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ABSTRACT 

 International health has typically focused on remediation of infectious diseases in 

developing countries. However, recent reports from the International Agency for 

Research on Cancer (IARC) have highlighted the importance of cancer incidence/ 

mortality in the developing world. Foodborne mycotoxins produced by fungi, called 

aflatoxin (AF) and fumonisin (FB), have been associated with hepatocellular and 

esophageal carcinomas among other deleterious effects, such as growth faltering and 

immune dysfunction. Exposure to these toxins in Ghana is particularly high due to food 

insecurity, climate, and lack of regulatory infrastructures. Work to alleviate AF and FB 

contamination in Africa has focused on instituting good agricultural and storage 

practices however, exposures remain inextricable in many communities. Utilization of a 

calcium montmorillonite clay, UPSN, shows promise of tightly binding both AF and FB 

in the gastrointestinal tract, thereby reducing their bioavailability. The objectives of this 

research were to determine exposure susceptibility in Ghana and to assess efficacy and 

safety of UPSN treatment within vulnerable populations.    

Cross-sectional data from six different regions of Ghana indicated that AF 

exposure is associated with maize consumption and region of residence. However, food 

preparation practices were not correlated to AF levels in the present study. Therefore, 

future intervention strategies were focused on the end point of the food consumption 

chain by reducing AF exposure from maize immediately prior to ingestion (i.e. UPSN 

treatment). In a three-month trial an encapsulated montmorillonite clay was efficacious 

in reducing AF exposure. However, concern for sustainability and its applicability for 
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children led to an effort to alter the dose dissemination form. Inclusion of UPSN in 

common Ghanaian foods retained the efficacy of the clay, reducing a short-term 

biomarker (AFM1) by 55%, and was determined to be safe in children (ages 3-9). 

Importantly, daily assessment of AFM1 levels was successful in providing statistical 

significance of intervention effects within only five days of treatment. Initial results 

indicate that UPSN could efficiently to bind both AF and FB in the gastrointestinal tract, 

reducing biomarkers for both toxins in animal models. Thus, UPSN could positively 

impact health in developing communities at risk for AF and FB exposure.   
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1. INTRODUCTION 

 

Worldwide cancer patterns have been changing drastically over the past decade. 

Cancer was previously considered to be a more prevalent disease in the developed 

world; however, the cancer incidence and mortality in developing countries has been 

rising. The World Cancer Report (2002), produced by the International Agency for 

Research on Cancer (IARC), clearly delineates the rising concern for worldwide public 

health care expenses, mortality, and morbidity resulting from cancer incidence (Parkin et 

al. 2005). In 2002, global mortality from cancer was higher than that from HIV/AIDS, 

tuberculosis, and malaria combined; accounting for 7.6 million lives lost. Following 

current trends, it is estimated that cancer burden will increase from 10 million new cases 

per year in 2000 to 16 million in 2020; with the largest burden (70%) occurring in the 

developing world (Lingwood et al. 2008). Annual new cases of cancers in developing 

countries are highest among lung and bronchus, stomach, liver, colon, and esophagus for 

men (Ferlay et al. 2010). Breast, cervical, lung and bronchus, stomach, colon, and liver 

make up the primary cancer types in women from the developing world (Ferlay et al. 

2010). In particular, more than 1 million of these cases are suspected to occur in Sub-

Saharan Africa (Parkin et al. 2003). The risk of dying from cancer in Africa is almost 

double that of developed countries due to late-onset diagnosis, inadequate treatment 

facilities, and few effective cancer medicines that are affordable and do not require 

hospitalization (Lingwood et al. 2008; Parkin et al. 2008). Adoption of a western 
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lifestyle, longer life, and improved diagnosis has been implicated in the rise of cancer 

incidence observed in Sub-Saharan Africa (Jemal et al. 2011).  

Primary liver cancer is of particular interest in these populations as it typically 

carries a very poor prognosis and remains the second and third highest in incidence and 

mortality in men and women in Sub-Saharan Africa, respectively (Ferlay et al. 2010; 

Parkin et al. 2005). The median survival rate of primary liver cancer patients is less than 

one year (Nguyen et al. 2009). More than 80% of the liver cancer cases occur in the 

developing world. The highest risk is in populations of Africa and Asia due to various 

factors; including a high prevalence of Hepatitis B and C (HBV and HCV) infection, 

alcohol consumption, dietary aflatoxin (AF) exposure, tobacco smoking, obesity, fatty 

liver, and iron load (Parkin et al. 2005). Of these risk factors HBV infection and 

exposure to a carcinogenic mycotoxin, named AF, are the two variables primarily 

implicated in the development of hepatocellular carcinoma (HCC) in Africa and Asia 

(Parkin et al. 2005). HCC accounts for 80% of all primary liver cancer cases in the world 

and is attributed to the unregulated growth and cellular replication of hepatocytes. HBV 

transmission in Africa occurs typically through an unexplained route of horizontal 

transmission between toddlers, with exposure and subsequent infection arising before the 

age of 5 (Burnett et al. 2012). Association of HCC incidence with HBV occurs in 

individuals who are chronically infected, thus consistently testing positive for HBV 

surface antigen (HBsAg). Although, introduction of HBV vaccination programs are 

currently underway in Africa and Southeast Asia it will take many generations to 

positively affect change in HCC incidence. Moreover, it is estimated that 40% of the 
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HCC cases attributable to AF exposure alone, occur in Africa (Liu Y and Wu 2010) and 

thus would not be affected by HBV vaccination. Other factors contributing to HCC rates 

in Western Africa include similar environmental carcinogens, such as fumonisin (FB) 

mycotoxins. Therefore, the development of interventions that are economically feasible, 

culturally acceptable, and would be sustainable in rural African communities are 

important to help reduce the burden of mycotoxin-induced health effects.  

1.1 Aflatoxin           

1.1.1 Aflatoxin chemistry 

Since the discovery of AFs in the early 1960s there has been a constant interest in 

the toxic effects and prevention of AF exposure in animals and humans. The AF 

congeners were isolated, and characterized chemically in the lab of Dr. Gerald Wogan in 

1963 following reports of acute hepatotoxicity in turkey poults in England (Asao et al. 

1965; Blount 1961; Lancaster et al. 1961). Exposed animals all had similar physiological 

endpoints of toxicity including acute hepatic necrosis, bile duct hyperplasia, loss of 

appetite, wing weakness, and lethargy (Blount 1961). Reports of turkey “X” disease 

causing deaths of thousands of chickens, turkeys, and ducks were later linked to 

consumption of contaminated feeds containing high levels of peanut meal as a protein 

source (Cullen and Newberne 1994). The discovery of toxicity resulting from the feed 

led to the hypothesis that AFs were an environmental contaminant. Further research 

indicated that AFs were indeed products of certain fungal strains that commonly grow on 

grains and groundnuts, such as peanuts. Subsequently, AFs were then assessed for 

toxicological significance in multiple laboratory animal species. Although species 
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differences in susceptibility were apparent, the target of AF toxicity has been proven to 

be the liver in most animals (Cullen and Newberne 1994).  

AFs comprise one group of over 300 known mycotoxins (Shephard 2006) and 

exposure predominantly occurs through ingestion of foods or feeds contaminated with 

Aspergillus flavus and/or A. parasiticus fungi. These fungi can produce four structurally 

different congeners of AF: B1, B2, G1, and G2 (AFB1, AFB2, AFG1, and AFG2). 

Structurally, AFs are highly substituted coumarins containing a fused dihydrofuran 

moiety. AFB1 and AFB2 are so named due to an emission of blue fluorescence following 

ultraviolet light stimulation and are characterized by the fusion of a cyclopentenone ring 

to the lactone ring of the coumarin moiety. AFG1 and AFG2 emit a greenish yellow 

fluorescence under ultraviolet light and contain a fused lactone ring in the coumarin 

moiety (Figure 1).  AFB1 and AFG1 are the most toxic due to an unsaturated double 

bond at the 8,9 position on the terminal furan ring which can be metabolized in animals 

and humans to a toxic and mutagenic epoxide.  

1.1.2 Source of aflatoxin contamination 

Aspergillus flavus and A. parasiticus can inoculate and colonize different crops 

by three primary routes: 1) insect transfer, 2) airborne spores, and 3) soil contact. Maize 

crops are one of the major hosts for A. flavus and A. parasiticus colonization. It was first 

determined by Anderson et al. (1975) that these pathogenic fungi could colonize maize 

not only during storage, but also in the field. The main route of inoculation of the fungi 

occurs through the silk by insects acting as vectors between contaminated ears. It has 

been suggested that insects facilitate infection in pre-harvest maize by transporting 
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Aspergillus spores from silk to silk, disseminating inoculum within the ears, and creating 

a favorable environment for Aspergillus growth and colonization through injury of the 

protective pericarp of maize kernels (Marsh and Payne 1984; Payne 1992; Wilson and 

Payne 1994). Peanut crops, like maize, are a favorable host for Aspergillus, however the 

route of contamination most likely originates from the soil, as the fruit of this plant 

develops underground (Cole et al. 1989). Contamination of both crops may also occur 

through airborne spores inoculating the silk of the maize and the above ground flower of 

peanut plants as well (Griffin and Garren 1976; Wilson and Payne 1994). It is important 

to note that crops infected with Aspergillus fungi do not always contain AFs. Production 

of mycotoxins by different fungal species depends largely on the environment in which 

the fungi are growing. In particular, the temperature and moisture content during 

Aspergillus growth have an effect on production of AFs during both pre-harvest growth 

and post-harvest storage. Climates where temperatures are predominantly below 20°C 

tend to have a low likelihood of Aspergillus contamination, while tropical climates (i.e. 

temperature minimum is >25°C) have common contamination in the soils, air, and crop 

surfaces (Cotty and Jaime-Garcia 2007a; Shearer et al. 1992). Rises in temperature 

during drought, in tropical countries with semi-arid and arid climates, has been 

associated with increases in levels of AF contamination of developing crops (Sanders et 

al. 1984; Schmitt and Harburgh Jr. 1989). Following contamination of developing crops 

with Aspergillus species; warm, moist conditions (i.e. high humidity) can increase 

production of AFs in mature crops (Cotty 1991; Russell et al. 1976). High humidity 

results in a high water content of previously dry seeds, which is conducive to 
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contamination and fungal growth. This effect has been best portrayed by Jaime-Garcia 

and Cotty (2003), where AF contamination was highest when mature crops were rained 

on just prior to or during harvesting. The influence that climate has on AF production 

results in continued exposure in human populations inhabiting tropical and sub-tropical 

areas. 

1.1.3 Aflatoxin toxicity         

The toxicity of AFs has been exhaustively studied in multiple animal species. 

While AFB1, AFB2, AFG1, and AFG2 are considered the “major” congeners from A. 

flavus and A. parasciticus, AFB1 is the most toxic and prevalent in food-stuffs (CAST 

2003). Acute toxicity from AFB1 exposure, termed aflatoxicosis, typically involves 

symptoms of anorexia, depression, ataxia, dyspnea, anemia, and hemorrhaging from 

body orifices; these conditions are often followed by death. Sensitivity to AFB1 has been 

established in vertebrates, invertebrates, plants, and bacteria; however the range of toxin 

dosimetry is wide. Differences in species susceptibility could be attributed to three 

important metabolic factors: 1) activation of AFB1 to the toxic 8,9 epoxide relative to 

other less toxic metabolites, 2) conjugation pathways resulting in relatively nontoxic 

metabolites that are eventually excreted, and/or 3) differences in absorption from the gut. 

As previously stated, the metabolic activation of AFB1 across the 8,9 double bond forms 

a short-lived but highly reactive epoxide that is the principle mediator of cellular injury. 
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The LD50 value for acute toxicity among non-human species ranges from 0.3-18.0 

mg/kg, depending on species, sex, route of administration, and age difference (Cullen 

and Newberne 1994).  

1.1.4 Carcinogenicity 

Following discovery of acute toxicity mechanisms and doses in animals it 

became evident that AFB1 was hepatocarcinogenic. Variability in the LD50 values 

among species is important not only in determining acute susceptibility, but also in 

indicating species susceptibility for cancer development. For instance, some of the most 

sensitive species to AFB1 are ducks and rabbits, while chickens are highly resistant. 

Chickens appear to be resistant to AF-induced carcinoma (Roebuck and Maxuitenko 

1994), while ducks develop HCC following treatment with levels as low as 0.02 

mg/kg/month over a 2 year period (Cova et al. 1990). A similar trend is observed in 

mouse and rat sensitivity. One of the most important findings among variations in 

species susceptibility has been delineated in the differences in conjugation of the 

carcinogenic AFB1-8,9-epoxide with glutathione (GSH) in rat and mouse models 

(Monroe and Eaton 1987; O'Brien et al. 1983; Quinn et al. 1990). Mice are relatively 

insensitive to induction of tumors in the liver following AFB1 treatment, even though 

epoxidation of AFB1 is high compared to rats. A high level of glutathione S-transferase 

(GST) activity has been reported to be important for species resistance to AFB1 (Eaton et 

al. 1994). Specific GST activity for AFB1-8,9-epoxide conjugation by homologous rat 

and mouse forms was 100-times higher in the mouse than the rat (Eaton et al. 1994). 
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These differences in metabolism are likely to result in the over five-times higher 

susceptibility observed in the rat.    

The carcinogenic potency of the AFs is highest for the AFB1 congener. 

Development of lesions in the liver has been thoroughly studied in multiple animal 

species; however rat and trout models have been the most frequently used. The first 

study to demonstrate effects of chronic AF exposure in a laboratory animal was 

conducted by Wogan et al. (1974). Rats fed levels of 1, 5, 15, 50, and 100 ng/g AF 

developed tumors at incidences of 9, 4.5, 19, 80, and 100% (Kensler et al. 2011; Wogan 

et al. 1974). This work indicated that HCC could develop at doses as low as micrograms 

per day, implicating the carcinogenic potential of AF consumption in human 

populations. Extrapolation of animal model carcinogenicity to risk assessment in human 

populations has been most useful in various studies with the monkey and rainbow trout, 

whose sensitivity is most closely related to humans. In a model utilizing three separate 

species of monkeys, (rhesus, cynomolgus, and African green) liver tumors developed in 

64% of animals treated with AFB1 for 6 months when doses were steadily increased 

from 0.2 to 0.8 mg/kg (Thorgeirsson et al. 1994). Studies in rats and rainbow trout 

exhibit a dose-response relationship between AFB1 exposure levels and DNA adduct 

formation even at levels relative to chronic human exposures (Buss et al. 1990; 

Dashwood et al. 1988). Therefore, it is widely accepted that AFB1 has no threshold level 

at which it would not pose a genotoxic risk.  

Carcinogenicity of AFB1 is dependent on activation through biological 

metabolism to the AFB1-8,9-epoxide. Following ingestion and absorption, AFB1 is 
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biotransformed predominantly by hepatocytes by both phase I and phase II metabolic 

enzymes. The AFB1-8,9-epoxide can react with biological nucleophiles, such as DNA, 

RNA, and proteins causing disruption of normal cellular function and DNA mutations. 

AFB1 is considered a complete carcinogen due to its ability to both induce and promote 

cancer development ((IARC) 1993, 2002). The ability of AFB1 to act as an initiator 

stems from its bioactivation to a direct-acting mutagen and subsequent disruption of 

several genes involved in carcinogenesis. The AFB1-8,9-epoxide reacts with guanine at 

the N-7 position resulting in an AFB1-DNA adduct and G:CT:A transversions. This 

adduct, 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-Gua), is the most 

abundant occurring in animal models (Croy et al. 1978; Croy and Wogan 1981a, b; 

Essigmann et al. 1977; Lin JK et al. 1977). The importance of guanine as a target for 

AFB1 genotoxicity has been further solidified through various carcinogenicity studies 

showing G:C to T:A or G:C to A:T point mutations in AFB1 induced tumors (McMahon 

et al. 1987; McMahon et al. 1986; Sinha et al. 1988). These transversions were all 

observed at codon 12 of the K-ras gene. K-ras, a protooncogene, has been suggested as a 

target gene for AFB1 induced point mutations of the DNA. Evidence from a rat study 

conducted by Soman and Wogan (1993) showed point mutations in all AF related 

adenomas and carcinomas at the K-ras gene. High frequency of mutations at codon 249 

of the p53 tumor suppressor gene in human HCC cases has been reported in areas with 

chronic AF exposure (Bressac et al. 1991; Hsu et al. 1991). However, these studies were 

conducted in populations that are also afflicted with endemic HBV infection and 

therefore the observed mutations could not be solely attributed to AF. Multiple animal 



 

11 

 

models have failed to support the evidence of selective p53 mutations, on a codon 249 

equivalent, from AFB1-induced carcinogenicity (Wild and Montesano 2009). Human 

liver epithelial cells that were transfected with HBx gene and treated with AFB1 were 

more sensitive to the cytotoxicity of AFB1 and were sensitive to induction of mutations 

at codon 249 of p53 (Sohn et al. 2000). Thus, it is speculated that the codon 249 hotspot 

mutations observed in epidemiological studies is dependent on having both active HBV 

surface antigen and AFB1 present (Wild and Montesano 2009).  

The International Agency for Research on Cancer (IARC) has classified AFB1 as 

a Group 1 human carcinogen based on multiple epidemiological studies in populations 

with high HCC incidence ((IARC) 1993, 2002). Heterogeneity of AF contamination in 

crops and food-stuffs, differences in food intake, and metabolism between individuals 

makes exposure assessment difficult through analysis of food samples. Thus, use of 

biological metabolites resulting from AFB1 exposure, termed biomarkers, are the current 

standard for evaluating exposure in human populations and subsequent correlations with 

endpoints of disease. A thorough review of AFB1 biomarkers of exposure is discussed in 

subsequent sections; here biomarkers will only be referred to in the context of 

correlating human AFB1 exposure with HCC. Some of the first work to determine 

associations of AFB1 consumption with HCC development in humans involved case-

control studies in Mozambique, Swaziland, and the Philippines (Bulatao-Jayme et al. 

1982; Linsell and Peers 1977; Peers and Linsell 1977; Van Rensburg et al. 1985). These 

studies estimated dietary intake of AFs, retrospectively, for HCC cases and compared 

them with age and gender matched controls. Results from all three studies indicated that 
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mean AF exposure was positively correlated with HCC, with daily AF exposure in HCC 

cases estimated to be 4.5 times higher than in controls. Similarly, in Taiwan, detectable 

levels of AFB1 biomarkers were a risk factor for HCC, with an odds ratio of 1.5 

compared to controls (Lunn et al. 1997). The population of Qidong, China has been 

investigated over numerous years for AF, hepatitis B viral infection (HBV), and HCC 

incidence. This particular population has been a keystone in discovering effects of 

chronic AF exposure in humans, due to the seemingly inextricable contamination of 

foods and endemic HBV and HCC incidence. Sun et al. (1999) concluded that the 

attributed relative risk for HCC from AFB1 was 0.55 and thus, AF exposure accounted 

for a substantial portion of HCC cases in the screened population even in the presence of 

HBV (Sun Z et al. 1999). Individuals with HBV positive surface antigen (HBsAg) had a 

10-fold increased rate of HCC, when they also were consuming large amounts of AF 

compared to those with positive HBsAg and low exposure levels to AFs (Yeh et al. 

1985, 1989). Importantly, populations that are most at risk for AF exposure are often 

also populations with endemic HBV infection. Therefore, the epidemiology of AF 

induced HCC often cannot be considered without also accounting for chronic HBV 

infection.  

Like AFB1, chronic hepatitis infection has been categorized by IARC as 

hepatocarcinogenic in humans (IARC 1994). It is estimated that there are 400 million 

chronic HBV carriers worldwide (Parkin et al. 2005). DNA insertion by HBV under 

chronic infection conditions would result in genomic instability and ultimately liver 

disease and/or HCC. Also, chronic inflammation and generation of reactive oxygen 
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species resulting from HBV infection could have promoter-like activity, thereby 

increasing the incidence of AFB1 induced cell proliferation leading to tumor 

development. Multiple epidemiological studies have investigated the effect of the 

complex paradigm of chronic AF exposure and HBV infection on HCC development. It 

has been shown that the presence of HBV infection coupled with AFB1 exposure 

increases the risk of hepatocellular carcinoma (HCC) by up to 3.5-fold when compared 

to those who are seropositive for HBV in the absence of AFB1 exposure (Ming et al. 

2002; Sun Z et al. 1999). The activities of HBV and AF biomarkers as independent and 

interactive variables for risk of HCC were studied in a cohort of 18,244 men in Shanghai 

(Qian GS et al. 1994; Ross et al. 1992b). This duo of studies showed increases of HCC 

by, 3.4-fold when AF biomarkers were detected in the urine alone, 7.3-fold when 

participants tested positive for HBsAg alone, and 59.4-fold when participants tested 

positive for both HBsAg and AF biomarkers, respectively. These results and other 

studies have clearly established the synergistic interaction between AFB1 and HBV that 

occurs in the development of HCC. Wang LY et al. (1996) confirmed these findings in 

Taiwan, where HCC incidence in HBV carriers with detectable AF biomarkers had an 

odds ratio of 2.8 compared to those with non-detectable biomarkers. Similarly, when 

participants were classified as either having high or low AFB1 exposure, the odds ratio 

(5.5) clearly suggested that high exposure was a risk factor in HCC cases. HCC risk in 

HBsAg positive participants revealed a dose-dependent relationship with urinary AF 

biomarkers (Yu et al. 1997); providing further evidence of a causal relationship between 

AF exposure and HCC risk in human populations in both the presence and absence of 
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chronic HBV. Importantly, a recent risk assessment for global burden of AF-induced 

HCC attributed from 25,200 to 155,000 of the 550,000 annual cases of HCC to AF 

exposure alone (Liu Y and Wu 2010).  

1.1.5 Nutritional modulation 

    Although the vast majority of AF based research focuses on the genotoxicity and 

carcinogenic properties of AFB1 the first sign of exposure in all animal species is 

decreased growth and loss of appetite. This observation has led to the investigation of 

the role AF has in growth faltering and nutritional status. Food conversion efficiency is 

consistently decreased in animals exposed to AF versus those on control diets. Following 

administration of AF to broiler chicks and barrows, vitamin A levels were decreased in 

serum and liver (Harvey et al. 1994; Pimpukdee et al. 2004). AF-contaminated corn (500 

ng/g AFB1) also decreased serum vitamins A and E by half in young pigs exposed for 21 

days (Harper et al. 2010). Alternatively, vitamin E levels significantly increased as AF 

levels decreased in a Ghanaian clinical trial designed to mitigate exposure (Afriyie-

Gyawu et al. 2008b), and vitamin A levels were not correlated with AF-alb biomarkers 

in another human trial (Turner et al. 2003). These findings were contradictory to a study 

conducted in 2010 in Ghana, where individuals with high AF-alb levels had a 2.64-fold 

greater risk of vitamin A deficiency compared with those people with low AF-alb 

(Obuseh et al. 2010). A similar trend was observed for vitamin E deficiency; however it 

was not statistically significant. These differences could be a result of study design, 

population size, and/or HBV infection. For example, Obuseh et al., (2010) utilized a 

cross-sectional design with 147 adult participants; however Turner et al. (2003) 
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conducted a cohort study with 472 children ages 6-9. It is also important to note that 

high AF-alb levels were associated with an increased relative risk (odds ratio, 5.88) for 

HBsAg (Obuseh et al. 2010). The other two studies conducted in humans did not report 

HBV infection. Interestingly, Pan et al. (1993) observed an inverse correlation between 

serum vitamin A levels and development of HCC in HBsAg positive participants. 

Therefore, it is a possibility that HBV infection may play a role in lowered vitamin A 

levels in these human populations along with AF exposure. Vitamin A may also have a 

protective effect on exposure to carcinogens, like AF, by inhibiting their metabolic 

activation and preventing the initial steps of carcinogenesis (Huang et al. 1982). Thus, 

more research needs to be conducted to investigate the observed differences in serum 

vitamins A and E. Although AF-alb levels appear to be associated with vitamin A and 

vitamin E levels it is still unclear if this correlation is a result of changes in AFB1 

metabolism via vitamin A mediated mechanisms or if AF exposure directly affects 

vitamin absorption and/or metabolism. 

Vitamin D, zinc, and selenium were affected by AF exposure in animal models; 

however reports of these effects are limited. Broiler chickens had decreased vitamin D 

levels following treatment with 1 ppm AF for 5 days (Glahn et al. 1991). Aflatoxicosis 

studies in chickens demonstrated an inverse correlation between AF exposure and serum 

selenium levels (Hegazy and Adachi 2000). Chen et al. (2000) also observed a negative 

correlation between selenium and AF-alb levels from a Chinese population. Maternal AF 

exposure in pigs resulted in decreased zinc content in offspring, although there were no 

significant changes in the maternal zinc concentrations (Mocchegiani et al. 2001). 
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Lowered zinc in the piglets resulted in decreased cellular immunity due to lowered 

thymulin activity. Reduced zinc concentrations following AF exposure has also been 

observed in rats (Doyle et al. 1977; Ikegwuonu 1984). Influences of AF on all of these 

nutrients could have negative impacts on the immune system and growth. Other reports 

indicate that AF exposure can lead to obstructed biliary flow (Neeff et al. 2013; Wouters 

et al. 2013), in conjunction with dose-dependent increases of bilirubin and alkaline 

phosphatase in rats (Clifford and Rees 1967), goats (Clark et al. 1984), monkeys (Rao 

and Gehring 1971), and pigs (Cardeilhac et al. 1970). Results from these studies suggest 

that fat-soluble vitamins may not be fully absorbed from food due to decreased bile 

release from the liver. Recently, Gong YY et al. (2012) reported that, after adjusting for 

parasitic infection, AF exposure significantly contributed to the incidence of 

hepatomegaly in Kenyan school children, a condition which can be caused by a variety 

of ailments in children including biliary obstruction and anemia (Wolf and Lavine 2000). 

In addition to hepatic damage, AF also causes toxicity of the intestinal mucosa, resulting 

in decreased nutrient uptake (Applegate et al. 2009; Yunus et al. 2011a; Yunus et al. 

2011b). Although the concept of AF acting as an anti-nutrient is commonly accepted 

among mycotoxin researchers, the mechanisms behind these effects are still not well 

established and consequently cannot be applied to risk assessment for human 

populations. 

1.1.6 Growth suppression 

AF exposure has been strongly associated with growth impairment in various 

animal species (Cheng et al. 2001; Giambrone et al. 1985; Harvey et al. 1995, 1989a, 
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1989b; Kocabas et al. 2003; Pimpukdee et al. 2004). Overall, research has not only 

indicated reduced feed intake and lowered weight gain in mice, chickens, pigs, ducks, 

and turkeys, but has also shown that AF exposure correlates with lower feed conversion 

efficiency (Khlangwiset et al. 2011). In 30 animal studies designed to assess deleterious 

effects of AF on growth, 29 out of 30 reported that exposed animals exhibited either 

reduced weight gain or decreased feed conversion efficiency. Furthermore, multiple 

studies investigating the effects of AF on in utero development have reported reduced 

fetal weight and/or length (Khlangwiset et al. 2011). Turner et al. (2007) followed the 

growth of 138 Gambian infants from birth to 12 months and compared growth status 

with maternal AF exposure during pregnancy. In this study, a higher mean maternal AF-

alb concentration was significantly correlated with lower weight-for-age and height-for-

age z-scores. Maternal cord blood and infant blood samples were also assessed for AF-

alb, yielding detectable biomarker levels in 48.5% and 11% of samples, respectively. 

Furthermore, children ages 16-37 months from Benin exhibited a significant negative 

correlation between AF exposure (AF-alb) and height increase over 8-months (Gong YY 

et al. 2004). The growth stunting observed in children from Benin and Togo had a 

distinct dose-response relationship with AF-alb levels in the serum. A height-for-age z-

score of ≤ -2 had 30-40% higher AF-alb when compared to children not classified as 

stunted (Gong YY et al. 2002, 2003). Relationships observed between AF exposure and 

impaired growth are hypothesized to work through a complex mechanism that results in 

impaired gut health and function, decreased nutrient absorption, and chronic 

inflammation (Smith LE et al. 2012). Definition of the threshold for effect on growth, 
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nutritional health, and immunology is important in the effort to provide effective 

intervention strategies to reduce health consequences from AF exposure in developing 

countries.  

1.1.7 Immune suppression  

Nutritional interference resulting from AF exposure can have further influences 

on the immune status and overall health in those chronically exposed. AFs have been 

implicated as immune-toxicants in multiple animal species. Research has demonstrated 

deleterious effects on the innate immunity, such as phagocytic cell function following 

AF treatment in laboratory and domestic animals. Negative effects on human immunity 

are still inconclusive and more research needs to be conducted to make conclusions 

about possible health effects in high-risk populations. Communities that are frequently 

exposed to AFs are often also highly exposed to infectious pathogens. Low dose levels 

of AFB1 have diminished delayed-type of hypersensitivity, which is an important aspect 

of cell-mediated immunity. Both T and B cell responses have been reported to be 

lowered following AFB1 treatment. However, the findings from AFB1 related immune 

studies should be interpreted carefully as results have proven inconsistent. Different 

models, doses, and exposure duration seem to add variability to results, leading to some 

conclusions that AFB1 stimulates the immune response while others indicate a 

suppression of immunity. However, there is significant evidence in multiple domestic 

animal species that AFB1 suppresses T-cell mediated immunity, particularly in cattle 

(Bodine et al. 1984; Brown RW et al. 1981), poultry (Ghosh et al. 1990; Giambrone et 

al. 1985), and swine (Liu BH et al. 2002; Mocchegiani et al. 1998). A recent study in 
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rats following a short (i.e. one-week) or long exposure (i.e. five-weeks) to AFB1 has 

concluded that short-term exposures may act to suppress cell-mediated immunity while 

the long-term exposure may act to enhance cytokine excretion and an increase in 

inflammation and apoptosis (Qian G et al. 2013a).       

Following the one-week dose period, 25 µg AFB1/kg body weight decreased 

cytotoxic T cells (CD8+), and CD3-CD8a+ natural killer (NK) cells. Expression of 

interleukin (IL)-4 and interferon (IFN)-ɣ by CD4+ and CD8a+ T cells was inhibited by 

AFB1 treatment. However, many of these effects were differential following the five-

week dose period, depending on AFB1 dose. IL-4 expression by CD4+ T cells was 

consistently decreased with one and five weeks of treatment. IFN-ɣ and tumor necrosis 

factor (TNF)-α expression was elevated following five weeks of AFB1 treatment and this 

is in contradiction to the inhibition observed after one week of AFB1 (Qian G et al. 

2013a). The authors of this study concluded that short-term exposure to AFB1 can dose-

dependently lower the number of splenic CD8+ lymphocytes and NK cells and 

subsequent production of cytokines by CD4+, CD8+, and NK cells. Inversely, long-term 

exposure can result in stimulatory effects on such lymphocytes and expression of IFN-ɣ 

and TNF-α at low dose levels. IL-4 contains anti-inflammatory properties while IFN-ɣ 

and TNF-α are pro-inflammatory (Niiro et al. 1997). This would suggest that chronic 

and sub-chronic exposure to AFB1 could play a role in the establishment of a chronic 

inflammatory environment as a result of cytokine excretion. Similarly, Bruneau et al. 

(2012) showed, in vitro, that murine macrophages would decrease expression of anti-

inflammatory cytokine IL-10, but increase in pro-inflammatory IL-6 following pre-
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treatment with AF for 72 hr.  AFB1 exposure reduced helper T cells in the spleen and 

antibody response in mice (Hatori et al. 1991), inhibited excretion of IL-2, IL-3 and IFN-

ɣ by macrophages (Dugyala and Sharma 1996), and decreased murine macrophage 

phagocytosis and production of TNF-α in multiple cellular and animal models (Moon et 

al. 1999a, b). Dietary exposure to AFB1 in rats at levels from 0.01-1.6 mg/kg inhibited 

production of IL-1, IL-2, and IL-6 as well as increased the percentages of T cells but 

lowered B cells following 12 weeks of treatment (Hinton et al. 2003).  

