Ratio Natural Frequency (rad/s)
-2.14 1.00 2.14

−2.79 × 10−3 1.00 2.79 × 10−3

1.25 × 10−3 ± 0.111j -0.0113 0.111
1.96 -1.00 1.96

Table 2.2: Eigenvalues for the linearized lateral/directional dynamics.

Eigenvalue Damping Ratio Natural Frequency (rad/s)
-6.10 1.00 6.10

2.22 × 10−16 -1.00 2.22 × 10−16

0.088 -1.00 0.088
5.96 -1.00 5.96
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Figures 2.3 and 2.4. It should be noted from the eigenvalues listed in Tables 2.1 and

2.2 that both the longitudinal and lateral-directional states have several eigenvalues

in the right-half plane, which indicates that the GHV is an unstable vehicle. A

nonlinear adaptive dynamic inversion controller will be able to suppress the unstable

dynamics and replace them with desired dynamics for the aircraft.

Figures 2.5, 2.6, 2.7, and 2.8 show representative simulation results with the

nonlinear adaptive dynamic inversion controller for the commands α = ±2 deg,

β = 0 deg, and µ = 70 deg. The responses are well-behaved, and the controller is

able to achieve the desired tracking performance without excessive control effort.

It should be noted that following this preliminary analysis of the nonlinear adaptive

dynamic inversion controller, pseudo-control hedging ([28],[29]) was added to the

simulation in order to protect the nonlinear adaptive dynamic inversion controllers

during periods of control surface saturation.

2.5.1 Robustness Analysis

A robustness analysis was performed via simulation on the designed adaptive

nonlinear dynamic inversion controller from the previous section. Uncertainties in

the plant examined in the analysis include the additive uncertainties ∆Cmα
, ∆Cnβ

,

and ∆Cm and multiplicative gains D on the control surface deflections, given in

terms of equations as

Cm = Cmbaseline
+ ∆Cmα

α (2.84)

Cn = Cnbaseline
+ ∆Cnβ

β (2.85)

Cm = Cmbaseline
+ ∆Cm (2.86)

Cδ = DCδo
. (2.87)
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Figure 2.5: State responses for the commands α = ±2 deg, β = 0 deg, and µ = 70
deg.
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Figure 2.6: Velocity responses for the commands α = ±2 deg, β = 0 deg, and µ = 70
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Figure 2.7: Control responses for the commands α = ±2 deg, β = 0 deg, and µ = 70
deg.
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Figure 2.8: Adaptive weight responses for the commands α = ±2 deg, β = 0 deg,
and µ = 70 deg.
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Table 2.3: Additive uncertainty ∆Cmα
over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) max ∆Cmα
min ∆Cmα

(deg−1) (deg−1)
5 0 0 0.0005 -0.0013
5 1 20 0.0003 -0.0011

Table 2.4: Additive uncertainty ∆Cnβ
over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) max ∆Cnβ
min ∆Cnβ

(deg−1) (deg−1)
0 1 0 0.007 -0.003
5 0 20 0.01 -0.004
5 1 20 0.006 -0.003

The criteria for determining the bounds on the uncertainties is that the states must

not demonstrate oscillatory behavior.

Tables 2.3 and 2.4 provide the maximum and minimum values of the additive

uncertainties ∆Cmα
and ∆Cnβ

for various α, β, and µ commands. It should be

noted that an examination of the maximum and minimum baseline values of Cmα

and Cnβ
show that these values are on the order of 10−4. The maximum and minimum

values for ∆Cmα
and ∆Cnβ

in Tables 2.3 and 2.4 are on the order of 10−3−10−4, and

therefore, the controllers are able to withstand significant uncertainties in Cmα
and

Cnβ
and maintain stable tracking flight. Similar results for the additive uncertainty

∆Cm can be found in Table 2.5.

Table 2.6 contains the minimum allowable multiplicative gains D on the control

surface deflections for various α, β, and µ commands. These gains represent a loss

of control effectiveness for one or more of the control surfaces on the GHV. For all

cases, the vehicle is able to tolerate low values of control effectiveness, which shows

that the controllers are robust to loss of control effectiveness.
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Table 2.5: Additive uncertainty ∆Cm over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) max ∆Cm min ∆Cm

5 0 0 0.0005 -0.003
5 1 20 0.0005 -0.002

Table 2.6: Multiplicative gains D on control surface deflection terms over a 30 s
period with 0.03 s time delay.

α (deg) β (deg) µ (deg) Dδf,r
Dδf,l

Dδt,r
Dδt,l

5 0 0 1 0.14 1 1
5 0 0 1 1 1 0.01
5 0 0 0.15 0.15 1 1
5 0 0 1 1 0.15 0.15
5 0 20 1 0.31 1 1
5 0 20 1 1 1 0.01
5 0 20 0.21 0.21 1 1
5 0 20 1 1 0.30 0.30
5 1 20 1 0.42 1 1
5 1 20 1 1 1 0.05
5 1 20 0.38 0.38 1 1
5 1 20 1 1 0.38 0.38
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Additionally, the controllers were tested for their ability to withstand a β bias.

Because of sensor uncertainty, the true value of β will never be known. Therefore,

in the simulation for the commands α = 5 deg, β = 1 deg, and µ = 20 deg, a bias of

1 degree was added to the actual value of β. It was determined that the controllers

are able to handle the β bias, allowing the simulation to run to completion and the

given commands to be followed.

2.6 Conclusions

Based on the simulation results and the robustness analysis, it can be seen that

the objective of designing a control architecture that is robust in order to achieve

desired tracking performance was achieved for the GHV. The controllers are robust

to decreases in control surface effectiveness, changes in system parameters, and time

delays of 0.04 seconds or less. Therefore, it can be concluded that this approach of

nonlinear adaptive dynamic inversion control works well as a control architecture for

hypersonic vehicles.
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3. ENFORCING STATE CONSTRAINTS IN A NONLINEAR ADAPTIVE

DYNAMIC INVERSION CONTROL ARCHITECTURE

The nonlinear adaptive dynamic inversion architecture is able to deal with para-

metric uncertainty. However, as noted in Chapter 2, there are limits on the amount

of variation in parameters such as the static longitudinal stability derivative (Cmα
)

and the static directional stability derivative (Cnβ
) beyond which the system re-

sponse starts to oscillate about the reference trajectory. If the reference trajectory

commands angles-of-attack and sideslip angles that are near the limits set on those

states to prevent inlet unstarts, oscillations about the reference trajectory can cause

the states of the aircraft to exceed their constraints. This chapter presents a method

to enforce state constraints within the existing nonlinear adaptive dynamic inver-

sion control architecture. A brief introduction to projection operators is given first,

followed by the theory for the inclusion of the state constraints in the control archi-

tecture and simulation results.

3.1 Projection Operators

The projection operator for two vectors θ, y ∈ R
k is defined mathematically as

Proj(θ, y) =





y − ∇h(θ)(∇h(θ))T

‖∇h(θ)‖2 yh(θ) if h(θ) > 0 and yT∇h(θ) > 0

y otherwise.

