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ABSTRACT 

A Mycological Assessment of Highly Digestible Protein Sorghum Lines. 

(December 2007) 

Ostilio Rolando Portillo, B.S., Universidad Nacional Autonoma de Honduras, Honduras 

Chair of Advisory Committee: Dr. Dirk B. Hays 

 

The improved protein digestibility of the highly digestible protein (HD) sorghum lines is 

attributed to the invaginated shape of the endosperm protein bodies that provides better 

proteolytic access to the kafirins containing protein bodies. Recent evidence suggests 

that by virtue of their modified endosperm matrix the HD sorghum lines are more 

susceptible to the grain mold disease complex (GMDC). This study tests the hypothesis 

that the HD sorghum endosperm matrix confers a greater susceptibility to grain molds 

compared to the wild type endosperm matrix in sorghum (i.e. spherical non-invaginated 

protein bodies). 

The parental lines and progeny generated by crosses of two HD lines (P850029 

and P851171) with three wild type (WT) sorghum lines (B.Tx635, R.Tx436 and 

96GCPOB124) were used in this study. The progeny was advanced through seven 

generations of self-pollination to develop recombinant inbred lines (RILs). The RILs 

were grown in five locations in Texas during 2005 (College Station, Weslaco, Beeville, 

Corpus Christi and Halfway) and two in 2006 (College Station and Weslaco). Finally, 

grain samples were analyzed using a protease turbidity assay to estimate their level of 

protein digestibility and classify the RILs into digestible groups (DGs). 
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Several caryopsis characteristics associated with the grain mold disease (seed 

hardness, endosperm texture, thousand kernel weight, starch content and germination) 

were also analyzed to estimate the resistance of the HD lines to grain molds. The HD 

lines susceptibility to grain molds was measured using a threshed grade score and a 

mycoflora analysis. These studies revealed that the HD sorghum lines have caryopsis 

characteristics associated with a higher susceptibility to grain molds and significant 

differences were found between the HD lines and the WT sorghums lines when 

compared on the basis of fungal incidence providing statistical evidence in support of the 

tested hypothesis. However, the germination analyses provided evidence that a higher 

susceptibility to grain mold infection did not render the HD RILs more vulnerable to 

grain mold damage. 

The analysis of molds pathogenicity revealed that although several pathogens 

were isolated from the grain’s internal mycoflora not all of them were found 

significantly and meaningfully associated with the GMDC. 
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CHAPTER I
1
 

INTRODUCTION 

The highly digestible protein (HD) sorghum lines have a high in vitro and in vivo 

digestibility of their endosperm protein fraction. This high digestibility is attributed to 

the invaginated conformation of endosperm protein bodies which is thought to provide 

the proteases easy access to the kafirin containing protein bodies. The HD lines are 

digested more efficiently (catabolism) and their amino acids are more readily available. 

In addition to this phenomenon, the highly digestible sorghum lines have a higher lysine 

content. The combination of these factors makes the HD lines a suitable option for the 

nutrition of monogastrics and polygastrics. 

The grain mold disease complex (GMDC) could be a major factor that limits the 

practical use of HD sorghums because the soft grain deteriorates more readily.  The 

GMDC is ubiquitously distributed and negatively affects sorghum yield and overall 

grain quality particularly in warm and humid environments. The grain mold disease is 

considered a complex problem due to the diversity of genera of pathogens that cause the 

disease, as well as our incapacity to control the environmental factors (temperature and 

humidity) that promote their incidence and severity. 

Several strategies have been devised to decrease the level of grain mold damage 

while still in the field. One of the most practical and economically feasible strategies is 

the development of tolerant cultivars. That said, little has been accomplished in 

developing HD sorghum lines with an acceptable level of grain mold tolerance. As a 

                                                 
1
This thesis follows the style of Cereal Chemistry. 
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result, there is no information regarding the level of mold resistance in HD lines, the 

adaptability of HD lines to environments that favor grain mold or the combinability of 

the HD trait with grain mold resistance. 

Our hypothesis is that as a result of the modified endosperm matrix the HD lines 

are more susceptible to the GMDC than wild type sorghum lines. This assumption is 

based on the argument that the HD endosperm protein matrix due to its invaginated 

protein bodies provides greater access of fungal proteolytic and glycolytic enzymes to 

the endosperm nutritional resources resulting in a higher susceptibility to grain mold 

infection and damage. 

The specific objectives of this project are: 

1. Determine if the HD sorghum lines are preferentially more susceptible to the grain 

mold disease versus WT sorghum RILs. 

a. Identify the HD and the WT sorghum lines in the RILs by determining the 

level of protein digestibility through a protease digestion assay as described 

by Aboubacar et al., (2003). 

b. Determine differences between the HD and the WT sorghum lines based on 

caryopsis’ characteristics associated with the grain mold disease. 

c. Determine differences between the HD and the WT sorghum lines based on 

grain damage and susceptibility to fungal infection. 

2. Identify the pathogens (genera and species) responsible for the grain mold disease, 

their importance to the grain mold disease and preferential pathogenicity to HD 

versus WT sorghum RILs based on caryopsis quality and germination. 
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CHAPTER II 

SUSCEPTIBILITY OF THE HD SORGHUM LINES TO THE GRAIN MOLD 

DISEASE COMPLEX (GMDC) 

1. Introduction. 

1.1. The highly digestible protein (HD) sorghum lines. Among cereals, sorghum is 

one of the most important grains due to its capacity to adapt to a wide range of 

environments including those with semi-arid conditions (Klein et al., 2001). It also 

constitutes a main source of protein to millions of people in Africa, Asia and Latin 

America where it is grown (Aboubacar et al., 2003). 

Sorghum is a versatile cereal used in a variety of applications such as animal 

feed, alcoholic and non-alcoholic beverages and foods (MacLean et al., 1981; Beta et al., 

1999). Sorghums nutritional value, however, is negatively affected by its low content of 

essential amino acids, specifically lysine (Shull et al., 1992), and by the documented low 

digestibility of its protein. According to the in vivo studies conducted by MacLean et al., 

(1981) on pre-school children whose ages ranged between 6 months and 2.5 years, 

cooked sorghum had the lowest rates of protein absorption and retention compared to 

other protein sources such as maize, potatoes, wheat and rice. While the study showed 

the low availability of the sorghum polypeptides; it provided no clarification on the 

reasons for such phenomenon. 

In the sorghum grain, the endosperm accounts for approximately 82 percent of 

the seed structure (Hoseney, 1994). It is comprised of cells containing protein bodies 

enmeshed in a protein matrix that surrounds the larger starch granules (Kulp K. & Ponte 
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J.G., 2000). More information about physical structures of the sorghum kernel is 

presented by Rooney & Miller (1982). The protein bodies consist of prolamins storage 

proteins, termed kafirins in sorghum (Hoseney, 1986). Kafirins constitute between 77 to 

82 percent of the total protein content in the kernel endosperm (Belton et al., 2006). 

Similar to the classification of prolamins (zeins) in maize, kafirins are classified 

based on their configuration, molecular weight and alcohol solubility properties. α-

Kafirins (Mr 25,000 and 20,000) are soluble in 95 percent ethanol, while β-kafirins (Mr 

20,000, 18,000, and 16,000) are soluble in lower concentrations of alcohol (10-60 

percent). Lastly, γ-kafirins (Mr 28,000) are soluble in the presence of a reducing agent 

such as 2-mercaptoethanol (Shull et al., 1991). 

Several plausible explanations have been proposed for the low protein 

digestibility of sorghum. Some explanations propose that the interaction of the prolamins 

with polyphenolic tannins, inositol hexaphosphate (phytic acid), cell wall constituents 

and starch render them less digestible. Others take into account the inherent properties of 

the proteins and the interactions among themselves in response to pH or temperature 

changes in the surrounding environment (Duodu et al., 2003). The protein properties and 

interactions may include protein hydrophobicity, crosslinkings and changes in the 

polypeptides structure (Duodu, et al., 2003). The presence of tannins and protein cross-

linking will be discussed further in the next section (1.2 and 1.3). 

1.2. Tannins reduce protein digestibility. Sorghum cultivars are classified as type II 

based on the extractability of tannins in acidified methanol and localization in the 

pigmented testa. Others are classified as type III because the tannins are extractable in 
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both acidified and non-acidified methanol and are localized in both the pigmented testa 

and the pericarp (Earp et al., 2004b; Waniska et al., 2001). 