Human populations that are at high-risk for AFB1 exposure are also likely to 

have frequent insults to their immune system from infectious pathogens or bacterial 

disease and therefore, it is difficult to ascertain effects of AF on human immunity. One 

human study in Ghana assessed correlations between AF-alb serum biomarkers and 

percentages of leukocyte immunophenotypes in peripheral blood (Jiang et al. 2005). 

Participants in this study with high levels of AF-alb had significantly lower levels of 

CD3+ and CD19+ cells, with activation marker CD69+, than those people with low AF-

alb. CD8+ T cells were also significantly lower in participants classified in the high 

AFB1 exposure group. Implications for the effects immunomodulation could have on 

such populations are demonstrated in a report on immune dysfunction in AFB1 exposed 

individuals infected with human immunodeficiency virus (HIV). Results from this study 

indicated that high AFB1 consumption may heighten some HIV associated changes in T-

cell and B-cell phenotypes, possibly accelerating the development of acquired 

immunodeficiency syndrome (AIDS) (Jiang et al. 2008). A cohort of children from 

Gambia showed a negative correlation in AF-alb levels and secretory immunoglobulin A 



 

21 

 

(IgA) from the saliva (Turner et al. 2003). IgA in mucosal barriers acts as a barrier for 

mucosal immunity to protect the body from potential infections. In populations 

frequently exposed to infectious insults an AFB1-mediated decrease in IgA could 

influence one’s susceptibility to infection.  

Importantly, lymphoid cells such as cytotoxic T-cells, NK cells, and other T-

lymphocytes function to directly or indirectly kill tumor cells. Therefore the inhibitory 

effects of AFB1 on such cells could have a pronounced effect not only on overall 

immunity, but also on tumor progression (Raisuddin et al. 1991). Effects on the immune 

system from AFB1 could also affect cancer progression through the development of 

chronic inflammation, which can stimulate cellular mitosis and promotion of initiated 

cancer cells. The complex dichotomous relationship of AFB1 with immune suppression 

and/or increased inflammatory response has serious implications for human health in 

populations that are frequently exposed to infectious diseases or at risk for carcinoma.               

1.1.8 Human exposure in Africa 

     AF exposure is most common in Southeast Asia, China, Africa, and the Caribbean. 

Human exposure most commonly occurs through frequent consumption of staple foods 

containing low levels of AFs. With global changes in climate over the past century it has 

been hypothesized that populations living between 40° N and S latitude are at risk for 

AF exposure, which includes the southern half of the United States (Williams et al. 

2004). However, the United States Food and Drug Administration (FDA) regulates 

levels of AFs in commercially available foods. Populations living in agricultural or low 

income communities are at higher risk of chronic exposure due to food instability, which 
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results in the consumption of a low-grade, homogenous diet. Crops produced and stored 

in tropical and sub-tropical regions are vulnerable for contamination, where humidity 

and drought are common and conducive for Aspergillus growth (Williams et al. 2004). 

Historically, acute aflatoxicosis in humans has resulted in multiple deaths. Two different 

reports from India, during 1974, indicated that the deaths of 106 and 97 people were 

associated with consumption of contaminated maize (Krishnamachari et al. 1975; 

Tandon et al. 1977). Africa, in particular, has a high incidence of AF exposure and 

continues to report multiple clusters of aflatoxicosis cases in humans. In 2004, a severe 

outbreak occurred in Kenya where 317 clinical cases were registered and 125 people 

died after consumption of maize contaminated with AF at levels as high as 1000 ppm 

(CDC and Prevention 2004). In October of 2011, the Kenya Red Cross recalled 360 tons 

of contaminated relief foods containing sub-lethal levels of AFs. It was estimated that 

60,000 children were put at risk after ingesting the contaminated food before the recall 

occurred (allAfrica 2011). 

Crop contamination and subsequent consumption of AF is commonly observed 

in staple cereal grains, such as, maize, rice, wheat, and groundnuts, such as peanuts 

(CAST 2003). These crops are typically a primary food source in developing countries, 

resulting in high-risk for both acute and chronic exposure in much of the population in 

developing countries. African populations in particular consume some of the highest 

amounts of maize and peanuts per person per day (Liu Y and Wu 2010). Studies 

utilizing biomarkers of exposure in West Africa have indicated on-going, extensive 

exposure (Egal et al. 2005; Njumbe Ediage et al. 2013; Shephard 2008; Wild et al. 1992; 
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Zarba et al. 1992). Exposure in a particular community, in the Ashanti Region of Ghana, 

has been well documented for numerous years, indicating chronic exposure over the past 

10 years (Jolly et al. 2006; Kumi et al. 2011; Mitchell NJ et al. 2013; Wang P et al. 

2008). AF exposure in this community, like others in Western Africa, can occur in 

humans in utero and continue through life. Detectable levels of AFs have been observed 

in umbilical cord blood samples taken at birth in populations where mothers are highly 

exposed (De Vries et al. 1989; Lamplugh et al. 1988; Turner et al. 2007). Importantly, a 

recent study conducted to assess the transfer and metabolism of AFB1 in human 

placentas was undertaken in Finland (Partanen et al. 2010). Researchers conducted 

perfusions of human placenta samples immediately following birth and provided the first 

direct evidence of the actual transfer of AFB1 across the placenta and into the fetal 

circulation. Based on this research the sole AFB1 metabolite produced by xenobiotic 

enzymes present in the placenta is thought to be aflatoxicol (AFL). AFs have also been 

detected in human breast milk (Adejumo et al. 2013; Coulter et al. 1984; Elzupir et al. 

2012; Jonsyn et al. 1995; Lamplugh et al. 1988; Wild et al. 1987; Zarba et al. 1992) and 

weaning foods (Gong YY et al. 2003; Gong YY et al. 2004; Kumi et al. 2011; Oyelami 

et al. 1996). Estimated exposure of adults in African populations ranges from 3.5 to 850 

ng/kg body weight/day (Liu Y and Wu 2010; Shephard 2008). Some of the highest 

exposure estimates in Africa are reported by Shephard (2008). During this risk 

assessment it was proposed that the highest exposure in Africa occurs in Ghana due to 

the large consumption of maize. Based on the assumption of an average 60 kg adult 

eating 1000 g/day of maize, exposure could be as high as 850 ng/kg body weight/day; 
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this accounts for a population risk of 70 liver cancer cases per 100,000 people/year in 

Ghana (Shephard 2008). Similarly, Liu and Wu have estimated that HCC cases 

attributable to AF consumption is highest in Africa accounting for 40% of those 

worldwide, with 2,150 to 9,300 annual incidences in Africa (Liu Y and Wu 2010). 

However, it is important to note that these extrapolations are typically based on levels of 

contamination in samples of food-stuffs and averages of total food consumption per day. 

In applying such evaluations of exposure to human risk assessment there are certain 

factors that should be recognized. First, levels of Aspergillus and subsequently AF 

contamination are temporally variable and typically result in heterogeneous or “hot spot” 

confluence of food-stuffs. Although analysis of AF levels in food is a critical tool for 

exposure assessment, it should be acknowledged that the values reported from these 

methods have the potential to grossly over or under estimate true exposure in the 

population of interest.  

AF associated health burdens in Africa are considerably higher once growth 

faltering, suppressed immunity, and incidences of acute aflatoxicosis are taken into 

account. Multiple factors contribute to the etiology of AF related disease outcomes in 

Africa. For example, AF exposure has been inversely correlated with various 

socioeconomic factors, such as income, education level, employment, and number of 

dependents in a household (Adejumo et al. 2013; Jolly et al. 2006; Shuaib et al. 2012). 

All of these factors could negatively influence the diversity of the diet and the quality of 

food consumed. However, it is important to note that there are reports of such 

socioeconomic statuses having no influence on AF exposure in Kenya and Malaysia 
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(Leong et al. 2012; Yard et al. 2013). A lack of effect observed in these studies could 

indicate that AF contamination is universally prevalent in the food supply and thus, 

effects health across all economic classes. Other contributors to the etiology of AF 

exposure are climate and cultural practices. As stated previously, Aspergillus growth and 

production of toxic AF metabolites is heavily influenced by drought, insect damage, and 

humidity. Sub-Saharan Africa is afflicted with cases of severe drought and famine. 

Drought negatively effects plant health and ability to stave off insect and fungal 

infestation. Although drought is common in sub-Saharan Africa, there is also high 

humidity content, which can create an optimal environment for fungal growth during 

storage of crops. Many storage and eating habits are culturally based. For instance, many 

African communities eat a high quantity of fermented maize. The traditional 

fermentation process in Ghana, in particular, occurs without addition of an accelerant. 

Typically maize is mixed with water until moist and allowed to ferment naturally for 

three days. The average household will make enough of this fermented dough to supply 

the family with meals for a week and store at room temperature until consumed. This 

practice results in growth of various fungi on the dough, which is desirable for taste and 

textural preferences. These types of cultural practices could potentiate AF contamination 

and are difficult if not impossible to change.  

1.1.9 AFB1 metabolism  

Approximately 50% of an orally administered dose of AFB1 is absorbed from the 

duodenal region of the small intestine (Hsieh and Wong 1994). Although there is a lack 

of research published on the mechanisms of AF absorption, one study indicated that the 
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uptake of AFB1 in the intestine occurs through passive diffusion (Kumagai 1989). The 

authors made this conclusion following the observation that the rate of AFB1 absorption 

increases nearly in proportion to an increase in AFB1 concentration. Interestingly, this 

study also indicated that the rate of absorption of AF was dependent on the lipophilicity 

of the compound. The rate of AFG1 absorption, a less lipophilic compound, was 

significantly lower than the rate for AFB1 following perfusion of the duodenum 

(Kumagai 1989). A recent in vitro study with human intestinal Caco-2 cells seems to 

support passive diffusion as the mechanism for AF absorption (Caloni et al. 2012). The 

uptake and efflux ratios of an AFB1 metabolite present in breast milk (AFM1) were <2, 

suggesting that AFM1 was passively transported. Furthermore, intracellular 

concentrations of AFM1 were very low and not dose dependent, indicating that Caco-2 

cells do not actively absorb AFM1.  

Following absorption to the vasculature, the majority of AF is concentrated in the 

liver, where AFB1 biotransformation by phase I and II enzymes results in the production 

of both activated and detoxified metabolites. Oxidation of AFB1 by Cytochrome P450 

enzymes (CYPs) is the primary mechanism of phase I AF metabolism. Epoxidation of 

the double bond on the terminal furan ring of AFB1 and AFG1 produces a genotoxic 

metabolite that can alkylate with nucleic acids (Eaton and Gallagher 1994; Essigmann et 

al. 1977; Swenson et al. 1977). Human CYPs: 1A2, 2A3, 2B7, 3A3, and 3A4 have all 

been implicated in the oxidative metabolism of AFB1 (Massey et al. 1995). CYP1A2 and 

3A4 are the predominant phase I enzymes that facilitate formation of the carcinogenic 

AFB1 exo-8,9-epoxide metabolite. When compared to CYP3A4 activity, CYP1A2 was 
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found to have a higher-affinity for AFB1 activation at low substrate concentrations 

relevant to human exposures (Gallagher et al. 1994). However, liver samples from 

Thailand showed a stronger correlation with CYP3A4 expression and AFB1 epoxidation 

at intermediate AFB1 concentrations relative to correlations with CYP1A2 expression 

(Kirby et al. 1993). Furthermore, it appears that CYP3A4 is constitutively expressed at 

higher levels than CYP1A2 in the human liver and could thus be the primary enzyme for 

AFB1 activation in humans (Gallagher et al. 1994; Kirby et al. 1993). The AFB1-epoxide 

is highly unstable and capable of covalently binding with DNA, resulting in irreparable 

adducts at the N-7 guanine position (Essigmann et al. 1977; Lin JK et al. 1977; Martin 

and Garner 1977).  

In addition to epoxidation of AFB1, phase I metabolism includes hydroxylation 

and demethylation, forming the M1 (AFM1), Q1 (AFQ1), P1 (AFP1), B2a (AFB2a), and 

aflatoxicol metabolites. These products exhibit less than 4% of the mutagenic activity of 

AFB1 in Salmonella assays (Coulombe et al. 1982; Essigmann et al. 1982; Gurtoo et al. 

1978; Wong and Hsieh 1976), therefore metabolism to the hydroxylated and 

demethylated metabolites is considered a detoxification process. Hydroxylation of AFB1 

to AFQ1 is increased following treatment with glucocorticoid-type inducers, implicating 

CYP3A subtypes as the active enzymes in formation of AFQ1 (Halvorson et al. 1988; 

Raney et al. 1992b). In contrast, AFM1 formation is catalyzed by the CYP1A subfamily 

of P450 enzymes (Koser et al. 1988; Metcalfe et al. 1981; Raina et al. 1985; Santhanam 

et al. 1989). An interesting epidemiological finding in a human population with high 

incidence of HCC and AF exposure in the Fujian Province of China further supported 
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the CYP1A mediated detoxification of AFB1 to AFM1 (Lin L et al. 1991). A higher 

incidence of hepatomas was found in participants who were nonsmokers compared to 

smokers over the age of 50 (odds ratio 2.06). It was hypothesized that the polycyclic 

aromatic hydrocarbons (PAHs) in cigarette smoke could induce CYP1A enzymes, 

leading to increased formation of AFM1, pushing AFB1 metabolism into the 

detoxification pathway.  

Phase II metabolism further transforms the phase I metabolites to higher 

molecular weight products for excretion. Conjugation of the epoxide with glutathione 

(GSH) and the hydroxylated metabolites with glucaronic acid are the major metabolites 

produced from phase II detoxification. Production of an AFB1-8,9-epoxide-GSH 

conjugate is catalyzed by glutathione S-transferases (GSTs) and has been identified as 

the primary metabolite in the bile following AFB1 treatment (Degen and Neumann 1978; 

Holeski et al. 1987; Raney et al. 1992a). Conjugation with GSH is typically followed by 

conversion to an AF-mercapturic acid residue by acetylases and peptidases; this 

metabolite is then excreted in the urine (Wild and Turner 2002). As previously discussed 

in section 1.3.1, GSH conjugation and GST activity are important in the susceptibility of 

different species to AFB1 toxicity. For instance, oral doses as high as 10,000 ppb AFB1 

do not cause liver cancer in mice while levels as low as 15 ppb cause increased tumors in 

rats (Wogan and Newberne 1967). This difference in susceptibility can be explained by 

the fact that mice constitutively express murine GST A3-3, which catalyzes conjugation 

to 50 times faster than in sensitive species (Eaton and Gallagher 1994). Humans are 

thought to have a metabolic capacity similar to that of the rat with regard to AFB1 
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detoxification. Human GSTs do not readily conjugate the epoxide metabolite, resulting 

in a longer half-life and increased exposure in vivo. Glucuronidation of AFM1, AFP1, 

and aflatoxicol are important steps that enhance their rates of elimination from the body. 

Conjugation with glucuronide appears to occur at a higher rate with AFP1 compared to 

the other hydroxylated metabolites (Eaton et al. 1994). Many of the AFB1 metabolites 

are utilized in human studies as biomarkers to assess exposure and effect (Figure 2).    

1.1.10 Biomarkers of exposure           

As previously indicated, mycotoxin exposure assessment in human populations is 

difficult through food screening due to the heterogeneous nature of mycotoxin 

contamination and human dietary habits. Similarly, predictions and associations with AF 

consumption and health outcomes are difficult to assess in humans due to the latent 

nature of AF-induced disease. Therefore an effort to discover biomarkers that correlate 

with xenobiotic ingestion was initiated over 20 years ago for use in human based 

epidemiological and chemoprevention trials (Turner et al. 2012; Wild and Turner 2001, 

2002). Primary metabolites excreted in the urine, such as AFM1, AFP1, and AFQ1, were 

some of the first metabolites investigated as potential biomarkers of exposure in diverse 

human populations (Gan et al. 1988; Groopman et al. 1992c; Ross et al. 1992a, 1992b; 

Zhu et al. 1987). During a cross-sectional survey in Zimbabwe, AFM1 was found in the 

urine at a higher rate than any other metabolite from 1200 human samples (Nyathi et al. 

1987). Following this report Zhu et al. (1987) demonstrated that urinary AFM1 excretion 

was also linearly related to AFB1 consumption. This study collected daily urine samples 

and food samples from 32 households in Fushui County of the Guangxi Autonomous 
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Region of the People’s Republic of China and analyzed each for AFM1 and AFB1, 

respectively. Results indicated a strong positive correlation (correlation coefficient of 

0.66) between dietary AFB1 intake and urinary AFM1 excretion (Zhu et al. 1987). 

Dosimetry analysis in a rat model confirmed the linear relationship between AFM1 in the 

urine and AFB1 intake with an even stronger correlation coefficient of 0.93 (Riley et al. 

1993). Data from this study and Groopman et al. (1992c) estimated that between 1.2 and 

2.2% of the total AFB1 intake is excreted as AFM1 in the urine. Excretion of AFM1 

occurs rapidly, following an oral dose of AFB1, typically peaking in the first 12 hr and 

decreasing to undetectable levels within 48 hr (Dalezios et al. 1973; Groopman et al. 

1988; Mitchell NJ et al. 2013; Sarr et al. 1995). Thus, level of urinary AFM1 is 

indicative of AF exposure within the past two days. Interestingly, AFM1 received its 

name due to its presence and discovery in breast milk from AF exposed mothers. 

Although this marker can be used to determine mother-child exposure, it is not 

commonly used in exposure assessment for adults. Total excretion of AFM1 in breast 

milk has been estimated to account for only 0.09 to 0.43% of AFB1 intake of the mother 

(Zarba et al. 1992). Urinary AFP1 and AFB1 are not linearly correlated with AF intake in 

humans or rats (Groopman et al. 1992a, 1992b. 1992c). 

Scholl PF et al. (1997) investigated the use of AFB1-mercapturic acid as a 

biomarker of carcinogenic susceptibility in rats. Because the AFB1-mercapturic acid is a 

product of the GST mediated detoxification pathway for the AFB1 epoxide, it was 

speculated that this marker could be utilized in intervention therapy trials intended to 

induce the rate of GST activity. Although there was a dose-dependent relationship 
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between AF treatment and excretion of mercapturic acid conjugates, this biomarker has 

not been extensively utilized.     

AFM1 is an important tool for assessing exposure in human populations; 

however, AFB-N7-guanine excretion in the urine is a useful biomarker of effect. AFB-

N7-guanine is the primary AFB1-DNA adduct excised from the DNA and present in 

urine (Croy et al. 1978; Essigmann et al. 1977). This biomarker is removed rapidly from 

the DNA and has a half-life of 8-10 hr in rats (Bennett et al. 1981; Groopman et al. 

1980). A correlation coefficient of 0.99 was found in rats indicating a strong relationship 

between a p.o. dose of AFB1 and urinary concentration of the genotoxic metabolite 

(Groopman et al. 1992b). This correlation was also observed in a genetically diverse 

human population from China (correlation coefficient: 0.65) (Groopman et al. 1992c). 

One of the most striking studies that provides evidence for AFB-N7-guanine use as a 

biomarker of biological effect was determined in a prospective study, which is the most 

rigorous test for association between a suspected causal agent and disease outcome. Ross 

et al. (1992b) conducted a prospective study in Shanghai with 18,244 male participants 

starting in 1986 and concluding three and a half years later. Of the study participants, 22 

developed HCC within the study duration. Analysis of urine samples indicated that the 

presence of AF biomarkers carried a relative risk of 3.8 for development of liver cancer. 

AFB-N7-guanine in particular showed a highly significant increase in relative risk (RR= 

4.9) for cancer development (Ross et al. 1992b). Interestingly, the relative risk for liver 

cancer in participants with positive AF markers and HBsAg was 60. This study was the 

first to show both a synergistic interaction between HBsAg and AF for liver cancer 
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development, and a positive relationship between an AFB1 genotoxic metabolite and 

disease outcome.  

Although the use of urinary biomarkers such as AFM1 and AFB-N7-guanine have 

been useful in epidemiology based research, their short half-lives make exposure 

assessment a moving target due to high variability in AF intake and subsequent 

excretion. Thus, studies utilizing these markers require large population sizes and 

multiple samplings for strength of data analysis. The AFB1-albumin adduct (AFB1-alb) 

however has a half-life equivalent to that of serum albumin (Sabbioni et al. 1987), which 

is 20 days in humans and 2.6 days in rats (Peters 1970; Schreiber et al. 1971). During 

AFB1 metabolism, the epoxide can be hydrolyzed spontaneously in the presence of water 

to produce an 8,9-dihydrodiol which is reactive with proteins and binds to one or more 

lysine residues in serum albumin, which can be quantified in animals and humans 

(Sabbioni et al. 1990; Sabbioni et al. 1987; Skipper et al. 1985; Wild et al. 1986). The 

extant scientific literature labels this biomarker as either AFB1-albumin (AFB1-alb) or 

AFB1-lysine depending on the context; here AFB1-alb will be used in reference to this 

metabolite. Molecular dosimetry of AFB1-alb and AF intake in humans was first 

described by Gan et al. in 1988. During this study linear regression models demonstrated 

a strong positive correlation between the biomarker and exposure (Gan et al. 1988). Data 

from this study also indicated that the AFB1-alb adduct levels represent approximately 

1.4 to 2.3% of a daily dose of AFB1. This is similar to rat (1 to 2%) (Sabbioni et al. 

1987; Wild et al. 1986) indicating the rat as an appropriate model for human excretion. 

Due to the 20 day turnover rate in humans for albumin it has been estimated that AFB1-
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alb levels are 30 times higher than that produced by a one-day exposure and can reach a 

steady state in chronically exposed populations (Gan et al. 1988; Groopman et al. 1994; 

Sabbioni et al. 1987). AFM1, AFB1-alb, and AFB-N7-guanine have been integral to 

epidemiological surveys and risk assessment as well as determining efficacy in 

intervention trials in human populations.  

1.1.11 Regulation 

Governmental regulations to reduce AF exposure in animals and humans have been 

enacted in the United States and Europe due to the concern for AF-induced toxicity. 

Feed for mature, non-lactating animals has been assigned an FDA action limit of 100 

ppb total AFs in the U.S. and commodities destined for human consumption cannot 

exceed 20 ppb. Due to high consumption of milk by infants and children the FDA action 

level for AFM1 in milk products, has been lowered to 0.5 ppb. Although regulations on 

AF content have been beneficial in U.S. and European markets, such regulations are 

lacking in most African countries. It is also important to note that strict European and 

U.S. regulations have influenced exportation of grains and oilseeds from Africa, 

resulting in farmers keeping the lower quality produce for their own consumption. 
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1.2 Fumonisin   

1.2.1 Fumonisin chemistry 

Fumonisins (FBs) are a recently discovered family of mycotoxins, consisting of 

15 structurally similar analogs produced by Fusarium verticilliodies (moniliforme) and 

F. proliferatum (Marin S et al. 2004). While Fusarium fungi, identified by John Sheldon 

in 1904, was known to cause adverse health effects in animals, the toxic agent was not 

elucidated until many years later. During an investigation of increased esophageal cancer 

incidence in South Africa, scientists elucidated the structure of FBs and implicated them 

as the source of toxicity (Gelderblom et al. 1988). It was later discovered that the source 

of the described FBs was F. verticilliodies. FBs contain a long carbon-chain backbone 

with two tricarboxylic acid groups esterified at C14 and C15. The tricarboxylic acid and 

amine groups on the carbon-chain make the compounds highly water soluble (Figure 3). 

The fumonisin B1 (FB1) isoform is the most studied and is frequently implicated in the 

manifestation of multiple animal and human diseases and thus will be the toxin of 

interest in this text. The stereochemistry of FBs is still unknown. However, it has been 

proposed that the acid side chains can act with the backbone, causing the molecule to 

fold on itself creating a spherical globular model. This model suggests that FB1 could be 

a potential chelator of ions important for cellular function, such as potassium and 

calcium (Beier and Stanker 1997). 

1.2.2 Source of fumonisin contamination 

Ear rot and kernel disease in maize most frequently results from infection with 

Fusarium fungi (Marasas et al. 1984). Fusarium species are primarily associated with 
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infection of maize crops but can also affect wheat and other cereal grains (Marasas 

1995). Two factors that contribute to the growth of F. verticilliodies and F. proliferatum, 

and the production of FBs, are water activity (aw) and temperature (Doohan et al. 2003). 

Climate affects not only growth and germination, but production and dispersal of 

Fusarium species as well. F. verticilliodies and F. proliferatum are known to reproduce 

both sexually and asexually (Leslie 1996; Parry et al. 1995). Optimal temperatures for 

germination are between 25-37°C, and a minimum aw of 0.88 is required (Marin S et al. 

1996). Water activity defines the intensity of association between water and a non-

aqueous substance and typically rises with temperature. It is calculated as a ratio of 

vapor pressure of water in a solid material (i.e. maize) to vapor pressure of pure water, 

thus an aw of 0.88 means the vapor pressure of the maize is 88% that of pure water. A 

high aw value indicates a high-risk for bacterial, yeast, and fungal growth. Optimal 

conditions for growth of F. verticilliodies and F. proliferatum on maize were reported at 

30°C and an increasing aw (>0.925) (Marin S et al. 1995). Although Fusarium is one 

fungi that is often attributed to global contamination, the two species known to produce 

FBs, F. verticilliodies and F. proliferatum, grow best in high temperatures (Keller et al. 

1997; Kostecki et al. 1999; Marin S et al. 1999a; Miller 2001). FB production by these 

fungi is more highly dependent on aw than temperature; the temperature range for 

optimal FB production can range between 15-30°C (Cahagnier et al. 1995; Marin S et al. 

1999a). In general, F. verticilliodies FB production is greatest at 20-25°C and aw 0.98, 

however F. proliferatum prefers lower temperatures around 15°C (Marin S et al. 2004). 
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Thus, reports of high prevalence of Fusarium infection and FB exposure in tropical and 

sub-tropical climates, where the relative humidity is highest, are not unexpected.  

1.2.3 Fumonisin toxicity 

FB1 has a complex mode of action and biological effects have been difficult to 

extrapolate to other species, particularly humans, due to gender, strain, and species 

differences in effects (Muller et al. 2012). The complexity of FB toxicity can be fully 

appreciated when assessing variability in species sensitivity to the toxin. Horses and 

swine are the most sensitive species to FB exposure. Horses may develop equine 

leukoencephalomalacia (ELEM) following the ingestion of as little as 5-10 ppm. ELEM 

is characterized by necrosis of the brain white matter leading to signs such as ataxia, 

trembling, anorexia, and death (Kellerman et al. 1990; Marasas et al. 1988; Uhlinger 

1997). However, toxicity manifests differently in swine with the development of porcine 

pulmonary edema following FB1 ingestion, frequently resulting in death. The exact 

mechanism by which pulmonary edema develops in swine is unknown; however, there is 

evidence that FB1 acts as a cardiotoxin through the increased production of TNF-α (He 

et al. 2001; Soriano et al. 2005). It is also suggested that the disruption of sphingolipid 

metabolism by FB1 causes collapse of cell to cell junctions leading to degradation of the 

endothelial barrier and formation of “leaky” vessels, which results in hypertension 

(Ramasamy et al. 1995). 
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Figure 3. Fumonisin chemical structure. A) fumonisin B1, B) sphinganine, C) 

sphingosine 
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During multiple rodent toxicity assays conducted by the U.S. Department of 

Health National Toxicology Program, the most common toxic endpoints identified 

following FB1 treatment was renal carcinogenicity and nephrotoxicity (NTP 2001). 

Target organs for FB1 toxicity are the kidney and liver in rodent models. Acute toxicity 

of FB1 appears to be low but at a dose of 150 ppm, for 4 weeks in Sprague-Dawley rats, 

significant increases in triglycerides, cholesterol, and alkaline phosphatase (ALP) were 

observed indicating hepatotoxicity under this treatment regimen (Voss et al. 1993a). 

Cortical nephrosis was also observed in animals given lower doses of FB1, however this 

study also indicated that males were more sensitive to FB1-induced renal toxicity than 

female Sprague-Dawley rats. The same kidney lesions, tubular epithelial basophilia and 

cell degeneration in the proximal convoluted tubules, did not occur in females until a 

dose of 50 ppm, while males developed these histopathological effects after 15 ppm FB1. 

Although Fischer-344 rats (F344) demonstrated similar sex-linked sensitivities to FB1 

nephrotoxicity as the Sprague-Dawley rats, hepatic apoptosis occurred more frequently 

in females of this breed (NTP 2001). In contrast, it was reported that FB1 treatment in 

B6C3F/Nctr BR mice, at the same doses given to rats (up to 56 mg/kg), does not result 

in nephrotoxicity, but causes hepatocellular effects such as, necrosis, periportal 

hypertrophy, and centrilobular and bile duct hyperplasia (NTP 2001). Increased levels of 

alanine aminotransferase (ALT) and ALP in the serum also indicated hepatotoxic effects 

of FB1 and, like rats; females were more sensitive to the hepatic toxicity than males. 

Interestingly, male BDIX mice, dosed with F. moniliforme culture, showed signs of 

hepatotoxicity but not nephrotoxicity. Gelderblom et al. (1991) discovered fibrosis, 
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degeneration, and proliferation of the hepatobiliary tract in male mice given FB 

treatment but found minimal changes in the kidney. Although, the toxins produced from 

the F. moniliforme cultures used in this study were not defined, this is one of the first 

studies to demonstrate the possible carcinogenicity of FB. Gender-differences in 

susceptibility are also prevalent among other species. Male pigs are more highly affected 

by FB1 exposure than females. FB1 treatment in weanling pigs decreased antibody levels 

following vaccination and expression of IL-10 in males only (Marin DE et al. 2006). 

Similarly, males were more sensitive to toxicity as evidenced by higher levels of free 

sphingolipids in the lungs (the target organ in swine) when compared to effects in 

females (Rotter et al. 1996). Sub-chronic exposure assessment in F344 rats confirmed 

the kidney as a target organ in this species and its gender-specific variability (Voss et al. 

1995).  

Evidence of renal carcinogenicity in F344 rats occurred in males following a two 

year treatment protocol (NTP 2001). Doses of 50 and 150 ppm FB1 included in the diet 

resulted in renal tubular adenomas, carcinomas, and increases in preneoplastic lesions. 

Renal carcinomas were highly metastatic; metastasis to the lung occurred in 50% of rats 

at the highest dose of FB1. Renal tubular carcinomas showed a malignant anaplastic 

phenotype that was highly invasive and mitotic (Hard et al. 2001). The incidence of 

hepatocellular neoplasms were higher in females than males in a study conducted by the 

same group utilizing B6C3F/Nctr mice (NTP 2001). FB1-mediated toxicity studies 

lasting for two years in BDIX mice resulted in increased hepatocyte nodules and HCC 

(Gelderblom et al. 1991; Gelderblom et al. 1996b). Interestingly, the authors also 
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reported hepatotoxic and nephrotoxic non-neoplastic lesions at lower doses that did not 

induce carcinogenic effects. Based on these chronic studies a no observed effect level 

(NOEL) of 0.67 mg/kg b.w. per day was defined for tumor induction in rats and 0.22 

mg/kg for renal toxicity (Howard et al. 2001; NTP 2001).     

1.2.4 Mechanism of action 

FB1 is poorly absorbed by the GI tract, only 4% of an orally administered dose 

was recovered in the plasma and tissues of rats (Martinez-Larranaga et al. 1999). FB1 is 

rapidly distributed to the liver and kidney and eliminated with a plasma half-life of only 

3.15 hr Treatment of Sprague-Dawley rats for ten days showed accumulation of FB1 in 

the kidney and liver, although the concentration in the kidney was 10-fold higher than 

the liver (Riley and Voss 2006). Importantly, the concentration of FB1 in the kidney 

positively correlated with histopathological changes observed in the kidneys. Multiple 

studies designed to assess the metabolism and biotransformation of FB1, in vitro and in 

vivo, have indicated that FB1 is not biologically activated or deactivated following 

ingestion. Unlike AFB1, CYP450 enzymes do not metabolize FB1. However, a 

hydrolyzed form of FB1 (HFB1) is excreted in the feces (Shephard et al. 1995, 1994). 

