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ABSTRACT

Companies and organizations must make decisions concerning capital budgeting. Cap-

ital budgeting is a decision-making process that determines whether a firm should purchase

equipment to be used on a long-term basis. The initial investment in the equipment is pre-

dicted to be returned through revenue gained by the use of the equipment over its lifetime.

However, there is inherent risk associated with these investment decisions. Therefore, po-

tential purchasers must decide whether the risk involved with investing in the equipment

is justified.

This dissertation addresses risk-based technology assessment for capital equipment

acquisition decisions in small firms. Technology assessment, here, is concerned with un-

derstanding the uncertainty associated with assessing the value predicted in the capital

budgeting process. When analyzing the risk for a given technology, we assign a prob-

ability law to its net present value. Our primary research contribution is providing an

analytical framework together with a computational strategy to support capital equipment

budgeting in firms where the value of candidate technologies can represent nearly all the

firm’s value.

Since small firms typically have limited budgets, spending for technology is always a

difficult budgeting decision. The organization’s administration must decide which, if any,

among the available technologies will be best for their operation.

The process for acquiring technology in many small firms can be filled with challenges.

Most important among them is that capital budgeting is typically a “one-off” decision.

These decisions are difficult since the candidate technologies may not have operational

data available. Thus, decision makers need some means to predict how the proposed tech-

nology (e.g., equipment or machinery) will be used. Hence, firms should follow techniques
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and procedures based on appropriate normative principles and well-established theory. Se-

nior company executives and/or governance boards are often authorized to approve capital

equipment purchases. However, these company leaders may not have adequate expertise

in the operations of candidate technologies or may lack the understanding necessary to de-

termine how new technologies may impact other company operations. Appropriate finan-

cial evaluation measures and selection criteria that incorporate risk are critical to making

sound, quantitative acquisition decisions.

The research reported here offers an analytical framework for comparing different

technology alternatives in capital budgeting decisions. Comparison is based on the ex-

pected net present value and the risk (i.e., probability law on net present value) associated

with each decision alternative. To this end, the operational characteristics of each technol-

ogy alternative are connected to their potential revenue and cost streams. The framework

is embedded within a computational architecture that can be customized to account for

operations and technologies in specific application scenarios.

One major barrier addressed by this research is overcoming the fact that new technolo-

gies typically have no historical operational data. Therefore, characterizing the uncertainty

of operations (e.g., distribution of the equipment lifetime) can be very difficult. Discrete-

event simulation is used to generate potential revenue and cost estimates.

We demonstrate the tractability and practicality of the analytical framework and com-

putational architecture via a healthcare technology assessment decision. Data extracted

from a published journal article detailing a hospital’s technology assessment decision are

used to find the risk of the medical technology using the computational architecture devel-

oped. Widely-available, no-cost software tools are employed. Results of the health care

example suggest that the financial analysis in the original technology assessment was in-

adequate and simplistic. Small firms may find this research particularly beneficial because

potential investments can be a significant portion of a small firm’s value.
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1. INTRODUCTION

Companies and organizations must make decisions concerning capital budgeting. Cap-

ital budgeting is a decision-making process that determines whether a firm should purchase

machines and other equipment used on a long-term basis. The capital equipment, it is

believed, will improve the value of the organization. The initial investment in the equip-

ment is predicted to be returned through revenue gained by the use of the equipment over

its lifetime. However, there is inherent risk associated with these investment decisions.

Therefore, potential purchasers must decide whether the risk involved with investing in

the equipment is justified.

In its 2009 Annual Capital Expenditures Survey (U.S. Census Bureau, 2011a), the

Census Bureau reported that capital expenditures for all businesses with employees and

nonemployees in the United States were over $1.09 trillion for the year. Of this $1.09

trillion, nearly $642 billion were allocated for capital equipment expenditures. A further

breakdown of equipment purchases showed that over $602 billion was spent by compa-

nies with employees, while almost $40 billion was spent by companies without employees.

Figure 1.1 gives a breakdown of these equipment expenditures by industry for companies

with employees. An alternate breakdown of the same $642 billion yearly equipment ex-

penditure data reveals that nearly $607 billion was spent on new equipment and $35 billion

for used equipment (U.S. Census Bureau, 2011b). Figure 1.2 shows the trend of equip-

ment expenditures for companies in the United States with employees. The trend shows a

general rise in capital equipment purchases after a dip in 2002-2003. The figure of $602

billion from 2009, suggests another dip in capital equipment expenditures. These dips

in capital equipment expenditures correspond roughly to periods immediately following

business cycle contractions in the United States economy (National Bureau of Economic
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Research, 2010). Despite the periods of decline in expenditures, U.S. companies still pur-

chased hundreds of billions of dollars of new capital equipment.

Figure 1.1: 2009 equipment expenditures (millions of dollars) by industry for U.S. com-
panies with employees

Our research focuses on small businesses. The U.S. Small Business Administration

(SBA) defines a small business as one with at most 500 employees for most manufac-

turing and mining industries, and up to $7 million in average annual receipts for most

non-manufacturing industries. We shall adopt this definition of small businesses. The

Census Bureau estimates that there were over 5.9 million small businesses in the United

States in 2008. Small businesses often face capital budgeting decisions that present al-

ternatives where the purchase of capital equipment could require a financial commitment

nearly equal to the total value of the business. Hence, the survival of the business can rest

upon the selection of appropriate alternatives. Here, the decision to purchase a technology
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Figure 1.2: Capital equipment expenditures (billions of dollars) for U.S. companies with
employees from 1999-2009

can be characterized as one-off bets, i.e., the business has only one chance to purchase an

investment or not. The organization’s administration must decide which technologies, if

any, among those available will be best for the value of their business.

The process for acquiring technology presents difficult challenges in many small firms.

Almost always the greatest challenge is quantifying the risk (i.e., uncertainty) associated

with predicting the value of capital budgeting alternatives. There are many capital bud-

geting methods and procedures that are employed in practice. Firms should employ tech-

niques and procedures based on appropriate, established theory in engineering, finance,

and economics when making decisions. Decision analysis is founded on “a normative

3



theory of individual decision-making,” (Bickel, 2006). Normative theory explains how

decisions should be made by “rational” individuals (Bell et al., 1988). An individual is

“rational” in that he or she adheres to axioms which delineate how the individual consis-

tently chooses amongst potential preferences (Clemen and Reilly, 2001). Preferences are

ranked according to an individual’s utility function. This utility function models an “in-

dividual’s attitude toward risk” (Clemen and Reilly, 2001). In the presence of uncertainty

with technology assessments, we propose that small firms appeal to tenets of utility theory

for consistent, rational decisions.

Historically, companies have shunned more sophisticated capital budgeting techniques,

e.g., net present value (NPV) and internal rate of return (IRR), in favor of more simplistic

methods, e.g., payback period (PBP) and benefit-cost ratio (BCR). The benefit-cost ratio

is computed by finding the proportion over some time period of the sum of benefits to the

sum of costs for an investment. The sums of benefits and costs need not be discounted.

A drawback to the BCR is that some benefits and costs may not be expressed monetarily.

Payback period or break-even point (BEP) calculates how long it takes until an investment

reaches an overall positive amount. A disadvantage for the PBP or BEP method is that

it does not take into account what happens to cash flows that occur after the point when

net revenues exceed the initial investment cost (Bierman and Smidt, 2007). The NPV is

calculated by discounting an investment’s future projected costs and revenues to time 0, the

time of the initial investment. IRR computes the rate at which the NPV equals zero for an

investment, i.e., the rate at which discounted revenues equals discounted costs. Although

PBP and BCR are computationally simpler than NPV and IRR, these methods are not

in rigorous agreement with utility theory and lead to incorrect value assessments of new

technology. For example, PBP fails to take account for the cash flows that occur after the

first time cash outflows equal cash inflows. BCR has been utilized more prominently in

justifying capital expenditures in the public sector for the general welfare. Small firms and
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businesses usually operate on a for-profit basis. One reason that NPV and IRR have been

shunned is that the amount of data required to employ the measures can be cumbersome.

