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ABSTRACT 

 

Determination of moisture, fat, protein, and other components of meat is 

important for the evaluation of the quality of raw materials and finished products, the 

assessment of process control, and for ensuring regulatory compliance of meat products.  

Standard methods of analysis may be time- or labor-intensive, expensive, potentially 

harmful to the user or environment, or may require advanced training for operation of 

analytical equipment, but technology has allowed the introduction of more rapid 

methods that require less time, labor, skill, and cost.  Microwave drying and nuclear 

magnetic resonance technologies for the determination of moisture and fat in meat 

products, respectively, have been incorporated into the CEM Smart Trac 5 System®, an 

instrument designed for the rapid analysis of moisture and fat in various food products.    

The CEM Smart Trac 5 System®, approved as an AOAC Peer Verified Method, 

was used in a collaborative study for the rapid determination of moisture and fat in a 

variety of raw and processed meat products of beef, pork, chicken, and turkey origin.  

The objective of the study was to determine if the CEM Smart Trac 5 System® could 

analyze moisture and fat in meat products with the same accuracy and precision as 

standard methods of analysis as specified by the Association of Official Analytical 

Chemists (AOAC). Meat products were obtained from various commercial sources, 

homogenized, and distributed to 10 collaborative laboratories.  Each collaborative 

laboratory evaluated the fat and moisture content of each meat product samples provided 

using the CEM Smart Trac 5 System®.  Two standard methods of analysis, Forced Air 
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Drying Method (AOAC Official Method 950.46) and Soxhlet Extraction of Crude Fat 

(AOAC Official Method 960.39), were performed on each sample for comparison to the 

Smart Trac 5 System®.  Ten replicates were analyzed by the reference methods to 

achieve an analytical variance of no more than + 2%.   Data collected from the reference 

methods for moisture (AOAC 950.46) and fat (AOAC 960.39) were used for the 

calibration of each of the CEM Smart Trac 5 Systems® and for comparison to the results 

produced by the Smart Trac 5 System® in each of the collaborative laboratories.   

The results indicated that the CEM Smart Trac 5 System® compares favorably 

with the AOAC methods for moisture and fat determination.  The CEM Smart Trac 5 

System® would be suitable for the rapid determination of moisture and fat in a variety of 

commercially produced raw and processed meat and poultry products.   Statistical 

analysis confirmed the within-laboratory repeatability qualities of AOAC methods and 

provided a baseline for comparing the between-laboratory reproducibility potential of 

the CEM Smart Trac 5 System®.     

For all samples evaluated, the within-laboratory (repeatability) results and 

between-laboratory (reproducibility) results for moisture were acceptable.  With the 

exception of low-fat ham, diluted low-fat ham, low-fat pork, diluted low-fat pork, 

diluted low-fat chicken, low-fat turkey, and diluted low-fat turkey, the within-laboratory 

(repeatability) results and between-laboratory (reproducibility) results for fat were 

acceptable.  This study revealed that meat samples that have a very low concentration of 

fat (i.e. <3% fat) yielded relative standard deviation values (> 2%) that were not 

acceptable by AOAC standards. 
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CHAPTER I 

INTRODUCTION 

 

 
Analyses for the determination of moisture, fat, protein, salt, and other analytes 

in meat and poultry products are important for evaluating raw material quality, ensuring 

process control and finished product composition, and meeting regulatory compliance in 

meat plant operations.  Such analyses are also valuable for scientists in governmental 

agencies and academia conducting food related research.   

Regulatory requirements are in place to protect the health and safety of 

consumers by ensuring that the food produced is safe for human consumption, complies 

with government regulations, and conforms to information provided on the label.   

Ensuring compliance with regulatory requirements and meeting customer specifications 

are two of the most important purposes for analyzing meat and poultry products.  

In addition, analysis of raw materials and final products can assist the producer in 

more effectively manufacturing a product that fulfills product specifications and that is 

consistent in taste, quality, and appearance batch after batch.  Analyses also assist the 

producer in controlling costs through use of appropriate ingredients, meeting the 

expectations of customers, minimizing waste, and avoiding unnecessary expense.   

Standard methods of analysis are universally accepted and provide a known 

degree of accuracy and precision.  However, some standard methods of analysis of meat 

and poultry products can be time- or energy-intensive, require highly trained personnel, 

involve the use of harmful or toxic chemicals, or generate wastes that have expensive 
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disposal fees.  Other methods of analysis may not provide the same degree of accuracy, 

but may have greater ease of use or require less time or less training of employees.  

Laboratories in plant operations and other entities may select a method of analysis for 

use in their facility based upon the following criteria:  the types of products 

manufactured, specific component(s) in the product, product specifications, budget, 

training of personnel, laboratory capacity, number of samples to be analyzed, time 

requirements, degree of accuracy, reliability of the equipment or method, or other 

important factors.  

Rapid analytical methods with the potential to produce results with the same 

precision and accuracy as standard methods would be of great benefit to researchers, 

plant operations, governmental agencies, academia, and other entities.  Of particular 

interest for this study was comparison of rapid analytical methods for the determination 

of moisture and fat in raw and processed meat and poultry products to standard methods 

of analysis.  The intent was to verify the accuracy and precision of the CEM Smart Trac 

5 System® by comparing same sample analytical results to those of accepted standard 

methods, such as the Association of Official Analytical Chemists (AOAC) Official 

Methods.  To accomplish this, an Association of Official Analytical Chemists (AOAC) 

collaborative study involving 10 laboratories was conducted to analyze various raw and 

processed meat products commonly produced and distributed by the meat industry.  

We hypothesized that the combined use of microwave drying technology and 

nuclear magnetic resonance (NMR) technology incorporated into the CEM Smart Trac 5 

System® would be effective in rapidly determining the moisture and fat content of meat 
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products, respectively, with comparable accuracy and precision to the standard methods 

of analysis (AOAC Official Methods 950.46 for moisture and 960.39 for fat).   

Previously, CEM Corporation (Matthews, NC) obtained AOAC Peer-Verified Method 

(PVM) approval for the CEM Smart Trac 5 System® that was used in this study, 

indicating the instrument’s potential for use as an acceptable method for rapid analysis 

of moisture and fat in meat and poultry products. 

The objective of this study was to compare the moisture and fat content of a 

variety of raw and processed meat products using standard and rapid methods of analysis 

as part of a 10 laboratory collaborative study for the fulfillment of AOAC requirements 

to become an official method of analysis.  This study evaluated the accuracy and 

precision of the CEM Smart Trac 5 System® for rapid determination of moisture and fat 

in meat products in comparison to the standard methods of analysis (AOAC official 

methods 950.46 and 960.39, respectively).  Knowledge from this study may provide 

food processors, governmental and regulatory laboratories, and researchers in academia 

a tool that will improve testing efficiency, save time, and reduce the cost of labor 

without compromising the accuracy or precision of the results.   
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CHAPTER II 

 

LITERATURE REVIEW 

 

 

Analytical methods for proximate (fat, water, protein, ash) composition are 

essential in the meat industry for good product control.  Consistency in the formulation 

and blending stages of meat for further processed products is of great importance for 

controlling costs, maintaining process control, and ensuring compliance with 

governmental regulations (Sebranek 1998).  Meat and further processed meat products 

can go from raw material to finished product within a few hours depending on plant 

operation capabilities, thus it is vital to have rapid analytical methods that provide quick 

and efficient results throughout the production process.    

In the evaluation of meat and meat products, standard methods of analysis have 

been universally accepted and used in research, analytical laboratories, and the food 

industry, but the standard methods for moisture and fat analysis can be time-consuming, 

costly, inconvenient, and require trained personnel, specialized laboratory equipment, 

and harmful chemicals.  Such methods are not efficient or practical in fast-paced plant 

operations, so rapid methods of analysis with similar precision and repeatability are 

essential.  

The use of rapid methods for proximate composition would have obvious 

advantages, including time and labor savings, collection of a greater number of sample 

measurements, better control over multi-step processes, more precise formulations, and 

more frequent checks on processes (Sebranek 1998).  Two important factors that should 

be considered in obtaining usable analytical information, regardless of the analytical 
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method to be used, are sample preparation and method performance.   Samples should be 

collected and prepared in a manner to provide a homogenous, uniform, and 

representative portion of the larger lot.  This becomes increasingly important as sample 

size becomes limited to 1 g or 2 g for some methods of analysis.  The second factor, 

method performance, should be evaluated objectively before selecting a method of 

analysis and then continuously monitored for performance (Sebranek 1998). 

 

Determination of Moisture Content 

Lean muscle tissue of beef, pork, lamb, and chicken is comprised of 

approximately 68-74% moisture, 19-23% protein, 4-11% lipid, and 1.0-1.6% ash 

(Foegeding and others 1996).   Water is the most abundant chemical component of meat, 

and the predominant component of lean muscle, but not fatty tissue.  The total moisture 

content of a meat cut varies inversely with the amount of fat in the tissue, so the leaner 

the meat cut, the higher the moisture content (Romans and others 2001). 

Water is a common ingredient added to further processed meat products to help 

facilitate chopping and mixing, to control meat batter temperature (when added as ice), 

to hydrate binders and extenders within a product formulation, to achieve a specific 

texture, to improve product juiciness, and to assist salt in solubilizing meat proteins for 

batter stability (Romans and others 2001).   

Multiple factors can affect the moisture content of a meat product.  These factors 

include fat percentage (inverse relationship), addition of water and non-meat ingredients, 

and degree and type of processing and cooking.  The moisture content of a meat or food 
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product is important because of the properties of water, its interaction with other 

components in the product, and its contribution to the chemical, biological, and physical 

properties of foods (Cornejo and Chinachoti 2003). 

Several analytical methods, including drying methods and spectroscopic 

methods, have been developed and used in the food industry to determine the moisture 

content of meat and meat products.  Drying methods offer accurate moisture values, are 

relatively easy and inexpensive to perform, permit the simultaneous analyses of large 

numbers of samples, and do not require calibration of equipment.  Although drying 

methods offer many advantages, the greatest disadvantage to drying is the length of time 

required to perform the analysis in comparison to spectroscopic methods.  The drying 

process is often lengthy (generally several hours), since the degree of heating for 

moisture determination is generally performed at 95-105°C to prevent decomposition of 

lipids, proteins, or other components within the sample that could release compounds 

and falsify moisture results (Honikel 2009).    

In comparison to drying, spectroscopic methods from moisture determination are 

more rapid and often enable the simultaneous measurement of other analytes (such as fat 

or protein) within the same sample.  However, spectroscopic methods often involve 

more expensive and specialized equipment and are dependant on careful and proper 

calibration of each instrument with samples similar to the unknowns to be measured. 

Additionally, if the sample material being analyzed falls outside of the range of the 

samples used to calibrate the equipment, then re-calibration of the equipment based on 

new parameters may be necessary (Honikel 2009).   
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The following paragraphs will discuss specific methods for determining moisture 

content in meat and meat products, including drying (Forced Air Drying, Rapid 

Microwave Drying, and Drying Under Vacuum) and spectroscopic methods (Near 

Infrared Transmittance and Guided Microwave Spectrometry).      

 

Forced Air Drying (AOAC Method 950.46(B)) 

 The AOAC standard reference method 950.46(B), Forced Air Drying Method, is 

a gravimetric method that uses an air oven (mechanical convection is preferred) to dry a 

meat sample for the determination of moisture content.  In this method, a small amount 

(ca 5-6 g) of homogenized meat sample is evenly distributed in a small aluminum dish 

(> 50 mm diameter and < 40 mm deep), then dried in an air oven (16-18 hr at 100-102°C 

with lids removed) to produce ca 2 g of dried material. When drying is complete, the 

dishes are covered (with their corresponding lid), cooled to a constant weight in a 

desiccator, and weighed (AOAC 2006a).  The weight loss is reported as the moisture 

content (as a percentage of total sample weight) and is calculated by subtracting the 

weight of the wet meat sample (includes weight of dish and lid) and the weight of the 

dried meat sample (includes weight of dish and lid), dividing the difference by the 

weight of the wet meat sample (includes weight of dish and lid), and then multiplying 

the quotient by 100.  

Moisture   =    Wet Meat Wt. – Dried Meat Wt.    x  100 

                                                                  Wet Meat Wt. 

 

 The two greatest advantages to using this method include its low cost and the 

accurate and precise results that it provides for a wide variety of products.  In addition, 
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multiple 5-6 g homogenized meat samples can be dried simultaneously in an oven.  The 

greatest disadvantage to using this method is the amount of time (16-18 hr) required to 

dry the samples, which is inconvenient for fast-paced operations and may hinder real-

time production and product quality decisions.  In addition, the dried sample obtained 

from this method cannot be used in subsequent fat determination.   The temperature and 

time at which a sample is dried are very important when considering drying methods for 

the determination of moisture in a sample.  High temperatures and long drying times 

could result in oxidation of fat in the sample, which could lead to erroneous moisture 

results.  

 If a mechanical convection oven or gravity oven with single shelf, set at 125°C, 

is available for use, then the drying time may be reduced from 16-18 hr to 2-4 hr 

(depending on the product), as indicated in AOAC 950.46(B)(b).  Procedures for sample 

preparation, desiccation, and moisture calculation are the same as described above and 

the resultant dried sample cannot be used for subsequent fat determination (AOAC 

2006a).   

  

 Rapid Microwave Drying Method (AOAC 985.14) 

 The AOAC standard reference method 985.14, Rapid Microwave Drying 

Method, is a gravimetric method that uses microwave energy to rapidly dry a 

homogenized meat sample.  The CEM Smart Trac 5 System®, which was the instrument 

used in this collaborative study for the fulfillment of AOAC requirements to become an 

official method, uses focused microwave drying technology for moisture determination.  
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The instrument is comprised of a computerized microwave moisture analyzer, an 

automatic tare electronic balance, a microwave drying system, and a microprocessor 

digital computer control (AOAC 2006c). 

 To perform the analysis, two glass fiber pads (9.8 x 10.2 cm, CEM Corp. or 

equivalent) are tared on the instrument’s internal electronic balance.  A homogenized 

meat sample (ca 4 g) is spread evenly across one glass fiber pad using a Teflon coated 

spatula.  The second glass fiber pad is then placed over the sample (to produce a 

‘sandwiched’ appearance).  The prepared sample ‘sandwich’ is transferred to the 

instrument’s drying chamber and dried per manufacturer’s instructions.  The microwave 

moisture analyzer automatically calculates moisture content based on weight loss during 

drying (determined by the electronic balance readings before and after drying) and 

displays the result on the equipment’s digital readout panel (AOAC 2006c). 

 The four greatest advantages to using this method include the rapid determination 

of moisture content (3-5 min), the ease of use of the instrument (does not require highly 

trained or skilled personnel), comparable degree of precision and accuracy to traditional 

drying methods, and the resultant dried sample can be used for subsequent fat analysis in 

the instrument’s NMR chamber.  The greatest potential disadvantage to using this 

method is that it is limited to analyzing one sample at a time, so the equipment may not 

have the capacity to perform moisture and fat analysis in settings that require numerous 

product sample analysis (i.e. > 100 samples per day).  A second potential disadvantage 

to using the CEM Smart Trac 5 System® is the initial cost required to purchase the 
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instrumentation.  In addition, consumable materials, such as the glass fiber pads, would 

also need to be replaced.       

 

Drying Under Vacuum at 95-100°C  (AOAC 950.46(A)) 

 The AOAC standard reference method 950.46(A), Drying Under Vacuum 

Method, is a gravimetric method that uses a vacuum oven to dry a homogenized meat 

sample for the determination of moisture content.  In this method, ca 5-6 g homogenized 

meat sample is evenly distributed in a small aluminum dish (> 50 mm diameter and < 40 

mm deep), then dried under pressure (<100 mm Hg at 95-100°C with lids removed, ca 5 

hr) to produce ca 2 g of dried material.  When drying is complete, the dishes are covered 

(with their corresponding lid), cooled in a desiccator to a constant weight, and weighed.  

The loss of weight is reported as moisture content (as a percentage of total sample 

weight) and is calculated by subtracting the weight of the wet meat sample (includes 

weight of dish and lid) and the weight of the dried meat sample (includes weight of dish 

and lid), dividing the difference by the weight of the wet meat sample (includes weight 

of dish and lid), and then multiplying the quotient by 100.  

Moisture   =    Wet Meat Wt. – Dried Meat Wt.    x  100 

                                                                  Wet Meat Wt. 

 

 The greatest advantage to using this method is the shorter drying time required in 

comparison to the forced air drying method.  By drying under reduced pressure, more 

complete removal of water and volatiles can be obtained without decomposition 

(Bradley 2003).  The three greatest disadvantages to using this method are that it is not 

suitable for high fat products (i.e. pork sausage), the dried sample obtained cannot be 
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used for subsequent fat determination (AOAC 2006a), and the number of samples that 

can be analyzed at a time or throughout the day may be limited due to the size and 

capacity of the vacuum chamber.   

 

 

Near Infrared Transmittance (FOSS FoodScan™, AOAC 2007.04) 

Near Infrared (NIR) Transmittance technology offers a newer and more 

sophisticated spectroscopic method for the analysis of moisture content in meat samples.  

NIR measurements are based on the principle that almost all organic functional groups 

(i.e. ketones, alcohols, etc.) have a specific absorption band in the near infrared region 

and that the infrared absorption spectra is unique for many different components in meat 

(Sabrenek 1998).   

One example of instrumentation utilizing NIR Transmittance technology is the 

FOSS FoodScan™ Meat Analyzer (Eden Prairie, MN).  This instrument is an NIR 

Spectrophotometer with artificial neural network (ANN).  The FOSS FoodScan™ Meat 

Analyzer recently received AOAC approval as an official method for the determination 

of moisture, fat, and protein content in meat and meat products (AOAC Method 

2007.04). Parameters for meat products evaluated included fresh meat, beef, pork, 

poultry, emulsions, and finished products in the constituent ranges of 1-43% fat, 27-74% 

moisture, and 14-25% protein (Anderson 2007). 

To perform this method using the FOSS FoodScan™ Meat Analyzer instrument, 

ca 180 g of homogenized meat sample is evenly distributed in the instrument’s round 

sample dish and loaded into the instrument’s sample chamber.  The operator selects the 
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appropriate meat product profile from the instrument’s menu screen or personal 

computer (depending on instrument version), presses the ‘START’ button to initiate the 

scan, and waits for analysis to be completed and the results calculated and reported for 

moisture, fat, and protein percent (Anderson 2007). 

The FOSS FoodScan™ instrument contains a tungsten-halogen lamp and optical 

fibers that guide emitted light into an internal moving-grating monochromater (which 

provides monochromatic light in the spectral region between 850 and 1050 nm) and a 

collimator lens positioned over the sample cup in the sample chamber.  Light that is not 

absorbed by the sample in the sample chamber strikes a detector that measures the 

amount of unabsorbed light.  The results are sent to the instrument’s digital signal 

processor, which calculates the final results and communicates them with the personal 

computer.  The results are displayed as % moisture, % fat, and % protein on the digital 

screen or personal computer (Anderson 2007). 

The ANN calibration technique used for this system eliminates the need for 

development and maintenance of separate calibrations for specific sample types.  The 

ANN calibration generates a single, global, multi-product, full-range calibration for each 

constituent based on a database containing calibration sample data represented by 

spectra and chemical analysis results (Anderson 2007). 

The FOSS FoodScan™ instrument offers multiple advantages, including rapid 

results (ca 50 sec) for multiple constituents, is well-suited to high-capacity production 

environments, is easy to use and not dependent on highly skilled personnel to operate the 

instrument, is cost effective (no consumable materials and low operation costs), and 
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demonstrates similar repeatability and reproducibility compared with chemical analysis 

reference methods.   In addition, an on-line version of this instrument is available, which 

may be used for continuous, flow-by measurements of material in a pipe or tube system, 

such as in meat grinders and blenders.   

One disadvantage to using this method is that it is limited to analyzing one 

sample at a time, but fortunately each sample can be analyzed in a very short amount of 

time.  A second potential disadvantage to using the FOSS FoodScan™ instrument is the 

initial cost required to purchase the instrumentation.  Additional disadvantages may 

exist, such as affected instrumentation performance due to addition of non-meat 

ingredients (such as spices, colorants, or other ingredients that affect meat batter color) 

or the presence of ice crystals in the sample.  Although not discussed in the literature, ice 

crystals, non-meat ingredients, or other factors may potentially interfere with the 

instrument’s infrared absorption performance.  In such cases, it may be necessary to 

calibrate the equipment specific to the type of product being analyzed in order to obtain 

the most reliable results.   

NIR transmission instruments are believed to perform better than NIR reflectance 

instruments because a greater amount of sample may be scanned and a highly sensitive 

detector can be used (Sebranek 1998).   In many cases, sample scans with infrared 

instruments must be calibrated against known values for sample composition with 

reference methods.  In addition, a large number of samples similar to those to be 

measured need to be included for calibration (Sebranek 1998). 
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 Guided Microwave Spectrometry (GMS) 

Guided Microwave Spectrometry (GMS) is a method that is based on microwave 

energy absorption.  It utilizes a broad range of frequencies (up to 750 frequencies) in the 

microwave spectrum to measure molecular electromagnetic properties (such as the 

dielectric constant of water, conductivity, and molecular relaxation time)  and relate 

those properties to composition (such as moisture, fat, and protein) through the use of a 

transmitter and receiver within the GMS instrument (Sebranek 1998). 