Tannins are secondary plant metabolites localized in the inner integument 

generally referred as the seed coat or testa which is found between the pericarp and the 

aleurone layer (Earp et al., 2004a; Earp et al., 2004b). Tannins are bitter-tasting plant 

polyphenolic compounds rich in hydroxyls and carboxyl groups. Although tannins 

confer desirable agronomic characteristics such as grain mold disease 

resistance/tolerance and protection against birds and insects; they are undesirable due to 

ability to bind and precipitate proteins during digestion (Duodu et al., 2003). Tannins 

form tannin-protein complexes via hydrogen bonding, hydrophobic association or 

covalent bonding (Nyachoti et al., 1996). Protein precipitation per se via insoluble 

tannin-protein complexes could be a desirable outcome depending on the intended 

application. In brewing, the formation of tannin-protein complexes precipitates the 

soluble proteins and tannins which otherwise produce reddish and brown pigments in the 

beer (Hoseney, 1986). On the other hand, the same phenomenon leads to a reduction of 

the nutritional value of sorghum proteins in feeds and foods since the insoluble tannin-

protein complexes render the polypeptides resistant to proteases. However, recent 

evidence of low protein digestibility among low and tannin free cultivars (Elkin et al., 

1996) suggests the existence of other mechanisms responsible for the reduced protein 

digestibility. 

1.3. Protein cross-linking reduces protein digestibility. α-Kafirins are localized in 

the lightly stained zones inside the protein bodies; whereas, the β-kafirins are found in 
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both the light and dark stained peripheral zones. Similar to the β-kafirins, the γ-kafirins 

are also localized in the peripheral zone as well as in the dark stained inclusions inside of 

the protein bodies (Shull et al., 1992). Since both β and γ-kafirins are rich in the sulfur 

containing amino acid cysteine (5 & 7 mol % respectively) and β-kafirins have a 

significant methionine content (5.7 mol%) (Shull et al., 1992), they may form 

polypeptide polymers via disulphide bonds at the periphery of the protein body.  This 

may act as a protease resistant barrier blocking access to the α-kafirins located inside the 

protein bodies during extreme environmental conditions such as high temperatures (Oria 

et al., 1995). This hypothesis is supported by the findings of Hamaker et al., (1986) who 

used an in vitro approach of raw and cooked whole grain sorghum flour samples to show 

that the protein digestibility of the raw samples plummeted around 15 percent after 

cooking (Hamaker et al., 1986). Likewise, reducing agents which block disulphide bonds 

increases the digestibility of the sorghum proteins by 11 and 25 % respectively 

(Hamaker et al., 1987). 

The recently discovered high digestible (HD) protein sorghum mutant which has 

a higher lysine content (60 percent) (Weaver et al., 1998) and high protein digestibility 

in cooked and raw flour samples (Oria et al., 2000), provides one possible solution to the 

low protein bioavailability of sorghum. 

The improved protein availability of HD lines has been related to invaginations 

in the protein bodies compared to normal spherical WT protein bodies. Additionally, the 

γ-kafirins are mostly present in the inclusions at the base of the folds, and less at the 

periphery of the protein bodies compared to WT sorghum (Oria et al., 2000). 
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The higher protein availability of the HD sorghum mutant is hypothesized to be a 

consequence of the γ-kafirin modified localization. Reduced in content and at the base of 

the invaginations, the number of protein polymers formed via disulphide bonds is 

thought to be reduced at the enzyme-resistant barrier. As such, the catabolism of α-

kafirins during enzyme digestion is increased (Oria et al., 2000). 

Recent results (data not published) based on viscosity analysis showed that HD 

sorghum lines also have a higher level of starch bioavailability providing evidence of a 

possible association between protein and starch digestibilities. In other words, these 

outcomes support the hypothesis that as the protein digestibility increases the starch 

digestibility also increases. The synergic action of a higher lysine content, improved 

protein digestibility, and higher starch bioavailability not only showed the nutritional 

advantages of the HD lines, but a higher availability of fermentable carbohydrates also 

suggests their potential for industrial applications such as ethanol production. In contrast, 

a higher starch bioavailability may also lead to a higher level of grain mold deterioration 

in the field; however this hypothesis has not yet been tested. Unfortunately, due to the 

lack of breeding efforts it is not known if the development of HD sorghum lines with an 

acceptable level of grain mold resistance could be achieved. 

1.4. The grain mold disease complex (GMDC). The GMDC of sorghum develops 

from fungal colonization during fertilization during early caryopsis development or at 

maturity. The latter is referred as grain weathering and both are correlated with warm 

and humid conditions. Grain mold is a disease complex since it is caused by multiple 

saprophytic and/or facultative parasitic fungal genera and species (Esele et al., 1993). As 
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a result of the growth and development of the GMDC, kernel milling, yield and quality 

of the grain for feed or food is negatively affected (Bejosano et al., 2003). The GMDC 

can reduce 1,000-kernel weight, kernel size, seed viability, nutritional quality and alter 

grain appearance (grain surface discoloration). All of which reduces market value 

(Menkir et al., 1996). 

Many physical and chemical caryopsis traits have been associated with resistance 

to grain mold. These traits include a dominantly inherited red and brown pericarp, 

(Menkir et al., 1996), a thin mesocarp regulated by the presence and number of starch 

granules, the presence of a pigmented inner integument (Esele et al., 1993), grain 

hardness (Jambunathan et al., 1982), polyphenolic tannins and flavan-4-ols (Menkir, 

1996), panicle shape (Rao, & Rana, 1989), greater plant height and dark glumes 

(Audilakshmi et al., 1999). 

Resistance in dark pericarps is associated with high amounts of flavan-4-ols 

(Menkir et al., 1996). Consistent with this hypothesis sorghum genotypes which 

maintain high levels of flavan-4-ols during grain maturity were associated with mold 

resistance. Additionally, genotypes in which a significant decline in the flavan-4-ols 

concentration was observed were susceptible to the grain mold disease (Melake-Berhan 

et al., 1996). Unfortunately, colored sorghum cultivars have a low consumer acceptance 

especially in parts of the world where it is used as a food (Bandyopadhyay et al., 1988). 

The pigmented testa is a kernel micro structure located between the pericarp and 

the aleurone cell layer (Earp et al., 2004a; Earp et al., 2004b; Bandyopadhyay et al., 

1988). It acts as a physical barrier due to the high tannin content found in the structure 



 9 

which restrains disease development by inhibiting spore germination and fungal growth 

(Esele et al., 1993). Tannins, however, also precipitate proteins and consequentially 

reduce the nutritional value of the sorghum grain. As such, sorghum cultivars with 

pigmented testa (type II and III) have not been pursued (Rodriguez-Herrera et al., 2000). 

The association of the grain hardness and resistance to grain mold has been well 

documented. Jambunathan et al., (1982) determined the grain hardness of several 

sorghum accessions along with grain mold damage and labeled them as colored resistant 

with pigmented testa, colored susceptible without pigmented testa, colored resistant 

without pigmented testa, white susceptible with pigmented testa, and white resistant 

without pigmented testa. They found that resistant genotypes have harder grains. The 

opposite was confirmed for the susceptible genotypes. Finally, Jambunathan et al., 

(1982) hypothesized that the resistance displayed by the white resistant without 

pigmented testa accessions is attributed to their grain hardness based on their lack of 

flavan-4-ols and tannins. This outcome could be of great importance given the general 

interest of developing white sorghum cultivar without tannins. 

It has been hypothesized that the HD sorghum lines are more susceptible to grain 

mold infection and deterioration as a result of their soft and floury endosperms; 

however, due to the lack of information this assumption has not yet been clarified. In this 

chapter, this hypothesis will be tested to confirm or deny such assumption. 

In sorghum, several approaches have been developed for measuring the response 

to the grain mold disease such as field grade score, threshed grade score, ergosterol 
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content, percent germination (Audilakshmi et al., 1999) 1,000 kernel weight, and myco-

flora analysis. 

The field grade score consists of a visual examination and evaluation of the 

panicles from each genotype under study. The panicles after harvest are visually scored 

using a 1 to 5 scale to describe the grain mold severity on the panicle surface, where 1 

corresponds to no mold damage is observed and 5 corresponds to cases in which more 

than 50 percent of the kernels surface in the panicle is covered by molds (Audilakshmi et 

al., 1999). The threshed grade score uses the same score on threshed grain (Audilakshmi 

et al., 1999). Ergosterol content is used to estimate the biomass of the microorganisms 

colonizing the grain. Ergosterol is a sterol functional group on fungal cell membranes. 

Its concentration provides direct assessment of the fungal content in sorghum flour 

(Jambunathan et al., 1982). Seed mycoflora analysis on the other hand is used to identify 

the grain mold disease fungal genera and species associated with the infected samples 

(Prom, 2004). 