Leadership culture within a small company may pose other challenges in the technol-

ogy acquisition process. Senior company executives and/or governance boards are often

authorized to approve capital equipment purchases (Deber et al., 1994, 1995). However,

these company leaders may not have adequate expertise in financial affairs. Without req-

uisite training and background in economic matters, company leaders may make decisions

for the firm that are premised on erroneous logic and/or simplistic methodologies. Al-

though financial measures like PBP or return on investment may be easier to understand

(Weingart, 1993), they can be inconsistent (Bierman and Smidt, 2007) which can lead to

incorrect decisions. Leaders may not grasp the importance of making new technology de-

cisions based on the financial viability of the technology. As noted in (Weingart, 1993),

financial analyses may be merely a hurdle to purchasing, as opposed to the means to jus-

tify the decision. Also, some executives may lack understanding on how new technologies

will be used or how the purchase would affect company operations.

The principle capital budgeting challenge facing small firms is adequately address-

ing risk associated with the technology. A deterministic technology assessment does not

acknowledge the inherent uncertainty involved with the investment. Appropriate finan-

cial evaluation measures and selection criteria that incorporate risk are critical to making

sound, quantitative acquisition decisions. Compounding the difficulty of these decisions

is the likelihood that the candidate technologies may not have operational data available.

Thus, decision makers need some means to predict how the prospective equipment or ma-

chinery will be used.

This dissertation addresses risk-based technology assessment for capital equipment ac-

quisition decisions in small firms. Technology assessment focuses on assessing the value

of technologies that might be acquired in the capital budgeting process. When analyzing
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the value of risk of a given technology, a probability law is assigned to the value of the

new technologies. The uncertainty of value is functionally related to the uncertainty aris-

ing in the predicted operational dynamics of candidate technologies. The primary research

contributions are an analytical framework and computational architecture where the uncer-

tainty in predicted operational behavior of candidate technologies is incorporated into the

characterization of those technologies at the times of capital budgeting acquisition deci-

sions.

Our analytical framework is built upon stochastic processes which model cash flows

of prospective technologies. The projected cash flow trajectories are modeled as marked

point processes. When comparing technology alternatives, the expected net present value

and the risk (i.e., cumulative distribution function of the net present value) associated with

the alternatives, are used. The risk provides decision makers with more information in

order to make consistent decisions. This research relies on the axioms of utility theory

which provide the foundation for decision makers to make consistent, rational decisions.

Various computational tools are employed to allow small firms to effectively approach

risk-based technology assessments.

The computational approach developed and presented in this research includes a mod-

ular computational architecture for comparing different technology alternatives in invest-

ment decisions. The modularity of the architecture allows for customizable software tools

appropriate for the specific technology alternatives considered. One important tool em-

bedded in the computational architecture is discrete-event simulation. Simulation allows

for the exploration of value uncertainty, due to operational uncertainty, in the reality of

ambiguous probability law. To this end, the operational characteristics of each technology

alternative are connected to their potential revenue and cost streams. The computational

architecture presented in this work utilizes software tools to support the decision-making

process. These tools can be customized to account for predicted operational behavior
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and technologies that are specific to various company needs. Sensitivity analyses can be

easily performed to probe ranges of values for investments. Open source software tools

have been used in modeling and analyzing technologies. This open source approach for

software use bolsters the argument that appropriate technology assessment decisions are

practical and affordable to small firms.

The principle barrier that this research seeks to overcome is the fact that with newly

acquired technologies, operational characteristics of the technology are rarely available.

Therefore, probability laws that characterize operations (e.g., distribution of the equip-

ment lifetime) will not be accessible. Nonetheless, capital budgeting decisions must be

executed. The research results reported here offer a computational approach for exploring

the consequences of predicted operational uncertainty on the value of risk of candidate

budgeting alternatives when acquiring expensive technologies.

This research contributes to the literature through providing an analytical framework

and computational decision support architecture for risk-based technology assessments.

The design of the architecture purposefully connects the uncertainty associated with tech-

nology investment decisions to the technology’s potential operations by employing prob-

ability models and discrete-event simulation. Small firms may find this research particu-

larly beneficial because possible investments can be a significant portion of a small firm’s

value. As a rule-of-thumb, Ron Howard, considered the father of decision analysis, advo-

cates spending at least 1% of the investment value to perform a decision analysis (Howard,

1966). Although this is an arbitrary and conservative rule, it amplifies that there is inher-

ent value in correctly assessing decisions to purchase new technologies. Capital budgeting

is essentially a one-off gambling process and should be treated as such analytically. We

employ a rigorous analytical approach which depends on the expected utility (EU). EU

relies on the tenets of utility theory. A characterization of probability on value (i.e., risk)

is required to employ the expected utility theorem. Specifying a probability law on value

7



(i.e., risk) is very difficult because it requires characterizing prediction uncertainty about

technical operations. Simulation offers a opportunity to accommodate sensitivity analy-

sis through exploring various scenarios computationally. The research presented here has

developed a computational architecture that accomplishes risk-based technology assess-

ment using expected utility theory. Although there are many areas where this risk-based

technology assessment approach may be useful, this research uses healthcare technology

assessment decisions to demonstrate the research approach.

This dissertation is structured as follows: Section 2 details a review of the literature

related to various aspects of this research. In particular, technology assessment, capital

budgeting, and discrete-event simulation literature sources are summarized. Section 3

presents the background information used in the analytical framework and computational

architecture developed to address risk-based technology assessment decisions. Section

4 contains the results from a healthcare example which illustrates practical application

of the framework and architecture. The healthcare example uses data from a published

technology assessment case study. Section 5 gives conclusions for the dissertation and

highlights potential future research directions.
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2. LITERATURE REVIEW

The literature on capital budgeting is vast. We do not attempt to review all of it. How-

ever, we review literature related to various aspects of the issues faced when making tech-

nology assessment decisions. We have found very few published papers that specifically

address the risk associated with acquiring new technologies in small firms. Several of the

papers reviewed touch on specific aspects of the capital budgeting process. There were

papers and books that addressed risk and sensitivity analysis. None of the reviewed lit-

erature develop a computational architecture which addresses the methodology of how to

make risk-based technology assessment decisions. None of the reviewed papers focus on

connecting the technology investment decision to its operational data using probability

models. We begin our review with papers that focused on small firm capital budgeting

techniques in section 2.1 . We note references that spotlight the problems of relying on

non-discount methods for capital budgeting. After that, we expand the focus on capital

budgeting methods used by businesses of all sizes in section 2.2. Section 2.2.1 highlights

capital budgeting within the public sector. Literature related to health care technology as-

sessment is reviewed in section 2.3. The use of risk and sensitivity analyses and simulation

in capital budgeting decisions is also reviewed in section 2.4. Finally, in section 2.5, we

summarize the unique contributions of our research in the context of capital budgeting and

technology assessment.

2.1 Small Firm Capital Budgeting

Most of the papers address capital budgeting in small firms focus on the financial

techniques and methods that the firms employ. Sources such as Block (1997), Runyon

(1983), Filbeck and Lee (2000), and Luoma (1967) chronicle the decision-making process

for small firms. Questionnaires and other surveys are used to ascertain which techniques
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are popular with small firms. Below we highlight the results from these sources.

One of the most recent papers that specifically focus on small firm capital budgeting

techniques is Block (1997). Block highlights the varied methods and financial measures

that small business firms in the 1990s use to make capital budgeting decisions and com-

pares the use of those financial measures with the measures reported in prior studies. Block

defines small firms as businesses with less than $5 million in sales and fewer than 1,000

employees. The author uses a questionnaire survey to poll the small manufacturing busi-

nesses targeted and bases the analysis in the paper on the 232 usable questionnaires out

of 850 total. Payback period (PBP), accounting rate of return (ARR), internal rate of re-

turn (IRR), and net present value (NPV), in this order of preference, are the most popular

methods used by the small firms in Block’s study. Payback period, also known as break-

even point (BEP), refers to the length of time in which a firm would want to recoup any

costs of investment. The accounting rate of return is a ratio of the average net income to

the average investment. The internal rate of return refers to the interest rate at which the

cost of an investment would be equal to the benefits gained from the investment. The net

present value takes the future revenues and costs of an investment and discounts them to

the present time through a discount rate. The author attributes the wide use of PBP in

small firms to its ease, its emphasis on recovering initial investment amounts, and pres-

sures from lending agencies. For the firms in the study, the median PBP is 2 years, and the

mean PBP is 2.81 years. However, the mean useful life of small firms’ investments is 7.09

years. Block states the mean PBP roughly implies a 35.59% required return rate using the

payback period reciprocal method, found by taking the reciprocal of the payback period.