The E-Scan In-line Food Analyzer™ (Guided Microwave Spectrometer) by 

Thermo Fisher Scientific, Inc. is an example of an instrument that uses GMS technology 

for the determination of moisture, fat, and protein in ground meat.  The instrument 

includes a GMS chamber, electronics control module, and PC-based software for 

developing calibrations and configuring the analyzer (ThermoElectron Corp. 2003).    

The instrument is installed within processing equipment and can provide rapid, 

real-time data feedback from analysis of samples flowing through pipe-type processes.  

Commercial applications for the meat industry have been for meat grinders where 

product composition can be measured as the meat exits the grinder (Sebranek 1998).  

Calibration of the instrument prior to sample measurement is needed, and the results are 

validated with daily checks against the results from an off-line measurement tool.  GMS 

has been used to measure moisture in milled corn, dog food, candy-coated peanuts, 

dough, peppercorns, and other foods, but measurement of moisture, fat, and protein in 

ground meat is a newer application (Food Eng Mag 2004).   
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Microwave energy is sensitive to the concentration of polar, semi-polar, and non-

polar molecules such as water, protein, fat, oil, and ion/salt concentration in a process or 

sample (ThermoElectron Corp. 2003).  When electromagnetic energy of various 

frequencies in the microwave spectrum is transmitted through sample material in a GMS 

instrument, the polar molecules (such as water) within the sample rotate and align with 

the electromagnetic field.   The movement of the molecules cause the microwave signal 

to be attenuated or weakened, and the velocity of the wave decreases as it passes through 

the sample (Food Eng Mag 2004). 

The attenuation of the microwave signal through the sample and the reduction in 

velocity of the energy (which changes the wavelength) results in what is known as the 

cut-off region, which is one of two characteristic features of the GMS spectrum. The cut-

off region is the characteristic high slope ‘rise’ in the spectrum and is determined by the 

dielectric constant of the sample.  The cut-off region is generally sensitive to moisture 

(ThermoElectron Corp. 2003). 

The second characteristic feature of the GMS spectrum is the pass-band region, 

which is generally horizontal and shifts in the vertical direction with small changes in 

the slope.  The amplitude (intensity) of the pass-band region is determined by the 

conductivity of the sample and the amount of energy that is lost in the transmission of 

electromagnetic energy from the GMS instrument transmitter to the receiver antennae of 

the GMS chamber (ThermoElectron Corp., 2003).  The pass-band region is generally 

sensitive to constituents other than water.   
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The GMS system is ‘trained’ to interpret readings it receives from the product 

using multiple regression analysis to compare the plotted cut-off and pass-band regions 

with results from off-line analysis of the same sample (Food Eng Mag 2004).  Using a 

well-defined calibration, the changes in the pass-band and cut-off regions are correlated 

to the amount of change in the concentration of the component of interest (i.e. moisture, 

fat) in the sample material being analyzed (ThermoElectron Corp. 2003).  The slope and 

the intercept of the cut-off and pass-band regions are plotted to derive a rapid response 

analysis.  The cut-off band shifts to the right on the X-axis (a measure of frequency) as 

moisture content decreases.  The strength of the signal in the pass-band region indicates 

other constituents in the sample, each with its own electromagnetic signature (Food Eng 

Mag 2004).     

The greatest advantage offered by the E-Scan In-Line Food Analyzer equipment 

is that it can be incorporated into on-line processing equipment so that rapid, real-time 

results can be achieved.  This method can also analyze multiple constituents (moisture, 

fat, and protein) simultaneously.   

The greatest disadvantage to this instrument is that it is limited to raw ground 

meat, so it would not be an acceptable method to use to evaluate constituents in raw 

meat blends containing non-meat ingredients or in cooked meat products.  In addition, 

this method is not an AOAC-approved method for the analysis of moisture, fat, protein, 

or other constituents, which may be a disadvantage for food manufacturers seeking 

AOAC-approved methods for their operation’s processes and products.    
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Determination of Fat Content 

One important component of meat and meat products is fat.  Fat influences 

palatability (i.e. flavor, aroma, tenderness) and keeping quality (i.e. development of off-

flavors due to oxidation) of meat and meat products and serves many important 

functions in human nutrition (i.e. carrier of fat soluble vitamins, source of energy, 

insulation) (Romans and others 2001).  Fat is also the basis for many formulation 

decisions in further processed meat and meat products.  

The amount of fat in meat is variable and inversely related to the amount of 

moisture.  Fat content of various grades and cuts of meat and poultry can vary widely.  

Raw poultry without skin and lean cuts of red meat (beef, pork, lamb) are generally low 

in fat (<10% fat), whereas poultry with skin and red meat cuts that have greater amounts 

of marbling and trim can be much higher in fat (<20%).  Further processed meat and 

poultry products can also vary greatly in fat percentage, depending on government 

regulations, labeling and nutritional goals, product formulation, and degree and type of 

processing and cooking.   

The physical and chemical properties of fat are very different from the other 

components of meat, so different measurement techniques are needed to analyze or 

quantify fat content.  Many procedures for the determination of fat are available, but 

only a limited number of methods are approved as an ‘official method’.  Some 

techniques involve the use of organic solvents to extract and gravimetrically measure fat, 

whereas other methods involve sophisticated instrumentation to determine fat content.   

Considerations for choosing a method include: cost, equipment, waste and disposal, 
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speed of testing, accuracy and reproducibility, and level of skill required to perform the 

test. 

The following paragraphs will discuss specific methods for determining fat 

content in meat and meat products, including extraction methods (Soxhlet Extraction of 

Crude Fat, Extraction of Fat with Chloroform and Methanol (Folch), Rapid Specific 

Gravity Method, Rapid Microwave-Solvent Extraction Method, Supercritical Fluid 

Extraction) and non-extraction methods (Low-Resolution Nuclear Magnetic Resonance 

and Near Infrared Transmittance).  

 

Soxhlet Extraction of Crude Fat (AOAC Official Method 960.39) 

The AOAC standard reference method 960.39, Soxhlet Extraction of Crude Fat 

Method, is a solvent-based extraction method for the determination of fat in meat and 

meat products that is often considered the standard method by which other methods are 

evaluated (Min and Boff 2003).  This method involves the use of petroleum ether (a 

flammable, non-polar solvent with a low boiling point (35°C/95°F) to extract fat from a 

dried, homogenized meat sample.  Although petroleum ether is not as good of a solvent 

as diethyl ether, petroleum ether is more often used because it is selective for more 

hydrophobic lipids, and less expensive, less hygroscopic, and less flammable than 

diethyl ether (Min and Boff 2003). 

Prior to Soxhlet extraction, a homogenized meat sample (ca 3-4 g) is weighed 

into a small, disposable aluminum dish, mixed with a small amount of laboratory-grade 

sand (the sand increases surface area, allowing for moisture escape and prevention of fat 
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entrapment), and dried in an air oven (100-102°C for 16-18 hr).   The dried sample is 

cooled in a desiccator and prepared for subsequent Soxhlet extraction.  

The Soxhlet extraction system involves five important components, including a 

heating mantel, a flat-bottom flask, a Soxhlet, a condenser, and rubber tubing connected 

to a functioning water faucet.  The extraction system operates by heating the petroleum 

ether to create a vapor, then cooling the vapor back to liquid form via the condensers.  

The condensed liquid ether drips into the Soxhlet and completely surrounds the dried 

meat sample, providing a soaking effect, then ‘fluxes’ back into the flask (ca 40-50 mL 

of ether at a time), taking with it fat from the meat sample.   This ‘fill and flux’ process 

continues for 4-6 hr to completely extract the fat from the meat sample. Once the 

extraction process is complete, the flasks are disconnected from the condensers, the 

petroleum ether evaporated, the flasks weighed, and the fat content of the meat sample 

calculated.    

This method has several advantages, including precision, repeatability, 

recognition as a standard reference method, and the ability to analyze multiple samples 

simultaneously.  However, there are multiple disadvantages to using this method, 

including the use of a flammable solvent, the length of time required to prepare and 

extract the sample (drying time + extraction time), the need for a trained and skilled 

analyst, and the need for special accommodations (i.e. fume hood, running water).  

Despite extensive efforts to develop analytical methods for fat using new technology, the 

extraction of fat followed by measurement is still the most successful general approach 

(Sebranek 1998). 
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Folch or Modified Folch  (Extraction With Chloroform/Methanol) 

The Folch Method was originally developed as a method for the preparation and 

purification of brain lipids by the biochemist, Jordi Folch, but has been applied to the 

extraction of lipids in other biological tissues.   Folch described his extraction method in 

his article, “A Simple Method For the Isolation and Purification of Total Lipides From 

Animal Tissues” (Folch and others 1957). 

The extraction method described by Folch is a solvent-based extraction method 

that uses chloroform:methanol (2:1, v/v) and water (or adequate salt solution) to extract 

lipid components from a meat sample.  Unlike extraction methods that use diethyl ether 

or chloromethane, the Folch method also extracts phospholipids from a meat sample.  

When a meat sample is homogenized with the solvent mixture, the mixture separates 

into two phases that can be divided and further analyzed.  The lower phase (chloroform) 

contains the lipid material while the upper phase (methanol and aqueous) contains the 

non-lipid material and water (Castera 1995).  For lipid quantification, the upper phase 

(methanol and aqueous) is siphoned off, allowing the lower phase to be evaporated and 

lipid content gravimetrically determined.   

This procedure is performed by homogenizing a meat sample with a chloroform-

methanol (2:1, v/v) mixture.  The chloroform-methanol mixture is added in an amount 

that is 20 times the volume of the tissue sample (i.e. 20 mL of solvent mixture is needed 

for a 1 g meat sample).  In his publication, Folch indicated performing homogenization 

in a Potter-Elvehjem type homogenizer for samples that are < 1 g or in an adequate 

blender for larger samples (> 1 g) (Folch and others 1957).   



21 

 

  After homogenization, the homogenate is filtered (through a funnel with folded 

filter paper) or centrifuged to recover the liquid phase.  The crude extract is washed with 

0.2 volume (4 mL for 20 mL) of water or NaCl solution (0.9%) and the mixture is 

allowed to separate into two phases (by centrifugation or prolonged standing).  Upon 

separation, the upper phase is removed by siphoning and the inside wall of the tube is 

rinsed three times with methanol/water (1/1).  Care should be taken to avoid mixing of 

the upper and lower phases during rinsing. The upper phase that forms after rinsing is 

also siphoned off. In this washing procedure, the proportions of chloroform, methanol, 

and water (including water from the meat sample) are 8:4:3, which is critical and must 

be kept constant (Folch and others 1957). 

The lower phase (which contains the lipid constituents) is then combined with 

the rest of the rinsing fluid and made into one phase by the addition of methanol. The 

lower phase is then evaporated (in a rotary evaporator or under nitrogen stream) until all 

detectable traces of solvent are gone. Final traces of solvent and water are then removed 

by flushing with nitrogen then vacuum suctioning to complete dryness (Iverson and 

others 2001).   Lipid content is then determined gravimetrically.  

Several researchers have used various extraction procedures and have found that 

the chloroform/methanol procedure worked best for extracting all classes of lipids (King 

and Min 1998).   The combination of polar and non-polar solvents (2:1 

chloroform:methanol) to extract fat has made this method very efficient.  The Folch 

method, when compared to other solvent extraction methods, may yield higher results 

for fat due to more complete extraction (Mann and others 1991).  Polar solvents 
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(chloroform) disrupt hydrogen bonding between lipids and proteins and lipids and 

carbohydrates, so when a non-polar solvent (methanol) is introduced after a polar solvent 

has been used, the non-polar solvent can access the lipid components and fully extract 

them (Mann and others 1991). 

The two greatest advantages to this method are the complete extraction of all 

classes of lipids from a tissue sample and the opportunity to further analyze the extracted 

lipids.  This method of fat extraction is very efficient and would be especially useful if 

further analysis of the lipids is needed, as very few other methods offer the complete 

extraction of all classes of lipids.   

Despite the greatest advantages to this method, multiple disadvantages exist for 

this method,  including the use of two organic solvents (potentially harmful to health, 

costs and dangers associated to storing, handling, and disposing of them), the greater 

degree of difficulty in performing the fat extraction, the need for more highly trained 

personnel, the sensitive nature of the method (must maintain specific solvent 

proportions, avoid mixing the two phases when rinsing), and the amount of time required 

to perform the procedure.  If further analysis of the lipids is not needed, other methods 

may be more ideal and user-friendly for the general quantification of fat in a meat-

production environment.  In addition, this method has not received AOAC approval for 

the analysis of fat in meat and meat products, which may be an additional disadvantage 

for analytical laboratories or food manufacturers seeking to use AOAC-approved 

methods for their product analysis.  
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Rapid Specific Gravity Method (Foss-let, AOAC 976.21) 

The AOAC standard reference method 976.21, Rapid Specific Gravity Method, 

is a solvent-based extraction method for the determination of fat content in meat and 

poultry products.  This method is known as the Foss-let procedure and is very effective 

in determining fat content (Sebranek 1998).  This procedure involves the Foss-let Fat 

Analyzer system, a solvent (tetrachloroethylene) for the extraction of fat, an anhydrous 

salt (anhydrous calcium sulfate) for the absorption of moisture droplets from the sample, 

and a specific gravity read-out unit for determining fat content of the sample.  

To perform the Foss-let procedure, a test sample is weighed into a tared stainless 

steel Foss-let cup.  For meat products containing < 60% fat, a 45.0 g test sample is used.  

For meat products containing > 60% fat, a 22.5 g test sample is used.  Upon weighing 

the meat sample into the cup, 80 g of anhydrous calcium sulfate (CaS04) and 120 mL of 

tetrachloroethylene are added to the cup.  The cup is covered and placed in the 

mechanical orbital shaker, which facilitates the rapid extraction of fat through strong 

mechanical action.   After 2 min. in the orbital shaker, the cup containing the sample is 

removed and immersed in an ice-water bath to cool the contents to ca 40°C (from 47-

52°C out of the orbital shaker).   

The contents of the cup are poured into an assembled filter and filtered under 

pressure until 10 mL of extract is retained in the measuring chamber.  The measuring 

chamber, which is thermostatically maintained at 37°C, contains a miniature hydrometer 

that measures the specific gravity of the extract (Pettinati and Swift 1976).  Three to five 

specific gravity readings are obtained and averaged, then converted to percent fat by 
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means of the conversion chart provided with the equipment.  For high-fat products in 

which a 22.5 g portion was used, the chart percent fat should be multiplied by 2 (AOAC 

2006b).  A reference standard oil (specific gravity at 23°C = 0.915) is provided for use 

as a periodic check of the potentiometer calibration. 

The three greatest advantages to using this method include its recognition as an 

AOAC standard method, results can be obtained rather quickly (7-10 min), and it is 

efficient in extracting fat.  Two of the greatest disadvantages include the use, handling, 

and disposal of the chemical solvent and the need for more skilled personnel to perform 

the analysis.   

 

Rapid Microwave-Solvent Extraction Method (CEM Automated System, AOAC 

985.15)  

The AOAC standard reference method 985.15, Rapid Microwave-Solvent 

Extraction Method, is a solvent-based extraction method that uses methylene chloride 

and the CEM Automated Solvent Extraction System (CEM Corp., Mathews, NC).  The 

CEM apparatus is an enclosed, self-contained, thermostatically controlled fat extraction 

and solvent recovery system with a 0.5 mg fat sensitivity and 0-100% fat measurement 

range (AOAC 2006d).  The CEM apparatus also includes a microwave moisture 

analyzer, which is used to dry the test sample in preparation for solvent extraction. This 

method is less time-intensive compared to other traditional extraction methods. 

To perform the analysis, three glass fiber pads [two rectangular (9.8 x 10.2 cm) 

and one round (11 cm), CEM Corp] are tared on the internal electronic balance of the 

apparatus.  A homogenized meat sample (ca 4 g) is spread evenly across one rectangular 
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glass fiber pad and covered with the second rectangular glass fiber pad (to produce a 

‘sandwiched’ appearance).  The ‘sandwiched’ sample preparation is weighed on the 

internal balance, dried for ca 3-5 min in the apparatus’s microwave drying chamber, then 

transferred to the automated solvent extraction chamber.  In the extraction chamber, the 

dried meat sample and rectangular glass pads are blended with a sufficient amount of 

methylene chloride to extract fat.  During the extraction cycle, which takes ca 1-2 min, 

the extracted fat is collected on the round glass fiber pad. Upon completion of the 

extraction cycle, the round glass fiber pad containing the fat extract is transferred to the 

balance pan in the microwave moisture analyzer chamber and dried (ca 30 s) to remove 

residual solvent or moisture.  The apparatus’ microprocessor converts the weight loss 

due to solvent extraction to % fat and displays the result on the digital read-out panel. 

An adjustment factor is needed for certain product classes in order to produce 

more accurate results with this method.  An adjustment factor of 0.40 is needed for fresh 

meats, pre-blends, emulsions, and cured cooked meats, whereas an adjustment factor of 

0.80 is needed for cooked sausages (AOAC 2006b).  

This method efficiently extracts triglycerides, but fails to fully extract 

phospholipids.  This was realized when fat extraction with the CEM automated system 

was compared to the modified Folch method.  During a study that compared the CEM 

automated system to the modified Folch method, it was observed that the CEM 

automated system consistently yielded lower values for fat compared to the modified 

Folch method.  The researchers explained that the Folch method uses a combination of 

polar and non-polar solvents (2:1 chloroform: methanol) to extract fat.  Polar solvents 
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disrupt hydrogen bonding between lipids and proteins and lipids and carbohydrates, so 

when a non-polar solvent is introduced after a polar solvent has been used, the non-polar 

solvent can access the lipid components and fully extract them, which is demonstrated in 

the Folch method (Mann and others 1991).  The Folch method also exposes the test 

sample to solvent for 24 hr, so a longer exposure to solvents may improve extraction 

results. 

In comparison, the CEM automated system uses a slightly polar solvent 

(methylene chloride), which is efficient in extracting triglycerides, but does not 

completely extract phospholipids.  In addition, the CEM automated system exposes the 

test sample to the solvent for a short amount of time (1-2 min), which may not allow 

sufficient time for the solvent to disrupt the membrane material and extract the 

phospholipids completely (Mann and others 1991).    

Although the CEM automated system has limitations, it is able to efficiently 

extract triglycerides, which are the primary lipids of interest for evaluating raw material 

quality, process control, finished product composition, and regulatory compliance in 

meat plant operations.  The CEM automated system offers four main advantages:  (1) it 

is an AOAC approved method of analysis, (2) it provides reliable results in a short 

amount of time, (3) it uses less solvent than other extraction methods, so less waste is 

generated, and (4) it does not require a highly skilled technician to perform the 

procedure.  Three primary disadvantages to using this method include: (1) it requires the 

use of a potentially harmful chemical, (2) it is limited to analyzing one constituent at a 

time, and (3) the sample cannot be retained for other analytical procedures.          
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Super Critical Fluid Extraction (AOAC Peer Verified Method – PVM 3:2000)  

 More recent developments have led to extraction methods, such as supercritical 

fluid extraction (SFE), that do not require the use of organic solvents.  SFE has been 

published by AOAC International as a Peer Verified Method (PVM 3:2000) for the 

determination of crude fat in meat and meat products.  This method involves the use of 

the TFE2000 fat determinator SFE system (LECO Corp., St. Joseph, MI), carbon dioxide 

(CO2), and granular diatomaceous earth (LECO-dry or equivalent).  In addition, a 

household microwave oven (1000 W) is also needed. The peer verified study involved 

the analysis of raw, cooked, and processed meat products containing 5-28% crude fat 

(Chandrasekar 2001). 

SFE uses a supercritical fluid for the selective extraction of a constituent from a 

test sample.  A supercritical fluid is a substance that has exceeded its critical point for 

temperature and pressure, giving rise to liquid-like densities and gas-like properties.  

Carbon dioxide (an inert, non-toxic, inexpensive fluid) is commonly used in SFE, 

including the extraction of fat from meat samples, because of the high solubility of lipids 

in this medium (King 2001).   

Through a specific pressure-temperature combination, CO2 is transformed into a 

substance with supercritical fluid properties. The liquid-like density of the supercritical 

CO2 enhances fat extraction from the sample matrix and the gas-like properties promote 

separation of the solubilized fat from the solvent fluid after extraction (Min and Boff 

2003).  When a fluid is close to its critical point, these properties can be altered or ‘fine-
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tuned’, which can promote selectivity of specific components because small changes in 

pressure or temperature can result in large changes in density (Min and Boff 2003). 

To perform fat extraction using the TFE2000 instrument, ca 1.0-1.5 g of ground, 

homogenized meat sample is weighed and thoroughly mixed with 2.2 g diatomaceous 

earth (to absorb moisture and increase surface area of the sample).  However, a smaller 

sample (<1.0 g) should be used if the meat sample contains >70% moisture.  Higher 

sample moisture content was noted by Chandrasekar and others to impede lipid 

extraction.  In their study, when total moisture was >1.0 g in a test sample, incomplete 

extraction and reduced extraction efficiency occurred (Chandrasekar 2001). 

Once the meat sample has been prepared, it is transferred to a high-pressure 

extraction thimble and placed in the SFE instrument according to the manufacturer’s 

instructions.  Once the ‘START’ key on the instrument’s panel is pressed, the extraction 

process begins automatically.  The system draws liquid CO2 from a ‘dip-tube’ tank into a 

refrigerated pump head, preheats and compresses the CO2 to 9,000 psi, then passes it 

through the heated high-pressure extraction thimbles (95-105°C) containing the sample.  

