

Leadership in ecoInnovation

Development of self-correcting algorithms for complete failure of supply air temperature sensors by

D. Monfet¹, D. Choinière², M. Padilla²

¹École de technologie supérieure ²Natural Resources Canada

INTERNATIONAL CONFERENCE FOR ENHANCED BUILDING OPERATIONS ICEBO 2013 – October 9, 2013

Introduction

- Different approaches for fault detection and diagnosis (FDD) of heating, ventilation and air conditioning (HVAC) building equipment
 - physical models
 - analytical models
 - methods driven by performance data
 - artificial intelligence
 - statistical techniques

Introduction (cont'd)

- Few attempts to isolate and identify faults successfully and propose corrective measured or if possible automatically fix the system faults
- Self-correction algorithms
 - 1. Diagnostic of faults by improving passive testing and creating active tests to isolate faults
 - 2. Development of self-correction algorithms to create virtual information when faults occur
 - 3. Integration of the algorithms to the control system

Literature review

 Lee et al. (1997): two-stage neural network approach

$$\begin{split} T_{sa}(i) &= f(Q_{sa}(i), Q_{sa}(i-1), Q_{sa}(i)^2, Q_{sa}(i-1)^2, T_{ma}(i), T_{ma}(i-1), T_{chws}(i), \\ T_{chws}(i-1), \varphi_{ma}(i), \varphi_{ma}(i-1), U_{cc}(i), U_{cc}(i-1), U_{cc}(i)^2, U_{cc}(i-1)^2, \\ Q_{sa}(i) \cdot T_{ma}(i), Q_{sa}(i-1) \cdot T_{ma}(i-1)) \end{split}$$

 House et al. (1999): classification techniques for FDD of AHU

Literature review (cont'd)

- Kumar et al. (2001): FDD using singleinput/single-output recursive auto regressive exogenous (RARX) system identification methodology with forgetting factor
- Lee et al. (2004): General regression neuralnetworks (GRNN)
- Wang et al. (2012): online model-based, previous 10h of operating data using a genetic algorithm

Ressources naturelles

Proceedings of the 13th International Conference for Enh

5

Objective

 Self-correction algorithms for complete failure of supply air temperature sensors

- Development: seven correlations are proposed

- Implementation: creation of virtual sensors

- Proof of concept

8-11, 2013

Self-correction of HVAC controls

- Pacific Northwest National Laboratory (PNNL) has initiated research (Fernandez et al., 2009a)
 - Passive and proactive tests
 - Rule-based algorithms
 - Tested using virtual sensors
- Self-correction approach for the total failure of supply air temperature sensors

- 1. Fault Diagnostic
 - Constant sensor value
 - Much larger or lower than the expected value
- 2. Algorithm Development
 - Data monitored on the AHU-M3 at the CanmetENERGY building in Varennes, QC.
 - Data set divided into two subsets:
 - 1. Training data set: July 2012
 - 2. Testing data set: August and September 2012

- 2. Algorithm Development (cont'd)
 - Monitored data pre-processing
 - 1. Remove transient state conditions
 - 2. Mechanical cooling operation mode
 - 3. Extract occupancy data from 8:00 to 18:00
 - Preliminary algorithms developed for the supply air temperature

Proposed correlations

$$aT_{sa} = a_1 \cdot Q_{sa} + a_2 \cdot Q_{sa}^{2} + a_3 \cdot T_{ma} + a_4 \cdot T_{chws} + a_5 \cdot U_{cc} + a_6 \cdot U_{cc}^{2} + a_7 \cdot Q_{sa} \cdot T_{ma}$$

$$bT_{sa} = b_1 \cdot Q_{sa} + b_3 \cdot T_{ma} + b_4 \cdot T_{chws} + b_5 \cdot U_{cc}$$
$$+ b_6 \cdot U_{cc}^2 + b_7 \cdot Q_{sa} \cdot T_{ma}$$

 $cT_{sa} = c_1 \cdot Q_{sa} + c_3 \cdot T_{ma} + c_4 \cdot T_{chws}$ $+ c_5 \cdot U_{cc} + c_7 \cdot Q_{sa} \cdot T_{ma}$

