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ABSTRACT 

 

Ongoing commissioning based on calibrated 

energy models is one of the most promising means to 

improve the energy performance of existing 

buildings. The bottom-up calibration approach starts 

the calibration on a zone level before sequentially 

calibrating the system, plant, and whole-building 

level models. The hypothesis is that bottom-up 

calibration can create more reliable and accurate 

models than those created with existing approaches. 

The number of candidate measurement points to be 

considered for analysis and use in simulation is very 

large. This paper explores automating the process of 

generating inputs from Building Automation System 

(BAS) trend data for use in building simulation 

software. A proof-of-concept prototype called the 

Automatic Assisted Calibration System (AACS) was 

created which generated multiple eQUEST inputs 

from BAS trend data obtained from a case study 

building.   

 

 

 

BACKGROUND 

 

Commercial and institutional buildings are 

responsible for 14% of total energy use and 13% of 

greenhouse gas emissions in Canada (NRCan 2009). 

The prevalence of older buildings among this stock 

means they will be key in reducing energy use and 

related emissions in this sector. Continuous 

evaluation of building performance is a management 

tool that could reduce energy use and associated 

negative environmental effects.  

 

Building systems are often poorly maintained 

and improperly controlled, resulting in an estimated 

15% to 30% waste of energy (Katipamula and 

Brambley 2005). Commissioning helps reduce this 

energy waste by assuring that the energy and 

environmental control performance of a building 

meets or exceeds the design intent, after construction 

is complete. As a building operates, equipment 

degrades, faults occur, requirements change and 

operators change control settings for a variety of 

reasons, which may improve or impair energy and/or 

environmental control performance. To achieve an 

optimal level of energy and environmental control 

performance, ongoing commissioning or existing 

building commissioning monitors on a continuing 

basis the air-handling units (AHUs) and the heating 

and cooling plants within a building (Monfet and 

Zmeureanu 2012). Within this approach, the use of 

calibrated building energy models can be a useful 

building performance management tool (Costa et al. 

2013) to identify energy efficiency measures, create 

benchmarks for operation, and estimate future 

performance under new operating conditions.  

 

This paper proposes a system to automate the 

generation of inputs from Building Automation 

System (BAS) trend data for use in calibrating 

building energy models using a bottom-up approach, 

where an analyst sequentially calibrates the zone 

level model before the system, plant, and whole-

building level models. The hypothesis is that bottom-

up calibration can create more accurate and reliable 

models than those created with existing approaches. 

The number of candidate measurement points 

required to execute bottom-up calibration is very 

large. The proposed system could reduce the time and 

effort required to analyse large sets of trend data for 

use in calibrating building energy models. In this 

paper inputs are information entered into building 

simulation software and trend data is ongoing 

measurements recorded in a BAS.     

 

LITERATURE REVIEW 

 

A calibrated building energy model generates 

estimates that match the measured energy use of an 

existing building with acceptable accuracy. In 

calibrating models, it is common to use a top-down 

approach, where an analyst tunes certain model 

inputs, either heuristically or based on optimization 

techniques, until the simulation results fit whole 

building utility data or other measurements with an 

acceptable error. The heuristic approaches, described 

in Reddy’s literature review (2006), generally include 
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three steps: (1) creating a “first cut” simulation 

model, (2) comparing the simulation estimate with 

the metered energy use, and (3) using experience to 

iteratively modify the model inputs to improve the fit 

of the simulation estimate to measured use. 

Optimization methods have also been proposed 

where inputs are estimated from the minimization of 

the difference between the measured monthly energy 

use and the simulation results (Liu and Henze 2005; 

Sun and Reddy 2006; Reddy et al. 2007).  

 

An existing building simulation model can be 

calibrated at various levels of detail: the whole-

building, plant, system, or zone level models (Figure 

1). A similar classification system was proposed by 

Maile et al. (2012). Previous literature focused on 

calibrating at the whole-building level where it is 

unknown whether offsetting errors in the model could 

exist at various levels such as thermal zones and 

HVAC systems and plants. It is also unknown 

whether key model zone, system, and plant 

performance have been characterized with sufficient 

accuracy. More recent publications deal with the 

calibration on a system and plant level. Tian and 

Love (2009) calibrated a building on a plant level 

using monthly metered thermal energy for heating 

and cooling, and electricity for lighting/equipment. 