As the compressed CO2 passes through the sample (a process that lasts for 45 min), it 

removes fat and carries it to the collection system, where the CO2 is depressurized.  The 

sudden change in pressure separates the dissolved fat from the supercritical solvent (Min 

and Boff 2003), allowing for the collection of the fat into a vial containing glass wool.  

Once the extraction process is complete, the collection vial is removed from the SFE 

instrument, placed into a microwave oven for 2 min (at 1000 W) to remove residual 
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moisture and solvent, cooled for 15 min, then weighed.  Fat percentage is determined 

based on the weight gain of the collection vial (Chandrasekar 2001). 

The SFE method described above involves the use of a ‘wet’ homogenized meat 

sample.  However, some SFE methods may require that the sample be dried prior to 

extraction. For example, Min and Boff (2003) describe a procedure in which ca 3-5 g of 

dried homogenized meat sample is placed into the extraction cell of the instrument, 

extracted for 20 min at the proper temperature-pressure settings, then rotary dried and 

weighed to determine fat content.  For methods using dried meat samples, use of 

diatomaceous earth or other desiccants is not necessary since moisture was removed 

from the sample during the drying process. 

The greatest advantage to using SFE is that no harsh solvents are required, which 

(1) eliminates exposure of lab personnel to harmful chemicals, and (2) eliminates 

storage, tracking, and disposal costs and dangers associated with organic solvents and 

waste.  In addition, SFE methods can match the overall precision and accuracy of 

traditional extraction methods (Min and Boff 2003).  Depending on the instrument used, 

multiple samples may be extracted simultaneously (Sebranek 1998).  One additional 

advantage for analytical laboratories or food manufacturers seeking AOAC-approved 

methods for use in their operations is that the TFE2000 fat determinator SFE system has 

been accepted as an AOAC Peer Verified Method, indicating the potential of this 

method to become and AOAC-approved method in the future.   

 SFE offers a more rapid method for determining fat content in meat and meat 

products when compared to traditional extraction methods that use organic solvents.  
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SFE and similar methods may gain more acceptance as regulations by the U.S. 

Environmental Protection Agency (EPA) and other federal entities encourage the 

reduction of organic solvents in laboratories (Min and Boff 2003).   

 

Low Resolution Nuclear Magnetic Resonance (CEM Corporation Instrumentation) 

Low Resolution-Nuclear Magnetic Resonance (LR-NMR) offers rapid fat 

analysis for meat and meat products.   The CEM Smart Trac 5 System® has been 

accepted as an AOAC Peer-Verified Method (PVM 1:2003) for the rapid determination 

of moisture and fat in meats by microwave and Nuclear Magnetic Resonance analysis.  

The CEM Smart Trac 5 System®, which was the instrument used in this collaborative 

study for the fulfillment of AOAC requirements to become an official method, uses LR-

NMR technology for fat determination.  It is the goal of this collaborative study to 

recommend that this method be adopted as an AOAC-approved reference method for the 

rapid determination of fat. 

Nuclear Magnetic Resonance (NMR) is based on the observation that certain 

nuclei will re-absorb and re-emit radio frequency (RF) energy over a narrow band of 

frequencies when placed in a static magnetic field.  NMR does not involve the emission 

of ionizing radiation as the name may suggest, but rather is caused by the interaction 

between the nuclear magnetic dipole of a nucleus and the magnetic field it experiences. 

The strength of a magnetic field produces a specific frequency at which the NMR effect 

occurs for a given nuclear isotope (Leffler and others 2008).   

In NMR spectroscopy, a phenomenon known as a chemical shift effect occurs, 

and can be used to distinguish different hydrogen-containing constituents within a 
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sample.  Differences in the electronic structure of molecules cause small variations in the 

magnetic field that 
1
H nuclei experience in different molecules and in different parts of 

the same molecule. This leads to small differences in the NMR frequencies of 
1
H nuclei 

in different molecules, which can be used to distinguish between the different 

constituents within a meat sample (Leffler and others 2008).   

Unlike NMR spectroscopy, LR-NMR cannot detect chemical shift effects in 

samples containing 
1
H nuclei due to the low field strength and homogeneity of the 

magnet used to generate the static magnetic field.  In LR-NMR, the NMR signals from 

different constituents (moisture, fat, protein, carbohydrates) within the sample are 

distinguished by differences in the rate of decay of the signal from the different 

constituents (commonly known as transverse relaxation or T2 decay).  There are 

significant differences between the proton transverse relaxation times (T2) of these 

constituents.  More specifically, protein and carbohydrates have a very short transverse 

relaxation time and therefore decay very quickly, whereas fat has a much longer 

transverse relaxation time and decays much more slowly.  

Transverse relaxation can generally be approximated as an exponential decay 

with time constant T2.  The transverse relaxation times for fat are considerably longer 

(typically of the order of 10 mS or greater) than the transverse relaxation times of protein 

and carbohydrates (typically of the order of 10 mS or less).  When the system is excited, 

the signals associated with protein and carbohydrates decay first, which make it possible 

to acquire the remaining signal from fat.  The NMR signal acquired from a dried food 

sample using the NMR methodology will be directly proportional to the number of 
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protons within the fat contained in the sample and thus directly proportional to the fat 

content of the sample (Leffler and others 2008).   

The CEM Smart Trac 5 System® removes moisture from a food sample using 

the microwave drying technique prior to fat analysis using NMR.  Moisture and its 

corresponding protons are removed from a meat sample, leaving fat, protein, and 

carbohydrate as the remaining constituents that contain significant protons in the sample 

to be analyzed.  The protons associated with the fat, protein, and carbohydrates in the 

dried meat sample will produce a signal when a magnetic field is applied to the dried 

meat sample in the NMR chamber.  

To perform fat analysis using the CEM Smart Trac 5 System®, a homogenized 

meat sample is first dried in the microwave drying chamber per manufacturer’s 

instructions (and as described previously in this report).  After drying, the sample 

(including the glass fiber pads) is placed on a single sheet of Teflon film and tightly 

rolled into a cylindrical shape, placed and pounded into a special Teflon tube fitted for 

the instrument, placed into the NMR chamber, and the instrument initialized to begin the 

analysis of fat content.  The instrument uses LR-NMR technology that sends pulses of 

magnetic energy through the sample, creating a free induction decay (FID) of the 

hydrogen protons associated with the lipid, ash, and protein components of the meat 

sample.   

The FID relates to the scattering and realignment of the protons in response to 

the pulsing on and off of the magnetic energy through the sample.  The magnetic energy 

causes the protons to align while the removal of the magnetic energy causes the protons 
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to “scatter” or resume their natural position.  Due to the longer FID time of the hydrogen 

protons of the lipid components in comparison to the shorter FID time of the hydrogen 

protons of the protein and ash components, the equipment is able to identify and measure 

the lipid components separate from the other protons and use the information to calculate 

the fat percentage of the sample using the programmed equations.   

The advantages to using the CEM Smart Trac 5 System® NMR instrument 

include:  the speed in which it can determine the fat content of a wide variety of meat 

product samples; organic solvents are not required for extraction, which (1) eliminates 

exposure of lab personnel to harmful chemicals, and (2) eliminates storage, tracking, and 

disposal costs and dangers associated with organic solvents and waste; the ease of use of 

the instrument (no complicated procedures are involved and highly skilled personnel are 

not needed); the low cost of operating the instrument; and it is recognized as an AOAC 

peer verified method.   

Disadvantages associated with this method include the relatively high initial cost 

of purchasing the instrumentation, the expense associated with replenishing consumable 

materials (i.e. glass fiber pads, Teflon film), and the limitation of analyzing one sample 

at a time.   

 

Near Infrared Transmittance (FOSS FoodScan™, AOAC 2007.04) 

Near Infrared Transmittance was discussed previously in this report in the section 

regarding moisture analysis using NIR.  NIR will be discussed again in this section 

regarding fat analysis, as NIR Transmittance technology offers a newer and more 

sophisticated spectroscopic method for the analysis of fat content in meat samples.   
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NIR measurements are based on the principle that almost all organic functional 

groups (i.e. ketone, alcohols, etc.) have a specific absorption band in the near infrared 

region and that the infrared absorption spectra is unique for many different components 

in meat  (Sebranek 1998).   

One example of instrumentation utilizing NIR Transmittance technology is the 

FOSS FoodScan™ Meat Analyzer (Eden Prairie, MN).  This instrument is an NIR 

Spectrophotometer with artificial neural network (ANN).  The FOSS FoodScan™ Meat 

Analyzer recently received AOAC approval as an official method for the determination 

of moisture, fat, and protein content in meat and meat products (AOAC Method 

2007.04). Parameters for meat products evaluated include fresh meat, beef, pork, 

poultry, emulsions, and finished products in the constituent ranges of 1-43% fat, 27-74% 

moisture, and 14-25% protein (Anderson 2007). 

To perform this method using the FOSS FoodScan™ Meat Analyzer instrument, 

ca 180 g of homogenized meat sample is evenly distributed in the instrument’s round 

sample dish and loaded into the instrument’s sample chamber.  The operator selects the 

appropriate meat product profile from the instrument’s menu screen or personal 

computer (depending on instrument version), presses the ‘START’ button to initiate the 

scan, and waits for analysis to be completed and the results calculated and reported for 

moisture, fat, and protein percent (Anderson 2007). 

The FoodScan™ instrument contains a tungsten-halogen lamp and optical fibers 

that guide emitted light into an internal moving-grating monochromater (which provides 

monochromatic light in the spectral region between 850 and 1050 nm) and a collimator 
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lens positioned over the sample cup in the sample chamber.  Light that is not absorbed 

by the sample in the sample chamber strikes a detector that measures the amount of 

unabsorbed light.  The results are sent to the instrument’s digital signal processor, which 

calculates the final results and communicates them with the personal computer.  The 

results are displayed as % moisture, % fat, and % protein on the digital screen or 

personal computer (Anderson 2007). 

The ANN calibration technique used for this system eliminates the need for 

development and maintenance of separate calibrations for specific sample types.  The 

ANN calibration generates a single, global, multi-product, full-range calibration for each 

constituent based on a database containing calibration sample data represented by 

spectra and chemical analysis results (Anderson 2007). 

The FOSS FoodScan™ instrument offers multiple advantages, including rapid 

results (ca 50 sec) for multiple constituents, is well-suited to high-capacity production 

environments, is easy to use and is not dependent on highly skilled personnel to operate 

the instrument, is cost effective (no consumables and low operation costs), and 

demonstrates similar repeatability and reproducibility compared with chemical analysis 

reference methods.   In addition, an on-line version of this instrument is available, which 

may be used for continuous, flow-by measurements of material in a pipe or tube system, 

such as in meat grinders and blenders.  

One disadvantage to using this method is that it is limited to analyzing one 

sample at a time, but fortunately each sample can be analyzed in a very short amount of 

time.  A second potential disadvantage to using the FOSS FoodScan™ instrument is the 
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initial cost required to purchase the instrumentation.  Additional disadvantages may 

exist, such as affected instrumentation performance due to addition of non-meat 

ingredients (such as spices, colorants, or other ingredients that affect meat batter color) 

or the presence of ice crystals in the sample.  Although not discussed in the literature, ice 

crystals, non-meat ingredients, or other factors may potentially interfere with the 

instrument’s infrared absorption performance.  In such cases, it may be necessary to 

calibrate the equipment specific to the type of product being analyzed in order to obtain 

the most reliable results.   

NIR transmission instruments are believed to perform better than NIR reflectance 

instruments because a greater amount of sample may be scanned and a highly sensitive 

detector can be used (Sebranek 1998).   In many cases, sample scans with infrared 

instruments must be calibrated against known values for sample composition with 

reference methods.  In addition, a large number of samples similar to those to be 

measured need to be included for calibration (Sebranek 1998). 
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CHAPTER III 

 

MATERIALS AND METHODS 

 

An AOAC collaborative study involving 10 laboratories representing private 

industry, government agencies, and academia was conducted to determine if the CEM 

Smart Trac 5 System®, which performs rapid analyses of moisture and fat, is 

comparable to universally accepted standard methods of analysis.  The primary goal of 

the collaborative study was to determine if a method for the rapid determination of 

moisture and fat in raw and processed meat products could produce results of 

comparable accuracy and precision to standard methods.  A variety of raw and processed 

meat products representing the primary meat categories of beef, pork, chicken, and 

turkey were selected for analysis in this study.  The meat products selected for use are 

commonly produced and distributed by meat plant operations.    

Meat samples were obtained fresh from commercial sources and stored frozen 

until homogenized, packaged, frozen, and distributed to participating collaborative 

laboratories for analysis on the Smart Trac 5 System®.  Ten replicates were analyzed in 

the Department of Animal Science at Texas A&M University (TAMU) using the 

following standard methods of analysis for the determination of moisture and fat, 

respectively: Forced Air Drying, AOAC Official Method 950.46 and Soxhlet Extraction 

of Crude Fat, AOAC Official Method 960.39.  Data collected from replicate analyses 

using the AOAC official methods provided by TAMU were used for the programming 

and calibration of all CEM Smart Trac 5 Systems® used in this study and for 
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comparative analysis of the data collected from ten different collaborators using their 

calibrated CEM Smart Trac 5 Systems®.  Each of the 10 collaborative research 

laboratories owned a CEM Smart Trac 5 System® and was familiar with sample 

preparation and instrument operation.  Each laboratory independently completed an 

analysis of the moisture and fat content of each meat product specified using the 

calibrated CEM Smart Trac 5 System®.  All meat samples evaluated were taken from a 

larger composite sample and handled in a similar manner by each laboratory per detailed 

instructions.  Thus, the only differences observed should have been due to individual 

sample handling and the inherent limitations of the instrument.    

The following paragraphs will discuss the collection, homogenization, 

packaging, storage, distribution, and analysis of the meat samples.  The statistical design 

used to analyze the data will also be discussed.   

 

Meat Product Specification 

Raw and further processed meat products representing four primary categories of 

red meat and poultry (beef, pork, chicken, and turkey) were obtained commercially for 

analysis for this study.  The raw meat products obtained included:  ground beef (high fat 

and low fat), fresh pork (high fat and low fat), fresh pork sausage (high fat and low fat), 

fresh chicken (high fat and low fat), and fresh turkey breasts (low fat).  Other further 

processed meat products obtained included: mechanically deboned turkey (high fat), 

bone-in ham (high fat), formed ham with natural juices (low fat), beef frankfurters (high 

fat), beef frankfurters (low fat), and potted meat (medium fat).  For each of the meat 



39 

 

products listed, a diluted counterpart was prepared by adding four percent (w:w) of 

distilled, deionized water during homogenization for use as blind samples and required 

by AOAC for the study.  

 

 Collection of Meat Products 

Approximately 6.8 kg (15 lbs) of each meat product specified above were 

obtained from meat plant operations and local grocery stores.  The meat products 

purchased from local grocery stores were homogenized within one day of purchase.  The 

meat products obtained from meat plant operations were shipped frozen to Texas A&M 

University, stored in a freezer (-10
o
C) upon receipt, and thawed in a refrigerator (4

o
C) 

one to two days prior to homogenization and sample preparation. The fresh pork sausage 

(low fat)  used in this study was prepared fresh at the Rosenthal Meat Science and 

Technology processing facility using lean pork, a pre-blended sausage spice blend, and 

by following standard processing practices for ground products.  Low fat fresh pork 

sausages are not commonly produced by meat operations, so for the purpose of this 

study, a fresh pork sausage (low fat) was specially made. 

 

Preparation of Meat Aliquots (Homogenization of Meat Products) 

Each meat product was kept refrigerated (4° C) immediately prior to size 

reduction and homogenization.  As written previously, some products were frozen (to 

prevent spoilage) and then thawed in the refrigerator two days prior to sample 

preparation.  The fresh pork, fresh chicken, fresh turkey, ham, and frankfurter products 
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required size reduction prior to homogenization.  Each of these products were 

individually removed from their respective package, manually cut with a knife into 

smaller pieces (ca. 5 cm x 5 cm), and ground through a table-top meat grinder (Hobart® 

4612 Chopper, Hobart Corporation, Troy, OH), using a 1.27 cm (1/2 inch) grinding 

plate.  The ground beef, fresh pork sausage, mechanically deboned turkey, and potted 

meat products did not require size reduction (cutting and grinding) prior to 

homogenization. 

Approximately 3.18 kg (7 lbs) of material was placed in a 10 quart capacity 

stainless steel commercial food processor (Robot Coupe® R10 Vertical Cutter-Mixer, 

Robot Coupe USA, Inc., Jackson, MS) and chopped for 30 seconds using a two blade, 

high speed (4.5 HP) setting.  A rubber spatula was used to recover and return the meat 

that had collected on the inner sides and bottom of the bowl.  The sample was then 

chopped for an additional 30 seconds on high speed.  Products with “skin” (processed 

and bone-in hams, frankfurters) were more difficult to homogenize and required an 

additional 60 seconds (30 seconds of chop, wipe sides, 30 seconds of chop) of chopping.   

For each meat product, a 0.4% diluted counterpart was prepared for use as blind 

samples for calibration and testing of the CEM Smart Trac 5 System® to ensure 

detection of modest variations in the moisture content of each meat product.  The diluted 

counterpart for all of the meat products was prepared by placing 3.18 kg (7 lbs) of the 

remaining ground material into the commercial food processor and adding 0.127 kg 

(0.28 lbs) of distilled, deionized water.  Each diluted sample was then chopped in the 
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same manner as its undiluted counterpart (as indicated in the previous paragraph) for the 

same amount of time to maintain consistency between products of the same kind.   

The temperature of each meat product was taken immediately prior to and after 

homogenization.  The temperature of each meat sample prior to homogenization was 

between 4°C and 10°C.  Each meat sample experienced an average of 9°C temperature 

increase while chopping in the commercial food processor, likely due to the heat 

generated by the friction of the blades against the meat.   

 

Packaging of the Meat Aliquots 

The homogenized material was tightly packed into forty 2-oz and five 4-oz 

sterile, screw capped polyurethane specimen containers.  During packaging, the 

homogenized material was covered to minimize moisture escape, evaporation, or 

absorption.  Each specimen container was filled to minimize airspace and to limit 

oxidation and risk of sample deterioration during storage.  Each container was labeled 

with a self-adhesive label indicating the title of the study, the meat product and fat level, 

the packaging date, and the name of the laboratory to which it would be sent.  The 

containers of homogenized material were then transferred to a -40
o
C freezer for storage.   

 

Storage and Distribution of the Meat Aliquots 

All containers of homogenized material were transferred to a -40
o
C freezer for 

storage within 25 minutes of packaging and were undisturbed until the date of 

distribution to collaborating laboratories.  Samples were distributed to collaborating 
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laboratories on two separate days.  On the first day of distribution, two 2-oz containers 

of each of the following homogenized samples were packed into Thermosafe™ insulated 

boxes: ground beef (high fat and low fat), pork (high fat and low fat), chicken (high fat 

and low fat), and ham (high fat and low fat).  On the second day of distribution, two 2-oz 

containers of each of the following homogenized samples were packed into 

Thermosafe™ insulated boxes:  turkey (high fat and low fat), frankfurters (high and low 

fat), pork sausage (high fat and low fat), and potted meat.  

On each of the two days of distribution, the homogenized meat samples and ice 

packs were packed into insulated boxes.  The empty top space inside the boxes was 

packed with crumpled newspaper to aid in insulation and to prevent shifting of the 

sample containers during transport.  Taped onto the outer top portion of the Styrofoam 

lid were the following instructions for the storage and handling of the meat samples 

shipped to the collaborating laboratories:   

1. Receive samples from Texas A&M University. 

2. Place the samples in the freezer immediately upon receipt.  Store the samples 

in the freezer (0°F or below is preferred) until one day prior to sample 

analysis on the CEM Smart Trac 5 System®. [Please note: Your lab will 

receive more than one product sample per shipment.  Remove the sample to 

be analyzed the following day (for example, High Fat Beef sample) from the 

freezer and place in the refrigerator the day before analysis.  Leave the 

remaining samples (for example: Low Fat Beef, High Fat Pork, and Low Fat 
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Pork samples) in the freezer until the day before analysis of the specific 

product sample] 

3. One day prior to sample analysis, place the sample to be analyzed in the 

refrigerator (< 40°F) to thaw overnight.  Do not try to speed up the thawing 

process by using a microwave, running water, or other thawing method. 

4. On the day of analysis, remove the sample container from the refrigerator and 

place it in ice at least two-thirds of depth of the container to keep the sample 

cold.  Keep the container in ice until the analysis of all replications (10) of 

the sample is complete.  (Ice will help keep the product a constant 

temperature throughout the analysis of all replications). 

5. After placing the sample in ice, open the container lid and stir the sample 

thoroughly with a small spatula since ice crystals may have condensed on the 

side.  (Note: Avoid transferring moisture from the ice to the sample). Replace 

the lid between each replication to prevent moisture loss.  Stir the sample 

before beginning the next replication. 

6. After stirring the sample, follow the instructions provided by CEM to begin 

the analysis (i.e. tare the pads, spread 3-4 g of sample on the pads, place on 

scale, press ‘START’, etc). 

The outer box flaps were taped closed, shipping labels attached, and the packages 

shipped for next-day delivery via Federal Express.  The project leader at each of the 

collaborative laboratories was notified via electronic mail that the package was en route 

to their facility and the date in which the samples would be delivered.  Per the 
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instructions listed above, the collaborators, upon receipt of the samples, stored them in a 

freezer at their facility until one day prior to analysis on the CEM Smart Trac 5 

System®.  

