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ABSTRACT

The Proportional-Integral-Derivative (PID) controller has been widely used by

the process control industry for many years. Design methods for PID Controllers

are mature and have been heavily researched and evaluated. For most of its modern

history the Ziegler-Nichols methods have been used for tuning PID controllers into

desired operating conditions. Recently, automatic tuning methods have been formu-

lated and used to generate stable PID controlled systems. These methods have also

been implemented on real time systems. However, the use of optimal methods for

auto tuning PID controllers on real time systems has not seen much discussion. In

this thesis we explore the applicability of optimal PID design methods from Datta,

Ho, and Bhattacharrya, to real time system control. The design method is based on

a complete characterization of the set of stabilizing PID parameters for various plant

models and a subsequent search over the stabilizing set for the optimal controller. A

full implementation of the algorithms are completed on an embedded system with

DSP hardware. These implementations are then tested against a large number of

examples to determine both accuracy and applicability to real time systems.

The major design constraint for application of these algorithms to real time sys-

tems is computation time. The faster the optimal result can be computed the more

applicable the algorithm is to a real time environment. In order to bring each of

these algorithms into a real time system, fast search algorithms were developed to

quickly compute the optimal result for the given performance criterion. Three dif-

ferent search methods were developed, compared and analyzed. The first method is

a brute force search used as a basis to compare the two additional fast search meth-

ods. The two faster search methods prove to be vastly superior in determining the
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optimal result with the same level of accuracy as brute force search, but in a greatly

reduced time. These search methods achieve their superior speeds by reducing the

search space without sacrificing accuracy of the results. With these two fast search

methods applied to the complete characterization of stabilizing PID controllers, ap-

plication to real time systems is achieved and demonstrated through examples of

various performance criteria.
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NOMENCLATURE

deg(P (s)) The degree of the polynomial P (s)

DSP Digital Signal Processor

card(X) The cardinality of the set X

kp The proportional gain value of a PID controller

ki The integral gain value of a PID controller

kd The derivative gain value of a PID controller

Kp The interval of kp values

Ki The interval of ki values

Kd The interval of kd values

‖x‖ The L2 vector norm of x

‖A‖ The matrix norm of A

〈F,G〉 The inner product of F and G

OLHP The open left half plane

ORHP The open right half plane

LTI Linear Time Invariant
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1. INTRODUCTION

Error feedback control has traditionally been a cornerstone of control theory.

The output being controlled is measured and compared to a target value. This

comparison generates an error signal which is fed into the controller where it is

manipulated. The manipulation of the error signal to generate the control input

is done in a manner that stabilizes the system’s output, possibly around a known

operating condition. One of the most widely used error feedback control structures in

industry applications is known as the Proportional, Integral, and Derivative (PID)

Controller. The PID controller is popular because it provides good performance

under wide operating conditions and is functionally simple to implement [1]. The

simplicity arises from the need to only specify three gain parameters to define the

PID controller; the proportional, integral, and derivative gains, or kp, ki, and kd,

values. A block diagram of this controller is presented in Figure 1.1.

Figure 1.1: Block diagram of a PID controller in a system diagram.

The proportional gain, kp, creates a constant gain stabilization factor. The inte-
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gral gain, ki, provides asymptotic step tracking and drives the error signal to zero.

The derivative gain, kd, allows for transient response shaping. Formally, in the time-

domain, the PID controller is defined as

u(t) = kpe(t) + ki

∫
e(t)dt+ kd

d

dt
e(t)

or in the laplace domain as

U(s) =

[
kp +

ki
s

+ kds

]
E(s) .

The integral term is by far the most important term used in PID design because

it drives the error to zero, regulating the output of the system around a specified

operating condition. The derivative term is often avoided because it will naturally

amplify high frequency noise.

The use of PID controllers dates back to early work in governor design in the

1890s [2, 3]. Possibly the first published theoretical analysis of a PID controller was

done by Nicolas Minorsky [4]. This research was based on designs for the US Navy

to generate automatic steering mechanisms for various naval vessels. In the 1940s

PID controllers began to receive much attention in the research communities led by

Ziegler and Nichols [5]. A portion of their work meticulously examined many of the

characteristics of PID controllers and sought to provide standard names and unit

measurements for them. The first PID controllers were purely mechanical devices.

With the advent of analog circuits, electro-mechanical PID controllers surfaced. In

current times, most PID controllers are digital and implemented on micro controllers,

Field Programable Gate Arrays (FPGAs) or Programable Logic Controllers (PLC).

Co-evolving along side PID controllers were various tuning methods used to ob-
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tain desired response characteristics with as little trial-and-error as possible. A

comprehensive treatment of tuning methods can be found in [6]. Some of the more

popular off-line methods used are the Ziegler-Nichols Step and Frequency response

method, The Cohen-Coon Method, and the Internal Model Control method. Table

1.1 shows how adjustment of the three PID parameters affects the system’s response

characteristics [7]. As research efforts improved and technology became more ad-

vanced, the topic of auto-tuning of PID controllers was explored. Auto-tuning is

concerned with algorithmic approaches that automatically determine the kp, ki, and

kd parameters needed to obtain some desired system response characteristics or sta-

bility. These methods can be performed either off-line or online.

Table 1.1: Qualitative effect of each gain on the overall system characteristics.

GAINS RISE TIME OVERSHOOT SETTLING TIME S-S ERROR

kp Decrease Increase Small Change Decrease

ki Decrease Increase Increase Eliminate

kd Small Change Decrease Decrease No Change

The literature is rich and diverse in the area of auto-tuning methods for PID

controllers. The Relay Feedback Approach [8, 9] is one of those methods. This

approach is a two step process. First it brings the system to an oscillatory state, and

then the controller parameters are determined based on the period and amplitude

of the oscillation. Genetic algorithms [10, 11, 12, 13] have been another popular

approach in auto-tuning methods, as well as neural network based approaches [14,

15, 16]. Still, other methods [17, 18] exist but none guarantee optimality based on a

given performance criterion. In the context of optimal auto-tuning techniques, [19]
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presents a method for minimization of the time weighted integral performance criteria

of first order plants with dead time. In [20] a method for auto-tuning is performed

on-line in real time with no knowledge of the plant using a search procedure that

has a linear quadratic performance index. Keel et al., introduce a nonparametric,

and model independent characterization of arbitrary order stabilizing controllers in

[21, 22] which could be used for an on-line auto tuning method for PID controllers.

As mentioned above, nearly all PID controllers are implemented in digital hard-

ware on embedded systems such as, FPGAs, PLC, microcontrollers, and even DSPs.

The Digital Signal Processor (DSP) offers several advantages over the General Pur-

pose Processors (GPP) for certain types of problems which can be formulated math-

ematically. DSPs are specialized microprocessors optimized for digital signal pro-

cessing algorithms: audio and video compression, speech recognition, digital image

processing, and digital communication to name a few. DSPs offer special arith-

metic operations such as fast multiply-accumulate operations. Many core digital

signal processing algorithms like FIR filters and Fast Fourier Transforms rely heavily

on multiply-accumulates performance. A GPP system allows for the versatility of

performing nearly any task the programmer requires. Most GPP systems can im-

plement digital signal processing algorithms successfully, but the difference in speed,

power, and parallelization is noticeable. While a GPP may be more versatile in its

programmability, it suffers from slowdowns in handling the extra overhead of the

instruction set that exists to create such a rich programming basis. The DSP does

not suffer from this slowdown and it is known that DSPs operate much faster than

GPPs [23] in the realm of problems that DSPs are applied to. In addition DSPs offer

great power savings in the computation per watt metric and many of the problems

they are tasked with lend well to parallelism.

Since DSPs have a computational advantage over GPP systems, we want to ex-
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plore their use in implementing optimal real time auto tuning methods for PID

controllers. This would have a great application in systems where the plant param-

eters may change over time. Being able to exploit the simplicity of a PID controller

for controlling a dynamic plant while guaranteeing optimal performance would be

very useful. As a basis for our tuning methods we use [24] where a detailed theory for

the complete characterization of stabilizing PID parameters is given for any plant

order. Such characterization is provided for linear time-invariant plants, interval

plants, first-order systems with time delay, discrete time plants and constant gain

stabilization with a desired damping. In each case the complete set of stabilizing P,

PI, and/or PID controllers are generated. Based on these results, a search method for

optimal controller design based on different performance criteria can be developed.

We fully implement all the algorithms of [24] onto a Texas Instruments (TI) DSP

evaluation board. The DSP hardware chosen is a TMDSEVM6678LE Evaluation

Module which makes available the TMS320C6678 embedded DSP processor from

Texas Instruments. The TMS320C6678 contains eight processing cores at 1.0 to 1.25

GHz clock frequencies offering 320 GMAC/160 GFLOP1 at 1.25GHz. Additionally

each core has 32KB L1P and L1D memory, 512KB of L2 memory, and 4MB shared

L2 memory for all cores. The evaluation board comes equipped with 512MB of

DDR3-1600 RAM. Our design environment was a Microsoft Windows 7 PC with an

AMD Phenom 9500 Quad-Core processor at 2.20 GHz with 8 GB of DDR3 RAM

hosting Ti’s Code Composer Studio version 5.3 for programming/debuging the DSP

evaluation board via the onboard XDS560v2 emulator. The DSP was coded mainly

in Ti DSP C++ with a few submodules codded in Ti DSP C. This DSP system forms

the basis for our real time optimal auto tuning methods for PID controllers.

1GMAC is a Giga Multiply-Accumulate Operations and a GFLOP is a Giga Floating Point
Operation
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2. EMBEDDED SYSTEMS IMPLEMENTATION OF THE STABILIZATION

OF LINEAR TIME-INVARIANT PLANTS USING P, PI, AND PID

CONTROLLERS

When formulating the analytical algorithms of [24] into a computational algo-

rithm to be implemented onto an embedded system, we leave out much of the tech-

nical theory that is behind the formulation. We strive to create a method that

includes only the bare necessities of the mechanics of computation carried out in

order to produce the end result. In this chapter we build the core computational

algorithm for an embedded system which will serve as the foundation for all future

discussions. In all cases we consider the following plant model

G(s) =
N(s)

D(s)

N(s) = ams
m + am−1s

m−1 + · · ·+ a1s+ a0

D(s) = bns
n + bn−1s

n−1 + · · ·+ b1s+ b0

where n ≥ m. We will first define some of the elementary details from [24] to lay

a foundation for further discussion. The numerator and denominator polynomials,

N(s) and D(s), respectively, have even and odd decompositions defined as

N(s) = Ne(s
2) + sNo(s

2)

D(s) = De(s
2) + sDo(s

2) .
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and we also define the term N∗(s) = N(−s). Let δ(s, . . .) be the closed loop char-

acteristic polynomial of the system illustrated in Figure 1.1. For P, PI, and PID

controllers this polynomial is

δ(s, kp) = D(s) + kpN(s)

δ(s, kp, ki) = sD(s) + (ki + kps)N(s)

δ(s, kp, ki, kd) = sD(s) + (ki + kps+ kds
2)N(s) ,

respectively. Now, [24] defines n = deg(δ(s, . . .)) and m = deg(N(s)). An impor-

tant part of the theory in [24] is derived from the term δ(s, . . .)N∗(s) which aids

in determining system stability and is mainly utilized in the frequency-domain as

δ(jω, . . .)N∗(jω), after substituting s = jω. In the case of constant gain stabiliza-

tion this generates the expression

δ(jω, kp)N
∗(jω) = [p1(ω) + kpp2(ω)] + jq(ω)

where

p1(ω) = [De(−ω2)Ne(−ω2) + ω2Do(−ω2)No(−ω2)]

p2(ω) = [Ne(−ω2)Ne(−ω2) + ω2No(−ω2)No(−ω2)]

q(ω) = ω[Ne(−ω2)Do(−ω2)−De(−ω2)No(−ω2)] .

But for PI and PID we have

δ(jω, kp, ki)N
∗(jω) = [p1(ω) + kip2(ω)] + j[q1(ω) + kpq2(ω)]

δ(jω, kp, ki, kd)N
∗(jω) =

[
p1(ω) + (ki − kdω2)p2(ω)

]
+ j[q1(ω) + kpq2(ω)] ,
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respectively, where

p1(ω) = −ω2[Ne(−ω2)Do(−ω2)−De(−ω2)No(−ω2)]

p2(ω) = [Ne(−ω2)Ne(−ω2) + ω2No(−ω2)No(−ω2)]

q1(ω) = ω[De(−ω2)Ne(−ω2) + ω2Do(−ω2)No(−ω2)]

q2(ω) = ω[Ne(−ω2)De(−ω2) + ω2No(−ω2)No(−ω2)] .

Further, the normalized polynomials are defined as

pf (ω) =
p(ω)

(1 + ω2)
m+n

2

qf (ω) =
q(ω)

(1 + ω2)
m+n

2

.

The formal statement of the main result in [24] for the constant gain stabilization,

PI, and PID algorithms involve certain strings of the real numbers 0, 1, and -1. For

clarity of presentation we need to define these strings precisely.

Definition 1. Let the integers m, n and the function qf (ω) be as already defined.

Let 0 = ω0 < ω1 < . . . < ωl−1 be the real, non-negatibve, distinct finite zeros of qf (ω)

with odd multiplicities. Define a sequence of numbers i0, i1, . . . , il as follows:

(i) If N∗(jωt) = 0 for some t = 1, 2, . . . , l − 1, then define it = 0;

(ii) If N∗(s) has a zero of multiplicity kn at the origin, then define i0 = sgn[p
(kn)
1f

(0)]

(iii) For all other t = 0, 1, 2, . . . , l let it ∈ {−1, 1}.
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Now we define the set A as

A :=


i0, i1, . . . , il, if m+ n even

i0, i1, . . . , il−1, if m+ n odd.

And lastly, we restate the definition of the imaginary signature associated with an

element I ∈ A.

Definition 2. Let the integers m, n and the functions q(ω), qf (ω) be as already

defined. Let 0 = ω0 < ω1 < . . . < ωl−1 be the real, non-negative, distinct fi-

nite zeros of qf (ω) with odd multiplicities. Also define ωl = ∞. For each string

I = {io, i1, . . .} ∈ A, let λ(I) denote the imaginary signature associated with the

string I defined by

λ(I) =



{i0 − 2i1 + 2i2 + . . .+ (−1)l−12il−1

+(−1)lil}(−1)l−1sgn[q(∞)], if m+ n even

{i0 − 2i1 + 2i2 + . . .+ (−1)l−12il−1}

·(−1)l−1sgn[q(∞)], if m+ n odd.

We will now begin to dissect the constant gain, PI, and PID algorithms presented

in [24] for complete characterization of the stabilizing set. These algorithms will

be formulated into computational algorithms for implementation onto embedded

systems architectures. In most cases, sub algorithms and software libraries will need

to be developed to solve sub steps and aid in efficient computation of the results.
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2.1 Constant Gain Stabilization

The algorithm to characterize all stabilizing feedback gains can be described

as follows. For notational convenience we will refer to this algorithm as the [P]

algorithm. The specific details of each step are expanded upon later in section 2.2.

1. Initialization

a) Find the roots of N(s).

• Set lrNs equal to the number of roots of N(s) in the OLHP.

• Set rrNs equal to the number of roots of N(s) in the ORHP.

• Set zrNs equal to the number of zero roots of N(s).

• Set jω arNs equal to the number of purely imaginary roots of N(s).

b) Set n = max[deg(D(s)), deg(N(s))].

c) Set m = deg(N(s)).

2. Determine the even parts, Ne(s) and No(s), of N(s) and the odd parts, De(s)

and Do(s), of D(s).

3. Determine p1(ω), p2(ω), and q(ω).

4. Find the subset of roots of q(ω) that are real, non-negative, distinct, and of

odd multiplicity, and order them as 0 = ω0 < ω1 < ω2 < . . . < ωl−1 where l is

defined as the cardinality of the subset of roots of q(ω) found.

5. Determine the set of admissible strings, A.

6. Determine γ(I), the imaginary signature of string I.

7. Determine the set F ∗ = {I ∈ A|γ(I) = n− lrNs+ rrNs}.
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8. For each Ir ∈ F ∗ find Kr = ( max
it∈Ir,it>0

[−p1(ωt)
p2(ωt)

], min
it∈Ir,it<0

[−p1(ωt)
p2(ωt)

]), then

Kp =
⋃s
r=1Kr where s = card(F ∗).

This algorithm is at the core of all the remaining algorithms to be discussed. We

will use this algorithm as a basis for developing a functional C++ library for imple-

menting this algorithm onto a Digital Signal Processor (DSP). Because the nature of

the problem is concerned with polynomials, we will develop a Polynomial class and

design specific mathematical functionality to operate on this class of Polynomial

objects. As a notational convenience we will refer to the steps of this algorithm as

[P].1, [P].2, ... , [P].8, the reasons for this will become more clear later when we

introduce the algorithms for PI and PID controllers.

2.2 The Polynomial Class

The full class declaration may be found in the appendix. Our focus is implemen-

tation onto an embedded system, thus, we do not want to overgeneralize our code

base for operations that will never need to be performed. Therefore, we let the algo-

rithm at hand dictate our class functionality. Because we are focusing on embedded

DSP, the programming language support will also shape our implementation. TiDSP

C++ fully supports the standard C++ libraries, but not much else [25]. We want

as little external dependencies in our code as possible; we must adhere to the core of

the C++ standards in our design.

The two most important pieces of information a polynomial possesses is its degree

and coefficient vector. Thus, our class will define a polynomial in this very simple

way. For our purposes the best C++ container to use will be the std::vector<T>

container class. If our coefficient vector is v, then the degree of that Polynomial ob-

ject is simply v.size()-1. Thus the basic shell of our Polynomial class is presented

in Listing 2.1. We set int degree and std::vector<double> coeff to be private
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Listing 2.1: Basic Polynomial Class Declaration

1 class Polynomial {
2 public:
3 Polynomial(); /∗ Default Constructors ∗/
4

5 ˜Polynomial(); /∗ Empty Destructor ∗/
6 private:
7 int degree;
8 std::vector<double> coeff;
9 };

data members as to follow best-coding practices. We encapsulated these data mem-

bers within our class and provided the user of the object functions to interact with

them. This protects the object from being used outside of the creators intent and

provides reliability and robustness of code. The basic use of this class can be seen in

the first three steps of the algorithm. We will need to be able to add, subtract, and

multiply two polynomial objects, find the roots of the polynomial, and have access to

the polynomials degree and coefficient vector. Using standard operator overloading

techniques our class is expanded to the form of Listing 2.2.

Recall that our goal is to not over generalize the code base. To this end, the al-

gorithm dictates specialized mathematical routines to operate on a given polynomial

under the demands of this algorithm.
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Listing 2.2: Extended Polynomial Class Declaration

1 class Polynomial {
2 public:
3 Polynomial(); /∗ Default Constructors ∗/
4

5 std::vector< std::vector<double> > getRoots();
6

7 /∗Private Access Functions∗/
8 int getDegree();
9 std::vector<double> getCoeffVec();

10

11 /∗Operator Overloads∗/
12 Polynomial& operator=(const Polynomial &rhs);
13 Polynomial& operator+=(const Polynomial &rhs);
14 Polynomial& operator−=(const Polynomial &rhs);
15 Polynomial& operator∗=(const Polynomial &rhs);
16 const Polynomial operator+(const Polynomial &other) const;
17 const Polynomial operator−(const Polynomial &other) const;
18 const Polynomial operator∗(const Polynomial &other) const;
19 friend Polynomial operator∗(double lhs, Polynomial &rhs);
20

21 ˜Polynomial(); /∗ Empty Destructor ∗/
22

23 private:
24 int degree;
25 std::vector<double> coeff;
26 };

2.2.1 Polynomial Root Finder

A major part of the Polynomial class is the ability to compute the roots of a

Polynomial object. The implementation of the root finder was taken from [26] which

is a C++ port of the original FORTRAN algorithm developed by M. A. Jenkins [27].

This FORTRAN and C++ code are both based on the Jenkins-Traub algorithm

of [28]. The Jenkins-Traub algorithm is a near standard in the field of numerical

computation of polynomial roots. It is a three-stage, extremely effective, globally

convergent algorithm designed specifically for computing the roots of polynomials.
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For this reason it is the definitive choice for implementation onto an embedded sys-

tem.

2.2.2 Even and Odd Parts of a Polynomial

In step [P].2 we require an even and odd decomposition of the polynomials N(s)

and D(s). For any polynomial P (s) we can define a decomposition into even and

odd parts, Pe(s
2) and Po(s

2) respectively, where P (s) = Pe(s
2) + sPo(s

2).

Ex. 1 — Let P (s) = s5 + 11s4 + 22s3 + 60s2 + 47s+ 25. Identify Pe(s) and Po(s).

Answer (Ex. 1) —

Pe(s
2) = 11s4 + 60s2 + 25

Po(s
2) = s(s4 + 22s2 + 47)

Ex. 2 — Let P (s) = s4 + 6s3 + 12s2 + 54s+ 16. Identify Pe(s) and Po(s).

Answer (Ex. 2) —

Pe(s
2) = s4 + 12s2 + 16

Po(s
2) = s(s2 + 54)

To computationally solve this simple analytical problem we prescribe the procedures

of Algorithms 1 and 2.
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Algorithm 1 Polynomial::getEvenPart()

Precondition: P is the polynomial being operated on

1 function getEvenPart()
2 if deg(P ) is odd then
3 Remove the leading coefficient of P

4 Set the odd exponent coefficients of P to zero

Algorithm 2 Polynomial::getOddPart()

Precondition: P is the polynomial being operated on

1 function getOddPart()

2 q ← deg(P )

3 Remove the last coefficient of P

4 if deg(P ) = -1 then

5 Return 0

6 if q = 0 then

7 Remove the leading coefficient of P

8 Set the odd exponent coefficients of P to zero

2.2.3 Conversion of the s Parameter to jω

In step [P].3 it is necessary to convert the polynomials p1(s) → p1(w), p2(s) →

p2(w), and q(s)→ q(w). This is done by replacing the parameter s with jω. This is

a conversion from the s-domain to the frequency domain, and while analytically this

is easy to accomplish, computationally the process may not be as straightforward.

We first consider an example.

Ex. 3 — Let P (s) = 5s8 + 6s6 − 549s4 − 1278s2 + 400. Evaluate P (ω).
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Answer (Ex. 3) —

P (ω) = 5(jω)8 + 6(jω)6 − 549(jω)4 − 1278(jω)2 + 400

= 5ω8 − 6ω6 − 549ω4 + 1278ω2 + 400

Ex. 4 — Let P (s) = s6 + 5s5 + 3s4 − 10s3 + 2s2 + 1. Evaluate P (ω).

Answer (Ex. 4) —

P (ω) = (jω)6 + 5(jω)5 + 3(jω)4 − 10(jω)3 + 2(jω)2 + 1

= −ω6 + 5jω5 + 3ω4 + 10jω3 − 2ω2 + 1

To make the algorithm less complex we exploit the nature of the problem. An

s-domain to frequency domain conversion only appears in step [P].3 where we con-

centrate on p1(s), p2(s) and q(s). The terms p1(s) and p2(s) are polynomials with

only even powered terms. This is easy to see by the definitions in [24],

p1(s) = De(s
2)Ne(s

2)− s2Do(s
2)No(s

2)

p2(s) = N2
e (s2)− s2N2

o (s2).