In comparison to previous studies, the author observes that there is a larger percentage of

small businesses using more sophisticated discounted cash flow (DCF) methods (IRR and

NPV).

Figure 2.1 illustrates the percentage of small firms which use various capital budgeting
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Figure 2.1: A barplot representing the percentage of small firms using various capital
budgeting methods. The data are from two studies.

methods. The data are from two studies: Block (1997) and Runyon (1983). Block’s

1997 study shows 27.6% of respondents employ IRR and/or NPV for capital budgeting.

This percentage is up from 9.2% of small businesses employing IRR and/or NPV in 1983

from the study in Runyon (1983). However, the use of non-discounted cash flow methods

including PBP and ARR, seems to be just slightly down over the studies. In Runyon’s

survey, 45.4% of small firms employ PBP, while 42.7% of firms employ PBP in Block’s

survey. The percentage of small firms employing ARR is 23.9% and 22.4% in Runyon

and Block, respectively. Block notes that more time may be needed before small firms

discontinue use of less sophisticated methods such as PBP and ARR.

Although Block (1997) cites an increasing number of firms using discounted cash flow

techniques, many of the firms use simple ways to determine the discount rate. Block finds
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that, of the small firms which employ DCF techniques, a majority (53.1%) of those firms

use the discount rate associated with funding a particular project. Another 20.3% of the

firms which use DCF methods choose arbitrary discount rates. Block appears to advocate

use of the weighted average cost of capital (WACC) for the discount rate. However, only

14.1% of DCF-employing firms use the WACC to discount. Bierman and Smidt (2007)

define WACC as “the sum of the weighted cost of debt and equity capital where the weights

are the relative importance of each in the firm’s capital structure and the [debt and equity

capital] costs are the expected returns required by investors as an inducement to commit

funds.” According to the authors, the weighted average cost of capital for a company can

be computed by multiplying the cost of each type of capital the company holds by “the

ratio of the market value of the securities representing that source of capital to the market

value of all securities issued by the company.” Bierman and Smidt (2007) notes that some

companies choose to use the book values of securities instead of their market values. Now,

Block (1997) states that calculating the cost of equity capital can be harder for small firms.

Therefore, firms use WACC less often.

Another phenomenon Block (1997) studies is the inclusion of risk in small firm capital

budgeting. Block discovers that 46.3% of the small firms which account for risk do so

by increasing the required return rate in their capital budgeting analyses. Another thirty

percent use conservative cash flow projections to adjust for risk. Slightly over 20% of

the risk-adjusting small firms use other subjective, non-quantitative risk considerations.

Around three percent (3%) of the firms which account for risk use probability distributions

in their analyses.

Luoma (1967) details how financial accounting coupled with other information can

aid managers of small and medium-sized manufacturing firms in decision making. Luoma

studies the firms’ operations and compares them to “theoretically acceptable considera-

tions and practices.”
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In the next section, we expand our focus to literature on capital budgeting practices

of companies in general. Nonetheless, similar issues involving method selection and risk

analysis are seen in companies of all sizes.

2.2 Capital Budgeting

Several papers in the literature address capital budgeting and its use in alternative se-

lection. Again, we focus on literature sources that relate to similar approaches in terms of

the use of financial evaluation methods (i.e., net present value) and the utilization of risk

and sensitivity analyses and discrete-event simulation in capital budgeting.

The 1987 survey paper by Mukherjee and Henderson reviews over fifty research papers

on capital budgeting. The authors’ goal is to discover how and why the practice of capital

budgeting differs from the theory associated with it. The authors approach their study by

reviewing survey papers in the area and using a four-stage framework to classify the ele-

ments of those survey papers. The stages are (1) identifying investment opportunities, (2)

developing initial proposals, (3) selecting a project, and (4) controlling/assessing forecast

accuracy. The selection stage is the emphasis of the reviewed survey papers. Firms identify

capital investment ideas by various means. Ideas usually flow from lower levels of the firm

to higher levels. During the development stage of ideas, many firms prematurely screen

ideas before developing adequate analysis of the ideas. Therefore, firms could mistakenly

reject viable ideas through this pre-screening process. During the selection stage, the re-

search papers reveal that the most frequently studied aspects of capital budgeting are the

techniques used, risk analysis, capital rationing and cost of capital methods. Mukherjee

and Henderson (1987) notes that many of the firms use discounting cash flow techniques

to evaluate the investments. Internal rate of return is the most popular listed technique with

net present value as the second most popular technique. Payback period and accounting

rate of return are also techniques that firms use to analyze the investments. Many compa-
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nies require formal committee approval for investment selection. Many firms also conduct

post-selection audits using accounting measures (e.g., return on assets, profit and loss, and

return on investment) to assess project success.

Mukherjee and Henderson state that the firm’s goal should be to maximize sharehold-

ers’ wealth. However, the authors show that there is a gap between theory and practice in

all four stages of capital budgeting. In the pre-selection stages, some projects are rejected

for noneconomic reasons. These noneconomic rejections may result in costly mistakes.

Another finding in the pre-selection stages is that all firms do not use cash flows to char-

acterize the candidate projects. If firms do use cash flows, sometimes important cash flow

components are not included in the analysis. The authors note many gaps between theory

and practice during the selection phase of capital budgeting. Among the gaps in this phase

are the following:

1. Internal rate of return being used over the theoretically preferred net present value

2. Payback period being used despite its lowered status in theory

3. Risk analysis models not being widely used.

The authors suggest that the gap between theory and practice in the paper they review may

be due to shortcomings in the theory. Mukherjee and Henderson summarize some limi-

tations of theoretical models. One limit is an ineffectiveness of models to include orga-

nizational behavior attitudes towards risk and decision making. Although existing theory

assumes that capital budgeting decisions are made on a strict economic basis, business

practices do not rely exclusively on project economics. Politics, intuition, and ineffective

communication play a role in practical capital budgeting decisions. Mukherjee and Hen-

derson (1987) notes that in one reviewed paper, organizational behavior partially explains

why the internal rate of return method is preferred to net present value. Although theory
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assumes symmetric risk preferences, the authors find that projects with higher risks of

negative returns are eliminated although those same projects may have larger expected net

present values. Another limit is the difficulty in applying models due to data availability.

Practitioners deem the cost of obtaining accurate data as expensive. Methods, e.g., net

present value, that rely heavily on accurate data are shunned for ones, such as payback

period, with less onerous gathering cost. Data requirements also affect the use of risk

analysis models. In practice, companies tend to choose simplistic techniques to address

the risk associated with candidate projects. The authors view net present value as the pre-

ferred method. They state, “Although NPV and IRR are both effective, NPV is considered

superior because (1) it conforms to the value-additivity principle, (2) its assumed reinvest-

ment rate is consistent with valuation theory and uniform across projects, and (3) it avoids

multiple answers for a single project which sometimes result from using IRR.” In con-

clusion, the authors suggest that new capital budgeting models incorporate organizational

behavior theory, not just the economics of cash flows.

The survey paper on discounted cash flow analysis by Carmichael and Balatbat (2008)

lists capital budgeting papers that use some form of probability distributions to character-

ize the uncertainty of making a decision to invest in capital equipment. Many of the papers

that Carmichael and Balatbat (2008) review estimate risk by constructing a distribution on

the net present value or other discounted cash flow methods (e.g., future worth, internal

rate of return, and payback period). Their study classifies financial papers by the type

of method used. The authors chronicle the history of each method’s use. The equations

and assumptions for each method’s calculation is given in the paper. The authors propose

more empirical studies to guide decision makers about parameters for these theoretical

discounted cash flow methods.

White et al. (2010) dedicate an entire chapter to supplementary analyses in capital

budgeting. The three types of supplementary analyses the authors detail are break-even
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analysis, sensitivity analysis, and risk analysis. Break-even analysis involves finding the

break-even point (BEP) or payback period (PBP) (see section 2.1). Sensitivity analysis

studies how changes in various parameters affect the overall economic measure. Risk

analysis assigns some probabilistic statement about the economic value of the investment.