The HFB1 excreted product is not a result of direct biological metabolism; it results from 

microbial deesterification of the tricarboxylic acid groups in the gut and not well 

absorbed. Therefore, although HFB1 is more toxic than FB1 following intraperitoneal 

administration (Seiferlein et al. 2007), it is not thought to contribute to FBs toxicity 

outside of possible GI effects (Humpf et al. 1998). Absorbed FB1 primarily remains in 

its non-metabolized form and is rapidly excreted in the feces (primary route) or urine.    
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Structurally, the 3,5-dihydroxy, 2-aminoalkane backbone of FB1 is similar to 

endogenous sphingolipids, sphinganine and sphingosine; this likeness is believed to be 

the basis of their toxicity (Merrill et al. 1996) (Figure 4). The backbone similarity to 

natural substrates of sphinganine N-acetyltransferase (ceramide synthase) led to research 

involving the inhibition of this important enzyme by FB1. Its suspected mode of action is 

described in Figure 4. Ceramide synthase is an integral enzyme in cellular sphingolipid 

metabolism by acetylating free sphinganine to produce dihydroceramide during de novo 

sphingolipid synthesis. This enzyme also catalyzes deactylation of sphingosine to 

ceramide (Mullen et al. 2012; Pewzner-Jung et al. 2006). There is evidence that 

sphingolipids are not solely utilized as structural units of biological membranes, but are 

involved in various intracellular and extracellular functions including differentiation, 

growth, proliferation, senescence, apoptosis, and necrosis (Adam et al. 2002; Okazaki et 

al. 1989; Ruvolo 2003; Venable et al. 1995; Wang G et al. 2005). FB1 potency is 

influenced by the concentration of sphinganine, suggesting that FB1 most likely interacts 

with sphinganine binding sites within ceramide synthase (Merrill et al. 2001). Inhibition 

of ceramide synthase by FB1 results in an accumulation of free sphinganine in serum and 

tissues and decreases in ceramide and complex sphingolipids (Merrill et al. 2001; Riley 

et al. 2001; Wang E et al. 1991). Consequently, FB1 exposure has been correlated with 

increases in free sphinganine levels in the blood and urine resulting in an unbalanced 

sphingolipid ratio (Gelderblom et al. 1996a; Riley et al. 1993, 1994; Wang E et al. 

1992). Importantly, Riley et al. (1994) observed a strong dose-response relationship 

between FB1 treatment in rats and sphingoid base levels in the kidney prior to the onset 
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of renal toxicity, indicating a possible mechanistic basis for disrupted sphingolipid 

metabolism and FB1-induced toxicity. Sphinganine and sphingosine are known to cause 

cytotoxic, apoptotic, and inhibitory effects on cells when applied exogenously, therefore 

accumulation of these sphingoid bases following FB1 exposure could be responsible for 

apoptosis observed during toxicity studies (Muller et al. 2012). Although there is 

evidence to support the hypothesis that FB1-mediated toxicity is a result of inhibition of 

ceramide synthase activity and accumulation of sphingoid bases and decreases of more 

complex sphingolipids, more recent work suggests that additional targets also contribute 

to the cellular response from FB1 exposure (He et al. 2001; Riley and Voss 2006; 

Seefelder et al. 2003).  

The potential carcinogenicity of FB1 stimulated research on the genotoxicity of 

FB and there is evidence that although FB1 is not a genotoxic compound it does acts as 

an indirect carcinogen. Mutagenicity studies with Escherichia coli and Salmonella 

typhimurium have repeatedly shown negative results (Aranda et al. 2000; Gelderblom 

and Snyman 1991; Knasmuller et al. 1997). However, DNA damage, including strand 

breaks, have been observed by the comet assay in numerous mammalian cell lines and in 

vivo in both liver and kidney of rats (Atroshi et al. 1999; Domijan A et al. 2006, 2007, 

2008; Ehrlich et al. 2002; Galvano et al. 2002a, 2002b). The lack of FB1 reactivity with 

DNA has led to conclusions that the DNA damage observed in these studies are 

mediated through oxidative stress resulting from FB1 exposure. In rats, FB ingestion 

causes accumulation of fatty acids in the liver, which are subject to lipid peroxidation, 

free radical formation and damage leading to cell transformation (Gelderblom et al. 
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1996a).  Reactive oxygen species (ROS) act as highly reactive electrophiles and can 

cause damage to proteins, lipids, and DNA. FB1-mediated ROS production has been 

implicated as the causative agent in DNA damage and carcinogenic potential of FB1 in 

biological systems (Abel and Gelderblom 1998; Domijan A et al. 2007, 2008; Kouadio 

et al. 2007). FB1 treated rats had DNA lesions in their kidney in addition to signs of 

oxidative stress (i.e. increases in protein carbonyls and malondialdehyde). In vitro 

studies have supported these findings; porcine and monkey kidney cells showed 

increased levels of malondialdehyde following FB1 treatment (Abado-Becognee et al. 

1998; Klaric et al. 2007; Meca et al. 2010). Interestingly, FB1 has also been associated 

with depleted levels of an important cellular ROS scavenger, GSH, further supporting an 

increase in ROS species following FB1 induced toxicity (Atroshi et al. 1999; Bondy et 

al. 1995; Kang and Alexander 1996). However, there is still no conclusive evidence 

whether lipid peroxidation and oxidative stress is an indirect or direct consequence of 

FB1 toxicity (Abel and Gelderblom 1998; Muller et al. 2012). 

1.2.5 Human exposure in Africa 

Human exposure in Africa occurs through consumption of contaminated maize 

meal. Consumption of FB1, like AFB1, is highest in rural communities of South 

America, Africa, and Southeast Asia, due to a favorable climate for fungal growth, 

limited. 

 



 

45 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. A model of de novo sphingolipid biosynthesis and inhibition by fumonisin B1.  The gray arrows indicate known 
effects of pools of metabolites resulting from fumonisin B1 inhibition of ceramide synthase. Reductions in complex 
sphingolipids can disrupt the integrity of the plasma membrane of cell. Adapted from Riley and Voss 2006. 

Ceramide synthase 

Palmitoyl-CoA 

Serine 

Sphingosine 

Sphinganine 

Complex 
sphingolipids 

Fumoinsin B1 

Sphingomyelin 

Ceramide 

 

+ 

Plasma membrane 

Ceramidase 

X 

X 

 

 

 

 



 

46 

 

variety in the diet, and unsuitable cultivation and storage practices. It has been estimated 

that dietary intake of FB1 could be as high as 354.9 µg/kg bw per day, in areas of Africa 

consuming large quantities of maize based foods (Muller et al. 2012). In humans, the 

most widely recognized effect associated with the consumption of FB1-contaminated 

corn is the development of esophageal squamous cell carcinoma (Alizadeh et al. 2012; 

Chu and Li 1994; Gong HZ et al. 2009; Rheeder et al. 1992; Williams et al. 2010). 

Although FB1 is associated with carcinomas in many species, it does not induce 

genotoxicity in cellular models, resulting in a 2B classification (possibly carcinogenic to 

humans) by the International Agency for Research on Cancer (IARC 2002). Lack of an 

appropriate biomarker of FB1 exposure has limited the findings and efforts of 

epidemiological based studies correlating FB1 with human based health effects. Thus, 

most reports are limited to generalizations of populations with a higher incidence of a 

specific disease who also consume large amounts of maize, or maize from the same 

region containing FB1 contamination. A recent report in China showed no correlation 

between FB1 levels in the toe nails of participants and HCC incidence, following 

adjustments for HBsAg positive, sex, age, and alcohol consumption status (Persson et al. 

2012). However, the biomarker utilized in this study was not validated for linearity with 

FB1 exposure in humans or animal models. While epidemiological evidence for 

carcinogenic potential of FB1 in human populations is lacking, animal models indicate 

that FB1 could be a contributing variable and additional risk factor for development of 

cancer, particularly in populations at high-risk for cancer development due to other 

environmental factors. Of concern is FB exposure in populations in Ghana, where HBV 
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infection and AF exposure is endemic. Up to 72.1% of participant urine samples were 

positive for FB1 in a rural community of Ghana (Robinson et al. 2012), demonstrating a 

high incidence of exposure to this mycotoxin in communities at high-risk for HCC 

development.    

Recently, FBs have also been proposed as a risk factor for neural tube defects 

(NTDs) in areas where populations consume large quantities of corn and corn based 

foods (Gelineau-van Waes et al. 2009; Missmer et al. 2006; Suarez et al. 2012). The 

incidence of NTDs is heightened in areas where corn is a dietary staple and FB 

contamination is common, such as in Guatemala, Northern China, and the Transkei 

region of South Africa. These areas have reported an incidence of NTDs that is 6-10 

times higher than the global average (Hendricks K 1999; Marasas et al. 2004; Moore et 

al. 1997; Ncayiyana 1986; Xiao et al. 1990). In the U. S., corn crops along the Texas-

Mexico border registered unusually high levels of FB contamination during 1990-1991, 

which correlated with substantially higher NTDs (2.7/1000 live births) compared to the 

same area in 1986-1989 (1.5/1000 live births) (Hendricks K 1999; Missmer et al. 2006). 

While a mechanism of action has not yet been delineated, FB1 appears to inhibit uptake 

and metabolism of folic acid, a vitamin essential for normal fetal NT development.  

Like AF, FBs have been implicated in a myriad of biological endpoints that are 

not fully understood. Potential health effects of FBs in humans are still being assessed. 

For example, Kimanya et al. (2010) recently reported that children from Tanzania 

consuming foods contaminated with greater than 2 µg/kg bw FB were significantly 

shorter and lighter than children with lower FB1 exposure. This implies that FB1 
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exposure may have a possible association with growth faltering in Africa. Development 

of an appropriate biomarker and further research in the mechanism of action for FB1 

would improve the quality of epidemiological based studies. 

1.2.6 Biomarkers of exposure 

Development of a stable, linear, dose-dependent biomarker of FB exposure has 

proven difficult due to its short half-life in the serum and urine as well as a lack of 

detectable metabolites. FB1 is known to affect sphingoid base concentrations as a result 

of ceramide synthase inhibition and was thus the first biomarker to be investigated. An 

increase in the sphingolipid ratio (sphinganine/sphingosine) is linear with increased 

consumption of FB1 in various animal models and has often been utilized to assess 

exposure in animal species (Cai et al. 2007; Shephard et al. 1996). However, this 

biomarker of exposure is not linear within humans (Qiu and Liu 2001; Solfrizzo et al. 

2004; van der Westhuizen et al. 1999), which is likely due to genetic variations in lipid 

production. Parent FB1, was proposed as a biomarker for determining FB exposure in 

humans (Shephard et al. 1995, 2007). Cai et al. (2007) concluded that excretion of parent 

FB1 in the urine following repeated dosing was strongly correlated with urinary 

sphingolipid metabolites and serum sphinganine/sphingosine ratio and should be further 

assessed for linearity with human FB1 intake. The first human study to report a method 

for urinary FB1 analysis that showed a positive correlation with FB exposure and FB1 

excretion was conducted in a Mexican population consuming large quantities of maize-

based tortillas (Gong YY et al. 2008). Following this study, researchers from the 

PROMEC Unit in South Africa confirmed this correlation, with a correlation coefficient 
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of 0.4254 and p-value<0.01 (van der Westhuizen et al. 2011). Interestingly, the 

percentage of FB1 consumed that was excreted in the urine ranged from 0.054 to 0.104% 

per day, significantly lower than that proposed from animal studies (up to 2%). Riley et 

al. (2012) investigated the kinetics of urinary FB1 excretions in humans consuming 

maize based diets from Guatemala. Average excretion of FB1 in this study accounted for 

0.12 to 0.9% of the FB1 intake, however a correlation between intake and excretion was 

not reported. Variability in FB1 excretion was high between individuals and was cleared 

within 72 hr of exposure. Therefore, use of urinary FB1 levels in epidemiological based 

studies should consist of large population sizes and multiple samplings from the same 

participant to account for inter-individual variations in excretion.           

1.2.7 Regulation 

The occurrence of FBs in corn is ubiquitous, causing concern for populations 

where corn is a staple commodity used in a variety of foods. Currently there is 

insufficient information to adequately assess risk in populations that consume high 

amounts of corn. However, the U.S. FDA has established recommended maximum 

levels for FBs in animal and human foods, which are much higher than those established 

for AFs. A 60 ppm action level has been recommended for feeds for ruminant slaughter 

animals. Corn products for human consumption have been limited to 4 ppm for total 

FBs. JECFA has set a provisional maximum tolerable daily intake (PMTDI) for FB1, 

FB2, and FB3 combinations of 2 ppm per day.  
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1.3 AFB1/FB1 co-exposure 

Discovery of similar biological endpoints, such as liver toxicity, immunotoxicity, 

and growth faltering for AFB1 and FB1 exposure has led to public health concerns in 

communities that are dually exposed to FBs and AFs. A high-risk for AF and FB co-

contamination in maize-based products is common in climates favorable for growth of 

both aspergillus and fusarium. Surveys of maize flour from markets and households in 

Ghana have reported mixtures of both AFs and FBs (Kimanya et al. 2008; Kpodo et al. 

2000; Kumi et al. 2011). Additionally, biomarkers for both toxins were found in high 

frequency in an adult population residing in rural Ghana (Robinson et al. 2012; Wang P 

et al. 2008). Dual exposure risk has led to a recent assessment of possible antagonistc, 

additive, or synergistic effects of AFB1/FB1 mixtures on toxicity. Acute toxicity 

evaluation of combinations of AFB1 and FB1 demonstrated an additive effect in 

mortality in F344 rats (McKean et al. 2006). During this study various fractions (1.0, 

3/4, 1/2, 3/8, 1/4, 1/8) of the AFB1 LD50 value (2.71 mg/kg) for these rats was mixed 

with 25 mg/kg FB1 and dosed by gavage. Acute toxic effects such as depression and 

diarrhea occurred within a few hr of the treatment in the four highest doses, while no 

effect was observed in the two lowest doses. Importantly, mortality was 100% in the two 

highest doses (2.71 mg/kg AFB1 + 25 mg/kg FB1 and 2.03 mg/kg AFB1 + 25 mg/kg 

FB1) 72 hr after treatment, while treatment of 2.15 mg/kg AFB1 alone only had a 20% 

mortality rate during a one week study period (McKean et al. 2006). An interaction 

index (K) of 1.98 was calculated for combined toxicity indicating an additive interaction 

of AFB1 and FB1. Similarly, the same research group found a K value of 1.98 in 
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AFB1/FB1 combinative toxicity analysis in mosquito fish as well. Results from 

AFB1/FB1 toxicity in Hydra vulgaris, showed the combination to be more toxic than 

either mycotoxin alone (Brown KA et al. 2012). Following exposure to the mixture of 

AFB1 and FB1, all hydra had disintegrated. Although the single AFB1 or FB1 treatments 

caused morphological alterations the hydra were still viable. Male Wistar rats fed 

AFB1/FB1 contaminated diets had higher numbers of tubular apoptotic cells in the 

kidney compared to those treated with either FB1 or AFB1 alone (Theumer et al. 2010; 

Theumer et al. 2008). Additive effects were also observed in the liver; only the mixture 

group had signs of cellular mitosis and apoptosis after treatment. It is interesting to note 

that the increase in mitotic and apoptotic conditions in the liver of AFB1/FB1 supports 

evidence found by Gelderblom et al. (2002) even though the treatment protocols were 

vastly different. Theumer et al. (2008) dosed animals with AFB1 and FB1 at the same 

time, while Gelderblom and associates designed a sequential dosing regimen due to the 

cancer initiation and promotion potentials of AFB1 and FB1, respectively. AFB1 and FB1 

sequentially treated F344 rats had higher weight gain and relative liver weights than 

those treated with FB1 alone, however the AFB1 group had similar weights compared to 

the mixture group (Gelderblom et al. 2002). The AFB1/FB1 treatment increased the size 

and number of the placental form of glutathione-S-transferase positive (GSTP+) foci in 

the liver compared to either individual mycotoxin following promotion with 2-

acetylaminofluorene and partial hepatectomy (2-AAF/PH). Co-treatment also induced 

larger amounts of cellular apoptosis and mitoses and cirrhotic livers with numerous 

dysplastic nodules. The authors concluded that not only can FB1 act as a promoter of 
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AFB1-induced hepatocytes, but AFB1 enhanced the potency of FB1, presumably by 

increasing the susceptibility of the liver to fumoinsin’s toxicity (Gelderblom et al. 2002).  

One study conducted in weaned swine showed no additive effects of FB1/AFB1 

co-exposure except for a decrease in feed consumption and feed conversion (Dilkin et al. 

2003). However, the dose of AFB1 given in this study was very low (50 ug/kg) 

considering the LD50 value in weanling swine is 620 ug/kg (Cullen and Newberne 1994). 

Additionally, the species differences in effects of FB1 exposure in pigs would indicate 

that AF and FB may not act additively or synergistically in this species due to a 

difference in target organs (i.e. lung and liver, respectively). An alternate study in swine 

utilizing 2.5mg/kg AFB1 and 100 mg/kg FB1 did indicate additive and possible 

synergistic effects of the combination (Harvey et al. 1995). Additive effects included 

increases in body weight and hematologic measurements, while cholinesterase and ALP 

levels were synergistically elevated. The authors concluded that the combination diet of 

AFB1 and FB1 was at least additive for toxicity, and particularly for incidence of liver 

disease.  

1.4 Methods to reduce exposure in human populations        

AF toxicity, exposure, and intervention strategies have been investigated for over 

50 years. However, there is still approximately 4.5-5 billion of the world’s population 

exposed to AFs (Strosnider et al. 2006; Williams et al. 2004). Intervention strategies to 

reduce this exposure have been an important topic in mycotoxicology for 20 to 30 years. 

Although there have been numerous proposed mechanisms, humans and animals are 

frequently exposed to high levels of AFs, particularly in rural areas of developing 
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countries. Strategies to reduce mycotoxin exposure in these high risk areas can be 

categorized into one of three approaches: 1) Pre-harvest (agricultural), 2) Post-harvest 

(storage), and 3) Chemoprotective. Pre-harvest interventions include technologies that 

are utilized in the field to reduce or eliminate Aspergillus contamination and growth. 

Development of transgenic strains of maize and peanut crops resistant to Aspergillus has 

been developed and may provide both health and economic benefits in communities at 

risk (Guo et al. 2008; Holbrook et al. 2009; Menkir et al. 2006). Insect damage in the 

field is a main factor that can predispose maize crops to fungal contamination via 

promoting colonization through kernel injury and acting as vectors for fungal spores. 

Transgenic maize that is insect resistant has also been applied in areas of high AF 

incidence, however there were mixed results in its efficacy (Wu 2006). Similar, pre-

harvest control includes atoxigenic strains of Aspergilli that reduce Aspergillus 

colonization on crops through competition. These competitive fungi have shown a 

decrease of 70 to 99% following co-inoculation of African maize (Atehnkeng et al. 

2008). Good agricultural practices for post-harvest storage in the industrialized world 

prevent accumulation of mycotoxins. However, in developing countries storage practices 

tend to be rudimentary and can promote the growth of fungi and production of 

mycotoxins. Education of farmers in different agricultural processes can be effective in 

reducing levels of mycotoxins. In particular, early harvesting, proper drying, proper 

storage (proper ventilation), and insect management have shown improvement in 

contamination (Wagacha and Muthomi 2008; Wu 2008). Hand sorting of AF 

contaminated kernels can also be effective in reducing exposure in high-risk areas 
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(Kabak et al. 2006). Although these types of interventions improve food quality, 

implementation is often short lived in rural areas after research teams exit the 

community. Strategies to utilize crops that have been contaminated in the field or during 

storage are often of concern for mycotoxicologists working in Africa and Southeast 

Asia. Communities that are at highest risk for mycotoxin exposure are often forced to 

consume lower quality crops due to food insecurity. Disposing of any food is both 

culturally unacceptable and economically unfeasible.  

Chemoprotective interventions would allow for either human or animal 

consumption of foods that would otherwise be considered unsuitable for consumption by 

decreasing the toxic effects of ingested mycotoxins. Chemoprotective interventions 

include chemical compounds that alter the metabolic activation of AFB1. Three of the 

most studied strategies; green tea polyphenols (GTP), chlorophyllin, and a form of 

dithiolethiones named oltipraz are reviewed by Groopman et al. (2008). GTPs have been 

implicated as inhibitors of carcinogenesis from various chemical compounds in animal 

models as reviewed by Yang et al. (2006). Inclusion of GTP in the water of AFB1 treated 

rats decreased the number of preneoplastic lesions in the liver by 60-70% and inhibited 

AFB1-DNA binding by 20-30% (Qin et al. 1997). Similarly, GTP reduced oxidative 

DNA damage during a Phase IIa clinical trial in a population at high-risk for AF 

exposure in China (Luo et al. 2006). Chlorophyllin has been effective in inhibiting HCC 

in AFB1-treated trout (Breinholt et al. 1995a) and appears to both sequester AF and 

induce metabolic enzymes (Breinholt et al. 1995b; Fahey et al. 2005). Reductions in 

AFB1 biomarkers have confirmed efficacy of chlorophyllin in rats and a human 
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intervention trial (Egner et al. 2001; Simonich et al. 2007). Oltipraz acts to modify drug-

metabolizing enzymes through the Keap1-Nrf2 complex (Groopman et al. 2008). Nrf2 is 

a transcription factor that acts through the antioxidant response element. Keap1 acts to 

sequester Nrf2 in the cytoplasm; dissociation of the Keap1-Nrf2 complex results in 

translocation of Nrf2 to the nucleus and induction of transcription of various phase II 

detoxifying enzymes (Dinkova-Kostova et al. 2005; Kwak et al. 2004). One month 

intervention with Oltipraz in a human population reduced the urinary AFM1 biomarker 

by 51% and increased AF conjugation through GSTs (Kensler et al. 1998; Wang JS et al. 

1999). However, all these methods take numerous weeks, months, or even years to 

reduce AF exposure and would not be useful for acute outbreaks such as that seen in 

Kenya in 2004. Research in our laboratory has focused on the safety and efficacy of 

inclusion of a natural clay product that acts to bind AF and possibly FB, reducing their 

bioavailability in the GI tract. Thus, it is proposed that this product would be useful 

during instances of high AF exposure in populations presented with epidemics of 

jaundice, lethargy, or acute death from hemorrhaging of the liver.                     

1.4.1 Enterosorption with dioctahedral smectite clays  

 Smectite is one of the major mineral groups of phylosillicate clay fractions from 

soils (Reid-Soukup and Ulery 2002). They occur naturally in environments with high 

silicon and basic cation activities and are widely distributed around the world. Smectites 

have unique layered structures often described as a deck of cards randomly thrown on a 

table. Generally, they consist of two tetrahedral sheets (silicon oxide) and one octahedral 

sheet (aluminum oxide) to comprise a 2:1 lattice layer with interlayer regions between 
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each 2:1 lattice (Figure 5). The tetrahedral sheet is comprised of a Si4+ ion coordinated 

by four O2- ions and the octahedral sheet contains Al3+ ions coordinated by six O2- or 

OH- ions. The oxygen units of these tetrahedral and octahedral structures can be shared 

creating a variety of structures (Schulze 1989). Their structure makes them highly 

adsorbent materials that are often utilized as cleaning or purifying agents. The groups of 

smectites include montmorillonite, beidellite, nontronite, hectorite, saponite, and 

sauconite. Montmorillonites are dioctahedrally coordinated; meaning that they are 

composed of one octahedral unit and two tetrahedral units on either side of the 

octahedral unit creating a sheet that is around 10 Å thick (Segad et al. 2010). One 

aluminum atom shares oxygen with the two silica sheets. Importantly, montmorillonites 

also naturally undergo isomorphic substitutions in the octahedral layer often exchanging 

Al3+ ions with Mg2+ and/or Fe2+, creating a negative change on the platelets (Segad et al. 

2010). Water and exchangeable cations, predominantly Ca2+ and/or Na+, occupy the 

interlayer space between the platelets to equalize the negative charge. The physical and 

behavioral properties can change drastically depending on the major cation present in the 

interlayer space. Na+ montmorillonites generally have a larger swelling capacity than 

Ca2+ saturated clays. This is caused by stronger attractions of the platelet layers to the 

interlayer Ca2+ ions than the Na+ ions, resulting in less distance between the repeating 

platelets and reduced expansion of the interlayer space (Sato et al. 1992). Smectites have 

constant cation exchange capacities (charge on the surface of the clay platelet) ranging 

from 47 to 162 cmolc/kg (Borchardt 1989) due to the isomorphic substitutions present in 

the octahedral and tetrahedral sheets (Reid-Soukup and Ulery 2002). The particle size of 
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smectites is <0.2µm, comprising most of the fine clay fraction of soils, resulting in a 

large external surface area. Small particle size and interlayer expansion (swelling) 

promotes ion exchange and an increased surface area ranging from 600 to 800 m2/g 

(Reid-Soukup and Ulery 2002). An interesting way to visualize the massive surface area 

of these types of clays was provided by Mitchell JK (1993). They calculated that 10 g of 

a dispersed Na-montmorillonite would cover an entire football field. All of these 

properties make montmorillonites good materials for absorbing positively charged 

materials, as seen by their ability to act as macronutrient reservoirs in soils; sequestering 

K+, NH4
+, Ca2+, Mg2+, Cu2+, and Zn2+ (Reid-Soukup and Ulery 2002). The sorbent 

properties of montmorillonites and the observation that populations at high-risk for 

exposure commonly engaged in geophagy (the consumption of soils) led to an 

investigation for the potential to bind mycotoxins with various natural clay materials. 

Pioneering work by Phillips et al. in the 1980s reported efficacy of a Ca-

montmorillonite, NovaSil (NS) to decrease the negative health effects from AF exposure 

in multiple animal species. Further, molecular sorption analysis has proven that NS has a 

high binding capacity for AFB1 in vitro. 

1.4.2 Interaction between mycotoxins (AFB1 and FB1) and smectite  

 Isothermal analysis is a common method to investigate the sorption 

characteristics of a ligand on the surface of homogenous materials. Irving Langmuir 

developed a mathematical equation in 1916 that could describe the adsorption of gas 

molecules onto a solid surface, thereby significantly advancing the research of material 

sciences and adsorption (Langmuir 1916). The concepts of this modeling and 
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determination of binding capacity are described in detail by Kinniburgh (1986) and 

modified for mycotoxins by Grant (1998). Briefly, an isotherm is a plot of the 

concentration of a ligand left in solution versus the concentration bound to the surface of 

a solid. The shapes of the plots have been given classifications that describe the types of 

binding occurring (Giles et al. 1974a; Giles et al. 1960; Giles et al. 1974b). The plots can 

then be utilized in the Langmuir equation to determine the capacity (Qmax), affinity (Kd), 

and thermodynamics of adsorption.  

 AF binding analysis initially involved the use of 14C or 3H labeled AFB1 to 

determine the binding capacity of NS clay at various pH values and temperatures. The 

AFB1/NS complex was found to be stable at a variety of pH values and temperatures 

(Phillips et al. 1988). Following washing with various solvents, less than 10% of AFB1 

was extracted from the AFB1/NS complex, suggesting a chemisorption reaction between 

AFB1 and the surfaces of NS clay. Further research describing the mechanism of 

sorption indicated a high binding affinity and capacity of AFs on the surfaces of NS clay 

(Phillips et al. 1995). The index of chemisorption (Cα) was calculated from the initial 

concentration of AF, the amount bound, and amount desorbed and found to be relatively 

high (0.93). Similarly, calculation of enthalpy of the reaction was near or above -40 

kJ/mol (Grant and Phillips 1998). In general, adsorption of materials onto solid surfaces 

can be classified as physisorption or chemisorption depending on the enthalpy of 

adsorption value (ΔH). Enthalpy values of less than -20 kJ/mol suggest a physisorption 

binding mechanism and chemisorption can be described as those reactions with a ΔH 

greater than -20 kJ/mol (Guo et al. 1994). Recent studies have reported that AFB1 
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binding to smectite clays similar to NS involves direct ion-dipole interactions and 

electron sharing which explains the large heat of sorption described previously for NS 

(Deng et al. 2010). The maximum amount of AFB1 able to bind with the surfaces of NS 

based on the Langmuir model has been calculated as 0.461 mol/kg (Qmax). Grant and 

Phillips (1998) demonstrated an actual binding capacity (Qmax) of 0.336 mol/kg. This 

indicates that a majority of the space available for binding is occupied by AFB1, leading 

the authors to conclude that NS not only has a high binding capacity but also a high 

affinity for AFB1. Importantly, the surface area of NS clay available for binding was 

determined to be 848 ± 11 m2/g. AFB1 binding with NS clay occurs primarily within the 

interlayer space of the clay platelets. Collapsing of the interlayer through heating the 

clay at 125° C for 12 hr resulted in a significant decrease in sorption of AFB1 (Grant and 

Phillips 1998). Further work showed a similar AF binding capacity and affinity for a 

uniform particle size NS clay, or UPSN (Marroquín-Cardona et al. 2011). 

1.4.3 Uniform Particle Size NovaSil (UPSN) 

 UPSN was developed by Texas Enterosorbents (Bastrop, TX, USA) as a refined 

NS clay for human use. The purification of parent NS was designed to selectively 

minimize the amount of particles >100µm in size (Marroquín-Cardona et al. 2011). This 

process was designed to reduce batch to batch variations in the crude NS clay 
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Figure 5. Montmorillonite structure: Al2Si4O10 (OH)2. Schematic representation of 2:1 
layer-lattice montmorillonite clay showing hydrated calcium as the predominant 
interlayer cation. Common substitutions: Mg2+ for Al3+; Al3+ for Si4+; and Fe3+ for Al3+. 
Key: Si4+ (yellow), Al3+ (blue), O (red), H (white), C (light blue), and Ca2+ (green). A) 
Three-dimensional structure, B) Spatial structure demonstrating propping of the 
interlayer, C) AF bound structure.
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making it more suitable for human consumption. In the dry state, UPSN contains a 

higher fraction of its particles in the 45-100 µm range (67%), while NS has a majority of 

particles smaller than 45 µm (50%) (Marroquín-Cardona et al. 2011). There were major 

differences in the distribution of particle sized between UPSN and NS, but Qmax and Kd 

parameters following isothermal analysis were similar for the two materials. Due to the 

similarities observed in vitro, it was speculated that UPSN would have comparable 

efficacy and safety in vivo. The majority of work presented in this dissertation will focus 

on human intervention strategies with UPSN.         

1.4.4 Efficacy in animal and human models 

 The first studies showing efficacy of NS clay in reducing animal toxicity were 

conducted by a team at Texas A&M University and involved a variety of domestic farm 

animals. There is an extensive amount of literature describing the efficacy of 

montmorillonite clays to ameliorate the toxicity of various mycotoxins. A summary of 

these reports is shown in Table 1. For example, young broiler chicks administered 5 ppm 

AFB1 and 0.5% (w/w) NS clay were protected from the growth inhibitory effects of AF 

observed in controls (Pimpukdee et al. 2004). In growing barrows, NS prevented toxicity 

of AF over a 4-week period, as determined by recovery of weight gain, serum alkaline 

phosphatase (ALP), and ɣ-glutamyl transferase (GGT) values as compared with control 

group levels (Harvey et al. 1994, 1989c). In another study, AF and AF+NS-treated lambs 

gained 8 and 92% of the weight that control animals gained over the course of the trial, 

indicating a protective index of 75% from NS treatment (Harvey et al. 1991a). Similarly, 

vitamin A levels in chicks were diminished following AFB1 exposure, however 0.25 and 
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0.5% clay inclusion in the diet prevented AFB1 effects on vitamin A levels in the liver 

(Pimpukdee et al. 2004). Leghorn chicks were also protected from the effects of 7.5 

mg/kg AFB1 with 0.5% clay inclusion (Phillips et al. 1988). Inclusion of a 

montmorillonite clay decreased the growth inhibitory effects of AFB1 and gross 

pathological changes observed in the liver, such as a friable and pale appearance. A 

similar study conducted in Mexico confirmed these results. During this study chicks fed 

AF contaminated diets weighed 46% less than those receiving both AF and 

montmorillonite clay in their diet (Marquez Marquez and Tejada de Hernandez 1995). A 

montmorillonite clay (trademarked as Milbond-TX) was effective at a 1% dose in 

preventing reduced performance, changes in organ weights, serum chemistry changes, 

and gross pathology observed in broiler chicks fed 4 mg/kg AFB1 for 21 days (Ledoux et 

al. 1999). Kubena et al. (1998) reported a decrease in the toxic effects of 5 mg/kg AFB1 

on weight gain in chicks by 43% with only 0.375% clay inclusion. Effects of AFB1 on 

serum concentrations of cholesterol, albumin, triglycerides, calcium, glucose, and total 

protein were significantly reduced with 0.5% clay (Abo-Norag et al. 1995; Kubena et al. 