 $dT_{sa} = d_1 \cdot Q_{sa} + d_3 \cdot T_{ra} + d_4 \cdot T_{chws} + d_5 \cdot U_{cc}$

e génie pour l'industrie

obe<mark>r 8-11, 2013</mark>

Proposed correlations (cont'd)

 $eT_{sa} = e_1 \cdot Q_{sa} + e_2 \cdot Q_{sa}^2 + e_3 \cdot T_{ma} + e_4 \cdot T_{chws} + e_5 \cdot U_{cc} + e_6 \cdot U_{cc}^2 + e_7 \cdot Q_{sa} \cdot T_{ma} + e_8 \cdot VFD_{P,chw} + e_9 \cdot VFD_{P,chw}^2 + e_{10} \cdot VFD_{P,chw} \cdot T_{chws}$

$$fT_{sa} = f_1 \cdot Q_{sa} + f_3 \cdot T_{ma} + f_4 \cdot T_{chws} + f_5 \cdot U_{cc} + f_6 \cdot U_{cc}^2 + f_7 \cdot Q_{sa} \cdot T_{ma}$$
$$+ f_8 \cdot VFD_{P,chw} + f_9 \cdot VFD_{P,chw}^2 + f_{10} \cdot VFD_{P,chw} \cdot T_{chws}$$

 $gT_{sa} = g_1 \cdot Q_{sa} + g_3 \cdot T_{ma} + g_4 \cdot T_{chws} + g_5 \cdot U_{cc} + g_6 \cdot U_{cc}^2 + g_7 \cdot Q_{sa} \cdot T_{ma} + g_8 \cdot VFD_{P,chw} + g_9 \cdot VFD_{P,chw}^2$

- 3. Implementation approach
 - Creation of virtual sensors for the proposed correlations
 - Three of the seven correlations

Proceedings of the 13th International Conference for

- bT_{sa}
- dT_{sa}
- gT_{sa}
- Real time monitoring using DABO[™] for comparison

Table 1

Identified coefficients for T_{sa} - mechanical cooling occupied data: July 2012

item	a _i	b _i	C _i	d _i	e _i	f _i	g i
Q _{sa} , i=1	3.3628E-3	3.1471E-3	2.9086E-3	3.7051E-4	2.8432E-3	3.1091E-3	3.0935E-3
Q _{sa} ² , i=2	-5.1823E-8				6.2477E-8		
T_{ma} or T_{ra}^{1} , i=3	5.4754E-1	5.8701E-1	5.4280E-1	5.197E-1	6.1702E-1	5.7061E-1	5.6787E-1
T _{chws} , i=4	3.0410E-1	3.0404E-1	2.8792E-1	3.0304E-1	2.8634E-1	2.8444E-1	2.9076E-1
U _{cc} , i=5	-7.5082E-2	-7.4716E-2	-2.6452E-2	-2.6844E-2	-7.6030E-2	-7.6453E-2	-7.6445E-2
U _{cc} ² , i=6	3.8465E-4	3.8188E-4			3.9058E-4	3.9378E-4	3.9376E-4
Q _{sa} ∙T _{ma} , i=7	-1.0936E-4	-1.1900E-4	-1.1012E-4		-1.2133E-4	-1.1004E-4	-1.0940E-4
VFD _{P,chw} , i=8					1.2863E-2	1.2199E-2	1.3633E-2
VFD _{P,chw} ² , i=9					-2.2134E-4	-2.1708E-4	-2.2139E-4
VFD _{P,chw} ·T _{chws} , i=10					7.2871E-5	1.1003E-4	
R ²	99.69	99.69	99.68	99.68	99.71	99.71	99.71
						13	

Operations, Monu

Table 2 Evaluation criteria for T_{sa} – mechanical cooling occupied data: August and September 2012

Correlation	RMSE, ℃	MBE, ℃
aT _{sa}	1.63	-0.754
bT _{sa}	1.62	-0.747
cT _{sa}	1.68	-0.887
dT _{sa}	1.64	-0.864
eT _{sa}	1.58	-0.753
fT _{sa}	1.57	-0.738
gT _{sa}	1.58	-0.738