The authors demonstrate the use of Monte Carlo and Latin hypercube simulations with

risk analysis in the capital budgeting framework. Microsoft Excel spreadsheets are used

throughout the book to model various calculations. The risk analyses in White et al. (2010)

do not include modeling the system operations of new technologies.

2.2.1 Capital Budgeting within the Public Sector

Several papers detail how public sector organizations and government entities use cap-

ital budgeting techniques to purchase resources. In the papers below, we focus primarily

on the methods companies employ for financial evaluations.

Kee et al. (1987) survey 200 city finance officers in the United States about their city’s

capital budgeting procedures. The authors construct a survey questionnaire that addresses

the policies that municipal leaders use in determining how their city acquires capital equip-

ment and invests in capital projects. The authors consider cities with populations of 50,000

or more. The authors base their analysis on the ninety-seven complete questionnaires of the

200 total, a response rate of 48.5%. Although the methods of internal rate of return (IRR)

and net present value (NPV) are considered to be “more sophisticated,” there is not broad

implementation of these two models in the cities. The authors find that only 4% of cities

use these models as a primary method in capital budgeting. Cities opt to use the benefit-

cost ratio (BCR) and the payback period (PBP) as primary capital budgeting methods with

40% and 13%, respectively. Approximately 33% of the city financial officers respond that

they use no quantitative methods to conduct capital budgeting. However, it seems that

the cities conduct some type of risk analysis in their capital budgeting processes. From
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the survey, Kee, et al. (1987) find that thirty-nine percent of cities use nonquantitative

techniques to analyze risk in capital budgeting decisions. Thirty-two percent use conser-

vative cash flow estimates to address risk considerations for their investment decisions.

Other risk analysis methods include shortening the PBP (10%), increasing the required

rate of return (7%), determining cash flow probability distributions (5%), and conducting

sensitivity analysis and simulation techniques (5%). Overall, the authors summarize “the

less sophisticated capital budgeting methods and nonquantitative assessments are the most

popular approaches” that cities use in capital budgeting. The authors attribute the use of

the less sophisticated methods to the fact that the majority of city investments do not con-

sider the bases of saving costs or generating revenues. Political and social influences also

factor into city investments.

In their 1991 paper, Kee and Robbins survey 400 government finance officials (200 city

finance officers and 200 county financial managers) about capital budgeting techniques at

the city or county level. Of the 400 total surveys, 169 questionnaires are usable, indicating

a 42% response rate. The respondents’ annual budgets range from under $500,000 to over

$30,000,000. The authors discover that over two-thirds of respondents do not use differ-

ent techniques when analyses are conducted for non-profit investments versus for-profit

investments. Kee and Robbins (1991) concludes that “financial considerations appear to

play a relatively minor role in most municipal and county investments. Even in instances

where the primary motive of a proposed investment is the generation of revenues or cost

savings, financial considerations have little impact upon the selection or use of capital-

budgeting techniques in local government.” The results of the survey suggest that many

governments with larger budgets still rely on less sophisticated techniques such as ARR,

PBP and BCR to perform capital budgeting.

Sekwat (1996) surveys how county governments in the United States use various mod-

els and techniques in purchase decisions. Sekwat uses three factors to categorize how
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counties use capital budgeting techniques and incorporate risk in purchase decisions. The

three factors are (1) the form of government for the counties, (2) how urbanized the coun-

ties are, and (3) the size of county capital investment. The survey targets four hundred

county financial officers or other officials. The author focuses on counties with popula-

tions greater than 10,000 residents. The author assumes counties with smaller populaces

would not have the capacity to undergo systematic capital budgeting. With 214 valid ques-

tionnaires, the response rate is 53.5%. Sekwat finds that counties use benefit-cost ratio

(BCR) and payback period (PBP) [also known as break-even point (BEP)] as the two most

popular capital budgeting decision models. Other models the counties employ include the

accounting rate of return (ARR), net present value (NPV), and internal rate of return (IRR).

Counties also use other undocumented decision models. The benefit-cost ratio gives the

ratio between the sum of benefits to the sum of costs for investments. The sums of benefits

and costs may not be discounted. A drawback to the BCR is that some benefits and costs

may not be expressed monetarily. Payback period or break-even point calculates how long

it takes until the initial cost of an investment is recovered through revenues. A disadvan-

tage for the PBP or BEP method is that it does not take into account cash flows that occur

after the investment reaches the zero point. The accounting rate of return gives the ratio of

the average returns to the average net cost for an investment. Average returns are the sum

of the revenue divided by the expected life of the investment. The average net cost is the

average of an investment’s initial cost and its salvage value. The ARR’s downfall is that it

does not take into account the time value of money. The NPV calculates an investment’s

value by discounting future projected costs and revenues to time 0, the time of the initial

investment. IRR computes the rate at which the NPV equals zero for an investment, i.e.,

the rate at which the discounted revenues equal the discounted costs. A drawback for the

NPV and IRR methods is the need for data to estimate the projected costs and revenues

throughout the time horizon for an investment.
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Less than 7% of the counties use NPV or IRR as a primary decision model for capital

budgeting. Over half of the counties use BCR or PBP as primary methods for capital bud-

geting. Nearly 31% of counties use NPV or IRR as secondary tools for capital budgeting,

while 44% of the counties use BCR or PBP as secondary methods. Survey respondents

also note that qualitative factors influence their decisions. These qualitative factors include

political, legal, and equity considerations. Sekwat summarizes that “with the exception of

the BCR and PBP, NPV, IRR, and ARR decision tools have limited application” in the

surveyed counties. Another result from Sekwat is that 41% of counties actually account

for risk in their decision models.

In the next section, we review papers that address technology assessment acquisition

decisions. Technology assessment focuses on determining the value of technologies that

companies may acquire in the capital budgeting process. Many of these papers focus on

health care technologies. However, there is not a specific focus on small firms within

the health care industry. We highlight the departure in approach from risk-based decision

making in these health care technology assessments.

2.3 Health Technology Assessment

Deber et al. (1994) and Deber et al. (1995) address technology acquisition in Canadian

hospitals. These papers detail a 1990 nationwide survey of Canadian hospital technology

decision makers. The hospital technology decision makers were asked to provide informa-

tion on how the organizations went about deciding when and how to purchase or replace

technology within their hospitals. The authors of the paper focus on the hospitals’ bud-

gets for technology assessment, and the process and information hospitals use to make

a purchase decision. The hospitals report their overall operating budgets and the portion

for capital expenditures. The papers thoroughly address the composition and functional

roles of the team (e.g., administrators, board members, medical and nursing staff) that de-
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cides to purchase new technologies. In addition, the surveys list the different sources of

information that are reviewed before making the investment decisions. These sources of

information include staff presentations, equipment manufacturers, request forms, and in-

ternal and external written technology assessment reports. The authors conclude that more

analysis is necessary to make the increasingly difficult decisions on new technology. As

a result, the decision makers at the hospitals should seek the right people and information

to help in making these technology assessment decisions. However, these papers do not

focus on connecting the operational use of the technologies to the purchase of the technol-

ogy, how the technologies affect the cost and revenue streams of the hospitals, or the risk

associated with acquiring the technologies.

In Watts et al. (1993), the authors present a case study of how the Hamilton Civic

Hospitals in Ontario, Canada, use technology assessment. The case study highlights a

technology assessment which aided hospital administrators in deciding when to purchase

new equipment or when to repair aging equipment in the hospital system. A detailed ac-

counting of the states of the current equipment is given along with a future equipment

purchase list for the hospitals. Findings from doctor and medical staff interviews help in

evaluating the state of the current medical equipment used by the hospital. Cost estimates

for the new equipment and an allocation of the costs over a five-year period are illustrated

in Watts et al. (1993). Priority rankings for purchasing new equipment are given based on

the condition of the current equipment and the urgency of need for the new equipment.