1990a, 1993a, 1993b). A study conducted with various clay binders investigated the 

efficacy of clay to rescue broiler chicks from the immunomodulation observed following 

AF exposure for 21 days (Kececi et al. 1998). The increases in white blood cell count, 

and percentages of lymphocytes and monocytes caused by AF exposure were not 

completely recovered to control levels with clay, but were significantly lower than those 

treated with AF alone.  
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 Turkey poults treated with 0.75 mg/kg AFB1 and 0.5% montmorillonite clay 

demonstrated an average reduction of 52% in excreted AFM1 when compared to the 

AFB1 control animals (Edrington et al. 1996). Acute toxicity of 1 mg/kg AFB1 was 

prevented in growing turkeys with treatment of clay at 0.5% (Kubena et al. 1991). The 

positive control group (1 mg/kg AFB1 alone) had a mortality rate of 88%, while no 

deaths occurred in those turkeys receiving AFB1 plus clay. One research group 

demonstrated acute toxicity of AFB1 in mink; inducing 100% mortality at 102 µg/kg 

AFB1 over 53 days of exposure (Bonna et al. 1991). Inclusion of 0.5% montmorillonite 

clay was effective in preventing mortality and toxic symptoms of aflatoxicosis. 

Weanling pigs have often been utilized as models for young children to assess possible 

health effects in humans. Studies have indicated that treatment with montmorillonite 

clay (NS) can reduce hepatic lesions, peripheral lobular lipidosis, peroportal and 

interlobular fibrosis, and bile duct hyperplasia induced by AFB1 exposure (Harvey et al. 

1989c). Impaired immune response following exposure to AFB1 including, reduced 

mitogen-induced lymphoblastogenesis and peritoneal macrophage activity and function, 

was prevented in barrows receiving 0.5% clay along with AFB1 (Harvey et al. 1994). 

Similar to the chicken studies described above, treatment with bentonite in AFB1 

exposed barrows, was effective in inhibiting growth stunting, decreased serum minerals, 

and decreased serum enzyme levels indicative of liver damage (AST, ALP, and gamma 

glutamyltransferase GGT) (Lindemann et al. 1993; Schell et al. 1993a, 1993b. Chestnut 

et al. (1992) and Harvey et al. (1991a) also showed positive results in sheep when 

consuming montmorillonite clays during AF exposure.  
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 Following identification of AFM1 excretion in the urine and milk of animals 

exposed to AFB1, exposure of the young through nursing has been investigated. 

Importantly, inclusioin of 1% montmorillonite clay was able to reduce excretion of 

AFM1 in the milk of dairy cows and goats by 44% and 51.9%, respectively (Harvey et 

al. 1991b; Smith EE et al. 1994). Reductions in the excretion of such biomarkers indicate 

a decrease in absorption of AFB1 in the GI tract due to binding with the clay treatment, 

resulting in reduced toxin bioavailability. The AFM1 biomarker has also been utilized in 

dogs and rodents to indicate efficacy of montmorillonites (Bingham et al. 2004; Sarr et 

al. 1995). Bingham et al. (2004) reported a reduction of 48.4% in urinary AFM1 

excretion in dogs, while Sarr et al. (1995) reported a much higher efficacy in rats 

(approximately 90% reduction in urinary AFM1). Importantly, pregnant rats treated with 

2 mg/kg AFB1 showed significant maternal and developmental toxicities in their 

offspring; however treatment with 0.5% NS resulted in development similar to absolute 

controls (Mayura et al. 1998). These studies indicated that treatment of montmorillonite 

clay can reduce the toxicity of AFB1 in multiple animal species, but its efficacy can 

differ between species due to differences in length of digestion, metabolism, dietary 

habits, and excretion. Importantly, based on results from short-term animal studies, it 

was calculated that the minimal effective dose to significantly reduce aflatoxicosis was 

0.5% montmorillonite clay (Phillips 1990; Phillips et al. 1990, 1995).  

 Determination of efficacy from human intervention trials is currently underway 

at Texas A&M University. However, there is one published report of the overall efficacy 

in an adult population from Ghana (Wang P et al. 2008). In this trial, the minimal 
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effective dose, 0.5% or 3 g NS, was taken daily, divided between a breakfast, lunch, and 

dinner meal for three months. Effect of NS treatment on AF bioavailability was assessed 

by both urinary and serum biomarkers, AFM1 and AFB1-alb, respectively. Urinary 

AFM1 levels were significantly reduced (58.7%) in the NS treated group when compared 

to a blinded placebo after three months of treatment. AFB1-alb levels were significantly 

lower in both the high-dose and low-dose NS treatment groups when compared to the 

placebo at the three month mark as well. Importantly, this significant difference was lost 

after treatment was discontinued (Wang P et al. 2008). This is the only published study 

to demonstrate efficacy of a montmorillonite clay to reduce bioavailability of AF in a 

human population at high-risk for exposure.                               

1.4.5 Safety evaluation                          

Safety assessment of both NS and UPSN has been conducted in animal and adult 

human trials. Due to the structural and physical characteristics it was postulated that 

montmorillonites could negatively affect the utilization of essential nutrients through 

cation exchange and possible sequestration of certain minerals like Zn, Mn, Na, and P in 

the interlayer. Studies specifically designed to determine the safety of smectite clay 

consumption are summarized in Table 2. 
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Table 1. Efficacy of montmorillonite clays to protect against mycotoxins 

Species Mycotoxin levels 
Clay in feed 

(duration) 
Major effects reported Reference 

Mice Zearalenone 400 mg/kg bw; 5 
g/kg bw (48 h) 

Prevented the general toxicity 
of ZEN. 

Abbès et al. 
2006 

     

Mice Zearalenone 400, 600 or 800 
mg/kg bw (48 h) 

Reduced erythrocytes, 
decreased the chromosomal 
aberration frequency and 
increased the number of 
polychromatic erythrocytes in 
bone-marrow cells. 

Abbès et al. 
2007 

     
Rats Aflatoxins 5g/kg (30 d) Prevented deleterious effects of 

aflatoxins. 
Abbès et al. 

2010 

     
Rats Aflatoxins 0.5% (21 d) Decreased growth inhibition in 

pregnant rats. 

Abdel-
Wahhab et al. 

1998 

     
Chickens Aflatoxins 0.5 % (28 d) 

Clay counteracted some of the 
toxic effects of AF in growing 
broiler chicks. 

Abo-Norag et 
al. 1995 

     
Chickens Afl/T-2 toxin          0.5% (21 d) 

No protection against T-2 toxin, 
variability in protection against 
growth inhibition 

Bailey et al. 
1998 

     
Pigs Aflatoxins 0.50% 

Decreased DNA adducts in the 
liver and reduced tissue 
residues of total aflatoxins.  

Beaver et al. 
1990 

     
Dogs Aflatoxins 0.5% (48 h) 

Significantly reduced the 
bioavailability of aflatoxins and 
excretion of M1 in urine. 

Bingham et 
al. 2004 

     
Mink Aflatoxins 0.5% (77 d) Mortality was prevented. Bonna et al. 

1991 

     
Mink Zearalenone 0.5% (24 d) Clay did not appreciably alter 

the hyperestrogenic effects. 
Bursian et al. 

1992 

     
Rats (& 

Sheep) 
Ergotamine Rats: 2.0% (28 d) 

HSCAS did not significantly 
protect rats or sheep from 
fescue toxicosis. 

Chestnut et 
al. 1992 
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     Table 1. Continued 

Species Mycotoxin levels Clay in feed 

(duration) Major effects reported Reference 

Pigs Aflatoxins 0.5% (35 d) 
Clay prevented hepatocellular 
changes normally associated 
with Aflatoxin consumption. 

Colvin et al. 
1989 

     
Chickens Cyclopiazonic acid 1.0% (21 d) 

Clay did not significantly 
prevent the adverse effects of 
clyclopiazonic acid. 

Dwyer et al. 
1997 

     
Turkeys Aflatoxins 0.5% (21 d) Decreased urinary excretion of 

aflatoxin M1. 
Edrington et 

al. 1996 

     

Chickens Aflatoxins 0.5% (3 weeks) 

Improved feed intake and 
weight gain. Alleviated the 
adverse effects of AFB1 on 
some serum chemistry. 

Gowda et al. 
2008 

     
Lambs Aflatoxins 2.0% (42 d) Diminished growth inhibition 

and immunosuppression. 
Harvey et al. 

1991a 

     Dairy 

Cows 
Aflatoxins 0.5%; 1.0% (28 

d) 
Reduction of aflatoxin M1 in 
milk. 

Harvey et al. 
1991b 

     
Pigs Aflatoxins 0.5%; 2.0% (28 

d) 

Decreased growth inhibition; 
prevention of serum effects and 
hepatic lesions. 

Harvey et al. 
1994 

     
Pigs Aflatoxins 0.5%; 2.0% (28 

d) 

Diminished growth inhibition, 
hepatic lesions and 
immunosuppression. 

Harvey et al. 
1989 

     
Chickens Afl/Ochratoxin A  0.5% (21 d) 

Decreased growth inhibitory 
effects; no effect against 
ochratoxin. 

Huff et al. 
1992 

     
Chickens Aflatoxin  0.35, 0.5% (21 d) Reduced immune stimulation 

effects of Afl 
Kececi et al. 

1998 

     
Chickens Afl/Trichothecenes 0.5% (21 d) Growth inhibition diminished; 

no effect on trichothecens. 
Kubena et al. 

1990b 

     
Chickens Aflatoxin 0.5% (28 d) Growth inhibition diminished; 

decreased mortality.. 
Kubena et al. 

1990a 
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Table 1. Continued 

Species Mycotoxin levels Clay in feed 

(duration) Major effects reported Reference 

Turkeys Aflatoxins 0.5% (21 d) Decreased mortality. Kubena et al. 
1991 

     

Chickens Afl/Trichothecens         0.25%; 0.37%; 
0.8% (21 d) 

Diminished growth inhibition; 
Alleviated the adverse effects of 
AFB1 on serum chemistry; no 
effect against trichothecenes. 

Kubena et al. 
1993a,b 

     
Chickens Aflatoxin, T-2                 0.25, 0.375% (21 

d) 

Growth inhibition diminished; 
relative organ weights similar to 
controls 

Kubena et al. 
1998 

     
Chickens Aflatoxins  1.0% (21 d) Growth inhibition completely 

prevented. 
Ledoux et al. 

1999 

     
Pigs Aflatoxins 0.5% (42 d) Diminished growth inhibition. Lindemann et 

al. 1993 

     

Chickens Aflatoxin,  0.2% (42 d) 

Increased feed intake and 
apparent retention of 
phosphorus.  Prevented adverse 
effects to mycotoxins. 

Liu et al. 
2011 

     
Chickens Aflatoxin  0.5, 1.0% (21 d) 

Growth inhibition diminished; 
Ameliorated feed intake and 
feed efficiency effects 

Marquez-
Marquez et 

al. 1995 

     
Hydra Aflatoxin 0.1 %; 0.3%; 

0.5% ( 92 hr) 
NS clay saved hydra from Afl-
induced toxicity 

Marroquin-
Cardona et al. 

2009 

     
Rats Aflatoxins 0.5% (21 d) 

Significant prevention of 
maternal and developmental 
toxicity. 

Mayura et al. 
1998 

     
Chickens Aflatoxins                      0.5% (28 d) 

Growth inhibition diminished; 
gross hepatic changes 
prevented. 

Phillips et al. 
1988 

     
Chickens Aflatoxins  0.125%; 0.25%; 

0.5% (21) 

Protected against vitamin A 
depletion in the livers of chicks 
exposed to aflatoxins. 

Pimpukdee et 
al. 2004 



 

 

 

69 

 

Table 1. Continued 

Species Mycotoxin levels Clay in feed 

(duration) Major effects reported Reference 

Rats Fumonisin 2% (72 hr) 
Significantly reduced FB1 
biomarkers 

Robinson et 
al. 2012 

     
Rats Aflatoxins 0.5% (21 d) 

Decreased urinary excretion of 
Aflatoxin metabolites (M1 &  
P1). 

Sarr et al.  
1995 

     
Pigs Aflatoxins 1.0% (42 d) 

Lowered Mg and Na 
absorption, restoration of 
performance and liver function. 

Schell et al. 
1993 a 

     
Pigs Aflatoxins 0.5% (35 d) Growth inhibitory effects 

reduced. 
Schell et al. 

1993 b 

     Dairy 

Goats 
Aflatoxins 1.0%; 2.0%; 

4.0% (12 d) 
Reduction of aflatoxin M1 in 
milk. 

Smith et al. 
1994 

     
Human Aflatoxin 1.5 g/day; 3 

g/day (3 mo) 

Significantly reduced AFM1 
biomarker in urine and AFB1-
albumin biomarker in serum. 

Wang P et al. 
2008 

     
Rats Aflatoxins 0.1%; 1% (8 

wks) 
Partial protection against 
lesions in the liver. 

Voss et al. 
1993 

     

Chickens  Aflatoxins 0.1%; 0.2% (21 
d) 

Clay effectively alleviated the 
negative effect of AFB1 on 
growth performance and liver 
damage. 

 
Zhao et al. 

2010 

HSCAS-hydrated sodium calcium aluminosilicate, NS-NovaSil.  
Adapted from Johnson 2010.  
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Initial trials in chicks fed control diet with 0.5 or 1% montmorillonite clay 

showed no significant differences in weight gain or feed efficiency when compared to 

controls (Chung et al. 1990). The same was true for riboflavin, liver vitamin A 

concentrations, tibia weight, and manganese (Mn) concentrations (Chung et al. 1990). 

However, this same study did show a dose-dependent decrease in tibia zinc (Zn) 

concentration, with the 0.5 and 1% clay groups having 5 and 14% less Zn than the 

controls, respectively. To evaluate use of phosphorous (P) tibia ash weight and bone-

breaking force were analyzed in the presence of montmorillonite clay chickens fed diets 

containing P supplementation and 0.5 or 1% clay (Chung and Baker 1990). Results 

showed no significant differences between control groups supplemented with P and 

those receiving P and clay, indicating that montmorillonite clay does not impair the 

utilization of inorganic P (Chung and Baker 1990). Similarly, a form of montmorillonite 

clay given to broiler chicks at 0.5% w/w with nutrient deficient diets did not adversely 

affect percentage of tibia ash or Ca and P concentrations (Southern et al. 1994). A sub-

chronic treatment trial in Sprague-Dawley rats was conducted with NS inclusion ranging 

from 0.25-2% w/w feed for 6 months, following which the authors determined no 

significant differences in total body weight gain, feed conversion efficiency, histological 

abnormalities in target organs, or serum vitamin and nutrient levels (Afriyie-Gyawu et 

al. 2005). The authors thus concluded that ingestion of up to 2% NS was apparently safe 

in a sub-chronic treatment protocol. Similarly, UPSN was assessed for safety in 

Sprague-Dawley rats; however treatment in this study was reduced to a 3-month 

exposure time period (Marroquín-Cardona et al. 2011). Results from that research 
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indicated that, the serum Na, Na/K ratio, and Ca in UPSN treated groups were 

significantly higher than controls; however it was determined that the values were still 

within clinical ranges for these animals. Interestingly, this study also reported a 

significant increase in vitamin E values at both levels of UPSN inclusion. Other 

significant differences observed by Marroquin-Cardona et al. (2011) did not follow a 

dose-dependent relationship or were not consistent across both sexes. Therefore, the 

authors concluded that UPSN treatment at concentrations up to 2% resulted in no overt 

toxicity. Furthermore, Wiles et al. (2004) examined the gastrointestinal bioavailability of 

metals in pregnant rats following exposure to NS and concluded that the clay did not 

significantly leach or prevent absorption of the 11 metals analyzed.  

Results of Phase I and II clinical trials with NS clay suggested that ingestion of 

up to 3 g/day of NS in adults is safe for a 3 month period. There were no significant 

differences in clinical chemistry parameters, hematology, blood electrolytes, vitamins A 

and E, or serum Ca, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Se, Si, and Zn (Afriyie-Gyawu 

et al. 2008a, 2008b; Wang JS et al. 2005). The greatest hazard associated with acute 

ingestion of similar clay materials is intestinal obstruction. There have also been reports 

of increased fecal elimination of K and Fe resulting in clinical hypokalemia with Fe-

deficient anemia following chronic consumption of Al-silicate clays (Willhite et al. 

2012). However, it is important to note that these adverse event reports arose from 

studies in which adults consumed large quantities (0.5-1.0 kg/day) of various types of 

Al-silicate clays that were not assessed for metals or environmental contaminants 

(Reviewed by Willhite et al. 2012). Based on detailed studies conducted in animals and 
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humans for NS and UPSN, it was determined that ingestion of UPSN at levels 

efficacious for reducing AFB1 biomarkers would be reasonably safe. Results from 

mineralogical analyses of UPSN and NS indicated similar structural, morphological, and 

chemical characteristics (Marroquín-Cardona et al. 2011); therefore the two materials are 

thought to possess similar safety profiles. Importantly, Ca-montmorillonites, labeled as 

hydrated sodium calcium aluminosilicate (HSCAS) in the past literature, have been 

given GRAS (generally recognized as safe) status by the U.S. FDA for inclusion not 

exceeding a level of 2% w/w in feeds.  
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Table 2. Safety studies with montmorillonite clays 
 

Species 
Clay in feed 

(duration) 
Major effects reported Reference 

Chickens 0.5%; 1.0% (14 d) NS did not impair phytate or inorganic 
phosphorous utilization. 

Chung & 
Baker 1990 

    

Chickens 0.5% (19 d) Did not affect growth performance or tibial 
mineral concentrations of chicks. 

Southern et 
al. 1994 

    
Chickens 0.5%; 1.0% (14 d) NS did not impair utilization of riboflavin, 

vitamin A, or Mn; slight reduction of Zn.   
Chung et al. 
1990 

    
Human 

1.5 g/day; 3 g/day 
(3 mo) 

No significant effects in vitamins A & E and 
micronutrients, except for Strontium.  

Afriyie-
Gyawu et al. 
2008 

    
Rats 

0.25%; 2.0% (3 
mo) 

Increased serum Ca, Na, Vit. E. Reduced Zn 
in males %2 clay. Reduced serum K in 
males of clay groups.  

Marroquin-
Cardona et 
al. 2011 

    
Human 1.5 g; 3 g (2 wks) 

Mild GI effects, not significantly different. 
No difference in hematology, electrolytes, 
liver and kidney function. 

Wang JS et 
al. 2005 

    
Human 

1.5 g/day; 3 g/day 
(3 mo)  

Moderate effects, though not significant. No 
significant difference in hematology, 
electrolytes, liver and kidney function. 

Afriyie-
Gyawu et al. 
2008 

    
Rats 

0.25%; 0.5%; 1.0%; 
2.0% (6 mo) 

No adverse effects including vitamin 
utilization. 

Afriyie-
Gyawu et al. 
2005 

    
Rats  2.0% (16d) 

In pregnant rats, Rb was reduced in groups 
with clay. Neither NSP nor SWY-2 
influenced mineral intake. 

Wiles et al. 
2004 

    
Humans 

(children) 

6 g/day; 12 g/day 
(3d) 

Adverse events were not significantly 
different from placebo. Major complaints 
were vomiting, fever. 

Dupont et al. 
2009 

   
 

Humans 

(children) 
1.5 g/day (3 d) No adverse events were reported. Madkour et 

al. 1993 
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1.5 Research objectives 

 Mycotoxin contamination of staple crops is seemingly inextricable and exposure 

is inevitable in developing countries, where food insecurity results in consumption of 

lower quality grains (Williams et al. 2004). Assessment of linear biomarkers of exposure 

to mycotoxins in diverse human populations has shed light recently on the health 

burdens from AF and FB exposure in Western Africa. It is hypothesized that exposure of 

vulnerable, high risk populations to both mycotoxins could significantly impact health 

and disease outcomes. However, field-practical strategies to reduce mycotoxin exposures 

have proven difficult to maintain in rural communities of Africa. Thus, intervention 

strategies that are economically feasible, culturally acceptable, easily maintained, and 

can be implemented in communities at the highest risk for exposure during mycotoxin 

outbreaks are critically needed. Utilization of a natural product, like calcium 

montmorillonite clays, as a toxin enterosorbent in food could act as such an intervention. 

Work with multiple animal species has indicated a high efficacy of NovaSil in protecting 

animals from AF-induced health effects. However, minimal effective doses have not 

been delineated in humans and safety assessment is still ongoing. Recent work has 

indicated that NovaSil clay also binds FB in the interlayer to a lesser extent than AF 

(Robinson et al. 2012; Brown et al. 2012). Consequently, it is possible that NovaSil (and 

similar clays) may be used to mitigate (and reclaim) food-stuffs contaminated with both 

toxins. The work described in this dissertation focuses on utilizing mycotoxin 

biomarkers to establish exposures, efficacy, and safety of refined NovaSil clay (UPSN) 

in a high-risk community in Ghana. The work also aims to delineate effecitve dose 
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delivery methods and the ability of UPSN to alter the bioavailability of mixtures of 

AFB1 and FB1. The specific aims are fourfold: 

 1) to assess the average AF exposure across different regions of Ghana in relation 

to various sociodemographic, cultural, and health factors through the use of a 

comprehensive questionnaire and short-term analysis of AFM1 in the urine. 

 2) to evaluate the effectiveness of UPSN in a cross-over clinical intervention trial 

with treatment provided in the diets of Ghanaian participants to determine the ability of a 

short-term biomarker (AFM1) from urine as to be used as an early indicator of 

intervention efficacy.  

 3) to investigate the safety of UPSN during a Phase I clinical trial in children 

(ages 3-9) and provide initial evidence for aflatoxin exposure and UPSN efficacy. 

 4) to confirm the ability of UPSN to decrease the bioavailability of both AFB1 

and FB1 in the rat using short-term and long-term biomarkers of exposure.  
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2. EPIDEMIOLOGICAL SURVEY OF AFLATOXIN EXPOSURE ACROSS 

REGIONS OF GHANA   

2.1 Introduction 

 Previous work in Ghana has indicated that adults residing in the Ejura-

Sekyedumase district of the Ashanti region are chronically exposed to high levels of AFs  

via the diet (Jolly et al. 2006; Wang P et al. 2008). During the screening process for a 

three-month intervention trial, 100% of volunteers from this community tested positive 

for AFB1-alb in their serum. However, AF exposure in the rest of the country is not well 

established and may vary across socioeconomic classes and/or between regions based on 

differences in dietary intake. Previously, Jolly et al. (2006) observed significant 

correlations between AFB1-alb levels and education level, occupation, ethnic group, 

village of residence, number of individuals in the household, and number of children 

during a survey in the Ejura district. Recent risk assessment of AF burden in African 

countries has indicated that Ghanaian populations are at highest risk for exposure when 

compared to Kenya, Gambia, Botswana, Benin, and Tanzania (Shephard et al. 2008). 

During this risk assessment it was postulated that an average 60 kg adult in Ghana will 

consume as much as 1000 g of maize based foods per day, resulting in a total daily 

exposure of 850 ng/kg body weight. Further assessment indicated that HCC cases per 

100,000 population due to AF exposure in Ghana may be as high as 70. Thus, potential 

factors that could increase the relative risk for exposure in Ghana need to be determined. 

Identification of these risk factors would indicate areas (and communities) where 

intervention is most needed and would prove the most efficacious.  
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2.2 Materials and methods 

2.2.1 Materials 

 High Performance Liquid Chromatography (HPLC) grade methanol and ethanol, 

as well as reagent grade pH buffers (4.0, 7.0, and 10.0) were purchased from VWR 

(Atlanta, GA). AFM1 analytical standard was purchased from Sigma-Aldrich (Saint 

Louis, MO). AFM1 stock concentrations were verified by UV-visible spectrophotometry 

at a wavelength of 352 nm and molar absorptivity of Ɛ=18,815 M-1cm-1 (Shimadzu, 

Kyoto, Japan). AflatTest immunoaffinity columns were purchased from VICAM 

(Watertown, MA, USA). Ultrapure deionized water (18.2 MΩ) was generated within the 

laboratory using an Elga™ automated filtration system (Woodridge, IL). 

2.2.2 Participant recruitment, questionnaire, and data collection 

 Cross-sectional field surveys of demographic, food handling, consumption, 

health status, health history, and lifestyle choices were conducted in six different regions 

of Ghana (Ashanti, Brong Ahafo, Central, Eastern, Greater Accra, and Northern) by 

trained study monitors, June through August 2004. Only one adult participant from each 

household could participate in the survey and study monitors explained the purpose of 

the study to prospective participants prior to requesting consent. Consent and surveys 

were read to participants in their local language. A total of 801 participants completed 

the full survey and provided one urine sample to be analyzed for AFM1 levels. The 

number of participants from each region are as follows: Ashanti: 298, Brong Ahafo: 37, 

Central: 114, Eastern: 6, Greater Accra: 285, and Northern: 19. Variations in the number 

of participants recruited were calculated prior to initiation of the study and were based 
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on population size for each region. A greater number of recruits were desired from those 

regions with the largest portion of Ghana’s population, i.e. Accra and Ashanti.       

2.2.3  Determination of AFM1 in urine 

 Analysis of urinary AFM1 levels followed methods reported by Groopman et al. 

(1992b) and Sarr et al. (1995).  Urine samples were centrifuged at 2300 rpm, and 5.0 ml 

of supernatant was collected, acidified with 0.5 ml of 1.0 M ammonium formate (pH 

4.5) and diluted with water to a total volume of 10.0 ml. Samples were then loaded onto 

a 3 ml preparative Aflatest® WB immunoaffinity column (VICAM, Watertown, MA, 

USA) at a flow rate of 1 ml/min. Following washing of the column, the AF fraction was 

eluted with 2 ml of 80% methanol, dried under N2 and re-suspended in 200 µl of a 1:1 

solution of methanol:20 mM ammonium formate. Samples were analyzed using a 

Shimadzu HPLC system (Waters, Watertown, MA, USA) with fluorescence detection 

capabilities. A 250 x 4.6 mm LiCrospher RP-18 column with pore size 100 Å and 

particle size 5 µm (Alltech Associates, Deerfield, IL, USA) was used to resolve AF 

metabolites. The mobile phase consisted of 22% ethanol buffered with 20 mM 

ammonium formate (pH 3.0) in water. Isocratic elution of the mobile phase for 20 min at 

a rate of 1 ml/min allowed for proper chromatographic separation. External AFM1 

standards were prepared weekly and injected following every 5 injections of samples. 

The limit of detection for this method was 4.8 pg for AFM1. Urinary AFM1 

concentrations were expressed as pg/mg creatinine to correct for variations in urine 

dilution among samples. Urinary creatinine concentrations were measured by a Selectra 

E auto-analyzer (Vital Scientific, The Netherlands). 
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2.2.4 Statistical analysis 

 Statistical analyses were conducted by categorizing the participants into one of 

three groups based on the AFM1 level. The first group had an AFM1 level of 0.5 ppb or 

less, the second group had an AFM1 level greater than 0.5 ppb and less than or equal to 

the median AFM1 level of 43.2 ppb, and the third group had an AFM1 level of more than 

43.2 ppb. The analyses were then conducted separately for each of the three categories. 

Categorical variables were reported as counts and percentages. The chi-squared or 

Fisher’s exact tests were used to compare categorical variables. Variables with p-value ≤ 

0.10 in a bivariate model were included in the multivariable model. Odds ratios (OR) 

and the p-values for testing the significance of the variables in the model were obtained. 

All tests with a p-value less than or equal to 5% were deemed statistically significant and 

all analyses were done using SAS software version 9.2 (SAS Institute, Cary, NC, USA). 

2.3 Results 

2.3.1 Aflatoxin M1 concentration in urine 

 Urinary AFM1 was detected in 40.9% of the 801 samples tested. The median, 

mean, and range of AFM1 levels are presented in Table 3. Approximately one sixth of 

the population was above the mean level of 276 pg AFM1/mg creatinine. Concentration 

of AFM1 excretion ranged from 0 to 9,532 pg AFM1/mg creatinine and the distribution is 

represented in Figure 6. Estimates of AFB1 exposure levels were calculated from the 

median, 75th and 90th percentiles, and maximum AFM1 values (Table 4). Briefly, it was 

assumed that the average adult in the study would excrete 1500 ml of urine per day and 

2% of the total AFB1 consumed would be excreted as AFM1 in the urine (Zhu et al. 



 

 

 

80 

1987). The portion of the population above the 90th percentile was exposed to 

approximately greater than 43 µg of AFB1 per day.   

2.3.2 Sociodemographic characteristics 

 Table 5 shows the demographic and socio-economic characteristics of the 801 

participants by AFM1 level. Males and females were almost equally represented in the 

study, 49.7% and 50.3% respectively. However, a significant majority, 71.3%, of the 

heads of household were male. The majority of heads of households, 52.3%, were 50 

years or younger while the majority of the respondents, 53.8%, were 30 years or 

younger. A vast majority of participants, 86.8%, received a formal education and 

graduated. Most of them, 68.1%, went up to secondary school. Employment was high 

among the participants, 72.2%, and most of them neither drank nor smoked, 67.7% and 

96.8% respectively. However, none of these parameters showed a significant correlation 

to AFM1 excretion.   

Table 6 represents the levels of AFM1 excretion by region of residence. Most of 

the participants, 76.5%, were from the Ashanti and Greater Accra regions. This is 

reflective of the percent of HCC mortalities for each region. It is interesting to note that 

this does not correlate with population size. The Ashanti region is the most populated 

region accounting for 19.4% of the total population, followed by the Accra region, 

Eastern/Western, Northern, and Brong Ahafo. The Central region is the least populated 

based on the nation’s 2010 consensus (Ghana Statistical Service 2013). The region the 

participants came from had a significant association (p = 0.05) with their AFM1 levels. 

The Northern region had the highest percentage of its participants in the high AF group, 
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however there was only one more person reported than in the other two AFM1 levels. 

The Central region had 25.4% of its population within the high AF group followed by 

the Greater Accra region 23.5%. The Ashanti and Eastern groups had similar 

percentages within the high AF group, while the Brong Ahafo region had the lowest 

percentage (10.8%) of its participants in that group. 

2.3.3 Health factors 

Table 7 shows the health factors of the participants by AFM1 level. Most of the 

participants, 63.6%, reported being very healthy. To take care of their health care needs, 

most (59.7%) used orthodox means at government hospitals (54.6%) rather than use 

traditional means or self-medication. The majority had not been hospitalized recently, 

67.4%. When asked about their health condition, more than 80% of household members 

reported not having any of the health conditions present on the questionnaire: quick 

yellowing of skin, yellowing of eyes, dark brown urine, painful vomiting, and sore or 

swollen stomach. Most of the participants, more than 60%, also reported that they did 

not know whether their illness was related to foods such as peanuts, peanut products, 

maize, or maize products.  
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                 Table 3. Descriptive statistics of AFM1 levels 

AFM1 levels (pg/mg creatinine) 

   Number positive 328 
Mean ± SD 276 ± 883 
Median 

 
43 

Range 
 

0-9,532 
Percentiles 

 25 
 

15 
50 

 
43 

75 
 

136 
 

2.3.4 Food consumption and preparation practices 

 Table 8 shows the food consumption of main products most commonly 

associated with AF exposure by AFM1 level. On a weekly basis, 41, 93.3, and 26.8% of 

households consumed groundnut or groundnut products, maize or maize products, and 

millet or millet products, respectively, no more than once. Maize or maize products were 

consumed everyday by 61.8% of families. Of all the foods consumed, only maize or 

maize products had a significant association (p = 0.02) with AFM1 levels.  A great 

majority of participants (89.5%) could identify spoilt food. More than half of 

participants (50.2%) reported that a handful of their food was spoilt while a little less 

than half (47.6%) reported that a bucketful of their food was spoilt. Only a small portion, 

(2.27%) reported more than a bucketful of food spoilage. 
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Table 4. Estimated AFB1 exposure calculated from AFM1 excretion levels 

                                       µg AFB1/day 

Median (exposed) 2.5 
75

th
 Percentile 9.9 

90
th

 Percentile 43.1 
Maximum 614.1 

 

Table 9 shows the consumption behavior of the study participants by AFM1 

level. In general, most of the participants took the right actions with their grains or nuts. 