(3.1)

where h(θ) : R
k 7→ R is a convex function, and ∇h(θ) =

(
∂h(θ)
∂θ1

. . . ∂h(θ)
∂θk

)T

[30]. Figure

3.1 depicts the effect of the projection operator in R
2, where {θ|f(θ) = 0} represents

the boundary of the region in which the state constraints are satisfied, {θ|f(θ) = 1}

represents the boundary outside of which the state constraints are violated, and ΩA

42



Figure 3.1: “Visualization of the Projection Operator in R
2” [30].

represents the region in which the projection operator acts on the variable y. In this

figure, f(θ) is equivalent to h(θ) in equation (3.1).

In order to use the projection operator given in equation (3.1), a convex function

h(θ) must be defined. One candidate function is

h(θ) =
(ǫθ + 1)θT θ − θ2

max

ǫθθ2
max

(3.2)

where θmax represents the maximum value of the norm of the vector θ, ǫθ represents

the allowable tolerance of θ beyond θmax, and 0 < ǫθ ≤ 1 [31].

The following lemma indicates that the projection operator can be used in the

enforcement of state constraints.

Lemma 1 (Lavretsky, et.al., 2012) If an initial value problem, i.e., adaptive con-

trol algorithm with adaptive law and initial conditions, is defined by:

1. θ̇ = Proj(θ, y)

2. θ(t = 0) = θ0 ∈ Ω1 = {θ ∈ R
k|h(θ) ≤ 1}
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3. h(θ) : R
k 7→ R is convex

then θ(t) ∈ Ω1∀t ≥ 0 [30].

The proof for this lemma can be found in [30]. According to this lemma, as long as

the value of θ at t = 0 is within the region in which h(θ) ≤ 1, which means that

the state constraints are satisfied initially, then the constraints will be satisfied at all

times through the use of the projection operator.

The following lemma will be useful in proving that the closed-loop system involv-

ing the control law that enforces state constraints is stable.

Lemma 2 (Lavretsky, et.al., 2012) One important property of the projection op-

erator follows. Given θ∗ ∈ Ω0,

(θ − θ∗)T (Proj(θ, y, h) − y) ≤ 0 [30].

The proof for this lemma can be found in [30].

3.2 General Adaptive Control Equations with State Constraints

Consider a general nonlinear equation of a system in the form

ẋ = f(x) + g(x)u (3.3)

where x ∈ R
n is the state, u ∈ R

n is the control, and f(x) : R
n 7→ R

n and g(x) :

R
n 7→ R

n are locally Lipschitz continuous. It is assumed that g(x) is nonsingular for

all x ∈ R
n. Suppose that the desired reference dynamics for the system are given by

ẋm = Axm +Br (3.4)

where xm ∈ R
n is the model state, r ∈ R

n is a bounded reference signal, A ∈ R
n×n

is Hurwitz, and B ∈ R
n×n. The equation for the error between the reference model
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and the actual system is

e = xm − x. (3.5)

Taking the time derivative of equation (3.5) results in

ė = ẋm − ẋ = ẋm − f(x) − g(x)u. (3.6)

In the standard nonlinear adaptive dynamic inversion control architecture, the con-

trol u is chosen to be

u = [g(x)]−1[ẋm − f̂(x) +Ke− ν] (3.7)

where f̂(x) : R
n 7→ R

n is a model of the plant dynamics, K ∈ R
n×n such that

K = KT > 0 are the gains on the tracking errors, and ν ∈ R
n is a pseudo-control

signal. Substituting equation (3.7) into equation (3.3) results in the equation

ẋ = f(x) + ẋm − f̂(x) +Ke− ν. (3.8)

The nonlinear adaptive dynamic inversion control architecture has been shown to be

locally stable in the Lyapunov sense, which indicates that the error eventually will

tend to zero. Another part of equation (3.8), f(x) − f̂(x) − ν, also will tend to zero

because of the adaptive controller. As a result, in the nonlinear adaptive dynamic

inversion control architecture, eventually, ẋ = ẋm. Consequently, if the reference

model exceeds the state constraints, then the actual system will be commanded to

exceed the state constraints as well. Therefore, the control law must be adjusted

so that the reference model does not violate the state constraints. This objective is

achieved by adding a projection operator to the control law. If the control u now is
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chosen to be

u = [g(x)]−1[Proj(x, ẋm) − f̂(x) +Ke− ν], (3.9)

where

Proj(x, ẋm) =




Proj(x1, ẋm1
)

Proj(x2, ẋm2
)

...

Proj(xn, ẋmn
)




, (3.10)

then substituting equation (3.9) into equation (2.4) now produces the error dynamics

ė = ẋm − f(x) − Proj(x, ẋm) + f̂(x) −Ke+ ν. (3.11)

Defining the error between the model and the actual system as ∆ = f̂(x) − f(x),

equation (3.11) becomes

ė = −Ke+ ∆ + ν + ẋm − Proj(x, ẋm). (3.12)

Again, in this dissertation, it is assumed that ∆ can be represented in the form

∆ = W Tβ(x; d), where W ∈ R
p×n is a set of unknown weights, and β ∈ R

p×1 is a

set of known basis functions composed of the states x and a vector d of bounded

continuous exogenous inputs. Using this representation for ∆, ν is chosen to be

ν = −Ŵ Tβ(x; d), where Ŵ ∈ R
p×n. With these definitions, equation (3.12) can be

written as

ė = −Ke− W̃ Tβ(x; d) − [Proj(x, ẋm) − ẋm] (3.13)

where W̃ = Ŵ−W is the weight estimation error. It should be noted that if the state

constraints are not within a certain tolerance of being violated, then Proj(x, ẋm) =
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ẋm, and equation (3.13) reverts back to its original form when using the nonlinear

adaptive dynamic inversion control architecture without enforcing state constraints.

The stability of the closed loop system under these assumptions can be examined

using a candidate Lyapunov function of the form

V = eT e+ tr(W̃ TΓW
−1W̃ ) (3.14)

where ΓW ∈ R
p×p with ΓW = ΓW

T > 0. In order to determine the adaptation law for

the parameters in W and to determine if the error between the states of the actual

system and the reference model will converge, first, the derivative of equation (3.14)

along the system trajectories is taken, which gives the result

V̇ = 2eT ė+ 2tr(W̃ TΓW
−1 ˙̂
W

T

). (3.15)

Substituting equation (3.13) into equation (3.15) produces

V̇ = −2eTKe− 2eT W̃ Tβ(x; d)− 2eT [Proj(x, ẋm)− ẋm] + 2tr(W̃ TΓW
−1 ˙̂
W

T

). (3.16)

Applying the trace identity that aT b = tr(baT ), equation (3.16) is determined to be

V̇ = −2eTKe− 2eT [Proj(x, ẋm) − ẋm] + 2tr(W̃ T (ΓW
−1 ˙̂
W

T

− β(x; d)eT )). (3.17)

Then, by choosing
˙̂
W as

˙̂
W = ΓW Proj(Ŵ , β(x; d)eT ), (3.18)
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equation (3.17) becomes

V̇ = −2eTKe− 2eT [Proj(x, ẋm) − ẋm]. (3.19)

As noted previously, if the state constraints are not within a certain tolerance of

being exceeded, then Proj(x, ẋm) = ẋm, and as a result, the second term of equation

(3.19) is zero, and V̇ can be upper bounded as

V̇ ≤ −2eTKe ≤ 0 (3.20)

which implies that e is bounded. Because r is bounded by definition above, xm

is bounded. Since e and xm are bounded, x is bounded. Consequently, β(x; d) is

bounded as well. In order to use Barbalat’s lemma to complete the proof, the second

derivative of equation (2.9) along the system trajectories is taken, which gives the

result

V̈ = −4eTKė. (3.21)

Substituting equation (3.13) into equation (3.21) produces

V̈ = −4eTK(−Ke− W̃ Tβ(x; d)). (3.22)

Because e, W̃ , and β(x; d) are bounded as proved above, V̈ is bounded, and therefore

V̇ is uniformly continuous.