The authors conclude that their approach to identifying current equipment states and rank-

ing the priority of proposed equipment acquisitions allows hospital decision makers to

determine what equipment to purchase each year. Although there is a financial analysis, it

does not address the operational aspects of the new technologies with their purchase. The

financial viability of the new technologies seems to be based on the budget allocated for

each year and not explicitly on how profitable the technologies will be for the clinic.
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Other papers that had a health care technology assessment focus describe the process

of how actual equipment purchase, budgeting, and other decisions are made by the board

of directors at the health care facility. Uphoff and Krane (1998) describe the motivations

of why technology assessment should be made in hospital settings. The authors argue

that technology assessment can be an effective tool to deliver information when mak-

ing a decision to acquire new or maintain existing technology. They further stress that

safety, effectiveness and affordability are all important factors when evaluating medical

technologies. Uphoff and Krane detail essential questions that hospital-based technology

assessments should address. These questions are compiled from several papers and studies

on hospital technology assessment. The questions relate to the operation, safety, and cost

of the technology and its potential impact on the hospital and patient communities. The

paper also includes an operational model, summarized by a flow chart, that describes the

steps that hospitals can take to plan and implement a technology assessment.

Lettieri et al. (2008) discusses a benchmarking study of the proposal forms used by four

Italian hospitals to conduct technology assessment. The authors conduct a literature review

to determine the criteria used in decision making for hospitals. The criteria, grouped

into five perspectives, are as follows: technology, patient, organization, economics, and

level of evidence. The technology perspective relates to a description of the technology

and how critical the technology is to the hospital’s operations. The patient perspective

describes how the technology will be used to benefit patient health and satisfaction. The

organization perspective gives information about how the adoption of the technology will

impact the hospital’s operations. The economics perspective addresses the expected costs

and revenues of the new technology. Finally, the level of evidence perspective relates to

the weight given to each source of information used to make the purchase decision. The

authors analyze proposal form question from the study hospitals to ascertain how well

the questionnaires adhered to these five main perspectives. The hospital forms seem to
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cover the technology perspective well. However, there are some limitations in the other

four perspectives. The authors conclude that more research is needed to address these

limitations. A particular note on this paper is that the economics perspective of the hospital

questionnaires did not include sensitivity analysis for the costs and revenues of the new

technology.

Weingart (1993) describes the results from a survey of twelve major medical centers.

Decision makers at the Academic Medical Center Consortium (AMCC) member centers

are asked to detail their decision making processes and criteria for acquiring technology.

Medical centers at Johns Hopkins, the Mayo Clinic, and UCLA are among the member in-

stitutions. Weingart finds that responsibility for technology assessment to be fragmented,

i.e., there is no single individual or office responsible for technology assessment. Another

finding is that acquisition decisions are deemed somewhat “political,” “informal,” or “ad

hoc” by the decision makers. Incoming faculty request new equipment as part of their

compensation package, and established, well-regarded researchers submit proposals for

new equipment. Although respondents say that the rationale for acquiring technology is

motivated by the capital budgeting process, for many of the twelve survey institutions, the

capital budgeting process is largely passive. Proposals for new equipment are conglom-

erated and presented to senior administrators and board members for approval subject to

budget constraints. Weingart discovers that decision makers at the AMCC institutions do

not use precise or explicit criteria to assess the proposed technologies. Although the in-

stitutions consider quality of care, quality of clinical care, research and teaching, these

criteria have no definitive role in assessments. In contrast, all twelve institutions consis-

tently perform financial analyses. However, the medical centers use payback period and

return on investment methods for financial analyses. Respondents note that although the

net present value method is seen as better than payback period and return on investment,

physicians have a harder time understanding and using net present value computations.
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The author concludes that an organized, rational approach to technology assessment helps

in identifying and justifying technology acquisitions. The amount of time and the systems

requirements necessary to make technology assessment work properly are drawbacks to

the process.

Now Weingart (1995) chronicles the decision-making process for acquiring expen-

sive medical technology at Strong Memorial Hospital (SMH), the teaching hospital of

the University of Rochester School of Medicine and Dentistry. Hospital officials at SMH

contemplate the purchase of a biliary lithotripter, medical equipment which shatters gall-

stones and/or kidney stones. Weingart categorizes the literature on acquiring technology

into seven broad criteria. These criteria are the following:

1. Efficacy and effectiveness of the technology

2. Safety

3. Profitability

4. Social costs and benefits of acquiring the technology

5. Feasibility of implementing the technology

6. Strategic focus of acquiring the technology

7. Risk associated with acquiring the technology

In the first criterion, Weingart states that efficacy relates to the “probability of benefit

to appropriately selected patients if a technology is used under ‘ideal’ conditions,” and

effectiveness relates to the “likely benefit of the therapy under the ‘average’ conditions of

actual practice settings.”

The second criterion, safety, pertains to the balance between the risk of harm of a

technology to its expected benefit to patients. As Weingart says, “a technology must be
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safe.”

The third criterion of profitability is important in acquiring new technology. Weingart

states that although financial analysts use net present value to evaluate new technology

investments, the calculation of an investment’s NPV “can be difficult and uncertain, since it

depends on accurate estimates of reimbursement rates, U.S. Food and Drug Adminstration

approval dates, and anticipated demand for services.”

Although a new technology’s profitability is important, the social costs and benefits of

acquiring the technology are also taken into account when making the decision to purchase

it. Administrators are encouraged to favor “broader considerations about the impact of a

new technology . . . on a patient’s quality of life, or his or her ability to give informed

consent, on the cost of treatment, or on access to care.”

Weingart states that the dominant criterion in acquiring expensive medical technology

is feasibility of implementing the technology. Practical considerations on the investment’s

timeline to be implemented, space needs, infrastructure requirements, and personnel needs

are all weighed for this criterion.

How a newly acquired technology fits within a health care institution’s strategic focus

is another criterion that is evaluated during the purchase decision. The new investment

may play a role in the health care facility’s market share, reputation, or long-term vision.

The last criterion of the risk associated with acquiring the technology addresses what

happens if the new technology does not work as planned. Litigation, competition from

other health facilities, obsolescence, and regulators’ approval process are all considera-

tions for the riskiness of a new technology.

In the Strong Memorial Hospital case, management needed to decide whether to ac-

quire new biliary lithotripsy technology. Lithotripsy technology entails a patient immersed

in a tub of water while sonic waves are emitted to burst gallstones into small fragments.

The smaller fragments are expelled through a patient’s urine. Administrators at Strong
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Memorial authorized a task force to study the candidate technology. The task force mem-

bers sought out information about the technology. Strong Memorial Hospital had been

very successful in implementing renal (kidney) lithotripsy, a similar technology to bil-

iary lithotripsy. Task force members gathered information from clinical trials conducted

in Europe. These trials suggested that the technology was effective and widely success-

ful in gallstone treatment. Manufacturers of biliary lithotripters presented information to

the task force members as well. The task force decided to recommend one manufacturer

because of its technology was deemed superior due to patient safety, convenience, and

cost. This manufacturer’s equipment could be used to treat gallstones and kidney stones.

The chosen lithotripter manufacturer also had available investigational sites which allowed

Strong Memorial to apply for discounted equipment pricing. Instead of the $1.2 million

retail price tag, Strong Memorial paid only $650,000 for its lithotripter. The financial

analysis for the proposed technology supported the decision to purchase. With allocations

for additional labor, capital, and other expenses, task force members projected a net rev-

enue of over $550,000 after three years. Despite the promising projections, the biliary

lithotripsy technology was considered a disaster. The lithotripter suffered many mechan-

ical breakdowns. Patients considered the shock treatment painful. Technicians lowered

the power of the shock waves to accommodate patients’ concerns. However, the lowered

power reduced the effectiveness of stone fragmentation. As a result, patients required addi-

tional treatments. Strong Memorial realized less than 15% of its projected demand for the

lithotripter. Weingart concludes that in the Strong Memorial case, decision makers did not

fully evaluate the strategic implications of the decision to purchase the biliary lithotripter.

The culture at the hospital was more a second-wave technology adopter. The investiga-

tional option with biliary lithotripsy was counter to the prevailing culture. The author also

notes that the financial analysis could have included best-case and worst-case scenarios,

net present value, or rate of return calculations to better assess the risk of the candidate
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technology. Weingart states that “task force members’ satisfaction with the estimates may

reflect a lack of expertise among the clinical chiefs in this area or a viewpoint that financial

considerations are more of a hurdle to be jumped than a tool for decision making.”

Bishai et al. (2003) evaluate three alternative treatment strategies for women in rural

Georgia, USA. The women seek doctors to perform a colposcopy, a cervical examination.