For example, 93.8% washed their grains or nuts before cooking and 97.7% cleaned their 

utensils before grinding grains or nuts. Also, 77.5% discarded discolored grains or nuts 

and only 36% used the discolored grains or nuts to feed animals. Participants also 

showed a lot of caution in buying what they consumed because 77.4% examined the 

grains or nuts for spoilage before buying them. None of the consumption behaviors had a 

significant association the AFM1 levels. 
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Table 5: Demographic and Socio-economic Information by AFM1 level 

 

 

  

All 

AFM1 ≤  

0.5 0.5 < AFM1 ≤  43.2 

AFM1 > 

43.2 

 Variable   n = 801 n = 473 n = 163 n = 165 pvalue 

Gender of respondent  

      Male  
 

378(49.7) 221(48.6) 67(45.3) 90(57.3) 0.08 
Female 

 
382(50.3) 234(51.4) 81(54.7) 67(42.7) 

 Age of respondent 

      Age ≤  30 
 

431(53.8) 244(51.6) 99(60.7) 88(53.3) 0.13 
Age > 30 

 
370(46.2) 229(48.4) 64(39.3) 77(46.7) 

 Gender of head of 

household   

      Male  
 

528(71.3) 313(70.7) 97(66.4) 118(77.6) 0.09 
Female 

 
213(28.7) 130(29.4) 49(33.6) 34(22.4) 

 Age of head of 

household   

      Age ≤  50 
 

383((52.3) 234(53.3) 74(51.8) 75(50.0) 0.77 
Age > 50 

 
349(47.7) 205(46.7) 69(48.3) 75(50.0) 

 Formal Education     

      Yes 
 

651(86.8) 393(87.7) 121(83.5) 136(87.2) 0.55 
No 

 
99(13.2) 55(12.3) 24(16.6) 20(12.8) 

 Level of Education   

      Primary 
 

49(7.45) 31(7.8) 9(7.2) 9(6.6) 
 Secondary 

 
448(68.1) 258(65.0) 91(72.8) 99(72.8) 0.26 

Tertiary 
 

142(21.5) 93(23.4) 22(17.6) 27(19.9) 
 Other 

 
19(2.9) 15(3.8) 3(2.4) 1(0.74) 

 Graduated             

      Yes 
 

568(86.7) 345(87.3) 106(85.5) 117(86.0) 0.94 
No 

 
87(13.3) 50(12.7) 18(14.5) 19(14.0) 

 Employed    

      Yes 
 

539(72.2) 317(71.1) 90(72.0) 114(74.0) 0.72 
No 

 
208(27.8) 129(28.9) 35(28.0) 40(26.0) 

 Drinking              

      Yes 
 

244(32.4) 152(33.7) 38(30.4) 51(32.7) 0.42 
No 

 
510(67.6) 299(66.3) 87(69.6) 105(67.3) 

 Smoking             

      Yes 
 

24(3.2) 14(3.1) 5(4.0) 5(3.2) 0.97 
No   730(96.8) 439(96.9) 119(96.0) 150(96.8)   

Data are presented as total number (n) and (%). * Statistical significance 
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Table 6.  AFM1 concentration by region 

  

Total 
AFM1 ≤  

0.5 

0.5 < AFM1 ≤  

43.2 

AFM1 > 

43.2  

  

n = 801 n = 473 n = 163 n = 165 pvalue 

     
 0.05* 

Ashanti  298 182(61.1) 67(22.5) 49(16.4)  
Brong Ahafo  37 24(64.9) 9(24.3) 4(10.8)  

Central  114 70(61.4) 15(13.2) 29(25.4)  
Eastern  6 5(83.3) 0(0.0) 1(16.7)  

Greater Accra  285 168(58.9) 50(17.5) 67(23.5)  
Northern  19 6(31.6) 6(31.6) 7(36.8)  

        Data is represented as total number and (percent by region). * statistical significance 
 

2.4 Discussion 

 AF exposure in Ghana is an ongoing public health problem, which can contribute 

to the high morbidity and mortality in the country. However, until recently studies 

assessing the AF exposure pattern in Ghana have been lacking, with most occurring in a 

specified region (Ashanti) where chronic exposure is known to occur (Jolly et al. 2006; 

Wang P et al. 2008). Although efforts to control and reduce the AF exposure in Ghana 

have already been initiated more demographic information is needed. Demographics, 

socio-economic status, and food consumption practices in relation to AFB1 exposure 

would provide useful information about steps in the food production/consumption chain 

that are most likely contributing to exposure. This is the first study in Ghana to assess 

exposure across multiple regions of the country. Although total numbers of participants 

were highly variable between the regions, by classifying exposure status as low, 

medium, or high we were able to make comparisons between percentages of participants 

in a specific classification across regions. Through this method we are able to conclude 

that the Greater Accra and Central regions have very similar exposure patterns, which        
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Table 7: Health Factors by M1 level 

  

All 

AFM1 ≤  

0.5 

0.5 < AFM1 

≤  43.2 AFM1 > 43.2 

 Variable   n = 801 n = 473 n = 163 n = 165 pvalue 

Status of Health     

     
0.09 

Very Healthy 
 

473(63.6) 279(62.7) 87(60.0) 107(69.5) 
 Average 

 
235(31.6) 138(31.0) 53(36.6) 44(28.6) 

 Poor 
 

36(4.8) 28(6.3) 5(3.5) 3(2.0) 
 Type of 

Healthcare   

     
0.19 

Orthodox 
 

446(59.7) 275(61.4) 86(59.7) 85(54.8) 
 Traditional 

 
17(2.3) 9(2.0) 4(2.8) 4(2.6) 

 Spiritual 
 

2(0.3) 1(0.2) 0(0.0) 1(0.7) 
 Self Medication 

 
142(19.0) 84(18.8) 34(23.6) 24(15.5) 

 Combination  
 

133(17.8) 75(16.7) 20(13.9) 38(24.5) 
 None 

 
6(0.8) 4(0.9) 0(0.0) 2(1.3) 

 Other 
 

1(0.1) 0(0.0) 0(0.0) 1(0.7) 
 

       Type of 

Hospital    

     
0.45 

Government 
 

375(54.6) 228(55.2) 71(54.6) 76(52.8) 
 Private 

 
137(19.9) 86(20.8) 21(16.2) 30(20.8) 

 Both/Clinic 
 

97(14.1) 52(12.6) 20(15.4) 25(17.4) 
 Own Home 

 
71(10.3) 44(10.7) 17(13.1) 10(6.9) 

 Family 
 

7(1.0) 3(1.7) 1(1.8) 3(2.1) 
 

       Been  

Hospitalized 

     
0.08 

Yes 
 

238(32.7) 156(35.8) 41(29.3) 41(26.8) 
 No 

 
491(67.4) 280(64.2) 99(70.7) 112(73.2) 

 
       Health Condition of Household Members 

    
       Quick Yellowing of 

skin 

     
0.39 

Yes 
 

62(8.2) 41(9.1) 8(5.4) 13(8.3) 
 No 

 
693(91.8) 410(90.9) 139(94.6) 144(91.7) 

 
       Yellowing of eyes 

     
0.47 

Yes 
 

116(15.4) 72(16.1) 18(12.2) 26(16.7) 
 No 

 
636(84.6) 376(83.9) 130(87.8) 130(83.3) 
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Table 7. Continued 

  All 
AFM1 ≤  

0.5 
0.5 < AFM1 

≤  43.2 AFM1 > 43.2 pvalue 

Dark brown urine 

     
0.57 

Yes 
 

89(11.8) 58(12.9) 15(10.2) 16(10.2) 
 No 

 
665(88.2) 392(87.1) 132(89.8) 141(89.8) 

 
       

Swollen Legs 

     
0.04* 

Yes 
 

56(7.4) 41(9.1) 10(6.8) 5(3.2) 
 No 

 
700(92.6) 410(90.9) 137(93.2) 153(96.8) 

 
       Swollen Toes 

     
0.20 

Yes 
 

30(4.0) 23(5.1) 3(2.0) 4(2.5) 
 No 

 
725(96.0) 427(94.9) 144(98.0) 154(97.5) 

 
       Swollen Arms 

     
0.31 

Yes 
 

15(2.0) 12(2.7) 1(0.7) 2(1.3) 
 No 

 
740(98.0) 439(97.3) 146(99.3) 155(98.7) 

 
       Swollen Fingers 

     
0.74 

Yes 
 

17(2.3) 12(2.7) 2(1.4) 3(1.9) 
 No 

 
736(97.7) 437(97.3) 145(98.6) 154(98.1) 

 
       Painfull Vomiting 

     
0.63 

Yes 
 

71(9.4) 39(8.7) 16(10.9) 16(10.2) 
 No 

 
683(90.6) 411(91.3) 131(89.1) 141(89.8) 

 
       Sore or Swollen 

Stomach 

     
0.26 

Yes 
 

87(11.5) 45(10.0) 21(14.2) 21(13.5) 
 No 

 
667(88.5) 405(90.0) 127(85.8) 135(86.5) 

 
       Illness Relating to Food 

     
       Peanuts 

     
0.18 

Yes 
 

69(15.5) 46(16.6) 15(17.7) 8(9.6) 
 No 

 
104(23.4) 61(22.0) 16(18.8) 27(32.5) 

 Don't Know 
 

272(61.1) 170(61.4) 54(63.5) 48(57.8) 
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Table 7. Continued       

      All AFM1≤ 0.5 

0.5 < AFM1 

     ≤  43.2 AFM1 > 43.2 pvalue 

Peanuts Products 

     
0.17 

Yes 
 

69(15.5) 46(16.7)    15(17.7) 8(9.5) 
 No 

 
102(23.0) 59(21.5)    16(18.8) 27(32.1) 

 Don't Know 
 

273(61.5) 170(61.8)    54(63.5) 49(58.3) 
 

       Maize 

     
0.84 

Yes 
 

27(6.1) 16(5.8)    6(7.1) 5(6.0) 
 No 

 
120(27.0) 74(26.9)   20(23.5) 26(31.0) 

 Don't Know 
 

297(66.9) 185(67.3)   59(69.4) 53(63.1) 
 

       Maize Products 

      Yes 
 

27(6.1) 17(6.2) 5(5.9) 5(6.0) 0.79 
No 

 
121(27.2) 74(26.8) 20(23.5) 27(32.1) 

 Don't Know   297(66.7) 185(67.0) 60(70.6) 52(61.9)   
Data is represented as total number and (%). * Statistical significance 

  

happen to be some of the highest. Both Accra and Central regions are located on the 

coast and thus may engage in similar dietary habits more than other areas. Interestingly, 

in the Central region over half of its population, 52.9%, is located in rural areas while in 

Accra 90.5% of its population is in urbanized areas (Ghana statistical service 2013). 

However, they do have the two highest population densities of all the regions, albeit 

Accra is more densely populated than any other region, having 1,235.8 people per square 

kilometer of land. The Northern region had the highest percentage (68.4%) of its 

population test positive for AFM1 in the urine, which could be indicative of the 

heightened presence of agriculture in the area. The northern areas of the country tend to 

be more rural and are where the countries crops are primarily produced. Interestingly, 

this region is predominantly Islamic with three out of every five households indicating 

Islam as their religious affiliation (Ghana statistical service 2013).  
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Table 8: Percent Food Consumption by AFM1 level 

   

  

All AFM1<0.5 

0.5< AFM1 

≤  43.2 

AFM1> 

43.2 

 Variable   n = 801 n = 473 n = 163 n = 165 pvalue 

Frequency of food consumption by household/week 

Groundnut/Groundnut 

products  

     
0.24 

One or less 
 

53.1 53.2 54.4            51.2 
 Two to three 

 
29.1 29.7 32           24.4 

 Everyday 
 

11.9 11.3 10.2           15.4 
 Never 

 
6 5.8 3.4              9 

 
       
Maize/Maize products  

     
0.02* 

One time or less 
 

6.4 6.9 6.1           5.1 
 Two to three 

 
31.5 35.3 27.2           24.4 

 Everyday 
 

61.8 57.8 66           69.2 
 Never 

 
0.4 0 0.7           1.3 

 
       

Millet/Millet products  

     
0.52 

One time or less 
 

34.6 34.5 34           35.3 
 Two to three 

 
18 16.9 21.5           18 

 Everyday 
 

8.8 7.9 7.6           12.2 
 Never 

 
38.6 40.6 36.8           34.6 

  

In contrast to a previous report from the Ashanti region of Ghana (Jolly et al. 

2006) there were no significant associations with demographics or socio-economic 

factors and AF exposure. In that study the authors concluded that there was a correlation 

with education level, ethnic group, and number of individuals in a household and AFB1-

alb. The lack of associations described here could be caused by the variability in the 

AFM1 biomarker and its short half-life, thus indicating exposure within 24 to 48 hr of 

sampling. The AFB1-alb marker has a longer half-life, able to reach a plateau, which 

makes it more indicative of a person’s exposure over longer time periods. Therefore, the 
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AFB1-alb adduct may be a more accurate indicator of associations between biomarker 

levels and chronic social conditions, like demographics and socio-economic status. It is 

important to note however, that other work in Malaysia did not find associations 

between education, number of individual households, and other demographic factors 

with AFB1-alb levels (Leong et al. 2012). Thus, more work needs to be conducted to 

conclude whether the correlations observed by Jolly et al. (2006) are maintained across 

other countries and ethnic groups, or if they are specific to the particular community in 

the Ashanti region. Furthermore, the present work here would indicate that exposure is 

consistent across all demographic and socio-economic classes. As a result, interventions 

should target populations in specific areas of the country and be applicable to people 

across all ages, genders, economic, and educational backgrounds. 

 Health indicators did not show an association with AFM1 levels. This included 

reports of sickness from consumption of AF-prone foods. Calculations of AFB1 

ingestion from AFM1 levels would indicate that exposure during the time of sampling 

was not high enough to induce typical symptoms of acute exposure such as vomiting and 

other gastrointestinal irritation. The time of sampling could have influenced reports of 

illness and rates of AFM1 excretion. Ghana has its highest rainfall from April to July and 

AF exposure patterns have been associated with climatic changes in Africa, with higher 

biomarker levels observed during dry seasons compared to rainy seasons (Turner et al. 

2000; Wild et al. 2000). Consequently, participants could have been exposed to lower 

levels of AFs during the study period than at other times during the year.  
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Table 9: Food processing practices by M1 level 

   
  

All AFM1≤  0.5 0.5 <AFM1≤  43.2 AFM1> 43.2 

 Variable   n = 801 n = 473 n = 163 n = 165 pvalue 

Actions taken with grain/nuts 

           Sort before cooking   0.71 

No, no future plan 
 

59(9.6) 37(10.1) 13(10.6) 9(7.1) 
 No, have future 

plan 
 

27(4.4) 20(5.4) 3(2.4) 4(3.2) 
 

No, planning soon 
 

32(5.2) 16(4.4) 7(5.7) 9(7.1) 
 Yes, last time 

 
82(13.3) 46(12.5) 17(13.8) 19(15.1) 

 Yes, all the time 
 

417(67.6) 249(67.7) 83(67.5) 85(67.5) 
 

       Wash before cooking   0.22 

No, no future plan 
 

19(3.1) 7(1.9) 5(4.1) 7(5.7) 
 No, have future 

plan 
 

13(2.1) 10(2.7) 2(1.7) 1(0.8) 
 

No, planning soon 
 

6(1.0) 2(0.6) 2(1.7) 2(1.6) 
 Yes, last time 

 
52(8.5) 34(9.3) 7(5.8) 11(8.9) 

 Yes, all the time 
 

520(85.3) 313(85.5) 105(86.8) 102(82.9) 
 

       Grill before cooking   0.50 

No, no future plan 
 

219(38.4) 127(37.0) 50(44.3) 42(36.5) 
 No, have future 

plan 
 

63(11.0) 35(10.2) 15(13.3) 13(11.3) 
 

No, planning soon 
 

24(4.2) 13(3.8) 3(2.7) 8(7.0) 
 Yes, last time 

 
70(12.3) 44(12.8) 10(8.9) 16(13.9) 

 Yes, all the time 
 

195(34.2) 124(36.2) 35(31.0) 36(31.3) 
 

       
Clean utensils before grinding   0.57 

No, no future plan 
 

9(1.5) 6(1.6) 2(1.7) 1(0.8) 
 No, have future 

plan 
 

4(0.7) 3(0.8) 1(0.8) 0(0.0) 
 

No, planning soon 
 

1(0.2) 1(0.3) 0(0.0) 0(0.0) 
 Yes, last time 

 
64(10.5) 36(9.9) 9(7.4) 19(15.6) 

 Yes, all the time 
 

530(87.2) 319(87.4) 109(90.1) 102(83.6) 
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Table 9. Continued     
  All AFM1≤  0.5 0.5  <AFM1≤  43.2 AFM1> 43.2 pvalue 

Store in dry place  

     
0.62 

No, no future plan 
 

25(4.2) 18(5.0) 5(4.2) 2(1.7) 
 No, have future 

plan 
 

6(1.0) 5(1.4) 1(0.8) 0(0.0) 
 

No, planning soon 
 

4(0.7) 4(1.1) 0(0.0) 0(0.0) 
 Yes, last time 

 
58(9.7) 34(9.4) 14(11.7) 10(8.5) 

 Yes, all the time 
 

508(84.5) 302(83.2) 100(83.3) 106(89.3) 
 

       
Discard discolored pieces   0.36 

No, no future plan 
 

105(17.3) 62(17.0) 21(17.5) 22(18.2) 
 No, have future 

plan 
 

16(2.6) 9(2.5) 3(2.5) 4(3.3) 
 

No, planning soon 
 

15(2.5) 10(2.7) 0(0.0) 5(4.1) 
 Yes, last time 

 
82(13.5) 46(12.6) 14(11.7) 22(18.2) 

 Yes, all the time 
 

388(64.0) 238(65.2) 82(68.3) 68(56.2) 
 

       Use discolored pieces for oil   0.66 

No, no future plan 
 

570(94.1) 342(94.0) 117(96.7) 111(91.7) 
 No, have future 

plan 
 

7(1.2) 5(1.4) 0(0.0) 2(1.7) 
 

No, planning soon 
 

4(0.7) 2(0.6) 1(0.8) 1(0.8) 
 Yes, last time 

 
7(1.2) 3(0.8) 1(0.8) 3(2.5) 

 Yes, all the time 
 

18(3.0) 12(3.3) 2(1.7) 4(3.3) 
 

       Use discolored pieces for animal feed   0.87 

No, no future plan 
 

350(58.0) 206(56.9) 75(62.5) 69(57.0) 
 No, have future 

plan 
 

21(3.5) 14(3.9) 4(3.3) 3(2.5) 
 

No, planning soon 
 

15(2.5) 9(2.5) 3(2.5) 3(2.5) 
 Yes, last time 

 
85(14.1) 48(13.3) 15(12.5) 22(18.2) 

 Yes, all the time 
 

132(21.9) 85(23.5 23(19.2) 24(19.8) 
 

       Use discolored pieces as seeds   0.06 

No, no future plan 
 

546(91.0) 332(92.5) 112(92.6) 102(85.0) 
 No, have future 

plan 
 

14(2.3) 8(2.2) 0(0.0) 6(5.0) 
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Table 9. Continued     

  All AFM1≤  0.5 0.5  <AFM1≤  43.2 AFM1> 43.2 pvalue 

No, planning soon 
 

2(0.3) 1(0.3) 0(0.0) 1(0.8) 0.06 
Yes, last time 

 
9(1.5) 4(1.1) 1(0.8) 4(3.3) 

 Yes, all the time 
 

29(4.8) 14(3.9) 8(6.6) 7(5.8) 
 

       Examine for spoilage before buying   0.87 

No, no future plan 
 

92(15.3) 52(14.4) 21(17.7) 19(15.6) 
 No, have future 

plan 
 

40(6.7) 26(7.2) 7(5.9) 7(5.7) 
 

No, planning soon 
 

22(3.7) 11(3.1) 4(3.4) 7(5.7) 
 Yes, last time 

 
105(17.5) 60(16.7) 21(17.7) 24(19.7) 

 Yes, all the time 
 

342(56.9) 211(58.6) 66(55.5) 65(53.3) 
 

       Inspect processed products before buying   0.91 

No, no future plan 
 

118(16.7) 73(17.2) 23(17.0) 22(15.2) 
 No, have future 

plan 
 

57(8.1) 34(8.0) 14(10.4) 9(6.2) 
 

No, planning soon 
 

35(5.0) 23(5.4) 7(5.2) 5(3.5) 
 Yes, last time 

 
102(14.5) 60(14.1) 19(14.1) 23(15.9) 

 Yes, all the time 
 

393(55.7) 235(55.3) 72(53.3) 86(59.3) 
 

       Consider source of processed products before buying  0.13 

No, no future plan 
 

253(36.0) 145(34.4) 55(40.4) 53(36.8) 
 No, have future 

plan 
 

132(18.8) 87(20.6) 28(20.6) 17(11.8) 
 

No, planning soon 
 

31(4.4) 22(5.2) 4(2.9) 5(3.5) 
 Yes, last time 

 
46(6.6) 25(5.9) 6(4.4) 15(10.4) 

 Yes, all the time 
 

240(34.2) 143(33.9) 43(31.6) 54(37.5) 
 Data appear as total number and (%). 
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Maize was the food commodity with the highest consumption. Only 0.4% of the 

participants answered “never” when asked how often they consume maize-based 

products on a weekly basis. Maize was also the only food that was associated with 

AFM1 excretion. Therefore, future intervention work should focus on treatment of maize 

based products, or populations with the highest maize consumption. Importantly, this 

work indicates that the majority of the population in Ghana can identify spoiled grains or 

nuts and discard those which are discolored. Large portions of the population also store 

their grain appropriately (94.2%), sort (80.9%), and wash foods before cooking (93.8%). 

Thus, educational and grain processing interventions are likely to provide little relief of 

AF exposure in this population. More comprehensive analysis with a larger cohort and 

AFB1-alb levels should be conducted across Ghana to further assess exposure patterns 

and possible indicators of risk. Currently, research indicates that exposure in Ghana is 

endemic and has been documented in several studies to be chronically affecting the 

population over the past ten years (Table 10). Intervention strategies that are safe, 

efficacious, and sustainable in individuals across all ages, education levels, and genders 

need to be developed for this population.  
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Table 10.  Descriptive statistics of AFM1 levels in Ghana 

from three separate time points 

 

AFM1 (pg/mg creatinine) 

 

June-Aug. 
2004 Sep. 2005 October 2010 

AFM1 Positive 40.9% 86.7% 100% 

Median 43 50 274 

Mean ± S.D. 276 ± 883 361 ± 1,246 818 ± 1,235 

Range 0 – 9,532 0 - 13,297 15-5,454 
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3. REDUTION IN THE URINARY AFLATOXIN M1 BIOMARKER AS AN 

EARLY INDICATOR OF THE EFFICACY OF DIETARY INTERVENTIONS 

TO REDUCE EXPOSURE TO AFLATOXINS
*
 

3.1 Introduction 

In Sub-Saharan Africa, hepatocellular carcinoma (HCC) is one of the most 

common malignancies (Ferlay et al. 2010). In Ghana, HCC mortality accounts for 21.15 

and 10.97% of all cancer related deaths in men and women, respectively (Wiredu and 

Armah 2006). Multiple factors play a role in the etiology of HCC; one major 

environmental risk factor is chronic exposure to AF from the diet. Inadequate food 

storage practices, little to no regulations on mycotoxin contamination, food insecurity 

and economic burdens make these populations at high risk for life-long exposure to 

harmful toxins 

Toxin enterosorption strategies using calcium montmorillonite clay (NS) to 

reduce biomarkers of exposure and toxicity have been shown to be effective in animals 

and humans (Kubena et al. 1998; Ledoux et al. 1999; Phillips et al. 1990; Pimpukdee et 

al. 2004; Schell et al. 1993a). In the following study, UPSN was utilized to investigate 

the ability of AFM1 biomarkers to rapidly indicate treatment efficacy.   

Linear biomarkers, like AFM1, are predictive of AFB1 intake and are currently 

used as the standards for assessment of population exposures. Biomarkers are important 

tools in determining the efficacy of intervention trials for the reduction of AF exposure 

                                                 
* Reprinted with permission from “Reduction in the urinary aflatoxin M1 biomarker as an early indicator 
of the efficacy of dietary interventions to reduce exposure to aflatoxins.” By Mitchell NJ, Kumi J, Johnson 
NM, Dotse E, Marroquin-Cardona A, Wang JS, Jolly PE, Ankrah NA, and Phillips TD. Biomarkers, Aug; 
18(5):391-398, Copyright 2013 by Informa UK Ltd. 
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in human populations due to the latent onset of AF related health consequences. The 

AFB1-albumin marker indicates exposure over a number of weeks, whereas the AFM1 

marker is reflective of acute AF consumption allowing detection of AFM1 24-48 hr after 

exposure. Previous work with a proposed AF binder in a human intervention trial 

showed significant decreases in both AFB1-albumin and AFM1 biomarkers following 3-

months of treatment (Wang P et al. 2008). AFM1 and the AF-mercapturic acid conjugate 

were decreased following 1 month of treatment with Oltipraz, a chemopreventative 

agent that affects phase 1 and phase 2 metabolism of AF (Wang JS et al. 1999). 

Although these biomarkers have proven useful to delineate efficacy of long-term 

interventions, shorter pilot trials are desirable, especially for use in children and other 

vulnerable groups, where appropriate dosimetry has not yet been defined. Based on the 

extant scientific literature, we postulate that daily AFM1 levels could indicate efficacy 

over a short time period. Use of this biomarker as an indicator of efficacy would allow 

for smaller, non-invasive, pilot trials that could indicate probability of an intervention to 

reduce AF toxicity with minimal harm to human participants (especially the vulnerable).  

Following positive results from the AFM1 biomarker, further human trials could be 

conducted to confirm safety, efficacy and health outcomes using long-term biomarkers.  

Our objectives in this study were to:  1) determine the ability of AFM1 

biomarkers to act as an early indicator of treatment efficacy; 2) analyze the capacity of 

UPSN to significantly reduce AFM1 levels in a short-term study in humans; and 3) 

assess the palatability of UPSN when included in Ghanaian foods.  
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3.2 Materials and methods 

3.2.1 Materials 

AFM1 was obtained from Sigma Aldrich (St. Louis, MO, USA). Immunoaffinity 

columns were purchased from VICAM (Watertown, MA, USA). NovaSil (NS) clay was 

obtained from BASF/Engelhard Chemical Corporation (Iselin, NJ, USA).  UPSN and 

calcium carbonate were purchased from Texas Enterosorbents, Inc. (Bastrop, TX). All 

materials designated for human consumption were treated with electron beam radiation 

prior to study initiation and were also analyzed for various metals and levels of 

chlorinated dibenzo-p-dioxin/furans by Columbia Analytical Services, Inc. (Houston, 

TX) (Marroquin-Cardona et al. 2011).   

3.2.2 AFB1 sorption analysis 

Isothermal analyses of AFB1 sorption onto surfaces of UPSN at equilibrium were 

performed according to methods reported by Grant and Phillips (1998) and described in 

detail by (Marroquin-Cardona et al. 2009). UPSN clay or calcium carbonate (50 ng) 

were mixed with 11 different concentrations of AFB1, all done in triplicate, for 2 hr at a 

pH of 2 and 6.5. Samples were then centrifuged and the absorbance read at 362 nm using 

a Shimadzu scanning UV visible spectrophotometer (Shimadzu Corporation, Kyoto, 

Japan). Computer-generated equilibrium isotherms were fit to the Langmuir model 

(based on r2 values and randomness of the residuals). The parameters of Qmax and Kd 

were estimated to determine the maximum sorption to the surface and the affinity of the 

sorption interaction. Single point sorption analyses instead of isotherms were conducted 
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on the calcium carbonate as the data did not fit a Langmuir model and the percent 

reduction in AFB1 was calculated for these values. 

3.2.3 Study site and design 

In recent years, studies with participants from the Ejura-Sekyedumase district of 

the Northern Ashanti Region of Ghana have proven that this community is at high risk 

for chronic AF exposure based on both AFB1-albumin and AFM1 levels (Jolly et al. 

2006; Wang P et al. 2008). Study participants were recruited from five communities in 

this district. Sociodemographic data for these communities was established previously 

(Jolly et al. 2006). All recruited participants were between 21-70 years of age. Consent 

was sought following a community meeting with study personnel. Consent documents 

were translated and explained to participants in private rooms and signed by each 

individual participant before initiation of the study. Previous research from our 

laboratory in humans has shown that 3 g/day of NS clay was the minimal effective dose 

for significantly decreasing the AFM1 biomarker (Wang P et al. 2008). This dose 

represents approximately 0.25% UPSN (w/w) of the total amount of food consumed 

daily (1200 g) by the average adult Ghanaian. Participants were selected evenly between 

the five communities (10 from each) and randomly assigned into one of two treatment 

groups. Figure 7 shows the overall study design and sample collection procedure. A 

local caterer prepared a breakfast and dinner meal for all participants daily. Participants 

were responsible for any snacks consumed and their lunch meals. Trained study 

monitors mixed each participant’s treatment into their respective food before 

consumption. Each study participant received 1.5 g of placebo (calcium carbonate) or 
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UPSN in their breakfast meal and their dinner meal. Breakfast meals consisted of a corn-

based porridge called “koko” and the dinner meals were a common soup (i.e. peanut 

soup, lamb lite soup) and corn dough called “banku”. Treatment group 1 consumed 

placebo (3 g/day) in their foods for five days followed by a two day washout period and 

consumption of 3 g/day of UPSN for an additional five days. Treatment group 2 

consumed UPSN (3 g/day) for the first five days followed by a 2 day washout period and 

an additional five days of placebo treatment (3 g/day). The crossover study design 

allowed for a smaller number of participants and each participant was used as its own 

control during data analysis to account for inter-individual variations in AF metabolism. 

Urine samples were collected at baseline, daily during treatments and at day 20. 

Overnight urine samples were collected daily, and 15 ml aliquots were stored at -20°C. 

Samples were transported cold to Noguchi Memorial Institute for Medical Research for 

biomarker analysis. Laboratory employees were blinded to treatment groups during 

analysis. Ethical clearance and institutional review board approval for this study was 

obtained from both Texas A&M University and Noguchi Memorial Institute for Medical 

Research (IRB 2009-0412 and 005/08-09).   

3.2.4 AFM1 analysis and palatability questionnaire 

Urinary AFM1 was analyzed through immunoaffinity column clean-up followed 

by HPLC coupled fluorescence detection (previously described in detail in Section 

2.2.3). Following consumption of each meal participants were asked to rate the food 

based on four criteria; 1) overall taste, 2) texture, 3) aroma and 4) would they eat the 

food again. The first three criteria had the following rating options: poor, unacceptable, 
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acceptable or good while the fourth criterion was rated yes or no. Questionnaires were 

given to participants in English or translated to the local language by study monitors. 