Because V is lower bounded, V̇ is negative semi-definite, and V̇ is uniformly

continuous, by Barbalat’s lemma V̇ → 0 as t → ∞, and thus e → 0 as t → ∞ as

desired.

However, if the state constraints are within a certain tolerance of being violated,

48



the second term of equation (3.19) is not equal to zero, and a separate stability

analysis must be done. From Lemma (2), let θ = x, θ∗ = xm, and y = ẋm. Then,

Lemma (2) can be applied to equation (3.19) to prove that with the projection

operator active, V̇ can be upper bounded as

V̇ ≤ −2eTKe− 2eT [Proj(x, ẋm) − ẋm] ≤ 0. (3.23)

which implies that e is bounded. Because r is bounded by definition above, xm and

ẋm are bounded. Assuming that ṙ is bounded as well, then ẍm is bounded. Since e

and xm are bounded, x is bounded. Consequently, β(x; d) is bounded as well. Also,

W̃ is bounded. In order to use Barbalat’s lemma to complete the proof, the second

derivative of equation (3.14) along the system trajectories is taken, which gives the

result

V̈ = −4eTKė− 2(Proj(x, ẋm) − ẋm)T ė− 2eT d

dt
(Proj(x, ẋm)) − 2eT ẍm. (3.24)

Substituting equation (3.13) into equation (3.24) produces

V̈ = −4eTK
(
−Ke− W̃ Tβ(x; d) − [Proj(x, ẋm) − ẋm]

)

− 2(Proj(x, ẋm) − ẋm)T
(
−Ke− W̃ Tβ(x; d) − [Proj(x, ẋm) − ẋm]

)

− 2eT d

dt
(Proj(x, ẋm)) − 2eT ẍm.

(3.25)

Consider the first element from the projection operator vector defined in equation

(3.10). When the projection operator is active, the equation for the first element can

be written as

Proj(x1, ẋm1
) = ẋm1

(1 − h(x1)). (3.26)
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By the definition of the projection operator, 0 < h(x1) ≤ 1 when the projection

operator is active. Therefore, Proj(x1, ẋm1
) is bounded, and by extension, the vector

Proj(x, ẋm) given in equation (3.10) is bounded as well.

The time derivative of the projection operator also must be analyzed. Again,

considering the first element from the projection operator vector defined in equation

(3.10), the time derivative of this element is determined to be

d

dt
(Proj(x1, ẋm1

)) = ẍm1
− ẍm1

h(x1) − ẋm1
ḣ(x1). (3.27)

ẋm1
, ẍm1

, and h(x1) are bounded as proved above. To prove that ḣ(x1) is bounded,

the time derivative of h(x1), where h(x1) is defined by equation (3.2), is calculated

as

ḣ(x1) =
dh

dx1

dx1

dt
=

2 (ǫx1
+ 1)x1

ǫx1
x2

max1

ẋ1. (3.28)

x1 is bounded as shown above, and ǫx1
and x2

max1
are constants. By examining

equations (3.3) and (3.9) in light of the analysis above, ẋ1 is bounded as well, which

means that the term d
dt

(Proj(x1, ẋm1
)) is bounded, and by extension, d

dt
(Proj(x, ẋm))

is bounded as well. Therefore, all of the terms in V̈ in equation (3.25) are bounded,

which proves that V̇ is uniformly continuous.

Following the analysis of the case where the projection operator was not active,

because V is lower bounded, V̇ is negative semi-definite, and V̇ is uniformly con-

tinuous, by Barbalat’s lemma V̇ → 0 as t → ∞, and thus e → 0 as t → ∞ as

desired.
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3.3 Application of Adaptive Control with State Constraints to Hypersonic

Vehicles

This section defines the alterations to the nonlinear adaptive dynamic inversion

control architecture for hypersonic vehicles described in Chapter 2. Because the

focus of this dissertation is on preventing inlet unstarts that occur in hypersonic

vehicles when the flow to the inlet does not pass through the throat of the engine,

state constraints on α and β must be enforced. The control law that is directly

affected by the enforcement of state constraints is the law associated with the α, β,

µ inversion controller. From equation (3.9), the new control law for α, β, µ inversion

that enforces the state constraints on α and β is

u =




p

q

r




=




Sα 0 −Cα

−TβCα 1 −TβSα

sec(β)Cα 0 sec(β)Sα




−1 





Proj(β, β̇m)

Proj(α, α̇m)

µ̇m



− f̂(x) +Ke− ν




(3.29)

where f̂(x), K, and ν have the same meanings as they did in Chapter 2. If the state

constraints are not exceeded, then the control law u in equation (3.29) will have the

same form as in Chapter 2. However, if the state constraints are within a certain

tolerance of being violated, indicating that the vehicle is nearing an inlet unstart

event, then the control law u provides the p, q, and r values necessary to prevent the

state constraints from being exceeded.

3.4 Simulation Results

The control law u given in equation (3.29) was implemented in the GHV Simulink

model. For the first simulation, the limits on α and β were specified to be ±8

degrees and ±4 degrees, respectively, at Mach 6. The angle-of-attack of the vehicle
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was commanded to 7.9 degrees, which is within the state constraints; however, an

additive uncertainty of 0.0007 deg−1 was appended to Cmα
. Figures 3.2, 3.3, 3.4,

and 3.5 depict the results using the nonlinear adaptive dynamic inversion control

architecture without state constraints. When the system approached the commanded

value of α, the response overshot the α value and exceeded the state constraints.

Figures 3.6, 3.7, 3.8, and 3.9 show the results using the same control architecture with

the addition of state constraints. As seen in Figure 3.6, the value of α approached

the maximum state constraint of 8 degrees; however, the revised control law was

able to prevent the system from violating the constraints. These figures demonstrate

that the control law u given in equation (3.29) is able to prevent the system from

exceeding specified state constraints.

For the second simulation, the state constraints on α and β both were specified

to be ±4 degrees. The angle-of-attack α was commanded as a doublet with limits

at ±3.9 degrees, and the sideslip angle β was commanded to be 3.9 degrees. The

additive parametric uncertainties in the system were specified to be ∆Cmα
= 0.0007

deg−1 and ∆Cnβ
= 0.0007 deg−1. Figures 3.10, 3.11, 3.12, and 3.13 contain the results

from using the nonlinear adaptive dynamic inversion control architecture with state

constraints. The figures show that the revised control architecture was able to handle

systems in which α and β state constraints were approached simultaneously. The

control law also was able to limit the overshoot as a result of parametric uncertainties

in the presence of a time delay of 0.02 seconds. However, the system response in the

presence of a time delay and state constraints was more oscillatory than the response

without a time delay.