 

2. Methodology. 

2.1. Plant material. Three families with 4 distinct RILs lines each were developed by 

crossing two HD lines (P850029 and P851171) with three WT lines (B.Tx635, R.Tx436 

and 96GCPOB124). The HD RILs were selected as parental lines based on their high 

protein digestibility whereas the WT RILs were selected because of their high and 

moderate grain mold disease resistance. The RILs were grown in 5 different locations in 

Texas (Beeville, College Station, Weslaco, Corpus Christi and Halfway) in 2005 and 
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two locations (College Station and Weslaco) in 2006. As a result, grain samples were 

collected from seven different environments (location*year) for subsequent analysis. 

2.2. Identification of highly digestible protein (HD) sorghum lines. The RILs 

(parental lines and offspring) were first phenotyped using the protease turbidity assay 

developed by Aboubacar et al., (2003) (described below). Seed harvested from Weslaco, 

Texas in 2005 was used based on its low disease incidence. The results were used to 

distribute the RILs into digestible groups (DGs) across environments. From a statistical 

view point, a digestible group was defined as one or more RILs which absorbances (after 

60 min of dilution in 72% TCA) are not significantly different according to Tukey’s 

HSD at a 0.05 level of significance. 

Protease Turbidity Assay. Grain samples were ground to 1 mm flour particles using a 

UDY cyclone lab sample mill.  50 mg. of sorghum flour from each RIL was weighed 

into 2 ml Eppendorf tubes and diluted in 1 ml of pepsin solution (20 mg. of pepsin/ml of 

0.1 M KH2PO4, pH 2.0). The samples were agitated and digested for 1 hr in a water bath 

calibrated at 37
o
C. After stopping the reaction by adding 100 µL of 2N NaOH, the 

solution was centrifuged for 10 min at 14,000 r·min
−1 

and the digested protein containing 

supernatant was discarded. The recovered pellets were resuspended in 1 ml of 0.1 M 

KH2PO4 (pH 7.0), vortexed, centrifuged for 10 min at 14,000 r·min
−1

,
 

and the 

supernatant was again discarded. A final wash was performed using double distilled 

autoclaved water and the pellet was stored at -20
o
C for further protein extraction. 

Proteins extraction. To extract the remaining proteins, 50 mg of digested flour sample 

from each RIL was weighed into 2 ml Eppendorf tubes and diluted in a protein 
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extraction buffer made of 0.5 ml of 0.0125M sodium tetraborate buffer (pH 10.0) 

containing 1% sodium dodecyl sulfate (w/v) and 0.5% 2-mercaptoethanol (v/v) for 1 hr 

at room temperature with shaking. Finally, the mixtures were centrifuged for 10 min at 

14,000 r·min
−1 

to recover the protein containing supernatants which were stored at -20
o
C 

for further analysis. 

Turbidity Measurements. A 25 µL sample of protein extract from each RIL was 

transferred into 2 ml Eppendorf tubes where they were diluted and vortexed in 1 ml of 

purified water and 200 µL of 72% of TCA. The A 562 of each sample was recorded at 5, 

30, 45 and 60 min using a Spectrophotometer. Prior measuring absorbances, the 

Spectrophotometer was recalibrated every time using a protein-free sample prepared 

with 25 µL of protein extraction buffer, 200 µL of 72% TCA, and 1 ml of purified water. 

2.3. Determination of physical RIL grains’ characteristics. Three replicates of 300 

sorghum kernels were each used to estimate the average seed hardness and 1,000 kernel 

weight of each RIL across environments using the single kernel hardness test (SKHT) 

(Perten Single Kernel Characterization System SKCS 4100, Perten Instruments, 

Springfield IL). 

Near-infrared reflectance spectrophotometry (NIR) was used to determine the 

average grain starch content of the RILs (parental lines and offspring) in three separate 

replicates across environments (Perten PDA 7000 Dual Array with Grams Software, 

Perten Instruments, Springfield IL). 

An endosperm texture index was used to phenotype the RILs using grain 

harvested from Weslaco, Texas in 2005 based on the low disease incidence. The 
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endosperm texture was described using a 1 to 5 scale visual examination of longitudinal 

half kernels as described by Rooney & Miller (1982) where 1 and 2 corresponds to a 

flinty endosperm and 5 to a chalky endosperm. The results were extrapolated across 

environments. 

2.4. Evaluation of the level of susceptibility to GMDC. The RILs and DGs 

susceptibility to the GMDC was measured using three different approaches: a threshed 

grade score, a mycoflora analysis and germination test. 

The Threshed Grade Score. The RILs and DGs level of susceptibility to the GMDC was 

determined through visual evaluations of clean grain samples across 5 environments in 

Texas using the seed collected in 2005. The test was conducted using a 1 to 9 scale 

where 1 corresponds to no observable damaged and 9 corresponds to 100 percent of the 

grain surface covered by molds. 

The Mycoflora Analysis. A modified mycoflora analysis (Prom, 2004) was used to 

measure the RILs and DGs susceptibility to the GMDC. Briefly, seed from each RIL 

was surface disinfected first by rinse in running deionized water for 30 min, then by 

immersion with shaking in a 10% Clorox solution for 3 min, in 95% ethanol for 5 min, 

and three times in double distilled water for 15 min each. After dried overnight in a 

laminar air flow cabinet, the seeds were incubated for 7 to 10 days at 25
o
C in Petri 

dishes containing half-strength potato dextrose agar (PDA) medium. The identification 

of the fungal genera and species was based on conidia, conidiosphores, colony 

morphology and color. Finally, a randomized complete block design (RCBD) with 15 

replications per RIL was used and the combined analysis performed on the data collected 
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from 5 environments (Beeville 2005, College Station 2006, Corpus Christi 2005, 

Halfway 2005 and Weslaco 2005) based on consistency of results. 

The Germination Test. The RILs and DGs level of susceptibility to the GMDC was 

measured by analyzing their germination potential across 7 environments in Texas using 

the seed collected in 2005 and 2006. The experiment was conducted in three separate 

replicates in soil containing trays to emulate field conditions. 

2.5. Statistical analysis and interpretation. SPSS and SAS were used to estimate 

correlations (Pearson product moment correlations), compare the means of the DGs 

(Contrast), and detect significant differences between RILs, and DGs via analysis of 

variance (ANOVA) and test for significance by Tukey's HSD test. 

Identification of HD Sorghum Lines. The results of the protease turbidity assay were 

recorded and used to phenotype the RILs based on turbidity absorbance using a one-way 

ANOVA under the following hypothesis: 

Hypothesis:  Ho= the absorbance mean of all RILs are equal. 

Ha= at least one RIL is different. 

Model:  Y= µ + αi + error 

Where Y = absorbance (nm). 

µ = intercept. 

αi = RIL effect. 

A Tukey's HSD test was used to identify the significant differences and group the RILs 

into DGs. 
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Determination of RIL Grain Physical Characteristics 

a. The data collected form the SKHT, NIR, endosperm texture index, and germination 

test was analyzed using Pearson correlations to estimate associations between traits 

and absorbance across environments under the following hypothesis: 

ρxy = 0 

ρxy ≠ 0 

Where  X= absorbance (nm). 

Y= seed hardness index, germination rate (%); 1,000 kernel weight (g), 

starch content (%), and endosperm texture index. 

b. An ANOVA factorial design was used to detect significant differences between the 

RILs, and DGs across environments on the basis of seed hardness, thousand kernel 

weight, starch content and endosperm texture where the main and interaction effects 

were estimated by an all fixed model under the following hypothesis: 

Ho= the mean of all RILs/DGs are equal. 

Ha= at least one RIL/DG is different. 

Model: Yij= µ + αi + βj + αi*βj + errorij 

Where Y =  seed hardness index, endosperm texture index, thousand 

kernel weight (g), starch content (%). 

µ =  intercept. 

α =  RIL/DG effect. 

β =  environment effect. 

αi*βj =  RIL*environment interaction effect. 
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 DG*environment interaction effect. 

A Tukey's HSD test was used to identify the significantly different RILs and DGs. 

c. Significant differences between DGs based on grain’ physical characteristics (seed 

hardness index, endosperm texture index, thousand kernel weight and starch content) 

were identified via contrast analyses. The selected contrasts were tested under the 

following hypotheses:

 HD vs. MD 

Ho: l = µ1 - µ2 + 0µ3 = 0 

Ha: l = µ1 - µ2 + 0µ3 ≠ 0 

 HD vs. ND 

Ho: l = µ1 + 0µ2 - µ3 = 0 

Ha: l = µ1 + 0µ2 - µ3 ≠ 0 

MD vs. ND 

Ho: l = 0µ1 + µ2 - µ3 = 0 

Ha: l = 0µ1 + µ2 - µ3 ≠ 0 

Where: µ1= HDµ 

 µ2= MDµ 

 µ3= NDµ 

Evaluation of the Level of Susceptibility to GMDC 

a. The data collected from the threshed grade score, the mycoflora analysis and the 

germination test, was examined individually to detect significant differences between 

the RILs and DGs across environments using an ANOVA factorial design where the 

main and interaction effects were estimated by an all fixed model under the 

following hypothesis: 

Ho= the mean of all RILs/DGs are equal. 