Thus, replacing s with jω produces (jω)e terms, where e is an even integer. Since

(jω)e = jeωe and je = ±1 we can determine the value of je based on e. That is

je =


1, if e

2
is even

−1, if e
2

is odd.
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Therefore, the sign of the coefficient as a result of the domain conversion can be

easily calculated by Algorithm 3.

Algorithm 3 Polynomial::stojw()

Precondition: P is the polynomial being operated on, with coefficient vector cv,
0-indexed with the 0 index being the highest powered term of P

1 function stojw()
2 for i← 0 to deg(P )− 1 step 2 do
3 cv[i] ← cv[i](((deg(P )− i)/2 mod 2)×−2 + 1)

However, for q(s) = s(Ne(s
2)Do(s

2) − De(s
2)No(s

2) we have terms of the form

(jω)d where d is an odd integer. This leads to two issues when we consider (jω)d =

jdωd. First, the term jd will be imaginary because d is odd. However, the core of

the algorithms computation is only concerned with q(s)|jω where q(s)|jω = jq(ω).

Thus, we only consider the terms jd−1 where d − 1 is even and we have resolved

this previously. The second issue is that all the terms of the polynomial are odd

integer powers where in the case of p1(s) and p2(s) they were even. In order to reuse

the algorithm developed for the s → jω conversion of p1(s) and p2(s) and apply it

to q(s) without making the algorithm case dependent or worse, writing an entirely

separate function, we make a small modification. Unlike p1(s) and p2(s), the term

q(s) will be composed of odd powered terms due to the extra factor of s. That is, we

had even powered terms se for p1(s) and p2(s), but now we have odd powered terms

se+1 for q(s). We originally considered e
2

to determine the sign of the coefficient

for conversion. Now, we will look at b e
2
c. Since b e

2
c = e

2
= b e+1

2
c we avoid the

discrepancy of the q(s) term and have a single algorithm which returns the proper

coefficient values for the real polynomials p1(ω), p2(ω), and q(ω) when given p1(s),

p2(s) and q(s). The unified algorithm is shown in Algorithm 4.
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Algorithm 4 Polynomial::stojw()

Precondition: P is the polynomial being operated on, with coefficient vector cv,
0-indexed with the 0 index being the highest powered term of P

1 function stojw()
2 for i← 0 to deg(P )− 1 step 2 do
3 cv[i] ← cv[i]((b(deg(P )− i)/2c mod 2)×−2 + 1)

2.2.4 The nth Derivative of a Polynomial Evaluated at Zero

In step [P].5 of the algorithm, [24] defines the term A as being the set of all

possible strings s = {i0, i1, i2, . . .}, ir ∈ {0,±1} of length l or l − 1 depending on

the value of m + n. This definition requires special attention in regards to N∗(jωt)

and N∗(s). For each root, ωt of q(w) found in step [P].4 we check N∗(jωt) for some

t = 1, 2, . . . , l − 1. If N∗(jωt) = 0 then it = 0 and if N∗(s) has zeros of multiplicity

kn at the origin, then i0 = sgn[p
(kn)
1f

(0)].

By definition, N∗(s) = N(−s), which means that a root of N∗(s) is also a root of

N(s). The roots of N(s) were found in step [P].1. Thus, if zrNs > 0 then N∗(s) has

a zero of multiplicity zrNs at the origin and we must compute sgn[p
(kn)
1f

(0)], where

p1f (ω) = p1(ω)

(1+ω2)
m+n

2
. If we examine the derivatives of p1f (ω) evaluated at 0, we will

find the following pattern emerge:

Let p(ω) = aνω
ν + aν−1ω

ν−1 + . . .+ a1ω + a0, then

p
(kn)
f (0) =

kn!

0!
akn −

kn!

1!
akn−2(

m+ n

2
) +

kn!

2!
akn−4(

m+ n

2
)(
m+ n

2
+ 1)−

kn!

3!
akn−6(

m+ n

2
)(
m+ n

2
+ 1)(

m+ n

2
+ 2) + . . .

From this pattern a simple algorithm can be constructed to easily compute p
(kn)
1f

(0)

for any kn without complicated derivative calculating methods.

The second condition, N∗(jωt), will only hold if N∗(s) has a root at the origin or
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equivalently, if N(s) has a root at the origin. Thus, we only check the N∗(jωt) = 0

condition if N(s) has a root at the origin. The check is done by evaluating N∗(s) at

the purely imaginary value jωt and checking if it is 0. If it is 0 then we set the tth

column of the A matrix to 0.

2.2.5 Limits of Polynomials

In step [P].6 we calculate the imaginary signature [24] for each string in A. The

imaginary signature is defined as

λ(I) =



{i0 − 2i1 + 2i2 + . . .+ (−1)l−12il−1

+(−1)lil}(−1)l−1sgn[q(∞)], if m+ n even

{i0 − 2i1 + 2i2 + . . .+ (−1)l−12il−1}

·(−1)l−1sgn[q(∞)], if m+ n odd.

which is computationally straightforward except for the sgn[q(∞)] term. This is

much easier to solve than it appears. The sgn[q(∞)] means sgn[ lim
ω→∞

q(ω)] and since

q(w) is a polynomial, its limit is defined by the leading coefficient. Moreover, we are

only concerned with the sign of that limit. For any polynomial

p(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0,

it can be shown that

lim
x→∞

p(x) =


+∞, if sgn[an] = 1

−∞, if sgn[an] = −1.
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For our purposes we define the sgn[+∞] = 1 and sgn[−∞] = −1, thus, the sgn[ lim
ω→∞

q(ω)] =

sgn[an]. Therefore, we define a special function that quickly reads the value of the

leading coefficient of q(ω) and computes its sign.

2.2.6 The Limit of the Quotient of Two Polynomials

In step [P].8 of the algorithm it is required that − 1
G(jωt)

= −p1(ωt)
p2(ωt)

be evaluate

at each ωt value. This is simple enough because our Polynomial class can easily

evaluate polynomials given a real valued input. However, the trouble occurs when

m+n is even. As covered in [24] when m+n is even ωl =∞ and thus we are required

to evaluate −p1(∞)
p2(∞)

or more exactly lim
ω→∞

−p1(ωt)
p2(ωt)

. Again, we exploit the nature of our

problem to make the computation much simpler. In the space of polynomials we

have that

lim
x→∞

∑m
i=0 aix

i∑n
k=0 bkx

k
=


0, if m < n, (am, bn) 6= 0

doesn’t exist, if m > n, (am, bn) 6= 0

am
bn
, if m = n, (am, bn) 6= 0.

Therefore, a simple check of the degrees of p1(ω) and p2(ω) will give us a simple

means of computing this limit.

2.3 Characterization of All Stabilizing PI Controllers

Using the bare essentials of the mechanics of computation, we again break down

the algorithm that defines the entire set of stabilizing PI parameters for a PI con-

troller found in [24]. The specific details of each step will be expanded upon later if

necessary.

1. Initialization

a) Find the roots of N(s).
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• Set lrNs equal to the number of roots of N(s) in the OLHP.

• Set rrNs equal to the number of roots of N(s) in the ORHP.

• Set zrNs equal to the number of zero roots of N(s).

• Set jω arNs equal to the number of purely imaginary roots of N(s).

b) Set n = max[deg(D(s)), deg(N(s))] + 1.

c) Set m = deg(N(s)).

2. Determine the even parts, Ne(s) and No(s), of N(s) and the odd parts, De(s)

and Do(s), of D(s).

3. Determine p1(ω), p2(ω), q1(ω), and q2(ω) where

p(ω, ki) = p1(ω) + kip2(ω)

q(ω, kp) = q1(ω) + kpq2(ω).

4. Narrow down the sweeping interval for Kp via root locus ideas.

a) Define U(ω) = 1
ω
q1(ω) and V (ω) = 1

ω
q2(ω).

b) Solve d
dw

(
V (ω)
U(ω)

)
= 0.

c) Solve for ki using each root from step 4b where ki = −U(ωi)
V (ωi)

.

d) Order the ki values from smallest to largest.

e) Generate intervals from the set of ordered ki.

• If no root of step 4b is 0 then define k∗p = U(0)
V (0)

.

• If k∗p ∈ (ki, ki+1) then make (ki, k
∗
p) and (k∗p, ki+1) intervals.
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f) Choose1 a value in each interval, k′p, and find the real roots of

U(ω) + k′pV (ω) = 0 and let l′ be the count of real and positive roots.

g) A valid Kp interval is found if


l′ + 1 ≥ 1

2
|n− (lrNs− rrNs)|, if m+ n even

l′ + 1 ≥ 1
2

+ 1
2
|n− (lrNs− rrNs)|, if m+ n odd.

5. For each kp in the valid ranges of step [PI].4 we set qf (ω) = q1(ω)+kpq2(ω)

(1+ω2)
m+n

2
and

solve for the Ki interval through the [P] algorithm beginning at step [P].4.

To implement the [PI] algorithm above we will build on the [P] algorithm already

established. We see this in step [PI].5 where for each kp value we run the [P] algorithm

to find the valid range of ki values. Further, steps [PI].1, [PI].2, and [PI].3 are much

the same as [P].1, [P].2, and [P].3. The major addition to the [PI] algorithm is that

in step [PI].4, the sweeping interval for Kp is narrowed down. The analytical theory

behind this step is well covered in the appendix of [24]. To create the computational

implementation of this procedure we make use of the bare essentials when considering

each of these analytical steps.

2.3.1 Dividing q1(ω) and q2(ω) by ω

Because of the nature of our problem q1(ω) and q2(ω) will never contain a constant

term. Thus, when defining U(ω) and V (ω), the division of the polynomials q1(ω)

and q2(ω) by ω is equivalent to removing the last element from the coefficient vector.

Thus a special function was made to delete this element and decrease the degree of

the polynomial by 1.

1The choice of this value is important because the interval condition is not necessary. Thus an
expansion search method is used to find the correct value on the infinite intervals
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2.3.2 Derivative of the Quotient of Two Polynomials

One important part of narrowing the Kp range involves the computation of the

roots of d
dw

(
V (ω)
U(ω)

)
= 0. Using the quotient rule for derivatives we have UV ′−V U ′

U2 = 0.

Because we are only concerned with the roots of this derivative, we only need to

be concerned with the numerator, UV ′ − V U ′. We can simplify the computation

by considering only the equation UV ′ − V U ′ = 0. Since U(ω) and V (ω) are both

polynomials, their first derivatives are easy to find; a simple shift of the coefficient

vector and multiplication by its previous index value. A special function is made to

perform this process. Given the U(ω) and V (ω) polynomials, UV ′ − V U ′ is computed

and returned, ready to be passed into the root finder.

2.3.3 Determining the Valid Kp Intervals

We must pay careful attention to the infinite intervals as it pertains to the choice

of k′p in step [PI].4f. The root locus theory of [24] provides the following condition for

the finite intervals: if U(0) + kpV (0) 6= 0 for all kp ∈ (ki, ki+1), then the distribution

of the real roots of U(ω) + kpV (ω) = 0 with respect to the origin is invariant over

this range of kp values. However, this does not apply for the infinite intervals of

(−∞, k1) and (kl,+∞). For this reason we implement an exponential expansive

search algorithm. We know how many real and positive roots are needed in the

interval for it to be a valid range narrowing interval. By checking k−1 and k+l we can

easily examine the roots of U(ω) + k−1 V (ω) = 0 and U(ω) + k+l V (ω) = 0, to see if

this entire interval will provide more information on the Kp range. If it will, then

we choose another point that is twice the distance away from k1 and kl as k−1 and

k+l . We continue this exponential expansion until the number of roots fails to satisfy

the necessary number of roots to be a valid interval. Then by performing a binary

search over the interval formed by the previous two points checked, we can find the
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point to form a finite interval around and define a valid Kp range from the infinite

interval.

2.3.4 A “non-fragile” Controller Via Center of Mass

In [24] the concept of a “non-fragile” controller is discussed in relation to PID

controllers. However, a similar treatment is not found for PI controllers. We present

here a methodology similar to finding the optimal “non-fragile” controller for PID

but applied to PI. In PID control the stabilizing sets of (ki, kd) for a given kp value

were defined by linear convex polygons. To this end an LP problem was formulated

to solve the largest inscribed circle. However, with PI control the stabilizing regions

do not necessarily have linear boundaries and curve fitting would be a computational

burden. A different approach is needed.

In order to determine a close approximation to the center of an irregular convex

region in R2 we employ a center of mass calculation on the space. Suppose that a

plate is bounded by two curves y0 = f(x) and y1 = g(x) in R2 on the interval [a, b]

with y0 > y1∀x. In [29] the mass of the plate with area A is defined as

M = ρA

= ρ

∫ b

a

(f(x)− g(x)) dx

and the moments of the plate along the x and y region as

Mx = ρ

∫ b

a

1

2

(
[f(x)]2 − [g(x)]2

)
dx

My = ρ

∫ b

a

x (f(x)− g(x)) dx.
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The coordinates of the center of mass, (x̄, ȳ), are given as

x̄ =
My

M
=

∫ b
a
x(f(x)− g(x))dx∫ b
a
f(x)− g(x)dx

=
1

A

∫ b

a

x(f(x)− g(x))dx

ȳ =
Mx

M
=

∫ b
a

1
2

([f(x)]2 − [g(x)]2) dx∫ b
a
f(x)− g(x)dx

=
1

A

∫ b

a

1

2

(
[f(x)]2 − [g(x)]2

)
dx.

We assume that the mass of the shape is uniform over its surface, and that the

region is defined by two curves. In our implementation we have a sampling of these

two curves. Thus, we must cast the formulation into a discrete space. For simplicity

we will first assume that ρ = 1. This is allowed because ρ represents the density of

the physical disc, but since there is no real physical shape we are free to make this

any value. For each kpi ∈ Kp let the associated Ki interval have n points and be

defined as Ki = {ki0 , ki1 , . . . , kin−1}. Also let the Kp interval have m points and be

defined as Kp = {kp0 , kp1 , . . . , kpm−1}. Using Riemann integrals we define

∆x = kpj − kpj−1

lKi = kin−1 − ki0

M = A =
m−1∑
j=1

|lKi |∆x.

The coordinates of the center of mass, (x̄, ȳ), are given as

x̄ =
1

M

m−1∑
j=1

kpj |lKi |∆x

ȳ =
1

2M

m−1∑
j=1

(k2in−1
− k2i0)sgn(lKi)∆x

where we use the sgn(lKi) to adjust for which curve is above or below the other.

25



This formulation is computationally based on the data already generated and

purely mathematical, making it easy to implement into our embedded systems algo-

rithm.

For convex sets, it is guaranteed that the center of mass will exist within the

set. However, for disjoint sets, if we treat them as one set, the center of mass is not

guaranteed to exist within either one of the sets. Disjoint sets will occur if there is a

disjoint interval in the Kp set. To overcome this problem we must treat each disjoint

set as a separate object when calculating the center of mass. Then, a method for

determining the best overall center of mass should be implemented.

2.4 Characterization of All Stabilizing PID Controllers

The characterization of all kp, ki, and kd values of a PID controller for a given

plant model is extended from the [PI] algorithm covered previously. The major

addition to this algorithm will be the need for a Linear Program Solver [30] for a

series of constrained optimization problems and a 2D space quantization algorithm.

The algorithm is detailed below.

1. Initialization

a) Find the roots of N(s) and define lrNs, rrNs, zrNs, and jw arNs as

before.

b) Set n = max[deg(D(s)) + 1, deg(N(s)) + 2].

c) Set m = deg(N(s)).

2. Determine the even parts, Ne(s) and No(s), of N(s) and the odd parts, De(s)

and Do(s), of D(s).
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3. Determine p1(ω), p2(ω), q1(ω), and q2(ω) where

p(ω, ki, kd) = p1(ω) + (ki − kdω2)p2(ω)

q(ω, kp) = q1(ω) + kpq2(ω).

4. Narrow down the sweeping interval for Kp. (See step [PI].4)

5. For each kp in the valid ranges of step [PID].4 we set qf (ω) = q1(ω)+kpq2(ω)

(1+ω2)
m+n

2
and

solve steps[P].4 - [P].7. This produces an F ∗kp for each kp.

6. Solve for ki and kd values for each kp via Theorem 4.4.1 of [24].

The major change from the [PI] to the [PID] algorithm is in step [PID].6. This

step is based on the results of Theorem 4.4.1 of [24] in which the following set of

linear inequalities is defined, p(ωt, ki, kd)it > 0. This means that for each root, ωt, of

qf (ω) we have2

p(ωt, ki, kd)it > 0⇒ [p1f (ωt) + (ki − kdω2
t )p2f (ωt)]it > 0

⇒ p1f (ωt)it + kip2f (ωt)it − kdω2
t p2f (ωt)it > 0

⇒ kip2f (ωt)it − kdω2
t p2f (ωt)it > −p1f (ωt)it

⇒
[
p2f (ωt)it −ω2

t p2f (ωt)it

]
︸ ︷︷ ︸

A

ki
kd


︸ ︷︷ ︸
x

≤
[
p1f (ωt)it

]
︸ ︷︷ ︸

b

This set of linear inequalities, Ax ≤ b, forms a convex set. As described in [24],

one can choose an optimal (kp, ki, kd) triplet by defining the largest inscribed circle

2We chose to derive the negation of the formula presented in Theorem 4.4.1 so that it would fit
better into the constrained optimization problem of finding the largest inscribed circle of a convex
polygon.
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of the convex set and taking the center of this circle to be the optimal result. The

aim of such a method is to choose the stabilizing set of points that exists furthest

away from the stability boundaries. This guarantees the best stability performance

against perturbations in the controller parameters. To do this we define the convex

set P = {x|aTi x ≤ bi} and the circle C = {xc + u|‖u‖ ≤ r} where xc is the circle’s

center and r is the circle’s radius. Then the inscribed circle constraint is as follows

sup{aTi xc + aTi u | ‖u‖ ≤ r} ≤ bi ⇒ aTi xc + r‖ai‖ ≤ bi .

Thus, we can establish an LP problem of the following form

Maximize r

Subject to aTi xc + r‖ai‖ ≤ bi .

2.4.1 The Linear Program Solver

To solve the LP problem of the largest inscribed circle we divide the problem

into two classes. Class 1 involves the set of constraints that form a triangular shaped

feasibility region (i.e. a three vertex feasibility region) and class 2 involves the the

set of constraints that form a convex polygon of four or more vertices.

To solve Class 1 problems we exploit the nature of the geometry of the feasibility

region of three vertices. The incenter [31] of a triangle is the center point of the

largest inscribed circle of the triangle. The incenter can be easily calculate when

given the coordinates of the triangles vertices. Let the three vertices be located at

(xa, ya), (xb, yb), and (xc, yc), with the opposite sides to these vertices having lengths
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a, b, and c, respectively, then the incenter is define as

(
axa + bxb + cxc

P
,
aya + byb + cyc

P

)

where P = a+ b+ c. Thus, to save computation time we apply this calculation if

the feasible region is a triangle, instead of formulating the LP problem and using a

computationally intensive LP Solver.

To solve the Class 2 problems we require a computational LP solver. A popular

open source variety LP solver can be found at [32]. This solver is based on the revised

simplex method[33] and the branch-and-bound method[34]. Full C++ source code is

available for integration into any programming projects under the GNU Lesser Gen-

eral Public License. This package will accurately solve the constraint optimization

problem at hand. However, to make this package work under TiDSP C++ some

modifications had to be made to the source code. Because the package is not im-

plemented with embedded systems in mind, there is a large external dependency in

the code to a WIN32 environment. Fortunately, this dependence is only tied to the

more aesthetical reporting and logging features found within the package. Stripping

all the “unnecessary” formatting, logging, and reporting features of this package and

leaving only the basic necessary mathematical computation code yields a smaller

code set that is fully functional within a TiDSP C++ environment. We employ the

use of this open source package when solving the LP problem of the largest inscribed

circle for a convex set of four or more vertices.

2.4.2 Finding the Feasibility Region

The convex set defined by Ax ≤ b is called the feasibility region. Given a specific

kp value, a convex 2D shape is defined in the (ki, kd) plane. This convex shape

(typically a triangle or quadrilateral) is the entire set of (ki, kd) pairs that will stabilize
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the system for a given kp.

In the last section we divided the LP problem into two classes, which required

knowledge of the number of vertices in the feasibility region. This information is not

immediately apparent from the set of linear inequalities defining the region itself. Our

main goal is to determine the set of cartesian coordinates that define the corners of

the convex set, also known as the vertex enumeration problem [35]. While efficient

algorithms to solve this problem exist [36], a naive implementation was done following

Algorithm 5.

Algorithm 5 Naive Vertex Enumeration: A brute force approach to finding the set
of vertices which belong to the corners of a region of R2 defined by a set of linear
inequalities.

1 function FEASIBLE REGION()

2 Find all intersection points of Ax = b

3 For each vertex, test the point vi against Avi ≤ b

4 If the vertex passes all inequalities tests, then it is a valid vertex

5 Those vertices which satisfy all inequalities of Ax ≤ b constitute the set we

want

To determine the intersection of two lines we follow a basic mathematical for-

mulation using Cramer’s rule. Given a system of equations that defines two lines,a1 a2

a3 a4

x =

b1
b2

 then the intersection point is defined as

xi =
b1a4 − b2a2
a1a4 − a2a3

yi =
b2a1 − b1a3
a1a4 − a2a3

.
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2.4.3 Quantizing the Convex Set

For the purpose of exhaustive search over the entire space of (kp, ki, kd) triplets

for a PID controller design with an optimal performance criterion, it is necessary

to quantize the convex space into individual (kp, ki, kd) data points. The resolution

of the quantization is a parameter of a special function developed to perform this

specific task. A higher resolution of the quantization provides a better estimate of

the optimal solution but increases search time, while a lower resolution produces

poorer optimality but will decrease the search time. The computational algorithm

to accomplish this is long and complex. However, the basic idea is to first develop

a convex hull ordering of the vertices. Then we quantize the x-axis on the interval

from the least x-coordinate to the greatest x-coordinate. For each quantization level

along the x-axis, we quantize the y-axis from the lower line to the upper line. This

is very similar to a discrete form of two-variable calculus when determining the area

of a non uniform shape in R2.

Remark : For the purposes of characterizing the entire set of stabilizing kp, ki, and kd

values of a PID controller, the LP solver, defined feasibility region, and quantization

of the region is not necessary. The set of linear inequalities created in step [PID].6

completely defines the entire set. The LP solver exists only to find the center of the

largest inscribed circle over the entire space. The vertex enumeration solver only

exists for the purpose of quantizing the space; with the added benefit of easing com-

putation if the convex set forms a triangle. And, quantization of the space is only

necessary for searching over the controller design space to satisfy a specific optimal-

ity criterion. It is not our intent to convey that the added functionality is necessary

to the core of the algorithm, however, the LP solver, defined feasibility region, and
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quantization of the feasibility region are of practical importance.