Monfet et al. (2009) calibrated a building at the 

system level using the thermal loads of an 

institutional building and the supply air flow rate of 

the air-handling unit (AHU).  

 

 
Figure 1. Classification of calibration methods  

 

METHOD 

 

The common top-down approach uses deductive 

reasoning, assuming that if the whole-building or 

plant level model is calibrated, then the system and 

zone level models are likely to be calibrated. The 

bottom-up calibration procedure proposed here uses 

inductive reasoning in the form of evidence from 

measurements addressing the zone level model first; 

zone temperatures, supply/return air flow rates, and 

zone cooling/heating loads etc., are calibrated 

depending on the available measurements. This is 

followed by the calibration of the system level model 

(eg. AHU supply, return, and exhaust air flow rates, 

and supply/return air temperature, heating and 

cooling coil capacities, fan performance, thermofluid 

flow rates, etc.). The plant level is addressed next, 

where a building’s heating and cooling primary 

equipment are calibrated. The final step is the 

calibration at the whole-building level using utility 

data. A more accurate and reliable representation of 

actual building performance is achieved if all the 

level models are calibrated.        

 

The two main reasons building simulation 

models are often calibrated on a whole-building or 

plant level are (1) monthly utility energy use for gas 

and electricity are the most available measurements 

and (2) the time and effort required to calibrate at the 

zone or system level (if the corresponding 

measurements are available) is substantially greater 

when compared to calibrating on a whole-building 

level. Model calibration methods have been applied 

to simplified models (Liu, M., and G. Liu 2011; Heo 

et al. 2012) and to detailed simulation models created 

with software such as eQUEST and EnergyPlus 

(Monfet et al. 2009).  Heo et al. (2012) showed that 

simplified models could be as accurate as detailed 

models at the whole building level. However, Raferty 

et al. (2011) argued that simplified models could not 

represent energy efficiency measures at the zone, 

system, and plant levels.    

 

To the authors’ knowledge, there are no 

publications discussing the extraction of inputs from 

BAS trend data to calibrate simulation models. Pang 

et. al (2012) used trend data to calibrate a building 

energy model but did not discuss how their inputs 

were generated. There is currently little use of trend 

data in calibrating building simulation models. This 

is due to the difficulty in achieving a calibrated 

model and the, often large, difference between 

measured energy use and simulation estimates. 

Typical BAS trend data includes temperature, 

humidity, and air flow rates; rarely are thermofluid 

flow rates and sub-hourly electric demand available. 

This paper is a contribution in combining measured 

data and building simulation. 

 

The system, shown in Figure 2, is called the 

Automatic Assisted Calibration System (AACS). The 

AACS assists an analyst by automating the 

interaction between trend data analysis and the 

generation of inputs for use in building simulation 
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software. Ideally, the AACS generates relevant inputs 

during each of the cooling, heating, and shoulder 

seasons. It does not automatically produce a 

calibrated model but assists in the calibration process. 

This differs from programs that automatically create 

a calibrated model by tuning inputs based on an 

optimization approach such as SIMEB (Millette et al. 

2011). The AACS is connected to a database created 

from the weekly export of a comma separated value 

(CSV) file produced by the BAS. The trend data is 

processed into inputs that are directly entered into 

programs such as eQUEST and EnergyPlus. The 

building simulation software exports its results to the 

AACS, where the simulation results are compared to 

the measured data using statistical techniques.  

 

The proposed AACS approach was used for a 

calibration case study of a new research centre, 

recently completed on the Loyola campus of 

Concordia University in Montreal. The next section 

presents the building and HVAC systems, while the 

following section presents the available BAS trend 

data, and the generation of inputs for eQUEST. 

eQUEST was chosen as the simulation software 

because, at the time of writing, Natural Resources 

Canada is developing a version for use in Canada 

(Can-QUEST). 

 

BUILDING DESCRIPTION 

 

The Research Centre for Structural and 

Functional Genomics, known as the Genome 

Building (Figure 3), was completed in spring, 2012. 