Ha= at least one RIL/DG is different. 

Model: Yij= µ + αi + βj + αi*βj + errorij 
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Where Y =  threshed grade score index, fungal incidence (number of 

fungal colonies), germination (%). 

µ =  intercept. 

α =  RIL/DG effect. 

β =  environment effect. 

αi*βj =  RIL*environment interaction effect. 

 DG*environment interaction effect. 

A Tukey's HSD test was used to identify the significantly different RILs and DGs. 

b. Significant differences between DGs based on germination rate, threshed grade score 

and fungal incidence were identified via contrast analyses. The selected contrasts 

were tested under the following hypotheses:

 HD vs. MD 

Ho: l = µ1 - µ2 + 0µ3 = 0 

Ha: l = µ1 - µ2 + 0µ3 ≠ 0 

 HD vs. ND 

Ho: l = µ1 + 0µ2 - µ3 = 0 

Ha: l = µ1 + 0µ2 - µ3 ≠ 0 

 MD vs. ND 

Ho: l = 0µ1 + µ2 - µ3 = 0 

Ha: l = 0µ1 + µ2 - µ3 ≠ 0 

Where: µ1= HDµ 

       µ2= MDµ 

       µ3= NDµ 

 

3. Results. 

3.1. Identification of highly digestible protein (HD) sorghum lines. 

Protease Turbidity Assay. The statistical analysis of recorded absorbances after 60 min 

of dilution in 72% TCA detected the presence of highly significant differences among 
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the RILs (Table I). As a result the RILs were classified into DGs identified as highly 

(HD), medium (MD) and normally digestible protein (ND) (Figure 1). 

 

 

 

Table I: Mean squares from ANOVA of recombinant inbred lines based on turbidity at 

60 min 

Source Type III Sum of Squares df Mean Square F Sig. 

RILs 1.246 17 0.073 68.589 0.000 

Level of significance= 0.05 

R Squared = 0.968 (Adjusted R Squared = 0.954) 
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Figure 1: Digestible groups based on the turbidity assay. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 

 

 

 

3.2. Determination of physical RIL grains’ characteristics. 

Endosperm Texture Index. The endosperm texture was evaluated using clean grain 

samples of RILs grown in Weslaco 2005 based on its low disease incidence. The results 

were extrapolated to the remaining 6 environments for subsequent correlation to other 

caryopsis traits. The index was assigned using a 1 to 5 scale visual examination of 
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longitudinal half kernels as described by Rooney & Miller (1982) where 1 and 2 

corresponds to a flinty endosperm, 3 and 4 correspond to an intermediate texture and 5 

corresponds to a chalky endosperm texture (Figure 2). The DGs analysis revealed highly 

significant differences between them (Table II). Additionally, Tukey's HSD grouped 

them as follow: HD > MD, ND (Figure 3). This outcome was corroborated via contrast 

among the DGs (Table III). These results propose that as the protein digestibility 

increases the endosperm texture becomes flourier. This hypothesis seems to be 

supported by the highly significant correlation (-0.914**) between the level of turbidity 

and the endosperm texture index of the RILs under study (Table IV). 

 

 

 

Table II: Mean squares from ANOVA of digestible groups based on endosperm texture 

index. 

Source Type III Sum of Squares df Mean Square F Sig. 

DG 105.250 2 52.625 1033.364 0.000 

Level of significance= 0.05 

R Squared = 0.975 (Adjusted R Squared = 0.974) 
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Figure 2: Endosperm texture index. 

1 and 2: flinty endosperm, 3 and 4: intermediate texture, and 5: chalky endosperm texture. 
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Figure 2: Continued. 

 
 



 

 

2
3
 

Figure 2: Continued. 

 

 

 

 

Table III: Means squares from contrast of digestible groups based on seed hardness index, starch content, thousand kernel 

weight and endosperm texture index. 

Source Seed hardness index Starch content Thousand kernel weight Endosperm texture index. 

HD vs. MD 39573.0148** 349.818561** 123.460729** 210.3582090** 

HD vs. ND 259285.3733** 1389.080333** 1787.203597** 963.0271084** 

MD vs. ND 1479.9379** 2.076907 77.207483** 0.1730769 

Notes: **significant at the 0.01 level. 
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Figure 3: Endosperm texture index per digestible group. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, digestible groups with the same letter are not different at 

a 0.05 level of significance. 
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Table IV: Correlations of the recombinant inbred lines’ grain physical characteristics across environments. 

 
Turbidity at 

60 min 

Starch  

(%) 

Germination 

(%) 

Thousand 

kernel weight 

(g) 

Hardness Index 
Endosperm 

Texture Index 

Threshed Grade 

Score 

Fungal 

Incidence 

Turbidity at 60 

min 
1 0.565(**) -0.072 0.550(**) 0.792(**) -0.914(**) -0.229(**) -0.074 

Starch (%)  1 -0.078 0.362(**) 0.638(**) -0.591(**) -0.076 0.101(*) 

Germination 

(%) 
  1 0.073 0.195(**) 0.014 -0.489(**) -0.120(**) 

Thousand 

kernel weight 

(g) 

   1 0.478(**) -0.520(**) -0.193(**) -0.065 

Hardness index     1 -0.884(**) -0.418(**) -0.123(**) 

Endosperm 

texture index 
     1 0.228(**) 0.078 

Threshed grade 

score 
      1 0.423(**) 

Notes: **Correlation is significant at the 0.01 level (2-tailed). 

*Correlation is significant at the 0.05 level (2-tailed). 
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Single Kernel Hardness Test (SKHT). The SKHT was used to determine the grain 

hardness of the RILs and DGs. The RILs combined analysis (fixed model) across seven 

environments revealed highly significant genotype, environment, and 

genotype*environment effects (Table V). Tukey HSD grouped the RILs into significant 

difference groups (Figure 4). The DGs combined analysis revealed highly significant 

DG and environment effects, but no significant DG*environment effect was detected 

suggesting that the DGs’ grain hardness does not change across environments (Table 

VI). Tukey HSD grouped them as follow: ND > MD > HD (Figure 5). This outcome was 

corroborated via contrast among the DGs (Table III). According to these results, the ND 

RILs have the hardest grains, the MD RIL is intermediate grain hardness and the HD 

RILs have the softest grains suggesting that as the protein digestibility increases the 

grain hardness decreases. This hypothesis seems to be supported by the highly 

significant correlation (0.792**) between the level of turbidity and the hardness index of 

the RILs under study (Table IV). Finally, it could be hypothesized that the softness of 

the HD RILs occurs as a consequence of the highly significant correlation (-0.914**) 

between the level of turbidity and the endosperm texture index (Table IV). Since the HD 

RILs have the least densely packed endosperm matrix, they also have the softest grains. 
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Table V: Mean squares from ANOVA combined analysis of recombinant inbred lines 

based on seed hardness index, starch content and thousand kernel weight. 

Source Hardness index Starch content 
Thousand kernel 

weight 

RIL 14894.436** 130.967** 263.683** 

Environment 4041.099** 59.614** 125.947** 

RIL * Environment 169.926** 5.093** 7.443** 

Error 4.763 1.078 0.552 

Adjusted R
2
 0.993 0.859 0.960 

Notes: **significant at the 0.01 level. 

 

 

 

Table VI: Mean squares from ANOVA combined analysis of digestible groups based on 

seed hardness index, starch content and thousand kernel weight. 

Source Hardness index Starch content 
Thousand kernel 

weight 

DG 118201.468** 612.312** 744.913** 

Environment 1584.597** 16.464** 54.680** 

DG * Environment 132.773 5.149 5.960 

Error 91.861 4.106 8.883 

Adjusted R
2
 0.862 0.463 0.352 

Notes: **significant at the 0.01 level. 
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Figure 4: Single kernel hardness test per recombinant inbred line. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 
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Figure 5: Single kernel hardness test per digestible group. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, digestible groups with the same letter are not different at 

a 0.05 level of significance. 

 

 

Near-Infrared Reflectance Spectrophotometry. An NIR analysis was used to estimate the 

starch content of the RILs and DGs. The RILs combined analysis (fixed model) across 

seven environments revealed significant genotype, environment and 

genotype*environment effects (Table V). Tukey's HSD grouped them into significant 

difference groups (Figure 6). The DGs combined analysis revealed significant DG and 

environment effects, but no significant DG*environment effect was detected (Table VI) 
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suggesting the DGs’ starch content does not change across environments. Tukey's HSD 

grouped them as follow: MD > ND > HD (Figure 7). This outcome was corroborated via 

contrast between DGs (Table III). These results show that HD RILs have the lowest 

starch content suggesting that as the protein digestibility increases the starch content 

decreases. This hypothesis is supported by the significant correlation (0.565**) between 

the level of turbidity and the starch content of the RILs (Table IV). 