2.4.4 Correcting for the Pure Derivative Term

Under PID control, the pure derivative term is undesirable for two reasons: am-

plification of high frequency noise, and the closed loop system may be internally

unstable. To fix this undesirable symptom we instead use the controller structure

C(s) = kp +
ki
s

+
kds

1 + Ts

where T is a small positive number usually between 0.01 and 0.1. This new con-

troller will modify the closed loop characteristic polynomial that the [PID] algorithm

is based on. However, in [24] it is shown that by a single linear transformation of the

terms of the closed loop characteristic polynomial, the polynomial can be put into

the same form as required by the original [PID] algorithm. Then, a solution can be

formed via the methods already discussed and transformed back. This transforma-

tion is defined as 
kp

ki

kd

 =


1 −T 0

0 1 0

−T T 2 1



k′p

k′i

k′d


Instead of performing matrix-vector multiplication we consider the major computa-

tional pieces of this transformation. That is

kp = k′p − Tk′i

ki = k′i

kd = −Tk′p + T 2k′i + k′d.
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We immediately realize that ki doesn’t require a transformation. Thus these two

basic computations are easier to perform and faster than a full matrix-vector multi-

plication implementation.

2.5 Examples and Results

In this section we verify all the examples in [24] for the [P], [PI], and [PID]

algorithms presented in this chapter. In all cases we consider the following plant

model

G(s) =
N(s)

D(s)

N(s) = ams
m + am−1s

m−1 + · · ·+ a1s+ a0

D(s) = bns
n + bn−1s

n−1 + · · ·+ b1s+ b0

where n ≥ m.

2.5.1 Constant Gain Stabilization

Consider the plant defined as

N(s) = s4 + 6s3 + 12s2 + 54s+ 16

D(s) = s5 + 11s4 + 22s3 + 60s2 + 47s+ 25 .

When executing the [P] algorithm for this specific plant on our embedded system we

get the following results.
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p1(ω) = 5.0ω8 − 6.0ω6 − 549.0ω4 + 1278.0ω2 + 400

p2(ω) = 1.0ω8 + 12.0ω6 − 472.0ω4 + 2532.0ω2 + 256.0

q(ω) = 1.0ω9 + 32.0ω7 − 627.0ω5 + 2474.0ω3 − 598.0ω

The real, non-negative, distinct, and finite zeros of q(ω) with odd multiplicity are

ω0 = 0.000000

ω1 = 0.508343

ω2 = 2.417352

ω3 = 2.915147

The set F ∗ is 
(1,−1,−1, 1)

(1, 1,−1,−1)

(1, 1, 1, 1)


which produces the final stabilizing set of constant gain controllers as

kp ∈ (−0.788981, 2.503451) ∪ (22.493895,∞) .

It is impossible to verify the stability of the system over all possible kp values, but as

a representative example to the systems stability and correctness of the algorithm we

consider three different kp values in the Kp interval, and simulate the system using

the MATLAB SIMULINK model of Figure 2.1. The step response plot can be seen

in Figure 2.2 where it is verified to be stable.
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Figure 2.1: Simulation model for P-control of an LTI system.

Figure 2.2: Step response with kp = {−0.25, 2.0, 25.0}.

As a second example, consider the plant defined as

N(s) = s5 + 2s4 + 3s2 + 4s+ 1

D(s) = s5 − 2s4 + 3s3 + 7s2 + 10s+ 7.0 .

35



When executing the [P] algorithm for this specific plant on our embedded system we

get the following results.

p1(ω) = 1.0ω10 − 7.0ω8 + 6.0ω6 + 21.0ω4 + 12.0ω2 + 7

p2(ω) = 1.0ω10 + 4.0ω8 − 4.0ω6 + 13.0ω4 + 10.0ω2 + 1.0

q(ω) = 4.0ω9 − 2.0ω7 + 31.0ω5 − 5.0ω3 − 18.0ω

The real, non-negative, distinct, and finite zeros of q(ω) with odd multiplicity are

ω0 = 0.000000

ω1 = 0.911462

The set F ∗ is {
(−1, 1,−1)

}
which produces the empty set, kp ∈ ∅, meaning that no constant gain controller

will stabilize this plant. The results of these examples verify correctness of the [P]

algorithm implemented on the embedded system because they match the results

found in [24].

2.5.2 Stabilization Using a PI Controller

Consider the plant defined as

N(s) = s3 + 6s2 − 2s+ 1

D(s) = s5 + 3s4 + 29s3 + 15s2 − 3s+ 60 .
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When executing the [PI] algorithm for this specific plant on our embedded system

we get the following results:

p1(ω) = 3.0ω8 − 166.0ω6 − 19.0ω4 − 117.0ω2

p2(ω) = 1.0ω6 + 40.0ω4 − 8.0ω2 + 1.0

q1(ω) = −1.0ω9 + 9.0ω7 + 154.0ω5 − 369.0ω3 + 60.0ω

q2(ω) = 1.0ω7 + 40.0ω5 − 8.0ω3 + 1.0ω .

Performing the Kp narrowing routine in this example produces the finite Kp sweeping

interval to be

kp ∈ (−2.541190, 16.443085) .

For a fixed kp value we can examine some of the preliminary results of the al-

gorithm. Let kp = 2.25 then the real, non-negative, distinct, and finite zeros of

q(ω) = q1(ω) + kpq2(ω) with odd multiplicity are

ω0 = 0.000000

ω1 = 0.426476

ω2 = 1.149770

ω3 = 4.656726 .

The set F ∗ is {
(1,−1, 1,−1)

}
which produces the stabilizing set of ki values as

ki ∈ (8.975590, 26.200133) .
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By sweeping over all kp in the valid range results in a stabilizing region depicted in

Figure 2.3 where the * indicates the center of mass of the 2D region as a method of

choosing a “non-fragile” controller. This controller was found to be

kp = 5.919930

ki = 17.86692 .

Figure 2.3: The stabilizing set of (kp, ki) values with “non-fragile” controller indicated
by the star.

Even though verifying the entire stabilizing set of (kp, ki) pairs would be impossi-

ble, we will consider a representative example to this solutions validity by considering

the step response of the system with the controller given by the center of mass calcu-

lation on the region and simulate the system using the MATLAB SIMULINK model

of Figure 2.4.
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Figure 2.4: Simulation model for PI-control of an LTI system.

The (kp, ki) pair is kp = 5.919930 and ki = 17.86692. The output response is shown

in Figure 2.5.

Figure 2.5: System response with kp = 5.919930 and ki = 17.86692.

As a second example, we consider the plant defined by

N(s) = s4 + 4s3 + 23s2 + 46s− 12

D(s) = s5 + 2s4 + 23s3 + 44s2 + 97s+ 98 .

When executing the [PI] algorithm for this specific plant on our embedded system
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we find the following results:

p1(ω) = −10.0ω10 + 38.0ω8 − 346.0ω6 − 461.0ω4 + 5672.0ω2

p2(ω) = 1.0ω8 − 30.0ω6 + 137.0ω4 + 2668.0ω2 + 144.0

q1(ω) = −2.0ω9 + 48.0ω7 − 360.0ω5 + 2736.0ω3 − 1176.0ω

q2(ω) = 1.0ω9 − 30.0ω7 + 137.0ω5 + 2668.0ω3 + 144.0ω .

Performing theKp narrowing routine on this example produces the finiteKp sweeping

interval to be all

kp ∈ (−1.063467, 8.166667) .

By sweeping over all kp in the valid range results in a stabilizing region depicted in

Figure 2.6 where the * indicates the center of mass of the 2D region as a method of

choosing a “non-fragile” controller. In this example we have disjoint sets. Thus, two

center of masses are calculated, one for each set. These two controller was found to

be

kp = −0.318000 kp = 3.566319

ki = −1.384091 ki = −0.556366

with the best “non-fragile” controller given as

kp = 3.566319

ki = −0.556366 .
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Figure 2.6: The stabilizing set of (kp, ki) values with “non-fragile” controller indicated
by the star.

The stability of the system over all possible (kp, ki) pairs is impossible to ver-

ify, but as a representative example to the systems stability and correctness of the

algorithm we consider the step response of the system with the controller given

by the center of mass calculation on the region and simulate the system using the

MATLAB SIMULINK model of Figure 2.4. The (kp, ki) pair is kp = 3.566319 and

ki = −0.556366. The output response is presented in Figure 2.7.
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Figure 2.7: System response with kp = 3.566319 and ki = −0.556366.

The results of these examples verify correctness of the [PI] algorithm implemented

on the embedded system because they match the results found in [24].

2.5.3 Stabilization Using a PID Controller

Let the plant be defined by

N(s) = s3 − 4s2 + s+ 2

D(s) = s5 + 8s4 + 32s3 + 46s2 + 46s+ 17 .

When executing the [PID] algorithm for this specific plant on our embedded system

we find the following results:

p1(ω) = −12.0ω8 + 180.0ω6 − 183.0ω4 − 75.0ω2

p2(ω) = 1.0ω6 + 14.0ω4 + 17.0ω2 + 4.0

q1(ω) = −1.0ω9 + 65.0ω7 − 246.0ω5 + 22.0ω3 + 34.0ω

q2(ω) = 1.0ω7 + 14.0ω5 + 17.0ω3 + 4.0ω .
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Performing theKp narrowing routine on this example produces the finiteKp sweeping

interval to be

kp ∈ (−8.500000, 4.233366) .

For a fixed kp value we can examine some of the preliminary results of the al-

gorithm. Let kp = 1.0 then the real, non-negative, distinct, and finite zeros of

q(ω) = q1(ω) + kpq2(ω) with odd multiplicity are

ω0 = 0.000000

ω1 = 0.742303

ω2 = 1.865901

ω3 = 7.892111 .

The set F ∗ is {
(1,−1, 1,−1)

}
which produces this set of linear inequalities

−4.000000ki + 0.000000kd < 0.000000

2.467671ki +−1.359721kd < 9.418357

−0.322129ki + 1.121521kd < 3.927345

0.002327ki +−0.144974kd < 1.080087

which matches exactly the results in [24] when the inequalities are normalized by

the ki coefficients. These inequalities define a convex set whose vertex points in the
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(ki, kd) plane are

v0 = (−0.000000,−6.926686)

v1 = (−0.000000, 3.501802)

v2 = (6.826662, 5.462592) .

Figure 2.8 illustrates this region.

Figure 2.8: The stabilizing set of (ki, kd) values for kp = 1.0.

Sweeping over all kp in the valid range results in the stabilizing region depicted

in Figure 2.9. Using the method of choosing an optimal “non-fragile” controller by

means of the largest inscribed circle over all kp values we obtain

kp = 0.986358

ki = 2.247527

kd = 1.810374
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with a radius r = 2.247527.

Figure 2.9: The stabilizing set of (kp, ki, kd) values.

It is impossible to verify the stability of the system over all possible (kp, ki, kd)

triples, but as a representative example to the systems stability and correctness of

the algorithm we consider the step response of the system with the controller given

by the largest inscribed circle calculation on the region and simulate the system using

the MATLAB SIMULINK model of Figure 2.10.

Figure 2.10: Simulation model for PID-control of an LTI system.

45



The (kp, ki, kd) triple is kp = 0.986358, ki = 2.247527, and kd = 1.810374. The

output response is shown in Figure 2.11.

Figure 2.11: System response for kp = 0.98636, ki = 2.24753, and kd = 1.81037.

For the next example we use the plant defined by

N(s) = s3 + 3s2 + s+ 8

D(s) = s4 + 2s3 + 3s2 + 7s+ 14 .

When executing the [PID] algorithm for this specific plant on our embedded system

we get the following results.

p1(ω) = −1.0ω8 − 2.0ω6 + 20.0ω4 − 42.0ω2

p2(ω) = 1.0ω6 + 7.0ω4 − 47.0ω2 + 64.0

q1(ω) = −1.0ω7 + 8.0ω5 − 59.0ω3 + 112.0ω

q2(ω) = 1.0ω7 + 7.0ω5 − 47.0ω3 + 64.0ω .
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Performing the Kp narrowing routine for this example produces the finite Kp sweep-

ing interval to be

kp ∈ (−3.272120,−1.750000) ∪ (0.521717, 1.550635) .

For a fixed kp value we can examine some of the preliminary results of the algo-

rithm. Let kp = −2.0 then the real, non-negative, distinct, and finite zeros of

q(ω) = q1(ω) + kpq2(ω) with odd multiplicity are

ω0 = 0.000000

ω1 = 0.717006

ω2 = 1.483394 .

The set F ∗ is {
(−1, 1,−1, 1)

}
which produces this set of linear inequalities:

64.000000ki − 0.000000kd < 0.000000

−7.958008ki + 4.091188kd < −3.167678

0.048869ki − 0.107535kd < 0.384429

0.000000ki + 1.000000kd < −1.000000 .
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These inequalities define a convex set whose vertex points in the (ki, kd) plane are

v0 = (−0.000000,−3.574933)

v1 = (−0.000000,−1.000000)

v2 = (−1.878749,−4.428733)

v3 = (−0.116048,−1.000000) .

Figure 2.12 illustrates this region.

Figure 2.12: The stabilizing set of (ki, kd) values for kp = −2.0.

By sweeping over all kp in the valid range results in a stabilizing region depicted

in Figure 2.13. Using the method of choosing an optimal “non-fragile” controller by
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means of the largest inscribed circle over all kp values we obtain

kp = −2.442565

ki = −0.799320

kd = −2.905589

with a radius r = 0.799320.

Figure 2.13: The stabilizing set of (kp, ki, kd) values.

We will consider a single point inside the stability region as a representative

example to the systems stability and correctness of the algorithm because verification

of the stability of the system over all possible (kp, ki, kd) triples would be impossible.

We consider the step response of the system with the controller given by the largest

inscribed circle calculation over the entire region of Figure 2.13 and simulate the

system using the MATLAB command step. The (kp, ki, kd) triple is kp = −2.442565,

ki = −0.799320, and kd = −2.905589. The output response is shown in Figure 2.14.
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Figure 2.14: System response with kp = −2.442565, ki = −0.799320, and kd =
−2.905589.

Remark : The controller triples that have a kp value of kp ∈ (−3.272120,−1.750000)

are stable only via a pole/zero cancellation. Therefore, they could not be simulated

via the MATLAB SIMULINK model of Figure 2.10 because the pole of the closed

loop characteristic function that exists in the right half plane is fully expressed in

the MATLAB SIMULINK environment even though mathematically it will cancel

with a zero in the numerator. The step response was generated only after a perfect

pole/zero cancelation was done. Although these controllers are theoretically stable,

they would not be practically stable.

The next example illustrates the effect of replacing the pure derivative term in

the PID controller with the term kds
1+Ts

. As we saw previously, the [PID] algorithm is
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still applicable when a simple linear transformation is applied on the (k′p, k
′
i, k
′
d) set.

Consider the plant defined by

N(s) = s3 + 3s2 + s+ 8

D(s) = s4 + 2s3 + 3s2 + 7s+ 14

with T = 0.1. The algorithm computes the stabilizing region of (k′p, k
′
i, k
′
d) values

where

k′p = kp − kiT

k′i = ki

k′d = kd + kpT

and the controller is C ′(s) = k′p +
k′i
s

+ k′ds with the plant model now represented as

N(s)

(1 + Ts)D(s)
.

The stability region is shown in Figure 2.15. After application of the linear transfor-

mation, the stabilizing region of (kp, ki, kd) values is illustrated in Figure 2.16.
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Figure 2.15: The stabilizing set of (k′p, k
′
i, k
′
d) values.

Figure 2.16: The stabilizing set of (kp, ki, kd) values.

As a final example for verification of the implementation of the [PID] algorithm

on our embedded system platform we consider the following plant defined by

N(s) = 1

D(s) = (s+ 1)8 = s8 + 8s7 + 28s6 + 56s5 + 70s4 + 56s3 + 28s2 + 8s+ 1 .
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The [PID] algorithm calculates the stability region illustrated in Figure 2.17.

Figure 2.17: The stabilizing set of (kp, ki, kd) values.

The optimal “non-fragile” control determined via the largest inscribed circle met-

ric, was found to exist at

kp = 1.321673

ki = 0.425626

kd = 5.162580

with a radius of r = 0.425626. This search was performed over the narrowed Kp set

of

kp ∈ (−1.000000, 2.075064) .

If we examine the specific value of kp = 1.321673 we produce the stability region of

Figure 2.18 with the largest inscribed circle noted in the figure by the red circle.
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Figure 2.18: The stabilizing (ki, kd) region for kp = 1.32167 with largest inscribed
circle.

A slight discrepancy exists between the results of [24] and the results produced

here. In [24] we are provided with the following optimal “non-fragile” controller

kp = 1.32759

ki = 0.42563

kd = 5.15291

with a radius of r = 0.42563. This is due to the method of quantizing the Kp

interval. Our method undoubtedly varies from that in [24]; however, if we force the

examination of kp = 1.32759 into our embedded system implementation, we find the
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exact values as above

kp = 1.327590

ki = 0.425632

kd = 5.152907

with a radius of r = 0.425632. Ultimately, the more finely quantized Kp is, the more

accurate the final controller will become.

The stability of the system over all possible (kp, ki, kd) triples is impossible to

verify, but as a representative example to the systems stability and correctness of

the algorithm we consider the step response of the system with the controller given by

the largest inscribed circle calculation on the region and simulate the system using the

MATLAB SIMULINK model of Figure 2.10. The (kp, ki, kd) triple is kp = 1.321673,

ki = 0.425626, and kd = 5.162580. The output response is presented in Figure 2.19.

Figure 2.19: System response for kp = 1.32167, ki = 0.42563, and kd = 5.16258.

These results verify correctness of the [PID] algorithm implemented on the em-
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bedded system because they match the results found in [24].

2.6 Summary

In this chapter we presented a computational formulation of the constant gain,

PI, and PID algorithms presented in [24] for use on embedded systems platforms.

A Polynomial Class was developed along with many sub algorithms to efficiently

compute the results. All the algorithms were verified against examples. In the

next chapter we will utilize all the algorithms presented here for use in optimal PID

controller design under a specific set of optimality criteria with the goal of real time

optimal auto-tuning of PID controllers.
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3. PID CONTROLLER DESIGN UNDER CONSTRAINED OPTIMALITY

CRITERIA

One of the major applications of the algorithms defined in the previous chapter

is the ability to optimally design a PID controller to optimize a given performance

index. Once the entire set of stabilizing (kp, ki, kd) values have been found, each

candidate controller can be analyzed for specific performance metrics and the optimal

one chosen. Performance metrics include the H2 and H∞ norm of the closed loop

transfer function and such time domain characteristics as settling time, overshoot,

and undershoot. Having this ability within an embedded system can be a powerful

tool for optimally designing an auto-tuning controller that will always remain near

optimal operation.

3.1 The Optimality Criterion

For the purposes of this implementation we examined five performance criteria

to achieve an optimal controller design

1. Minimum H2 norm of the closed loop transfer function

2. Minimum H∞ norm of the closed loop transfer function

3. Minimum Settling Time

4. Minimum Overshoot

5. Minimum Undershoot

Thus, given the numerator and denominator polynomials of a plant model we are

able to run the [P], [PI], or [PID] algorithms discussed in chapter 2 and obtain the

entire set of stabilizing kp, (kp, ki), or (kp, ki, kd) values, respectively. Using this
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entire set we can construct all possible controllers that will stabilize the plant. Then,

by using all possible controllers we can evaluate each of these performance criteria

and choose the controller that meets our specific need. Recall that in chapter 2

we included a quantization of the feasibility region as part of the [PID] algorithm.

This quantization makes the data of all possible controllers available so that we may

utilize this data to find optimal controllers. While the algorithm is computing the

linear inequalities that define the convex sets, it is easier at that time to produce the

feasibility region and provide a quantization of that region for use in evaluation of

different controller’s performance indices.

3.1.1 H2 Optimal Control

In H2 optimal control we seek a controller that minimizes the L2 norm of the

error signal. The L2 space is a Hilbert space [37] of matrix-valued (or scalar-valued)

functions and consists of all complex matrix functions F such that

∫ ∞
−∞

Trace[F ∗(jω)F (jω)]dω <∞

The inner product on this Hilbert space is defined as

〈F,G〉 =
1

2π

∫ ∞
−∞

Trace[F ∗(jω)G(jω)]dω

for F,G ∈ L2, and the inner product induced norm being ‖F‖2 = 〈F, F 〉 12 . However,

it is sometimes easier to compute such norms from state space models. This char-

acterization introduces the H2 space defined as a closed subspace of L2 with matrix
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functions F (s) analytic in Re(s) > 0. The induced norm of H2 is defined as [37]

‖F‖22 = sup
σ>0
{ 1

2π

∫ ∞
−∞

Trace[F ∗(σ + jω)F (σ + jω)]dω}

=
1

2π

∫ ∞
−∞

Trace[F ∗(jω)F (jω)]dω

As shown the norms for both H2 and L2 are the same. For ease of computation we

consider a state space form of the H2 norm. Considering the stable continuous time

system with real transfer function G(s) and corresponding state space matrices A,

B, C, and D, we have

‖G‖22 = trace(BTXB)

where X is obtained from the following Lyaponov equation

AX +XAT +BBT = 0.

Using Eigen Value Decomposition(EVD) the solution to X can be easily found via the

method found in [38]. In order to perform EVD within the TiDSP C++ environment,

we chose the open source library called ALGLIB [39]. This library has no external

dependencies and is modular in its design allowing only the code base necessary to

implement EVD, leaving out all the other functionality of ALGLIB to deliver the

smallest possible code size; an important quality for embedded systems that generally

lack a large program memory.

3.1.2 H∞ Optimal Control

In H∞ optimal control we seek a controller that minimizes the L∞ norm of the

error signal. The L∞ space is a Banach space [37] of matrix-valued (or scalar-valued)
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functions F that are bounded on the imaginary axis with norm

‖F‖∞ = ess sup
ωεR

σ̄[F (jω)].

where σ̄ is the maximum singular value of the matrix function F (jω). However, it

may be easier to compute such norms from state space models. This characterization

introduces the H∞ space defined as a closed subspace of L∞ with matrix functions

F (s) analytic in Re(s) > 0 and bounded on the imaginary axis. The induced norm

of H2 is defined as [37]

‖F‖∞ = sup
Re(s)>0

σ̄[F (s)] = ess sup
ωεR

σ̄[F (jω)].

As shown, the norms for both H∞ and L∞ are the same. The problem of H∞

optimal control is often cast into the sensitivity minimization problem in which we

seek a controller that will cause the weighted sensitivity function or closed loop

error transfer function to be small in the H∞ norm [40]. Thus, we seek to find the

min ‖W (s)T (s)‖∞ whereW (s) is the weighting function [24] defined1 asW (s) = s+0.1
s+1

and T (s) = C(s)G(s)
1+C(s)G(s)

is the complimentary sensitivity function (though any suitable

sensitivity function may be used), and G(s) is the plant transfer function.