It has a floor area of 5200 m
2 

(56,000 ft
2
), consisting 

of 5 levels, including a basement and a mechanical 

penthouse. The building has an orientation of 

approximately 60° west of north and a window-to-

wall ratio of 33%.  The building houses laboratories, 

offices, conference rooms, and a small data centre, 

located in the basement. The laboratory equipment 

includes environmental chambers, ventilation hoods, 

and other equipment required for biological 

experiments. The BAS software is Siemens 

APOGEE. The information presented in this section 

was extracted from construction documents. The 

opaque façade and roof have nominal U-values of 

0.27 (0.048) and 0.19 (0.033) W/m
2·K (Btu/h·ft2·°F), 

respectively.  

 

Air Distribution System  

The Genome Building has a variable-air-volume 

(VAV) system. Two identical air-handling units 

(AHUs), connected in parallel, with a total supply air 

flow capacity of 42,500 L/s (90,000 cfm) and return 

capacity of 14,200 L/s (30,000 cfm), are located in 

the mechanical penthouse. Air is returned via 

plenums ducts in two risers. Air is drawn from 

ventilation hoods, laboratories, and restrooms 

through two parallel exhaust fans with a capacity of 

33,000 L/s (70,000 cfm). The air within the AHUs 

are conditioned using run-around sensible heat 

recovery preheating coils, heating coils, cooling coils, 

and steam humidification. 

 

Figure 2. Assisted Automatic Calibration System schematic 
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Figure 3. The Genome Building located on 

Concordia University Loyola Campus in Montreal, 

Canada 

Heat recovery preheat/precool system.   

Exhaust air is passed through heat recovery 

glycol coils (SR1) (Figure 4), which can preheat or 

precool the outdoor air entering the AHUs. When Toa 

is less than 8 °C (46°F) or greater than 28 °C (82 °F) 

the pump (P03) runs continuously at a glycol flow 

rate of 11.7 L/s (185  US gpm). A three way valve is 

used to maintain the temperature of the glycol 

returning to the recovery coil (SR1) (Tglcr), at 4 °C 

(39 °F) or higher to prevent frosting in the AHUs. 

 
Figure 4. Simplified run-around heat recovery 

preheat system in the AHUs 

 

Heating Plant  

The Loyola Campus central plant serves the 

building, providing hot water and steam, which are 

used to heat and humidify supply air. The centrally-

supplied hot water is passed through: (1) two parallel 

heat exchangers that provide heat to the heating coils 

in the AHUs via a glycol loop and (2) a hot water 

loop for VAV reheat of the supply air entering the 

rooms. The heating coil pump operates with a 

variable frequency drive with a 5.8 L/s (92 US gpm) 

design capacity.  

 

Cooling Plant  

The campus chilled water loop normally supplies 

chilled water to the building. When the cooling 

demand is large, a 1760 kW (500 ton) chiller located 

in the mechanical penthouse provides additional 

chilled water.   

 

ANALYSIS AND INPUTS GENERATION 

   

This section presents the analysis of trend data 

collected and how they were processed into inputs for 

the eQUEST model. The analysis is presented 

starting on a zone level, followed by the system level. 

All trend data was recorded under real operating 

conditions.  

 

Analysis of Trend Data  

The available BAS trend data (Table 1), used in 

this analysis, were recorded as ongoing 

measurements every 15 min. All measured data is 

presented using hourly averaged values calculated 

from the 15 min data. Considerable time is required 

to manually analyze and extract inputs from 248 

trend data points, which demonstrates the need for an 

AACS. Data monitoring started June 2012 when 

construction was complete.  This analysis was based 

on data collected during the heating season from 

January 7th to March 31st 2013, unless otherwise 

stated.  January 7th was chosen because this was the 

first day that the building was in use after winter 

holidays. The database of trend data was imported 

into MATLAB where a proof-of-concept prototype 

AACS was created.  

 

The first step to test the AACS proof-of-concept 

was to manually organize the trend data based on a 

spatial and thermal hierarchy similar to the one 

proposed by Maile et al. (2012), as discussed in the 

literature review. Once the trend data was organized, 

the analyst selected the time period for analysis and 

the AACS generated inputs based on the methods 

used in the next sections. All data that appeared 

erroneous, based on inspection and judgement, were 

removed. 
 

Generation of Zone Level Inputs 

A total of 17 thermal zones were defined based 

on space function, proximity to the exterior, and 

orientation. The basement and mechanical penthouse  
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were not modelled. The zone trend data included: (1) 

room temperatures, (2) room supply air flow rates, 

(3) zone return air and exhaust flow rates, and (4) 

fume hood exhaust flow rates.  