It should be noted that the state constraint on α was reduced for the second

simulation. While the nonlinear adaptive dynamic inversion architecture with state

constraints was able to ensure that the constraint on α was not violated for the orig-
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Figure 3.2: State responses for the commands α = 7.9 deg, β = 0 deg, and µ = 0
deg with ∆Cmα

= 0.0007 deg−1 without state constraints.
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Figure 3.3: Velocity responses for the commands α = 7.9 deg, β = 0 deg, and µ = 0
deg with ∆Cmα

= 0.0007 deg−1 without state constraints.
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Figure 3.4: Control responses for the commands α = 7.9 deg, β = 0 deg, and µ = 0
deg with ∆Cmα

= 0.0007 deg−1 without state constraints.
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Figure 3.5: Adaptive weight responses for the commands α = 7.9 deg, β = 0 deg,
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Figure 3.6: State responses for the commands α = 7.9 deg, β = 0 deg, and µ = 0
deg with ∆Cmα

= 0.0007 deg−1 with state constraints.
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Figure 3.7: Velocity responses for the commands α = 7.9 deg, β = 0 deg, and µ = 0
deg with ∆Cmα

= 0.0007 deg−1 with state constraints.
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Figure 3.8: Control responses for the commands α = 7.9 deg, β = 0 deg, and µ = 0
deg with ∆Cmα

= 0.0007 deg−1 with state constraints.
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Figure 3.9: Adaptive weight responses for the commands α = 7.9 deg, β = 0 deg,
and µ = 0 deg with ∆Cmα

= 0.0007 deg−1 with state constraints.
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Figure 3.10: State responses for the commands α = ±3.9 deg, β = 3.9 deg, and µ = 0
deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with state constraints.
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Figure 3.11: Velocity responses for the commands α = ±3.9 deg, β = 3.9 deg,
and µ = 0 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with state

constraints.
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Figure 3.12: Control responses for the commands α = ±3.9 deg, β = 3.9 deg,
and µ = 0 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with state

constraints.
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Figure 3.13: Adaptive weight responses for the commands α = ±3.9 deg, β = 3.9
deg, and µ = 0 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with state

constraints.
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inal limits on α of ±8 degrees, the state constraint on β of ±4 degrees was exceeded

beyond the error tolerance envelope. It is hypothesized that the violation of the β

constraint may be linked to the unique control structure of the GHV with its elevons

and ruddervators, which leads to coupling in the longitudinal and lateral-directional

system response. Figures 3.10 and 3.12 illustrate this coupling, where the commands

of the control surfaces to limit α and β induce an aerodynamic bank angle µ, causing

µ to deviate from its commanded value of 0 degrees. This coupling may be causing

β to exceed its state constraint limits since control surface deflections designed to

prevent α from exceeding state constraints also affect the lateral-directional states.

Additionally, control surface saturation may be affecting the ability of the control

law to prevent state constraints from being violated.

The third simulation highlights one of the limitations of this control architecture

for enforcing state constraints. Figures 3.14, 3.15, 3.16, and 3.17 depict the results of

a bank angle doublet of ±50 deg with the ∆Cmα
= 0.0007 deg−1 and ∆Cnβ

= 0.0007

deg−1. Because the variations in α and β during this maneuver were small, the limits

on α and β both were set to ±0.075 deg. In Figure 3.14, α clearly violates the state

constraint of 0.075 deg during the doublet maneuver. When α exceeds its limit, the

time derivative of the reference trajectory, α̇m is equal to 0. As a result, the second

term of the projection operator, as defined in equation (3.1) becomes 0, and the

control law from equation (3.29) does not prevent the states from exceeding their

limits.

3.5 Conclusions

The ability to constrain states such as the angle-of-attack and the sideslip angle

is critical to preventing inlet unstarts in hypersonic vehicles. In this chapter, it was

demonstrated that the control law that was derived in Chapter 2 could be altered with
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Figure 3.14: State responses for the commands α = 0 deg, β = 0 deg, and µ = ±50
deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with state constraints.
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Figure 3.15: Velocity responses for the commands α = 0 deg, β = 0 deg, and µ = ±50
deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with state constraints.
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Figure 3.16: Control responses for the commands α = 0 deg, β = 0 deg, and µ = ±50
deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with state constraints.
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Figure 3.17: Adaptive weight responses for the commands α = 0 deg, β = 0 deg,
and µ = ±50 deg with ∆Cmα

= 0.0007 deg−1 and ∆Cnβ
= 0.0007 deg−1 with state

constraints.
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the addition of a projection operator to adjust the time derivative of the reference

model in order to successfully constrain certain states to specified limits. The non-

linear adaptive dynamic inversion control architecture that enforces state constraints

was able to handle various parametric uncertainties in Cmα
and Cnβ

. However, it

should be noted that restrictions exist on the types of reference trajectories on which

this control architecture will be able to enforce state constraints.
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4. FAULT-TOLERANT NONLINEAR ADAPTIVE DYNAMIC INVERSION

CONTROL

Maintaining control of the aircraft following the failure of a control surface is

a significant concern that should be addressed by the control architecture for the

vehicle. During the third flight of the X-51A Waverider, a fault in one of the control

fins led to the loss of the vehicle [3]. To mitigate the loss of control surfaces on

hypersonic vehicles in this disseration, the nonlinear adaptive dynamic inversion

control architecture introduced in Chapter 1 is modified to include the fault-tolerant

control architecture developed by Tandale and Valasek [32]. This chapter describes

the model for the applied control to an aircraft and the modified nonlinear adaptive

dynamic inversion control architecture with fault tolerance, followed by simulation

results.

4.1 Model for the Applied Control

In order to simulate control faults, a model must be constructed to represent how

the calculated control signal is altered by faults to become the actual control signal

that is applied to the plant. The model for the control that is applied to a given

plant can be expressed as

uapp = Ducalc + E, (4.1)

where uapp ∈ R
m is the applied control, ucalc ∈ R

m is the calculated control signal,

D ∈ R
m×m is a diagonal matrix, and E ∈ R

m. For a system in which all control

surfaces are operating normally, the matrixD in equation (4.1) is equal to the identity

matrix, and the vector E is a vector of zeros. In order to simulate the complete failure

of a control surface, such as a float condition in which the control surface is non-
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responsive, the term on the diagonal in the matrix D that corresponds to the failed

control surface is set equal to zero, which prevents any of the calculated commands for

that control surface from being executed. Further descriptions of simulated control

failures using the model in equation (4.1) can be found in [32].

4.2 General Adaptive Control Equations with Fault Tolerance

Consider a general nonlinear equation of a system in the form

ẋ = f(x) + g(x)Λu (4.2)

where x ∈ R
n is the state, u ∈ R

m is the control, f(x) : R
n 7→ R

n and g(x) : R
n 7→

R
n×m are locally Lipschitz continuous, and Λ ∈ R

m×m is a constant unknown positive

definite matrix. It is assumed that m > n and that g(x) is full rank for all x ∈ R
n.