Computationally, this norm is easier to solve in state space form and algorithms

exist in the literature: [41] and [42]. Unfortunately, no analytic formulation exists

and iterative approximations must be computed and searched. The simplest method

used is known as the Bisecting Algorithm [37]. The MATLAB implementation for

calculating the H∞ norm is based off the algorithm found in [41]. To implement

this in the TiDSP C++ environment we used a combination of both the MATLAB

1This is not unique; any suitable weighting may be chosen
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algorithm and the Bisection Algorithm for simplicity of implementation.

3.1.3 Settling Time, Overshoot, and Undershoot

Three common performance metrics in feedback control are the settling time,

overshoot, and undershoot of the system; others include peak time and rise time.

The settling time is defined as the time required for the system to settle within

a certain percentage of the input amplitude when excited by a step response [1].

A typical percentage value commonly used is 2%. The overshoot is a measure of

the peak amplitude of the signal during its transient response relative to a step

input. This is typically measured as a percentage of the reference input value. The

undershoot is a measure of the minimum amplitude of the signal relative to some

baseline, typically zero. This, like the overshoot, is often measured as a percentage

of the input reference value.

For second order systems, some of these performance metrics have closed form

expressions based on the damping ratio ζ. For a 2% settle time, Ts = 4
ζωn

and the

percent overshoot, P.O. = 100e
−ζπ√
1−ζ2 . However, no such closed form expressions

exist for higher ordered systems. Thus an analytic approach would not be general

enough for our purposes. The best way to consider these performance metrics for an

arbitrary plant order is through simulation of the system and data analysis.

There are numerous methods of numerical integration to simulate a dynamic sys-

tem. The most basic and simplest, though least accurate, is the Euler method for

integration. This is a first order, fixed step, iterative integration method which al-

lows for fast computation at the expense of larger error. Higher ordered integration

methods, like Runge-Kutta, are more accurate but more complex in their compu-

tational load. Besides increasing the order of integration, one can also move to a

variable step size in the integration processes. This further increases the accuracy
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allowing for finer resolution around critical points, reducing the overall error, but

greatly increases complexity and computation time. For the purpose of simplicity

the first order Euler method was chosen to simulate the system in order to determine

the settling time, overshoot and undershoot data.

To obtain the settling time, overshoot and undershoot, the first step is to take

the closed loop transfer function and convert it into a valid state space model. The

state space form chosen was the Controllable Canonical form, but it does not matter

which form is used. The Controllable Canonical form was chosen because it is easier

to discretize the system in this form. Discretization of the system generates a set

of first order difference equations in the time domain. Then, using a fixed step size

each state of the system can be calculated for each time step over a set interval of

discrete time. This is how the system is simulated and the output of the system is

stored.

Using the stored output data of the simulation over a span of 100 seconds we are

able to determine the settling time, overshoot and undershoot. The settling time

is found by performing a scan of the data and counting the number of consecutive

data points that are within 5% of the input2. Since the step size and end time

of the simulation are known, we can back count the amount of time from the end

of the simulation in order to find the exact time, the settling time, at which the

final response value remained within 5% of the step input value. The overshoot is

a simple search of the output data for the maximum value. The percent that this

value is above the step input value is the percent overshoot. And similarly, the

undershoot is the minimum value that occurs. Therefore, by using the simple Euler

method for integration with a fixed step size and the basic definitions of settling time,

2We used a more relaxed 5% settling time parameter rather than the 2% typically seen. Addi-
tionally the input is a step with a value of 1.
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overshoot, and undershoot, we are able to determine these performance metrics for

each stabilizing controller found. An exhaustive search through all these performance

metrics garners us the ability to find an optimal controller.

3.2 Examples and Results

We will now put the [P], [PI], and [PID] algorithms to use in obtaining optimal

PID controllers based on various performance criteria. In every case we consider the

plant model and weighting function

G(s) =
N(s)

D(s)
=

s− 1

s2 + 0.8s− 0.2

W (s) =
s+ 0.1

s+ 1
.

The search method employed in these examples is brute force. Once the complete

characterization of the stabilizing set is found via the [P], [PI] and [PID] algorithms,

the region is then quantized to produce a large set of unique kp, (kp, ki), or (kp, ki, kd)

values, respectively. Then for each value the H∞ norm, H2 norm, Settling Time,

Overshoot, and Undershoot are calculated where applicable. The smallest value is

found and the corresponding P, PI, or PID parameters is chosen as the optimal one.

3.2.1 Constant Gain Design Using H∞ and H2 Norms

Executing the [P] algorithm on the given plant provides us a narrowed Kp set of

kp ∈ (−0.800000,−0.200000) .

Using a quantization of this interval at a resolution of 200 evenly spaced data points

we calculate the H∞ and H2 Norms for each of the 200 data points. Then a complete

search over the set is performed for the minimum H∞ and H2 Norms. The result for
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the case of the H∞ norm was

min
kp∈(−0.8,−0.2)

‖W (s)T (s)‖∞ = 0.518470

at kp = −0.255500 A plot of the data points is shown in Figure 3.1.

Figure 3.1: H∞ norm of W (s)T (s) for constant gain stabilization.

The result for the case of the H2 norm was

min
kp∈(−0.8,−0.2)

‖W (s)G(s)S(s)‖2 = 1.038303

at kp = −0.267500. A plot of the data points is presented in Figure 3.2.
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Figure 3.2: H2 norm of W (s)G(s)S(s) for constant gain stabilization.

These results verify correctness of the [P] algorithm implemented on the embed-

ded system for use in optimal constant gain controller design because they match

the results found in [24].

3.2.2 PI Controller Design Using H∞ and H2 Norms and Time Domain

Performance Metrics

Applying the [PI] algorithm to the given plant provides us with a narrowed Kp

set of

kp ∈ (−1.800000,−0.200000) .

A full characterization of the (kp, ki) set of stabilizing controllers is shown in Figure

3.3 with a “non-fragile” controller indicated by the star, found via the center of mass

calculation of the region.
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Figure 3.3: The stabilizing set of (kp, ki) values.

Using a quantization resolution of 300 data points for the Kp interval and 200 data

points for eachKi interval corresponding to a specific kp value, totalling 60,000 unique

controllers, we calculated the H∞ norm, H2 norm, settling time, overshoot, and

undershoot. Using these values we can search for the minimum for each performance

criterion.

It may be the case [24] that an optimal condition is reached when ki = 0. Math-

ematically this forces the PI controller into a Constant Gain controller. However,

the point of using a PI controller is for asymptotic step tracking. Practically, such

an implementation of ki = 0 will cause the closed loop system to be destabilized.

Therefore, we place a constraint on ki so that we only consider controllers where

ki ≤ −0.01. This choice is of course arbitrary and was chosen to more closely follow

the results of [24]. Under this constraint we now proceed with the results.
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For the optimal H∞ controller we find that

min
kp∈(−1.8,−0.2)

‖W (s)T (s)‖∞ = 0.930681

and this occurs at kp = −0.314667 and ki = −0.010023.

For the optimal H2 controller we find that

min
kp∈(−1.8,−0.2)

‖W (s)G(s)S(s)‖2 = 1.184342

and this occurs at kp = −0.320000 and ki = −0.010022.

Plots of all H∞ and H2 values for each (kp, ki) pair is shown in Figures 3.4 and

3.5, respectively.

Remark : These values do not perfectly match those found in [24]. There are two

reasons for this difference. The first reason affects all the results presented here.

How the region is quantized affects which controller values are evaluated. That is,

the method in which we quantize the interval does not allow for our algorithm to

consider the (kp, ki) pair found in [24]. If we force the algorithm to evaluate the

optimal pair found in [24] then we obtain 0.931322 for H∞ and 1.183423 for H2,

which in the case of H2 is an exact match. The second reason affects the H∞ values.

Due to the computational nature of finding the H∞ norm of the closed loop transfer

function, we elected a less accurate but more computationally efficient version. This

was because we are implementing the algorithms on to an embedded system and

computational efficiency carries a higher importance. Despite the lower accuracy the

results are still acceptable.
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Figure 3.4: H∞ norm of W (s)T (s) vs. (kp, ki) for PI controllers.

Figure 3.5: H2 norm of W (s)G(s)S(s) vs. (kp, ki) for PI controllers.

For settling time, overshoot, and undershoot we obtained the plots shown in

Figures 3.6, 3.7, and 3.8, respectively. For each time domain characteristic we found
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the optimal minimum and corresponding controller parameters to be.

Settling Time(5%): 21.800000, kp = −0.346667, ki = −0.013382

Overshoot(%): 154.880593, kp = −0.458667, ki = −0.010038

Undershoot(%): 10.152900, kp = −0.266667, ki = −0.010029

where undershoot and overshoot are specified as percentages and we consider a 5%

settling time in seconds.

Figure 3.6: Plot of settling time vs. (kp, ki).
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Figure 3.7: Plot of overshoot vs. (kp, ki).

Figure 3.8: Plot of undershoot vs. (kp, ki).

To make full use of this algorithm we now consider using multiple performance

metrics to define an optimal controller. As was done in [24] let us consider the

following design criteria.
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1. Settling time ≤ 30 secs.

2. Overshoot ≤ 200%.

Executing the algorithm and searching over the parameter space for these specific

performance criteria produces a subset of valid controllers found in Table 3.1.

Table 3.1: Short list of controllers with settling time ≤ 30 and overshoot ≤ 2.

kp ki Settling Time Overshoot Undershoot

-0.43733 -0.02195 27.930 171.785 17.749

-0.43200 -0.02013 28.770 169.818 17.463

-0.42667 -0.02172 28.720 172.557 17.261

-0.42133 -0.02052 29.360 171.545 16.992

-0.41600 -0.02262 29.430 175.186 16.803

-0.34667 -0.01521 29.140 182.767 13.597

-0.34133 -0.01278 22.600 181.600 13.314

-0.33600 -0.01110 26.760 181.797 13.050

-0.32533 -0.01079 25.620 187.207 12.593

-0.32000 -0.01002 27.080 189.515 12.352

For validation of the algorithm applied to this example we provide the simulation

results of the MATLAB SIMULINK system of Figure 2.4 using the controller pa-

rameters of kp = −0.43200 and ki = −0.02013. The results are presented in Figure

3.9.
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Figure 3.9: Step response for kp = −0.43200 and ki = −0.02013 with settling time
≤ 30 and overshoot ≤ 2.

3.2.3 PID Controller Design Using H∞ and H2 Norms and Time Domain

Performance Metrics

Using the [PID] algorithm on the given plant provides us with a narrowed Kp set

of

kp ∈ (−1.800000,−0.200000) .

A full characterization of the (kp, ki, kd) set of stabilizing controllers is shown in

Figure 3.10.

72



Figure 3.10: The stabilizing set of (kp, ki, kd) values.

We will now consider regions of Figure 3.10 that produce the H∞ and H2 optimal

controllers. Using a quantization resolution of 100 data points for the Kp interval and

25 data points for eachKi andKd region corresponding to a specific kp value, totalling

62,500 unique controllers, these values are used to find the minimum performance

metrics.

As in the case of PI controllers, it may be the case [24] that an optimal condition

is reached when ki = 0. Thus, as before, we place a constraint on ki so that we only

consider controllers where ki ≤ −0.01. Under this constraint we now proceed with

the computation of the results. For the optimal H∞ controller we find that

min
kp∈(−1.8,−0.2)

‖W (s)T (s)‖∞ = 0.560194

and this occurs at kp = −0.368000, ki = −0.010080, and kd = −0.326960. The

stabilizing region corresponding to kp = −0.368000 is given in Figure 3.11 and the

plot of the H∞ norm over this plane is given in Figure 3.12.
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Figure 3.11: The stabilizing set of (ki, kd) values for kp = −0.368000.

Figure 3.12: H∞ norm of W (s)T (s) for kp = −0.368000.
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For the optimal H2 controller we find that

min
kp∈(−1.8,−0.2)

‖W (s)G(s)S(s)‖2 = 1.031678

and this occurs at kp = −0.304000, ki = −0.010400, and kd = −0.326960. The

stabilizing region corresponding to kp = −0.304000 is given in Figure 3.13 and the

plot of the H2 norm over this plane is given in Figure 3.14.

Remark : These values do not perfectly match those found in [24]. The reasons

are the same as noted in the section of this chapter relating to the PI controller

results.

Figure 3.13: The stabilizing set of (ki, kd) values for kp = −0.304000.
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Figure 3.14: H2 norm of W (s)G(s)S(s) vs. (ki, kd) for kp = −0.304000.

Searching over the entire (kp, ki, kd) space of Figure 3.10 we found the minimum

settling time, overshoot and undershoot to be

Settling Time(5%): 0.240000, kp = −1.776000, ki = −0.788000, kd = −0.999760

Overshoot(%): 27.371123, kp = −0.976000, ki = −0.015520, kd = −0.983850

Undershoot(%): 10.455415, kp = −0.272000, ki = −0.010080, kd = 0.024982

Plots of each (ki, kd) plane for the respective kp values can be found for settling time in

Figure 3.15, overshoot in Figure 3.17, and undershoot in Figure 3.19. Additionally

the settling time, overshoot, and undershoot plot over each plane are plotted in

Figures 3.16, 3.18, 3.20, respectively.
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Figure 3.15: The stabilizing set of (ki, kd) values for kp = −1.776000.

Figure 3.16: Settling time vs. (ki, kd) values for kp = −1.776000.
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Figure 3.17: The stabilizing set of (ki, kd) values for kp = −0.976000.

Figure 3.18: Overshoot vs. (ki, kd) values for kp = −0.976000.
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Figure 3.19: The stabilizing set of (ki, kd) values for kp = −0.272000.

Figure 3.20: Undershoot vs. (ki, kd) values for kp = −0.272000.

To make full use of this algorithm we now consider using multiple performance
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metrics to define an optimal controller. As was done in [24] let us consider the

following design criteria.

1. Settling time ≤ 10 secs.

2. Undershoot ≤ 200%.

3. |essramp | ≤ 1, where essramp is the steady state error to a unit ramp input.

Executing the algorithm and searching over the parameter space for these specific

performance criteria produces the set of valid controllers found in Table 3.2.

Table 3.2: Controllers with settling time ≤ 10, undershoot ≤ 2 and ki ≤ −0.2.

kp ki kd Settling Time Overshoot Undershoot

-1.0080 -0.2101 -0.6601 9.4700 151.7345 194.1813

-0.9920 -0.2059 -0.6532 9.6800 148.1025 188.3560

-0.9920 -0.2059 -0.6293 9.9300 156.8952 169.7523

-0.9760 -0.2018 -0.6463 9.8800 144.6588 182.7568

-0.9120 -0.2136 -0.6643 8.6600 126.7059 197.9170

-0.8960 -0.2088 -0.6583 8.9600 124.0649 192.6441

-0.8800 -0.2040 -0.6522 9.2700 121.5755 187.5546

To validate the algorithm applied to this example we provide the simulation results

of the MATLAB SIMULINK system of Figure 2.10 using the controller parameters,

kp = −0.8800, ki = −0.2040, kd = −0.6522. The results are given in Figure 3.21.

80



Figure 3.21: Step response for kp = −0.8800, ki = −0.2040, and kd = −0.6522 with
settling time ≤ 10, undershoot ≤ 2 and ki ≤ −0.2.

The algorithm is also well equipped to handle disjoint stabilizing sets. Consider

the following example where

G(s) =
N(s)

D(s)
=

s3 + 3s2 + 9

s4 + 2s3 + 3s2 + 7s+ 14

and using the same weighting function, W (s), as before. Executing the [PID] algo-

rithm on the given plant provides us with a narrowed Kp set of

kp ∈ (−1.870784,−1.555556) ∪ (0.315687, 0.533263) .

A full characterization of the (kp, ki, kd) set of stabilizing controllers is given in Figure

3.22.
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Figure 3.22: The stabilizing set of (kp, ki, kd) values.

We will now consider regions of Figure 3.22 that produce the H∞ and H2 optimal

controllers. Using a quantization resolution of 100 data points for each Kp interval

and 25 data points for each Ki and Kd region corresponding to a specific kp value,

totalling 125,000 unique controller, these values are used to calculate the minimum

performance metrics.

For the same reason explained previously, we place a constraint on ki so that we

only consider controllers where |ki| ≥ 0.01. Under this constraint we now proceed

with the results. For the optimal H∞ controller we calculate that

min
kp∈(−1.87,−1.56)∪(0.32,0.53)

‖W (s)T (s)‖∞ = 6.669036
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and this occurs at kp = −1.610720, ki = −0.018520, and kd = −1.391080. The

stabilizing region corresponding to kp = −1.610720 is given in Figure 3.23 and the

plot of the H∞ norm over this plane is given in Figure 3.24.

Figure 3.23: The stabilizing set of (ki, kd) values for kp = −1.610720.

Figure 3.24: H∞ norm of W (s)T (s) for kp = −1.610720.
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For the optimal H2 controller we calculate that

min
kp∈(−1.87,−1.56)∪(0.32,0.53)

‖W (s)G(s)S(s)‖2 = 1.374129

and this occurs at kp = −1.648548, ki = −0.010104, and kd = −1.391080. The

stabilizing region corresponding to kp = −1.648548 is given in Figure 3.25 and the

plot of the H2 norm over this plane is given in Figure 3.26.

Figure 3.25: The stabilizing set of (ki, kd) values for kp = −1.648548.
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Figure 3.26: H2 norm of W (s)G(s)S(s) vs. (ki, kd) for kp = −1.648548.

Searching over the entire (kp, ki, kd) space of Figure 3.22 we calculated the mini-

mum settling time, overshoot and undershoot to be

Settling Time(5%): 30.7400, kp = −1.632786, ki = −0.025468, kd = −1.016770

Overshoot(%): 268.617, kp = −1.799857, ki = −0.612622, kd = −2.001945

Undershoot(%): 0.252394, kp = −1.812466, ki = −0.025643, kd = −1.478436

All of the results reported in this section were based on a brute force search over

the stabilizing set. Moreover, for each controller parameter the H∞ and H2 norms

were computed along with a 100 second simulation of the closed loop transfer function

with a fixed step size of 0.01 using the euler method to obtain the time domain

characteristics of settling time, overshoot and undershoot. If the resolution of the

quantization of each interval range is large, this can generate a significant amount of

computations. For the larger data sets existing in the PID controller space, the total
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computation time was on the order of hours. Increasing the resolution increased the

computation time to days. This would be impractical for real time systems with fast

changing plants or fast response time.

3.3 Improving Search Time

One of the disadvantages with the methods presented is the brute force search

technique. Based on the resolution at which the convex set is quantized a fairly large

amount of data points will be produced. For example if we quantize the Kp range

into 200 points and the Ki and Kd ranges into 50 data points, we will have 500,000

data points to compute on. This will be too much data when we consider that for

each data point two norm calculations and a simulation must be preformed, and we

also have to search through the data to find a minimum value. In a real time system

implementation, time is critical and this will not be an efficient method. To solve

this problem, we present a few methods to decrease the search time of the optimal

controller.

3.3.1 Coarse Grained Search to Fine Grained Search

A possible way of improving the search time would be to begin with a very coarse

quantization of the parameter space and perform a brute force search. Because it

is a coarse quantization there will be fewer data points to consider resulting in a

quicker search. The minimum point found in the coarse search is used as the center

of a square region around the point. This square region is then quantized more

finely. Then a brute force search is performed on this localized region. This has the

advantage of decreasing the total number of data points computed upon.
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3.3.2 Gradient Descent Search

Gradient descent is a popular method for finding the minimum of a set of data

quickly. Unfortunately, the data must already be present or a formula representing

the gradient slope of the data should be available. In our case we have no gradient

function and no data. Instead we will compute localized data and follow the localized

gradient until a minimum is reached.

First, compute a quantization of the parameter space, then pick a point in the

quantization set. For PID there are 27 directions a point can move to in a quantized

3D space if we include diagonal trajectories. For PI we only have 9 directions if we

include the diagonals. By computing the performance metric for each of these direc-

tions around the point we can move to the next point in the direction of the largest

negative change, which is the direction that is decreasing the fastest. Iteratively

moving along this path will converge to a minimum.

3.3.3 Multi-core Design and Hybrid Methods

The multi-processor paradigm has been a popular way to increase the efficiency

of algorithms. Because the computation of each data point is independent of every

other data point, the problem is naturally amenable to a parallel implementation

under the work sharing paradigm. If M processing cores are available then the total

data could be divided M ways and a brute force search applied, reducing the search

time by a factor3 of M . Each of the previous methods for reducing search time could

use the multi-core paradigm to improve search speed and accuracy or hybrid versions

of these search methods can be conceived.

If we reconsider the coarse to fine grained search again we can develop a method

of improving its accuracy without sacrificing too much time by exploiting a parallel

3in the ideal case. There is of course some software and hardware overhead in the implementation
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algorithm. Let k = M and during the coarse grained search we store the k best

controllers. Next, each processing core performs the fine grained local search in

parallel at each of the k regions around the k points found. Then the overall minimum

can be selected from the set of k best controllers found.

In the Gradient Search method we could choose M random points and have each

processing core in parallel determine a local minimum and then out of the M local

minimum the best controller can be chosen.

Additionally, we can extend these search methods into hybrid methods by taking

elements from one search idea and combine them with elements of another. For

example, we could use a coarse grained gradient descent search, and then apply a

fine grained brute force search in a square region around the minimum point found

in the coarse search. Or, we could use a coarse grained brute force search and then

apply a fine grained gradient descent search in the square region around the point

found. The number of hybrid search methods based on the two search ideas presented

here in combination with parallel algorithm paradigms is plentiful.

3.3.4 Implementation Results of Fast Search Methods for P, PI, and PID

Controllers

The search methods implemented and compared in this section are a Brute Force

Search(BFS), Coarse Grained to Fine Grained Search(C2FS), and Gradient Descent

Search(GDS). All these search methods are performed on the same plant model and

weighting function used in this chapter,

G(s) =
N(s)

D(s)
=

s− 1

s2 + 0.8s− 0.2

W (s) =
s+ 0.1

s+ 1
.
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These search algorithms were implemented on the TMDSEVM6678LE Evaluation

Module, the same test system used for all the algorithms in this dissertation. Timing

results were obtained by using the embedded time stamp counter registers TSCL and

TSCH [43]. These are CPU registers that contain a free running 64-bit counter that

advances at each CPU clock. By profiling the code for each algorithm the number

of clock cycles spent on a particular code segment can be determined. This value

can then be divided by the clock frequency of the DSP hardware to obtain the “wall

clock” time spent executing the code segment.

For the constant gain stabilization results, we quantized the Kp region into 300

data points and performed a BFS for the minimum H∞ and H2 norms. For the GDS

we also use the same 300 data points and we begin the search at the mid-point of

the Kp interval. In the C2FS we use a coarse quantization of 50 data points and

a fine quantization of 50 data points, producing a total search of 100 data points.