 

The AACS generated the temperature set point 

schedule for input into eQUEST (HEAT-TEMP-

SCH) for each zone. First, zone hourly average 

temperatures were calculated by averaging 

temperature trend data for all rooms located in a 

zone. A single average zone temperature for a day 

and night schedule on weekdays and an average daily 

zone temperature on weekends were created (Table 

2). The day period during weekdays is defined as 

07:00 to 23:00 based on trend data of the minimum 

and maximum zone supply air flow.  

 

The AACS calculated supply air flow rates for 

each zone from the summation of the VAV terminal 

supply air flow rate trend data in the zone. The 

AACS generated the zone design air flow rate 

(ASSIGNED-FLOW) as the maximum measured 

zone supply air flow rate. The eQUEST hot deck 

ratio of minimum to maximum zone supply air flow 

rate (HMIN-FLOW-RATIO) for each zone was also 

generated in the AACS as the ratio of the measured 

minimum to maximum supply air flow rate in the 

zone. The results for the inputs generated at zone 

level are summarized in Table 2. 

 

Generation of System Level Inputs 

The trend data is discussed in terms of the 

AHUs, run-around heat recovery preheat, and heating 

components.  

 

Air handling units. 

The temperatures and air flow rates measured 

within the AHUs were also used in the AACS to 

generate inputs. It is common to use set points 

specified in the design specifications or as-built 

commissioning documents as inputs, however 

analysis of data from the system level can provide 

insight into actual system performance. For example, 

the measured supply air temperature from the AHUs 

was plotted over the controlled reset of supply air 

temperature set point as a function of the outdoor air 

temperature (Toa) (Figure 5). When the outdoor air 

temperature was below -10 °C (14 °F), the system 

operated near the desired set point. The supply air 

was overcooled when Toa was between 10 °C (50 °F) 

and -10 °C (14 °F). The temperature reset schedule 

generated by the AACS should therefore reflect 

regular operating conditions. 

 

The maximum measured supply air flow rate in 

the AHUs was calculated in the AACS to generate 

the design supply air flow rate (SUPPLY-FLOW). 

The ratio of measured minimum to maximum supply 

air flow rate was calculated in the AACS to generate 

the heating minimum flow ratio (HMIN-FLOW-

RATIO). The design return air flow rate in eQUEST 

(RETURN-FLOW) was calculated in the AACS as 

the maximum measured return air flow rate. The 

AACS also calculated the maximum and minimum 

return air relative humidity for input into eQUEST’s 

humidity control (MIN- and MAX-HUMIDITY).  

Trend Data 
No. of 

sensors 

Sensor 

accuracy 
Unit 

Ambient       

Outside air temperature 1 ± 0.3 °C 

Outside air humidity 1 ± 2% % 

Zone Level       

Room air temperature 95 ± 0.3 °C 

Zone perimeter supply air 

temp. 
2 ± 0.3 °C 

Fume hood exhaust rate 4 ± 5% L/s 

Room air supply flow rate 105 ± 5% L/s 

Zone return/exhaust flow 

rate 
18 ± 5% L/s 

System Level       

AHUs    

Supply air temperature 2 ± 0.3 °C 

Mixed air temperature 2 ± 0.3 °C 

Return air temperature 2 ± 0.3 °C 

Total return air flow rate  2 ± 5% L/s 

Total supply air flow rate 4 ± 5% L/s 

Supply air humidity 2 ± 2% % 

Return air humidity 2 ± 2% % 

Heat Recovery       

Glycol recovery supply 

temp. 
1 ± 0.3 °C 

Glycol recovery return 

temp. 
1 ± 0.3 °C 

Heating Coils       

Glycol supply temperature 2 ± 0.3 °C 

Glycol return temperature 2 ± 0.3 °C 

Total 248     

Table 1.  Available BAS trend data 
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Figure 5. Comparison of the measured and reset 

supply air temperature BAS set point  

Run-around heat recovery preheat coils.  