 

 

Figure 6: Starch content per recombinant inbred line.  

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 
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Figure 7: Starch content per digestible group. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, digestible groups with the same letter are not different at 

a 0.05 level of significance. 

 

 

 

Thousand Kernel Weight Test. The SKHT was used to determine the average thousand 

kernel weight of the RILs and DGs. The RILs combined analysis (fixed model) across 

seven environments revealed significant genotype, environment, and 

genotype*environment effects (Table V) and Tukey HSD significant difference groups 

(Figure 8). The DGs combined analysis revealed significant DG and environment 
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effects, but no significant DG*environment effect was detected suggesting that the DGs’ 

thousand kernel weight does not change significantly across environments (Table VI). 

Tukey HSD grouped them as follow: ND > MD > HD (Figure 9). This outcome was 

corroborated via contrast between DGs (Table III). These results show the HD RILs 

have the lowest thousand kernel weight which suggests that as the protein digestibility 

increases the thousand kernel weight decreases. This hypothesis is supported by the 

significant correlation (0.550**) between the turbidity and the thousand kernel weight of 

the RILs (Table IV). Finally, it could be hypothesized that the low thousand kernel 

weight of the HD RILs occurs as a consequence of the significant correlation (0.362**) 

between the starch content and the thousand kernel weight (Table IV). Since the HD 

RILs have the lowest starch content consequentially they also have lowest thousand 

kernel weights. 
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Figure 8: Thousand kernel weight per recombinant inbred line. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 
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Figure 9: Thousand kernel weight per digestible group. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, digestible groups with the same letter are not different at 

a 0.05 level of significance. 

 

 

 

3.3. Evaluation of the level of susceptibility to GMDC. 

The Threshed Grade Score. The RILs combined analysis (fixed model) revealed 

significant environment effects, but no significant genotype and genotype*environment 

effects were detected suggesting that all the RILs were equally affected by the GMDC 

(Table VII). The DGs combined analysis, however, revealed significant DG and 
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environments effects, but no significant DG*environment effect was detected (Table 

VIII). This suggests the DGs’ threshed grade score does not change significantly across 

environments. Tukey HSD grouped them as follow: HD > MD & MD > ND (Figure 10). 

This outcome was corroborated via contrast among the DGs (Table IX). These results 

show that the HD RILs have the highest scores suggesting that as the protein 

digestibility increases the level of susceptibility to the GMDC increases. This hypothesis 

is supported by the highly significant correlation (-0.229**) between the level of 

turbidity and the threshed grade score of the RILs (Table IV). Finally, it could be 

hypothesized that the higher susceptibility of the HD RILs to grain molds occurs as a 

consequence of their floury endosperms due to the significant correlation (0.228**) 

between the endosperm texture index and the threshed grade score which suggest that if 

the endosperm becomes softer the susceptibility to grain molds increases (Table IV). 

 

 

 

Table VII: Mean squares from ANOVA combined analysis of recombinant inbred lines 

based on threshed grade score, mycoflora analysis and germination. 

Source Threshed grade score Mycoflora analysis Germination (%) 

RIL 2.331 30.698** 2234.935** 

Environment 54.667** 1792.718** 10399.111** 

RIL * Environment 0.678 14.849** 369.374** 

Error 0.750 4.625 104.394 

Adjusted R
2
 0.793 0.518 0.718 

Notes: **significant at the 0.01 level. 

 

 



 

 

36 

 

Table VIII: Mean squares from ANOVA combined analysis of digestible groups based 

on threshed grade score, mycoflora analysis and germination. 

Source Threshed grade score Mycoflora analysis Germination (%) 

DG 6.314** 69.118** 415.255 

Environment 33.900** 636.218** 3448.362** 

DG * Environment 0.914 3.785 466.393* 

Error 0.887 5.253 231.813 

Adjusted R
2
 0.755 0.452 0.374 

Notes: **significant at the 0.01 level. 

 *significant at the 0.05 level. 

 

 

 

Table IX: Means squares from contrast of digestible groups based on threshed grade 

score, mycoflora analysis and germination. 

Source Threshed grade score Mycoflora analysis Germination (%) 

HD vs. MD 8.47302231 32.0468900 1127.421310     

HD vs. ND 45.41613557** 216.3770415** 197.546709   

MD vs. ND 0.07487267 1.1852564 787.375888        

Notes: **significant at the 0.01 level. 
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Figure 10: Threshed grade score per digestible group. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, digestible groups with the same letter are not different at 

a 0.05 level of significance. 

 

 

 

The Mycoflora Analysis. The RILs combined analysis (fixed model) revealed significant 

genotype, environment and genotype*environment effects (Table VII). Tukey HSD 

grouped them into significant difference groups (Figure 11). The DGs combined analysis 

revealed significant DG and environments effects, but no significant DG*environment 

effect was detected suggesting that the DGs’ fungal incidence does not change 
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significantly across environments (Table VIII). Tukey HSD grouped them as follow: HD 

> MD > ND (Figure 12). However, this outcome was not completely supported by the 

contrast analysis among the DGs (HD, MD, & MD, ND) (Table IX). These results show 

the HD RILs have the highest fungal incidences suggesting that as the protein 

digestibility increases the level of susceptibility to the GMDC increases. However, there 

is evidence against this hypothesis because two HD RILs (RTx436*P850029b and 

P850029) were found among the most resistant cultivars, there is not a significant 

correlation between the level of turbidity and the fungal incidence (Table IV), and the 

germination potential of the HD RILs was not significantly different to other DGs. 

 

The Germination Test. The RILs combined analysis (fixed model) revealed significant 

genotype, environment and genotype*environment effects (Table VII). Tukey HSD 

grouped them into significant difference groups (Figure 13). The DGs combined analysis 

revealed no significant DG effect, but significant environment and DG*environment 

effects were detected suggesting the DGs’ germination potential changes significantly 

across environments (Table VIII). Tukey HSD grouped them as follow: HD > ND > MD 

(Figure 14). This outcome was supported by the contrast analysis among the DGs (Table 

IX). These results show that all the RILs have the same germination potential suggesting 

the HD RILs are not affected to a greater extent by grain molds. This hypothesis is 

supported by the lack of a significant correlation between the turbidity and the 

germination rate of the RILs (Table IV). 
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Figure 11: Mycoflora analysis per recombinant inbred line. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 
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Figure 12: Mycoflora analysis per digestible group. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, digestible groups with the same letter are not different at 

a 0.05 level of significance. 
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Figure 13: Germination rate per recombinant inbred line. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 
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Figure 14: Germination rate per digestible group. 

 Digestible groups defined by color of bars. 

 According to Tukey's HSD, digestible groups with the same letter are not different at 

a 0.05 level of significance. 

 

 

 

4. Discussion. 

The analysis of turbidity of the breeding population revealed that the improvement of the 

RILs’ protein digestibility is a random variable which accounts for the classification of 

the sorghum lines into DGs. The analysis of the grain physical attributes revealed the 

presence of a linear association between the level of protein digestibility and the kernel 
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physical characteristics normally associated with the GMDC. This association shows 

that the HD RILs have softer grains, floury endosperms, low starch contents and low 

thousand kernel weights. One exception to these trends was RTx436*P850029b which 

among the HD lines displays the highest seed hardness, and has a starch content and 

thousand kernel weight not significantly different to many ND RILs. 

In general, the mycoflora analysis of DGs and RILs and the threshed grade 

scores of DGs revealed that the HD lines are more susceptible to grain molds. The 

combined effect of the above mentioned kernel physical characteristics could explain the 

HD RILs higher susceptibility to fungal attack. The germination test shows that there 

were no significant differences between the RILs’ germination potential suggesting that 

although the HD RILs tend to be more easily infected by grain molds that does not 

translate into greater damage of kernel micro-structures (embryo). The lack of a 

significant correlation between the level of turbidity and the germination rate of the RILs 

provides evidence that the HD lines do not have an inherently lower germination 

potential. Additionally, these conclusions are valid only for the breeding population on 

which the experiments were performed due to the fixed model employed to analyze the 

collected data. 

An exception to these results was RTx436*P850029b which has fungal 

incidences not significantly different to the rest of the ND RILs. The RTx436*P850029b 

higher resistance to mold infection could be attributed to its harder endosperm. This 

hypothesis is supported by the significant negative correlation between the hardness 

index and the mycoflora analysis and the threshed grade scores. Based on this, 
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RTx436*P850029b could be a suitable parental line for the development of new HD 

breeding populations with higher grain mold resistance. 