 

Analytical Methods 

Moisture Analysis – Standard Method  (AOAC Official Method 950.46) 

Ten replicates of each meat product and their diluted counterparts were analyzed 

at Texas A&M University in the Department of Animal Science using the Forced Air 

Drying Method (AOAC Official Method 950.46) for the determination of moisture in 

meat products.  The AOAC official method for moisture determination was performed to 

obtain data for programming and calibrating the CEM Smart Trac 5 System® and for 

comparative analysis of results collected from collaborators using their individual CEM 

Smart Trac 5 System®.  For statistical purposes, 10 replicates of each meat product 

(undiluted and diluted) were analyzed simultaneously using the standard method for 

moisture analysis. 

One day prior to analysis, a 4-oz polyurethane specimen container of 

homogenized meat sample was transferred from the -40
o
C freezer to a refrigerator (4

o
C) 

for thawing.  The following day, the sample was stirred thoroughly with a stainless steel 

spatula to evenly redistribute any moisture that may have migrated during storage and 

subsequent thawing.  It is also important to note that most, if not all, samples had 

moisture droplets collect on the inward-facing specimen cup lid.  The moisture that had 

collected on the lid was carefully transferred from the lid and reincorporated into the 
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sample by stirring. Maintaining sample temperature was important in preventing data 

inconsistencies that could have been caused by the warming of the sample to room 

temperature.  Potential moisture transfer from the chilling ice to the sample was of 

concern, so a sheet of waxed paper was placed between the sample container and the ice 

to serve as a barrier against moisture transfer.     

Ten aluminum pans (5.08 cm diameter) and corresponding lids were numbered, 

washed, dried in a forced-air oven (103
o
C), and desiccated until cooled to room 

temperature.  Latex gloves and tongs were used in the handling of all pans, lids, spatulas, 

and other utensils to prevent transfer of sweat and oils from hands and fingers onto 

equipment and utensils.  The importance of using gloves cannot be understated in 

quantitative methods of analyses, as fingerprints have weight (i.e. moisture, oils, 

residues) and can affect results.  The amount of sample to be weighed into each pan was 

determined using the following equation:  

                  Amount of sample =                              200                                      . 

                                                          100% - Predicted moisture % of sample 

 

Note:  The AOAC official method indicates that approximately two grams of 

dried material remain after drying. In most cases, five grams of meat material 

was used for high fat meat products and six grams of meat material was used for 

low fat meat products.   

The combined weight of the first pan and corresponding lid was obtained and 

recorded to the nearest 0.0001 g using an analytical balance.  Approximately 5-6 grams 

of homogenized material were weighed into the pan and spread in an even layer using a 

small metal spatula.  The combined weight of the pan, lid, and sample was then recorded 
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to the nearest 0.0001 g.  This process was repeated until 10 replicates were prepared.  

The meat sample in the polyurethane specimen container was stirred between each 

replicate sample and the lid kept in place to minimize moisture escape, evaporation, or 

absorption during sample preparation.   

The pans containing the prepared samples were transferred to a forced air drying 

oven and the samples dried for 16 hours.  The lids were removed and placed alongside 

the corresponding pans during drying.  Upon completion of the drying process, the lids 

were fitted onto the corresponding pans, the  pans removed from the oven, transferred to 

a desiccator, and allowed to cool to room temperature (for at least 6 hours to ensure a 

stable balance reading).  The pans (with the corresponding lids tightly fitted) containing 

the dried meat material were weighed on the balance and the weight recorded.  The 

following calculation was used to determine the percent moisture in each of the samples: 

                                                       

         A – B  x 100 = D  

                                                 C 

 

A= Wet weight (pan + lid + wet sample) 

B = Dry weight (pan + lid + dry weight) 

C = Initial sample weight  [Wet weight – (pan + lid weight)]  

D = % Moisture  

 

After the data was collected and the results determined, the dry sample material 

was removed from the pan and discarded.  The aluminum pans and corresponding lids 

were washed with soap and water, rinsed with distilled de-ionized water, dried in the 

forced air drying oven, and placed in a desiccator until needed for further use. 
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Moisture Analysis – Rapid Method (CEM Smart Trac 5 System®) 

Each of the 10 collaborative laboratories involved in the study analyzed the 

moisture for each of the aforementioned meat products using their CEM Smart Trac 5 

System®.  To begin analysis of the meat samples, the appropriate program method was 

selected using the digital menu and touchpad on the CEM Smart Trac 5 System®.  Two 

square-shaped glass fiber pads (stored at room temperature, undesiccated) designed 

specifically for use with the CEM Smart Trac 5 System® were placed on the internal 

balance and tared by pressing the “TARE” button on the touchpad.  Approximately 3-4 g 

of sample was spread in a thin, even layer with a Teflon-coated spatula on one of the 

glass fiber pads.  The second glass fiber pad was placed on top of the first so that the 

meat sample was sandwiched between the two glass fiber pads.  The lid to the equipment 

was then closed and locked in place and the “START” button on the touchpad pressed to 

initiate drying of the sample.   After drying (approximately 3 ½ - 4 min), the internal 

computer in the CEM Smart Trac 5 System® automatically calculated the percentage of 

moisture in the sample and displayed the results on the digital screen.  The “READY” 

button was then pressed and the dried sample material prepared for fat analysis, as 

described in the section titled “Fat Analysis – Rapid Method (CEM Smart Trac 5 

System®).” 

 

Fat Analysis – Standard Method (AOAC Official Method 960.39) 

The standard method for fat analysis is a lengthy process that requires the use of 

a potentially hazardous chemical.  Great care should be exercised when performing the 
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analysis to avoid risk of damage or injury.   Among the ten collaborative laboratories 

involved in the study, the research laboratory at Texas A&M University was designated 

to perform the AOAC Official Method 960.39 (Soxhlet Extraction of Crude Fat) for the 

determination of fat in each of the meat products.   Ten replicate samples for each meat 

product (undiluted and diluted) were analyzed for statistical purposes.   

The two fume hoods used for Soxhlet extraction were inspected and serviced 

prior to use for this study to ensure adequate ventilation and operation.  The apparatus 

for the simultaneous Soxhlet extraction of five to six samples per hood was assembled 

and several analyses performed on generic meat samples to ensure that the system was 

operating correctly. 

For the actual replications, a homogenized meat sample packaged in a 4-oz 

polyurethane specimen container was thawed overnight in a refrigerator.  The following 

day, the sample was stirred thoroughly and kept on ice for the duration of sample 

preparation.  A sheet of waxed paper was placed between the container and the ice to 

prevent moisture transfer from the ice to the sample.   Ten disposable aluminum pans 

(5.05 cm diameter) were labeled in numerical order with a permanent marker.   A small 

glass rod (ca. 4 cm in length) was placed in each pan.  The first pan with a glass rod was 

placed on the analytical balance, tared, and approximately 3.34 g of homogenized 

material weighed into the pan. (AOAC Official Method 960.39 indicated between 3.0-

3.5 g of sample be added).  The weight of the homogenized material was recorded to the 

nearest 0.0001 g.   Approximately 3.34 to 3.35 g of laboratory grade sand was added to 

the pan and mixed into the homogenized material using the glass rod.  The glass rod was 
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then used to spread the mixture into an even layer on the bottom of the pan.  The glass 

rod was kept in the pan with the mixture when the spreading of the sample was 

complete.  This set of steps was repeated until 10 replicate samples had been prepared.  

The ten prepared samples were then transferred to a forced air drying oven (103
o
C) for 

16 hours (overnight) to dry.   

Flat-bottom 250 mL glass flasks for the extraction system were numbered, 

washed with soap and water, rinsed thoroughly with distilled water, and rinsed a second 

time with distilled, deionized water.  Approximately 5 to 7 g of porous boiling chips 

(VWR Scientific, Inc.) were added to each flask, which were then placed into a forced 

air drying oven (103
o
C) until dry.  The flasks were then transferred to a desiccator and 

allowed to cool overnight.    

The following day, the ten samples were removed from the oven and transferred 

to a desiccator to cool to room temperature.  Meanwhile, each flask containing porous 

boiling chips was weighed on an analytical balance and each weight recorded to the 

nearest 0.0001 g.  Each of the ten flasks was then transferred to the fume hood and filled 

with 150 ml of petroleum ether.  Each of the pans containing the dried sample material 

was removed from the desiccator, folded and fitted into a cellulose thimble to prevent 

escape of pan contents, then placed into a Soxhlet apparatus corresponding to the 

appropriate flask.  For example, sample #1 would be placed in a Soxhlet to correspond 

with flask #1.  The setup of the Soxhlet extraction system was then completed by 

connecting the flasks to the Soxhlet condensers and tightly wrapping the junctions 

between the three pieces of glassware with Parafilm® to prevent escape of the petroleum 
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ether.  The heating mantels were adjusted to an initial setting of “6”, the water for the 

condensers were turned on, and the extraction process allowed to proceed for a 

minimum of four hours without interruption.  After the petroleum ether started to 

condense and drip into the Soxhlet, the mantels were adjusted as necessary to maintain a 

consistent rapid drip of approximately 4 to 6 drops/sec.  At this rate, the ether dripped as 

rapid individual drops, but not so fast that a continuous, unbroken stream was formed.  

At the end of the extraction period, the water and heating mantels were turned off 

and the flasks containing the petroleum ether allowed to cool.  The Parafilm® was 

removed and the condenser disconnected from its corresponding Soxhlet.  The cellulose 

thimble was then removed from the Soxhlet with large stainless steel tweezers and the 

remaining petroleum ether in the Soxhlet carefully fluxed back into the flask.  The 

Soxhlet was then set aside and the flask placed back onto the heating mantel.  This series 

of steps was repeated for each of the samples.  The flasks were then slowly heated on the 

mantels to aid in the evaporation of the remaining petroleum ether to near dryness.  

When near dryness was reached, the heating mantels were shut off and the flasks were 

gently removed.  The flasks were kept in the vent hood overnight to allow the residual 

petroleum ether to evaporate unassisted and undisturbed overnight.  

After all of the ether had evaporated from the flasks, the flasks were placed into 

the forced air drying oven (103
o
C) for an hour to evaporate any moisture that may have 

collected in the flask.  The flasks were removed from the oven, transferred to a 

desiccator, and allowed to cool to room temperature so a stable balance reading could be 

obtained.  When cooled, each flask containing the extracted fat was weighed and the 
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weight recorded.  The difference between the pre-extract flask weight and the post-

extract flask weight was the direct weight of the fat extracted from the sample.  The 

percentage of fat in the sample was calculated using the following equation: 

  % Fat  =   Post-extract Flask Wt. (g)  -  Pre-Extract Flask Wt. (g) x   100 

                                                                          Wet Sample Wt. (g) 

 

 

Fat Analysis – Rapid Method (CEM Smart Trac 5 System®) 

Each of the 10 collaborative laboratories involved in the study used their CEM 

Smart Trac 5 System® to analyze a specimen of each of the aforementioned meat 

products for fat percentage.  Each sample was prepared for fat determination using the 

steps described in the previous section titled “Moisture Analysis – Rapid Method (CEM 

Smart Trac 5 System®)” and was analyzed for fat immediately after the sample’s 

moisture content had been determined by the microwave drying process. 

After the sample had been dried, the glass fiber pad “sandwich” was removed 

from the internal balance, placed onto a sheet of Smart Trac® Teflon film (CEM 

Corporation, Matthews, NC), tightly rolled into a cylindrical shape per manufacturer’s 

instruction manual, and placed into the polyurethane tubing designed specifically for the 

NMR portion of the system equipment.  The sample was then tightly compacted into the 

tubing, and the tubing inserted into the appropriate opening in the NMR portion of the 

system equipment.  The “START” button was pressed to initiate the measurement of fat 

in the product.  Upon measurement completion, the internal computer of the CEM Smart 

Trac 5 System® computed the percentage of fat in the meat sample using results from 
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the NMR procedure.  The equipment automatically displayed the results on the digital 

display screen and printed the results for the moisture and fat analyses of the sample.  

The results from the AOAC Official Methods for Moisture (950.46) and Fat 

(960.39) analyses performed in the Dept. of Animal Science at TAMU were used as 

reference values for each sample type in the Smart Trac 5 System®.  The reference 

values for each sample type (i.e. “ham”, includes reference values for low fat ham and 

high fat ham) were loaded into the Smart Trac 5 System® and encompassed the entire 

range of fat into which the aliquot samples could fall.  Additional samples were used in 

conjunction with the reference values in order to determine the appropriate NMR signal 

for that specific sample type (i.e. “ham”) and to establish a standard curve (y=mx+b) for 

fat determination of that specific sample type.  This was to ensure that each program was 

equal and that variations would be due to preparation of the sample, the instrument, or 

both.   

Each collaborating laboratory was then instructed to perform one analysis from 

each sample aliquot (non-diluted and diluted) and report the results to the Study Director 

for comparative analysis against data collected using the AOAC Official Methods.  

Statistical analysis of the study results for moisture and fat were performed to determine 

repeatability and reproducibility of the Smart Trac 5 System® for the determination of 

moisture and fat. 

 

Statistical Analysis  

 The following statistical analyses were performed to fulfill requirements set forth 

by AOAC International for calculating and reporting data results for collaborative 
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studies:  mean, repeatability (within-laboratory) standard deviation (SDr), reproducibility 

(between-laboratory) standard deviation (SDR), repeatability (within-laboratory) relative 

standard deviation (RSDr), reproducibility (between-laboratory) relative standard 

deviation (RSDR), and percent recovery (%Recovery) (AOAC Int. 2002).  Acceptability 

criteria for repeatability (within-laboratory) relative standard deviation (RSDr) and 

reproducibility (between-laboratory) relative standard deviation (RSDR) are values <2%. 

 The mean is the average of the results, such as the average among 10 replicate 

analyses for moisture for a specific meat sample type (i.e. low-fat ham).  It is calculated 

by adding the individual result values and dividing the sum of the values by the number 

(n) of individual values, as follows: 

Mean   =   x1 + x2 + x3 + x4….. 

                                                                               n 

 

 Repeatability (within-laboratory) is a measure of how well an analyst in a given 

laboratory can check himself using the same analytical method to analyze the same test 

sample at the same time (AOAC Int 2002). The repeatability (within-laboratory) 

standard deviation (SDr) was calculated as follows, where x1, x2, x3, etc. represent 

individual results obtained for an analyte (i.e. moisture, fat), and where  is the mean of 

the values obtained within the data set: 

                         SDr  =   (x1 -  )
2
 +  (x2 -  )

2
 +  (x3 -  )

2
 +  . . . . . 

                                                                  n-1 

 

 Reproducibility (between-laboratory) is a measure of how well an analyst in one 

laboratory can check the results of another analyst in another laboratory using the same 

analytical method to analyze the same test sample at the same or different time (AOAC 
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Int 2002).  The reproducibility (between-laboratory) standard deviation (SDR) was 

calculated as follows, where x1, x2, x3, etc. represent individual results obtained for an 

analyte (i.e. moisture, fat), and where  is the mean of the values obtained within the 

data set: 

                         SDR  =   (x1 -  )
2
 +  (x2 -  )

2
 +  (x3 -  )

2
 +  . . . . . 

                                                                  n-1 

 

 AOAC describes relative standard deviations as the most useful measures of 

precision in chemical analytical work because the RSD values are usually independent 

of concentration and therefore can facilitate comparison of variabilities at different 

concentrations (AOAC Int 2002).  The RSD is often times more convenient than 

standard deviations since it is expressed in percent.  The repeatability (within-laboratory) 

relative standard deviation (RSDr) was calculated by multiplying the standard deviation 

by 100 and dividing this product by the mean, as follows: 

                                                 RSDr  =  100 x SDr 

                                                                                                             

 

 AOAC describes relative standard deviations as the most useful measures of 

precision in chemical analytical work because the RSD values are usually independent 

of concentration and therefore can facilitate comparison of variabilities at different 

concentrations (AOAC Int 2002).  The RSD is often times more convenient than 

standard deviations since it is expressed in percent.  The reproducibility (between-

laboratory) relative standard deviation (RSDR) was calculated by multiplying the 

standard deviation by 100 and dividing this product by the mean, as follows: 

                                                 RSDR =  100 x SDR 
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 The percent recovery indicates how much of the analyte was recovered using the 

study methods (i.e. CEM SMART Trac 5 System) in comparison to the amount of 

analyte recovered using the reference method (i.e. AOAC methods 950.46 and 960.39).  

To obtain the percent recovery for moisture and fat using for the CEM SMART Trac 5 

System in comparison to AOAC reference methods, the following calculation was used: 

                              % Recovery  =      Study method mean       x   100 

                                                        Reference method mean 

 

 

 An additional AOAC International requirement for calculation and reporting of 

data for collaborative studies is the HORRAT (Horwitz Ratio).  For purposes of this 

study, the HORRAT value was not determined for moisture and fat analysis because 

AOAC indicates that the HORRAT value is not applicable to empirical methods (i.e. 

fiber, enzymes, moisture, methods with indefinite analytes (i.e. polymers), quality 

measurements (i.e. drained weight), or physical properties (i.e. viscosity, density, pH, 

absorbance, etc.) (AOAC Int 2002).  
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

Four primary categories of red meat (beef and pork) and poultry (chicken and 

turkey) were analyzed for moisture and fat for this study, including: ground beef (high 

fat and low fat), fresh pork (high fat and low fat), fresh pork sausage (high fat and low 

fat), fresh chicken (high fat and low fat), fresh turkey breasts (low fat), mechanically 

deboned turkey (high fat), bone-in ham (high fat), formed ham with natural juices (low 

fat), beef frankfurters (high fat), pork/chicken/turkey frankfurters (low fat), and potted 

meat (medium fat).  For each of the meat products listed, a diluted counterpart was also 

analyzed as blind samples.  

AOAC methods for moisture (AOAC 950.46) and fat (AOAC 960.39) were 

performed by the TAMU laboratory.  The results from these methods of analysis were 

used as reference values for each sample type.  Results from AOAC methods for each 

sample type are provided in Tables 1-26. 

AOAC methods for moisture and fat for four sample types (high-fat chicken, 

low-fat frankfurters, high-fat turkey, and low-fat sausage) were performed by the TAMU 

laboratory, but were not analyzed by the 10 collaborative laboratories.  These samples 

were used in conjunction with the reference values in order to determine the appropriate 

NMR signal for that specific sample type (i.e. “chicken”) and to establish a standard 

curve for fat determination of that specific sample type to ensure that each program was 

equal and that variations would be due to preparation of the sample, the instrument, or 
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both.  The moisture and fat results for these four sample types are provided (see tables 

on pages 83, 87, 94, and 97).   

Study methods for moisture (rapid microwave method) and fat (NMR method) 

were performed by 10 collaborative laboratories using the CEM Smart Trac 5 System®.  

Results from the study methods are provided in Tables 1-26.  

Data were analyzed and the statistical summaries for within-laboratory 

repeatability (see table on page 105) and for between-laboratory reproducibility (see 

table on page 106) are provided.  The values shown for each product type include means, 

standard deviations (SD), and relative standard deviations (RSD).   

The percent recovery of moisture and fat was calculated based on data obtained 

from the AOAC methods and CEM SMART Trac 5 System® methods. The percent 

recovery for moisture and fat is provided (see table on page 108).  

 

Discussion of Ham Results 

AOAC methods yielded 74.93% and 75.91% mean total moisture values and 

2.54% and 2.37% mean total fat values for the low-fat ham and diluted low-fat ham 

samples, respectively (Tables 1 and 2).   The CEM Smart Trac 5 System® yielded 

comparable results, with 74.28% and 75.59% mean total moisture values and 2.60% and 

2.36% mean total fat values, respectively. 

For the high-fat ham and diluted high-fat ham samples, AOAC methods yielded 

mean total moisture values of 58.41% and 60.18% and mean total fat values of 16.34% 
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Table 1.  Comparative Moisture and Fat Analysis Values of Low Fat Ham Samples Analyzed By AOAC 

Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 6.0003 74.94  3.3479 2.43  A 4.1945 74.35 2.63 

2 5.9992 74.86  3.3458 2.66  B 4.2167 74.57 2.57 

3 6.0007 74.90  3.3440 2.63  C 4.0277 74.36 2.61 

4 6.0020 74.92  3.3482 2.53  D 4.1785 74.29 2.59 

5 6.0012 75.00  3.3449 2.63  E 4.3281 74.03 2.68 

6 5.9971 74.85  3.3422 2.61  F 3.8787 74.14 2.71 

7 5.9985 74.92  3.3430 2.44  G 3.6790 74.10 2.66 

8 5.9979 74.90  3.3468 2.57  H 3.7222 74.07 2.64 

9 5.9972 74.98  3.3480 2.49  I 3.8335 74.36 2.38 

10 6.0026 75.04  3.3438 2.42  J 4.0436 74.59 2.54 

           

Mean  74.93   2.54  Mean  74.29 2.60 

SDr  0.0598   0.0925  SDR  0.1990 0.0929 

RSDr  0.0798   3.6391  RSDR  0.2678 3.5721 
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Table 2.  Comparative Moisture and Fat Analysis Values of Low Fat Ham – Diluted Samples Analyzed By 

AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture %     Fat % 

1 6.0002 75.95  3.3479 2.35  A 3.6494 75.31 2.49 

2 6.0058 75.91  3.3458 2.50  B 4.0622 75.39 2.53 

3 5.9992 76.05  3.3440 2.48  C 4.3697 75.64 2.43 

4 5.9960 75.93  3.3482 2.32  D 4.5874 75.34 2.35 

5 6.0016 75.98  3.3449 2.50  E 4.3857 76.05 2.24 

6 5.9994 75.84  3.3422 2.46  F 3.7969 76.04 2.37 

7 5.9945 75.88  3.3430 2.33  G 4.3782 75.86 2.22 

8 6.0031 75.72  3.3468 2.20  H 4.4130 74.95 2.50 

9 5.9972 75.83  3.3480 2.20  I 3.6778 75.92 2.10 

10 6.0073 75.96  3.3438 2.36  J 4.1226 75.38 2.32 

           

Mean  75.91   2.37  Mean  75.59 2.36 

SDr  0.0937   0.1144  SDR  0.3701 0.1388 

RSDr  0.1234   4.8267  RSDR  0.4897 5.8949 
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Table 3.  Comparative Moisture and Fat Analysis Values of High Fat Ham Samples Analyzed By AOAC 

Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative Laboratories. 