The timing results are present in table 3.3 along with the minimum value calculated

through each respective search. We find that the values calculated for each metric are

approximately the same and the advantages in processing time is dampened by the

small set of data available to compute on. Larger variations in timing data will result

when the data set sizes increase under the PI and PID controllers. However, we still

see improvements in the timing of the search methods over BFS while maintaining

consensus in the optimal value returned.
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Table 3.3: Timing of each search method for constant gain control.

BFS C2FS GDS

H∞
1.20189 0.49767 0.73423 Time(sec)

0.52016 0.51892 0.52273 Value

H2

0.92607 0.29722 0.51382 Time(sec)

1.03831 1.03830 1.03831 Value

In PI control we quantized the Kp region into 300 data points and the Ki region

into 200 data points, for a total of 60,000 data points and performed a BFS for the

minimum H∞ and H2 norms, settling time, overshoot, and undershoot. For the GDS

we used the same 60,000 data points and begin the search at the best “non-fragile”

controller defined by the center of mass calculation. For the C2FS we quantize the

coarse search to 50 data points for both the Kp and Ki intervals and quantize the

fine search to 50 data points for both the Kp and Ki intervals inside the localized

region. This amounts to only 5,000 data points; much less than the BFS approach.

The timing results are shown in table 3.4 along with the minimum value computed

through each respective search.
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Table 3.4: Timing of each search method for PI control.

BFS C2FS GDS

H∞
968.037 137.713 12.457 Time(sec)

0.930681 0.930437 0.949214 Value

H2

544.456 62.252 5.845 Time(sec)

1.18434 1.18386 1.18482 Value

Settle Time
1875.798 367.990 3.718 Time(sec)

21.8 21.14 35.0 Value

Overshoot
1875.798 227.210 49.955 Time(sec)

154.8806 154.8451 154.881 Value

Undershoot
1875.798 256.550 34.413 Time(sec)

10.1529 10.0962 12.8025 Value

With these results we discover the power of these faster search algorithms. We

first note that the values of each performance metric found is relatively close in value

for all the metrics and nearly the same for H∞ and H2 norms. The outlier in the

data is the settling time metric for GDS. If we refer back to figure 3.6 we will notice

that the gradient of the plot seems to make a zig-zag down to the minimum point.

This apparent zig-zag may be producing local minima that prevent the GDS from

reaching the true minimum. Because of this, it is not advisable to use a GDS method

to find minimum settling times. Excluding the settling time data, the GDS performs

the fastest search and provides accurate results compared to the BFS.

In PID control we quantized the Kp region into 100 data points and the Ki and Kd

regions into 50 data points each, for a total of 250,000 data points and performed a

BFS for the minimum H∞ and H2 norms, settling time, overshoot, and undershoot.
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For the GDS we used the same 250,000 data points and begin the search at the

best “non-fragile” controller defined by the largest inscribed circle calculation. For

the C2FS we quantize the coarse search to 10 data points for the Kp, Ki, and Kd

intervals and quantize the fine search in the same manor for the localized region.

This amounts to only 2,000 data points, much less then the BFS approach. The

timing results are present in table 3.5 along with the minimum values calculated

through each respective search.

Table 3.5: Timing of each search method for PID control.

BFS C2FS GDS

H∞
121420 85.792 150.828 Time(sec)

0.560194 0.547988 0.521685 Value

H2

83354.9 32.006 89.482 Time(sec)

1.031678 1.028096 1.05423 Value

Settle Time
49171.6 232.552 114.728 Time(sec)

0.24 0.58 2.08 Value

Overshoot
49171.6 232.492 83.494 Time(sec)

28.5348 31.6576 28.5348 Value

Undershoot
49171.6 150.250 150.989 Time(sec)

10.3861 11.0232 10.3861 Value

Again, with the exception of settling time under GDS, the faster search methods

still maintain accurate results while keeping search time extremely low compared to

BFS. With a search space as large as 250,000 points the BFS took on the order of

10’s of hours to complete, while the GDS over the same point space size reduced the

92



search time to less than three minutes. Also, surprising results are found in C2FS

with a search space of only 2,000 data points. The value of the results are a little less

accurate than BFS and GDS, but the timing results surpass the other two search

methods. The drastically reduced search space is what causes C2FS to beat the

timing in GDS, which was not the case in PI control previously.

These faster search methods give viability to the algorithms presented in chapter 2

for use in real time auto tuning of PID controllers. These methods are also extendable

to the different class of systems to be covered next.

3.4 Summary

In this chapter we applied the algorithms of chapter 2 to help solve PID optimal

control problems. Fast and efficient algorithms were developed and chosen to calcu-

late necessary results such as H2 and H∞ norms of the closed loop transfer function.

Other criteria evaluated were settling time, overshoot, and undershoot. These al-

gorithms were tested against numerous examples. A brute force search technique

for auto-tuning of PID controllers in real time proved to be unusable and thus two

new search techniques, Gradient Descent Search and Coarse to Fine Grained Search,

were formulated. These faster search techniques made considerable improvements in

search speed over brute force search and made the application of the algorithms of

chapter 2 possible for real time systems.

In the next chapter we will expand our embedded systems algorithms to the use

of non-fragile and robust controllers as formulated in [24].
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4. ROBUST AND NON-FRAGILE CONTROLLER DESIGN

In this chapter we examine the TiDSP C++ implementation of the covered al-

gorithms for the design of robust and non-fragile controllers. We are dealing with

robust control because the plants are uncertain, and in our case, this uncertainty

is modeled using interval plants. An interval plant is a standard polynomial plant

model with real coefficients, but the coefficients are now known to vary within some

closed intervals of R. Under this scenario, the structure of the plant model, as in

the degrees of the numerator and denominator polynomials, will not change but

the coefficient values are allowed to perturb within some known closed intervals.

Kharitonov’s celebrated theorem provides necessary and sufficient conditions for the

Hurwitz stability of interval polynomials, but cannot be applied directly when we

are combining a controller with an interval plant. In [40], Chapellat, Bhattacharyya,

and Keel, develop a generalized form of Kharitonov’s theorem, which is a crucial step

in applying the previous results to this new problem domain.

4.1 Robust Constant Gain Stabilization of Interval Plants

The solution to the constant gain stabilization problem involves applying the

Kharitonov theorem by finding the four Kharitonov polynomials for both the nu-

merator and the denominator of the plant. This creates eight new polynomials in

total and sixteen total plant models to consider. For completeness we restate the

definition of an interval polynomial and Kharitonov’s theorem as presented in [24].

Consider a set F of all real polynomials of degree n of the form

P (s) = p0 + p1s+ p2s
2 + · · ·+ pns

n
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where the coefficients vary in independent intervals

p0 ∈ [x0, y0], p1 ∈ [x1, y1], . . . , pn ∈ [xn, yn], 0 /∈ [xn, yn]

Such a set of polynomials is called an interval polynomial. Kharitonov’s theorem

states that every polynomial in the interval family F is Hurwitz if and only if the

following four polynomials called Kharitonov polynomials are Hurwitz:

K1(s) = x0 + x1s+ y2s
2 + y3s

3 + x4s
4 + x5s

5 + y6s
6 + . . .

K2(s) = x0 + y1s+ y2s
2 + x3s

3 + x4s
4 + y5s

5 + y6s
6 + . . .

K3(s) = y0 + x1s+ x2s
2 + y3s

3 + y4s
4 + x5s

5 + x6s
6 + . . .

K4(s) = y0 + y1s+ x2s
2 + x3s

3 + y4s
4 + y5s

5 + x6s
6 + . . .

To illustrate Kharitonov’s theorem, we consider the following example:

Ex. 5 — Let P (s) = b4s
4 + b3s

3 + b2s
2 + b1s+ b0 where

b4 ∈ [1, 1], b3 ∈ [3, 4], b2 ∈ [4, 4], b1 ∈ [5, 8], b0 ∈ [6, 7]. Determine the four Kharitonov

Polynomials corresponding to the plant P (s).

Answer (Ex. 5) — The four Kharitonov polynomials corresponding to this plant

are:

K1(s) = s4 + 4s3 + 4s2 + 5s+ 6

K2(s) = s4 + 3s3 + 4s2 + 8s+ 6

K3(s) = s4 + 4s3 + 4s2 + 5s+ 7

K4(s) = s4 + 3s3 + 4s2 + 8s+ 7 .
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The constant gain stabilization algorithm to characterize the entire stabilizing

set of kp values for an interval plant can now be stated as follows:

1. Determine the four Kharitonov polynomials for both N(s) and D(s).

2. For each of the 16 combinations of G(s) = N i(s)
Dj(s)

, i, j ∈ {1, 2, 3, 4} execute the

[P] algorithm and get the respective Kp range.

3. Return the intersection of the 16 Kp ranges found.

The main computing arm of this algorithm is in the already discussed [P] algorithm.

By simply constructing the 16 plants from the Kharitonov polynomials and finding

the Kp intervals for each plant and then taking the intersection of all the Kp intervals,

the stabilizing set is obtained.

4.1.1 Computing the Intersection of a Set of Intervals

Outside of constructing the Kharitonov polynomials, the major addition to the

TiDSP C++ implementation is an algorithm to find the intersection of a set of

intervals on the real line.

Computationally, an interval on our platform is represented as two floating point

double precision numbers a and b with a < b. The left end point (LEP) is a and

the right end point (REP) is b. When we consider a set of intervals we will add

numerical subscripts to a and b. For example, the sixteen combinations of plants

produce sixteen intervals and we denote the sets as {(ai, bi)|i ∈ [1, 2, . . . , 16]}. The

algorithm presented here requires two phases. Phase one is a search on the left end

points first, followed by the right, and phase two reverses this search. The algorithm

then compares the two intervals found from both phases and determines their validity.

The details of this are found in Algorithm 6.
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Algorithm 6 INTERVAL INTERSECTION()

Precondition: The two passes produce I1 = (aI1 , bI1) and I2 = (aI2 , bI2). Let c1 ∈ I1
and c2 ∈ I2.

1 function INTERVAL INTERSECTION()
2 aI1 ← maxai(ai, bi) ∀i
3 bI1 ← minbi>aI1 (ai, bi) ∀i
4 bI2 ← minbi(ai, bi) ∀i
5 aI2 ← maxai≤bI2 (ai, bi) ∀i
6 if I1 = I2 then
7 Return I1
8 if c1 ∈ {(ai, bi) ∀i} and c2 ∈ {(ai, bi) ∀i} then
9 Return I1 and I2

10 if c1 ∈ {(ai, bi) ∀i} then
11 Return I1
12 if c2 ∈ {(ai, bi) ∀i} then
13 Return I2

4.2 Robust PI Control of Interval Plants

The application of the [PI] algorithm to interval plants is straight forward. The

algorithm follows along similar lines as the constant gain stabilization algorithm for

interval plants with the additional need to narrow the Kp sweeping range. The

algorithm is detailed below.

1. Determine the 4 Kharitonov polynomials for both N(s) and D(s).

2. For each of the 16 combinations of G(s) = N i(s)
Dj(s)

, i, j ∈ {1, 2, 3, 4} execute the

Kp range narrowing algorithm (step [PI].4 from the [PI] algorithm) and get the

respective narrowed Kp range.

3. Form the intersection of the 16 narrowed Kp ranges as the global Kp range.

4. For each kp in the globally narrowed Kp range do the following
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a) For each of the 16 combinations of G(s) run the [PI] algorithm to find the

Ki interval.

b) Take the intersection of the 16 Ki intervals to produce the global Ki interval

for that specific kp.

This algorithm does not present any new challenges for the existing embedded sys-

tems implementation.

4.3 Robust PID Control of Interval Plants

For robust stabilization of interval plants under PID controllers the General-

ized Kharitonov Theorem [40] is invoked. This introduces the concept of the four

Kharitonov segments [24] of N(s). Let N i(s), i = 1, 2, 3, 4 and Dj(s), j = 1, 2, 3, 4 be

the Kharitonov polynomials corresponding to N(s) and D(s), respectively. Now, let

NSi(s), i = 1, 2, 3, 4 be the four Kharitonov segments of N(s) where

NS1(s, λ) = (1− λ)N1(s) + λN2(s)

NS2(s, λ) = (1− λ)N1(s) + λN3(s)

NS3(s, λ) = (1− λ)N2(s) + λN4(s)

NS4(s, λ) = (1− λ)N3(s) + λN4(s)

and λ ∈ [0, 1]. Let GS(s) denote the family of 16 segment plants:

GS(s) = {Gij(s, λ)|Gij(s, λ) =
NSi(s, λ)

Dj(s)
, i = 1, 2, 3, 4, j = 1, 2, 3, 4, λ ∈ [0, 1]} .

Thus, to characterize all stabilizing PID controllers for the entire family of segment

plants GS(s), the entire family of closed loop characteristic polynomials must be Hur-

witz. Using the already established [PID] algorithm and the Generalized Kharitonov
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Theorem, the robust stabilization algorithm achieves Hurwitz stability of the entire

family of closed loop characteristic polynomials.

1. Determine the 4 Kharitonov polynomials for both N(s) and D(s).

2. For each of the 16 combinations of G(s) = N i(s)
Dj(s)

, i, j ∈ {1, 2, 3, 4} execute the

Kp range narrowing algorithm and get the respective narrowed Kp range.

3. Take the intersection of the 16 narrowed Kp ranges as the global Kp range.

4. For each kp in the globally narrowed Kp range do the following

a) For each of the 16 segment plants GS(s)

• Sweep over λ ∈ [0, 1] and execute the [PID] algorithm and store the set

of linear inequalities that define the (ki, kd) convex set for each λ.

• Find the intersection of the set of linear inequalities to define the convex

set over all λ values.

b) Find the Feasible Region of all the linear inequalities generated by the 16

segment plants.

c) Quantize the (ki, kd) region.

d) Solve the largest inscribed circle.

5. Find the largest radius circle over all the kp values and return the optimal

“non-fragile” controller.

In step 4a we look to find the solution of the feasible region for a given segment

plant over all values of λ, but we do not want to enumerate the vertices. Instead,

we want to find the minimal set of linear inequalities that will define the feasible
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region over the λ sweep. This allows us to then combine all the linear inequali-

ties after processing all the segment plants to then solve for the feasible region via

vertex enumeration for each kp value. Thus, we make a small modification to the

FEASIBLE_REGION() algorithm previously discussed. The modification saves the lin-

ear inequality associated with each vertex found during the search for later use.

The concept of “non-fragile” controllers is discussed in [24]. A controller that

destabilizes the system due to small perturbations in the controller parameters is

said to be “fragile.” The practical importance of this idea stems from the fact that

any implementation of the controller parameters will never be ideal. Thus, to design

for fragility we can choose the controller that is furthest away from the stability

boundaries. Because we have characterized the entire region of PID controllers that

stabilize a system, this is now an easy task. The exact solution to this comes from

our previously described solution of finding the largest inscribed circle. By reusing

this solution method we are able to find the optimal “non-fragile” PID controller for

any given interval plant.

4.4 Examples and Results

In this section we verify all the examples in [24] involving interval plants on our

embedded system implementation. In all cases we consider the following plant model

G(s) =
N(s)

D(s)

N(s) = a0 + a1s+ a2s
2 + a3s

3 + . . .

D(s) = b0 + b1s+ b2s
2 + b3s

3 + . . .

where the particular ai and bi parameters are defined for each example.
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4.4.1 Robust Stabilization Using Constant Gain

For this example we let

a2 ∈ [1, 1], a1 ∈ [1, 2], a0 ∈ [1, 2]

b4 ∈ [1, 1], b3 ∈ [3, 4], b2 ∈ [4, 4], b1 ∈ [5, 8], b0 ∈ [6, 7] .

Running the [P] algorithm for Robust Stabilization on our embedded system produces

the following Kharitonov polynomials:

N1(s) = 1.0s2 + 1.0s+ 1.0

N2(s) = 1.0s2 + 2.0s+ 1.0

N3(s) = 1.0s2 + 1.0s+ 2.0

N4(s) = 1.0s2 + 2.0s+ 2.0

D1(s) = 1.0s4 + 4.0s3 + 4.0s2 + 5.0s+ 6.0

D2(s) = 1.0s4 + 3.0s3 + 4.0s2 + 8.0s+ 6.0

D3(s) = 1.0s4 + 4.0s3 + 4.0s2 + 5.0s+ 7.0

D4(s) = 1.0s4 + 3.0s3 + 4.0s2 + 8.0s+ 7.0 .

101



The set of intervals generated for each of the 16 vertex plants is:

K11 = (2.388508,∞)

K12 = (1.558422,∞)

K13 = (3.000000,∞)

K14 = (2.052343,∞)

K21 = (1.774917,∞)

K22 = (2.000000,∞)

K23 = (2.272002,∞)

K24 = (2.558422,∞)

K31 = (−3.00000,−2.829708) ∪ (4.829708,∞)

K32 = (2.854102,∞)

K33 = (−3.500000,−3.472136) ∪ (5.472136,∞)

K34 = (3.468627,∞)

K41 = (3.201562,∞)

K42 = (−3.00000,−2.854102) ∪ (3.854102,∞)

K43 = (3.774917,∞)

K44 = (−3.50000,−3.468627) ∪ (4.468627,∞) .

Performing the intersection of all these intervals gives the final stabilizing set of

constant gain controllers for this interval plant as

kp ∈ (5.472136,∞) .
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It is impossible to verify the stability of the system over all possible kp values, but

as a representative example to the systems stability and correctness of the algorithm

we consider an arbitrary plant within the coefficient intervals specified and choose

an arbitrary kp value close to the left end point of the Kp interval, and simulate the

system using the MATLAB SIMULINK model of Figure 2.1.

The arbitrary plant that was generated for this example is

N(s) = 1.0000s2 + 1.3532s+ 1.8212

D(s) = 1.0000s4 + 3.0430s3 + 4.0000s2 + 6.9473s+ 6.7317

and the arbitrary kp value is kp = 6.1497. The output response is presented in Figure

4.1.

Figure 4.1: System response with kp = 6.1497.
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4.4.2 Robust Stabilization Using PI Control

For this example we let

a4 ∈ [1, 1], a3 ∈ [2, 3], a2 ∈ [39, 41], a1 ∈ [48, 50], a0 ∈ [−6,−3]

b5 ∈ [1, 1], b4 ∈ [2, 3], b3 ∈ [31, 32], b2 ∈ [35, 38], b1 ∈ [49, 51], b0 ∈ [97, 101] .

Running the [PI] algorithm for Robust Stabilization on our embedded systems pro-

duces the following Kharitonov polynomials:

N1(s) = 1.0s4 + 3.0s2 + 41.0s2 + 48.0s− 6.0

N2(s) = 1.0s4 + 2.0s2 + 41.0s2 + 50.0s− 6.0

N3(s) = 1.0s4 + 3.0s2 + 39.0s2 + 48.0s− 3.0

N4(s) = 1.0s4 + 2.0s2 + 39.0s2 + 50.0s− 3.0

D1(s) = 1.0s5 + 2.0s4 + 32.0s3 + 38.0s2 + 49.0s+ 97.0

D2(s) = 1.0s5 + 2.0s4 + 31.0s3 + 38.0s2 + 51.0s+ 97.0

D3(s) = 1.0s5 + 3.0s4 + 32.0s3 + 35.0s2 + 49.0s+ 101.0

D4(s) = 1.0s5 + 3.0s4 + 31.0s3 + 35.0s2 + 51.0s+ 101.0 .

Performing the Kp narrowing routine on this examples produces the finite Kp sweep-

ing interval to be:

kp ∈ (0.002203, 16.166667) .
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The set of intervals generated for each of the 16 vertex plants for the specific value

of kp = 2.0 are

K11 = (−1.499299,−0.000000)

K12 = (−1.504891,−0.000000)

K13 = (−1.567277,−0.000000)

K14 = (−1.573404,−0.000000)

K21 = (−1.460975,−0.000000)

K22 = (−1.465634,−0.000000)

K23 = (−1.528074,−0.000000)

K24 = (−1.533151,−0.000000)

K31 = (−1.735555,−0.000000)

K32 = (−1.739353,−0.000000)

K33 = (−1.809986,−0.000000)

K34 = (−1.814157,−0.000000)

K41 = (−1.680651,−0.000000)

K42 = (−1.683727,−0.000000)

K43 = (−1.753380,−0.000000)

K44 = (−1.756733,−0.000000) .

Sweeping over all kp in the valid range results in the stabilizing region depicted in

Figure 4.2. We then compute the center of mass for each of the disjoint 2D regions to

find the optimal “non-fragile” controllers. The two candidate controllers were found
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to be

k(1)p = 1.507087 k(2)p = 13.391186

k
(1)
i = −0.72247 k

(2)
i = 0.153593 .

Figure 4.2: The stabilizing set of (kp, ki) values with “non-fragile” controllers indi-
cated by the star.

Even though verifying the entire stabilizing set of (kp, ki) pairs would be impossi-

ble, we will consider a representative example to this solutions validity by considering

an arbitrary plant within the coefficient intervals specified and choose the (kp, ki) pair

given by the center of mass calculation on the region and simulate the system using

the MATLAB SIMULINK model of Figure 2.4.

The arbitrary plant that was created for this example is

N(s) = 1.0000s4 + 2.5470s3 + 39.5926s2 + 49.4894s− 5.4331

D(s) = 1.0000s5 + 2.1835s4 + 31.3685s3 + 36.8769s2 + 50.5605s+ 97.3245
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and the (kp, ki) pair is kp = 1.5071 and ki = −0.7225. The output response is

presented in Figure 4.3.

Figure 4.3: System response with kp = 1.5071 and ki = −0.7225.

Remark : In the case of disjoint sets, the center of mass calculation can fail to give

a result that is contained in the stability region. To alleviate this, we calculate the

center of mass for each disjoint set. Then a simple metric can be chosen to determine

which one is the better choice.

4.4.3 Robust Stabilization Using PID Control

For this example we let

a2 ∈ [1, 1], a1 ∈ [−5,−4], a0 ∈ [2, 4]

b5 ∈ [1, 1], b4 ∈ [3, 4], b3 ∈ [5, 5], b2 ∈ [7, 9], b1 ∈ [8, 9], b0 ∈ [−2,−1] .
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Running the [PID] algorithm for Robust Stabilization on our embedded systems

produces the following Kharitonov polynomials:

N1(s) = 1.0s2 − 5.0s+ 2.0

N2(s) = 1.0s2 − 4.0s+ 2.0

N3(s) = 1.0s2 − 5.0s+ 4.0

N4(s) = 1.0s2 − 4.0s+ 4.0

D1(s) = 1.0s5 + 3.0s4 + 5.0s3 + 9.0s2 + 8.0s− 2.0

D2(s) = 1.0s5 + 3.0s4 + 5.0s3 + 9.0s2 + 9.0s− 2.0

D3(s) = 1.0s5 + 4.0s4 + 5.0s3 + 7.0s2 + 8.0s− 1.0

D4(s) = 1.0s5 + 4.0s4 + 5.0s3 + 7.0s2 + 9.0s− 1.0 .

Applying the Kp narrowing routine to this examples produces the finite Kp sweeping

interval:

kp ∈ (1.000000, 1.086872) .

For a fixed kp value we can examine some of the preliminary results of the algorithm.