Also, it is assumed for this derivation that Λ = I, the identity matrix, which is a

reasonable assumption based on the simulation results in Chapter 2. Suppose that

the desired reference dynamics for the system are given by

ẋm = Axm +Br (4.3)

where xm ∈ R
n is the model state, r ∈ R

n is a bounded reference signal, A ∈ R
n×n

is Hurwitz, and B ∈ R
n×n. The equation for the error between the reference model

and the actual system is

e = xm − x. (4.4)

Taking the time derivative of equation (4.4) results in

ė = ẋm − ẋ = ẋm − f(x) − g(x)u. (4.5)
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Substituting the model for the applied control given in equation (4.1) into equation

(4.5) leads to the equation

ė = ẋm − f(x) − g(x)Ducalc − g(x)E. (4.6)

The desired error dynamics have the form

ė = −Ke (4.7)

where K ∈ R
n×n such that K = KT > 0 are the gains on the tracking errors. The

term Ke is added and subtracted from equation (4.6) to produce

ė = ẋm − f(x) − g(x)Ducalc − g(x)E −Ke+Ke. (4.8)

The control ucalc is chosen to be

u = pinv(g(x)D̂)[ẋm − f̂(x) − g(x)Ê +Ke− ν] (4.9)

where

pinv(g(x)D̂) = (g(x)D̂)T
[
g(x)D̂(g(x)D̂)T

]−1

(4.10)

from [32], D̂ is an estimate of the actual D matrix, Ê is an estimate of the actual E

vector, f̂(x) : R
n 7→ R

n is a model of the plant dynamics, and ν ∈ R
n is a pseudo-

control signal. The terms in equations (4.8) and (4.9) that are definitively known

can be represented as

ψ = ẋm +Ke, (4.11)
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which means that those equations can be rewritten in terms of ψ as

ė = −Ke− f(x) − g(x)Ducalc − g(x)E + ψ (4.12)

and

u = pinv(g(x)D̂)[ψ − f̂(x) − g(x)Ê − ν]. (4.13)

Solving equation (4.13) for ψ produces the equation

ψ = f̂(x) + g(x)Ê + ν + g(x)D̂ucalc. (4.14)

Substituting equation (4.14) into equation (4.12) produces the error dynamics

ė = −Ke− f(x) − g(x)Ducalc − g(x)E + f̂(x) + g(x)Ê + ν + g(x)D̂ucalc. (4.15)

Defining the error between the model and the actual system as ∆ = f̂(x) − f(x),

and rearranging terms, equation (4.15) becomes

ė = −Ke+ ∆ + ν − g(x)Ducalc + g(x)D̂ucalc − g(x)E + g(x)Ê. (4.16)

Again, in this dissertation, it is assumed that ∆ can be represented in the form

∆ = W Tβ(x; d), where W ∈ R
p×n is a set of unknown weights, and β ∈ R

p×1 is a

set of known basis functions composed of the states x and a vector d of bounded

continuous exogenous inputs. Using this representation for ∆, ν is chosen to be

ν = −Ŵ Tβ(x; d), where Ŵ ∈ R
p×n. With these definitions, equation (4.16) can be

written as

ė = −Ke− W̃ Tβ(x; d) + g(x)D̃ucalc + g(x)Ẽ (4.17)
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where W̃ = Ŵ −W is the weight estimation error, D̃ = D̂ − D is the estimation

error for the matrix D, and Ẽ = Ê − E is the estimation error for the vector E.

The stability of the closed loop system under these assumptions can be examined

using a candidate Lyapunov function of the form

V = eT e+ tr(W̃ TΓW
−1W̃ + D̃T ΓD

−1D̃) + ẼT ΓE
−1Ẽ (4.18)

where ΓW ∈ R
p×p with ΓW = ΓW

T > 0, ΓD ∈ R
n×n with ΓD = ΓD

T > 0, and

ΓE ∈ R
n×n with ΓE = ΓE

T > 0. In order to determine the adaptation laws for the

parameters in W , D, and E and to determine if the error between the states of the

actual system and the reference model will converge, first, the derivative of equation

(4.18) along the system trajectories is taken, which gives the result

V̇ = 2eT ė+ 2tr(W̃ TΓW
−1 ˙̂
W

T

+ D̃TΓD
−1 ˙̂
D

T

) + 2ẼT ΓE
−1 ˙̂
E

T

. (4.19)

Substituting equation (4.17) into equation (4.19) produces

V̇ = −2eTKe− 2eT W̃ Tβ(x; d) + 2eTg(x)D̃ucalc + 2eTg(x)Ẽ

+ 2tr(W̃ TΓW
−1 ˙̂
W

T

+ D̃T ΓD
−1 ˙̂
D

T

) + 2ẼT ΓE
−1 ˙̂
E

T

.

(4.20)

Applying the trace identity that aT b = tr(baT ), equation (4.20) is determined to be

V̇ = −2eTKe+ 2tr(W̃ T (ΓW
−1 ˙̂
W

T

− β(x; d)eT ))

+ 2tr(D̃T (ΓD
−1 ˙̂
D

T

+ ucalce
Tg(x))) + 2(ẼΓE

−1 ˙̂
E

T

+ eT g(x)Ẽ).

(4.21)
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Then, by choosing
˙̂
W as

˙̂
W = ΓW Proj(Ŵ , β(x; d)eT ), (4.22)

˙̂
D as

˙̂
D = ΓD Proj(D̂,−ucalce

T g(x)), (4.23)

and
˙̂
E as

˙̂
E = ΓE Proj(Ê,−eT g(x)), (4.24)

V̇ can be upper bounded as

V̇ ≤ −2eTKe ≤ 0 (4.25)

which implies that e is bounded. Because r is bounded by definition above, xm is

bounded. Since e and xm are bounded, x is bounded. Consequently, β(x; d) and

g(x) are bounded as well. The term ucalc also is bounded since all of the terms in

equation (4.9) are bounded. In order to use Barbalat’s lemma to complete the proof,

the second derivative of equation (4.18) along the system trajectories is taken, which

gives the result

V̈ = −4eTKė. (4.26)

Substituting equation (4.17) into equation (4.26) produces

V̈ = −4eTK(−Ke− W̃ Tβ(x; d) + g(x)D̃ucalc + g(x)Ẽ). (4.27)

Because e, W̃ , D̃, Ẽ, β(x; d), g(x), and ucalc are bounded as proved above, V̈ is

bounded, and therefore V̇ is uniformly continuous.

Because V is lower bounded, V̇ is negative semi-definite, and V̇ is uniformly
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continuous, by Barbalat’s lemma V̇ → 0 as t → ∞, and thus e → 0 as t → ∞ as

desired.

4.3 Simulation Results

In order to implement the fault-tolerant nonlinear adaptive dynamic inversion

control architecture in the GHV simulation, the control law for the p, q, r inversion

controller defined in Chapter 2 is replaced by the control law given in equation (4.9),

and the adaptive laws for the controller from Chapter 2 are replaced by the adaptive

laws given in equations (4.22), (4.23), and (4.24). The α, β, µ inversion controller

remains unaltered from its form in Chapter 2.