Alternatives for colposcopy given in the paper are (1) using trained local practitioners, (2)

using trained local practitioners with telemedicine consultation from a distant expert, or

(3) having patients travel to a referral expert practitioner. The authors perform detailed

cost and sensitivity analyses on several cost model parameters. The authors evaluate each

of the three alternatives using its respective estimated costs. The paper lists baseline costs

associated with the colposcopy procedure. For sensitivity analyses, ranges for the baseline

cost parameters are also listed in the paper. An annualized average cost per patient is deter-

mined for each alternative. Bishai et al. (2003) conclude that the cost of the telemedicine

option outweighs its benefit to the patients. The least cost option for the study partici-

pants is to see local practitioners. The authors also note that the costs associated with

telemedicine may decrease and that the telemedicine technology may be a more viable

option with reduced costs.

2.4 Simulation

Several references explain the difficulty with determining input probability distribu-

tions when data are unavailable. To employ discrete-event simulation, there must be some

information (whether known or estimated) available to use for input parameters and dis-

tributions. In this section, we review sources that address simulation under situations

with little or no operational data available. We also focus on a subset of sources that use

discrete-event simulation in the context of risk analysis.
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Banks et al. (1996) notes that for new non-existent systems, experts may be needed

to make educated guesses and assumptions about model parameters and operations. The

authors also cite that the uniform, triangular, and beta distributions can be applied when

data for a system are incomplete or limited. Law (2007) describes ways to select input

probability distributions when data are unavailable for collection or when collection of

data is undesirable. Techniques and approaches that use triangular, uniform, and beta dis-

tributions are detailed. Law also gives an example that depicted how use of approximating

distributions when data are available results in output errors. Pegden et al. (1995) also de-

scribe the process of determining input probability distributions when data are unavailable.

As in (Law, 2007), Pegden et al. (1995) detail use of different distributions when certain

data are available. The authors provide guidance for when only the mean value is available,

when only a range (smallest and largest) of values is available, and when the range and

most likely value are available. Guidelines are given for when the exponential, triangular,

uniform, and beta distributions can be used to approximate simulation input distributions.

When only the mean value is available, the authors highlight through a small example that

the triangular distribution produces the smallest amount of variance compared to using the

uniform or exponential distributions with similar mean values. Pegden et al. (1995) favor

employing the triangular distribution in cases when the range is available or the range and

most likely value are available.

Both Smith (1994) and White et al. (2010) incorporate risk analysis and simulation in

the context of capital budgeting. Both of these literature sources use Microsoft Excel R© to

generate cost and revenue parameters that are uncertain. The authors use normal distri-

butions to vary the parameters. These two sources employ Monte Carlo simulation tech-

niques to show how different cost or revenue parameters can be changed over potential

ranges. These ranges allow model builders to explore how sensitive the overall invest-

ment decision is to those parameter changes. Clemen and Reilly (2001) utilize simulation
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in the context of risk analysis. The software suite DecisionTools R© including RISK soft-

ware is used in conjunction with Microsoft Excel R© to analyze various investment decisions

through sensitivity analyses. The software suite has many graphical options to visualize

parameter sensitivity including tornado graphs and spider graphs.

2.5 Summary of Literature Review

The work presented in this dissertation differs from the work cited above chiefly be-

cause our approach aims at evaluating a new technology investment decision through con-

necting the operation of the new technology with its cash flows (i.e., revenues and costs)

generated by use of the technology. As cash flows for new technology investments are

uncertain, we treat their capital budgeting process as a one-off (only one chance to invest)

gambling process. We appeal to tenets of expected utility to ensure optimality in one-off

bets. Employing the expected utility theorem requires a characterization of probability on

the value (i.e., risk) of a new technology. It is very difficult to specify a probability law on

a new technology’s value, i.e. risk, due to uncertainty about the technology’s operations.

The risk associated with each candidate technology is assessed using net present value,

a consistent financial evaluation method. This research is further distinguished from the

reviewed health technology assessment and capital budgeting literature by use of discrete-

event simulation to generate cash flows through modeling proposed operations with the

new technology. Simulation provides a computational paradigm to construct a probability

law on risk for new technologies and accommodates sensitivity analysis to address value

uncertainty.
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3. ANALYTICAL MODEL FOR RISK-BASED TECHNOLOGY ASSESSMENT

AND COMPUTATIONAL ARCHITECTURE

In this Section we present our analytical model for risk-based technology assessment.

We start by providing background information about the axioms that underlie normative

utility theory and the expected utility theorem in section 3.1. Next, we connect the ex-

pected utility theory to the capital budgeting decision of a technology as a one-off bet or

gamble. We compare the utility of the technology one-off bet to an alternative bet which

has the utility of a zero-valued investment. Section 3.2 details the analytical model we use

to connect value with the operational aspects of new technologies. The stochastic process

that describes the random elements of the analytical model is given. In section 3.4 we

detail our computational architecture developed to explore risk. The embedded simula-

tion structure and each element of the architecture are described. Finally we give example

models that can be used to construct a risk-based technology assessment in section 3.5.

3.1 Utility Theory and the Expected Utility Theorem

When evaluating candidate technologies, we appeal to the tenets of utility theory.

Von Neumann and Morgenstern (1953) describe a “rationally” acting individual who wants

to maximize his or her utility or satisfaction. The authors describe the aim of the “rational”

individual as follows:

We shall therefore assume that the aim of all participants in the economic

system, consumers as well as entrepreneurs, is money, or equivalently divisi-

ble and substitutable, freely transferable and identical, even in the quantitative

sense, with whatever ‘satisfaction’ or ‘utility’ is desired by each participant.
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Since the goal of an individual is to maximize utility, there has to be a mechanism for

the individual to express his or her preference between possible alternatives. The axioms

below encapsulate the manner in which a rational individual would choose preferences.

These axioms are taken from Clemen and Reilly (2001) and Schoemaker (1982).

• Order: Alternatives can be ordered according to the decision maker’s preference for

the alternatives. Assume there are two alternatives, A1 and A2. Then there are three

orderings the decision maker can have for those two alternatives:

1. A1 is preferred to A2 (A1 � A2)

2. A2 is preferred to A1 (A2 � A1)

3. A1 is indifferent from A2 (A1 = A2)

• Transitivity: Given three alternatives, A1, A2, and A3, if A1 � A2 and A2 � A3, then

A1 � A3.

• Finiteness: There are no infinite payoffs, negative or positive.

• Continuity: Given alternatives A1, A2, and A3, with A1 � A2 � A3, then there is a

gamble that can be constructed with some preference probability, p, where 0 < p <

1, that makes the alternative A2 indifferent from the gamble. The gamble involves

receiving alternative A1 with probability p and alternative A3 with probability 1− p.

A2 is called the certainty equivalent of the gamble involving A1 and A3.

• Substitutability: A decision maker is indifferent to a given alternative A and its cer-

tainty equivalent (see Continuity axiom directly above). The decision maker can

substitute an alternative for its certainty equivalent.

• Monotonicity: Given two gambles with the same possible outcomes, then the deci-

sion maker must choose the gamble with the higher probability of winning the most
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preferred outcome.

• Invariance: A decision maker’s preferences for uncertain events can be determined

by the events’ payoffs and corresponding probabilities.

• Reduction of Compound Uncertain Events A decision maker is indifferent between

a compound uncertain event (a mixture of gambles) and a simple uncertain event

which is produced by reduction using standard probability. The assumption sug-

gests that we can perform the reduction without affecting the decision maker’s pref-

erences.

The individual that adheres to the axioms in 3.1 has a preference that can be expressed

by a utility function. The rational decision maker whose behavior is consistent with these

axioms will choose gambles that maximize his or her expected utility Goodwin and Wright

(2004). The next section details the mathematical models that describe the stochastic

process for the random cash flows associated with the new technology.