Finally, a possible future approach to determine the HD sorghum lines level of 

susceptibility to grain mold is the measurement of ergosterol content in sorghum flours 

which would provide an estimation of the fungal biomass located inside the kernels. 
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CHAPTER III 

IDENTIFICATION OF GMDC FUNGI, THEIR IMPORTANCE & 

PREFERENTIAL PATHOGENICITY TOWARDS HD SORGHUM LINES 

BASED ON CARYOPSIS QUALITY AND GERMINATION 

1. Introduction. 

In sorghum, many saprophytic and/or facultative parasitic fungal genera and species are 

associated with the internal mycoflora of sorghum grains and are thought to contribute to 

the GMDC development. Some of the reported pathogens are Curvularia lunata and 

Fusarium thapsinum (Prom, 2003), Fusarium semitectum (Erpelding et al., 2006), 

Alternaria sp., Colletotrichum sublineolum (Gwary D.M. et al., 2006), Penicillium sp., 

Phoma sorghina, Aspergillus flavus, and Aspergillus niger (González H.H.L. et al., 

1997). 

The identification of fungal genera and species associated with the internal 

mycoflora of sorghum grains is important since it allows the classification of molds 

based on roles and the identification of germplasm sources of resistance for the breeding 

of cultivars with higher tolerance to pathogens responsible for the initial infection and 

development of the GMDC. However, previous reports provide no information about the 

fungal agents that infect HD RILs grains or the susceptibility of the HD RILs to specific 

fungal pathogens. 

The objectives of this study included the identification of the fungi (genera and 

species) responsible for the GMDC in stored grains based on caryopsis deterioration and 
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germination reduction and the measurement of preferential pathogenecities of GMDC 

fungi towards HD RILs. 

 

2. Statistical analysis and interpretation. 

The incidence of 10 fungal genera (Alternaria sp., Aspergillus sp., Bipolaris sp., 

Curvularia sp., Fusarium spp., Nigrospora sp., Phoma sp., Penicillium sp., Rhizopus sp. 

and Mucor sp.) and 2 species (Fusarium semitectum. and Fusarium thapsinum.) was 

recorded during the development of a mycoflora analysis. SPSS and SAS were used to 

estimate correlations (Pearson product moment correlations), compare the means of the 

DGs (Contrast), detect significant differences between RILs, and DGs via analysis of 

variance (ANOVA) and test for significance by Fisher’s LSD. 

2.1. The identification of the fungi (genera and species) responsible for the 

GMDC in stored grains based on caryopsis deterioration and germination 

reduction. The fungal incidences recorded across 7 environments (Beeville 2005, 

College Station 2005, College Station 2006, Corpus Christi 2005, Halfway 2005, 

Weslaco 2005 and Weslaco 2006) were analyzed using Pearson correlations to identify 

pathogens responsible for GMDC based on associations with caryopsis characteristics 

linked to grain mold damage under the following hypothesis: 

ρxy = 0 

ρxy ≠ 0 

Where  X= pathogen. 
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Y= germination (%); thousand kernel weight (g), starch content (%), and seed 

hardness index. 

2.2. The measurement of preferential pathogenecities of GMDC fungi (genera 

and species) towards HD sorghum RILs. 

a. ANOVA factorial designs were used to reveal specific GMDC pathogens’ infecting 

patterns within the breeding population. A RCBD with 15 replications per RIL was 

used and the combined analysis performed on the data collected from 5 

environments (Beeville 2005, College Station 2006, Corpus Christi 2005, Halfway 

2005 and Weslaco 2005) based on consistency of results. The significant differences 

between the RILs and DGs based on selected pathogens’ incidences were estimated 

by an all fixed model under the following hypothesis: 

Ho= the mean of all RILs/DGs are equal. 

Ha= at least one RIL/DG is different. 

Model: Yij= µ + αi + βj + αi*βj + errorij 

Where Y =  pathogen incidence (sum of fungal colonies). 

µ =  intercept. 

α =  RIL/DG effect. 

β =  environment effect. 

αi*βj =  RIL*environment interaction effect. 

 DG*environment interaction effect. 

A Fisher’s LSD test was used to identify the significantly different RILs and DGs 
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b. Contrast analyses on the data collected from the five previously mentioned 

environments identified the significant differences between DGs based on selected 

pathogens’ incidences. The contrasts were tested under the following hypotheses: 

 HD vs. MD 

Ho: l = µ1 - µ2 + 0µ3 = 0 

Ha: l = µ1 - µ2 + 0µ3 ≠ 0 

 HD vs. ND 

Ho: l = µ1 + 0µ2 - µ3 = 0 

Ha: l = µ1 + 0µ2 - µ3 ≠ 0 

 MD vs. ND 

Ho: l = 0µ1 + µ2 - µ3 = 0 

Ha: l = 0µ1 + µ2 - µ3 ≠ 0 

Where: µ1= HD pathogen incidence mean. 

 µ2= MD pathogen incidence mean. 

 µ3= ND pathogen incidence mean 

 

3. Results and discussion. 

3.1. Identification of GMDC pathogens. The analysis of the grain internal 

mycoflora showed that Alternaria sp. accounted for 41.9% of the total fungal species 

isolated from naturally infected grains. Other fungal genera and species included 

Fusarium semitectum (12.6%), Bipolaris sp. (9.6%), Fusarium spp. (6.1%), Phoma sp. 

(5.9%), Curvularia sp. (5.3%), Fusarium thapsinum (2.9%), Aspergillus sp. (2.2 %), 

Penicillium sp. (1.2%), Nigrospora sp. (0.42%), and Rhizopus sp / Mucor sp. (0.39%) 

(Figure 15). 

The correlation analyses revealed that only Aspergillus sp., Curvularia sp., 

Fusarium spp., Fusarium semitectum, Fusarium thapsinum, Nigrospora sp., and 

Rhizopus sp / Mucor sp. were significantly and meaningfully associated to seed 

germination, starch content, thousand kernel weight and seed hardness index (Table X). 
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In general, the correlations denote an inverse association between these molds and the 

selected grain traits. Additionally, the efficiency of the threshed grade score and the 

mycoflora analysis as estimators of the level of incidence of these pathogens was also 

recorded. In most cases, the higher the mycoflora and/or threshed grade scores the higher 

the incidence of the selected molds (Table X). 

 

 

 

Figure 15: Fungal incidence of genera and species isolated from mycoflora analysis. 
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Table X: Correlations between pathogens and grain traits linked to grain mold damage. 

 
Turbidity 
(60 min) 

Starch (%) 
Germination 

(%) 
Thousand 

kernel weight 
Hardness 

index 
Endosperm 

texture index 
Threshed 

grade score 
Fungal 

incidence 

Alternaria sp. 

Pearson Correlation -0.035 0.098(*) 0.374(**) 0.002 0.140(**) 0.003 -0.155(*) 0.576(**) 

Sig. (2-tailed) 0.429 0.029 0.000 0.956 0.002 0.939 0.010 0.000 

N 519 501 519 504 504 519 273 519 

Aspergillus sp. 

Pearson Correlation 0.035 0.091(*) -0.350(**) -0.110(*) -0.144(**) -0.036 0.765(**) 0.268(**) 

Sig. (2-tailed) 0.428 0.041 0.000 0.014 0.001 0.408 0.000 0.000 

N 519 501 519 504 504 519 273 519 

Bipolaris sp. 

Pearson Correlation -0.066 0.117(**) 0.024 0.069 0.002 0.017 0.021 0.360(**) 

Sig. (2-tailed) 0.136 0.009 0.581 0.121 0.966 0.704 0.729 0.000 

N 519 501 519 504 504 519 273 519 

Curvularia sp. 

Pearson Correlation 0.041 0.112(*) -0.125(**) 0.097(*) -0.034 -0.026 0.023 0.337(**) 

Sig. (2-tailed) 0.351 0.012 0.004 0.029 0.446 0.556 0.704 0.000 

N 519 501 519 504 504 519 273 519 

Fusarium spp. 

Pearson Correlation -0.142(**) -0.054 -0.158(**) -0.093(*) -0.202(**) 0.187(**) -0.080 0.364(**) 

Sig. (2-tailed) 0.001 0.231 0.000 0.038 0.000 0.000 0.186 0.000 

N 519 501 519 504 504 519 273 519 

Fusarium 
semitectum. 

Pearson Correlation -0.020 -0.137(**) -0.280(**) -0.035 -0.131(**) 0.097(*) -0.106 0.162(**) 

Sig. (2-tailed) 0.656 0.002 0.000 0.437 0.003 0.028 0.081 0.000 

N 519 501 519 504 504 519 273 519 

Fusarium 

thapsinum. 