Figures 4.1, 4.2, 4.3, 4.4, and 4.5 depict the simulation results with the fault-

tolerant nonlinear adaptive dynamic inversion control architecture for the commands

α = ±2 deg, β = 0 deg, and µ = 70 deg with the failure of the left elevon at 7

seconds. While the state responses in Figure 4.1 are slightly oscillatory, the control

architecture is able to detect that a fault has occurred at 7 seconds and to compensate

accordingly to maintain tracking of the reference trajectories. However, it should be

noted that this fault-tolerant control architecture could not tolerate any time delay in

the simulation. Also, in a preliminary investigation of combining the fault-tolerant

nonlinear adaptive dynamic inversion control architecture of Chapter 4 with the

method of enforcing state constraints of Chapter 3, the system appeared to ignore

the state constraints, exceeding the set state limits instead of enforcing them. It

may not be possible to enforce state constraints with the current control formulation

when a control surface initially has failed since the p, q, r inversion controller has

to detect the failure before the the controller can begin to compensate for it in the

control surface deflection commands.
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Figure 4.1: State responses for the commands α = ±2 deg, β = 0 deg, and µ = 70
deg with the failure of the left elevon at 7 sec.
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Figure 4.2: Velocity responses for the commands α = ±2 deg, β = 0 deg, and µ = 70
deg with the failure of the left elevon at 7 sec.
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Figure 4.3: Control responses for the commands α = ±2 deg, β = 0 deg, and µ = 70
deg with the failure of the left elevon at 7 sec.
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Figure 4.4: Adaptive weight responses for the commands α = ±2 deg, β = 0 deg,
and µ = 70 deg with the failure of the left elevon at 7 sec.
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Figure 4.5: Adaptive weight responses for the applied control for the commands
α = ±2 deg, β = 0 deg, and µ = 70 deg with the failure of the left elevon at 7 sec.
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4.4 Conclusions

The combination of fault-tolerant control with the nonlinear adaptive dynamic

inversion control architecture of Chapter 2 allowed the GHV to continue tracking a

reference trajectory with few oscillations. However, the new fault-tolerant adaptive

control architecture cannot tolerate time delay or enforce state constraints at the

present. Future work will focus on bringing the ideas of Chapters 3 and 4 of enforcing

state constraints and fault-tolerant control together in one controller.
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5. ANALYSIS OF THE NONLINEAR ADAPTIVE DYNAMIC INVERSION

CONTROL ARCHITECTURE DURING INLET UNSTARTS

Because of the significant decrease in thrust and the potential for the loss of the

aircraft, inlet unstarts are a particular concern for hypersonic vehicles. During the

second flight of the X-51A Waverider, the vehicle experienced an inlet unstart but

was able to continue in controlled flight until the end of the test [3]. The nonlinear

adaptive dynamic inversion control architecture that was developed in Chapter 2 also

must be capable of maintaining the vehicle on a controlled trajectory in the event of

an inlet unstart. This chapter examines the robustness of the control architecture to

inlet unstarts along with control surface failures. A description of the modeling of

an inlet unstart for the GHV and the theory behind the generation of a flight path

angle (γ) reference trajectory are presented first, followed by simulation results.

5.1 Modeling an Inlet Unstart

This dissertation uses a simplified model of an inlet unstart in a hypersonic vehicle

described in [15] because of the fact that the propulsive model for the GHV is a low-

fidelity model. For this simulation, an inlet unstart is triggered at a specified time,

and the loss of thrust and changes to aerodynamic parameters following the unstart

are modeled as instantaneous changes. The coefficient of the axial force (CA) is

increased slightly, and the coefficient of the normal force (CN) is decreased slightly.

Additive variations in Cmα
and Cnβ

are included in the plant through the equations

Cm = Cmbaseline
+ ∆Cmα

α (5.1)

Cn = Cnbaseline
+ ∆Cnβ

β. (5.2)
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A robustness analysis was performed on the GHV following an inlet unstart to de-

termine the maximum destabilizing variations in Cmα
and Cnβ

that the nonlinear

adaptive dynamic inversion control architecture could handle.

5.2 Flight Path Angle Reference Trajectory Generation

While the tracking of α, β, and µ was achieved as demonstrated in Chapter 2,

it was desired that the GHV have the ability to track a realistic trajectory instead

of selected commands. In order to control flight path angle (γ) as opposed to α, a

nonzero setpoint (NZSP) controller ([33], [34]) was designed to generate trajectories

for the GHV to follow. The NZSP controller requires a linear model, so the nonlinear

GHV plant model was linearized about a flight condition specified by the Mach num-

ber and altitude. Assuming that the vehicle remains wings-level during its flight of

the trajectory, only the longitudinal dynamics model will be required for the trajec-

tory generation. For the NZSP controller, the longitudinal states are

[
u θ q α

]T

,

and the controls are

[
δT δe

]T

where δT represents the equivalence ratio control,

and δe represents the elevator control, expressed in terms of the GHV controls as

δe = (δf,r + δf,l) /2. The outputs ym to be commanded by the NZSP controller are

velocity u and flight path angle γ, which can be expressed in matrix-vector form as

ym =



u

γ


 =




1 0 0 0

0 −1 0 1







u

θ

q

α




+




0 0

0 0






δT

δe


 . (5.3)

By fitting a polynomial to the trajectory generated for γ, and finding the derivative

of that polynomial, the reference model for γ is completely defined for the GHV

simulation. In order to implement the γ, β, µ inversion controller, the dynamic
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equation for γ̇ must be derived and written in the form of equation (2.1) as

γ̇ = f(s) + g(s)




p

q

r




(5.4)

where s represents the states in the GHV simulation. The equation for γ̇ is derived

using the same process that was applied to find µ̇ in Section 2.4. Starting from

equation (2.79), and taking its inverse, the equation for γ̇ is determined to be

γ̇ = D(p− β̇Sα) + E(q − α̇) + F (r + β̇Cα) (5.5)

where

D = CαSβCµ − SαSµ (5.6)

E = CβCµ (5.7)

F =
Cα

2SβCµ
2 − CαSα

(
Sβ

2 + 1
)
CµSµ +

(
Sα

2Sµ
2 − 1

)
Sβ

CαSβSµ + SαCµ
. (5.8)

Consider the equations for β̇ and α̇ in equations (2.77) and (2.78), respectively to

have the following form

β̇ = fβ + (pSα − rCα) (5.9)

α̇ = fα + (−pCαTβ + q − rSαTβ) (5.10)

where fβ and fα represent the terms in β̇ and α̇, respectively, that do not depend

explicitly on the angular rates p, q, and r. Substituting equations (5.9) and (5.10)

into equation (5.5) and simplifying the expression gives the resulting equation for γ̇
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that

γ̇ = −DfβSα − Efα + FfβCα

+ p
(
D −DSα

2 + ECαTβ + FCαSα

)

+ q (0)

+ r
(
DCαSα + ESαTβ + F − FCα

2
)
.

(5.11)

Note that there is no dependence on q in the equation for γ̇. Consequently, when

the dynamic equations for β, γ, and µ are expressed in the form




β̇

γ̇

µ̇




= f(s) + g(s)




p

q

r




(5.12)

where s represents the states of the GHV, the resulting expression for g(s) is

g(s) =




Sα 0 −Cα

(
D −DSα

2 + ECαTβ + FCαSα

)
0

(
DCαSα + ESαTβ + F − FCα

2
)

sec(β)Cα 0 sec(β)Sα



.

(5.13)

As can be seen in equation (5.13), g(s) is not invertible, which causes a problem with

the computation of p, q, and r in the new γ, β, µ inversion block. If g(s) cannot be

inverted, then the commands for p, q, and r cannot be determined for the inversion

controller. Therefore, substituting the equation for γ̇ for the equation for α̇ in the

α, β, µ inversion controller in order to track a trajectory for γ is not possible for

the GHV simulation, and another method of including the γ trajectory in the GHV

simulation had to be determined.