Let kp = 1.05 and observe in Figure 4.4 the stabilizing regions for G11(s, λ) for

different values of λ ∈ [0, 1]. We chose the quantized set of

λ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} .
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Figure 4.4: The stabilizing set of (ki, kd) values for G11(s, λ), λ ∈ [0, 1] with kp = 1.05.

The red dots indicate the vertex points of the intersection of all the regions. By

continuing the execution of the algorithm over all 16 segment plants for the fixed kp

value we obtain the set of regions in Figure 4.5, with the red circles indicating the

vertex points of the intersection of all the regions.

Figure 4.5: The stabilizing set of (ki, kd) values for Gij(s, λ), λ ∈ [0, 1], i = 1, 2, 3, 4
and j = 1, 2, 3, 4 with kp = 1.05.
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Executing the algorithm over all kp in the narrowed Kp interval we obtain all

stabilizing regions for each kp value. These regions are depicted in Figure 4.6.

Figure 4.6: Stabilizing set of (kp, ki, kd) values.

Next we perform the largest inscribed circle calculation for each kp and search for

the largest radius circle. This optimal “non-fragile” controller was found at kp =

1.086, ki = 0.006839, kd = 0.037335 and has a corresponding circle with radius of

r = 0.006839. A visual depiction of this region can be seen in Figure 4.7.
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Figure 4.7: The (ki, kd) stabilizing region for kp = 1.086 and the inscribed circle for
“non-fragile” controller selection.

4.5 Summary

In this chapter we successfully extended our embedded systems implementation

of the P, PI, and PID control algorithms to include robust and non-fragile controller

design. This required a computational implementation of the generalized form of

Kharitonov’s theorem and a reuse of our previously developed algorithms from chap-

ter 2. An additional sub algorithm to determine the intersection of a set of intervals

was also developed. These new algorithms were tested against a number of examples

and the results were provided. In the next chapter we will continue to expand our

embedded systems algorithms to the use of controller design for first order systems

with time delay.
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5. STABILIZATION OF FIRST ORDER SYSTEMS WITH TIME DELAY

In most applications the systems being modeled exhibit some form of a time

delay. This is a natural occurrence as most processes require time to occur. In some

systems this time can be ignored, but in others we must include this time delay in

the plant model for accurate control. For a first order system, mathematically, the

plant model is of the form

G(s) =
k

1 + Ts
exp−Ls

where k models the steady-state gain, L models the time delay, and T models the

time constant of the plant. The exponential term creates closed loop characteris-

tic equations which involve terms that are called quasipolynomials [24]. The algo-

rithms covered thus far will not apply to these types of polynomials, but only to

plants described by real rational transfer functions. Thus a suitable extension to the

Hermite-Biehler Theorem is presented in [24], based on the results in [40, 44, 45].

This extension allows us to properly approach the time delay plant models and

quasipolynomials to apply computational approaches for the characterization of sta-

bilizing constant gain controllers, pure integral controllers, and proportional-integral

controllers.

5.1 Constant Gain Stabilization of First Order Systems with Time Delay

There are two main results from [24] presented here: constant gain stabilization

for open loop stable plants and constant gain stabilization for open loop unstable

plants. These results define the path to implementation in the TiDSP C++ envi-

ronment.
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5.1.1 Open-loop Stable Plants

For open-loop stable plants we require that T > 0. We further assume that k > 0

and L > 0. Under these conditions [24] defines the set of all stabilizing gains kc for

a given first order plant with time delay as

−1

k
< kc <

T

kL

√
z21 +

L2

T 2

where z1 is the solution of the equation

tan(z) = −T
L
z, z ∈ (

π

2
, π) .

From this, we can see that a computational implementation of this requires only

an equation solver; specifically for the equation tan(z) = −T
L
z, z ∈ (π

2
, π). This will

be covered in more detail later, but first we will consider the results for the open

loop unstable plants in [24] because they are closely related. This will be useful in

the implementation of the equation solver.

5.1.2 Open-loop Unstable Plants

For open-loop unstable plants we require that T < 0 and we further assume that

k > 0 and L > 0. Furthermore, a necessary condition for a gain kc to simultaneously

stabilize the delay-free plant and the plant with delay is that |T
L
| > 1. Under these

conditions [24] defines the set of all stabilizing gains kc for a given first order plant

with time delay as

T

kL

√
z21 +

L2

T 2
< kc < −

1

k
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where z1 is the solution of the equation

tan(z) = −T
L
z, z ∈ (0,

π

2
) .

Again, we see the same equation is present as in the case of open-loop stable

plants, however, the interval is shifted by π
2
. Later, we will show how these two

results can be used to create a single computational implementation that handles

both the cases.

5.1.3 Computationally Finding z1

If we observe the plots of tan(z) and −T
L
z we find that in the case of open loop

stable plants the line −T
L
z will always intersect the curve tan(z) in the interval (π

2
, π

because T > 0 and L > 0. Thus a solution to the intersection of the line and

tangent curve will always exists. In the case of open loop unstable plants we have

the conditions that T < 0, L > 0, and |T
L
| > 1. These conditions also ensure that

a solution to the intersection will always exist. This is more clearly seen given that

d
dz
tan(z)|0 = cos−2(z)|0 = 1 and tan(z) is monotonically increasing to infinity in the

interval of (0, π
2
), thus a slope greater than one will always intersect such a curve.

A solution is now guaranteed under the conditions provided to us, and we can

formulate a simple algorithm to find the intersection of the line and the curve. Fur-

ther investigation of the plots shows that at the left side of the intersection point,

the −T
L
z line is always above the tan(z) curve, then this relationship reverses on the

right side of the intersection point. By evaluating points from left to right we can

look for a sign change in the difference of the two functions. The point at which the

sign change occurs provides us with a narrow interval to search for the intersection.

We can do this search repeatedly until a desired accuracy is achieved. This procedure

is detailed in Algorithm 7.
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Algorithm 7 FIND Z1

1 function FIND Z1(T, L, lp, rp, err)

2 if T < 0 and |T
L
| ≤ 1 then

3 no solution

4 x ← Quantization of the interval (lp, rp)

5 y1 ← tan(xi)

6 y2 ← −T
L
xi

7 if y2i < y1i then

8 lp ← xi−1

9 rp ← xi
Repeat until |y2i − y1i| < err return rp

Because of the nature of the problem and the conditions imposed, this algorithm

works for both open loop stable and unstable plants. To finalize, we present the

algorithm for constant gain stabilization in the form of the C++ language in Listing

5.1, since it is straightforward enough without pseudo code. This algorithm is pre-

sented in Listing 5.1. We will refer to this algorithm as the [P] algorithm for time

delay plants.
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Listing 5.1: Algorithm for Time Delay Plants

1 std::vector<double> p char 1otd(double k, double L, double T) {
2 double PI = 3.1415926535897932384626433;
3 double z1;
4 std::vector<double> r(2);
5

6 if (T < 0) {
7 z1 = FIND Z1(T, L, 0, PI/2, 1e−6);
8 r[0] = T/(k∗L) ∗ sqrt( pow(z1,2.0) + pow(L,2.0)/pow(T,2.0) );
9 r[1] = −1.0/k;

10 }
11 else {
12 z1 = FIND Z1(T, L, PI/2, PI, 1e−6);
13 r[0] = −1/k;
14 r[1] = T/(k∗L) ∗ sqrt( pow(z1,2.0) + pow(L,2.0)/pow(T,2.0) );
15 }
16 return r;
17 }

5.2 Pure Integral Control of First Order Time Delay Plants

For pure integral control [24] provides a closed form solution similar to that for

constant gain stabilization. This applies to open loop stable1 plants where T > 0,

k > 0, and L > 0. As specified in [24] the set of all stabilizing gains ki for a given

open loop stable plant with transfer function G(s) is given by

0 < ki <
T

kL2
z1

√
z21 +

L2

T 2

where z1 is the solution to the equation

1

tan(z)
=
T

L
z, z ∈ (0,

π

2
)

This result is closely related to the results for constant gain stabilization. One

1It is shown in [24] that an open loop unstable plant cannot be stabilized by pure integral control
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difference is in the equation that we solve for z1. For I-Control we solve 1
tan(z)

= T
L
z

versus tan(z) = −T
L
z for P-Control. But with careful consideration we can reuse the

same FIND_Z1 algorithm from before. We note that 1
tan(z)

and tan(z− π
2
) are mirrored

over the z-axis as is T
L
z and −T

L
z. The intersection of these two function pairs are

equivalent on the z-axis. Thus, finding z for 1
tan(z)

= T
L
z in (0, π

2
) is equivalent to

finding z for tan(z − π
2
) = −T

L
z in (0, π

2
). We simply need to modify the FIND_Z1

algorithm to incorporate the option of a shift in the tan(z) argument in step 5 of the

FIND_Z1 algorithm.

5.3 PI Control of First Order Time Delay Plants

So far we have shown how to formulate the results of [24] for constant gain stabi-

lization and pure integral control of time delay plants on a computational algorithm

ready for implementation into an embedded processor. In this section we consider

the results of PI control of first order time delay plants and look at the computational

implementation of this algorithm. As with any computational implementation we

choose to only consider the crucial parts of the theory. We can restate the algorithm

presented in [24] as follows:

1. Narrow the Kp range by running the [P] algorithm for Time Delay Plants.

2. For each kp in the narrowed range do the following:

a) Begin loop on j.

b) zj = solve(kkp + cos(z)− T
L
z sin(z) = 0).

c) Store [aj] =
zj
kL

[sin(zj) + T
L
zj cos(zj)].

d) If cos(zj) > 0 then break the loop on j.

e) j = j + 2.
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3. K
kp
i = [0, min

q=1,3,5...,j
aq].

We see that in step 1 we are able to reuse our previous results to narrow down the

search space of kp values. Then for each kp value in the narrowed space, our main com-

putational task is to find zj, the roots of the equation kkp + cos(z)− T
L
z sin(z) = 0.

We will be able to reuse the same algorithm concepts applied to the FIND_Z1 al-

gorithm. However, solving kkp + cos(z)− T
L
z sin(z) = 0 will require finding many

intersections with the z-axis. Additionally we are only concerned with every other

intersection point as we traverse the z-axis from 0 to ∞. To accomplish this we

create a new function to find these zj values called FIND_ZJ, detailed in Algorithm

8.

Because we want to find multiple roots but do not know a priori how many, we

design the function to return the first zj value and record its progress along the z-

axis search. This is performed in two parts. The first part finds the first sign change

along the function; this indicates the first zj value. The second part then advances

along the z-axis until the next sign change occurs. It stores the point after that sign

change for reuse by a future call. The theory dictates that we only consider every

other root of the equation. Thus, the future call to FIND_ZJ will begin its search for

the zj+2 root because the previous call to FIND_ZJ skipped over the zj+1 root.

Remark : Extension of the first-order-plant-with-time-delay results to PID controllers

was accomplished after the publication of [24]. The interested reader may refer to

[46] for the detailed treatment.
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Algorithm 8 FIND ZJ

Precondition: rp is passed by reference

1 function FIND ZJ(kp, k, T, L, rp, res, ac)

2 lp ← rp+ 2π

3 x ← Quantization of the interval (lp, rp) at resolution of res

4 z ← kkp + cos(xi)− T
L
xi sin(xi)

5 for all zi do

6 if |sgn(z0)− sgn(zi)| > 0 then

7 lp ← xi−1

8 rp ← xi
Repeat ac times

9 zj ← lp+ rp−lp
2

. Find the next intersection and set rp to the point after it

for use in future calls

10 lp ← rp

11 rp ← lp+ 2π

12 x ← Quantization of the interval (lp, rp) at resolution of res

13 z ← kkp + cos(xi)− T
L
xi sin(xi)

14 for all zi do

15 if |sgn(z0)− sgn(zi)| > 0 then

16 rp ← xi break for loop
return zj

5.4 Examples and Results

In this section we verify all the examples in [24] for the case of First Order Systems

with Time Delay on our embedded system implementation. In all cases we consider
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the following plant model

G(s) =
k

1 + Ts
e−Ls

where the particular numerical values for the terms k, T , and L are specified in each

example. We will be using the following controllers depending on the example.

P Control: C(s) = kp

I Control: C(s) =
ki
s

PI Control: C(s) = kp +
ki
s

5.4.1 P-Control, Open-loop Stable Plant

Let k = 1, L = 2 sec, and T = 1 sec. Running the constant gain stabilization

algorithm on the embedded system produces a stabilizing range of controllers for

kp ∈ (−1.000000, 1.519803) .

It is impossible to verify the stability of the system over all possible kp values, but

as a representative example to the systems stability and correctness of the algorithm

we consider kp = 0.75 in the stabilizing range and use the MATLAB SIMULINK

model of Figure 5.1 to verify the stability of the system as shown in Figure 5.2.

Figure 5.1: Simulation model for P-control of first order systems with time delay.

120



Figure 5.2: System response with kp = 0.75.

5.4.2 P-Control, Open-loop Unstable Plant

Let k = 1, L = 0.5 sec, and T = −2 sec. Running the constant gain stabilization

algorithm on the embedded system produces a stabilizing range of controllers for

kp ∈ (−5.662004,−1.000000) .

Even though verifying the entire stabilizing set of kp values would be impossible,

we will consider a representative example to this solutions validity by considering

kp = −3.25 in the stable range and use the MATLAB SIMULINK model of Figure

5.1 to verify the stability of the system as presented in Figure 5.3.
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Figure 5.3: System response with kp = −3.25.

5.4.3 I-Control, Open-loop Stable Plant

Let k = 1, L = 1 sec, and T = 2 sec. Running the constant gain stabilization

algorithm on the embedded system produces a stabilizing range of controllers for

kp ∈ (0.000000, 1.074835) .

It is not feasible to verify the stability of the system over all possible kp values, but

to provide evidence to the solutions validity we consider kp = 0.35 in the stable range

and use the MATLAB SIMULINK model of Figure 5.4 to verify the stability of the

system as shown in Figure 5.5.
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Figure 5.4: Simulation model for I-control of first order systems with time delay.

Figure 5.5: System response with kp = 0.35.

5.4.4 PI-Control, Open-loop Stable Plant

Let k = 1, L = 1 sec, and T = 4 sec. Running the [PI] algorithm for first order

systems with time delay on the embedded system produces a narrowed Kp range of

kp ∈ (−1.000000, 6.934511) .

Sweeping over this kp range we achieve the stability region of Figure 5.6.
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Figure 5.6: The stabilizing set of (kp, ki) values with “non-fragile” controller indicated
by the star.

Calculating the center of mass of the 2D shape produces the “non-fragile” PI

controller with

kp = 3.347755

ki = 1.287736 .

The stability of the system over all possible (kp, ki) pairs is impossible to verify, but

as a representative example to the systems stability and correctness of the algorithm

we consider the step response of the system with the controller given by the cen-

ter of mass calculation on the region and simulate the system using the MATLAB

SIMULINK model of Figure 5.7. The stability of the system is verified in Figure 5.8.
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Figure 5.7: Simulation model for PI-control of first order systems with time delay.

Figure 5.8: System response with kp = 3.347755 and ki = 1.287736.

5.4.5 PI-Control, Open-loop Unstable Plant

Let k = 1, L = 1 sec, and T = −2 sec. Running the [PI] algorithm for first order

systems with time delay on the embedded system produces a narrowed kp range of

kp ∈ (−2.536559,−1.000000) .

Sweeping over this kp range we achieve the stability region of Figure 5.9.
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Figure 5.9: The stabilizing set of (kp, ki) values with “non-fragile” controller indicated
by the star.

Calculating the center of mass of the 2D shape produces the “non-fragile” PI

controller with

kp = −1.806312

ki = −0.127288 .

We will consider a single point inside the stability region as a representative example

to the systems stability and correctness of the algorithm because verification of the

stability of the system over all possible (kp, ki) pairs would be impossible. We consider

the step response of the system with the controller given by the center of mass

calculation on the region and simulate the system using the MATLAB SIMULINK

model of Figure 5.7. The stability of the system is verified in Figure 5.10.
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Figure 5.10: System response with kp = −1.806312 and ki = −0.127288.

5.5 Summary

In this chapter we extended the embedded systems implementation to first order

systems with time delay applied to the characterization of stabilizing constant gain

controllers, pure integral controllers, and proportional-integral controllers. Each case

was tested against examples to verify correctness. The major sub algorithm devel-

oped was to find the intersection of two curves quickly and efficiently within some

known interval of the real line. In the next chapter we will develop the computational

algorithm needed to design constant gain controllers that achieve a desired damping.
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6. CONSTANT GAIN STABILIZATION WITH DAMPING

Thus far, all of our polynomials have been polynomials with real coefficient.

We have implemented algorithms for P, PI, and PID results that were based on

generalizations of the Hermite-Biehler Theorem for both real valued polynomials and

quasipolynomials [24]. The subject of designing a constant gain controller to achieve

a desired degree of damping makes it necessary for us to consider polynomials with

complex coefficients. An appropriate generalization of the Hermite-Biehler Theorem

for complex polynomials is derived in [24] and used to develop a methodology to

characterize all gain values to stabilize a given plant with a desired degree of damping.

This chapter will discuss the practical implementation of such an algorithm onto an

embedded systems architecture.

The algorithm covered here follows along similar lines as the [P] algorithm covered

in chapter 2. The introduction of the complex coefficient polynomials requires an

extension to the Polynomial class to handle complex arithmetic and other intricacies

created by complex coefficients. To the best of our knowledge an extension of the

stabilization with desired damping results to the case of PI or PID control is yet to

be carried out.

6.1 Algorithm for Stabilization with Desired Damping

We present the systematic algorithm for constant gain stabilization with desired

damping covered in [24] with only the necessary computational steps. Keep in mind

that all of the terms presented in the algorithm below are taken from [24] and will

be properly defined when the sub algorithms are developed.

1. Initialization
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a) Set n = max[deg(D(s)), deg(N(s))].

b) Set m = deg(N(s)).

2. Real-Imaginary Decompositions of N and D.

• Determine N(s1e
jφ) and D(s1e

jφ).

• Scale N(s1e
jφ) and D(s1e

jφ) by dividing each by the leading coefficient of

D(s1e
jφ).

• Produce the Real-Imaginary decompositions N ′R, N ′I , D
′
R, D′I .

3. Determine p1(ω), p2(ω), q(ω), and D∗(w).

4. Find and sort the roots of q(ω) and D∗(ω).

a) Find the roots of q(ω) that are real, distinct, finite, and of odd multiplicity

b) Sort the roots as −∞ = ω0 < ω1 < ω2 < . . . ωm−1 < ωm = ∞ where we

define ω0 = −∞ and ωm =∞.

c) Find the roots of D∗(w).

• Set lrDs equal to the number of roots of D∗(w) in the OLHP.

• Set rrDs equal to the number of roots of D∗(w) in the ORHP.

5. Define the set of admissible strings, A.

6. Define the imaginary signature γ(I).

7. Determine the set F ∗ = {I ∈ A|γ(I) = n+ lrDs− rrDs}.

8. Apply Theorem 8.4.1 in [24] to get Kφ by following these steps:
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a) Check if G(s1e
jφ) = N(s1ejφ)

D(s1ejφ)
is Hurwitz stable by examining the roots of

D(s1e
jφ) and set K0 = {0} if G(s1e

jφ) is Hurwitz stable and K0 = ∅ other-

wise.

b) For each Ir ∈ F ∗ find Kr for r = 1, 2, . . . , s.

c) if im+1 = −1 then for t = 0, 1, 2, . . . ,m let,

Kr =

(
max

it∈Ir,itsgn[p2(ωt)]=1

[
−p1(ωt)
p2(ωt)

]
,

min

[
0, min

it∈Ir,itsgn[p2(ωt)]=−1

[
−p1(ωt)
p2(ωt)

]])

d) if im+1 = 1 then for t = 0, 1, 2, . . . ,m let

Kr =

(
max

[
0, max

it∈Ir,itsgn[p2(ωt)]=1

[
−p1(ωt)
p2(ωt)

]]
,

min

[
0, min

it∈Ir,itsgn[p2(ωt)]=−1

[
−p1(ωt)
p2(ωt)

]])

e) Kφ =
⋃s
r=0Kr where s = card(F ∗).

9. Calculate Nα(s) = N(s− α) and Dα(s) = D(s− α) and run the [P] algorithm

for the plant Gα = Nα
Dα

to obtain Kα.

10. Take the interval intersection K = Kα ∩Kφ.

Though the flow of the algorithm is very similar to the [P] algorithm, there are

many differences in the underlying calculation that need careful attention. We will

expand on these individually.
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6.1.1 Real-Imaginary Decompositions of N and D

In [24] the real and imaginary decompositions refer to the fact that if the poly-

nomial being decomposed is evaluated at s1 = jω, then one of the components

evaluates out to the real part while the other component evaluates out to the imag-

inary part. The first step is to produce the terms of N(s1e
jφ) and D(s1e

jφ) by

replacing s with s1e
jφ. This process introduces the need for a ComplexPolynomial

class or an extension to the Polynomial class to handle complex coefficients. The

C++ standard is well equipped with the libraries to do complex arithmetic through

the complex.h header file. Therefore, a ComplexPolynomial class or an extension

to the Polynomial class is straight forward to implement and we will proceed under

the assumption that we are fully capable of handling complex polynomial arithmetic

in the same fashion as real polynomial arithmetic.

For better understanding, let us consider an example:

Ex. 6 — Let P (s) = s2 + 2s− 2. Determine the complex polynomial obtained by

replacing s with s1e
jφ where φ = π

6
.

Answer (Ex. 6) —

P (s1e
jφ) = (s1e

jφ)2 + 2(s1e
jφ)− 2

= (ejφ)2s21 + 2(ejφ)s1 − 2

= [cos(φ) + j sin(φ)]2s21 + 2[cos(φ) + j sin(φ)]s1 − 2

= (0.5 + 0.866j)s21 + (1.73 + j)s1 − 2

Ex. 7 — Let P (s) = s3 + 3s2 + 4s. Determine the complex polynomial obtained

by replacing s with s1e
jφ where φ = π

6
.
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Answer (Ex. 7) —

P (s1e
jφ) = (s1e

jφ)3 + 3(s1e
jφ)2 + 4(s1e

jφ)

= (ejφ)3s31 + 3(ejφ)2s21 + 4(ejφ)s1

= [cos(φ) + j sin(φ)]3s31 + 3[cos(φ) + j sin(φ)]2s21 + 4[cos(φ) + j sin(φ)]s1

= js31 + (1.5 + 2.6j)s21 + (3.46 + 2j)s1

Here it can be seen that the effective computational result is a multiplication of

each original coefficient of N and D with the complex value [cos(φ) + j sin(φ)]i

where i is the same power of the term that the original coefficient belonged to.

Therefore we generate a special function inside our Polynomial class to handle this

basic conversion and we return a complex polynomial value to be handled next.