TAMU Lab Results For AOAC Methods  

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 4.9961 58.48  3.3466 16.40  A 4.4982 58.44 16.03 

2 5.0050 58.44  3.3443 16.30  B 4.0837 58.38 16.41 

3 4.9941 58.35  3.3421 16.42  C 3.9018 58.40 16.21 

4 4.9958 58.37  3.3436 16.33  D 3.8314 58.05 16.42 

5 5.0003 58.45  3.3438 16.44  E 4.0873 58.31 16.56 

6 5.0007 58.37  3.3444 16.37  F 3.4584 58.28 16.29 

7 4.9976 58.40  3.3476 16.25  G 4.2823 58.47 16.21 

8 5.0042 58.42  3.3438 16.29  H 3.7693 58.15 16.44 

9 5.0078 58.43  3.3447 16.27  I 3.7742 58.45 16.15 

10 4.9977 58.41  3.3468 16.33  J 3.8725 57.38 15.97 

           

Mean  58.41   16.34  Mean  58.23 16.26 

SDr  0.0411   0.0644  SDR  0.3286 0.1899 

RSDr  0.0703   0.3944  RSDR  0.5643 1.1675 
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Table 4.  Comparative Moisture and Fat Analysis Values of High Fat Ham – Diluted Samples Analyzed 

By AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 4.9976 60.07  3.3472 16.09  A 4.4955 59.71 15.89 

2 5.0061 60.14  3.3484 16.17  B 3.7876 60.06 16.16 

3 4.9975 60.18  3.3427 16.21  C 4.2110 59.31 15.66 

4 4.9992 60.09  3.3420 16.06  D 4.2291 59.45 15.98 

5 4.9924 60.13  3.3438 15.94  E 3.5634 59.80 15.86 

6 4.9946 60.29  3.3473 16.14  F 3.5143 59.95 15.87 

7 4.9950 60.16  3.3457 16.03  G 3.7094 59.58 15.83 

8 4.9949 60.21  3.3486 15.84  H 3.3293 59.67 16.17 

9 5.0046 60.34  3.3488 15.95  I 4.0497 59.85 15.86 

10 4.9944 60.18  3.3440 15.91  J 4.7705 59.09 16.01 

           

Mean  60.18   16.03  Mean  59.65 15.93 

SDr  0.0836   0.1203  SDR  0.2979 0.1554 

RSDr  0.1389   0.7501  RSDR  0.4994 0.9755 
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and 16.03%, respectively (Tables 3 and 4).  The CEM Smart Trac 5 System® yielded 

comparable results, with 58.23% and 59.65% mean total moisture values and 16.27% 

and 15.93% mean total fat values, respectively. 

Within-laboratory SDr and RSDr (repeatability) values (Tables 1 and 2) for 

moisture content of low-fat ham (0.0598, 0.0798%) and diluted low-fat ham (0.0937, 

0.1234%) samples were similar to between-laboratory SDR and RSDR (reproducibility) 

values for moisture content of low-fat ham (0.1990, 0.2678%) and diluted low-fat ham 

(0.3701, 0.4897%) samples.   The between-laboratory RSDR  values were slightly higher 

than the within-laboratory RSDr values, but collectively, the very low RSDr and RSDR 

values for moisture observed for the low-fat ham and diluted low-fat ham samples were 

likely due to the high level of moisture among these two sample types.  Based on the 

RSDr and RSDR values for moisture, the AOAC reference method and CEM SMART 

Trac 5 System® method met AOAC’s acceptability criteria of < 2.00% for low-fat ham 

and diluted low-fat ham samples.     

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 1 and 2) 

for fat content of low-fat ham (0.0925, 3.6391%) and diluted low-fat ham (0.1144, 

4.8267%) samples trended similarly to between-laboratory (CEM®) SDR and RSDR 

(reproducibility) values for fat content of low-fat ham (0.0929, 3.5721%) and diluted 

low-fat ham (0.1388, 5.8949%) samples.   Within-laboratory RSDr and between-

laboratory RSDR values exceeded AOAC’s acceptability criteria of 2.00% for low-fat 

ham and diluted low-fat ham samples and were therefore not acceptable for fat analysis.  

The high RSDr and RSDR values were likely due to the very small levels of fat in the 
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low-fat ham and diluted low-fat ham samples and the inherent variability of weighing 

minute amounts of fat to the fourth decimal place.  The small amount of fat in the low-

fat ham and diluted low-fat ham samples could have also reduced fat extraction 

efficiency in the AOAC method, thus making fat weights more variable (less precise) 

among samples.   

Within-laboratory SDr and RSDr (repeatability) values (Tables 3 and 4) for 

moisture content of high-fat ham (0.0411, 0.0703%) and diluted high-fat ham (0.0836, 

0.1389%) samples were similar to between-laboratory SDR and RSDR (reproducibility) 

values for moisture content of high-fat ham (0.3286, 0.5643%) and diluted high-fat ham 

(0.2979, 0.4994%) samples.   Between-laboratory RSDR values were higher than the 

within-laboratory RSDr values, likely due to the variation among different laboratory 

conditions and multiple individuals performing the analyses among the collaborative 

laboratories, but the RSDr and RSDR values were < 2.00% and therefore met AOAC’s 

acceptability criteria for moisture for the AOAC reference method and the CEM 

SMART Trac 5 System® method for moisture analysis.     

  Within-laboratory SDr and RSDr (repeatability) values (Tables 3 and 4) for fat 

content of high-fat ham (0.0644, 0.3944%) and diluted high-fat ham (0.1203, 0.7501%) 

samples were similar to between-laboratory SDR and RSDR (reproducibility) values for 

fat content of high-fat ham (0.1899, 1.1675%) and diluted high-fat ham (0.1554, 

0.9755%) samples.   Within-laboratory RSDr and between-laboratory RSDR values met 

AOAC’s acceptability criteria of < 2.00% for the high-fat ham and diluted high-fat ham 

samples.  The smaller RSDr and RSDR values for these samples, in comparison to the 
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low-fat ham samples, indicate that the AOAC reference method and CEM SMART Trac 

5 System® method were more precise in determining fat content in the high-fat ham 

samples than in the low-fat ham samples.  This can be attributed to the higher fat content 

in the high-fat ham samples, which produced less variability when handling samples 

with higher fat content.      

Among all ham samples (low-fat, diluted low-fat, high-fat, diluted high-fat), the 

between-laboratory (CEM®) SDR and RSDR values were higher in comparison to 

within-laboratory (AOAC) SDr and RSDr values for moisture and fat.  The higher SDR 

and RSDR (between-laboratory) values were likely a result of variation among different 

laboratory conditions and multiple individuals performing the analyses in comparison to 

the carefully controlled laboratory conditions and a single individual performing within-

laboratory analyses.   

The data indicates that the CEM SMART Trac 5 System® performed very well 

in recovering moisture and fat from the ham samples (see table on page 108).  Using 

AOAC method mean values as the reference values for moisture and fat in the ham 

samples, the percent recovery for moisture by the CEM SMART Trac 5 System® ranged 

from 99.12% to 99.69% while the percent recovery for fat by the CEM SMART Trac 5 

System® ranged from 99.38% to 102.36% among all ham samples. 

The CEM SMART Trac 5 System® was found to be acceptable based on 

AOAC’s acceptability criteria (RSDR < 2.00%) for moisture analysis in all ham samples.  

It was also found to be acceptable for fat analysis for the high-fat ham and diluted high-
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fat ham samples, but failed to meet the acceptability criteria for fat analysis for the low-

fat ham and diluted low-fat ham samples.  

  

Discussion of Fresh Pork Results 

AOAC methods yielded 74.49% and 75.40% mean total moisture values and 

2.26% and 2.18% mean total fat values for the low-fat pork and diluted low-fat pork 

samples, respectively (Tables 5 and 6).   The CEM Smart Trac 5 System® yielded 

comparable results, with 74.19% and 75.24% mean total moisture values and 2.28% and 

2.11% mean total fat values, respectively. 

For the high-fat pork and diluted high-fat pork samples, AOAC methods yielded 

mean total moisture values of 60.07% and 61.54% and mean total fat values of 22.30% 

and 21.88%, respectively (Tables 7 and 8).  The CEM Smart Trac 5 System® yielded 

comparable results, with 60.15% and 61.42% mean total moisture values and 22.44% 

and 21.73% mean total fat values, respectively. 

Within-laboratory SDr and RSDr (repeatability) values (Tables 5 and 6) for 

moisture content of low-fat pork (0.0445, 0.0598%) and diluted low-fat pork (0.0370, 

0.0491%) samples were similar to between-laboratory SDR and RSDR (reproducibility) 

values for moisture content of low-fat pork (0.2211, 0.2980%) and diluted low-fat pork 

(0.1106, 0.1470%) samples.   The between-laboratory RSDR  values were higher than the 

within-laboratory RSDr values, but collectively, the very low RSDr and RSDR values for 

moisture observed for the low-fat pork and diluted low-fat pork samples were likely due
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Table 5.  Comparative Moisture and Fat Analysis Values of Low Fat Pork Samples Analyzed By AOAC 

Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 4.9844 74.41  3.3500 2.30  A 3.6650 73.91 2.29 

2 5.0043 74.51  3.3472 2.24  B 3.9470 74.39 2.40 

3 5.0003 74.50  3.3414 2.27  C 4.0674 74.37 2.31 

4 4.9925 74.53  3.3450 2.29  D 4.3584 74.15 2.21 

5 4.9944 74.49  3.3419 2.23  E 3.8669 74.33 2.22 

6 5.0166 74.50  3.3432 2.29  F 3.6057 74.14 2.30 

7 4.9872 74.55  3.4224 2.28  G 4.3342 74.33 2.26 

8 5.0342 74.53  3.4239 2.22  H 3.8028 74.43 2.19 

9 5.0142 74.49  3.3328 2.24  I 4.3173 74.13 2.33 

10 5.0215 74.42  3.3402 2.20  J 3.9272 73.76 2.28 

           

Mean  74.49   2.26  Mean  74.19 2.28 

SDr  0.0445   0.0345  SDR  0.2211 0.0626 

RSDr  0.0598   1.5303  RSDR  0.2980 2.7476 
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Table 6.  Comparative Moisture and Fat Analysis Values of Low Fat Pork - Diluted Samples Analyzed By 

AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.0388 75.45  3.3402 2.20  A 4.0884 75.16 2.13 

2 5.0216 75.39  3.3595 2.22  B 4.4983 75.27 2.13 

3 5.0495 75.40  3.3349 2.23  C 4.1782 75.37 2.13 

4 5.0213 75.36  3.3524 2.22  D 4.5243 75.08 2.17 

5 5.0057 75.33  3.3485 2.20  E 3.9424 75.15 2.10 

6 5.0286 75.42  3.3495 2.16  F 3.5038 75.40 2.11 

7 5.0179 75.43  3.3426 2.14  G 3.9015 75.19 2.17 

8 5.0251 75.38  3.3432 2.16  H 3.9845 75.16 2.03 

9 5.0119 75.38  3.3446 2.13  I 4.1816 75.37 2.08 

10 5.0329 75.45  3.3412 2.18  J 3.9654 75.21 2.04 

           

Mean  75.40   2.18  Mean  75.24 2.11 

SDr  0.0370   0.0361  SDR  0.1106 0.0479 

RSDr  0.0491   1.6541  RSDR  0.1470 2.2734 
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Table 7.  Comparative Moisture and Fat Analysis Values of High Fat Pork Samples Analyzed By AOAC 

Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.0660 59.96  3.3707 22.27  A 4.2022 60.27 22.16 

2 5.0899 60.09  3.3200 22.17  B 3.8433 60.43 22.30 

3 5.1278 60.23  3.3555 22.30  C 3.8020 60.22 22.53 

4 4.8629 60.16  3.3170 22.45  D 4.1862 59.72 22.50 

5 5.3052 59.91  3.3467 22.37  E 3.9279 60.47 22.53 

6 4.9273 59.83  3.3265 21.84  F 3.7719 59.94 22.88 

7 5.0832 60.10  3.3490 22.39  G 3.9483 60.17 22.40 

8 5.0719 60.08  3.3652 22.29  H 4.0830 60.34 22.08 

9 4.9299 60.28  3.3553 22.64  I 4.1278 60.26 22.37 

10 5.0880 60.07  3.3059 22.27  J 4.1576 59.72 22.64 

           

Mean  60.07   22.30  Mean  60.15 22.44 

SDr  0.1410   0.2065  SDR  0.2713 0.2327 

RSDr  0.2348   0.9258  RSDR  0.4510 1.0372 
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Table 8.  Comparative Moisture and Fat Analysis Values of High Fat Pork - Diluted Samples Analyzed By 

AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.5890 61.66  3.3876 21.81  A 4.0962 61.80 21.46 

2 5.1292 61.37  3.3634 21.89  B 4.0751 61.21 22.02 

3 4.1887 61.52  3.3566 21.79  C 4.5518 61.41 22.04 

4 4.8817 61.71  3.3329 22.06  D 4.0726 61.09 21.90 

5 5.2047 61.48  3.3153 21.55  E 4.1692 61.52 21.53 

6 5.1786 61.38  3.3229 22.49  F 3.6203 61.58 21.65 

7 5.1946 61.72  3.3180 21.73  G 4.1204 61.43 21.61 

8 5.0325 61.53  3.3491 21.69  H 4.2085 61.14 21.69 

9 5.1671 61.52  3.3364 22.05  I 3.8355 61.57 21.67 

10 5.0143 61.54  3.3883 21.70  J 4.0487 61.40 21.76 

           

Mean  61.54   21.88  Mean  61.42 21.73 

SDr  0.1219   0.2679  SDR  0.2197 0.1969 

RSDr  0.1981   1.2247  RSDR  0.3577 0.9058 
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to the high level of moisture among these two sample types.  Based on the RSDr and 

RSDR values for moisture, the AOAC reference method and CEM SMART Trac 5 

System® method met AOAC’s acceptability criteria of < 2.00% for low-fat pork and 

diluted low-fat pork samples.     

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 5 and 6) 

for fat content of low-fat pork (0.0345, 1.5303%) and diluted low-fat pork (0.0361, 

1.6541%) samples were lower than between-laboratory (CEM®) SDR  and RSDR 

(reproducibility) values for fat content of low-fat pork (0.0626, 2.7476%) and diluted 

low-fat pork (0.0479, 2.2734%) samples. 

  Within-laboratory RSDr values met AOAC’s acceptability criteria (RSDr < 

2.00%) for fat in the low-fat pork and diluted low-fat pork samples, but the between-

laboratory RSDR values for fat exceeded AOAC’s acceptability criteria (RSDR < 2.00%) 

and was therefore not acceptable for fat for the low-fat pork and diluted low-fat pork 

samples.  The higher RSDR values indicate that the CEM SMART Trac 5 System® was 

less precise than the AOAC reference method in determining fat content, likely due to 

the very small levels of fat in the low-fat pork and diluted low-fat pork samples and the 

greater variability that existed between laboratories and analysts.  Sample preparation 

and handling would have also been critical, as small variations in the sample could 

produce large data inconsistencies when fat content is at such a low level.   

Within-laboratory (AOAC) SDr  and RSDr (repeatability) values (Tables 7 and 8) 

for moisture content of high-fat pork (0.1410, 0.2348%) and diluted high-fat pork 

(0.1219, 0.1981%) samples were similar to between-laboratory (CEM®) SDR  and RSDR 
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(reproducibility) values for moisture content of high-fat pork (0.2713, 0.4510%) and 

diluted high-fat pork (0.2197, 0.3577%) samples.   Between-laboratory RSDR values 

were higher than the within-laboratory RSDr values, likely due to the variation among 

different laboratory conditions and multiple individuals performing the analyses among 

the collaborative laboratories, but the RSDr and RSDR values were < 2.00% and 

therefore met AOAC’s acceptability criteria for moisture for the AOAC reference 

method and the CEM SMART Trac 5 System® method for moisture analysis.     

  Within-laboratory SDr  and RSDr (repeatability) values (Tables 7 and 8) for fat 

content of high-fat pork (0.2065, 0.9258%) and diluted high-fat pork (0.2679, 1.2247%) 

samples were similar to between-laboratory SDR and RSDR (reproducibility) values for 

fat content of high-fat pork (0.2327, 1.0372%) and diluted high-fat pork (0.1969, 

0.9058%) samples.   Within-laboratory RSDr and between-laboratory RSDR values met 

AOAC’s acceptability criteria of < 2.00% for the high-fat ham and diluted high-fat ham 

samples.  The smaller RSDr and RSDR values for these samples, in comparison to the 

low-fat pork samples, indicate that the AOAC reference method and CEM SMART Trac 

5 System® method were more precise in determining fat content in the high-fat pork 

samples than in the low-fat pork samples.  This can be attributed to the higher fat content 

in the high-fat pork samples, which produced less variability when handling samples 

with higher fat content.       

Among all pork samples, with the exception of diluted high-fat pork samples, the 

between-laboratory SDR and RSDR values were higher in comparison to within-

laboratory SDr and RSDr values for moisture and fat.  The higher SDR and RSDR 
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(reproducibility) values were likely a result of variation among different laboratory 

conditions and multiple individuals performing the analyses in comparison to the 

carefully controlled laboratory conditions and a single individual performing within-

laboratory analyses.   

The data indicates that the CEM SMART Trac 5 System® performed very well 

in recovering moisture and fat from the pork samples (see table on page 108).  Using 

AOAC method mean values as the reference values for moisture and fat in the pork 

samples, the percent recovery for moisture by the CEM SMART Trac 5 System® ranged 

from 99.60% to 100.13% while the percent recovery for fat by the CEM SMART Trac 5 

System® ranged from 99.31% to 100.88% among all pork samples. 

The CEM SMART Trac 5 System was found to be acceptable based on AOAC’s 

acceptability criteria (RSDR < 2.00%) for moisture analysis in all pork samples.  It was 

also found to be acceptable for fat analysis for the high-fat pork and diluted high-fat pork 

samples, but failed to meet the acceptability criteria for fat analysis for the low-fat pork 

and diluted low-fat pork samples. 

 

Discussion of Fresh Beef Results 

AOAC methods yielded 67.31% and 68.86% mean total moisture values and 

11.23% and 10.63% mean total fat values for the low-fat beef and diluted low-fat beef 

samples, respectively (Tables 9 and 10).   The CEM Smart Trac 5 System® yielded very 

comparable results, with 67.11% and 68.58% mean total moisture values and 11.30% 

and 10.73% mean total fat values, respectively.
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Table 9.  Comparative Moisture and Fat Analysis Values of Low Fat Beef Samples Analyzed By AOAC 

Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 4.9901 67.30  3.3971 11.19  A 3.9731 66.57 11.51 

2 5.0514 67.24  3.3245 11.35  B 4.3489 67.09 11.22 

3 4.9766 67.23  3.3283 10.96  C 4.0628 67.13 11.40 

4 5.0150 67.15  3.3273 11.14  D 4.3097 66.95 11.36 

5 5.0094 67.40  3.3291 11.31  E 4.2080 67.41 11.16 

6 4.9682 67.25  3.3217 11.30  F 3.8955 67.16 11.12 

7 5.0408 67.15  3.3243 11.24  G 4.6510 67.54 11.20 

8 5.0347 67.28  3.3220 11.07  H 4.2399 66.97 11.41 

9 5.0050 67.48  3.3265 11.21  I 3.7519 67.18 11.28 

10 4.9835 67.60  3.3216 11.49  J 4.0059 67.10 11.33 

           

Mean  67.31   11.23  Mean  67.11 11.30 

SDr  0.1444   0.1494  SDR  0.2625 0.1245 

RSDr  0.2145   1.3309  RSDR  0.3911 1.1018 
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Table 10.  Comparative Moisture and Fat Analysis Values of Low Fat Beef - Diluted Samples Analyzed 

By AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 4.9946 68.87  3.3206 10.65  A 4.0521 68.37 10.74 

2 5.0011 68.30  3.3222 10.72  B 4.9856 68.94 10.37 

3 4.9430 69.00  3.3212 10.77  C 4.3503 68.64 10.60 

4 4.9965 68.92  3.3191 10.68  D 4.3530 68.26 10.80 

5 4.9838 69.01  3.3301 10.53  E 3.7710 68.96 10.87 

6 4.9680 68.89  3.3229 10.62  F 3.7252 68.63 10.64 

7 5.0042 68.93  3.3255 10.68  G 3.7224 68.91 10.73 

8 4.9871 68.90  3.3226 10.42  H 3.7017 68.70 10.74 

9 5.0051 68.87  3.3243 10.81  I 4.2452 68.36 10.85 

10 5.0107 68.86  3.3315 10.44  J 4.3877 68.02 10.98 

           

Mean  68.86   10.63  Mean  68.58 10.73 

SDr  0.2016   0.1331  SDR  0.3183 0.1687 

RSDr  0.2928   1.2516  RSDR  0.4642 1.5720 
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For the high-fat beef and diluted high-fat beef samples, AOAC methods yielded 

mean total moisture values of 57.84% and 60.16% and mean total fat values of 26.56% 

and 25.44%, respectively (Tables 11 and 12).  The CEM Smart Trac 5 System® yielded 

very comparable results, with 57.96% and 59.59% mean total moisture values and 

26.55% and 25.43% mean total fat values, respectively. 