Pearson Correlation -0.021 -0.170(**) -0.252(**) -0.053 -0.118(**) 0.037 -0.121(*) 0.162(**) 

Sig. (2-tailed) 0.631 0.000 0.000 0.237 0.008 0.406 0.046 0.000 

N 519 501 519 504 504 519 273 519 

Nigrospora sp. 

Pearson Correlation -0.018 0.000 -0.107(*) 0.079 -0.058 0.005 0.351(**) 0.151(**) 

Sig. (2-tailed) 0.687 1.000 0.015 0.077 0.194 0.906 0.000 0.001 

N 519 501 519 504 504 519 273 519 

Phoma sp. 

Pearson Correlation -0.045 0.068 -0.005 0.041 -0.059 0.063 -0.067 0.344(**) 

Sig. (2-tailed) 0.309 0.126 0.904 0.361 0.183 0.151 0.269 0.000 

N 519 501 519 504 504 519 273 519 
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Table X: Continued. 

 
Turbidity 
(60 min) 

Starch (%) 
Germination 

(%) 
Thousand 

kernel weight 
Hardness 

index 
Endosperm 

texture index 
Threshed 

grade score 
Fungal 

incidence 

Penicillium sp. 

Pearson Correlation 0.002 -0.037 -0.060 0.045 -0.025 0.039 -0.083 -0.108(*) 

Sig. (2-tailed) 0.970 0.402 0.170 0.309 0.577 0.375 0.170 0.013 

N 519 501 519 504 504 519 273 519 

Rhizopus sp /  

Mucor sp. 

Pearson Correlation -0.015 0.008 -0.194(**) -0.133(**) -0.138(**) 0.035 0.734(**) 0.213(**) 

Sig. (2-tailed) 0.737 0.851 0.000 0.003 0.002 0.428 0.000 0.000 

N 519 501 519 504 504 519 273 519 

Unknown. 

Pearson Correlation -0.113(*) -0.054 -0.111(*) 0.001 -0.141(**) 0.106(*) 0.097 0.327(**) 

Sig. (2-tailed) 0.010 0.225 0.012 0.978 0.002 0.015 0.111 0.000 

N 519 501 519 504 504 519 273 519 

Notes: **Correlation is significant at the 0.01 level (2-tailed). 
*Correlation is significant at the 0.05 level (2-tailed). 
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3.2. Analysis of GMDC pathogens contagious patterns. The individual RILs 

combined analyses (fixed models) across five environments revealed the following: 

Aspergillus sp.: Significant environment and genotype*environment effects; 

however, no significant genotype effect was detected which indicated that although the 

RILs were equally infected the contagious pattern changed across environments (Table 

XI). 

Nigrospora sp.: Significant environment effect; however, no significant genotype 

or genotype*environment effects were detected which indicated that the RILs were 

equally infected and the contagious pattern did not change across environments (Table 

XI). 

Rhizopus sp. / Mucor sp.: Significant genotype and environment effects; 

however, no significant genotype*environment effect was detected which indicated that 

although the RILs were not equally infected the contagious pattern did not change across 

environments (Table XI and Figure 16). 

Curvularia sp., Fusarium semitectum, Fusarium thapsinum, and Fusarium spp.: 

Significant genotype, environment and genotype*environment effects were detected 

which indicated the RILs were not equally infected and the contagious patterns changed 

across environments (Table XI and Figures 17, 18, 19, 20 respectively). 
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Table XI: Mean squares from ANOVA combined analyses of recombinant inbred lines based on Aspergillus sp., Curvularia 

sp., Fusarium spp., Fusarium semitectum, Fusarium thapsinum, Nigrospora sp. and Rhizopus sp / Mucor sp. 

Source Aspergillus sp. Curvularia sp. Fusarium spp. 
Fusarium 

semitectum 

Fusarium 

thapsinum 
Nigrospora sp. 

Rhizopus sp / 
Mucor sp. 

RIL 0.431 0.675** 1.692** 13.738** 1.143** 0.013 0.064** 

Environment 4.130** 12.976** 17.117** 25.927** 11.575** 0.196** 0.126** 

RIL*Environment 0.514** 0.475* 1.202** 3.251** 0.680** 0.020 0.039 

Error 0.279 0.340 0.388 1.326 0.236 0.021 0.032 

Adjusted R
2
 0.071 0.115 0.210 0.177 0.175 0.025 0.020 

Notes: **significant at the 0.01 level.  

*significant at the 0.01 level.
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Figure 16: Rhizopus sp. / Mucor sp. pathogenic pattern per recombinant inbred line. 

 Digestible groups defined by color of bars. 

 According to Fisher’s LSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 
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Figure 17: Curvularia sp. pathogenic pattern per recombinant inbred line. 

 Digestible groups defined by color of bars. 

 According to Fisher’s LSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 
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Figure 18: Fusarium semitectum pathogenic pattern per recombinant inbred line. 

 Digestible groups defined by color of bars. 

 According to Fisher’s LSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 
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Figure 19: Fusarium thapsinum pathogenic pattern per recombinant inbred line. 

 Digestible groups defined by color of bars. 

 According to Fisher’s LSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 
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Figure 20: Fusarium spp. pathogenic pattern per recombinant inbred line. 

 Digestible groups defined by color of bars. 

 According to Fisher’s LSD, recombinant inbred lines with the same letter are not 

different at a 0.05 level of significance. 
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The DGs combined analysis (fixed model) across five environments revealed: 

Aspergillus sp., Curvularia sp., Fusarium thapsinum: Significant environment 

effect; however no significant DG and DG*environment effects were detected which 

indicated that the DGs were equally infected and the contagious patterns did not change 

across environments (Table XII). These outcomes were supported by the contrast 

between DGs (Table XIII). 

Nigrospora sp., Rhizopus sp. / Mucor sp.: No significant effects were detected 

indicating the DGs were equally infected and the contagious patterns did not change 

across environments (Table XII). These outcomes were supported by the contrast 

between DGs (Table XIII). 

Fusarium spp.: Significant DG, environment and DG*environment effects were 

detected which indicated the DGs were not equally infected and the contagious pattern 

changed across environments (Table XII). Fisher’s LSD grouped them as follows: HD > 

ND > MD (Figure 21). These outcomes were supported by the contrast between DGs 

(Table XIII). 

Fusarium semitectum: Significant environment effect, but no DG and 

DG*environment effects were detected which indicated the DGs were equally infected 

and the contagious pattern did not change across environments (Table XII). These 

outcomes, however, were not supported by the contrast between DGs (Table XIII). 
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Table XII: Mean squares from ANOVA combined analyses of digestible groups based on Aspergillus sp., Curvularia sp., 

Fusarium spp., Fusarium semitectum, Fusarium thapsinum, Nigrospora sp. and Rhizopus sp / Mucor sp. 

Source Aspergillus sp. Curvularia sp. Fusarium spp. 
Fusarium 

semitectum 

Fusarium 

thapsinum 
Nigrospora sp. 

Rhizopus sp. / 
Mucor sp. 

DG 0.441 0.347 4.394** 1.996 0.562 0.013 0.028 

Environment 0.912** 5.368** 6.279** 13.206** 5.855** 0.040 0.022 

DG*Environment 0.229 0.327 2.837** 2.468 0.241 0.009 0.022 

Error 0.291 0.353 0.424 1.545 0.259 0.021 0.033 

Adjusted R
2
 0.032 0.081 0.136 0.041 0.093 0.019 0.004 

Notes: **significant at the 0.01 level. 

 

 

 

Table XIII: Means squares from contrast analyses of digestible groups based on Aspergillus sp., Curvularia sp., Fusarium 

spp., Fusarium semitectum, Fusarium thapsinum, Nigrospora sp., Rhizopus sp / Mucor sp. 

Source Aspergillus sp Curvularia sp. Fusarium spp. 
Fusarium 

semitectum 

Fusarium 

thapsinum 

Nigrospora 

sp. 

Rhizopus sp. / 

Mucor sp. 

HD vs. MD 0.45616693 0.51358320 8.040935** 1.55672515 0.01286550 0.02392344 0.04688995 

HD vs. ND 0.26736216 0.13405807 19.92428** 8.6495895* 0.77418407 0.00925003 0.02745357 

MD vs. ND 0.88799667 0.32193972 0.67196106 0.01024531 0.28428348 0.04214377 0.02114505 

Notes: **significant at the 0.01 level. 

*significant at the 0.01 level.
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Bars show Means
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Figure 21: Fusarium spp. pathogenic pattern per digestible group. 

 Digestible groups defined by color of bars. 

 According to Fisher’s LSD, digestible groups with the same letter are not different at 

a 0.05 level of significance. 
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Table XIV: Means squares from contrast analysis of digestible groups based on 

Aspergillus sp., Curvularia sp., Fusarium spp., Fusarium semitectum, 

Fusarium thapsinum, Nigrospora sp., and Rhizopus sp / Mucor sp. 