Once we have the representations of N(s1e
jφ) and D(s1e

jφ) in our Polynomial

object we then normalize both by dividing them by the leading coefficient of D(s1e
jφ)

so that the leading coefficient of D(s1e
jφ) is now one. The normalized polynomials

are now labeled as N ′(s1) and D′(s1). Now the decomposition into real and imaginary

parts for N ′(s1) and D′(s1) is ready to be executed. But first, for completeness of

understanding we will restate some definitions from [24]. We have

N(s1e
jφ) = (am + jbm)sm1 + (am−1 + jbm−1)s

m−1
1 + . . .

+ (a1 + jb1)s1 + (a0 + jb0), am + jbm 6= 0

D(s1e
jφ) = (cn + jdn)sn1 + (cn−1 + jdn−1)s

n−1
1 + . . .

+ (c1 + jd1)s1 + (c0 + jd0), cn + jdn 6= 0
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where n ≥ m. And,

N ′(s1) ,
1

cn + jdn
N(s1e

jφ)

= (a′m + jb′m)sm1 + (a′m−1 + jb′m−1)s
m−1
1 + · · ·+ (a′1 + jb′1)s1 + (a′0 + jb′0)

D′(s1) ,
1

cn + jdn
D(s1e

jφ)

= sn1 + (c′n−1 + jd′n−1)s
n−1
1 + · · ·+ (c′1 + jd′1)s1 + (c′0 + jd′0)

where

a′i =
aicn + bidn
c2n + d2n

b′i =
−aidn + bicn
c2n + d2n

, i = 0, 1, . . . ,m

c′i =
cicn + didn
c2n + d2n

d′i =
−cidn + dicn
c2n + d2n

, i = 0, 1, . . . , n− 1 .

Now the real-imaginary decomposition follows directly as

N ′(s1) = N ′R(s1) +N ′I(s1)

D′(s1) = D′R(s1) +D′I(s1)
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where

N ′R(s1) = a′0 + jb′1s1 + a′2s
2
1 + jb′3s

3
1 + . . .

N ′I(s1) = jb′0 + a′1s1 + jb′2s
2
1 + a′3s

3
1 + . . .

D′R(s1) = c′0 + jd′1s1 + c′2s
2
1 + jd′3s

3
1 + . . .

D′I(s1) = jd′0 + c′1s1 + jd′2s
2
1 + c′3s

3
1 + . . .

Because all these terms are well defined after the computation of N(s1e
jφ) and

D(s1e
jφ) the computation of N ′R(s1), N

′
I(s1), D

′
R(s1), D

′
I(s1) is straight forward given

the above definitions.

6.1.2 Determining p1(ω), p2(ω), q(ω), and D∗(w)

In a similar fashion as in the [P] algorithm we will have to replace s1 with jω for

N ′R(s1), N
′
I(s1), D

′
R(s1) and D′I(s1). Once this conversion is complete, [24] defines

p1(ω), p2(ω), q(ω), and D∗(w) as follows

p1(ω) = D′R
2
(jω)−D′I

2
(jω)

p2(ω) = D′R(jω)N ′R(jω)−D′I(jω)N ′I(jω)

q(ω) =
1

j
[D′R(jω)N ′I(jω)−D′I(jω)N ′R(jω)]

D∗(ω) = D′R(jω)−D′I(jω) .

Unlike the first stojw() function from the [P] algorithm where we worked with

real coefficient polynomials, now our coefficients are complex. There is no special

treatment for the sign of je where e was an even integer. Because we are working

with complex data types in the C++ standard, we can directly apply the complex

mathematics needed to carry out such a conversion. However, we do find a small
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discrepancy between the definitions of p1(ω), p2(ω) and q(ω) and that is in the factor

of 1
j

found in q(ω). We can account for this in our stojw() function by considering

what the effect of 1
j

is on such a conversion. The computational net result is that every

term (jω)i effectively becomes (j)i−1ωi. With this in mind the stojw() algorithm is

detailed in Algorithm 9.

Algorithm 9 stojw(k)

Precondition: P (s) = cns
n + cn−1s

n−1 + · · ·+ cas+ c0 is the complex valued poly-
nomial being operated on.

1 function stojw(k) . k = 0 for p1 and p2, k = 1 for q
2 for i = 0→ deg(P (s))− 1 do
3 ci ← cij

i−k

After the jω conversion, the three polynomials p1(ω), p2(ω) and q(ω) become

polynomials with real coefficients. This follows from the fact that the real decom-

position is purely real and the imaginary decomposition is purely imaginary. In the

definitions of p1(ω) and p2(ω) the purely imaginary decompositions are always mul-

tiplied by another purely imaginary decomposition, which in turn produces a purely

real polynomial. In the definition of q(ω) this is not the case, however, the 1
j

term

removes the purely imaginary component, leaving only a purely real polynomial.

From this point forward the main part of the algorithm no longer needs to handle

complex polynomials, except for a small check involving D∗(ω).

6.1.3 Complex Root Finding for D∗(ω)

For D∗(ω) we still have a complex coefficient polynomial, even after the s→ jω

conversion. For our real coefficient polynomials we used [26] to find the roots of a

polynomial. Similarly, the same algorithm exists for complex coefficient polynomials

and was found in [47], which is also based on the Jenkins-Traub algorithm. The
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roots of D∗(ω) are needed in order to properly define the set of strings A, similar to

the [P] algorithm in which N∗(s) was used. This creates the lrDs and rrDs values

needed in step 7 to define the set F ∗.

6.1.4 Defining the Set of Strings, A

In [24] definition 8.4.1 states that A is the set of all possible strings of 1’s,

0’s, and -1’s of length m + 2 subject to the following restrictions. For every I =

{i0, i1, . . . , im, im+1} ∈ A, im+1 is either -1 or +1. For all other t = 0, . . . ,m, it is

equal to 0 if the corresponding jωt is a jω axis root of D∗(s1); if p2(ωt) = 0 but

p1(ωt) 6= 0 for some t = 0, 1, 2, . . . ,m, then it = sgn[p1(ωt)]; and finally it is equal to

-1 or +1 if neither of these conditions is satisfied.

A key implementation detail is determining if the corresponding jωt is a jω axis

root of D∗(s1). We saw previously that we created the complex polynomial D∗(ω).

However, if we consider that D∗(s1)|jωt = D∗(ω)|ωt then checking this condition

is reduced to a simple polynomial evaluation of the root, ωt, of q(ω). Polynomial

evaluation and root finding of q(ω), a real coefficient polynomial, has already been

covered. Lastly, we must consider the case of p2(ωt) = 0 but p1(ωt) 6= 0. But

again, p1(ωt) and p2(ωt) are both real coefficient polynomials and this check requires

a simple polynomial evaluation.

6.1.5 Determining Kφ

Steps 6, 7, and 8 all work together to determine the interval Kφ. Step 6 is

implemented through definition 8.4.2 of [24]. This is given to us as

γ(I) =
1

2

{
i0(−1)m−1 + 2

m−1∑
r=1

ir(−1)m−1−r − im

}
sgn[im+1q(∞)] .
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It may be easier for implementation purposes to consider this as the expression of

a dot product, that is, we separate out the coefficients from the i terms, keeping

in mind that sgn(xy) = sgn(x)sgn(y). To this end, let us define γ̄ as the coeffi-

cient vector [ (−1)
m−1

2
, (−1)

m−2

2
, . . . , (−1)

1

2
, (−1)

0

2
, −1

2
] · sqn[q(∞)] and Ī as the string vec-

tor [i0, i1, . . . , im] · sgn[im+1]. Then we can define γ(I) = γ̄ĪT . Now computationally

we can define F ∗ = {I ∈ A|γ̄ĪT = n+ lrDs− rrDs}, in step 7.

In step 8 we are applying Theorem 8.4.1 in [24] by examining each string in F ∗ and

evaluating−p1(ωt)
p2(ωt)

and sgn[p2(ωt)] and performing a search over these values and their

associated it value in the string. The search is constructing the Kr intervals. Once

every string in F ∗ is considered and all Kr intervals found we take the intersection

of these intervals to define Kφ

6.1.6 Determining Kα

In step 9 we are required to consider two new polynomials Nα(s) = N(s − α)

and Dα(s) = D(s− α), then run the [P] algorithm with Nα(s) and Dα(s). Because

the Nα(s) and Dα(s) are polynomials of real coefficients and the [P] algorithm is

already formulated, the only computational challenge is to determine Nα(s) and

Dα(s). Because of the utility of our Polynomial class, this is not difficult. We follow

the steps of Algorithm 10.
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Algorithm 10 POLYSHIFT(α)

Precondition: P (s) = cns
n + cn−1s

n−1 + · · · + cas + c0 is the polynomial being

operated on

1 function POLYSHIFT(α)

2 T ← s− α

3 P ← 0

4 d ← deg(P (s))

5 for i = deg(P (s))→ 2 step − 1 do

6 M ← T

7 for j = 1→ d− 1 do

8 M ← M · T

9 P ← P + ci ·M

10 d ← d− 1

11 P ← P + c1T + c0

In this algorithm we see the value of the Polynomial class allowing us easy addition

and multiplication of polynomials.

Once the [P] algorithm is run on the plant defined as Nα(s)
Dα(s)

, it produces the interval

Kα and our final result is produced by using our interval intersection algorithm to

find K = Kα ∩Kφ.
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6.2 Examples and Results

Here we consider the example problem given in [24] for constant gain stabilization

with desired damping. Let the plant be

N(s) = s2 + 2s− 2

D(s) = s3 + 3s2 + 4s

and let the parameters be

α = 0.5

φ =
π

6
.

When executing this algorithm for this specific plant on our embedded system we

produce the following results:

p1(ω) = 1.0ω6 − 3.0ω5 + 5.0ω4 − 12.0ω3 + 16.0ω2

p2(ω) = −0.5ω5 + 2.0ω4 − 7.0ω3 + 11.0ω2 + 4.0ω

q(ω) = −0.866025ω5 + 1.732051ω4 − 1.732051ω3 − 5.196152ω2 + 6.928203ω .

The set F ∗ is 

(−1,−1, 0,−1,−1, 1)

(−1,−1, 0, 1,−1,−1)

(−1, 1, 0,−1,−1,−1)

(1,−1, 0, 1, 1, 1)

(1, 1, 0,−1, 1, 1)

(1, 1, 0, 1, 1,−1)


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and

Kφ = (−0.725001, 0.000000)

Kα = (−0.763932,−0.500000)

with the final result being that the plant is stabilized and all zeros bound by the

specified region for every

kp ∈ (−0.725001,−0.500000) .

The stability of the system over all possible kp values is impossible to verify, but as a

representative example to the systems stability and correctness of the algorithm we

consider kp = −0.625 and use MATLAB’s SIMULINK to generate the step response.

Using the system of Figure 2.1 we obtain the step response presented in Figure 6.1.

Figure 6.1: System response with kp = −0.625.

Further we can examine the pole/zero plots of the system in this kp range and
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verify that the zeros are placed in the region specified by the parameters φ and α.

A depiction of this can be shown in Figure 6.2.

Figure 6.2: Plot of the pole/zero locations for kp ∈ (−0.725,−0.500).

This concludes the verification of the example provided in [24]. Now let us con-

sider a different example in this same context. Consider the plant

N(s) = s3 + 2s2 − 2s+ 7

D(s) = s4 + 5s3 + 3s2 + 4s

and let the parameters be α = 0.1 and φ = π
32

. When executing this algorithm for
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this specific plant on our embedded system we find the following results:

p1(ω) = 1.0ω8 − 0.9802ω7 + 19.115ω6 − 0.6182ω5 − 30.231ω4 − 2.352ω3 + 16.0ω2

p2(ω) = −0.0980ω7 + 3.038ω6 − 1.855ω5 + 18.352ω4 + 9.964ω3 − 28.596ω2 − 2.744ω

q(ω) = −0.9952ω7 + 0.3902ω6 − 8.88ω5 − 5.41ω4 − 47.426ω3 + 4.097ω2 − 27.865ω .

The set F ∗ is

(−1,−1,−1, 0,−1,−1,−1,−1) (−1,−1,−1, 0, 1,−1,−1, 1)

(−1,−1,−1, 0, 1, 1,−1,−1) (−1,−1, 1, 0,−1,−1,−1, 1)

(−1,−1, 1, 0,−1, 1,−1,−1) (−1,−1, 1, 0, 1, 1,−1, 1)

(−1, 1,−1, 0, 1,−1,−1,−1) (−1, 1, 1, 0,−1,−1,−1,−1)

(−1, 1, 1, 0, 1,−1,−1, 1) (−1, 1, 1, 0, 1, 1,−1,−1)

(1,−1,−1, 0,−1,−1, 1, 1) (1,−1,−1, 0,−1, 1, 1,−1)

(1,−1,−1, 0, 1, 1, 1, 1) (1,−1, 1, 0,−1, 1, 1, 1)

(1, 1,−1, 0,−1,−1, 1,−1) (1, 1,−1, 0, 1,−1, 1, 1)

(1, 1,−1, 0, 1, 1, 1,−1) (1, 1, 1, 0,−1,−1, 1, 1)

(1, 1, 1, 0,−1, 1, 1,−1) (1, 1, 1, 0, 1, 1, 1, 1)


and

Kφ = (0.000000, 0.179735)

Kα = (0.0519324006095, 0.159385) .

with the final result being that the plant is stabilized and all zeros bound by the
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specified region for every

kp ∈ (0.051932, 0.159385) .

Examining the pole/zero plots of the system in this kp range we verify that the zeros

are placed in the region specified by the parameters φ and α. A depiction of this

result is shown in Figure 6.3.

Figure 6.3: Plot of the pole/zero locations for kp ∈ (0.051932, 0.159385).

6.3 Summary

In this chapter we modified our Polynomial class to accept polynomials with

complex coefficient. This required updating the polynomial arithmetic functions of

the class to do complex arithmetic on the coefficients and was necessary to suc-

cessfully extend the constant gain stabilization algorithm from chapter 2 to handle

stabilization with a desired damping. The new functionality was tested and verified

against examples. In the next and last chapter we show extension of the embedded
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systems algorithm for constant gain stabilization to the case of discrete time plants.
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7. CONSTANT GAIN STABILIZATION FOR DISCRETE TIME PLANTS

In this chapter we explore the embedded systems implementation of constant

gain stabilization for the discrete time case. Until now, all of our systems have

been assumed to be continuous time systems. The results require a derivation of

the generalized Hermite-Biehler theorem for Schur polynomials. Schur polynomials

are a special class of symmetric polynomials and their treatment in control theory

arises from the analysis of discrete time linear systems. A Schur polynomial is a

stable polynomial for discrete time linear systems, that is, a Schur polynomial has

all its roots in the open unit disc. The algorithm for a complete characterization of

all constant gain stabilizing controllers is drawn from [24], however the results for PI

and PID stabilization have not been completed.

7.1 Algorithm for Stabilization For Discrete Time Plants

We present the systematic algorithm for constant gain stabilization for discrete

time plants covered in [24] with only the necessary computational steps. We will

refer to this algorithm as the [P] algorithm for discrete time plants.

1. Initialization

a) Set n = deg(D(z)) and m = deg(N(z)).

b) Determine the zeroes of N(z) that exist inside the open unit disc.

c) Set zNz = card({zi|N(zi) = 0, ‖zi‖ < 1}).

d) Set pNz equal to the number of poles of N(z) in the open unit disc.

2. Determine the real-imaginary decompositions of Hr(z) = p1(z), p2(z), and

Hi(z) = jq(z).
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a) H(z) = D(z)N(1
z
) = Hr(z) +Hi(z).

b) Hr(z) = 1
2
[D(z)N(1

z
) +D(1

z
)N(z)].

c) Hi(z) = 1
2
[D(z)N(1

z
)−D(1

z
)N(z)].

d) p2(z) = N(z)N(1
z
).

3. Find the distinct upper half plane unit circle zeroes of Hi(z) with odd multi-

plicity at the corresponding ωt argument and sort them according to

0 ≤ ω0 < ω1 < · · · < ωl ≤ π where ωt are the real roots of

q(ω) = 1
j
Hi(z)|z=ejω .

4. Generate the set A of all possible strings of {−1, 1} of length l.

5. Determine the imaginary signature γ(I).

6. Determine the set F ∗ = {I ∈ A|γ(I) = n− (zNz − pNz)}.

7. For each Ir ∈ F ∗ Apply Theorem 9.5.1 of [24] by finding,

Kr =

(
max

it∈Ir,it=1

[
−p1(ωt)
p2(ωt)

]
, min
it∈Ir,it=−1

[
−p1(ωt)
p2(ωt)

])

with Kp = ∪sr=1Kr where s = card(F ∗).

Though the flow of the algorithm is very similar to the [P] algorithm from chapter

2, there are many differences in the underlying calculation that need careful attention.

We will expand on these individually.
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7.1.1 Real-Imaginary Decompositions of N(z) and D(z)

We saw previously that

H(z) = D(z)N(
1

z
) = Hr(z) +Hi(z)

Hr(z) =
1

2
[D(z)N(

1

z
) +D(

1

z
)N(z)]

Hi(z) =
1

2
[D(z)N(

1

z
)−D(

1

z
)N(z)]

p2(z) = N(z)N(
1

z
) .

Let us first examine an example to see how such a decomposition will look compu-

tationally.

Ex. 8 — Find Hr(z) and Hi(z) given that N(z) = 100z3 + 2z2 + 3z + 11 and

D(z) = 100z5 + 2z4 + 5z3 − 41z2 + 52z + 70.

Answer (Ex. 8) — Begin by first determining that

N(
1

z
) = z−3(11z3 + 3z2 + 2z + 100)

D(
1

z
) = z−5(70z5 + 52z4 − 41z3 + 5z2 + 2z + 100) .

Now,

D(z)N(
1

z
) = (100z5 + 2z4 + 5z3 − 41z2 + 52z + 70)(11z3 + 3z2 + 2z + 100)z−3

D(
1

z
)N(z) = z−5(70z5 + 52z4 − 41z3 + 5z2 + 2z + 100)(100z3 + 2z2 + 3z + 11) .
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And put it all together with

Hr(z) =
1

2
[D(z)N(

1

z
) +D(

1

z
)N(z)]

Hi(z) =
1

2
[D(z)N(

1

z
)−D(

1

z
)N(z)] .

Finally, denote Nf (z) = 11z3 + 3z2 + 2z + 100 and Df (z) = 70z5 + 52z4 − 41z3 +

5z2 + 2z + 100, then

D(z)N(
1

z
)±D(

1

z
)N(z) = D(z)Nf (z)z−3 ±Df (z)N(z)z−5

= [D(z)Nf (z)z2 ±Df (z)N(z)]z−5

= [D(z)Nf (z)zn−m ±Df (z)N(z)]z−n .

We see that an important step in formulating these decompositions is to produce the

term N(1
z
) and D(1

z
). But through the above example we see that this is equivalent

to a computational flipping of the coefficient vector for N(z) and D(z) and multi-

plication by a z−d where d is the degree of the polynomial. Thus, a simple function

can be added to the Polynomial class to flip the coefficient vector of a Polynomial

object and return the new polynomial. Lastly, we must determine how to properly

work with the z−d term. In the above example we see that

D(z)N(
1

z
)±D(

1

z
)N(z) = [D(z)Nf (z)zn−m ±Df (z)N(z)]z−n .

Since n ≥ m, because the plant is a proper transfer function, n − m ≥ 0, and we

have a polynomial expression that we know how to computationally handle with our

Polynomial class, except for the z−n term. If we consider the full expressions of
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real-imaginary decompositions as they fit into the entire algorithm we have:

p1(z) = Hr(z) =
1

2
[D(z)N(

1

z
) +D(

1

z
)N(z)] = [D(z)Nf (z)zn−m +Df (z)N(z)]z−n

jq(z) = Hi(z) =
1

2
[D(z)N(

1

z
)−D(

1

z
)N(z)] = [D(z)Nf (z)zn−m −Df (z)N(z)]z−n

p2(z) = N(z)N(
1

z
) = N(z)Nf (z)z−m .

In step 3 of the [P] algorithm for discrete time plants we are required to find the

distinct upper half plane unit circle zeroes of Hi(z) with odd multiplicity. Yet, the

additional z−n term will not affect the zeros in the expression for Hi(z). Therefore, it

is not necessary for the computation of the zeros and can be ignored. Further, Steps

4 and 6 of this algorithm are not needed for any computations on the polynomials

produced here. Only in Step 5 and 7 will the full polynomial expression be necessary.

Details of these steps will be discussed later, however, it should be noted that the

term, z−n, is fully known at all times during the algorithm. Thus, any need of

a polynomial evaluation can handle this term separately and there is no need to

include it into the Polynomial object or incorporate extra utility to handle negative

exponent polynomial terms.

We have shown that by ignoring the z−n and handling it separately we can still

meet the computational needs of the algorithm and maintain use of the utility of the

Polynomial class when formulating the real-imaginary decomposition in the case of

discrete time plants.

7.1.2 Roots of Hi(z) and the Corresponding ωt Arguments

In [24], part of the algorithm specifies a conversion to the frequency domain by

setting z = ejω. Even though such a conversion still only produces real polynomials,

it does add more computation to the algorithm. If we closely examine why this
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conversion is needed we find out that the necessary ωt values, which are the roots

of q(ω), can be determined directly from the roots of Hi(z). The corresponding

arguments of the roots zt are the roots ωt. The ωt values are needed to properly sort

the roots generated in Step 3.

If we consider that zt = cos(ωt) + jsin(ωt) = ejωt , then we may forgo the con-

version to the frequency domain. Because the range of y = cos−1(x) is 0 ≤ y ≤ π

and the theory dictates that 0 ≤ ωt ≤ π, we need only consider the real part of

the root when finding ωt. That is ωt = cos−1(real(zt)). This provides to us our ωt

values needed for sorting of the roots without the need of converting to the frequency

domain, saving on computation time.

7.1.3 Handling the Extra z−n Term

As previously discussed, in steps 5 and 7, we require the full polynomial expres-

sions of the real-imaginary decompositions, but we ignored the z−n term when com-

puting and storing these expressions. Now it is necessary to explain how to properly

utilize this ignored term when executing the steps of this algorithm computationally.

In step 5 we are asked to compute the imaginary signature. This calculation

requires the calculation of sgn[q(ω+
0 )]. Because we avoided the frequency domain

we consider the z domain equivalent, sgn[1
j
Hi(z

+
0 )]. However, Hi(z) is a symmetric

polynomial, and has a trivial root at z = 1. The corresponding argument for z = 1

is ω = 0 because 0 = cos−1(1). Thus ω0 = 0 and z0 = 1. This is true for any Hi(z).

Evaluation of Hi(z
+
0 ) means we will also evaluate z−n|z+0 , but since z0 = 1, then

z−n|z+0 ≈ 1 and the term doesn’t effect the calculation of the sgn[1
j
Hi(z

+
0 )]. Thus it

can again be ignored.

In step 7, however, the z−n term cannot be ignored. We must evaluate the term

−p1(ωt)
p2(ωt)

. Since we skipped the frequency domain calculation we defer to the z-domain.
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We consider −p1(zt)
p2(zt)

and recall that

p1(z) = [D(z)Nf (z)zn−m +Df (z)N(z)]z−n

p2(z) = N(z)Nf (z)z−m .