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 9 and 

10) for moisture content of low-fat beef (0.1444, 0.2145%) and diluted low-fat beef 

(0.2016, 0.2928%) samples were similar to between-laboratory (CEM®) SDR and RSDR 

(reproducibility) values for moisture content of low-fat beef (0.2625, 0.3911%) and 

diluted low-fat beef (0.3183, 0.4642%) samples.  The within-laboratory RSDr values and 

between-laboratory RSDR values for moisture were very low, with between-laboratory 

RSDR values being slightly higher, likely due to the variation among different laboratory 

conditions and multiple analysts among the collaborative laboratories.  Based on the 

RSDr and RSDR values for moisture, the AOAC reference method and CEM SMART 

Trac 5 System® method met AOAC’s acceptability criteria of < 2.00% for moisture 

analysis in low-fat beef and diluted low-fat beef samples.    

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 9 and 

10) for fat content of low-fat beef (0.1494, 1.3309%) and diluted low-fat beef (0.1331, 

1.2516%) samples were similar to between-laboratory (CEM®) SDR and RSDR 

(reproducibility) values for fat content of low-fat beef (0.1245, 1.1018%) and diluted 

low-fat beef (0.1687, 1.5720%) samples.  The within-laboratory RSDr and between-

laboratory RSDR values for fat analysis were within AOAC’s acceptability criteria
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Table 11.  Comparative Moisture and Fat Analysis Values of High Fat Beef Samples Analyzed By AOAC 

Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 4.9973 57.82  3.3419 26.85  A 4.3275 57.78 26.52 

2 5.0031 57.55  3.3345 26.69  B 4.6886 58.30 26.92 

3 4.9979 57.96  3.3882 26.78  C 3.7874 57.56 26.45 

4 5.0029 57.71  3.3839 26.76  D 4.2676 58.31 25.95 

5 5.0003 57.66  3.3891 26.70  E 3.9380 57.92 26.87 

6 4.9997 57.89  3.3783 26.34  F 3.6041 58.01 26.76 

7 4.9998 58.15  3.3244 26.23  G 3.7313 58.34 26.56 

8 4.9989 57.80  3.3570 26.06  H 4.5678 57.63 26.55 

9 5.0032 57.82  3.3291 27.02  I 3.9628 57.52 26.90 

10 5.0058 58.02  3.3462 26.21  J 4.2296 58.25 25.99 

           

Mean  57.84   26.56  Mean  57.96 26.55 

SDr  0.1783   0.3256  SDR  0.3275 0.3481 

RSDr  0.3083   1.2257  RSDR  0.5651 1.3112 
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Table 12.  Comparative Moisture and Fat Analysis Values of High Fat Beef - Diluted Samples Analyzed 

By AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.3424 60.28  3.3391 26.02  A 4.7892 59.16 25.22 

2 5.0626 59.35  3.3379 25.75  B 4.4993 59.81 25.44 

3 4.8691 59.79  3.3187 25.40  C 4.4521 58.97 25.64 

4 5.1590 60.31  3.3976 25.28  D 4.5670 59.58 24.92 

5 5.0889 60.14  3.3666 25.55  E 3.7458 60.05 25.51 

6 5.0110 60.88  3.3788 25.63  F 3.6157 59.69 25.88 

7 4.8938 60.31  3.3335 25.32  G 3.9466 59.98 24.81 

8 4.9029 60.33  3.3504 25.57  H 3.9156 59.91 25.28 

9 4.9475 60.08  3.3674 25.02  I 4.0508 59.31 25.63 

10 5.2606 60.16  3.3810 24.84  J 4.2901 59.39 26.00 

           

Mean  60.16   25.44  Mean  59.59 25.43 

SDr  0.3939   0.3447  SDR  0.3670 0.3843 

RSDr  0.6547   1.3552  RSDR  0.6159 1.5109 
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(<2.00%) for the low-fat beef and diluted low-fat beef samples.   

Within-laboratory SDr and RSDr (repeatability) values (Tables 11 and 12) for 

moisture content of high-fat beef (0.1783, 0.3083%) and diluted high-fat beef (0.3939, 

0.6547%) samples were similar to between-laboratory SDr and RDSR (reproducibility) 

values for moisture content of high-fat beef (0.3275, 0.5651%) and diluted high-fat beef 

(0.3670, 0.6159%) samples.  Between-laboratory RSDR values and within-laboratory 

RSDr values were < 2.00% and therefore met AOAC’s acceptability criteria for moisture 

for the AOAC reference method and the CEM SMART Trac 5 System® method for 

moisture analysis. 

  Within-laboratory SDr and RSDr (repeatability) values (Tables 11 and 12) for 

fat content of high-fat beef (0.3256, 1.2257%) and diluted high-fat beef (0.3447, 

1.3552%) samples were similar to between-laboratory SDR and RSDR (reproducibility) 

values for fat content of high-fat beef (0.3481, 1.3112%) and diluted high-fat beef 

(0.3843, 1.5109%) samples.  Within-laboratory RSDr and between-laboratory RSDR 

values for fat analysis met AOAC’s acceptability criteria of < 2.00% for the high-fat 

beef and diluted high-fat beef samples.   

In comparing the RSDr and RSDR values for fat analysis between the four beef 

samples (low-fat beef, diluted low-fat beef, high-fat beef, and diluted high-fat beef), 

there did not appear to be as great of a difference between the low-fat RSD (RSDr and 

RSDR) values as compared to the low-fat RSD (RSDr and RSDR) values observed for 

other meat sample types (i.e. ham samples, pork samples).  For example, the RSDr value 

for fat analysis of the low-fat beef sample (1.3309%) was similar to the RSDr value of 
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the high-fat beef sample (1.2257%).  In comparison to the ham samples and fresh pork 

samples, a much greater difference between the low-fat RSDr fat values (i.e. low-fat 

pork RSDr = 1.5303%) was much greater than the high-fat RSDr fat values (i.e. high-fat 

pork RSDr = 0.9258%).  This difference in trend may indicate that the beef samples were 

more variable in nature than other meat samples (such as ham or fresh pork), with one 

possible explanation being the presence of connective tissue in the beef samples.  

Among all beef samples (low-fat, diluted low-fat, high-fat, diluted high-fat), the 

between-laboratory SDR and RSDR values were higher in comparison to within-

laboratory SDr and RSDr values for moisture and fat, with the exception of RSDR values 

for fat analysis in the low-fat beef samples.  The RSDR value for fat analysis of the low-

fat beef samples was slightly lower than the RSDr value for fat analysis, indicating that 

the CEM SMART Trac 5 Systems® among collaborative laboratories performed with 

slightly greater precision than AOAC within-laboratory methods. 

The data indicates that the CEM SMART Trac 5 System® performed very well 

in recovering moisture and fat from the beef samples (see table on page 108).  Using 

AOAC method mean values as the reference values for moisture and fat in the beef 

samples, the percent recovery for moisture by the CEM SMART Trac 5 System® ranged 

from 99.05% to 100.21% while the percent recovery for fat by the CEM SMART Trac 5 

System® ranged from 99.96% to 100.94% among all beef samples. 

The CEM SMART Trac 5 System® was found to be acceptable based on the 

AOAC’s acceptability criteria (RSDR < 2.00%) for moisture and fat analysis in all beef 

samples.   
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Discussion of Fresh Chicken Results 

AOAC methods yielded 74.99% and 75.90% mean total moisture values and 

2.91% and 2.79% mean total fat values for the low-fat chicken and diluted low-fat 

chicken samples, respectively (Tables 13 and 14).   The CEM Smart Trac 5 System® 

yielded very comparable results, with 74.66% and 75.63% mean total moisture values 

and 2.92% and 2.73% mean total fat values, respectively. 

For the high-fat chicken, AOAC methods yielded a mean total moisture value of 61.62% 

and a mean total fat value of 23.30% (Table 15).  Moisture and fat data were not 

obtained from the collaborative laboratories’ CEM SMART Trac 5 Systems®.  The 

high-fat chicken sample results from AOAC methods were used only for establishing a  

reference value in order to determine the appropriate NMR signal for that specific 

sample type (i.e. “chicken”) and to establish a standard curve for fat determination of 

that specific sample type on the CEM SMART Trac 5 Systems®.  Diluted high-fat 

chicken samples were not analyzed by AOAC methods or by the CEM SMART Trac 5 

Systems® among collaborative laboratories.   

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 13 and 

14) for moisture content of low-fat chicken (0.0388, 1.3327%) and diluted low-fat 

chicken (0.0382, 1.3695%) samples were similar to between-laboratory (CEM®) SDR 

and RSDR (reproducibility) values for moisture content of low-fat chicken (0.1552, 

0.2079%) and diluted low-fat chicken (0.2225, 0.2942%) samples.  The between-

laboratory RSDR values were slightly higher than the within-laboratory RSDr values, but 

both values were within AOAC’s acceptability criteria of < 2.00% and were therefore
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Table 13.  Comparative Moisture and Fat Analysis Values of Low Fat Chicken Samples Analyzed By 

AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.0029 75.02  3.3436 2.92  A 4.6249 74.75 2.98 

2 5.0016 74.85  3.3460 2.99  B 3.9349 74.76 2.97 

3 4.9983 74.96  3.3423 2.88  C 3.8794 74.76 2.98 

4 5.1334 74.95  3.3436 2.93  D 2.9766 74.68 2.84 

5 5.0057 74.94  3.3467 2.93  E 4.2604 74.66 2.91 

6 5.0315 75.02  3.3452 2.85  F 3.8469 74.80 2.87 

7 4.9689 75.11  3.3458 2.90  G 3.5562 74.81 2.90 

8 4.9765 75.01  3.3447 2.88  H 3.9174 74.45 2.91 

9 4.9890 75.03  3.3479 2.93  I 4.2915 74.55 2.93 

10 5.0354 74.99  3.3492 2.89  J 4.1324 74.36 2.93 

           

Mean  74.99   2.91  Mean  74.66 2.92 

SDr  0.0668   0.0388  SDR  0.1552 0.0464 

RSDr  0.0891   1.3327  RSDR  0.2079 1.5873 
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Table 14.  Comparative Moisture and Fat Analysis Values of Low Fat Chicken - Diluted Samples 

Analyzed By AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 

Collaborative Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.9951 76.04  3.3461 2.80  A 3.9567 75.50 2.84 

2 6.0088 76.01  3.3491 2.82  B 4.2728 75.68 2.75 

3 6.0264 76.01  3.3458 2.80  C 3.8645 75.99 2.70 

4 6.0252 76.03  3.3431 2.85  D 3.9658 75.44 2.63 

5 6.0007 76.02  3.3460 2.80  E 4.3841 75.63 2.65 

6 6.0043 75.97  3.3455 2.77  F 3.9554 75.79 2.71 

7 6.0025 75.99  3.3473 2.82  G 3.7329 75.93 2.73 

8 5.9965 75.20  3.3446 2.73  H 3.7147 75.41 2.82 

9 6.0017 75.84  3.3435 2.80  I 4.4424 75.61 2.71 

10 5.9950 75.93  3.3481 2.73  J 3.7582 75.32 2.72 

           

Mean  75.90   2.79  Mean  75.63 2.73 

SDr  0.2541   0.0382  SDR  0.2225 0.0655 

RSDr  0.3348   1.3695  RSDR  0.2942 2.4037 
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Table 15.  Reference Moisture and Fat Analysis Values of High Fat Chicken Samples Analyzed By 

AOAC Method 950.46 and AOAC Method 960.39. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.0024 61.70  3.3446 23.65  A n/a n/a n/a 

2 5.0027 61.56  3.3469 23.52  B n/a n/a n/a 

3 4.9975 61.70  3.3455 23.32  C n/a n/a n/a 

4 4.9938 61.74  3.3475 23.66  D n/a n/a n/a 

5 5.0044 61.49  3.3464 22.73  E n/a n/a n/a 

6 5.0001 61.65  3.3433 23.09  F n/a n/a n/a 

7 5.0017 61.63  3.3448 23.16  G n/a n/a n/a 

8 4.9936 61.56  3.3490 23.78  H n/a n/a n/a 

9 5.0078 61.50  3.3429 22.97  I n/a n/a n/a 

10 5.0007 61.62  3.3476 23.13  J n/a n/a n/a 

           

Mean  61.62   23.30      

SDr  0.0868   0.3428      

RSDr  0.1409   1.4713      
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acceptable for moisture analysis.  Collectively, the very low RSDr and RSDR values for 

moisture observed for the low-fat chicken and diluted low-fat chicken samples were 

likely due to the high level of moisture among these two sample types. 

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 13 and 

14) for fat content of low-fat chicken (0.0388. 1.3327%) and diluted low-fat chicken 

(0.0382, 1.3695%) samples trended similarly to between-laboratory (CEM®) SDR and 

RSDR (reproducibility) values for fat content of low-fat chicken (0.0464, 1.5873%) and 

diluted low-fat chicken (0.0655, 2.4037%) samples.  Within-laboratory RSDr values for 

low-fat chicken and diluted low-fat chicken and between-laboratory RSDR value for 

low-fat chicken were within AOAC’s acceptability criteria of < 2.00% for fat analysis.  

However, the between-laboratory RSDR value for diluted low-fat chicken exceeded 

AOAC’s acceptability criteria of 2.00% and was therefore not acceptable for fat 

analysis.  The high RSDR value for the between-laboratory fat analysis of the diluted 

low-fat chicken samples was due to the very small amount of fat in the sample and the 

variation among different laboratory conditions and multiple analysts.  It was not 

unexpected to see a high RSDR value in the diluted low-fat chicken sample, as this trend 

was observed in other meat samples in which fat content was very low (i.e. low-fat ham, 

low-fat pork).   

Within-laboratory SDr and RSDr (repeatability) values (Table 15) for moisture 

content (0.0868, 0.1409%) and fat content (0.3428, 1.4713%) of high-fat chicken 

samples were acceptable based on AOAC’s acceptability criteria of RSDr < 2.00%.  

Moisture and fat data were not obtained from the collaborative laboratories’ CEM 
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SMART Trac 5 Systems® for high-fat chicken, so between-laboratory reproducibility 

cannot be determined.  Moisture and fat data were also not obtained from AOAC 

methods or from the collaborative laboratories’ CEM SMART Trac 5 Systems® for 

diluted high-fat chicken.   

The data indicates that the CEM SMART Trac 5 System® performed well in 

recovering moisture and fat from the low-fat chicken and diluted low-fat chicken 

samples (see table on page 108).  Using AOAC method mean values as the reference 

values for moisture and fat in the chicken samples, the percent recovery for moisture by 

the CEM SMART Trac 5 System® ranged from 99.56% to 99.64% while the percent 

recovery for fat by the CEM SMART Trac 5 System® ranged from 97.85% to 100.34%.  

Based on this data, the percent fat recovery by the CEM SMART Trac 5 System® was 

more variable for the low-fat chicken and diluted low-fat chicken samples compared to 

other meat samples analyzed.  This is most likely due to the very small amount of fat in 

the samples. 

The CEM SMART Trac 5 System® was found to be acceptable for moisture 

analysis for low-fat chicken and diluted low-fat chicken samples based on AOAC’s 

acceptability criteria (RSDR < 2.00%).  The CEM SMART Trac 5 System® was also 

acceptable for fat analysis for low-fat chicken samples, but was not acceptable for fat 

analysis for diluted low-fat chicken samples due to exceeding AOAC’s acceptability 

criteria.  
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Discussion of Frankfurter Results 

AOAC methods yielded a 74.97% mean total moisture value and a 2.68% mean 

total fat value for the low-fat frankfurter samples, respectively, based on three replicate 

determinations (Table 16).   Moisture and fat data were not obtained from the 

collaborative laboratories’ CEM SMART Trac 5 Systems®.  The low-fat frankfurter 

sample results from AOAC methods were used only for establishing a  reference value 

in order to determine the appropriate NMR signal for that specific sample type (i.e. 

“frankfurter”) and to establish a standard curve for fat determination of that specific 

sample type on the CEM SMART Trac 5 Systems®.  Diluted low-fat frankfurter 

samples were not analyzed by AOAC methods or by the CEM SMART Trac 5 

Systems® among collaborative laboratories. 

For the high-fat and diluted high-fat frankfurter samples, AOAC methods yielded 

mean total moisture values of 54.03% and 55.54% and mean total fat values of 29.79% 

and 28.80%, respectively (Tables 17 and 18).   The CEM Smart Trac 5 System® yielded 

comparable results, with 53.64% and 55.52% mean total moisture values and 29.93% 

and 28.78% mean total fat values, respectively. 

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 17 and 

18) for moisture content of high-fat frankfurter (0.0722, 0.1337%) and diluted high-fat 

frankfurter (0.0787, 0.1416%) samples were similar to between-laboratory (CEM®) SDR 

and RSDR (reproducibility) values for moisture content of high-fat frankfurter (0.2704, 

0.5041%) and diluted high-fat frankfurter (0.3709, 0.6680%) samples.  The between-

laboratory RSDR values were higher than the within-laboratory RSDr values, but overall,
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Table 16.  Reference Moisture and Fat Analysis Values of Low Fat Frankfurter Samples Analyzed By 

AOAC Method 950.46 and AOAC Method 960.39. 

TAMU Lab Results For AOAC Methods 

(For Calibration of SMART Trac System instruments) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.9989 75.02  3.3467 2.6832  A n/a n/a n/a 

2 6.0008 75.31  3.3460 2.6509  B n/a n/a n/a 

3 6.0037 74.59  3.3492 2.6962  C n/a n/a n/a 

4 n/a n/a  n/a n/a  D n/a n/a n/a 
5 n/a n/a  n/a n/a  E n/a n/a n/a 
6 n/a n/a  n/a n/a  F n/a n/a n/a 
7 n/a n/a  n/a n/a  G n/a n/a n/a 
8 n/a n/a  n/a n/a  H n/a n/a n/a 
9 n/a n/a  n/a n/a  I n/a n/a n/a 

10 n/a n/a  n/a n/a  J n/a n/a n/a 
           

Mean  74.97   2.6768      

SDr  0.3638   0.0233      

RSDr  0.4852   0.8705      
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Table 17.  Comparative Moisture and Fat Analysis Values of High Fat Frankfurter Samples Analyzed By 

AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.0070 53.94  3.3437 29.85  A 3.8665 53.63 30.00 

2 5.0003 54.07  3.3438 29.65  B 3.9047 53.70 29.83 

3 5.0010 54.19  3.3442 29.79  C 4.1362 53.27 29.84 

4 5.0070 53.98  3.3424 29.73  D 4.3709 53.27 30.31 

5 4.9994 54.00  3.3442 29.95  E 3.9357 53.85 29.85 

6 5.0027 54.07  3.3426 29.93  F 4.3307 53.35 29.91 

7 4.9968 53.96  3.3410 30.03  G 3.9830 53.92 29.76 

8 4.9992 54.07  3.3454 29.73  H 3.9218 53.53 29.86 

9 4.9951 53.98  3.3434 29.63  I 3.4103 53.97 29.83 

10 4.9995 54.03  3.3439 29.66  J 4.1807 53.87 30.06 

           

Mean  54.03   29.79  Mean  53.64 29.93 

SDr  0.0722   0.1397  SDR  0.2704 0.1615 

RSDr  0.1337   0.4688  RSDR  0.5041 0.5396 
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Table 18.  Comparative Moisture and Fat Analysis Values of High Fat Frankfurter - Diluted Samples 

Analyzed By AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 

Collaborative Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 4.9975 55.60  3.3459 28.53  A 4.4579 55.40 28.92 

2 5.0059 55.47  3.3443 29.16  B 4.3911 54.87 28.97 

3 5.0043 55.45  3.3438 28.52  C 4.4177 54.94 28.93 

4 5.0036 55.53  3.3474 28.72  D 4.3976 55.70 28.67 

5 5.0007 55.48  3.3470 28.76  E 4.1753 55.84 28.49 

6 5.0032 55.54  3.3444 28.91  F 4.2986 55.67 28.88 

7 4.9936 55.60  3.3434 28.89  G 3.9425 56.00 28.70 

8 4.9973 55.71  3.3457 28.76  H 4.4674 55.75 28.98 

9 5.0036 55.51  3.3417 29.02  I 3.5102 55.42 28.82 

10 5.0006 55.54  3.3427 28.72  J 3.9421 55.64 28.46 

           

Mean  55.54   28.80  Mean  55.52 28.78 

SDr  0.0787   0.2011  SDR  0.3709 0.1929 

RSDr  0.1416   0.6984  RSDR  0.6680 0.6701 
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the very low RSDr and RSDR values met AOAC’s acceptability criteria (< 2.00%) for 

moisture analysis and reflect a great level of precision for moisture analysis among the 

AOAC method and CEM Smart Trac 5 System® method. 