In order to allow the GHV simulation to track a flight path angle trajectory,

a method from Reference [35] was applied in which the equation for ḧ, where h
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represents the altitude of the aircraft, is written in the form

ḧ = fh(s) + gh(s)




p

q

r



. (5.14)

Given the equation for ḣ

ḣ = V (CβCαSθ − SβSφCθ − CβSαCφCθ) , (5.15)

where V is the total velocity of the vehicle, the equation for ḧ is determined to be

ḧ =

[
b0V̇ + b1β̇ + b2α̇

]
+

[
a0 a1 a2

]



p

q

r




(5.16)

where

a0 = b4

a1 = b3Cφ + b4SφTθ

a2 = b4CφTθ − b3Sφ

and

b0 = CβCαSθ − SβSφCθ − CβSαCφCθ

b1 = V (−SβCαSθ − CβSφCθ + SβSαCφCθ)

b2 = V (−CβSαSθ − CβCαCφCθ)

b3 = V (CβCαCθ + SβSφSθ + CβSαCφSθ)

b4 = V (−SβCφCθ + CβSαSφCθ) .

Because ḧ has a nonzero coefficient for q, which means that the term g(s) in equation
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(5.12) is invertible, the equation for ḧ can replace the equation for α̇ in equation

(2.82) for the α, β, µ inversion controller. The original reference trajectory that is

generated for γ using the NZSP controller can be converted to ḣ using the relation

from aircraft kinematics that ḣ = V Sγ. Once a polynomial is fitted to the new

trajectory for ḣ, and the derivative of that polynomial is determined, the reference

model is defined for ḣ. The ḣ, β, µ inversion controller replaces the original α, β, µ

inversion controller in the GHV simulation, and now desired trajectories for γ can

be tracked.

5.3 Simulation Results

Using a trajectory for γ generated at the flight condition of Mach 6 at 80,000 ft,

Figures 5.1, 5.2, 5.3, 5.4, and 5.5 show the results for the GHV simulation during

flight path angle tracking with an inlet unstart that occurs at time t = 10 sec and

a time delay of 0.03 seconds. Through the robustness analysis, it was determined

that the maximum additive variations in Cmα
and Cnβ

that the control architecture

could tolerate were ∆Cmα
= 0.001 deg−1 and ∆Cnβ

= −0.001 deg−1. It should be

noted in Figure 5.4 that while the equivalence ratio is commanded to its maximum

value following the inlet unstart, thrust is not being generated by the vehicle after

time t = 10 sec. While tracking performance is somewhat degraded, the aircraft is

still able to nominally track the specified flight path angle trajectory.

In order to investigate the ability of the nonlinear adaptive dynamic inversion

control architecture to handle inlet unstarts under various flight conditions, a control

failure was introduced into the simulation, and the response of the fault-tolerant

adaptive control architecture from Chapter 4 was examined. Figures 5.6, 5.7, 5.8,

5.9, 5.10, and 5.11 depict the results for the GHV simulation during flight path angle

tracking with an inlet unstart that occurs at 10 seconds and a failure of the left elevon
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Figure 5.1: Flight path angle response compared with the generated flight path angle
trajectory during an inlet unstart at 10 sec. The subscript p represents the flight
path angle computed from the polynomial fit of ḣ.

at 7 seconds. Another robustness analysis of the maximum additive variations in Cmα

and Cnβ
showed that with the addition of a control failure, the control architecture

could tolerate only ∆Cmα
= 0.0001 deg−1 and ∆Cnβ

= −0.0001 deg−1, which are an

order of magnitude smaller than in the previous case. Despite a further degradation

in tracking performance and the deviation of µ from its commanded angle of 0 deg

for a period of time following the control failure, the hypersonic vehicle retains its

ability to track the specified flight path angle trajectory.
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Figure 5.2: State responses for the generated flight path angle trajectory during an
inlet unstart at 10 sec.
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Figure 5.3: Velocity responses for the generated flight path angle trajectory during
an inlet unstart at 10 sec.
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Figure 5.4: Control responses for the generated flight path angle trajectory during
an inlet unstart at 10 sec.
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Figure 5.5: Adaptive weight responses for the generated flight path angle trajectory
during an inlet unstart at 10 sec.
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Figure 5.6: Flight path angle response compared with the generated flight path angle
trajectory during an inlet unstart at 10 sec with the failure of the left elevon at 7
sec.
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Figure 5.7: State responses for the generated flight path angle trajectory during an
inlet unstart at 10 sec with the failure of the left elevon at 7 sec.
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Figure 5.8: Velocity responses for the generated flight path angle trajectory during
an inlet unstart at 10 sec with the failure of the left elevon at 7 sec.
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Figure 5.9: Control responses for the generated flight path angle trajectory during
an inlet unstart at 10 sec with the failure of the left elevon at 7 sec.
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Figure 5.10: Adaptive weight responses for the generated flight path angle trajectory
during an inlet unstart at 10 sec with the failure of the left elevon at 7 sec.
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Figure 5.11: Adaptive weight responses for the applied control for the generated
flight path angle trajectory during an inlet unstart at 10 sec with the failure of the
left elevon at 7 sec.
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5.4 Conclusions

Through this analysis of the reaction of the nonlinear adaptive dynamic inversion

control architecture to inlet unstarts, it was determined that the controller is able

to maintain flight path angle tracking after an unstart has occurred, as well as

after the failure of a control surface. A robustness analysis determined that the

maximum additive variations in Cmα
and Cnβ

for the case without control failures

that the control architecture could tolerate were ∆Cmα
= 0.001 deg−1 and ∆Cnβ

=

−0.001 deg−1. The ability of the nonlinear adaptive control architecture to maintain

reference trajectory tracking following an inlet unstart is a valuable characteristic

that will be beneficial for the control of hypersonic vehicles.
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6. CONCLUSIONS AND RECOMMENDATIONS

The GHV is an unstable vehicle with a maximum unstable longitudinal pole at

1.96 and a maximum unstable lateral/directional pole at 5.96, and consequently,

a nonlinear adaptive dynamic inversion control architecture was chosen to stabilize

and control the aircraft. Based on the simulation results and the robustness analysis,

it can be seen that the objective of designing a control architecture that is robust

in order to achieve desired tracking performance was achieved for the GHV. The

controllers are robust to decreases in control surface effectiveness, changes in sys-

tem parameters, and time delays of 0.04 seconds or less. The responses for tracking

generated flight path angle trajectories are well behaved, and the necessary control

effort for tracking is not excessive. Additionally, the controllers are able to toler-

ate an inlet unstart and maintain nominal tracking of a specified flight path angle

trajectory. Therefore, it can be concluded that this approach of nonlinear adaptive

dynamic inversion control works well as a candidate control architecture for hyper-

sonic vehicles.