Table 3 Evaluation criteria for T_{sa} – mechanical cooling occupied data: May 2013

Correlation	RMSE, ℃	MBE, ℃
bT _{sa}	2.57	-1.70
dT _{sa}	2.23	-1.41
gT _{sa}	2.62	-1.76

Iontreal, Quebec, Oct

obe<mark>r 8-11, 2013</mark>

Natural Resources Canada 14

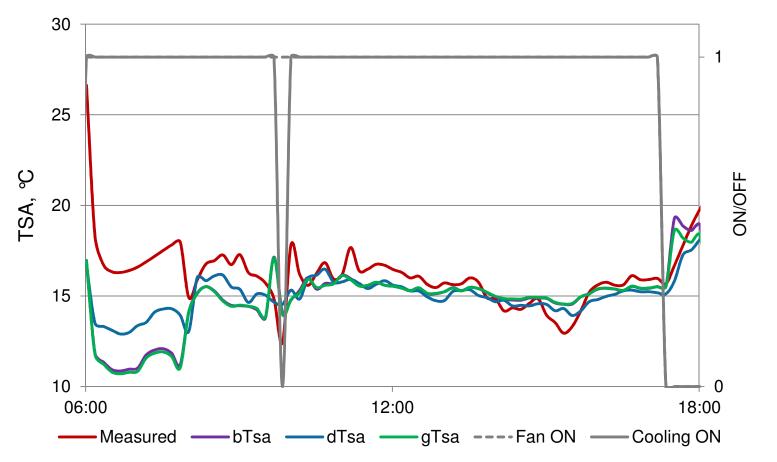


Figure 1. Virtual sensors output versus measured supply air temperature for AHU M3: 6 May 2013

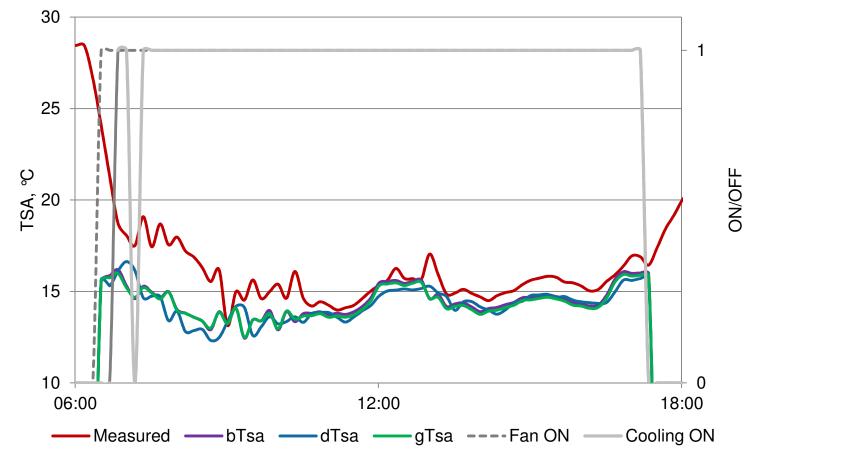


Figure 2. Virtual sensors output versus measured supply air temperature for AHU M3: 30 May 2013

Natural Resources Ressources naturelles Proceedings of the 13th International Conference for Enhanced Building Operations, Montreal, Quebec, October 8-11, 2013

Conclusions

- Evaluation of different correlations for the development of self-correction HVAC controls for the complete failure of supply air temperature sensors in an air handling unit
- Testing of the approach in the air handling unit of an actual building
- Proof of concept for the development of additional algorithms for self-corrections and its impact on energy use in buildings

Future work

- Identify the size of the data set and which monitored data period should be used to develop the correlations
- Determine which data should be used for self-correction when it is not possible to identify and isolate the fault as soon as it occurs
- Develop more general algorithms that would cover the full range of operation, including heating and free cooling. This might require adding independent variables to be included in the correlations
- Identify robust statistical criterion for the selection of independent variables
- Explore the use of other model types, such as artificial neural network