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 17 and 

18) for fat content of high-fat frankfurter (0.1397, 0.4688%) and diluted high-fat 

frankfurter (0.2011, 0.6984%) samples were similar to between-laboratory (CEM®) SDR 

and RSDR (reproducibility) values for fat content of high-fat frankfurter (0.1615, 

0.5396%) and diluted high-fat frankfurter (0.1929, 0.6701%) samples.   The low RSDr 

and RSDR values met AOAC’s acceptability criteria (< 2.00%) for fat analysis and 

reflect a great level of precision among the AOAC method and CEM Smart Trac 5 

System® method for fat analysis in frankfurter samples. 

The data indicates that the CEM Smart Trac 5 System® performed well in 

recovering moisture and fat from the frankfurter samples (see table on page 108).  Using 

AOAC method mean values as the reference values for moisture and fat in the 

frankfurter samples, the percent recovery for moisture by the CEM Smart Trac 5 

System® ranged from 99.28% to 99.96% while the percent recovery for fat by the CEM 

Smart Trac 5 System® ranged from 99.93% to 100.47% among the frankfurter samples.  

The CEM SMART Trac 5 System® was found to be acceptable for moisture 

analysis and fat analysis for high-fat frankfurter samples based on AOAC’s acceptability 

criteria (RSDR < 2.00%). 

 

 



91 

 

Discussion of Fresh Turkey Results 

AOAC methods yielded 74.67% and 75.43% mean total moisture values and 

1.00% and 0.74% mean total fat values for the low-fat turkey samples and diluted low-

fat turkey samples, respectively (Tables 19 and 20).   The CEM Smart Trac 5 System® 

yielded very comparable results, with 74.37% and 75.16% mean total moisture values 

and 0.95% and 0.87% mean total fat values, respectively. 

For the high-fat turkey samples, AOAC methods yielded a mean total moisture 

value of 65.79% and a mean total fat value of 18.52% for the high-fat turkey samples 

based on three replicate determinations (Table 21).   Moisture and fat data were not 

obtained from the collaborative laboratories’ CEM SMART Trac 5 Systems® for high-

fat turkey samples.  The high-fat turkey sample results from AOAC methods were used 

only for establishing a  reference value in order to determine the appropriate NMR signal 

for that specific sample type (i.e. “turkey”) and to establish a standard curve for fat 

determination of that specific sample type on the CEM SMART Trac 5 Systems®.  

Diluted high-fat turkey samples were not analyzed by AOAC methods or by the CEM 

SMART Trac 5 Systems® among collaborative laboratories. 

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 19 and 

20) for moisture content of low-fat turkey (0.0564, 0.0755%) and diluted low-fat turkey 

(0.0687, 0.0911) samples were similar to between-laboratory (CEM®) SDR and RSDR 

(reproducibility) values for moisture content of low-fat turkey (0.2708, 0.3641%) and 

diluted low-fat turkey (0.2399, 0.3191%) samples.  The between-laboratory RSDR 

values were higher than the within-laboratory RSDr values, which is a trend that has
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Table 19.  Comparative Moisture and Fat Analysis Values of Low Fat Turkey Samples Analyzed By 

AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.9992 74.70  3.3457 0.99  A 3.6998 74.98 0.89 

2 6.0014 74.61  3.3489 0.99  B 3.5556 74.18 1.05 

3 6.0003 74.61  3.3446 1.05  C 4.5618 74.31 0.95 

4 5.9989 74.70  3.3477 1.07  D 5.3125 74.38 0.91 

5 5.9942 74.64  3.3458 1.03  E 3.9651 74.21 1.03 

6 5.9943 74.80  3.3454 1.04  F 3.9223 74.43 0.91 

7 6.0020 74.65  3.3447 0.94  G 3.7962 74.68 0.92 

8 6.0009 74.68  3.3451 0.95  H 3.8354 74.18 1.11 

9 6.0035 74.63  3.3465 0.96  I 3.6082 74.28 0.99 

10 6.0034 74.67  3.3442 0.98  J 4.2368 74.09 0.73 

           

Mean  74.67   1.00  Mean  74.37 0.95 

SDr  0.0564   0.0445  SDR  0.2708 0.1052 

RSDr  0.0755   4.4407  RSDR  0.3641 11.0902 
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Table 20.  Comparative Moisture and Fat Analysis Values of Low Fat Turkey - Diluted Samples 

Analyzed By AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 

Collaborative Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.9944 75.39  3.3450 0.81  A 4.5629 75.40 0.92 

2 6.0044 75.49  3.3469 0.74  B 4.1247 75.07 0.80 

3 6.0016 75.45  3.3464 0.76  C 5.6173 74.99 0.86 

4 6.0002 75.41  3.3464 0.73  D 5.2797 75.29 0.88 

5 6.0005 75.27  3.3443 0.77  E 4.2696 75.23 0.89 

6 6.0035 75.43  3.3472 0.76  F 4.1348 75.47 0.86 

7 5.9951 75.53  3.3472 0.71  G 4.5045 75.40 0.87 

8 5.9960 75.43  3.3426 0.71  H 4.1187 75.06 1.00 

9 5.9989 75.43  3.3456 0.70  I 3.8006 75.03 0.79 

10 5.9976 75.43  3.3482 0.73  J 4.1246 74.69 0.85 

           

Mean  75.43   0.74  Mean  75.16 0.87 

SDr  0.0687   0.0342  SDR  0.2399 0.0594 

RSDr  0.0911   4.6280  RSDR  0.3191 6.8124 
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Table 21.  Reference Moisture and Fat Analysis Values of High Fat Turkey Samples Analyzed By AOAC 

Method 950.46 and AOAC Method 960.39. 

TAMU Lab Results For AOAC Methods 

(For Calibration of SMART Trac System instruments) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.0051 65.81  3.3482 18.61  A n/a n/a n/a 
2 4.9993 65.64  3.3431 18.45  B n/a n/a n/a 
3 4.9958 65.92  3.3428 18.51  C n/a n/a n/a 
4 n/a n/a  n/a n/a  D n/a n/a n/a 
5 n/a n/a  n/a n/a  E n/a n/a n/a 
6 n/a n/a  n/a n/a  F n/a n/a n/a 
7 n/a n/a  n/a n/a  G n/a n/a n/a 
8 n/a n/a  n/a n/a  H n/a n/a n/a 
9 n/a n/a  n/a n/a  I n/a n/a n/a 
10 n/a n/a  n/a n/a  J n/a n/a n/a 

           

Mean  65.79   18.52      

SDr  0.1423   0.0821      

RSDr  0.2164   0.4433      
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been observed in almost all other meat samples.  Overall, the RSDr and RSDR values 

were very low due to the very high moisture content in the low-fat turkey and diluted 

low-fat turkey samples and met AOAC’s acceptability criteria of <2.00%.   

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 19 and 

20) for fat content of low-fat turkey (0.0445, 4.4407%) and diluted low-fat turkey 

(0.0342, 4.6280%) samples trended similarly to between-laboratory (CEM®) SDR and 

RSDR (reproducibility) values for fat content of low-fat turkey (0.1052, 11.0902%) and 

diluted low-fat turkey (0.0594, 6.8124%) samples.  Within-laboratory RSDr and 

between-laboratory RSDR values exceeded AOAC’s acceptability criteria of 2.00% for 

low-fat turkey and diluted low-fat turkey samples and were therefore not acceptable for 

fat analysis.  The very high RSDr and RSDR values were likely due to the very small 

levels of fat in the low-fat turkey and diluted low-fat turkey samples, as these samples 

contained the least amount of fat of all meat samples analyzed.  High RSDr and RSDR 

values were also seen in other very low-fat meat samples, such as low-fat ham, low-fat 

pork, and low-fat beef, so the high RSDr and RSDR values observed for fat analysis in 

the low-fat turkey samples followed the same trend as other low-fat meat samples and 

were therefore expected.  

The data indicates that the CEM Smart Trac 5 System® performed well in 

recovering moisture from the turkey samples (see table on page 108), but that its 

performance was much more variable in recovering fat from the turkey samples.  Using 

AOAC method mean values as the reference values for moisture and fat in the turkey 

samples, the percent recovery for moisture by the CEM Smart Trac 5 System® ranged 
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from 99.60% to 99.64% while the percent recovery for fat by the CEM Smart Trac 5 

System® ranged from 95.00% to 117.57% among the low-fat turkey and diluted low-fat 

turkey samples. 

The CEM Smart Trac 5 System® was found to be acceptable based on AOAC’s 

acceptability criteria (RSDR < 2.00%) for moisture analysis in the low-fat turkey and 

diluted low-fat turkey samples.  However, CEM Smart Trac 5 System® was found to be 

not acceptable for fat analysis in low-fat turkey and diluted low-fat turkey samples based 

on the very high RSDR values for these samples. 

 

Discussion of Sausage Results 

AOAC methods yielded a 72.87% mean total moisture value and a 2.30% mean 

total fat value for the low-fat sausage samples, based on three replicate determinations 

(Table 22).   Moisture and fat data were not obtained from the collaborative laboratories’ 

CEM SMART Trac 5 Systems®.  The low-fat sausage sample results from AOAC 

methods were used only for establishing a reference value in order to determine the 

appropriate NMR signal for that specific sample type (i.e. “sausage”) and to establish a 

standard curve for fat determination of that specific sample type on the CEM SMART 

Trac 5 Systems®.  Diluted low-fat sausage samples were not analyzed by AOAC 

methods or by the CEM SMART Trac 5 Systems® among collaborative laboratories. 

For the high-fat sausage and diluted high-fat sausage, AOAC methods yielded 

mean total moisture values of 55.08% and 57.12% and mean total fat values of 27.92%  

and 26.99%, respectively (Tables 23 and 24).   The CEM Smart Trac 5 System® yielded



97 

 

Table 22.  Reference Moisture and Fat Analysis Values of Low Fat Sausage Samples Analyzed By AOAC 

Method 950.46 and AOAC Method 960.39. 

TAMU Lab Results For AOAC Methods 

(For Calibration of SMART Trac System instruments) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.9958 72.88  3.3418 2.29  A n/a n/a n/a 
2 6.0032 72.88  3.3472 2.29  B n/a n/a n/a 
3 6.0069 72.84  3.3466 2.31  C n/a n/a n/a 
4 n/a n/a  n/a n/a  D n/a n/a n/a 
5 n/a n/a  n/a n/a  E n/a n/a n/a 
6 n/a n/a  n/a n/a  F n/a n/a n/a 
7 n/a n/a  n/a n/a  G n/a n/a n/a 
8 n/a n/a  n/a n/a  H n/a n/a n/a 
9 n/a n/a  n/a n/a  I n/a n/a n/a 

10 n/a n/a  n/a n/a  J n/a n/a n/a 
           

Mean  72.87   2.30      

SDr  0.0236   0.0096      

RSDr  0.0324   0.4171      
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Table 23.  Comparative Moisture and Fat Analysis Values of High Fat Sausage Samples Analyzed By 

AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.0133 55.25  3.3429 27.84  A 4.2446 55.14 28.08 

2 4.9879 54.99  3.3446 27.95  B 4.5464 54.99 27.96 

3 5.0526 54.95  3.3441 28.25  C 4.6631 54.83 28.02 

4 4.9907 55.08  3.3457 28.04  D 4.7448 54.78 27.84 

5 5.0060 54.97  3.3412 27.87  E 3.6834 55.04 27.88 

6 4.9831 55.16  3.3465 27.86  F 4.0932 55.08 27.10 

7 5.0426 55.22  3.3424 27.68  G 3.9364 55.13 28.08 

8 4.9466 54.97  3.3421 28.05  H 3.9166 55.24 27.74 

9 4.9677 55.13  3.3425 27.70  I 3.7842 54.95 28.02 

10 4.9674 55.08  3.3422 27.95  J 3.8815 55.12 27.88 

           

Mean  55.08   27.92  Mean  55.03 27.86 

SDr  0.1071   0.1691  SDR  0.1443 0.2889 

RSDr  0.1945   0.6056  RSDR  0.2622 1.0370 
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Table 24.  Comparative Moisture and Fat Analysis Values of High Fat Sausage – Diluted Samples 

Analyzed By AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 

Collaborative Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.0054 56.92  3.3434 26.95  A 4.2379 56.83 26.83 

2 4.9967 58.27  3.3469 27.15  B 4.0120 56.55 27.11 

3 5.0028 56.94  3.3415 27.12  C 4.2778 56.28 27.35 

4 5.0030 57.10  3.3487 26.74  D 4.1757 56.14 27.07 

5 5.0051 57.06  3.3459 27.04  E 4.0293 57.05 26.36 

6 4.9970 56.86  3.3435 27.20  F 4.1172 57.15 26.86 

7 4.9998 56.96  3.3421 26.68  G 4.0107 56.71 27.15 

8 4.9982 57.12  3.3455 26.92  H 3.9572 56.66 27.01 

9 4.9973 56.84  3.3484 27.00  I 3.9956 56.56 26.74 

10 5.0043 57.12  3.3481 27.12  J 3.8916 56.76 27.22 

           

Mean  57.12   26.99  Mean  56.67 26.97 

SDr  0.4182   0.1738  SDR  0.3109 0.2843 

RSDr  0.7322   0.6439  RSDR  0.5485 1.0540 
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comparable results, with 55.03% and 56.67% mean total moisture values and 27.86% 

and 26.97% mean total fat values, respectively. 

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 23 and 

24) for moisture content of high-fat sausage (0.1071, 0.1945%) and diluted high-fat 

sausage (0.4182, 0.7322%) samples were similar to between-laboratory (CEM®) SDR 

and RSDR (reproducibility) values for moisture content of high-fat sausage (0.1443, 

0.2622%) and diluted high-fat sausage (0.3109, 0.5485%) samples.  The between-

laboratory RSDR values were higher than the within-laboratory RSDr values, which is a 

trend observed in nearly all other meat sample results.  The RSDr and RSDR values for 

moisture analysis were all < 2.00% and therefore were acceptable based on AOAC’s 

acceptability criteria (RSDr and RSDR < 2.00%). 

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 23 and 

24) for fat content of high-fat sausage (0.1691, 0.6056%) and diluted high-fat sausage 

(0.1738, 0.6439%) were similar to between-laboratory (CEM®) SDR and RSDR 

(reproducibility) values for fat content of high-fat sausage (0.2889, 1.0370%) and diluted 

high-fat sausage (0.2843, 1.0540%) samples.  Within-laboratory RSDr and between-

laboratory RSDR values were within AOAC’s acceptability criteria of < 2.00% and were 

therefore acceptable for fat analysis. 

The data indicates that the CEM Smart Trac 5 System® performed well in 

recovering moisture and fat from the sausage samples (see table on page 108).  Using 

AOAC method mean values as the reference values for moisture and fat in the sausage 

samples, the percent recovery for moisture by the CEM Smart Trac 5 System® ranged 
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from 99.21% to 99.91% while the percent recovery for fat by the CEM Smart Trac 5 

System® ranged from 99.79% to 99.93% among the sausage samples. 

The CEM SMART Trac 5 System® was found to be acceptable for moisture 

analysis and fat analysis for high-fat sausage samples based on AOAC’s acceptability 

criteria (RSDR < 2.00%). 

 

Discussion of Potted Meat Results 

AOAC methods yielded 59.99% and 62.20% mean total moisture values and 

18.01%  and 17.21% mean total fat values for the potted meat and diluted potted meat 

samples, respectively (Tables 25 and 26).   The CEM Smart Trac 5 System® yielded 

comparable results, with 60.73% and 62.29% mean total moisture values and 18.05% 

and 17.17% mean total fat values, respectively. 

Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 25 and 

26) for moisture content of potted meat (0.1833, 0.3055%) and diluted potted meat 

(0.1907, 0.3066%) samples were similar to between-laboratory (CEM®) SDR and RSDR 

(reproducibility) values for moisture content of potted meat (0.1561, 0.2570%) and 

diluted potted meat (0.1550, 0.2489%) samples.  The between-laboratory RSDR values 

followed the same trend of being higher in comparison to within-laboratory RSDr values 

observed in nearly all other meat samples analyzed. Based on the RSDr and RSDR values 

for moisture, the AOAC reference method and CEM SMART Trac 5 System® method 

met AOAC’s acceptability criteria of < 2.00% for moisture analysis of potted meat and 

diluted potted meat samples. 
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Table 25.  Comparative Moisture and Fat Analysis Values of Potted Meat Samples Analyzed By AOAC 

Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.0046 59.96  3.3484 18.08  A 3.6324 60.74 18.12 

2 5.0051 60.19  3.3426 18.08  B 4.2511 60.64 17.94 

3 4.9961 59.87  3.3433 18.06  C 4.5724 60.48 18.34 

4 4.9971 59.85  3.3453 17.97  D 4.3954 60.73 18.04 

5 5.0017 59.77  3.3463 18.00  E 3.8326 60.61 17.98 

6 4.9967 60.17  3.3460 18.16  F 4.3378 61.01 18.21 

7 4.9975 59.79  3.3430 17.97  G 3.6830 60.91 18.02 

8 5.0007 60.02  3.3453 17.97  H 3.4259 60.84 17.92 

9 5.0028 60.31  3.3467 17.87  I 3.6243 60.65 17.87 

10 4.9978 59.99  3.3475 17.91  J 3.7385 60.66 18.09 

           

Mean  59.99   18.01  Mean  60.73 18.05 

SDr  0.1833   0.0855  SDR  0.1561 0.1428 

RSDr  0.3055   0.4747  RSDR  0.2570 0.7908 
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Table 26.  Comparative Moisture and Fat Analysis Values of Potted Meat - Diluted Samples Analyzed 

By AOAC Method 950.46, AOAC Method 960.39, and SMART Trac 5 System® Among 10 Collaborative 

Laboratories. 

TAMU Lab Results For AOAC Methods 

(Within-Laboratory Repeatability Determination) 

 Collaborative Lab Results For SMART Trac Methods 

(Between-Laboratory Reproducibility Determination) 

   

 Method 950.46  Method 960.39    Microwave NMR 

Sample ID Wt., g Moisture %  Wt., g   Fat %  Lab ID   Wt., g Moisture % Fat % 

1 5.0035 62.45  3.3466 17.49  A 4.0983 62.08 17.15 

2 5.0009 62.28  3.3480 17.14  B 3.8038 62.35 17.13 

3 5.0022 62.31  3.3427 17.04  C 4.1789 62.25 17.33 

4 5.0019 61.78  3.3462 17.19  D 4.6142 62.29 16.75 

5 5.0027 62.29  3.3448 17.25  E 3.7752 62.12 17.29 

6 4.9957 62.24  3.3439 17.46  F 4.1531 62.63 17.28 

7 4.9998 62.09  3.3445 17.20  G 3.6902 62.30 17.39 

8 5.0002 62.01  3.3454 17.11  H 4.3668 62.21 17.14 

9 5.0046 62.30  3.3440 17.07  I 3.8761 62.25 17.03 

10 5.0026 62.20  3.3446 17.16  J 3.5230 62.41 17.18 

           

Mean  62.20   17.21  Mean  62.29 17.17 

SDr  0.1907   0.1521  SDR  0.1550 0.1824 

RSDr  0.3066   0.8837  RSDR  0.2489 1.0625 
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Within-laboratory (AOAC) SDr and RSDr (repeatability) values (Tables 25 and 

26) for fat content of potted meat (0.0855, 0.4747%) and diluted potted meat (0.1521, 

0.8837%) were similar to between-laboratory (CEM®) SDR and RSDR (reproducibility) 

values for potted meat (0.1428, 0.7908%) and diluted potted meat (0.1824, 1.0625%) 

samples. The between-laboratory RSDR values followed the same trend of being higher 

in comparison to within-laboratory RSDr values observed in nearly all other meat 

samples analyzed. Based on the RSDr and RSDR values for fat, the AOAC reference 

method and CEM SMART Trac 5 System® method met AOAC’s acceptability criteria 

of < 2.00% for fat analysis of potted meat and diluted potted meat samples. 

The data indicates that the CEM SMART Trac 5 System® performed well in 

recovering moisture and fat from the potted meat samples (see table on page 108).  

Using AOAC method mean values as the reference values for moisture and fat in the 

potted meat samples, the percent recovery for moisture by the CEM SMART Trac 5 

System® ranged from 100.14% to 101.23% while the percent recovery for fat by the 

CEM SMART Trac 5 System® ranged from 99.77% to 100.22% for the potted meat and 

diluted potted meat samples. 

The CEM SMART Trac 5 System® was found to be acceptable for moisture 

analysis and fat analysis for potted meat samples based on AOAC’s acceptability criteria 

(RSDR <2.00%). 

 

Discussion of Overall Results 

A summary of the statistical analysis results is provided in Tables 27 and 28.   
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Table 27.  Summary of TAMU Laboratory Results for Moisture (AOAC 950.46) and Fat 

 (AOAC 960.39) Analysis Using AOAC Reference Methods. 
   