In order to prevent an inlet unstart that occurs as a result of an altered flow to the

engine that does not pass through its throat, the initial nonlinear adaptive dynamic

inversion control architecture was modified to include the ability to enforce state

constraints on angle-of-attack and sideslip angle. The results of the simulations with

the modified control architecture demonstrated that the new control laws were able

to constrain the desired states of the GHV in the presence of parametric uncertainties

and a time delay of 0.02 seconds or less. However, cases were encountered in which

the control architecture was not able to limit all of the states simultaneously. In one

simulation, the control architecture was able only to enforce the constraint on angle-
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of-attack and not the constraint on sideslip angle. It is hypothesized that because of

the control surface structure of the GHV with its ruddervators and elevons, which

leads to coupling in the longitudinal and lateral-directional system response, control

surface deflection commands that are intended to limit one state inadvertently may

cause another state to violate its constraints. Also, limitations on the reference

trajectories on which the control architecture was able to enforce constraints were

discovered. If a constrained state was commanded to 0, a maneuver involving other

states could cause the first state to exceed its limits because the time derivative of the

reference trajectory for the first state would be 0, and consequently, the projection

operator would not be activated in the control architecture in order to constrain the

first state.

Fault-tolerant control was added to the nonlinear adaptive dynamic inversion

control architecture in order to protect the vehicle in the event of a control failure.

The newly revised control architecture again was proven to be stable in the closed

loop system. The results of the simulations indicated that the control architecture

was able to detect when a control surface had failed and to adjust the controls

accordingly so that control of the vehicle and reference tracking could be maintained.

However, the fault-tolerant adaptive controller was discovered not to have the ability

to withstand time delays or simultaneously enforce state constraints. The fault-

tolerant control architecture first must detect the failure and then adjust the control

surface deflections in order to compensate for the failure of one of the surfaces. It

is hypothesized that state constraints that are encountered while the failure is being

detected may be exceeded since the control architecture may not be able to command

the appropriate control surface deflections in the presence of a failure to prevent the

violation of the state constraints.

The nonlinear adaptive dynamic inversion control architecture was tested to de-
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termine if the controller could maintain tracking performance following an inlet un-

start. For these simulations, the α, β, µ inversion controller was changed to a ḣ, β, µ

inversion controller so that the control architecture would be able to track more re-

alistic flight path angle trajectories. The simulations demonstrated that while there

was a slight degradation in tracking performance, the nonlinear adaptive dynamic

inversion control architecture was able to maintain reference trajectory tracking fol-

lowing an inlet unstart, as well as a control surface failure. The loss of tracking

performance following an inlet unstart occurred because of the change in aerody-

namic parameters, including the coefficient of the axial force, the coefficient of the

normal force, the static longitudinal stability derivative, and the static directional

stability derivative, which accompanies an inlet unstart. Through a robustness anal-

ysis on the GHV, it was determined that the maximum additive variations in the

static longitudinal and directional stability derivatives for the case without control

failures that the control architecture could tolerate were ∆Cmα
= 0.001 deg−1 and

∆Cnβ
= −0.001 deg−1.

In summary, this dissertation has shown that the nonlinear adaptive dynamic

inversion control architecture is a useful method for the control of hypersonic vehicles.

The control architecture can be modified to enforce state constraints and to tolerate

control surface failures, and it can maintain tracking performance following an inlet

unstart.

6.1 Recommendations

The investigation of the enforcement of state constraints in the nonlinear adaptive

dynamic inversion control architecture in Chapter 3 was performed using separate

constraints for the angle-of-attack and sideslip angle. However, depending on how the

inlet unstart is modeled for a hypersonic vehicle, a combined constraint that involves
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both angle-of-attack and sideslip angle may be more appropriate to use. Also, in

Chapter 3, limitations on the effective use of control laws with projection operators

to enforce state constraints for hypersonic vehicles was discussed. One direction for

future research in the area of enforcing state constraints in adaptive controllers is the

use of the projection operator in the control laws. Further insight into the properties

of the projection operator must be gained to understand the complete limitations of

the control laws that involve projection operators and before it can be determined if

the projection operator can handle a combined constraint on both the angle-of-attack

and sideslip angle.

A second direction for future research in the area of enforcing state constraints in

adaptive controllers is the merging of controllers that can enforce state constraints

with fault-tolerant controllers. The combination of these two types of controllers

would be helpful in the prevention of the loss of hypersonic vehicles because of inlet

unstarts or the failure of control surfaces.

The effects of an inlet unstart on the tracking performance of the nonlinear adap-

tive dynamic inversion control architecture were examined in Chapter 5. While the

control architecture was determined to be capable of maintaining tracking perfor-

mance following an inlet unstart, it would be beneficial from an aerodynamic stand-

point to be able to recover from an inlet unstart. One direction for future research

in the area of inlet unstart and the control of hypersonic vehicles is the development

of control logic associated with the inlet unstart envelope for a hypersonic vehicle

to determine the appropriate course of action to ensure its preservation. Under cer-

tain conditions, such as if the Mach number of the flow into the inlet is too slow,

the engine cannot be restarted after an inlet unstart has occurred, and a hypersonic

vehicle must fly at sub-hypersonic speeds. Under other conditions, a hypersonic ve-

hicle will be able to perform a maneuver that will restart the engine. The control
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logic developed through this future research should specify the high level actions

to be taken for various Mach numbers, altitudes, and orientations, as well as the

manuevers corresponding to these high level actions.

Finally, the simulations in this dissertation were run using a rigid body model

of a hypersonic vehicle. One direction for future research in the area of the control

of hypersonic vehicles is the development and testing of controllers using an elastic

model of a hypersonic vehicle. With a higher-fidelity model that includes aeroelastic

effects, situations in which control architectures constructed based on rigid body

models might fail can be simulated and analyzed, and controllers that can handle

these aeroelastic issues can be developed.
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APPENDIX A

TWO TIME-SCALES AND INTEGRATION METHODS

The development of the nonlinear adaptive dynamic inversion control architecture

of Chapter 2 is possible because of the fact that the aircraft states can be divided

into two timescale categories. Those categories are the fast states, which consist of

the angular rates p, q, and r as noted in [22], [35], and [36], and the slow states, which

consist of the angles α, β, and µ. In working with systems involving two timescales,

the issue of solving stiff differential equations often arises [37]. The presence of stiff

equations of motion indicates that the integration method and step size be taken

into consideration so that the solution presented is accurate.

Various integration solvers are used by Matlab and Simulink for ordinary differen-

tial equations, which are the type of equations in the GHV simulation. A description

of these solvers can be found in [38] and [39]. All of the results in this dissertation

were determined using the variable step-size ode45 solver in Matlab as the integra-

tion method. In order to verify in Chapter 2 that the simulation results computed

with the ode45 solver were representative of the actual solution because of the pres-

ence of two timescales, the same simulation was run using the ode23s solver, which

is designed to solve stiff equations, with a time step between 0.009 and 0.01 sec. At

this time step size, the rigid body modes should be captured. The simulation run

using the ode23s solver produced results that were identical to the results from the

simulation that used the ode45 solver, which indicated that the simulation results

in Chapter 2 accurately represent the actual solution of the equations of motion.

To verify that the results shown in Figures 3.10, 3.11, 3.12, and 3.13 in Chapter 3

were accurate, the simulation was run using the ode4 solver, which is a fixed time
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step solver, using time steps of 0.001 and 0.0001 sec. Again, the results from the

simulation using the ode4 solver were identical to the results shown in Figures 3.10,

3.11, 3.12, and 3.13. From these two analyses, it therefore can be concluded that

the results presented in this dissertation accurately depict the actual solutions to the

equations of motion for the GHV.

113