It then follows that

−p1(zt)
p2(zt)

= − [D(zt)Nf (zt)z
n−m
t +Df (zt)N(zt)]z

−n
t

N(zt)Nf (zt)z
−m
t

= − [D(zt)Nf (zt)z
n−m
t +Df (zt)N(zt)]

N(zt)Nf (zt)
· z
−n
t

z−mt

= − [D(zt)Nf (zt)z
n−m
t +Df (zt)N(zt)]

N(zt)Nf (zt)
· z

m
t

znt
.

Now the need for a negative exponent has been eliminated in expressing this evalu-

ation. Thus, in step 7 we create temporary zm and zn Polynomials and use them

in the evaluation of −p1(zt)
p2(zt)

.

We have seen that by deferring the immediate need in step 2 to deal with a

negative exponent termed polynomial, we have created a more efficient computational

algorithm to characterize all constant gain stabilizing controllers for discrete time

plants.

7.2 Examples and Results

In this section we consider the example problem given in [24] for constant gain

stabilization of discrete time plants. Let

N(z) = 100z3 + 2z2 + 3z + 11

D(z) = 100z5 + 2z4 + 5z3 − 41z2 + 52z + 70 .
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After executing this algorithm for this specific plant on our embedded system we

find the following results.

The distinct upper half plane unit circle zeros of Hi(z) with odd multiplicity,

after sorting based on the ωt argument, are are given as

z0 = 1.000000− j0.000000

z1 = 0.861315 + j0.508071

z2 = −0.486046 + j0.873933

z3 = −1.000000 + j0.000000

The set F ∗ is (−1, 1,−1,−1)

(1, 1,−1, 1)


and the final result is that the plant is stabilized for every

kp ∈ (−0.417762,−0.126272) .

It is impossible to verify the stability of the system over all possible kp values, but as

a representative example to the systems stability and correctness of the algorithm we

consider kp = −0.2 and use MATLAB’s SIMULINK to generate the step response of

the system. Using the system of Figure 7.1 we obtain the step response presented in

Figure 7.2.
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Figure 7.1: Simulation model for P-control of discrete time system.

Figure 7.2: System response with kp = −0.2.

7.3 Summary

In this chapter we successfully extended the constant gain stabilization algorithm

of chapter 2 to the case of discrete time plants. This required a proper computation

handling of Schur polynomials and polynomial arithmetic in the z-domain. Though,

some of the original algorithm detailed in [24] had computations carried out in the

frequency domain, we have shown with careful algebraic treatment all arithmetic

can remain in the z-domain. Keeping the computations in the z-domain unifies the

algorithm and makes it more efficient to carry out. The computational algorithm

developed here was tested against an example to verify correctness.
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8. CONCLUSIONS

We have presented a full embedded systems implementation of the results pre-

sented in [24] and explored the applicability of the theory to real time optimal auto-

tuning for PID controllers. All examples found in [24] have been executed and verified

on a TMDSEVM6678LE evaluation module of the TMS320C6678 DSP processor by

Texas Instruments. A complete C++ library for use in this particular embedded

system was produced to test the examples. We have found the methods presented

in [24] to be fully capable of an embedded systems implementation after advanced

search techniques were developed and optimizations made. These algorithms can

be programmed on to an embedded controller design to optimally auto-tune PID

controllers in real time with knowledge of the plant model.

Some difficulty to this application are computation time and knowledge of the

plant model. In chapter 3 a brute force search over the parameter space was per-

formed to find optimal controllers based on a given performance criteria. However,

the amount of physical time needed to compute the performance metrics over the

entire space of stable controllers was on the order of hours. To amend this prob-

lem, faster search algorithms were presented. The Coarse Grained to Fine Grained

Search and Gradient Descent Search along with multi-processor parallel algorithms

and hybrid search methods were discussed. A complete implementation of the Coarse

Grained to Fine Grained Search and Gradient Descent Search was completed and re-

sults collected. Both these searches made great improvements in the search time with

only small or no perturbations in accuracy. These search methods make this optimal

PID synthesis algorithm applicable to real time auto-tuning of PID controllers.

Knowledge of the plant model is necessary for these specific algorithms. In prac-
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tice, this knowledge may not be available. There are promising results in [22] that a

characterization of the stabilizing controller space can be achieved without knowledge

of the plant model. However, it is not certain that optimal criteria like minimum H2

and H∞ metrics or any time domain metrics can be calculated from this method. At

the very least, a “non-fragile” controller can be chosen based on the stabilizing space

alone. This still provides a feasible path to the applicability of these algorithms to

real time auto-tuning of PID controllers when knowledge of the plant is not available.
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APPENDIX A

SOURCE CODE FOR THE POLYNOMIAL CLASS

Listing A.1: Full Polynomial Class Declaration

1 #include ”ComplexPolynomial.h”

2 class Polynomial {

3 public:

4 /∗ Constructors ∗/

5 Polynomial();

6 Polynomial(int deg, double ∗ca);

7 Polynomial(std::vector<double> cv);

8 Polynomial(ComplexPolynomial cp);

9 /∗ Copy Constructors ∗/

10 Polynomial(const Polynomial& p);

11 Polynomial(int n);

12 Polynomial(double d);

13

14 double LIM NORMPOLY(int npm);

15 Polynomial POLY NDERIV(int k);

16 double POLY NDERIV0 NORM(int k, int npm);

17 double POLYVAL(double val);

18 std::complex<double> POLYVAL(std::complex<double> val);

19 std::vector<double> CPOLYVAL(double cval);

20 std::vector< std::vector<double> > getRoots();

21

22 /∗Private Access Functions∗/
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23 void setCoeff(double val, int idx);

24 int getDegree();

25 std::vector<double> getCoeffVec();

26 double getLeadingCoeff();

27 Polynomial removeLastCoeff();

28 Polynomial removeLeadCoeff();

29 Polynomial getEvenPart();

30 Polynomial getOddPart ();

31 Polynomial stojw();

32 Polynomial sMinus();

33 Polynomial POLYSHIFT(double a);

34 Polynomial flipLR();

35 std::vector<std::complex<double> > stoejphi(double phi);

36 void printPoly();

37

38 /∗Operator Overloads∗/

39 Polynomial& operator=(const Polynomial &rhs);

40 Polynomial& operator+=(const Polynomial &rhs);

41 Polynomial& operator−=(const Polynomial &rhs);

42 Polynomial& operator∗=(const Polynomial &rhs);

43 const Polynomial operator+(const Polynomial &other) const;

44 const Polynomial operator−(const Polynomial &other) const;

45 const Polynomial operator∗(const Polynomial &other) const;

46 bool operator==(const Polynomial &other) const;

47 bool operator!=(const Polynomial &other) const;

48

49 friend Polynomial operator∗(double lhs, Polynomial &rhs);
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50 /∗ Destructor ∗/

51 ˜Polynomial();

52 private:

53 std::vector<double> coeff;

54 int degree;

55 };

Listing A.2: Full Polynomial Class Definition

1 /∗ C++ includes ∗/

2 #include <iostream>

3 #include <limits>

4 #include <vector>

5 #include <complex>

6 #include <math.h>

7 /∗ User created C++ includes ∗/

8 #include ”Polynomial.h”

9 #include ”polymath.h”

10 #include ”rpoly ak1.h”

11 /∗ Default Constructor

12 Defines a Polynomial object with an empty coefficient

13 vector and a degree of −1∗/

14 Polynomial::Polynomial() {

15 degree = −1;

16 }

17 /∗ Build a polynomial object from a given array of

18 coefficients and the degree.∗/

19 Polynomial::Polynomial(int deg, double ∗ca) {
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20 degree = deg;

21 for (int i = 0; i <= deg; i++) {

22 //Put coeficients into the vector coeff list

23 coeff.push back(ca[i]);

24 }

25 }

26 /∗ Build a polynomial object from a given vector

27 defining the coefficients of the polynomial ∗/

28 Polynomial::Polynomial(std::vector<double> cv) {

29 degree = cv.size() − 1;

30 coeff = cv;

31 }

32 /∗ Copy Constructor ∗/

33 Polynomial::Polynomial(const Polynomial& p) {

34 degree = p.degree;

35 coeff = p.coeff;

36 }

37 /∗Conversion Constructors for implicit cast∗/

38 /∗ int−>Polynomial ∗/

39 Polynomial::Polynomial(int n) {

40 degree = 0;

41 coeff.push back((double)n);

42 }

43 /∗ double−>Polynomial ∗/

44 Polynomial::Polynomial(double d) {

45 degree = 0;

46 coeff.push back(d);
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47 }

48 /∗ ComplexPolynomial−>Polynomial ∗/

49 Polynomial::Polynomial(ComplexPolynomial cp) {

50 std::vector<std::complex<double> > cmplxCoeff;

51 degree = cp.getDegree();

52 cmplxCoeff = cp.getCoeffVector();

53 for (int i = 0; i < cmplxCoeff.size(); ++i)

54 coeff.push back(cmplxCoeff[i].real());

55 }

56 /∗ This function is a wrapper for the code found here:

57 http://www.akiti.ca/rpoly ak1 cpp.html

58 This code is free for public use and is based on the Jenkins−Traub algorithm ∗/

59 std::vector< std::vector<double> > Polynomial::getRoots() {

60 int deg = this−>degree; // The degree of the polynomial to be solved

61 double zeroi[MAXDEGREE], zeror[MAXDEGREE], op[MDP1]; // Coefficient vectors

62 int i; // vector index

63 /∗ Input the polynomial coefficients from the

64 Polynomial Object and put them in the op vector ∗/

65 for (i = 0; i <= deg; i++)

66 op[i] = this−>coeff[i];

67 rpoly ak1(op, &deg, zeror, zeroi);

68 std::vector< std::vector<double> > roots(deg, std::vector<double>(2));

69 for (i = 0; i < deg; i++) {

70 roots[i][0] = zeror[i];

71 roots[i][1] = zeroi[i];

72 }

73 return roots;
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74 }

75 /∗ PID Algorithm Specific Functions ∗/

76 /∗ LIM NORMPOLY

77 Gives the result of the limit of the normalized form of a

78 polynomial at INF. The normalized polynomial is defined as

79 p(w)/(1+wˆ2)ˆ(mpn/2) ∗/

80 double Polynomial::LIM NORMPOLY(int npm) {

81 if (this−>degree < npm){

82 return 0;

83 }

84 else if (this−>degree > npm) {

85 return SGN((this−>coeff).front())∗INF;

86 }

87 else {//if (this−>degree == npm) {

88 return (this−>coeff).front();

89 }

90 }

91 /∗ POLY NDERIV

92 return the kth derivative of a polynomial ∗/

93 Polynomial Polynomial::POLY NDERIV(int k) {

94 Polynomial result; //Polynomial Object to hold the result

95 //Copy values of the calling polynomial into result

96 result.degree = this−>degree;

97 result.coeff = this−>coeff;

98 //Compute the derivative

99 for (int i = 0; i < k; i++) { //derivative loop

100 for(int j = 0; j < result.degree; j++) { //term modifer loop
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101 result.coeff[j] ∗= (result.degree − j);

102 }

103 result.coeff.pop back();

104 result.degree −= 1;

105 }

106 return result;

107 }

108 /∗ POLY NDERIV0 NORM

109 Gives the result of the kth derivative of the normalized form of a

110 polynomial evaluated at 0. the normalized polynomial is defined as

111 p(w)/(1+wˆ2)ˆ(npm/2) ∗/

112 double Polynomial::POLY NDERIV0 NORM(int k, int npm) {

113 std::vector<double> ct, term;

114 double result = 0.0;

115 if (k == 1) {

116 //easy case handle it quickly

117 return this−>coeff[this−>degree];

118 }

119 else {

120 for(int i = k; i >= 0; i −= 2)

121 ct.push back(this−>coeff[this−>degree − i]);

122 term.push back(FACTORIAL(k)); //first term

123 double a = 1.0;

124 for (int i = 1; i <= (k − floor((k−1)/2.0) − 1); i++) {

125 a ∗= ( npm/2.0 + (i−1) );

126 term.push back( a ∗ (pow(−1.0, i)∗FACTORIAL(k)) / FACTORIAL(i) );

127 }
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128 for (int i = 0; i < (int)term.size(); i++)

129 result += term[i]∗ct[i];

130 }

131 return result;

132 }

133 /∗ POLYVAL

134 Evaluates the Polynomial given a real value ∗/

135 double Polynomial::POLYVAL(double val) {

136 double result = 0.0;

137 for(int j = 0; j <= this−>degree; j++)

138 result += this−>coeff[j]∗pow(val,this−>degree − j);

139 return result;

140 }

141 /∗ POLYVAL

142 Evaluates the Polynomial given a complex value ∗/

143 std::complex<double> Polynomial::POLYVAL(std::complex<double> val) {

144 std::complex<double> result;

145 for(int j = 0; j <= this−>degree; j++)

146 result += this−>coeff[j]∗pow(val, this−>degree − j);

147 return result;

148 }

149 /∗ CPOLYVAL(double)

150 Evaluates a polynomial given a complex parameter

151 with the real part = 0. This is a specialized routine

152 to handle a special case within the PID algorithm ∗/

153 std::vector<double> Polynomial::CPOLYVAL(double cval) {

154 std::vector<double> result(2, 0.0);
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155 for(int j = 0; j < this−>degree; j++) {

156 if ((this−>degree − j)%2 == 0 )

157 result[0] += this−>coeff[j]∗pow(cval, this−>degree − j)∗ . . .

158 pow(−1.0, (this−>degree − j)/2);

159 else

160 result[1] += this−>coeff[j]∗pow(cval, this−>degree − j)∗ . . .

161 pow(−1.0, (this−>degree − j − 1)/2);

162 }

163 result[0] += this−>coeff[this−>degree];

164 return result;

165 }

166 /∗ getEvenPart()

167 Returns the even part of the Polynomial ∗/

168 Polynomial Polynomial::getEvenPart() {

169 Polynomial p;

170 p.degree = this−>degree;

171 p.coeff = this−>coeff;

172 int q = p.degree % 2;

173 if (q == 1) {

174 p.coeff.erase(p.coeff.begin());

175 p.degree −= 1;

176 }

177 std::vector<double>::iterator it;

178 for(it = p.coeff.begin()+1; it < p.coeff.end(); it+=2)

179 ∗it = 0;

180 return p;

181 }
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182

183 /∗ getOddPart()

184 Returns the odd part of the Polynomial ∗/

185 Polynomial Polynomial::getOddPart() {

186 Polynomial p;

187 p.degree = this−>degree;

188 p.coeff = this−>coeff;

189 int q = p.degree % 2;

190 p.removeLastCoeff();

191 if (q == 0 && p.degree > −1) {

192 p.coeff.erase(p.coeff.begin());

193 p.degree −= 1;

194 }

195 if (p.degree == −1) {

196 p.coeff.push back(0.0);

197 p.degree = 0;

198 }

199 std::vector<double>::iterator it;

200 for(it = p.coeff.begin()+1; it < p.coeff.end(); it+=2)

201 ∗it = 0;

202 return p;

203 }

204

205 /∗ stojw()

206 converts the s parameter to jw and completes proper

207 exponent math for signs ∗/

208 Polynomial Polynomial::stojw() {
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209 for(int i = 0; i < this−>degree; i+=2)

210 this−>coeff[i] = this−>coeff[i]∗ . . .

211 (((int)floor( (this−>degree − i)/2.0 ) % 2) ∗ −2 + 1);

212 return ∗this;

213 }

214

215 /∗ stoejphi

216 converts the s parameter to eˆjp and completes proper

217 exponent math for signs ∗/

218 std::vector<std::complex<double> > Polynomial::stoejphi(double phi) {

219 std::complex<double> cc(cos(phi), sin(phi));

220 std::vector<std::complex<double> > Ps1ej(this−>degree + 1);

221 for (int k = this−>degree; k >= 0; −−k)

222 Ps1ej[this−>degree − k] = pow(cc, k)∗this−>coeff[this−>degree − k];

223 return Ps1ej;

224 }

225

226 /∗ sMinus()

227 converts the s parameter to −s and completes proper

228 exponent math for signs ∗/

229 Polynomial Polynomial::sMinus() {

230 Polynomial p;

231 p.degree = this−>degree;

232 p.coeff = this−>coeff;

233 for(int i = 0; i < p.coeff.size(); ++i)

234 p.coeff[i] ∗= pow(−1.0,(p.degree−i));

235 return p;
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236 }

237 /∗ POLYSHIFT

238 Given a polynomial p(x), returns the polynomial p(x−a) ∗/

239 Polynomial Polynomial::POLYSHIFT(double a) {

240 double tarray[] = {1, −a};

241 Polynomial T(1, tarray);

242 Polynomial TMP;

243 int p = this−>degree;

244 Polynomial P(0); //constant polynomial equal to 0

245 for (int i = 0; i < this−>degree − 1; ++i) {

246 TMP = T;

247 for (int j = 1; j < p; ++j)

248 TMP = TMP∗T;

249 TMP = this−>coeff[i]∗TMP;

250 P = P + TMP;

251 p = p − 1;

252 }

253 //deal with x term and constant term

254 T = this−>coeff[this−>degree−1]∗T + this−>coeff.back();

255 P = P + T;

256 return P;

257 }

258 /∗ flipLR()

259 Flip the polynomials coefficient vector ∗/

260 Polynomial Polynomial::flipLR() {

261 Polynomial F;

262 for (int i = this−>coeff.size()−1; i >= 0; −−i)
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263 F.coeff.push back(this−>coeff[i]);

264 F.degree = this−>degree;

265 return F;

266 }

267 /∗Private Access Functions∗/

268 void Polynomial::setCoeff(double val, int idx) {

269 this−>coeff[idx] = val;

270 }

271 int Polynomial::getDegree() {

272 return this−>degree;

273 }

274 std::vector<double> Polynomial::getCoeffVec() {

275 return this−>coeff;

276 }

277 double Polynomial::getLeadingCoeff() {

278 return (this−>coeff).front();

279 }

280 Polynomial Polynomial::removeLastCoeff() {

281 this−>coeff.pop back();

282 this−>degree −= 1;

283 return ∗this;

284 }

285 Polynomial Polynomial::removeLeadCoeff() {

286 this−>coeff.erase(this−>coeff.begin());

287 this−>degree −= 1;

288 return ∗this;

289 }
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290 void Polynomial::printPoly() {

291 int i;

292 for(i = 0; i < this−>degree; i++)

293 std::cout << this−>coeff[i] << ”xˆ” << this−>degree − i << ” + ”;

294 std::cout << this−>coeff[i] << ”\n”;

295 }

296 /∗ Operator Overload Implementation ∗/

297 Polynomial& Polynomial::operator=(const Polynomial &rhs) {

298 // Only do assignment if RHS is a different object from this.

299 if (this != &rhs) {

300 degree = rhs.degree;

301 coeff = rhs.coeff;

302 }

303 return ∗this;

304 }

305 Polynomial& Polynomial::operator+=(const Polynomial &rhs) {

306 // Do the compound assignment work.

307 // adds two polynominals of any length

308 std::vector<double> rhs coeff;

309 rhs coeff = rhs.coeff;

310

311 if (this−>degree > rhs.degree) {

312 unsigned int diff = this−>degree − rhs.degree;

313 //Make the RHS equal in degree by adding 0’s

314 rhs coeff.insert(rhs coeff.begin(), diff, 0);

315 }

316 else if (this−>degree < rhs.degree) {
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317 unsigned int diff = rhs.degree − this−>degree;

318 //Make the LHS equal in degree by adding 0’s

319 this−>coeff.insert(this−>coeff.begin(), diff, 0);

320 this−>degree = rhs.degree;

321 }

322

323 for(int i = 0; i <= this−>degree; i++)

324 this−>coeff[i] += rhs coeff[i];

325

326 return ∗this;

327 }

328 Polynomial& Polynomial::operator−=(const Polynomial &rhs) {

329 // Do the compound assignment work.

330 // adds two polynominals of any length

331 std::vector<double> rhs coeff;

332 rhs coeff = rhs.coeff;

333

334 if (this−>degree > rhs.degree) {

335 unsigned int diff = this−>degree − rhs.degree;

336 //Make the RHS equal in degree by adding 0’s

337 rhs coeff.insert(rhs coeff.begin(), diff, 0);

338 }

339 else if (this−>degree < rhs.degree) {

340 unsigned int diff = rhs.degree − this−>degree;

341 //Make the LHS equal in degree by adding 0’s

342 this−>coeff.insert(this−>coeff.begin(), diff, 0);

343 this−>degree = rhs.degree;
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344 }

345 for(int i = 0; i <= this−>degree; i++)

346 this−>coeff[i] −= rhs coeff[i];

347

348 return ∗this;

349 }

350 Polynomial& Polynomial::operator∗=(const Polynomial &rhs) {

351 // Implements convolution of the coefficent vectors

352 int kmin;

353 int kmax;

354 int n = this−>coeff.size() + rhs.coeff.size() − 1; // length of result

355 std::vector<double> tmp lhs(n, 0.0);

356

357 for (int i = 0; i < n; i++) {

358 if (i >= rhs.degree)

359 kmin = i − (rhs.degree);

360 else

361 kmin = 0;

362

363 if (i < this−>degree)

364 kmax = i;

365 else

366 kmax = this−>degree;

367

368 for (int k = kmin; k <= kmax; k++)

369 tmp lhs[i] += (this−>coeff[k])∗(rhs.coeff[i−k]);

370 }
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371 this−>coeff = tmp lhs;

372 this−>degree = tmp lhs.size() − 1;

373 return ∗this;

374 }

375 const Polynomial Polynomial::operator+(const Polynomial &other) const {

376 return Polynomial(∗this) += other;

377 }

378 const Polynomial Polynomial::operator−(const Polynomial &other) const {

379 return Polynomial(∗this) −= other;

380 }

381 const Polynomial Polynomial::operator∗(const Polynomial &other) const {

382 return Polynomial(∗this) ∗= other;

383 }

384 bool Polynomial::operator==(const Polynomial &other) const {

385 double tmp = 0;

386 if (this−>degree == other.degree) {

387 for(int i = 0; i <= this−>degree; i++)

388 tmp += (this−>coeff[i] − other.coeff[i]);

389 if (tmp == 0)

390 return true;

391 else

392 return false;

393 }

394 else {

395 return false;

396 }

397 }
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398 bool Polynomial::operator!=(const Polynomial &other) const {

399 return !(∗this == other);

400 }

401 /∗ Destructor ∗/

402 Polynomial::˜Polynomial() { /∗empty destructor∗/}

403

404 /∗ Free Operator overload outside of the class ∗/

405 /∗ Handles multiplication by a constant on the LHS ∗/

406 Polynomial operator∗(double lhs, Polynomial &rhs){

407 Polynomial ∗tmp = new Polynomial();

408 tmp−>degree = rhs.degree;

409 for (int i = 0; i < rhs.coeff.size(); i++)

410 tmp−>coeff.push back(lhs ∗ rhs.coeff[i]);

411 return ∗tmp;

412 }
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