3.2 Evaluating Technologies

Consider a technology, i.e., equipment, that is put into operation. Based on the oper-

ational characteristics of the equipment, random amounts of cash flows occur at random

points in time. Let Tj denote the time of the jth value change epoch and X j denote the

amount of jth value change for j ≥ 1. Each time a revenue or cost producing activity oc-

curs, the time of the activity
(
Tj ≥ 0,Tj ∈ R+

)
and the amount of value change initiated

by this activity (X j ∈ [α j,β j],α j ≤ 0 ≤ β j,α j,β j ∈ R) is marked or recorded. Consider

the marked point process (T,X) =
{
(Tj,X j), j ∈ Z+

}
(Last and Brandt, 1995). Then, the

net present value of a technology can be expressed as follows:

V = ∑
j

f
(
Tj,X j

)
(3.1)
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where f is some discount function that takes (T,X) from R×R+ to R (Park, 2008). The

sum in equation 3.1 can be assumed to be finite. Figure 3.1 gives a possible representation

of the random cash flows for a technology. The horizontal axis represents time and the

vertical axis represents the magnitude of value changes. Arrows in Figure 3.1 that point

upward from the horizontal time axis represent positive cash flows. The arrows pointing

downward from the time axis denote negative cash flow values. Discounting these cash

flows to time t = 0 using some function would give the net present value for the technology.

Xj(ω)

T1 = 0

t

X1

X2 T3

T2 T4

X3

X4

T5

T6

T7 T8

T9

T10 T11

T12 T13

T14

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

Figure 3.1: A sample path that shows the realizations of random cash flows for a technol-
ogy

In order to compute the cumulative distribution function (CDF) of the net present value,

i.e., risk, of an investment, multiple replications of the marked point process (T,X) de-

scribed above are simulated. The NPVs from all replications are then arranged according

to the value of the NPV, smallest to largest. A histogram of the NPVs is constructed to il-

lustrate the values simulated. The risk of an investment is produced by using the empirical

cumulative distribution function (ECDF) within the statistical program R (R Development

Core Team, 2011). The ECDF procedure in R takes in a vector of NPV observations and
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produces a CDF based on the number and values of observations.

Suppose that a set of alternative technologies, denoted by A, must be evaluated. Identi-

fying the technology with the highest expected utility is the goal. Let i be a particular alter-

native with i ∈ A and random elements defined on probability triple (Ωi,Fi,Pi) (Williams,

1991). Define the cumulative distribution of the net present value of technology i by

FVi(v) = P(Vi ≤ v), i ∈ A (3.2)

where Vi is the random variable that denotes the net present value of technology i. Then,

the expected utility of technology i is computed as follows:

E[U(Vi)] =
∫
[a,b]

U(v)dFVi(v) i ∈ A (3.3)

where Vi ∈ [a,b]. As a result, the technology with the highest expected utility is given by:

argmax
i∈A

E[U(Vi)]. (3.4)

Note, again, that the Finiteness property implies that the utility function is bounded on

a compact set (see (Bartle, 1976) for more information about compact sets), i.e., there is

no infinite utility, negative or positive.

Determining which utility function to use can be a significant issue for small firms. The

next section explores different techniques firms can employ to assess utility and develop

utility functions.

3.3 Assessing Utility and Developing Utility Functions

Decision makers need to assess their risk attitudes to determine their individual utility

functions. Clemen and Reilly (2001) and Goodwin and Wright (2004) both show two

techniques to elicit utility. One technique is assessing utility by certainty equivalents. The
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second technique is to assess utility using probabilities.

Eliciting an decision maker’s utility by certainty equivalents involves the decision

maker assessing at what value the decision maker would be indifferent to a two-option

gamble. The value options for the gamble are commonly taken from the range of the in-

vestment under consideration. For example, suppose a decision maker is presented with

an uncertain technology investment that, after a certain time frame, could result in a net

present value anywhere in the following range: (-$1.5 million, $8.5 million). The end-

points for the investment’s net present value range can be used as the initial endpoints

of the utility function. So, using U(v) to denote the utility of some value, v, then U(-

$1,500,000) = 0 and U($8,500,000) = 1. These two utilities represent the worst and best

outcomes for the investment. Other points for the utility function can be found by eliciting

utilities by using two-option gambles. Suppose the decision maker is offered a gamble,

say G1, as follows:

Win $8,500,000 with probability 0.5

Lose $1,500,000 with probability 0.5. (G1)

The amount of money at which the decision maker is indifferent to taking G1 or pocketing

the money would be the certainty equivalent for the gamble G1. This certainty equivalent

could be used to obtain another point on the decision maker’s utility function. Suppose the

decision maker is indifferent to taking the gamble G1 and receiving $5.0 million. Then

the utility of $5.0 million is equivalent to the expected utility of the gamble (Clemen and

Reilly, 2001) and (Goodwin and Wright, 2004). The new point on the decision maker’s

34



utility function can be found as following, where p(v) is the probability of v:

U($5,000,000) = U(−$1,500,000)∗ p(−$1,500,000)

+U($8,500,000)∗ p($8,500,000) (G1 utility)

= 0∗ (0.5)+1∗ (0.5)

= 0.5.

Let G2 be another gamble as follows:

Win $8,500,000 with probability 0.5

Win $5,000,000 with probability 0.5. (G2)

Suppose the decision maker’s certainty equivalent for gamble G2 is $6.0 million. Then the

utility of $6.0 million is the following:

U($6,000,000) = U($5,000,000)∗ p($5,000,000)

+U($8,500,000)∗ p($8,500,000) (G2 utility)

= 0.5∗ (0.5)+1∗ (0.5)

= 0.75.

One more point on the utility function can be found by another gamble G3:

Win $5,000,000 with probability 0.5

Lose $1,500,000 with probability 0.5. (G3)

Suppose the decision maker’s certain equivalent for gamble G3 is $4.0 million. Then the
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utility of $4.0 million is as follows:

U($4,000,000) = U($5,000,000)∗ p($5,000,000)

+U(−$1,500,000)∗ p(−$1,500,000) (G3 utility)

= 0.5∗ (0.5)+0∗ (0.5)

= 0.25.

Then there are five points which can be plotted to develop the decision maker’s utility

function.

Another technique used to elicit points for a utility function is the method of assessing

utility using probabilities. Assessments by probabilities use a gamble that is set by choos-

ing a probability that will make the decision maker indifferent in taking the bet. Suppose a

decision maker is presented with the previous uncertain technology investment that results

in a net present value anywhere in the following range: (-$1.5 million, $8.5 million). As

stated before, the endpoints for the investment’s net present value range can be used as the

initial endpoints of the utility function, i.e., U(-$1,500,000) = 0 and U($8,500,000) = 1.

Now assume that the decision maker wants to assess his utility for $3.0 million. Instead

of guessing through interpolation based on the other points assessed using the certainty-

equivalence procedure, consider the following gamble, G4: Let G4 be another gamble as

follows:

Win $8,500,000 with probability p

Lose $1,500,000 with probability (1− p). (G4)

The decision maker would adjust the value of probability p in gamble G4 until he is indif-
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ferent in this lottery and taking $3.0 million. The utility of $3.0 million is as follows:

U($3,000,000) = U($8,500,000)∗ p+U(−$1,500,000)∗ (1− p) (G4 utility)

= 1∗ p+0∗ (1− p)

= p.

Observe that the probability that makes the decision maker indifferent in the case of G4 is

the utility for $3.0 million due to the setup of the gamble using the endpoints of the utility

function. The endpoints have utility values of 0 and 1 which simplifies the calculation for

U($3,000,000).

The next section details the computational architecture developed for this research.

The architecture provides a guide on how technology assessment decisions can be modeled

using computer software and decomposing the operational activities that affect revenues

and costs for new technologies.

3.4 Computational Architecture

Breaking down the projected revenue and cost streams associated with a new technol-

ogy is an important part of connecting the use of new technologies to those revenues and

costs associated with the new technologies. We take a systems engineering perspective to

approach the decomposition of the constituent elements of small firms’ operations related

to revenue and cost trajectories. Several software tools were employed to construct the

computational architecture developed for this research. The following section details the

computational architecture and provides a guide on how technology assessment decisions

can be modeled.

Figure 3.2 gives a schematic view of the distinct levels involved in assessment deci-

sions and how data from one level flow to another level. Each level in Figure 3.2 represents
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Input & Operations Level 

Simulation Level 

Output & Analysis Level 

Purchase Level 

Figure 3.2: The levels within the computational architecture

the various elements and activities that occur at that level. The arrows in this figure show

the direction of information flow between the levels. In particular, elements that are di-

rectly related to the operations of the firms are grouped separately from the elements in

the simulation model. The links in Figure 3.2 between the simulation level (labeled Simu-

lation Level ) and the operations elements (labeled Input & Operations Level) show how

the operations of a firm can be connected to the simulation model. Simulation results and

data undergo further processing and analysis in the level labeled Output & Analysis Level.