Heat is recovered from the exhaust air to preheat 

the outdoor air (Figure 4). The damper positions in 

the AHUs were not recorded, so the ratio of outdoor 

to supply air flow (α) was unknown. Using the 

available trend data, α could be estimated (eq. 1) 

along with other inputs needed to simulate the run-

around heat recovery preheat coils. As in Moser 

(2013), α was calculated as the slope of the curve fit 

when zero preheating of the outdoor air occurred 

(Figure 6). There were three distinct operating 

conditions that are summarized in Table 3 and shown 

as regions I, II, and III in Figure 6. The calculated air 

temperature, in the AHU, after the run-around heat 

recovery preheat coils (TPH) could be used to estimate 

α using eq. 2 for regions II and III. 

    
 ̇  

 ̇ 

 
     
      

 (1) 

         
 ̇  

 ̇ 

 
     
      

 (2) 

where:  TPH is the air temperature after the run-

around heat recovery preheat coils 

   Tr is the return air temperature in the AHU 

 

Zone 

Zone Temperature Average (°C) 
Supply Air Flow  

Weekday 

Weekend 
Day  Night Max. (L/s) 

Min Flow 

ratio 

Z1-S 21.2 19.4 20.2 956.5 0.00 

Z1-NE 23.3 22.3 22.6 757.4 0.22 

Z1-NW 20.6 20.2 20.2 1430.8 0.46 

Z1-CORR 21.7 21.5 21.6 578.1 0.61 

Z1-CONF 23.9 23.9 23.7 546.5 0.46 

Z2-SE 23.1 22.1 22.7 1389.7 0.27 

Z2-E 22.3 22.2 22.2 2488.8 0.41 

Z2-INT 23.0 22.9 22.9 504.9 0.51 

Z2-NE 22.5 21.3 20.9 1836.6 0.47 

Z2-S 22.4 22.4 22.5 634.7 0.72 

Z2-W 22.2 22.4 22.3 276.5 0.00 

Z3-SE 22.7 21.3 22.1 1520.9 0.29 

Z3-E 22.8 22.6 22.7 2479.8 0.71 

Z3-INT 23.5 23.4 23.4 462.9 0.35 

Z3-NE 21.6 20.8 20.2 1527.1 0.41 

Z3-S 22.3 22.4 22.3 874.0 0.25 

Z3-W 22.3 22.5 22.3 292.1 0.25 

Table 2. Zone level inputs generated from trend data 
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The run-around heat recovery preheat loop was 

activated when Toa was less than 8°C (corresponding 

to -14°C on the x-axis of Figure 6) according to the 

control sequence as programmed in the BAS. Once 

TPH can be estimated in the AACS using the linear 

regressions in regions I, II, and III, the minimum α 

could be calculated using eq. 2 for input into 

eQUEST as the minimum outside air ratio (MIN-

OUTSIDE- AIR). On a side note Tr, which influences 

α, was measured at a relatively constant temperature 

with mean values of 21.5 °C (71 °F), 22.2 °C (72 °F), 

and 22.5 °C (73 °F) with an uncertainty of 0.4 °C (0.7 

°F) in regions I, II, and III, respectively. Generating 

inputs in the AACS from the heat recovery preheat 

loop is being investigated further.   

 

Heating coils. 

The temperature of glycol entering the heating 

coils (Thwa) in the AHUs follows a controlled reset 

temperature set point, as a function of Toa (Figure 7). 

The trend data shows that the reset profile was 

followed, however, with a higher glycol supply 

temperature. The corrected reset profile was 

estimated manually from the Thwa trend data using 

linear regression (Table 4), because, at the time of 

writing, the AACS could not automatically calculate 

temperature reset schedules. 

 

The glycol mass flow rate (ṁglc) in the heating 

coils was not measured. However, the AACS could 

calculate ṁglc using eq. 3. The hot deck temperature 

(THT) was not measured, but was estimated by 

subtracting the temperature rise across the supply fan 

(ΔTfan) from the supply air temperature (measured 

after the fan). The temperature rise across the supply 

fan in eQUEST (SUPPLY-DELTA-T) is another 

input that was calculated in the AACS. During hours 

with zero heating or cooling (automatically found in 

the AACS) ΔTfan was calculated as an average of 1.8 

Region Date Description 

I 

Nov 1
st
 – 

Dec 22
nd

 

2012. 

When Toa is less than 8 °C (46 

°F) the run-around heat 

recovery coils should operate 

to preheat the outdoor air. 

However, pump P03 did not 

function so no preheating 

occurred.  

II 

Jan 7
th

 – 

Mar 31
st
 

2013. 