3.2.5 Statistical analysis 

 All statistical analysis was run on JMP 9 software (SAS Institute, Cary, NC, 

USA). AFM1 data was not normally distributed; thus the data was analyzed with a 

nonparametric test (Kruskal-Wallis). However, all data was also analyzed under 

parametric conditions (ANOVA) following a log transformation of the data. Both 

parametric and nonparametric analyses were used to compare groups by days and by 

treatment arms. A p-value <0.05 (two-tailed) was considered significant. Statistical 

significance was not changed between parametric and nonparametric testing. Data was 

analyzed with participants acting as their own controls over two different time periods 

and with AFM1 levels being compared between participants during a common time 

period. Data was also grouped by treatment for days 1-5 and grouped separately for days 

8-12 and analyzed by ANOVA. Questionnaire data was analyzed categorically with a 

chi-square test by treatments.  

3.3 Results 

3.3.1 AFB1 sorption analyses 

 The parameters of Qmax and Kd were derived for sorption of AFB1 at both pH 2 

and 6.5 onto UPSN. Isotherms are run at both a pH of 2 and 6.5 to simulate conditions 

the clay would encounter in the stomach and intestine. The sorption of AFB1 onto 

surfaces of UPSN fit the Langmuir model (r2 ≥0.92) with an L-shape pattern indicating 

saturable binding at sites similar to those shown on parent NS clay (Figure 8A). 
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Figure 7. Crossover Study Design. Participants were randomly placed into one of two groups 
consuming 3.0 g of either calcium carbonate or UPSN per day.  Following 5 days of treatment  
and 2 days of washout, groups were switched to the opposite treatment for another 5 days.

50 participants
Day 0

Group I
3.0g Placebo/d

Days 1-5 

Group II
3.0g UPSN/d 

Days 1-5

Daily urine collections;
Palatability questionnaire

Group II 
3.0g Placebo/d

Days 8-12 

Group I 
3.0g UPSN/d

Days 8-12 

Two day washout;
Treatment crossover 

Daily urine collections;
Palatability questionnaire

Recruitment and consent;
Baseline urine collection

24 26

Days 6-7 Days 6-7

Day 20 Day 20 Urine collection 

Figure 7. Crossover Study Design. Participants were randomly placed into one of two groups consuming 3.0 g of
either calcium carbonate or UPSN per day. Following 5 days of treatment and 2 days of washout, groups were
switched to the opposite treatment for another 5 days.
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As previously reported by Marroquin-Cardona et al. (2011) the theoretical Qmax values 

calculated for UPSN were 0.39 ± 0.01 mol AFB1 kg-1 and 0.44 ± 0.05 mol AFB1 kg-1 at 

pH 2 and 6.5, respectively (Marroquin-Cardona et al. 2011). Although the Qmax valueare 

similar, Figure 8A clearly shows a separation in the two curves for UPSN based on pH.  

This difference can be further shown by the differences in the calculated affinity values 

for both curves (Kd = 6.29x105 at pH 6.5 and 1.93x105 at pH 2). Figure 8A also shows 

the extrapolated isothermal curves for AFB1 interaction onto the surfaces of calcium 

carbonate (placebo). The curves for calcium carbonate do not fit the Langmuir model 

and cannot be compared with the curves obtained for UPSN. As a result, single sorption 

assays were conducted in triplicate for calcium carbonate to obtain percent reduction of 

AFB1. Maximum binding of AFB1 with calcium carbonate occurred at 4 µg at both pH 

values with only 13% bound at pH 6.5 and 5% bound at pH 2 (Figure 8B). As the 

concentration of AFB1 increases the percent bound decreases with pH 2 values dropping 

below zero. This data indicates a poor binding capacity of calcium carbonate for AFB1 

and the likely possibility that calcium carbonate is being dissolved under acidic 

conditions. 

3.3.2 Sample collection and study population 

 A total of 50 participants were recruited for this intervention trial with 25 

randomly placed into one of two treatment groups; 1) placebo days 1-5 and UPSN days 

8-12, and 2) UPSN days 1-5 and placebo days 8-12. Groups had roughly the same 

number of males and females and similar age ranges (Table 11). The overall compliance 

among study participants and sample availability for biomarker analysis was satisfactory 
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with a total of 46 participants included in data analysis (Table 11). The four participants 

who were excluded from the study either missed two urine collections or treatment doses 

in a row.      

3.3.3 Analysis of urinary AFM1 levels  

 A total of 534 urine samples were collected and analyzed for AFM1 over the 

course of the 20 day study. Mean, median and the range of AFM1 for each group at 

different stages of treatment are shown in Table 12. All samples analyzed had detectable 

AFM1, and no significant difference was found at baseline levels between the groups 

(p=0.8737). Comparisons to baseline were also assessed within each group during the 

various stages of treatment, with only day 20 values for group 2 being significantly 

lower (p=0.0277). There was a significant difference at day 20 between group 1 and 

group 2 (p=0.0055). Figure 9 shows daily mean urinary AFM1 over the full 12 days of 

treatment and demonstrates the crossover in treatments for the groups with a switch in 

AFM1 levels occurring by day 9. Comparisons between the UPSN treated groups and 

placebo groups were conducted for each time point by a one-way ANOVA of the log 

transformed data. Day 2 of the study was the only time point showing a significant 

difference between UPSN and placebo groups. Figure 10A shows the data grouped and 

analyzed using the participants as their own controls (i.e., average levels for each group 

from days 1-5 were run against average levels from days 8-12). There was no significant 

difference between placebo and UPSN treatment for group 1 (p=0.1782), however there 

was a significant difference between placebo and UPSN treatment for group 2 

(p<0.0001) (Figure 10A). Differences in dietary intake, and thus AF intake during days 
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1-5 and days 8-12 resulted in large variability between treatment arms. Thus, the data 

was also analyzed by comparing groups during the same time period (i.e., group 1 vs. 

group 2 during days 1-5 and days 8-12) (Figure 10B). The average AFM1 values were 

significantly decreased when placebo treatment was compared to the UPSN between 

groups during both days 1-5 (p=0.0011) and days 8-12 (p=0.0072) (Figure 10B). 
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Figure 8. Isothermal AFB1 sorption analysis of placebo and UPSN. A) Aflatoxin B1 
adsorption isotherms onto UPSN and calcium carbonate at pH 2 and 6.5. UPSN samples 
are depicted in an L-shape curve characteristic of a saturation of binding sites by AFB1 
molecules in a planar configuration (Marroquin-Cardona et al. 2011). Samples of 
calcium carbonate are also depicted; however, the curves did not fit the L-shaped pattern 
or the Langmuir model. B) Qmax values could not be derived for the calcium carbonate 
samples, thus percent bound values were calculated at single concentration points of 
AFB1.  
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There was no significant difference between groups when both were on UPSN 

treatment (p=0.0804) or placebo treatment (p=0.2546). Median urinary AFM1 had a 45% 

reduction with UPSN treatment during days 1-5 and a 55% reduction during days 8-12. 

There were no age or gender differences found with AFM1 excretion between the study 

groups. 

Table 11. Study Participant Demographics 

  Females Males Age Range Study Compliance 
Group 1 9 11 25-70 yr 20/24 
Group 2 11 15 21-46 yr 26/26 

Total 20 26 21-70 yr 46/50 
   

3.3.4 Palatability and adverse events    

 The percentage of foods that were deemed good or acceptable are listed in Table 

13. Participants never deemed any food products as unacceptable or poor during the 

study, and all participants said that they would eat the food again. Both placebo and 

UPSN treated foods received a higher percentage of “good” ratings than “acceptable” 

ratings. Pearson chi-squared tests were used to analyze the difference between “good” 

and “acceptable” ratings within each group by placebo or UPSN treatment. There were 

no significant differences between placebo and UPSN when rating for taste, aroma or 

texture. During the 10 days of treatment there were two incidents of constipation 

reported that lasted 24 and 12 hr while one participant complained of diarrhea that lasted 

for 12 hr. However, these were isolated events that occurred while the respective 
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participants were taking placebo treatment and were not associated with UPSN 

consumption.  

 

 

Table 12. Urinary AFM1 excretion 

  

AFM1 (pg/mg creatinine) 

Treatment 

stage Baseline Placebo UPSN Day 20 

      

Group1  

288 389 281 480 

 

831 ± 1279 1125 ± 2168 922 ± 1481 962 ± 1481 

 

(15-5455) (4-17155) (4-8018) (14-6952) 

      

Group2  

210 508 177 94 

 

809 ± 1226 1287 ± 2550 483 ± 973 273 ± 1617 

 

(17-4925) (4-20874) (5-8397) (10-1322) 

 

Data are median, mean ± SD, and (data range). (a) Indicates a significant 
difference (p<0.05) between the same treatment stage when group 1 is compared 
with group 2. (b) Indicates a significant difference (p<0.05) from baseline within 
the same group.   

 

 

a, b 
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Figure 9. Daily mean AFM1 levels. Points are mean values for each group per day and 
error bars represent standard error of the mean. Day zero represents baseline urine 
samples taken for participants. Group 1 (grey) was on placebo treatment days 1-5 and 
UPSN treatment days 8-12. Group 2 (black) was on UPSN treatment days 1-5 and 
placebo treatment days 8-12. * p<0.05 as compared with placebo at the same time point. 
(a) indicates the switch in treatment.    
 

3.4 Discussion  

AF-specific biomarkers currently consist of AFB1 metabolites and AFB1 adducts 

(Groopman et al. 1996; Groopman et al. 1994). Both serum the AFB1-albumin adduct 

and urinary AFM1 have shown significant correlation with dietary intake of AFs (Egal et 

al. 2005; Gan et al. 1988; Groopman et al. 1992b; Zhu et al. 1987). While the AFB1-

albumin adduct is considered to be the most stable and reliable biomarker for chronic AF 

exposure (Wild and Turner 2002), the long half-life of the biomarker requires exposures 

of one month to reach a steady state for analysis, which precludes its use in short-term 

human trials. AFM1 in urine (Zhu et al. 1987) reflects recent AFB1 exposure in humans, 
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and can be easily collected from both adults and children. Importantly, the short half-life 

makes it an excellent candidate for use in preliminary and pilot intervention trials.  

Research involving human subjects, particularly children, should be conducted in 

a manner to reduce any possibility of harm. Utilization of the AFM1 biomarker to prove 

efficacy could significantly decrease the time participants need to be treated with an 

investigational therapy and also lower overall invasiveness of such intervention trials. 

This study is the first to show that daily AFM1 concentrations can be utilized to 

determine the efficacy of an intervention trial within 5 days of treatment implementation. 

The low cost, low invasiveness of sampling and short half-life of the AFM1 biomarker, 

make daily sampling possible. This method could facilitate rapid surveillance of 

aflatoxicosis outbreaks and rapid identification of effective strategies to mitigate this 

disease. 

This work not only shows the sensitivity of AFM1 as a biomarker of intervention 

efficacy but also clearly illustrates the ability of a calcium montmorillonite clay, UPSN, 

to significantly decrease AF exposure within 5 days of treatment initiation. The 

immediate response observed in this study indicates that UPSN would be a prime 

candidate to treat populations during incidences of acute AF outbreaks. Clay as a 

toxincant enterosorbent can be delivered in various dose forms. In previous studies, NS 

clay was sterilized, encapsulated, and taken with water before each meal (Afriyie-Gyawu 

et al. 2008b). 
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Figure 10. AFM1 distribution within groups and treatment arms. The box values ranged from 25 to 75 percentiles of the total samples, the
line within it indicates the median value. The bars on both sides of a box represent values ranging from 5 to 25 and from 75 to 95
percentiles, respectively. A) Comparison of UPSN and placebo treatment within the same group. Analysis of the data in this manner
allowed for each person to be used as their own control and account for inter-individual differences in AFB1 metabolism and AFM1
excretion. B) Distribution of AFM1 levels by time points. Comparison of median AFM1 levels were compared between groups based on
time points to account for differences in daily dietary AFB1 intake. Placebo days 1-5 was compared with UPSN days 1-5 and the same was
calculated for days 8-12. **p<0.05 as compared with placebo.

 

Figure 10. AFM1 distribution within groups and treatment arms. The box values ranged from 25 to 75 percentiles of the total samples, the 
line within it indicates the median value. The bars on both sides of a box represent values ranging from 5 to 25 and from 75 to 95 
percentiles, respectively. A) Comparison of UPSN and placebo treatment within the same group. Analysis of the data in this manner 
allowed for each person to be used as their own control and account for inter-individual differences in AFB1 metabolism and AFM1 
excretion. B) Distribution of AFM1 levels by time points. Comparison of median AFM1 levels were compared between groups based on 
time points to account for differences in daily dietary AFB1 intake. Placebo days 1-5 was compared with UPSN days 1-5 and the same was 
calculated for days 8-12. **p<0.05 as compared with placebo.  
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The cost and inconvenience of encapsulation led us to consider alternate dose 

forms. Utilization of the clay as a food additive could have numerous advantages 

including lowered cost of production, decreased impact on people’s daily life, possible 

increased efficacy and improved sustainability. UPSN was developed as a more 

palatable form of the parent clay for inclusion in food products. UPSN contained a lower 

percentage of particles above 100 µm in the dry state and above 50 µm in the wet state 

versus parent NS clay (Marroquin-Cardona et al. 2011). Although X-ray diffraction 

(XRD) analysis identified quartz in the UPSN product, the relative intensity was lower 

than that of the parent clay suggesting less content of this mineral (Marroquin-Cardona 

et al. 2011). UPSN and NS had similar binding affinities for AFB1 in vitro and were 

shown to contain the same active product (calcium montmorillonite) based on XRD 

intensities (Marroquin-Cardona et al. 2011). Based on the characterization of both 

montmorillonite clays, UPSN was deemed preferable for food inclusion in the present 

study.  

 This is the first in vivo study to assess the efficacy of UPSN and the first human 

intervention study to evaluate a form of NS clay as a food additive. Only one of the two 

groups (group 2) had a significant reduction in AFM1 levels when comparing UPSN 

dosing with their placebo dose. The lack of significance in AFM1 reduction for group 1 

could be due to variations in dietary AFB1 intake from days 1-5 when compared to days 

8-12. The median exposure in placebo groups is 1.3 times higher during days 8-12 than 

days 1-5 making it hard to make meaningful comparisons between UPSN and the 

placebo treatments within the same group. Due to differences in dietary AF intake from 
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Table 13. Palatability ratings by percent 

    Rating Taste Aroma Texture 

  

Good 84.8 78.3 80.4 

Placebo 
 

Acceptable 15.2 21.7 19.6 

 

Unacceptable 0 0 0 

  

Poor 0 0 0 

      

  

Good 78.3 65.2 69.6 

UPSN 
 

Acceptable 21.7 34.8 30.4 

 

Unacceptable 0 0 0 

    Poor 0 0 0 

 

 the first half and the second half of the study, the data was also compared between 

groups over the same time points. Inter-group comparisons showed a significant 

reduction in urinary AFM1 levels in this study. A reduction rate of up to 55% in the 

median AFM1 levels could be observed in as little as 5 days of treatment. These 

reduction rates are similar to those seen in other intervention trials utilizing other dietary 

supplements (i.e. NS clay, Chlorophyllin and oltipraz) based on acute biomarkers (AFM1 

and AFB-N7-guanine) of exposure from urine (Egner et al. 2001; Wang JS et al. 1999; 

Wang P et al. 2008). In earlier research with NS, it took 3-months of treatment to see a 
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significant difference in urinary biomarkers (Wang P et al. 2008). However, in that 

study, urine samples were only taken twice throughout the 3-month period, and the large 

variability in biomarker output due to inter-individual differences of AF metabolism and 

dietary intake can lead to a lowered power of the analysis. In this study, daily sampling 

of the biomarker and pooling of the data decreased the effects of the variability of 

individual biomarker concentrations on the statistical analysis. A similar reduction in 

AFM1 metabolites over a 3-month treatment period has been associated with a 

significant decrease in AFB1-albumin adducts in humans (Wang P et al. 2008).  

 Recent reports of growth stunting associated with AF consumption (Gong YY et 

al. 2002, 2004 Turner et al. 2007) and AF contaminants occurring in children’s ready to 

use therapeutic foods has caused significant concerns for child health and acute health 

impacts from high level exposures to dietary AFs in the vulnerable and susceptible. 

Populations that lie within what has been called the “hot zone”, 40°N and S latitude, are 

the most commonly exposed to AF due to a favorable climate for Aspergillus growth and 

AF production (Cotty and Jaime-Garcia 2007b; Williams et al. 2004). A variety of 

strategies for reducing AF contamination in food and feed have been reported including 

the use of benign competitive fungal species, establishing drought resistant crops, food 

sorting and improved storage processes. However, none of these methods are suitable for 

therapy to alleviate acute aflatoxicosis and reduce lethality in the vulnerable in poor 

communities. Toxin enterosorbent intervention with UPSN clay has the capability to 

immediately impact exposure and rescue individuals suffering from acute and sub-acute 

AF exposures similar to those reported in Kenya in 2004.   
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4. PHASE I SAFETY INTERVENTION TRIAL OF UPSN TREATMENT IN THE 

DIETS OF CHILDREN IN GHANA 

4.1 Introduction 

Stunting, wasting, and fetal growth retardation result in more than 2 million 

deaths in children under the age of 5 and account for 21% of disability-adjusted life 

years worldwide (Black et al. 2008). In 2010, it has been estimated that 171 million pre-

school children worldwide were stunted (de Onis et al., 2011). While the overall 

prevalence of stunting in developing countries has improved over the past two decades 

(from 44.4% to 29.2%), the majority of this improvement has been occurring in Asia and 

Latin America. The rate in Africa (40%), however, has remained mostly stagnant and is 

not expected to improve drastically over the next 10 years (de Onis et al. 2012). 

Although stunting is primarily attributed to nutritional and protein deficiencies, AF has 

also been associated with growth faltering in Sub-Saharan Africa (Gong YY et al. 2002, 

2003, 2004; Okoth and Ohingo 2004; Shuaib et al. 2010; Turner et al. 2003, 2007; Wang 

E et al. 1992). Current strategies implemented to alleviate growth faltering and 

subsequent physical and mental deficits include food and micronutrient supplementation. 

These complementary foods, sometimes referred to as ready-to-use therapeutic foods 

(RUTFs), are designed to supplement the typical diet and often consist primarily of 

maize, groundnuts (peanuts), and other protein sources, such as soybeans (Bhutta et al. 

2008; Hendricks KM 2010; Lartey et al. 1999). Recently, there have been reports of AF 

contamination in similar homemade complimentary foods (Weanimix) in Ghana, West 

Africa (Kumi et al. 2011). 
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 Due to dietary exposures in African countries such as Guinea, Kenya, Benin, 

Togo, Senegal, and the Gambia, approximately 85% to 100% of children have detectable 

levels of serum or urinary AF biomarkers (Gong et al., 2003, 2004; Polychronaki et al., 

2008; Turner et al., 2000, 2003, 2005; Wild et al., 1990, 1993). Therefore, it is clear that 

intervention strategies directed at the mitigation of child exposures are needed in areas 

where risk of AF consumption is high and malnutrition is common. Based on detailed 

studies conducted in animals and humans, it was determined that ingestion of UPSN at 

levels efficacious for reducing AFB1 biomarkers would be reasonably safe in children.  

In the following clinical trial, safety and efficacy of UPSN was assessed for children at 

risk for AF exposure from the Ejura-Sykedumase district of Ghana. The study followed 

a Phase I, double blind, placebo-controlled trial over a two-week time period. The results 

from this research will be utilized to design future studies investigating long-term 

protection of children at high risk for AF exposure and the potential of this material for 

short-term therapy during outbreaks of acute aflatoxicosis.         

4.2 Materials and methods 

4.2.1 Materials 

UPSN was manufactured through a refinement process of the parent calcium 

montmorillonite, NS, by Texas Enterosorbents. UPSN was examined for various 

environmental contaminants, including dioxins and heavy metals to ensure compliance 

with federal and international standards. Metal and dioxin analysis of both NS and 

UPSN was reported to be similar and well under the tolerable daily intake (TDI) or 

provisional tolerable daily intake (PTDI) set forth by various food safety councils of 
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international organizations such as the World Health Organization (WHO) and the Joint 

FAO/WHO Expert Committee on Food Additives (JECFA) (Marroquin-Cardona et al. 

2011). UPSN was sterilized by electron beam irradiation to ensure safety from any 

possible bacterial or viral contamination prior to trial initiation.   

HPLC grade methanol, phosphate buffered saline, and AFM1 standard were 

purchased from Sigma Aldrich (Saint Louis, MO, USA). Ultrapure deionized water 

(18.2 MΩ) was generated within the lab using an Elga™ automated filtration system 

(Woodridge, IL, USA). Immunoaffinity columns were purchased from VICAM 

(Watertown, MA, USA).  

4.2.2 Study site and participant recruitment 

           Study participants were recruited from six communities in the Ejura-

Sekyedumase district of the Ashanti Region of Ghana. The six communities included 

Dromonkuma, Hiawoanwu, Kotokoliline, Nkwanta, Ejurafie, and Kasei. These 

communities are in rural areas where inhabitants are primarily subsistence farmers. All 

recruited participants were between 3-9 years of age. Consent was sought from the 

parents or legal guardians following a community meeting with study personnel. 

Consent documents were translated and explained to each participant, then signed by 

each participant’s guardian prior to initiation of the study. Participants were randomly 

assigned to one of three treatment groups. Figure 11 represents the overall study design 

and treatment arms. The three treatment arms consisted of a placebo group, which 

received 0.75 g calcium carbonate twice daily, a low-dose group which received 0.375 g 

UPSN twice daily, and a high-dose group which received 0.75 g UPSN twice daily. A 
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placebo-controlled group was deemed necessary in this research since clinical reference 

ranges for hematology and serum biochemistry values are not currently well established 

for African children (Zeh et al. 2012). Thus, the placebo group was used as a reference 

when determining safety of UPSN. Doses were weighed into identical packages at 

Noguchi Memorial Institute for Medical Research (NMIMR) prior to the study to ensure 

that monitors and participants would be blinded to their treatment. Trained study 

monitors mixed each participant’s treatment into their breakfast and dinner meals before 

consumption. Breakfast meals consisted of a corn-based porridge called “koko” or soup 

and the dinner meals typically consisted of a common soup (i.e. peanut soup, lamb lite 

soup) and corn or cassava dough called “banku” and “fufu”, respectively. These meals 

were supplied by the individual households. Participants provided blood samples (3 cc) 

on the morning prior to initiation of treatment (Day 0) and on day 15 (the morning after 

their last treatment dose). Blood samples were collected by trained phlebotomists at the 

Ejura District Hospital. Aliquots of the blood samples were used for hematological 

analysis and the remaining amount was centrifuged. The resulting serum was collected 

and kept at -20°C. Urine samples were collected by parents the morning of Day 0 

(baseline), halfway through the study (day 7), and the morning after the final dose (day 

15). Following collection, urine samples were stored at -20°C and together with the 

serum samples were transported to NMIMR for analysis. The study design followed the 

guidelines for a double-blind randomized Phase I clinical trial. Ethical clearance and 

Institutional Review Board approval for this study were obtained from both Texas A&M 

University and NMIMR in Accra, Ghana (2011-0684 and 043/11-12, respectively).
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Informed Consent & Voluntary 
Participation (63)

Pre-Trial Examination 
(Physical, hematological, 

urinary, biochemistry)

Randomization

Low-dose UPSN (0.75g/day)

High-dose UPSN (1.5g/day)

Placebo (calcium carbonate) 

Post-trial Examination 
(Physical, hematological, 

urinary, biochemical)

Community Report

Data Summary & Statistical Analysis 

Completed 
Trial

x 14 days

x 14 days

x 14 days

No

Yes

21

21

21

Figure 11. Phase I safety trial design. Flow chart delineating the study design and procedures for a 2-week clinical 
trial with UPSN in Ghana. 

 

 

Figure 11. Phase I safety trial design. Flow chart delineating the study design and procedures for a 2-week clinical trial 
with UPSN in Ghana.
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4.2.3 Toxicity and adverse events monitoring 

             Based on the existing scientific literature describing consumption of 

dioctahedral smectite clays in adults and children, no severe toxicity was expected as a 

result of UPSN treatment. However, research staff and medical personnel were on-site 

throughout the study period to monitor for potential adverse effects and to remove 

participants from the study in the event of such an effect. Daily diary worksheets and 

symptom checklists were provided to study monitors as assessment tools for adverse 

events monitoring and were completed twice daily following ingestion of each treatment 

dose. Adverse events are described as percentages of total number of adverse event 

reports out of the total number of completed daily diary worksheets per treatment group. 

In the event of an adverse treatment effect or unrelated condition at any time during the 

study, medical treatment was available to participants from the district hospital at no cost 

to the participant. Any symptoms were assessed according to the following criteria: Mild 

(grade 1), slightly bothersome and relieved with symptomatic treatment; Moderate 

(grade 2), bothersome and interfered with activities and only partially relieved with 

symptomatic treatment; Severe (grade 3), prevented regular activities and not relieved 

with symptomatic treatment. Any participant experiencing severe incidences were 

advised to seek immediate medical attention. Physical examination and laboratory 

analysis were performed for persistent symptoms. Any symptoms that were linked to the 

UPSN treatment by the study physician would result in immediate discontinuation of the 

treatment; however this did not occur during the study. 
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4.2.4 AFM1 analysis, hematology, and serum biochemistry 

Urinary AFM1 was analyzed through immunoaffinity column clean-up followed 

by HPLC coupled fluorescence detection (previously described in detail in Section 

2.2.3). Whole blood measurements consisted of hemoglobin, total white cell count and 

platelet count. Whole blood analysis was conducted with a flow cytometer (Abx 

micro60, Block Scientific, Bohemia, NY, USA). Serum albumin, alkaline phosphatase 

(ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-

glutamyl transpeptidase (GGT), total protein, total bilirubin, urea, creatinine, 

triglycerides, sodium (Na+), potassium (K+), chloride (Cl-), calcium (Ca2+), and 

magnesium (Mg2+) were measured using a Flexor E, automatic blood analyzer (Vital 

Scientific, Netherlands). 

4.2.5 Statistical analysis 

         Statistical analysis was conducted with JMP 10 software (SAS Institute, NC, 

USA). The ultimate goal of this study was to determine if the ingestion of UPSN clay 

was safe in children; therefore, statistical evaluation focused on comparisons between 

treatment arms, as well as values within a group at baseline and at day 15. A Chi-square 

test was used for analysis of side-effect/toxicity data between treatment groups. As 

expected, AFM1 biomarkers of exposure data was not normally distributed and was log 

transformed prior to analysis. Paired t-test and ANOVA statistical tests were conducted 

on both AFM1 data and biochemical parameters for comparisons among treatment 

groups. A two-tailed p-value<0.05 was considered statistically significant. Correlation 

analyses were performed for serum biochemical parameters and AFM1 levels. R-squared 
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values were based on a standard linear regression model; p-values and correlation 

coefficients were calculated by a Pearson correlation test.                  

4.3 Results 

4.3.1 Study participant characteristics and compliance 

In total, 63 children were enrolled in the clinical trial. There were no significant 

differences in mean age, gender, weight, or other general physical parameters such as 

blood pressure between treatment groups (Table 14). Adherence to the two-week study 

protocol was excellent, with all 63 participants completing the study. Only one 

participant missed an evening dose of treatment throughout the 28 doses/participant 

administered. This participant was in the low-dose UPSN group and was diagnosed with 

and treated for malaria that same day. General acceptance by the parents and children 

was exceptional.  

4.3.2 Adverse events and side effects 

The two dose levels of UPSN (0.75 and 1.5 g/day) were tolerable in the 

participants throughout the study. Adverse symptoms reported during the two-week 

study were primarily of a gastrointestinal nature and included vomiting and diarrhea. 

Table 15 is a tally of individual adverse events reported throughout the course of the 

study. It is important to note that, in some cases, reports were made multiple times by the 

same participant. For example, all reported events in the high-dose group originated 

from one individual who received medical attention from the district hospital following 

2 consecutive days of vomiting. This participant was diagnosed and treated for malaria 

by doctors at the district hospital, but was allowed to stay in the clinical trial per the 
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physician’s recommendation. Vomiting ceased after initiation of malarial medication. In 

total, there were 3 children diagnosed and treated for malaria during the study. This is 

equivalent to 4.8% of our study population, which is actually a lower prevalence rate 

than reported for the area (> 75 per 1,000) by the WHO (World Malaria Report 2012). 

The symptoms reported by individuals with malaria accounted for 9 out of the total 13 

adverse events (69.2%) reported. The placebo, low-dose, and high-dose groups 

experienced side effects at a rate of 0.3% (2/588), 0.8% (5/588), and 1% (6/588), 

respectively. Severities of side effects were generally reported as mild to moderate and 

either no treatment or self-treatment was effective in alleviating symptoms. Severe cases 

of vomiting requiring immediate medical attention occurred only in those participants 

later diagnosed with malaria. Importantly, there were no significant differences observed 

in number of adverse events between treatment groups (p>0.37) or in severity of 

symptoms reported (p>0.43). 

4.3.3 Hematological, blood chemistry, and serum mineral effects  

Hematological analysis of blood samples showed no significant difference 

between treatment arms, although lymphocytes and monocytes were above the normal 

range across all treatment groups at both day 0 and day 15 (Table 16). Hematological 

values in the placebo group were not significantly different from either the low-dose or 

high-dose UPSN groups at day 0 or day 15. These levels were also not significantly 

different within each treatment group when comparing day 15 to baseline values.  
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Table 14. Demographics and Physical Parameter 

  
Treatment group 

Demographic Characteristics Placebo Low-dose High-dose 
Participants 

 
21 21 21 

Gender 
          Male 
 

13 14 14 
      Female 

 
8 7 7 

Age (years)
 a
 

 
5.8 ± 1.6 5.4 ± 1.8 5.7 ± 1.9 

Body weight (kg)
 a
 

 
20.0 ± 4.8 21.0 ± 8.5 18.9 ±5.2 

Height (cm)
 a
 

 
107.2 ± 13.2 107.9 ± 16.3 105.8 ± 15.1 

Systolic blood pressure (SBP) (mmHg)
 a
 87.7 ± 8.0 91.3 ± 10.9 92.3 ± 11.0 

Diastolic blood pressure (DBP) (mmHg)
 a
 44.6 ± 7.3 45.6 ± 9.1 47.2 ± 10.2 

aMean ± SD; Note: all data are baseline vales.  

 

 

Results of serum biochemistry analyses are provided in Table 17. No significant 

differences were observed within groups between day 0 and day 15 for albumin, ALP, 

AST, GGT, total bilirubin, urea, or triglycerides. ALT values were significantly higher 

after treatment for all groups (p< 0.0003), including the placebo group. The placebo 

group also exhibited significantly lower (p< 0.01) total protein levels following 

treatment, however, this was not the case for the UPSN treated groups. At day 15, the 

low-dose UPSN group had significantly lower creatinine levels compared to baseline 

(p<0.05), however this observation was not dose-dependent. Comparison of serum 

biochemistry parameters between the placebo group and the low-dose or high-dose 



 

124 

 

UPSN groups did not indicate significant differences at day 0 or day 15 (Table 17). 

Although average total bilirubin levels were within range in all treatment groups 

throughout the study, a wide range of values were detected (0.2-35.5 μmol/L) and these 

values were positively correlated, with urinary AFM1 concentration at day 0 (Figure 

12A). Upon comparison of all treatment groups at day 15, the association was lost 

(Figure 12B). Interestingly, when AFM1 decreased or increased from day 0 to day 15, 

there was a corresponding decrease or increase in bilirubin levels 62% of the time; 

indicating that bilirubin levels may have a positive association with AFM1 excretion in 

children. 

Median, mean, and normal U.S. pediatric ranges for the serum minerals assessed 

are outlined in Table 18. Serum Na+ and Cl- significantly increased (p< 0.01) over the 

course of the study in all groups. All groups exhibited significantly decreased Ca+ levels 

following the study. A reduction in serum Mg2+ was seen in the UPSN high-dose group 

(p< 0.01). There was also a small reduction in the mean Mg2+ of the UPSN low-dose 

group, however it was not significantly different (p>0.27). However, levels in all groups 

remained well within the normal U.S. range. No other mineral level comparison between 

day 0 and day 15 was significantly different.  