Source Mycoflora analysis 

HD vs. MD 18.48899522* 

HD vs. ND 61.29052720** 

MD vs. ND 0.56417379 

Notes: **significant at the 0.01 level. 

 *significant at the 0.01 level. 

 

 

 

Table XV: Mean squares from ANOVA combined analyses of digestible groups based 

on fungal incidence, germination and Fusarium spp. 

Source Fungal incidence Germination (%) Fusarium spp. 

DG 24.883** 1545.626** 1.416* 

Environment 631.304** 3462.008** 4.987** 

DG * Environment 4.842 409.967* 1.535** 

Error 5.242 200.619 0.364 

Adjusted R
2
 0.454 0.420 0.108 

Notes: Analysis performed subtracting BTx635*P850029a from the population. 

**significant at the 0.01 level. 

     *significant at the 0.01 level. 
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Figure 22: Mycoflora analysis per digestible group - BTx635*P850029a. 

 Digestible groups defined by color of bars. 

 Significant groups calculated subtracting BTx635*P850029a from the population. 

 According to Fisher’s LSD, digestible groups with the same letter are not different at 

a 0.05 level of significance. 
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Figure 23: Germination rate per digestible group - BTx635*P850029a. 

 Digestible groups defined by color of bars. 

 Significant groups calculated subtracting BTx635*P850029a from the population. 

 According to Fisher’s LSD, digestible groups with the same letter are not different at 

a 0.05 level of significance. 
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Bars s how Means
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Figure 24: Fusarium spp. pathogenic pattern per digestible group - BTx635*P850029a. 

 Digestible groups defined by color of bars. 

 Significant groups calculated subtracting BTx635*P850029a from the population. 

 According to Fisher’s LSD, digestible groups with the same letter are not different at 

a 0.05 level of significance.
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Table XVI: Correlations between pathogens. 

 
Aspergillus 

sp. 
Bipolaris sp. 

Curvularia 

sp. 

Fusarium 

spp. 

Fusarium 

semitectum 

Fusarium 

thapsinum 
Phoma sp. 

Penicillium 

sp. 

Rhizopus sp.  

Mucor sp. 

Alternaria sp.  

Correlation -0.245(**) 0.013 0.009 -0.022 -0.138(**) -0.013 0.017 -0.072(**) -0.120(**) 

Sig. (2-tailed) 0.000 0.503 0.633 0.267 0.000 0.519 0.382 0.000 0.000 

N 2595 2595 2595 2595 2595 2595 2595 2595 2595 

Aspergillus sp. 

Correlation 1 -0.059(**) -0.039(*) -0.103(**) -0.070(**) -0.077(**) -0.063(**) -0.020 0.405(**) 

Sig. (2-tailed)   0.003 0.049 0.000 0.000 0.000 0.001 0.306 0.000 

N  2595 2595 2595 2595 2595 2595 2595 2595 

Bipolaris sp. 

Correlation  1 0.033 0.003 -0.076(**) -0.026 0.034 -0.031 -0.020 

Sig. (2-tailed)    0.092 0.891 0.000 0.190 0.085 0.116 0.299 

N   2595 2595 2595 2595 2595 2595 2595 

Curvularia sp. 

Correlation   1 0.108(**) 0.002 -0.029 0.043(*) -0.009 -0.058(**) 

Sig. (2-tailed)     0.000 0.921 0.136 0.029 0.648 0.003 

N    2595 2595 2595 2595 2595 2595 

Fusarium spp. 

Correlation    1 0.134(**) 0.025 0.087(**) -0.020 -0.091(**) 

Sig. (2-tailed)      0.000 0.199 0.000 0.299 0.000 

N     2595 2595 2595 2595 2595 

Fusarium 

semitectum 

Correlation     1 0.038 0.023 0.016 -0.084(**) 

Sig. (2-tailed)       0.053 0.235 0.416 0.000 

N      2595 2595 2595 2595 

Fusarium 

thapsinum 

Correlation      1 -0.023 -0.021 -0.059(**) 

Sig. (2-tailed)        0.244 0.290 0.003 

N       2595 2595 2595 

Phoma sp. 

Correlation       1 -0.033 -0.072(**) 

Sig. (2-tailed)         0.090 0.000 

N        2595 2595 

Penicillium sp. 

Correlation        1 -0.025 

Sig. (2-tailed)          0.204 

N         2595 

Notes: **Correlation is significant at the 0.01 level (2-tailed) 

*Correlation is significant at the 0.05 level (2-tailed)
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CHAPTER IV 

CONCLUSIONS 

The correlation analyses between the pathogens and the grain mold assessment methods 

(threshed grain score and mycoflora analysis) showed the mycoflora analysis is more 

efficient estimating the pathogens incidence due to the highly significant correlations 

(Table X). 

Despite the pathogens level of incidence, not all the molds were associated with 

grain damage per se. The fungal genera and species responsible for the development of 

the GMDC were identified as follows: Aspergillus sp., Curvularia sp., Fusarium spp., 

Fusarium semitectum, Fusarium thapsinum, Nigrospora sp., and Rhizopus sp/ Mucor sp. 

 Most individual pathogens combined analyses revealed significant differences 

between RILs (Table XI). Based on Fisher’s LSD, the majority of RILs have similar 

levels of susceptibility except for HD RIL BTx635*P850029a which has the highest 

susceptibility especially when infected by Curvularia sp., Fusarium semitectum, 

Fusarium thapsinum, and Fusarium spp. (Figures 17, 18, 19, 20 respectively). On the 

contrary, RTx436*P850029b showed the lowest mold susceptibility. 

 Most individual pathogen combined analyses did not reveal significant 

differences between DGs (Table XII) indicating the DGs show similar susceptibility to 

mold infection. The exception was Fusarium spp. which revealed significant DGs effects 

(Figure 21) providing evidence of the HD RILs higher susceptibility towards this 

pathogen (HD > ND > MD). These results were corroborated via contrast analysis of 
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DGs with the exception of Fusarium semitectum which also revealed significant 

differences between HD and ND RILs (HD MD & MD ND) (Table XIII). 

In contrast, the DGs contrast analysis restricted to pathogens significantly 

associated to grain mold damage indicated the HD lines are significantly different to the 

MD and ND lines (Table XIV). Fisher’s LSD grouped them as follows: HD > ND > MD 

indicating that the HD lines had the highest fungal incidences. 

When HD RIL BTx635*P850029a was subtracted from the population, the 

ANOVA of DGs across environments based on fungal incidence revealed significant 

DG, environment effects, but no significant DG * Environment effect was detected 

(Table XV) indicating the fungal infecting pattern did not change across environments. 

Fisher’s LSD grouped them as follow: HD >MD & MD >ND (Figure 22). The DGs 

combined analysis based on germination rate revealed significant DG, environment and 

DG * Environment effects (Table XV). Fisher’s LSD grouped them as follow: HD >ND 

>MD (Figure 23). These results provide evidence that with the exception of 

BTx635*P850029a the HD lines were not affected to a greater extent by their higher 

internal mycoflora when compared to other DGs. Additionally, it could be hypothesized 

that the HD significantly higher germination occurs due to their modified protein matrix. 

The invaginated conformation of endosperm protein bodies may provide to glycolytic 

endogenous enzymes (α-Amylase and β-Amylase) better access to the endosperm starch 

granules which would translate into a higher bioavailability of carbohydrates for the 

embryo during germination. Finally, the DGs combined analysis based on the incidence 

of Fusarium spp. revealed significant DG, environment, and DG * Environment effects 



 

 

69 

(Table XV). Fisher’s LSD grouped them as follow: HD >ND >MD (Figure 24). These 

results provide evidence that Fusarium spp. has a significant pathogenetic preference for 

the HD RILs. 

In conclusion, from a statistical point of view the HD RILs are significantly more 

susceptible to grain mold infection; however, their significantly higher vulnerability to 

grain mold damage can be attributed to BTx635*P850029a and to the preferential HD 

pathogenicity of Fusarium spp. Additionally, these conclusions are valid only for the 

breeding population on which the experiments were performed due to the fixed models 

employed to calculate the main and interactions effects of the collected data. 

Finally, future research approaches may include the breeding of HD lines with 

higher resistance to pathogens significantly associated to grain mold damage 

(specifically Fusarium spp.). A closer examination of the antagonistic relationship 

between fungi may reveal the mechanisms by which some genera/species inhibit the 

incidence of other fungi as in the case of Penicillium sp. which as a result of its 

significant inverse association with Alternaria sp. (Table XVI) has been correlated to a 

significant reduction of the overall fungal incidence (Table X). 
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