Sample Name   % Moisture       % Fat  

 
 Mean  SD RSD  Mean SD     RSD 

Ham, Low Fat
a
  74.93  0.0598 0.0798   2.54 0.0925 3.6391 

Ham, Low Fat, Diluted
a
  75.91  0.0937 0.1234   2.37 0.1144 4.8267 

Ham, High Fat
a
  58.41  0.0411 0.0703   16.34 0.0644 0.3944 

Ham, High Fat, Diluted
a
  60.18  0.0836 0.1389   16.03 0.1203 0.7501 

Pork, Low Fat
a
  74.49  0.0445 0.0598   2.26 0.0345 1.5303 

Pork, Low Fat, Diluted
a
  75.40  0.0370 0.0491   2.18 0.0361 1.6541 

Pork, High Fat
a
  60.07  0.1410 0.2348   22.30 0.2065 0.9258 

Pork, High Fat, Diluted
a
  61.54  0.1219 0.1981   21.88 0.2679 1.2247 

Beef, Low Fat
a
  67.31  0.1444 0.2145   11.23 0.1494 1.3309 

Beef, Low Fat, Diluted
a
  68.86  0.2016 0.2928   10.63 0.1331 1.2516 

Beef, High Fat
a
  57.84  0.1783 0.3083   26.56 0.3256 1.2257 

Beef, High Fat, Diluted
a
  60.16  0.3939 0.6547   25.44 0.3447 1.3552 

Chicken, Low Fat
a
  74.99  0.0668 0.0891   2.91 0.0388 1.3327 

Chicken, Low Fat, Diluted
a
  75.90  0.2541 0.3348   2.79 0.0382 1.3695 

Chicken, High Fat
a
  61.62  0.0868 0.1409   23.30 0.3428 1.4713 

Hot Dog, Low Fat
b
  74.97  0.3638 0.4852   2.68 0.0233 0.8705 

Hot Dog, High Fat
a
  54.03  0.0722 0.1337   29.79 0.1397 0.4688 

Hot Dog, High Fat, Diluted
a
  55.54  0.0787 0.1416   28.80 0.2011 0.6984 

Turkey, Low Fat
a
  74.67  0.0564 0.0755   1.00 0.0445 4.4407 

Turkey, Low Fat, Diluted
a
  75.43  0.0687 0.0911   0.74 0.0342 4.6280 

Turkey, High Fat
b
  65.79  0.1423 0.2164   18.52 0.0821 0.4433 

Sausage, Low Fat
b
  72.87  0.0236 0.0324   2.30 0.0096 0.4171 

Sausage, High Fat
a
  55.08  0.1071 0.1945   27.92 0.1691 0.6056 

Sausage, High Fat, Diluted
a
  57.12  0.4182 0.7322   26.99 0.1738 0.6439 

Potted Meat
a
  59.99  0.1833 0.3055   18.01 0.0855 0.4747 

Potted Meat, Diluted
a
  62.20  0.1907 0.3066   17.21 0.1521 0.8837 

a
 Ten replicate determinations 

b 
Three replicate determinations 

 

  

  

   

 

 

 

 

 



106 

 

Table 28.  Summary of Collaborative Laboratory Results for Moisture (Microwave) 

and Fat (NMR) Analysis Using the SMART Trac System®.  
   

Sample Name   % Moisture    % Fat  

 
  Mean  SDR    RSDR   Mean SDR RSDR 

Ham, Low Fat
a
  74.29  0.1990 0.2678   2.60 0.0929 3.5721 

Ham, Low Fat, Diluted
a
  75.59  0.3701 0.4897   2.36 0.1388 5.8949 

Ham, High Fat
a
  58.23  0.3286 0.5643   16.27 0.1899 1.1675 

Ham, High Fat, Diluted
a
  59.65  0.2979 0.4994   15.93 0.1554 0.9755 

Pork, Low Fat
a
  74.19  0.2211 0.2980   2.28 0.0626 2.7476 

Pork, Low Fat, Diluted
a
  75.24  0.1106 0.1470   2.11 0.0479 2.2734 

Pork, High Fat
a
  60.15  0.2713 0.4510   22.44 0.2327 1.0372 

Pork, High Fat, Diluted
a
  61.42  0.2197 0.3577   21.73 0.1969 0.9058 

Beef, Low Fat
a
  67.11  0.2625 0.3911   11.30 0.1245 1.1018 

Beef, Low Fat, Diluted
a
  68.58  0.3183 0.4642   10.73 0.1687 1.5720 

Beef, High Fat
a
  57.96  0.3275 0.5651   26.55 0.3481 1.3112 

Beef, High Fat, Diluted
a
  59.59  0.3670 0.6159   25.43 0.3843 1.5109 

Chicken, Low Fat
a
  74.66  0.1552 0.2079   2.92 0.0464 1.5873 

Chicken, Low Fat, Diluted
a
  75.63  0.2225 0.2942   2.73 0.0655 2.4037 

Hot Dog, High Fat
a
  53.64  0.2704 0.5041   29.93 0.1615 0.5396 

Hot Dog, High Fat, Diluted
a
  55.52  0.3709 0.6680   28.78 0.1929 0.6701 

Turkey, Low Fat
a
  74.37  0.2708 0.3641   0.95 0.1052 11.0902 

Turkey, Low Fat, Diluted
a
  75.16  0.2399 0.3191   0.87 0.0594 6.8124 

Sausage, High Fat
a
  55.03  0.1443 0.2622   27.86 0.2889 1.0370 

Sausage, High Fat, Diluted
a
  56.67  0.3109 0.5485   26.97 0.2843 1.0540 

Potted Meat
a
  60.73  0.1561 0.2570   18.05 0.1428 0.7908 

Potted Meat, Diluted
a
  62.29  0.1550 0.2489   17.17 0.1824 1.0625 

a
 Ten replicate determinations         

 

 

For nearly all samples analyzed, the between-laboratory (CEM®) SDR and RSDR 

(reproducibility) values were larger in comparison to the within-laboratory (AOAC) SDr 

and RSDr (repeatability) values, suggesting that the CEM method is less precise than the 

AOAC methods for moisture and fat analysis.  It should be noted that AOAC methods 

for moisture and fat analysis were performed in a single laboratory by a single individual 

under carefully controlled laboratory conditions whereas the CEM methods for moisture 
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and fat analysis were performed in multiple laboratories with different CEM SMART 

Trac 5 Systems® and by multiple analysts among different laboratory conditions.  

Lower precision would likely result from such variations. As the data indicates, the CEM 

SMART Trac 5 System® was found to be acceptable for moisture analysis for all 

samples analyzed and acceptable for fat analysis for meat samples containing more than 

3% fat based on AOAC’s acceptability criteria (RSDR < 2.00%).   The CEM SMART 

Trac 5 System® was found not to be acceptable for fat analysis of meat samples 

containing less than 3% fat (i.e. low-fat ham, low-fat pork, low-fat turkey). 

The percent recovery (% Recovery) for moisture and fat reported in Table 29 was 

determined by comparing the overall mean of the collaborative laboratory values 

(obtained from CEM Smart Trac 5 System® analysis) to the reference values (obtained 

from AOAC Methods 950.46 and 960.39).  The recovery for moisture was excellent for 

all meat sample types analyzed and ranged from 99.05% to 101.23%.  Recovery for fat 

was more variable, ranging from 95.00% to 117.57%, with the greater variation due to 

some sample types containing very low levels of fat (i.e. low-fat ham, low-fat turkey).  

Overall review of the results indicates that the CEM Smart Trac 5 System® 

compares favorably to the AOAC methods for moisture and fat determination.  The 

CEM Smart Trac 5 System® would be suitable for the rapid determination of moisture 

and fat in a variety of commercially produced raw and processed meat and poultry 

products.   Statistical analysis confirmed the within-laboratory repeatability and 

precision qualities of AOAC methods and provided a baseline for comparing the 

between-laboratory reproducibility and precision potential of the CEM Smart Trac 5
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Table 29.  Comparison of Mean Moisture Values and Mean Fat Values From Study Methods (SMART   

                   Trac 5 System®) to Reference Methods (AOAC Methods 950.46 and 960.39)  
   

Sample Name   % Moisture    % Fat  

 

 

Study  

Mean 

  Reference  

Mean 

%  

Recovery 

       Study 

Mean 

   Reference     

      Mean 

      %              

     Recovery 

Ham, Low Fat
a
  74.29  74.93 99.15   2.60 2.54 102.36 

Ham, Low Fat, Diluted
a
  75.59  75.91 99.58   2.36 2.37 99.58 

Ham, High Fat
a
  58.23  58.41 99.69   16.27 16.34 99.57 

Ham, High Fat, Diluted
a
  59.65  60.18 99.12   15.93 16.03 99.38 

Pork, Low Fat
a
  74.19  74.49 99.60   2.28 2.26 100.88 

Pork, Low Fat, Diluted
a
  75.24  75.40 99.79   2.11 2.18 96.79 

Pork, High Fat
a
  60.15  60.07 100.13   22.44 22.30 100.63 

Pork, High Fat, Diluted
a
  61.42  61.54 99.81   21.73 21.88 99.31 

Beef, Low Fat
a
  67.11  67.31 99.70   11.30 11.23 100.62 

Beef, Low Fat, Diluted
a
  68.58  68.86 99.59   10.73 10.63 100.94 

Beef, High Fat
a
  57.96  57.84 100.21   26.55 26.56 99.96 

Beef, High Fat, Diluted
a
  59.59  60.16 99.05   25.43 25.44 99.96 

Chicken, Low Fat
a
  74.66  74.99 99.56   2.92 2.91 100.34 

Chicken, Low Fat, Diluted
a
  75.63  75.90 99.64   2.73 2.79 97.85 

Hot Dog, High Fat
a
  53.64  54.03 99.28   29.93 29.79 100.47 

Hot Dog, High Fat, Diluted
a
  55.52  55.54 99.96   28.78 28.80 99.93 

Turkey, Low Fat
a
  74.37  74.67 99.60   0.95 1.00 95.00 

Turkey, Low Fat, Diluted
a
  75.16  75.43 99.64   0.87 0.74 117.57 

Sausage, High Fat
a
  55.03  55.08 99.91   27.86 27.92 99.79 

Sausage, High Fat, Diluted
a
  56.67  57.12 99.21   26.97 26.99 99.93 

Potted Meat
a
  60.73  59.99 101.23   18.05 18.01 100.22 

Potted Meat, Diluted
a
  62.29  62.20 100.14   17.17 17.21 99.77 

a
 Ten replicate determinations         
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System®.  For moisture analysis, the within-laboratory (AOAC) precision results (RSDr) 

and between-laboratory (CEM®) precision results (RSDR) were acceptable for all 

samples evaluated based on AOAC’s acceptability criteria (RSD < 2.00%).  For fat 

analysis, the within-laboratory (AOAC) precision results (RSDr) and between-laboratory 

(CEM®) precision results (RSDR) were acceptable for high-fat ham, diluted high-fat 

ham, high-fat pork, diluted high-fat pork, low-fat beef, diluted low-fat beef, high-fat 

beef, diluted high-fat beef, low-fat chicken, high-fat frankfurter, diluted high-fat 

frankfurter, high-fat sausage, diluted high-fat sausage, potted meat, and diluted potted 

meat samples based on AOAC’s acceptability criteria (RSD <2.00%).   

Samples containing very small amounts of fat (< 3% fat) were found to yield 

higher relative standard deviation (RSD) results, and therefore lower precision, for 

within-laboratory (RSDr) and between-laboratory (RSDR) fat analysis.  The samples that 

yielded RSDr and/or RSDR values that exceeded AOAC’s acceptability criteria of 

<2.00% included:  low-fat ham, diluted low-fat ham, low-fat pork, diluted low-fat pork, 

diluted low-fat chicken, low-fat turkey, and diluted low-fat turkey samples.   

Although RSDr and RSDR values were calculated to determine if the method met 

the acceptability criteria for each meat sample type, it is interesting to note that the 

difference between the highest value and lowest value for fat results in a high fat sample 

set (i.e. AOAC fat results for high fat ham) yields a greater value than the difference 

between the highest value and lowest value for fat results in the corresponding low fat 

sample set (i.e. AOAC fat results for low fat ham).  For example, the difference between 

the high and low values for fat analysis using the AOAC method for high fat ham was 
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0.50 whereas the difference between the high and low values for fat analysis using the 

AOAC method for low fat ham was 0.24.  The same trend was observed for fat values 

obtained using the CEM SMART Trac System® for fat analysis.  This trend would 

suggest that although RSDr and RSDR values for fat analysis of low fat samples exceed 

the 2.00% limit for acceptability, the range in which the individual fat results are being 

measured is much tighter for low fat samples compared to high fat samples. 

When analyzing a meat sample using AOAC methods, the CEM Smart Trac 5 

System® methods, or any other method available, it is important to collect and prepare 

samples in a manner that provides a homogenous, uniform, and representative portion of 

the larger lot and to handle samples and equipment with care to achieve the most 

accurate and reliable results for the selected method.  One of the most notable 

observations made upon reviewing the statistical results of this study data was that 

samples that have a very small amount of fat (<3% fat) have the largest relative standard 

deviation (RSD) in comparison to meat samples that have a larger amount of fat (>10% 

fat).  For fat analysis methods used in this study (AOAC and CEM®), the larger RSDr 

and RSDR values observed in the low-fat samples were primarily due to the very small 

amount of fat in the samples, in which small variations in the sample or procedure could 

significantly impact data results.  In addition, the inherent variability of weighing minute 

amounts of fat to the fourth decimal place or possible reduced fat extraction efficiency 

associated with the AOAC extraction method may have also contributed to higher RSDr 

values for fat analysis in low-fat samples.  For the CEM® method, higher RSDR values 

for fat analysis likely resulted, in part, from the variation among different laboratory 
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conditions and multiple individuals performing analyses among the collaborative 

laboratories.   

When analyzing the fat content of very low-fat products, it is critical that the 

sample be homogenized and great care be taken in the handling of the sample through 

each step of the analytical procedure, as small deviations can results in large data gaps.  

Such care should be taken no matter which method is selected for analysis.  
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CHAPTER V 

SUMMARY 

 

Analyses for the determination of moisture, fat, protein, salt, and other analytes 

in meat and poultry products are important for evaluating raw material quality, ensuring 

process control and finished product composition, and meeting regulatory compliance in 

meat plant operations.  Such analyses are also valuable for scientists in governmental 

agencies and academia conducting food related research.   

Standard methods of analysis are universally accepted and provide a known 

degree of accuracy and precision.  However, some standard methods of analysis of meat 

and poultry products can be time- or energy-intensive, require highly trained personnel, 

involve the use of harmful or toxic chemicals, or generate wastes that have expensive 

disposal fees.  Other methods of analysis may not provide the same degree of accuracy, 

but may have greater ease of use or require less time or less training of employees.   

Rapid analytical methods with the potential to produce results with the same 

precision and accuracy as standard methods would be of great benefit to researchers, 

plant operations, governmental agencies, academia, and other entities.  This study 

evaluated the accuracy and precision of the CEM Smart Trac 5 System® for rapid 

determination of moisture and fat in meat products in comparison to the standard 

methods of analysis (AOAC official methods 950.46 and 960.39, respectively).  An 

AOAC collaborative study involving 10 laboratories representing private industry, 

government agencies, and academia was conducted to determine if the CEM Smart Trac 



113 

 

5 System®, which performs rapid analyses of moisture and fat, is comparable to 

universally accepted standard methods of analysis.  A variety of raw and processed meat 

products representing the primary meat categories of beef, pork, chicken, and turkey 

were selected for analysis in this study.   

Overall review of the results and data analysis indicated that the CEM Smart 

Trac 5 System® compares favorably with the AOAC methods for moisture and fat 

determination and would be suitable for the rapid determination of moisture and fat in a 

variety of commercially produced raw and processed meat and poultry products.   

Statistical analysis confirmed the within-laboratory repeatability qualities of AOAC 

methods and provided a baseline for comparing the between-laboratory reproducibility 

potential of the CEM Smart Trac 5 System®.  For all samples evaluated, the within-

laboratory (AOAC) RSDr (repeatability) results and between-laboratory (CEM®) RSDR 

(reproducibility) results for moisture met AOAC acceptability criteria (RSD < 2.00%).  

With the exception of meat products containing very small amounts of fat (i.e. low-fat 

ham, low-fat pork, low-fat turkey), the within-laboratory (AOAC) and between-

laboratory (CEM®) results for fat met AOAC’s acceptability criteria (RSD < 2.00%).    
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CHAPTER VI 

 

CONCLUSIONS 

 

The data from this study indicate that the moisture and fat results obtained from 

the CEM Smart Trac 5 System® compare favorably to moisture and fat results obtained 

by AOAC methods.  We conclude that the CEM Smart Trac 5 System® would be 

suitable for determining total moisture and fat in a variety of commercially produced raw 

and processed meat and poultry products.  This method offers similar accuracy and 

precision of moisture and fat results in comparison to AOAC methods, with the 

additional benefit of producing results more rapidly, with greater ease of use and less 

personnel training, and without the use of harmful or toxic chemicals or wastes. 

Therefore it is our recommendation that the CEM Smart Trac 5 System® be accepted as 

an AOAC-approved official method of analysis for moisture and fat in meat and meat 

products.  
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APPENDIX 

 

 

 

Figure A-1.  Preparation of Meat Aliquots (Homogenization and Packaging of Meat 

Products) 
Meat products were removed from their package, manually cut with a knife into smaller 

pieces (if necessary), and ground through a table-top meat grinder using a ½” grinding 

plate.  Approximately 3.18 kg (7 lbs) of material was placed in a 10 quart capacity 

stainless steel commercial food processor and chopped on high speed until the material 

was well homogenized (paste-like appearance).  The homogenized material was then 

packed into 2-oz and 4-oz sterile, screw capped polyurethane specimen containers, 

labeled, and transferred to a freezer for storage. 
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Figure A-2. Sample Preparation for Moisture Analysis Using the Oven Drying 

Method (AOAC 950.46).   
An aluminum pan and corresponding lid were placed onto an analytical balance.  

Approximately 5-6 grams of homogenized meat material was placed into the pan and the 

combined weight of the pan, lid, and sample was recorded.  The homogenized meat 

material was spread evenly across the bottom of the pan with a metal spatula, the lid was 

replaced, and the aluminum pan, lid, and sample were returned to the analytical balance 

to obtain the final weight.  The aluminum pans containing the homogenized meat 

material were placed in a drying oven with lids removed and dried overnight.  The lids 

were fitted onto the corresponding aluminum pans immediately prior to removing the 

samples from the oven.  The aluminum pans containing the dried sample material were 

then transferred to a desiccators and allowed sufficient time to cool to room temperature.   
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Figure A-3.  Sample Preparation for Fat Analysis Using the Soxhlet Extraction 

Method (AOAC 960.39).   
Approximately 3-5 g of homogenized meat material was placed into a disposable pan 

and the weight recorded.  Approximately 3-5 g of laboratory grade sand was added to 

the pan, mixed into the homogenized meat material using a glass rod, and the mixture 

spread into an even layer on the bottom of the pan.  The meat sample was then dried in a 

drying oven and desiccated to room temperature (picture not shown).  The disposable 

pan containing the dried meat material, sand, and glass rod was folded into thirds with 

the ends folded upward to prevent escape of the pan contents.  The folded pan was then 

placed in a cellulose thimble and transferred to the Soxhlet portion of the fat extraction 

system.  The fully assembled Soxhlet extraction system (bottom right) is comprised of:  

a heating mantle, a 250 mL glass flask containing 150 mL of petroleum ether and porous 

boiling chips, a Soxhlet, and a condenser connected to tubing in which cool running 

water flows through continuously.  
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Figure A-4.  CEM Smart Trac 5 System®. 

The CEM Smart Trac 5 Microwave Moisture Analyzer instrumentation (right) and  the 

CEM Smart Trac 5 Nuclear Magnetic Resonance Fat Analyzer instrumentation (left) at 

Texas A&M University. 
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Figure A-5. Sample Preparation for Moisture Analysis Using CEM Smart Trac 5 

System®   (Leffler and others 2008) 
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Figure A-6.  Sample Preparation for Fat Analysis Using CEM Smart Trac 5 

System®  (Leffler and others 2008)
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    Table A-1.  Meat Sample Aliquots Prepared for Analysis Among Collaborative    

    Laboratories and For Use in Programming CEM SMART Trac 5 System®. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Regular” meat 

products 

“Diluted” meat products 

(diluted with 0.4% 

deionized water) 

Additional products for 

program setup 

(not analyzed by the 

collaborative 

laboratories) 

Beef (high fat) Beef (high fat) Chicken (high fat) 

Beef (low fat) Beef (low fat) Turkey (high fat) 

Pork (high fat) Pork (high fat) Beef Frankfurter (low fat) 

Pork (low fat) Pork (low fat) Pork Sausage (Low fat) 

Chicken (low fat) Chicken (low fat) Ham (low fat) 

Turkey (low fat) Turkey (low fat)  

Beef Frankfurter (high fat) Beef Frankfurter (high fat)  

Pork Sausage (high fat) Pork Sausage (high fat)  

Ham (high fat) Ham (low fat)  

Potted Meat Potted Meat  
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Table A-2.  Participating Collaborative Laboratories for Moisture and Fat Analysis 

Using SMART Trac 5 Systems for Comparative Analysis to AOAC Method 950.46 

and AOAC Method 960.39. 

Lab A Jones Dairy Farm, Fort Atkinson, WI 

Lab B USDA, Blakely, GA 

Lab C Wayne Farms, Douglas, GA 

Lab D Five Star Custom Foods, Fort Worth, TX 

Lab E Wayne Farms, Dobson, NC 

Lab F Quality Sausage, Dallas, TX 

Lab G Texas A&M University, College Station, TX 

Lab H Diebel Laboratories, Madison, WI 

Lab I CEM Corporation, Matthews, NC 

Lab J Tyson Prepared Foods, North Richland Hills, TX 

 