4.3.4 AFM1 biomarker levels in urine 

Throughout the study, 100% of urine samples contained detectable levels of 

AFM1. AFM1 concentration ranged from 0.5-5443.7 pg/mg creatinine. The mean at day 

0 was 297.8 pg/mg creatinine. AFM1 levels were not significantly different by gender or 

correlated with age (data not shown). Although treatment groups were not significantly 
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different at baseline or day 15 of treatment, the high-dose UPSN group exhibited 

significantly (p=0.216) lower AFM1 levels on day 7 than both the placebo and low-dose 

group (Figure 13A-C). When all data values from day 7 and 15 were pooled by 

treatment group the high-dose group showed an overall statistically significant 

(p=0.0063) 70% reduction in AFM1 levels when compared to control (Figure 14). 

 

Table 15. Adverse Events Reported 

 
Treatment Group 

 
 

Placebo Low Dose High Dose Sum  
Symptom Reported 

    Other 0
a
 0   2 * 2 

Indigestion 0 0 0 0 
Nausea 0 0 0 0 
Vomiting 2    3 *    4 * 9 
Constipation 0 0 0 0 
Diarrhea 0 1 0 1 
Flatulence  0 0 0 0 
Loss of Appetite 0 1 0 1 
Abdominal Discomfort 0 0 0 0 
Heartburn 0 0 0 0 
Dizziness 0 0 0 0 
Insomnia 0 0 0 0 
Bloating 0 0 0 0 
Total Incidence (%) 2 (0.3) 5 (0.8) 6 (1) 13 (0.7) 

     Severity 
    Mild 2 2 5 9 

Moderate 0 2 1 3 
Severe 0 1 0 1 

        aIndicates number of times an adverse event was reported.  
     *Indicates participant was diagnosed with malaria by health official 
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Table 16. Hematological Analysis 

 

Treatment Group 

Normal clinical 

range (US) Reference 

 

Placebo 

 

Low Dose 

 

High Dose 

    

 

Baseline After 

 

Baseline After 

 

Baseline After 

    Hemoglobin (g/dL) 11.3 ± 0.8 11.4 ±1.1 

 

11.5 ± 0.9 11.7 ± 1.3 

 

11.0 ± 1.5 11.3 ± 1.5 

 

11.0-14.5 

 

A 

WBC  8.2 ± 2.0 7.4 ± 1.2 

 

7.8 ± 2.0 7.9 ± 1.8 

 

8.5 ± 3.4 8.2 ± 2.7 

 

3.4-12.0 

 

A 

Platelet  275.3 ± 73.9 303.0 ± 112.4 

 

296.0 ± 85.0 349.9 ± 142.7 

 

266.0 ± 80.4 280.9 ± 117.3 

 

150.0-450.0 

 

A 

Lymphocytes (%) 55.2 ± 10.9 56.9 ± 8.1 

 

52.6 ± 7.9 51.8 ± 9.6 

 

52.9 ± 11.2 53.5 ± 9.4 

 

28.0-48.0 

 

B 

Monocytes (%) 10.6 ± 3.2 11.0 ± 3.9 

 

12.3 ± 3.7 13.0 ± 3.9 

 

10.4 ± 3.0 10.9 ± 3.3 

 

3.0-6.0 

 

B 

Granulocytes (%) 34.2 ± 12.1 31.9 ± 7.4 

 

35.1 ± 8.4 35.2 ± 10.7 

 

36.6 ± 11.0 35.6 ± 9.1 

 

32.0-76.0 

 

B 

Data are mean ± SD; A) Mayo Clinic pediatric reference values B) Children’s hospitals and clinics of Minnesota reference values; Reference ranges are 
combined for males and females WBC and Platelet values are in (X 1000/mm3). 
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Table 17. Serum biochemistry 

 
Treatment Groups 

Normal  
Clinical  

Range (US) Reference  

 
Placebo 

 
Low Dose 

 
High Dose 

    
 

Baseline After 
 

Baseline After 
 

Baseline After 
    

 
49 47.2 

 
48.5 47.9 

 
49.6 48.4 

    Albumin (g/L) 47.0 ± 9.0 46.9 ± 2.8 
 

48.5 ± 3.1 47.2 ± 2.3 
 

46.2 ± 11.1 47.6 ± 6.0 
 

35.0-50.0 
 

A 

 
15.9-56.0 39.7-51.0 

 
42.5-53.0 42.2-51.6 

 
11.1-57.4 25.2-56.2 

    
 

591.9 596.2 
 

479 620.5 
 

521.3 581.9 
    

ALP (U/L) 559.1 ± 185.7 532.0 ± 355.6 
 

427.2 ± 
242.3 572.3 ± 332.6 

 
488.5 ± 215.8 584.9 ± 314.7  

 
149.0-468.0 

 
A 

 
176.9-1039.4 6.3-1164.3 

 
17.3-843.4 6.1-1102.2 

 
13.1-907.6 24.7-1189.1 

    

 
13.2 27.1 

 
17.2 27.6 

 
17.7 24.6 

    ALT (U/L) 14.4 ± 6.0 30.2 ± 11.3 * 
 

19.3 ± 8.6 28.9 ± 7.2 * 
 

20.2 ± 20.0 29.3 ± 15.1 * 
 

7.0-55.0 
 

A 

 
4.3-27.1 13.7-51.4 

 
7.5-46.5 20.8-45.8 

 
3.0-87.3 12.4-68.3 

    
 

39.8 41.2 
 

38.3 42.1 
 

38.4 40.4 
    AST (U/L) 41.8 ± 13.2 44.9 ± 12.3 

 
42.3 ± 8.4 43.7 ± 10.8 

 
40.2 ± 14.1 41.4 ± 10.0 

 
8.0-60.0 

 
A 

 
16.8-66.3 31.4-73.3 

 
30.9-59.5 29.8-74.3 

 
12.6-85.9 20.6-57.3 

    
 

15 16.6 
 

10.6 14 
 

13.2 15 
    GGT (U/L) 16.6 ± 8.0 17.0 ± 6.8 

 
13.9 ± 8.6 16.0 ± 7.3 

 
14.1 ± 9.0 17.0 ± 11.7 

 
7.0-29.0 

 
A 

 
1.7-42.0 6.1-31.4 

 
6.4-43.2 7.4-35.5 

 
0.5-37.2 2.8-48.7 
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Table 17. Continued 

 Treatment Groups  

Normal 
Clinical 

Range (US)  Reference 

 Placebo  Low Dose  High Dose     

 Baseline After  Baseline After  Baseline After     

 
5.5 8.1 

 
6.2 7.5 

 
6.7 6.1 

    Total Bili(µmol/L) 7.1 ± 7.1 8.5 ± 4.9 
 

7.8 ± 5.4 7.9 ± 3.4 
 

8.4 ± 8.1 8.3 ± 7.4 
 

1.7-17.1 
 

A 

 
0.2-28.1 0.6-22.4 

 
0.5-25.4 1.8-15.9 

 
1.1-35.5 0.2-29.9 

    
 

80.5 76.3 
 

77.8 77.2 
 

79.8 80.9 
    Total Protein (g/L) 78.8 ± 8.8 77.0 ± 3.3 * 

 
78.2 ± 6.0  77.4 ± 4.3 

 
79.8 ± 31.0 78.0 ± 8.6 

 
63.0-79.0 

 
A 

 
43.6-87.2 70.8-82.5 

 
70.2-89.8 70.1-86.1 

 
21.3-194.2 47.8-89.6 

    
 

2.9 2.7 
 

2.8 2.7 
 

3.1 2.8 
    Urea (mmol/L) 2.7 ± 0.8 2.9 ± 0.6 

 
2.8 ± 0.8 2.6 ± 0.6 

 
2.9 ± 1.2 2.9 ± 1.0 

 
2.5-7.1 

 
A 

 
0.8-3.8 2.1-4.5 

 
1.5-4.6 1.6-3.7 

 
0.6-5.2 1.6-6.0 

    
 

58.1 53.3 
 

61.7 54.3 
 

64.4 59.1 
    Creatinine(µmol/L) 54.6 ± 16.4 54.3 ± 6.2 

 
62.4 ± 10.1 55.7 ± 9.5 * 

 
60.7 ± 17.9 56.5 ± 9.0 

 
50.0-110.0 

 
C 

 
5.4-71.1 40.2-65.1 

 
38.7-77.0 42.4-78.5 

 
18.5-90.4 34.1-74.2 

    
 

0.8 1.1 
 

1 1 
 

0.9 1.1 
    Triglycerides 

(mmol/L) 1.0 ± 0.7 1.3 ± 0.8 
 

1.3 ± 0.7  1.2 ± 0.7  
 

1.6 ± 3.0 1.3 ± 0.6 
 

<1.02 
 

A 

 
0.2-2.6 0.4-3.5 

 
0.5-3.0 0.7-3.8 

 
0.2-14.1 0.5-3.2 

    Data represent median, mean ± SD, and range; A) Mayo Clinic pediatric reference ranges C) Royal College of Physicians and Surgeons of Canada 
ranges; Reference ranges are combined male and female values   
* Denotes significant difference between baseline and after treatment 
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4.4 Discussion 

Chronic childhood AF exposure has gained interest over the past decade as a 

potential variable in the complex milieu of biological and environmental factors that lead 

to stunting, wasting, and suppressed immunity. In particular, Sub-Saharan Africa has 

been identified as an area at high risk for AF exposure as well as growth stunting. 

Investigations from the Ejura district in the Ashanti Region of Ghana have demonstrated 

on-going, high level AF exposure over the past decade (Jolly et al. 2006, 2011; Mitchell 

NJ et al. 2013; Wang P et al. 2008). A prevalence of up to 54.9% has been reported for 

stunted and/or wasted children from another district of the Ashanti Region (Inungu 

1995). Although the high rates observed in this population are primarily thought to occur 

as a result of inadequate nutrition and protein intake, multiple variables likely contribute 

to the etiology of disease. Chronic AF exposure in this community could be one such 

contributing factor, particularly following administration of nutritional supplements such 

as homemade “weanimix”, which consists of groundnuts, beans, and maize (0.5:0.5:4). 

A recent assessment of the weaning foods produced in this community, intended for 

children between the ages of six months and two years, showed AF contamination in 

100% of samples with levels as high as 500 ppb (Kumi et al. 2011). Urine samples 

collected from children before and after 21 days of homemade weanimix consumption 

revealed increased levels of AFM1 biomarkers, indicating that while it is an important 

nutritional supplement in this region, weanimix can also cause heightened AF exposure 

(Kumi et al. 2011). Therefore, an intervention strategy to reduce childhood exposure in 
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these populations, while maintaining the use of these important nutritional supplements, 

is of particular interest.  

Enterosorption therapy may be a valuable tool in low-economic, high risk areas, 

where food insecurity results in a limited variety in the diet and continued consumption 

of poor quality foods (Phillips et al. 2008; Shephard 2003). Clinical trials utilizing 

similar dioctahedral smectite clays at doses as high as 6 g/day for the treatment of acute 

diarrhea in children resulted in limited adverse effects; of which mild constipation was 

the most severe event reported (Dupont et al. 2009; Lexomboon et al. 1994; Madkour et 

al. 1993; Szajewska et al. 2006). Similarly, results from the current study indicate that 

administration of dietary UPSN powder at concentrations from 0.75-1.5 g/day in healthy 

children (ages 3-9 years) for 14 days resulted in minimal side effects. Neither, dose-

dependent toxic effects nor severe clinical symptoms were related to UPSN consumption 

in the present study. Hematologic parameters indicated that UPSN treatment did not 

impair immunity or promote an inflammatory response (George-Gay and Parker 2003).  

ALT values were increased in all treatment groups at day 15; however there were 

not significant differences between the low-dose or high-dose UPSN groups, and 

placebo. These values were also within normal pediatric reference ranges reported by the 

United States Mayo Clinic (Table 17). Additionally, all other liver toxicity parameters 

(i.e. ALP, AST, bilirubin, and GGT) were not increased at day 15 in any treatment 

groups. Therefore, the cause of an increase in ALT values over the duration of the study 

remains unclear. Na+ and Cl- levels were also significantly increased over the study 

period, however this was observed in the placebo group as well as the UPSN treated 
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groups. This indicates that these changes were most likely due to a change in dietary 

consumption of Na+ and Cl-, possibly through higher intake of salt during the study 

period. The levels for Cl- were still within normal reference range, while some Na+ 

values were out of range based on the United States pediatric values as seen in Table 18 

(Mayo 2013).  
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Figure 12. Correlation of log transformed total bilirubin
and log transformed AFM1 values for all participants at
day 0 (A) and day 15 (B).

 

Figure 12. Correlation of log transformed total bilirubin and log transformed 
AFM1 values for all participants at day 0 (A) and day 15 (B). 
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Increases in Ca2+ have been observed following administration of the parent NS 

product (Afriyie-Gyawu et al. 2005) and UPSN (Marroquin-Cardona et al., 2011) in rats, 

which was attributed to dissolution of calcite and exchangeable Ca2+ ions from 

montmorillonite. However, in the present study total Ca2+ levels were decreased in all 

treatment groups including the placebo (calcium carbonate). Calcium carbonate, and to a 

lesser extent NS clay, typically act as calcium supplements, thus it is likely that this 

overall reduction in serum levels is a result of dietary changes during the intervention 

trial. 

Mg2+ was the only serum micronutrient that dose-dependently decreased with 

UPSN treatment. The mean concentrations in the high-dose group were significantly 

lower than the placebo group on day 15 following treatment and the low-dose group, 

while not significantly different, demonstrated a decreasing trend from the placebo. 

However, it is important to note that all levels remained within normal range throughout 

the study. Furthermore, significant modulation in serum Mg2+ concentrations have not 

been observed in any other animal or human study with UPSN or parent NS 

(Gelderblom et al. 1996a). Decreased absorption and retention of Mg2+ was observed in 

a pig model following ingestion of 1% of a sodium montmorillonite clay (Schell et al., 

1993). Mg2+ plays an important role in many human metabolic functions, acting as a co-

factor in enzymatic reactions that involve adenosine triphosphate (ATP). Levels are 

controlled by the kidneys and GI tract and appear to be closely linked to calcium, 

potassium, and sodium metabolism (Reinhart 1988). Therefore, the change in Mg2+ 

observed here could have resulted from changes in calcium or sodium metabolism and 



 

133 

 

not directly from UPSN treatment. An alternative explanation for the lowered serum 

Mg2+ observed is a direct sequestration of Mg2+ by UPSN in the gut through cation 

exchange activity of the clay, thus reducing the availability of Mg2+ for absorption from 

the gut. Longer safety trials controlling for intake of essential dietary nutrients are 

warranted to determine whether UPSN could interfere with micronutrient or mineral 

absorption in children. 

Although changes in serum bilirubin have been reported following exposure to 

AF in animal species (Clifford and Rees, 1967; Clark et al., 1987) to our knowledge 

there have been no correlations made between AF exposure and bilirubin levels in 

humans. AF-alb, while a valuable AF assessment tool in the serum, is a long-term 

biomarker of exposure and is not known to fluctuate with recent exposure as rapidly as 

the urinary biomarker. For this reason, urinary AFM1 is a better marker to correlate with 

rapidly changing serum components, such as bilirubin, which can modulate considerably 

in one day. As stated previously, AF has been shown to elevate total bilirubin and ALP 

levels in animal models. Since growth stunting has been reported to be common in most 

forms of chronic liver disease (Sokol and Stall, 1990), it will be important to assess liver 

function parameters in future studies involving children, growth-stunting, and AFs. 

Additionally, since direct bilirubin can be measured in the urine of individuals 

experiencing liver malfunction, this may be an excellent non-invasive biomarker to 

monitor in clinical AF studies.  

Although the range of AFM1 excretion was similar the average levels were 

significantly lower in this study than those seen in adults from the same population in 
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Table 18. Serum minerals 

 
Treatment Groups 

Normal  
Clinical  

Range (US) Reference 

 
Placebo 

 
Low Dose 

 
High Dose 

    
 

Baseline After 
 

Baseline After 
 

Baseline After 
    

 
132.2 138.2 

 
135.3 138.1 

 
128.5 135.6 

    Na (mmol/L) 130.6 ± 6.8 139.2 ± 5.5 * 
 

133.6 ± 8.0 138.8 ± 3.8 * 
 

129.3 ± 9.1 136.8 ± 3.1 * 
 

135.0-145.0 
 

A 

 
115.3-141.4 132.2-153.4 

 
114.3-146.2 134.5-150.3 

 
112.1-149.9 132.7-143.3 

    
 

3.7 4 
 

3.8 3.9 
 

3.7 4.1 
    K (mmol/L) 3.8 ± 0.4 4.0 ± 0.4 

 
3.8 ± 0.4 4.1 ± 0.5 

 
3.8 ± 0.5 4.1 ± 0.4 

 
3.6-5.2 

 
A 

 
3.0-4.8 3.3-5.0 

 
2.7-4.5 3.2-5.7 

 
3.1-4.8 3.3-4.7 

    
 

97.3 101.2 
 

98.8 102.4 
 

96.2 100.4 
    Cl (mmol/L) 97.4 ± 4.2 101.2 ± 4.0 * 

 
97.7 ± 5.6 101.5 ± 2.5 * 

 
96.6 ± 5.1 100.3 ± 2.1 * 

 
102.0-112.0 

 
A 

 
89.4-105.3 90.1-108.4 

 
83.0-106.8 96.0-104.8 

 
87.8-106.3 95.4-105.2 

    
 

2.4 2.1 
 

2.3 2.2 
 

2.3 2.1 
    Ca (mmol/L) 2.4 ± 0.2 2.2 ± 0.3 * 

 
2.3 ± 0.1 2.2 ± 0.2 * 

 
2.3 ± 0.2 2.1 ± 0.3 * 

 
2.4-2.7 

 
A 

 
1.9-2.7 1.8-2.8 

 
2.0-2.6 1.2-2.6 

 
2.0-2.6 1.5-2.5 

    
 

0.9 0.8 
 

0.9 0.8 
 

0.8 0.8 
    Mg (mmol/L) 0.8 ± 0.1 0.8 ±0.1 

 
0.9 ± 0.1 0.8 ± 0.1 

 
0.8 ± 0.1 0.8 ± 0.1 * 

 
0.7-1.0 

 
A 

 
0.5-1.0 0.6-1.0 

 
0.7-1.0 0.6-1.0 

 
0.7-1.1 0.6-0.9 

    Data represent median, mean ± SD, and range; A) Mayo Clinic pediatric reference ranges; Reference ranges are combined male and 
female values.  
* Denotes statistical significance between baseline and after treatment.   
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October of 2010 (Mitchell NJ et al. 2013). This finding may be explained by the fact that 

this intervention trial was carried out during the wet season, whereas the adult study took 

place at the beginning of the dry season, which typically correlates with increasing AF 

exposure (Turner et al. 2000; Wild et al. 2000). Also, the variance in excretion levels 

could be attributed to the difference in food intake, metabolism, and urinary output 

between children and adults. The high-dose UPSN group showed a significant decrease 

in AFM1 excretion when compared to baseline levels for that group and when compared 

to controls (70%). This decrease in AFM1 is higher than the percentages previously 

reported following NS and UPSN consumption in adults (58.7 and 55.0%, respectively) 

(Mitchell NJ et al. 2013; Wang P et al. 2008). The variation could be attributed to 

different inclusion levels of clay from the adult and children studies. Percent reduction in 

the adult clinical trials was based on an intake of 3 g clay/day while intake for the 

current study was 1.5 g/day. Although the amount of UPSN consumed in this clinical 

trial was half that of the adult study, it could account for a higher percentage of the total 

daily food intake, and thus the total daily AF intake. It is difficult to determine the actual 

daily caloric intake for this population, but this should be considered in future work 

when determining appropriate dose levels for vulnerable populations.        

The results from this Phase I clinical trial indicate that UPSN consumption by 

children (ages three to nine years) is safe at a dose up to 1.5 g/day for two weeks. 

Inclusion of UPSN in weaning foods could also significantly decrease the amount of 

AFB1 absorbed through the gastrointestinal wall, thereby reducing adverse effects of AF 

exposure and enhancing the quality, efficiency and safety of nutritional supplements.   
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Figure 13. Dose effects of UPSN intervention of urinary AFM1 excretion over the duration of
the study. The box plots show distributions of AFM1 levels in each group across time points.
The box values range from 25 to 75 percentiles of the total samples, the line within the box
indicates the median value. The bars on both sides of a box represent values ranging from 5 to
25 and 75 to 95 percentiles, respectively. * Indicates statistical significance (p<0.05).

 
Figure 13. Dose effects of UPSN intervention of urinary AFM1 excretion over 
the duration of the study. The box plots show distributions of AFM1 levels in 
each group across time points. The box values range from 25 to 75 percentiles of 
the total samples, the line within the box indicates the median value. The bars on 
both sides of a box represent values ranging from 5 to 25 and 75 to 95 
percentiles, respectively. * Indicates statistical significance (p<0.05). 
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and day 15. The box values range from 25 to 75 percentiles of the total samples; the line
within the box indicates the median value. The bars on both sides of a box represent
values ranging from 5 to 25 and 75 to 95 percentiles, respectively. *Indicates statistical
significance (p<0.05).
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respectively. *Indicates statistical significance (p<0.05).  
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5. TOXICOKINETICS OF AFB1 AND FB1 COMBINED EXPOSURE AND 

SORPTION WITH UPSN CLAY IN A RODENT MODEL 

5.1 Introduction 

Naturally occurring foodborne carcinogens, such as AFB1 and FB1, are 

predominantly investigated as independent compounds. However, complex mixtures of 

mycotoxins occur in the environment and could induce additive, antagonistic or 

synergistic interactions when present together (Carpenter et al. 1998). Research has 

demonstrated that multiple mycotoxins can co-contaminate crops and foods intended for 

both animal and human consumption (Almeida et al. 2012; Kimanya et al. 2008; Sun G 

et al. 2011). Although research investigating the health effects due to co-exposure of 

these two mycotoxins is limited, several studies have elucidated their additive and 

synergistic capability. Since AFB1 and FB1 commonly co-contaminate foods, any 

therapeutic approach that could mitigate both mycotoxins would be highly attractive and 

more cost-effective than a combination of approaches. In particular, populations most at 

risk for exposure to both mycotoxins also suffer from food insecurity and poor economic 

conditions. Thus, a remediation strategy for such communities must function to reclaim 

contaminated foods in their entirety and cause minimal interference to daily life. UPSN 

is from the family of smectites that has been shown to sorb AFB1 in vitro and in 

numerous animal and human models, thereby decreasing biomarkers of exposure in the 

urine and blood and protecting animals from toxic endpoints (Beaver et al. 1990; Colvin 

et al. 1989; Edrington et al. 1996; Phillips et al. 1988; Pimpukdee et al. 2004). Recently, 
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in vitro analyses indicated that UPSN efficaciously bound FB1 as well as mixtures of 

AFB1 and FB1 (Brown KA et al. 2012).  

The objectives of this study were: 1) to determine whether a dual protection 

would be feasible in a mammalian gastrointestinal system and 2) to assess the difference 

in UPSN efficacy when a mixture of AFB1 and FB1 is present, as opposed to a single 

toxin exposure.  

5.2 Materials and methods 

5.2.1 Materials 

High Performance Liquid Chromatography (HPLC) grade methanol and 

acetonitrile, as well as reagent grade hydrochloric acid, formic acid, sodium phosphate 

monobasic, sodium borate, sodium cyanide, dibasic potassium phosphate, and pH 

buffers (4.0, 7.0, and 10.0) were purchased from VWR (Atlanta, GA). O-

phthaldialdehyde (OPA), AFM1, and FB1 analytical standards were purchased from 

Sigma-Aldrich (Saint Louis, MO). FB1 specified for animal treatment was purchased 

from the PROMEC Unit of the South African Medical Research Council (Tygerbreg, 

South Africa). UPSN was obtained from Texas Enterosorbents (Bastrop, TX). Ultrapure 

deionized water (18.2 MΩ) was generated within the laboratory using an Elga™ 

automated filtration system (Woodridge, IL). 

5.2.2 Animal housing, diet, and treatments 

Five-week old male Fischer-344 rats were purchased from Harlan (Houston, TX) 

and allowed to acclimate for one week before being randomly divided into twelve 

treatment groups consisting of six animals per group (Table 19). Briefly, the treatment 
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groups included an absolute control, positive controls (dosed with AFB1, FB1 or a 

mixture of the two), and groups treated with a one-time toxin dose in addition to one of 

three levels of UPSN clay (0.25, 0.5, or 2% w/w feed consumption). Control animals (no 

UPSN) were maintained on a nutritionally complete powdered feed (Teklad rodent diet 

8604, Harlan) and water ad libitum. Animals that were placed in the 0.25, 0.5, or 2% 

UPSN treatment groups received Teklad 8604 powdered feed homogenously mixed with 

UPSN at the respective percentages and water ad libitum. Animal maintenance, 

husbandry, and treatment protocols involving AFB1 and FB1 exposures were reviewed 

and approved by the Institutional Animal Care and Use Committee at Texas A&M 

University. Following the one week acclimation period animals were gavaged with 

0.125 mg AFB1/kg b.w. and/or 25 mg FB1/kg b.w. These levels were minimal doses to 

provide sufficient levels of urinary AFM1 and FB1 for quantitation (Robinson et al. 2012; 

Sarr et al. 1995). Aqueous gavage solutions administered to UPSN treatment groups also 

contained UPSN at an amount equivalent to one day’s intake. Based on an average daily 

feed consumption of 20 g the doses were as follows: the 0.25% group was gavaged with 

0.05 g, 0.5% were given 0.1 g, and 2% were given 0.4 g UPSN, respectively. Following 

gavage, animals were housed in metabolic cages (NalgeneTM) and urine was collected at 

12, 24, 36, 48, and 72 hr. Samples were stored at -20°C for AFM1 and FB1 biomarker 

analyses. Animals were euthanized after 72 hrs, blood samples collected, and serum 

stored at -20°C until AFB1-albumin analysis. Liver and kidney weights were also 

recorded and expressed as a percentage of the total body weight.  

 



 

141 

 

5.2.3 Analysis of urinary AFM1 

AFM1 concentrations in the urine were analyzed using immunoaffinity column 

purification using methods previously described in Section 2.2.3. However, here 1 ml of 

rat urine was adjusted to an acidic pH with 1.0 M ammonium formate (pH 4.5) and the 

volume increased to 10 ml with water. Quantification of AFM1 was based on peak area 

and retention time as compared to external standards run between every 5 samples. The 

limit of detection for urinary AFM1 using this method was 4.8 pg. Creatinine analysis 

was performed on all urine samples at the Texas Veterinary Medical Diagnostic 

Laboratory (College Station, TX) to adjust for variations in urine dilution. 

 

Table 19. Study treatment groups 

Treatment groups  0% UPSN 
0.25% 
UPSN 

0.5% 
UPSN 

2.0% 
UPSN 

0.125 mg AFB1/kg b.w. 6 6 6 6 
25 mg FB1/kg b.w. 6 6 6 6 

25 mg FB1/kg b.w. + 0.125 mg AFB1/kg 
b.w. 

6 6 0 6 

Absolute Control 6 0 0 0 
 

5.2.4 Analysis of urinary FB1 

Urine samples from 3 animals in the same treatment group were pooled for 

analysis. Following centrifugation, a 300 μl aliquot of supernatant was loaded into a pre-

equilibrated VICAMTM FumoniTest immunoaffinity column and passed through by 

gravity. After washing with 10 ml of PBS, FB1 was eluted three times with 0.5 ml of 

20% methanol in 10 mM hydrochloric acid directly onto a pre-conditioned Waters Oasis 
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HLB cartridge (3 cc/60 mg, 30 μm particle size). The HLB cartridge was sequentially 

washed with 2 ml water and 2 ml 30% aqueous methanol, and then eluted three times 

with 0.6 ml of 2% formic acid in methanol. Eluents were evaporated to dryness under 

nitrogen gas while incubated at 35°C. Dry residues were reconstituted with 150 μl of 

50% aqueous methanol.  

HPLC-fluorescence analysis was carried out on an Agilent 1100 liquid 

chromatography system (Agilent Technologies, Santa Clara, CA). FB1 molecules were 

derivatized with o-phthaldialdehyde (OPA) prior to fluorescence detection (Xu et al. 

2010). To avoid degradation of the derivatives, an on-line automatic injector thoroughly 

mixed 20 μl of OPA reagent with the sample for one minute immediately prior to each 

injection. Chromatographic separations were performed on a Luna C18 (2) column 

(Phenomenex Torrance, CA; 5 μm particle size, 250 x 4.6 mm), maintained at 35°C. 

Molecules were resolved with a linear gradient starting from 0.1 M sodium phosphate 

monobasic (pH 3.4): methanol (35/65, v/v) to 0.1 M sodium phosphate monobasic (pH 

3.4): methanol (20/80, v/v) over 13 min, with a flow rate of 1.0 ml/min and injection 

volume of 100 μl. The OPA derivative was monitored at an emission wavelength of 440 

nm and excitation wavelength of 330 nm. The limit of detection for this method was 20 

pg.  

5.2.5 Analysis of serum AFB1-albumin adduct 

Serum from all AFB1 and AFB1/FB1 treatment animals was assessed for AFB1-

albumin levels 72 hr following gavage. The methodology to complete this analysis was 

adopted as previously reported (Qian G et al. 2013b; Riley et al. 1994). Briefly, 150 μL 
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of serum was digested with pronase (pronase:total protein, 1:4, w:w) for 3 hr at 37°C. 

The digest was further purified by a solid phase cartridge, evaporated, reconstituted, and 

injected into an Agilent 1200 HPLC system for quantification by fluorescence signal. 

Excitation and emission wavelengths were 405 and 470 nm, respectively. The limit of 

detection was 0.4 pg/mg albumin. Serum AFB1-albumin adduct concentrations were 

adjusted by total serum albumin content.    

5.2.6 Statistical analysis 

Serum levels of AFB1-albumin adduct and urinary AFM1 and FB1 are expressed 

as mean ± standard deviation (SD). Data was not normally distributed and was therefore 

log transformed for statistical analysis. Comparisons of these parameters between treated 

groups and the control group were conducted using one-way analysis of variance 

(ANOVA) followed by a student’s t-test to compare between each of the 12 treatment 

groups. A p-value of less than 0.05 was considered statistically significant.    

5.3 Results 

5.3.1 Organ and body weights 

Relative weight gain over the acclimation and treatment periods of the 

current study were not significantly different between absolute control and treated 

animals. Average weight gained during the acclimation period was 30.1 g. Animals 

weighed on average 145.3 g, 72 hr following gavage. Comparisons of organs 

between treatment groups were conducted with the somatic indices for each organ. 

There were no significant differences observed between treatment groups for liver 

or kidney, the two primary target organs known to be affected by FB1 and AFB1. 
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Average percent body weight values for liver and kidney were 4.77% ± 0.24 and 

0.46% ± 0.04, respectively (data not shown).   

5.3.2 Urinary AFM1 levels in AFB1 treatment groups 

Mean urinary AFM1 was calculated based on six rats per treatment group. 

Absolute control animals receiving an equal volume (0.75 ml) gavage of ultra-pure water 

did not have detectable AFM1 metabolites in the urine at any of the collection time 

points. Excretion of AFM1 peaked between 12 and 24 hr following AFB1 treatment. Five 

out of six rats were completely void of AFM1 by the 36 hr timepoint (Figure 15A). The 

positive control group displayed the highest average concentration of AFM1 (201 ng/mg 

creatinine) at the 12 hr time point. Comparisons of AFM1 levels between UPSN 

treatment groups and positive controls showed a marked decrease in overall excretion of 

AFM1 metabolites. UPSN treatment reduced AFM1 biomarkers in a dose-dependent 

manner with the largest reduction observed in the 2% treatment group. UPSN at 0.25% 

reduced AFM1 excretion by 88%, 94%, and 85% at 12, 24, and 36 hr time points, 

respectively (Figure 15B). Reduction of biomarkers in the 0.5% UPSN treatment group 

were 91%, 96%, and 85% at 12, 24, and 36 hr time points (Figure 15B). AFM1 levels in 

the 2% UPSN treatment group were reduced by 97%, 99%, and 58% at 12, 24, and 36 

hr, respectively. The decrease in AFM1 observed in the UPSN treatment groups was 

highly significant (p<0.001) at 12 and 24 hr. The 0.25% and 0.5% UPSN groups were 

also significantly different from the 2% UPSN group (p=0.0045 and 0.0190, 

respectively), but were not significantly different from each other (Figure 15A). 
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5.3.3 Urinary AFM1 levels in AFB1/FB1 treatment groups  

AFM1 excretion patterns were different between AFB1 treatment groups and 

AFB1/FB1 mixture groups. AFM1 excretion by the co-exposure group peaked at 12 hr 

and was almost undetectable by 24 hr. The highest average AFM1 concentration in the 

urine was 118 ng/mg creatinine at 12 hr in animals dosed with the AFB1/FB1 mixture 

(Figure 15C). This value is approximately 2 times lower than the average concentration 

in animals dosed with AFB1 alone. UPSN treatment dose-dependently reduced AFM1 

excretion in animals exposed to the AFB1/FB1 mixture. However, the percent reductions 

observed in the mixture groups were lower than those in the AFB1 control groups. 