Pump P03 operated at a 

constant flow rate and 

preheated the outdoor air to a 

constant TPH as Toa got colder. 

III 

Jan 7
th

 – 

Mar 31
st
 

2013. 

Pump P03 continued to 

operate and valve PV-3 

opened to maintain the 

temperature entering the 

recovery coil (SR1) (Tglcr) to 4 

°C (39 °F). The amount of 

energy transferred to preheat 

the outdoor air was limited 

causing TPH to decrease as Toa 

gets colder. 

Table 3. Run-around heat recovery preheat loop 

operation summary 

 

Figure 6. Economizer and run-around heat recovery preheat coil analysis, similar to Moser (2013) 
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°C (3.2 °F) with an uncertainty of 0.4°C (0.7 °F) by 

subtracting the mixed air temperature from the supply 

air temperature in the AHU. eQUEST’s SUPPLY-

DELTA-T default value for VAV fans is 1.9 °C (3.4 

°F). 
  

  

Table 4.  Measured hot glycol temperature reset 

Hot glycol reset input: 

HEAT-RESET-SCH 
Temperature °C (°F) 

SUPPLY-HI 48.3 (119) 

OUTISE-LO -17.4 (0.7) 

SUPPLY-LO 35 (95) 

OUTSIDE-HI 7 (45) 

 

The estimated mass flow rate of glycol versus 

outdoor air temperature is plotted in Figure 8. The 

maximum glycol flow rate was estimated in the 

AACS to generate the pump flow rate in eQUEST 

(FLOW). The maximum glycol temperature 

difference across the heating coils was calculated in 

the AACS for input into eQUEST as the design 

temperature change through the heating coil (HW-

COIL-DT). The capacity of the heating coils 

(HEATING-CAPACITY) was generated in the 

AACS as the maximum qheat value calculated using 

eq. 3.  

 
Figure 8. Estimated heating coil glycol flow rate 

 
The results for the inputs generated in the AACS 

at the system level are summarized in Table 5. At the 

time of writing, no total plant or whole-building trend 

data were available.  
 

FUTURE WORK 

 

The next step in this research is to calibrate 

simulations of the Genome Building using 

information from as-built drawings and the inputs 

generated in the AACS. For further development of 

an AACS, issues with faults and data quality must be 

addressed. The AACS could also be improved by 

automatically estimating temperature reset, lighting, 

and occupancy schedules etc., if the required sensors 

were available. Further investigation is required to 

fully extract all the inputs from the run-around heat 

recovery preheat system and the economizer. The 

BAS system records trend data for the supply and 

return chilled water temperatures and supply and 

return condenser water temperatures. Cooling system 

inputs could be generated using this trend data if the 

cooling season was analysed. 

 

Even with the large number of inputs that could 

be extracted from a BAS, unknown inputs remain. 

Using supplementary loggers such as electricity and 

flow meters could generate some remaining inputs. In 

commercial and institutional buildings, some 

influential inputs, such as infiltration and effective 

wall U-value, are very difficult to measure.   

 

CONCLUSION 

 

An Automatic Assisted Calibration System 

(AACS) was proposed to automate the process of 

analysing BAS trend data to generate inputs for 

building simulation. Multiple inputs were generated 

       ̇      
(      )  

  ̇        
(         ) 

(3) 

where: Thwa is the glycol temperature arriving at 

the heating coils 

 Thwr is the glycol temperature returning 

from the heating coils 

 THT is the hot deck temperature; 

 THT  = Ts – ΔTfan 

 Tm is the mixed air temperature in the AHU 
 ΔTfan is the temperature rise across the fans 

Figure 7. Comparison of the measured and hot glycol 

reset temperature BAS set point 
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on a zone and system level from trend data in an 

existing building to verify the proof-of-concept. The 

generated eQUEST inputs could be used as the 

starting point for creating a calibrated model using a 

bottom-up approach. The hypothesis is that bottom-

up calibration can create more reliable and accurate 

models than those created with the top-down 

approach.  

 

Integrating or coupling an AACS with building 

simulation software could reduce the time and effort 

required for bottom-up calibration. In the future the 

AACS could automatically enter inputs calculated 

from BAS trend data into building simulation 

software. The automatic generation of inputs from 

BAS trend data could become a powerful tool in 

creating calibrated building simulation models.  
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