Compared to AFB1/FB1 positive controls, the 0.25% UPSN group exhibited AFM1 

decreases of 66% and 32% at 12 and 24 hr, respectively. At the same time points, 0.5% 

UPSN reduced AFM1 by 88% and 43%, while 2% UPSN reduced levels by 95% and 

76% (Figure 15D). AFM1 levels were non-detectable in any groups treated with UPSN 

by the 36 hr timepoint. AFM1 excretion levels observed during UPSN inclusion were 

significantly different from the AFB1/FB1 control group for the 0.5% and 2% UPSN 

only at the 12 hour time point (p=0.0124 and 0.0016, respectively). The 0.25% UPSN 

group did not excrete significantly lower AFM1 than the AFB1/FB1 controls at 12 hr, and 

excreted levels significantly higher than the 2% UPSN group (p=0.0072) (Figure 15C). 

Although the UPSN treated groups had lower AFM1 output at 24 hr than the control 

group, the difference was not statistically significant. 
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5.3.4 Urinary FB1 levels in FB1 treatment groups  

 Urine samples were also analyzed for FB1 with HPLC-coupled fluorescence 

detection. Mean FB1 levels were calculated from six animals per treatment group. 

Absolute control animals did not have detectable levels of FB1 present in their urine at 

any time point assessed. As expected, the highest levels of FB1 excretion occurred 12 hr 

post-gavage, decreasing rapidly, and reaching non-detectable levels by 36 hr (Figure 

16A). At 12 hr, mean urinary excretion for animals dosed with FB1 alone was 722 ng/mg 

creatinine. Addition of UPSN clay at the 2% w/w level significantly decreased the 

amount of FB1 excreted at 12 and 24 hr (p=0.0437 and 0.0150, respectively). Although 

not significant, 0.25% UPSN decreased overall excretion of FB1 as well. Mean levels of 

FB1 excreted by the 0.25% and 2% UPSN groups at 12 hr were 425 and 384 ng/mg 

creatinine, respectively, and 177 and 281 ng/mg creatinine at 24 hr. Overall reduction of 

the FB1 biomarker for the 0.25% UPSN inclusion group was 41% at 12 hr and 61% at 24 

hr, compared to the positive control group. UPSN inclusion at the 2% level reduced 

urinary FB1 by 80% and 98% at 12 and 24 hr (Figure 16B).  

5.3.5 Urinary FB1 levels in AFB1/FB1 treatment groups 

Mean urinary levels of FB1 were 453 and 78 ng/mg creatinine at 12 and 24 hr post-

gavage, respectively, in the AFB1/FB1 co-treated positive control samples. A dose-

dependent reduction in urinary FB1 was observed for the UPSN treated AFB1/FB1 

groups, with the 2% UPSN group exhibiting the largest difference from the positive 

control group (Figure 16C). The FB1 biomarker in the 0.25% UPSN group was reduced 

by 24 and 27% at 12 and 24 hr after gavage and by 40 and 50% for the 2% UPSN group, 
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respectively (Figure 16D). Reduction in FB1 was significant in the 2% UPSN group at 

12 hr (p=0.0137), but not at 24 hr (p=0.1452). The reduction of urinary FB1 excretion 

observed in the 0.25% UPSN group was not statistically significant, with p=0.0910. 

5.3.6 Area under the curve (AUC) calculations 

Figure 17 shows the differences in kinetics for total AFM1 and FB1 excretion in 

the urine by calculations of area under the curve (AUC) for each treatment group. Based 

on AUC, approximatley 75% of the total AFM1 excreted was detected within the first 24 

hr after AFB1 exposure in the positive control group. The 0.25% UPSN group excreted 

the equivalent of 9% of the total AFM1 that was excreted by the AFB1 treated positive 

control group (Figure 17A). Based on the total AUC, the 0.5 and 2% UPSN groups 

excreted the equivalent of 6 and 2% of the amount of AFM1 excreted by the AFB1 

treated positive control, respectively. The mean excretion of AFM1 biomarkers was 

significantly different (p=0.0002) between animals dosed with AFB1 alone and animals 

receiving both AFB1 and FB1. The AUC value for AFM1 excretion in the AFB1/FB1 

control animals was approximately 3 times smaller than the AUC for the AFB1 control 

animals (Figure 14A). Based on AUC values, the 0.25%, 0.5%, and 2% UPSN groups 

excreted the equivalent of 37%, 16%, and 7% of the AFM1 excreted by the AFB1/FB1 

positive controls.     
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Figure 15. Mean excretion pattern of AFM1. A) 0.125 mg AFB1/kg b.w. treated groups with 0, 0.25, 0.5, and 2% UPSN. B) Table of
percent reduction between AFB1 treated positive control group (no clay) and each AFB1/UPSN group at time points 12, 24, and 36 hr
following gavage. C) AFB1/FB1 mixture groups with 0, 0.25, 0.5, and 2% UPSN. D) Table of percent reduction between AFB1/FB1 treated
positive control group (no clay) and each AFB1/FB1/UPSN group at time points 12, 24, and 36 hr following gavage. * Indicates a
significant difference between the positive control group and the UPSN treated group at a specific time point (p<0.01). ** Indicates a
significant difference between the positive control group and ALL UPSN groups at a specific time point (p<0.01).
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Figure 15. Mean excretion pattern of AFM1. A) 0.125 mg AFB1/kg b.w. treated groups with 0, 0.25, 0.5, and 2% UPSN. B) Table of 
percent reduction between AFB1 treated positive control group (no clay) and each AFB1/UPSN group at time points 12, 24, and 36 hr 
following gavage. C) AFB1/FB1 mixture groups with 0, 0.25, 0.5, and 2% UPSN. D) Table of percent reduction between AFB1/FB1 treated 
positive control group (no clay) and each AFB1/FB1/UPSN group at time points 12, 24, and 36 hr following gavage. * Indicates a 
significant difference between the positive control group and the UPSN treated group at a specific time point (p<0.01). ** Indicates a 
significant difference between the positive control group and ALL UPSN groups at a specific time point (p<0.01).  
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Approximately 76% of the total FB1 excreted by the FB1 treated positive control 

group was excreted within the first 24 hr after gavage. Based on the AUC calculations, 

the 0.25% UPSN group excreted the equivalent of 54% of the total FB1 excreted by the 

FB1 treated control group. The 2% UPSN group excreted the equivalent of 27% of the 

total FB1 excreted by the FB1 treated control group (Figure 17B). Similar to the change 

in kinetics of AFM1 excretion after AFB1/FB1 co-exposure, total FB1 excreted in 

AFB1/FB1 combination groups was significantly lower than total FB1 excreted in the FB1 

treated controls (p=0.0173). Total AUC values indicated an approximate two-fold 

reduction in the amount of FB1 excreted by the AFB1/FB1 combination group compared 

to the positive control group. Based on the AUC calculations, the 0.25% and 2% UPSN 

groups excreted the equivalent of 72 and 53% of the total FB1 excreted by the AFB1/FB1 

positive controls (Figure 17B). UPSN treatment was less effective in reducing AFM1 and 

FB1 urinary biomarkers after AFB1/FB1 co-exposures than after exposure to either AFB1 

or FB1 alone.  
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Figure 16. Mean excretion pattern of FB1. A) 25 mg FB1/kg b.w. treated groups with 0, 0.25, and 2% UPSN. B) Table of percent reduction 
between FB1 treated positive control group (no clay) and each FB1/UPSN group at time points 12 and 24 hr following gavage. C) 
AFB1/FB1 mixture groups with 0, 0.25, and 2% UPSN. D) Table of percent reduction between AFB1/FB1 treated positive control group 
(no clay) and each AFB1/FB1/UPSN group at time points 12 and 24 hr following gavage. * Indicates a significant difference between the 
positive control group and the UPSN treated group at a specific time point (p<0.05). 
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5.3.7 AFB1-albumin analysis  

Analysis of AFB1-albumin adducts in the serum was conducted following 

euthanasia (72 hr after gavage). Means and standard deviations were calculated based on 

three animals per group. Compared to positive control groups, all three UPSN 

concentrations significantly reduced AFB1-albumin adduct levels (all p-values<0.0001). 

UPSN concentrations of 0.25% and 0.5% were also significantly different (p<0.0001) 

compared to the 2% group, but not to each other (Figure 18A). The mean AFB1-albumin 

concentration was 632 pg/mg albumin for the positive control group (AFB1 treatment 

alone), whereas serum from the 0.25%, 0.5%, and 2% UPSN groups contained 101, 104, 

and 36 pg/mg albumin, respectively. The percent reduction in AFB1-albumin levels by 

UPSN treatment group are shown in Figure 18B. Animals that were gavaged with a 

combination of AFB1/FB1 had significantly higher AFB1-albumin levels (p=0.0061) than 

the AFB1-treated controls. However, UPSN clay was still capable of significanlty 

decreasing the AFB1-albumin biomarker in a dose-dependent manner (Figure 18A). In 

the AFB1/FB1 combination group, the mean AFB1-albumin level was 1,112 pg/mg 

albumin.The adduct concentrations in the 0.25%, 0.5%, and 2% UPSN groups co-

exposed to AFB1/FB1 were significantly different from each other (242, 126, and 37 

pg/mg albumin, respectively).              

5.4 Discussion 

Previous isothermal data from our laboratory indicated that NovaSil clay (a 

calcium montmorillonite) can tightly sorb AFB1 and reduce the bioavailability of AFB1 

in the gastrointestinal tract of animals and humans (Phillips et al. 1995, 2008). 
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Importantly, clay treatment resulted in lower levels of well-established short and long-

term biomarkers of AF exposure in the urine and serum, i.e. AFM1 and AFB1-albumin 

adducts (Wang P et al. 2008). Recent studies demonstrated that NovaSil clay also 

reduced biomarker levels of FB1 in rats and humans (Robinson et al. 2012). A uniform 

particle size NovaSil clay (UPSN) was produced to maintain purity and consistency 

from batch to batch for use in human populations. In preliminary work, UPSN was 

shown to retain the binding properties of the parent product (NovaSil) (Marroquin-

Cardona et al. 2011). Binding analysis performed with heat-collapsed UPSN suggests 

that AFB1 and FB1 binding is saturable and occurs largely within the interlayer regions 

of the clay (Brown KA et al. 2012; Grant and Phillips 1998) providing preliminary 

evidence that both mycotoxins may compete for the same binding sites on surfaces of 

UPSN.  

In the present study, inclusion of UPSN montmorillonite clay during AF 

exposure decreased the excretion of AFM1 in the urine and the production of the AFB1-

albumin adduct in the serum of rats. The overall excretion of AFM1 was similar to that 

reported in a study utilizing Fischer-344 rats in which the majority of AFM1 excreted in 

the urine occurred within the first 12 hr following gavage of animals with AFB1. 
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Figure 17. Area under the curve for AFM1 and FB1 excretion. A) Area under the curve (AUC) for toxicokinetic excretion of AFM1 in
urine. Black bars are indicative of total AUC for rats treated with 0.125 mg AFB1/kg b.w. and 0, 0.25, 0.5, or 2% UPSN. Gray bars are
indicative of total AUC for rats treated with the AFB1/FB1 mixture and 0, 0.25, 0.5, or 2% UPSN. B) AUC for pharmacokinetic
excretion of FB1 in urine. Black bars are indicative of total AUC for rats treated with 25 mg FB1/kg b.w. and 0, 0.25, 0.5, or 2% UPSN.
Gray bars are indicative of total AUC for rats treated with the AFB1/FB1 mixture and 0, 0.25, 0.5, or 2% UPSN. * Indicates a
significant difference between the single toxin treatment and the mixture treatment with the same inclusion percent of UPSN (p<0.01).

 

 

Figure 17. Area under the curve for AFM1 and FB1 excretion. A) Area under the curve (AUC) for toxicokinetic 
excretion of AFM1 in urine. Black bars are indicative of total AUC for rats treated with 0.125 mg AFB1/kg b.w. and 0, 
0.25, 0.5, or 2% UPSN. Gray bars are indicative of total AUC for rats treated with the AFB1/FB1 mixture and 0, 0.25, 
0.5, or 2% UPSN. B) AUC for pharmacokinetic excretion of FB1 in urine. Black bars are indicative of total AUC for 
rats treated with 25 mg FB1/kg b.w. and 0, 0.25, 0.5, or 2% UPSN. Gray bars are indicative of total AUC for rats 
treated with the AFB1/FB1 mixture and 0, 0.25, 0.5, or 2% UPSN. * Indicates a significant difference between the 
single toxin treatment and the mixture treatment with the same inclusion percent of UPSN (p<0.01).  
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 Inclusion of 0.5% of a calcium montmorillonite resulted in a reduction of AFM1 

excretion by 95%, while in the current study, 0.5% UPSN inclusion resulted in a 94% 

total reduction in AFM1 (Sarr et al. 1995). A study utilizing dogs, demonstrated that 

calcium montmorillonite treatment, via food inclusion, following AFB1 gavage could 

lower urinary excretion of AFM1 by as much as 65% (Bingham et al. 2004). Species 

differences in absorption, metabolism, length of digestion, clay dose dissemination, and 

treatment regimen could all possibly account for the differences in efficacy seen between 

these studies. While dogs will consume an entirety of a meal in one sitting, this is not 

typically the case in rodents, especially following gavage, which can be a stressful 

procedure. Thus, it was deemed necessary to include UPSN in the gavage solution for 

the rodent model to ensure adequate time in the GI tract to interact with AFB1 before 

adsorption into the vascular system. The difference in binding efficacy obtained in the 

current study could be ascribed to the route of exposure (i.e., gavage vs. dietary) and 

other physiological conditions prevailing in the gut of rodents.  

Although extensive research focusing on the binding capacity of calcium 

montmorillonite for AF has been conducted, it is only recently that its sorption capability 

for FB has been addressed. Robinson et al. (2012) demonstrated a significant decrease in 

FB biomarkers of exposure following treatment with clay in both rats and humans. In the 

rodent model given 2% clay, FB1 excretion in the urine was reduced by 20% at 24 hr 

post-gavage and 50% at 48 hr post-gavage (Robinson et al. 2012). In the current study, 

the reduction of FB1 biomarkers following inclusion of UPSN at 2% was higher (97%) 

after 24 hr. The protocols for these two studies were similar; however, the current study 
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collected urine samples at more frequent time intervals and the samples were pooled (3 

animals/analysis) within treatment groups. It is also important to note, that in this study a 

refined form of calcium montmorillonite (UPSN) was used which was not the same clay 

used in the study by Robinson et al. (2012). While there is no evidence that UPSN would 

have a higher capacity to bind FB, the isothermal analysis has not been conducted to 

verify this hypothesis, and thus could still be considered a factor in the higher reduction 

of urinary metabolites. 

The present study verifies the results reported for other rodent based metabolic 

studies indicating that treatment with UPSN can reduce the excretion of AFM1 and FB1 

in the urine following exposure to the mycotoxins separately. Since AFB1 and FB1 can 

co-occur under natural conditions (Almeida et al. 2012; Kimanya et al. 2008; Sun G et 

al. 2011), this could enhance risk due to possible synergistic and/or additive effects. The 

mixture of AFB1 and FB1 resulted in a slightly lowered efficacy of UPSN in reducing 

these mycotoxins. Based on AUC calculations, the 2% UPSN group reduced the total 

amount of AFM1 excreted by 98% in the AFB1 treated group alone, and 93% in the 

AFB1/FB1 treated group. AUC values indicated that 2% UPSN decreased total FB 

excretion by 73% in the FB1 treated group and only reduced by 47% in the AFB1/FB1 

mixture. The reduced efficacy of UPSN binding observed in the mixture groups could be 

an indicator of competition for binding sites on the clay. It is evident from this data that 

although UPSN can bind both AFB1 and FB1, it will preferentially bind AFB1 
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Figure 18. Serum AFB1-albumin concentrations. A) Mean serum AFB1-albumin levels for
the AFB1 and AFB1/FB1 treated groups. *Indicates a significant difference between positive
control group and UPSN treated group (p<0.001). ** Indicates a significant difference
between the AFB1 and AFB1/FB1 group (p<0.05). B) Table of percent reduction between
positive control group (no clay) and each UPSN group.
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Figure 18. Serum AFB1-albumin concentrations. A) Mean serum AFB1-albumin levels for the AFB1 and AFB1/FB1 
treated groups. *Indicates a significant difference between positive control group and UPSN treated group (p<0.001). 
** Indicates a significant difference between the AFB1 and AFB1/FB1 group (p<0.05). B) Table of percent reduction 
between positive control group (no clay) and each UPSN group.      
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during co-exposures. This hypothesis is further supported by the fact that there were 

more molecules of FB (3.46x10-5 mole/kg) available for binding than molecules of AF 

(4.01x10-7 mole/kg). Inclusion of 2% UPSN clay could protect humans or animals 

against the toxic effects of AFB1 when there is a mixture of mycotoxins present, 

however it may not be sufficient to completely eliminate the effects from FB1 exposure. 

In contrast to AFB1, a non-genotoxic threshold exists for FB1, (JECFA 2001) suggesting 

that the impaired adsorption may well reduce levels in vivo below that which would 

result in any adverse biological effects. This is of relevance in populations where 

exposure levels of FB1 exceed the provisional tolerable daily intake (PMTDI) proposed 

by JECFA (2001), and UPSN intervention could play an important role in reducing the 

risk of exposure. More research, however, needs to be conducted to determine a 

sufficient level of UPSN inclusion in the diet that could positively impact exposure and 

relevant physiological and/or biological endpoints for combined AFB1 and FB1 toxicity. 

Apart from the effect of UPSN, the amount of AFM1 and FB1 excretion in the 

urine was significantly lower when the toxins were dosed together than when either was 

dosed alone in control groups.  Since AFB1 is more toxic than FB1 the relative reduction 

in their absorption from the gut should also be considered. In addition, it is know that 

AFB1 is absorbed at a high rate, whilst FB1 is poorly absorbed ranging from 1 to 6% in 

non-ruminants (Gan et al. 1988; Scholl P et al. 1996). Studies, utilizing trans-epithelial 

electrical potential suggest that mycotoxins modulate the Na+ co-transport involved in 

sugar and amino acid transport carrier systems (Grenier and Appelgate 2013). It is not 

known whether the uptake of AFB1 and FB1 also co-interact via these mechanisms, 
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although the current study implies that they countered each other’s’ absorption from the 

gut. The modulating role of FB1 on lipid metabolism with the disruption of sphingolipid, 

phospholipid, cholesterol, and fatty metabolism has been reported, resulting in toxic 

effects including an increase in oxidative damage to different cellular constituents 

including the cellular membrane (Abel and Gelderblom 1998; Gelderblom et al. 2001; 

Riley et al. 2001). These different adverse biological parameters are likely to disrupt 

membrane integrity, which led to the hypothesis that the intestine is a possible target for 

FB toxicity (Bouhet and Oswald 2007). This could explain the poor absorption of FB1 

and, in the current study, the disrupted absorption of AFB1, which provides interesting 

scenarios regarding the co-exposure of these carcinogens. Both the in vivo interactive 

liver AFB1/FB1 models utilize AFB1 as the cancer initiating treatment with FB1 as the 

promoter in a separate treatment regimen. The present study implies that the combined 

treatment is likely to reduce the cancer promoting properties of FB1.  

Although the urinary biomarkers were reduced when AFB1 and FB1 were co-

treated, the blood AFB1-albumin biomarker was increased in the presence of FB1. 

Multiple pathways of detoxification and activation occur during metabolism of AFB1 

involving many different cytochrome P-450 enzymes (CYP-450). In particular, the 

AFM1 and AFB1-albumin products are considered to be involved in two separate 

pathways (detoxification and activation, respectively) but can be products of the same 

enzymes (Massey et al. 1995). In rats, the formation of AFM1 is catalyzed 

predominantly by CYP1A1 and 1A2, while the production of the AFB1 8,9-epoxide 

occurs through catalysis with CYP1A2, CYP2A3, CYP2B7, CYP3A3, and CYP3A4 
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with the latter isoform having the highest affinity for AFB1 (Massey et al. 1995). A 

higher level of the AFB1-albumin adduct suggests an increased production of the most 

toxic and carcinogenic metabolite, AFB1 8,9-epoxide in the presence of FB1. In earlier 

work, it was shown that FB1 induced the activity of CYP1A1, 3A1 and 4A1 in rats 

following a 6 day intraperitoneal treatment (Martinez-Larranaga et al. 1996). This 

induction may be responsible for the higher level of the AFB1-albumin adduct observed 

in this study. Thus, the carcinogenic potency of AFB1 is likely to increase in the 

presence of FB1. More studies are warranted to support this conclusion and the 

consequences of combinations of toxins in the diet. 

Results from this study provide evidence for an economical and sustainable 

intervention to reduce exposure to both AF and FB from contaminated diets. Interesting 

interactive effects were noticed related to the combined treatment of the mycotoxins in 

the absence of UPSN, resulting in a 50% and 60% reduction in FB1 and AFB1 

adsorption. The metabolic conversion of AFB1 could also be altered resulting in an 

increased conversion into the 8,9 epoxide and AFM1 presumably due to the selective 

induction of CYP isoforms by FB1. While more research is warranted to find an optimal 

inclusion level for UPSN, the prospect of utilizing this clay as a binder for both toxins is 

promising. This could facilitate important applications to selectively reduce levels below 

the carcinogenic thresholds for initiation and promotion of hepatocellular carcinoma.  

  



 

160 

 

6. SUMMARY 

 Chronic exposure to dietary AFs remains a public health concern in communities 

consuming large quantities of maize and/or peanut based foods. AF is a known 

carcinogen primarily targeting the liver. In addition to HBV infection, AF has been 

implicated as a major risk factor for the development of HCC in Western Africa and 

Southeast Asia. Importantly, HBV and AF co-exposure causes a synergistic potency in 

HCC risk (calculated to be approximately 30 times higher than with either factor alone). 

In addition, a recent risk assessment study estimated that AF-induced HCC (without 

HBV) accounted for 2,150 to 9,300 annual cases of HCC in Africa. Reports of acute 

incidences of aflatoxicosis, resulting in the deaths of 125 people in Kenya, have verified 

the common occurrence and high levels of AF contamination present in the developing 

world. Even the young are at risk for exposure from ingestion of contaminated breast 

milk and weaning foods.  

The young of all species are more susceptible to the effects of AF than adults. AF 

exposure in the young of various animal species has resulted in growth inhibition and 

faltering. Associations of growth stunting and AF consumption in children in Benin have 

created interest in interventions to reduce the negative effects on child health. Research 

from Ghana, in particular, has indicated a high frequency and level of exposure to AF in 

a farming community located in the Ashanti region. Similarly, a recent estimate of 

dietary AF consumption in Ghana was calculated to be one of the highest in Africa, due 

to the high maize content of the diet (Shephard et al. 2008). The burden of AF exposure 

from the diet in developing countries is a significant problem in the young (and the 
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vulnerable). Moreover, a variety of diverse intervention strategies have not proven to be 

sustainable and practical. Given the complicated cultural, economic, and logistical 

aspects that need to be considered when implementing an intervention, a comprehensive 

survey was conducted in different regions of Ghana to determine risk factors for 

exposure in this particular country.     

An initial objective of our work was to assess AF exposure through biomarker 

analysis from urine samples across different regions of Ghana, which have different 

dietary habits due to cultural, economic, and demographic circumstances. Participant 

urine samples tested positive for a short-term biomarker (AFM1) in 40% of the 

population. This level was significantly lower than observed in samples from the Ejura-

Sekyedumase district in the Ashanti region of Ghana (Obuseh et al. 2010). It is 

important to note that the AFM1 biomarker can fluctuate with changes in the diet, and 

only predicts AF exposures from day to day due to its short half-life. The Greater Accra 

and Central regions of Ghana had the highest percentages of their populations above the 

median level of AFM1, and should be considered as areas of importance for 

interventions. The most notable commonality between these two regions is location; 

both regions are coastal areas and have the highest population density of all the regions. 

Other socio-economic factors, such as gender, age, level of education, and number of 

persons in a household did not appear to affect AF load. Additionally, food preparation 

practices had no effect on overall AF exposure in the participants from this study. Thus, 

education and food sorting/washing, although important for other environmental and 

foodborne contaminants, may need complimentary practices to significantly reduce AF 
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contamination of foods in Ghana. As suspected, consumption of maize was a significant 

risk factor in AFM1 excretion. More than 60% of the participants reported eating maize 

or maize-based products every day. This was higher than peanuts or millet, two other 

important crops that are susceptible to AF contamination. Thus, intervention strategies in 

Ghana should be focused on maize crops and maize-based foods. An appropriate 

intervention should be effective across all economic classes, genders, and age groups, 

and needs to compliment food preparation practices already present in the area. Use of 

an AF sorbent like calcium montmorillonite clay could prevent bioavailability of the 

foodborne toxin that is still present following sorting and washing of contaminated 

grains.  

In numerous animals, NovaSil clay has been shown to be highly effective in 

mitigating the toxic effects of AF exposure from the diet. A three-month intervention 

trial in humans, demonstrated the efficacy of NovaSil to reduce the bioavailability of 

AFs from contaminated food (Wang P et al. 2008). Use of biomarkers of exposure to 

determine the efficacy of intervention trials has long been the standard for AF research 

due to the latent onset of AF related disease. However, previous interventions have 

indicated that it takes at least one-month to observe significant decreases in biomarker 

levels following initiation of treatments. Costly and time consuming trials are not 

plausible for application in the vulnerable, i.e. infants, children, and pregnant females 

due to safety and dosimetry concerns for new products and the requirement for short-

term, Phase I studies prior to long-term interventions. In other work, a short-term (two-

week) cross-over trial was conducted to evaluate the efficacy of the AFM1 biomarker 
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and the significance of clay (UPSN) delivery in food, instead of capsules. Although 

AFM1 excretion is positively correlated with AFB1 intake, the day to day variability of 

this biomarker complicates statistical analysis. However, the cross-over study indicated 

that collecting daily urine samples and pooling the data over five days was effective in 

showing significant reductions of AF exposure in a preliminary trial. Urinary AFM1 was 

reduced by 55% in the UPSN (refined NovaSil) treated group when compared to the 

placebo within five days. Interestingly, the cross-over design clearly indicated the switch 

in treatment groups using the AFM1 biomarker. Future work to alleviate aflatoxicosis in 

children during periods of severe drought could be conducted over short periods of time 

with the use of daily AFM1 biomarkers to indicate individual exposure and efficacy of 

the clay-based therapy. This would significantly reduce the risk of utilizing experimental 

treatments for children when dosimetry has yet to be determined in a vulnerable 

population. It is also important to note that this work also provided evidence that UPSN 

can significantly reduce the bioavailability of AF within five days. Thus, it is the only 

intervention strategy yet reported that has the potential to decrease morbidity and 

mortality in young humans and animals during AF outbreaks.               

Safety and efficacy of reducing AF-induced biological endpoints has also been 

demonstrated in multiple animal models. Afriyie-Gyawu et al. (2008) reported no 

adverse events related to NovaSil consumption in adults over a three-month period. 

Following treatment with NovaSil for three months, serum levels nutrient and non-

nutrient minerals were measured, with NovaSil having a dose-dependent effect on 

strontium (Sr) only. In further work, a Phase I safety evaluation of UPSN in children was 
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conducted to determine dosimetry and potential adverse events in order to translate this 

technology to rural communities in Ghana. Malnutrition and growth faltering result in 

more than 2 million deaths in children per year; importantly, the introduction of 

nutritional supplements in Africa has not had a significant impact on these outcomes. 

Many supplements utilized in Ghana, particularly for the very poor, are homemade 

porridges that contain high contents of maize and peanuts. In a survey of 36 households, 

samples of homemade supplements from the Ejura-Sekyedumase district tested positive 

for AF, with more than 80% of them above the FDA action level of 20 ppb (and one as 

high as 500 ppb). However, discontinuing these supplements could lead to increased 

mortality and morbidity in children from malnutrition. Utilization of UPSN in such 

foods could significantly decrease the effects from AF while maintaining the nutritional 

benefits. At our study site in Ejura, treatment of participants (3-9 years of age) with 

either 0.75, 1.5 g/day UPSN, or calcium carbonate (placebo) did not result in any severe 

adverse events. The most common complaint was vomiting; however the majority of 

those cases were diagnosed with malaria. Hematology and serum biochemistry 

parameters did not show a significant difference between UPSN and placebo groups. 

Only magnesium (Mg) showed signs of a dose-dependent decrease following the two-

week ingestion of UPSN. Those participants consuming the high-dose of UPSN also had 

a significant decrease in AFM1 excretion when compared to the placebo group. Results 

from this work are promising for the future use of UPSN in nutritional supplements 

destined for children. Work needs to be conducted to verify the reduction of Mg in the 



 

165 

 

serum and further determine a minimal effective dose that would be safe for use in 

children.  

The continued work in Ejura has recently indicated that this population is co-

exposed to another important mycotoxin, FB. The homemade nutritional supplements 

from this area all contained FB and 56% of urine samples from adults tested positive for 

an FB1 biomarker (Robinson et al. 2012). FB, like AF, is known to highly contaminate 

maize and initial work with both toxins demonstrated either an additive or synergistic 

effect in cellular toxicity and development of HCC in animal models. Therefore, an 

intervention that can alleviate both AF and FB from the diet would have a dual benefit to 

the population in Ejura-Seykedumase. In our work, NovaSil clay was effective, albeit to 

a much lesser extent than with AF, to reduce the FB1 biomarker in the urine of rats and 

humans. However, the binding capacity was significantly diminished following 

dehydroxylation and denaturing of the interlayer space of the clay (Brown et al. 2013), 

similar to the effects seen with AF. Thus, it was hypothesized that both AF and FB were 

capable of binding to the interlayer surfaces of the montmorillonite and were competing 

for binding sites. In other work, a metabolic study in rats was undertaken to delineate 

efficacy of UPSN in an animal model when both AFB1 and FB1 are present. UPSN 

significantly reduced urinary biomarkers of both AFB1 and FB1 when dosed separately. 

Interestingly, when in combination, UPSN lost some of its efficacy for both mycotoxins, 

although it still appeared to bind AFB1 preferentially over FB1. This would indicate that 

UPSN can be effective in reducing the bioavailability of both mycotoxins; however 
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competition for binding sites may reduce its efficacy and should be considered in future 

intervention trials.  

In summary, AF and FB exposure in Western Africa is seemingly unresolved due 

to food insecurity and climate. Although AF is known to contribute to the morbidity and 

mortality from HCC in the area, it is likely that its impact is even more significant on 

public health through its negative effects on immunity, growth, and nutrient utilization. 

Co-exposure to FB is likely to only exacerbate the issue, as it is known to cause 

cytotoxic and chronic inflammatory problems. Practical and effective intervention 

strategies focused on alleviating the exposure in poor communities and communities at 

high risk for both mycotoxins are critically needed. Inclusion of UPSN in the diets of 

such populations could be a sustainable approach to reduce the health effects of these 

mycotoxins in the vulnerable, thus positively impacting the health of humans and 

animals in the developing world.    
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