After the analysis is conducted, the information influences the overall decision to purchase

at the Purchase Level. Other input data, parameters, and information are given in the In-

put & Operations Level. Descriptions and details of the elements and activities for each

architecture level are given in Figure 3.3 below.
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3.4.1 Input & Operations Level

The Input & Operations Level represents the level where the operations activities and

input data needed for the simulation model are determined. Any activities that affect the

small firm’s cash flows can be modeled. The arrow from the bottom of the Input & Op-

erations Level box (denote by a dotted line) to the Operations element in the Simulation

Level box depicts that any activities that affect operations are included in the simulation

model.

3.4.1.1 Cash Inflows

When simulating the revenue or cash inflows, there may be several possible revenue

streams for the small firm. Each of these streams can be included as a cash inflow module.

The Cash Inflows element in Figure 3.3 shows some possible activities and information

sources which can be used to simulate the revenue streams for a small firm.

The External Funding element represents the cash flows that can be obtained from any

grant proposals or other sources of external funding that the firm has sought. Small firms

may apply for grants from government agencies, private philanthropic foundations or other

organizations. Generally grants are gifts that the firm must use for particular projects or

specified purposes. If awarded a grant or other external funding, a firm can use the awarded

proposal or application as an estimate of any funds related to acquiring, maintaining, or

using the potential technologies. Any awarded amounts and/or payment schedules can be

included in the overall cash inflow module.

The Savings from Alternatives element incorporates any cost savings from updated

technology. If a firm is using a current technology that will be replaced by the proposed

new technology, then the difference in price for any materials or other costs may be a factor

in the proposed operations. These savings data can be modeled in the simulation. The

small firm could use data from the current technology operations to estimate the potential
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savings with the new technology.

The Job/Customer Payments element represents the information related to the firm’s

revenue-producing arrival streams. The rate at which jobs and/or customers arrive to be

processed can be included in this module. This arrival rate can be varied to see the effect

arrivals have on the potential value of the new technology. The amount of payment per

completed job or customer is important information for this module, too. Different cus-

tomer types with various payment projections can be addressed in the simulation models.

3.4.1.2 Cash Outlays

Costs associated with the candidate technology or equipment can be modeled using

simulation. Each cost stream connected with the use of the proposed technology can

be included as a cash outlay module. The Cash Outlays element in Figure 3.3 depicts

possible activities and information sources which can be used to simulate the cost streams

for a small firm.

The Technology/Equipment Purchase Price element represents the investment price of

the candidate technology or equipment. Firms can solicit vendors and/or manufacturers of

the new technology or equipment to obtain cost estimates. Other costs related to installa-

tion of the new technology, i.e., building renovations or shipping, can be modeled in this

module. The discount rate used in investment calculations is important in determining its

profitability.

Any costs related to the operations of the new technology or equipment can be modeled

in the Technology/Equipment Operating Costs module. Each operating cost that may have

its own characteristic cost stream and/or schedule can be included as a separate submod-

ule. Maintenance costs, salaries, utilities, transportation costs, insurance payments, and/or

monthly service fees may all be modeled as submodules. For instance, in the maintenance

submodule, equipment or technology breakdowns can be modeled. Figure 3.4 shows a
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Figure 3.4: A depiction of the Technology Equipment Operating Costs submodules in the
Input & Operations Level of the computational architecture

possible depiction of several Technology/Equipment Operating Costs submodules. Main-

tenance Costs, Salaries, Utilities, and Transportation Costs are just a few of the costs that

are encapsulated in the Technology/Equipment Operating Costs module. The Maintenance

Costs submodule is detailed further in Figure 3.4. The boxes Maintenance Schedule and

Maintenance Cost Distribution symbolize the information needed to generate maintenance

costs for the Maintenance Costs submodule. Different breakdown profiles can be modeled

and studied for different simulation models. Operational characteristics of the mainte-

nance schedule and costs can be included in the models. Another cost can be attributed

to any workers or technicians that are needed to operate the equipment. Operator salaries

and work schedules can be included in the simulation models. Other operator characteris-

tics that may contribute to system costs may be added to the models. For example, if an

operator is required for the equipment to work properly, then that behavior and any costs
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incurred by the system when the operator is unavailable, can be studied. Special customer

or job handling rules can be modeled in the simulations. Rework, multiple service en-

counters, and lost customers can be included in simulations if appropriate for the proposed

technology’s operations.

The small firm may have to spend money to market the new service or technology. The

Marketing module incorporates the costs associated with building the customer base for

the new technology. Marketing budget projections and timing of outlays can be included

in this module.

The Research & Development module accounts for any research-related costs to pro-

duce or develop a product or service. Projected research outlays and schedules can be

included in this module.

The Legal Services module represents any legal costs that may be directed related to

the acquisition or operations of the new technology or equipment.

3.4.2 Simulation Level

The Simulation Level represents the level where the value for the new technology is

computed based on projected cash flows from the technology. Stochastic processes that

are higher in the hierarchy of the architecture depend on lower level stochastic processes.

This level depends on information from the operations of the new technology. The simula-

tion models generate random variables for the cash flows experienced for the firm. These

random variables represent values that the cash flows could realize when the candidate

technology is in place. The box (denoted with a dotted line) labeled Simulation Level

in Figure 3.3 depicts the elements that are generated by the simulation model. The box

labeled Value represents the simulation module that calculates the value measure, e.g., net

present value, for each candidate technology. The value for an alternative is generated

through simulating the revenue and cost cash flow streams of the system when that alter-
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native is utilized. All operations and activities that affect the cash flows are simulated in

the models and are incorporated in the module labeled Operations. This module is vast

and can be broken into several submodules accounting for each aspect of operations. Fig-

ure 3.5 shows a few of the submodules of the Operations module that can be modeled in

the simulation. There may be many more submodules than the ones depicted in Figure

3.5. The Equipment Reliability submodule is highlighted in the figure. This submodule

can be broken down into its constituent elements. In Figure 3.5, there are several ele-

ments that are shown which describe the information needed for the Equipment Reliability

submodule. This information includes Breakdown Distribution, Breakdown Costs, Repair

Time Distribution, and Repair Costs. The stochastic processes related to the new tech-

nology’s activities that contribute to company revenue are included in the module labeled

Cash Inflows. The Cash Outlays box represents those stochastic processes related to the

new technology’s cost-producing activities. The activities that produce the cash inflows

and outlays are included in the operations level.

3.4.3 Output & Analysis Level

The Output & Analysis Level represents the level where the risk for each technology

alternative is determined. An alternative’s risk assessment is comprised of the cumulative

distribution of the net present value for the alternative. The element in Figure 3.3 labeled

Risk Assessment depicts where the risk is evaluated for each candidate technology. As

discussed in Section 3.2, the risk is found through replications of discrete-event simulation

models of the underlying system operations with the new technology alternative in place.

Each replication of the simulation outputs a value of the equipment and/or technology. The

outputs are used to construct the cumulative distribution function. Figure 3.6 shows the

output of the risk for the Risk Assessment module. The probability that each alternative will

return a value less than or equal to a certain amount (see equation 3.2 above) is determined
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Figure 3.5: A depiction of the Operations submodules from the Simulation Level of the
computational architecture

using this distribution function. The Risk Assessment element is based on the information

obtained from the simulation models.

3.4.4 Purchase Level

The Purchase Level in Figure 3.3 represents the level where the decision whether

to purchase a technology is made. At this level, the box labeled Purchasing Decision

represents the choice to purchase a technology or not. This decision is based on the risk

assessment of the different alternatives evaluated. Figure 3.7 gives a depiction of the

decision at this level. Assuming the purchase is a one-off bet, then there is only one

opportunity to accept or decline the purchase. Also, if multiple alternative technologies

are available, alternatives are ranked and the one-off bet is made on the one alternative

that maximizes the expected utility. This box relies on the risk assessment from each
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Figure 3.6: A depiction of the Risk Assessment output at the Output & Analysis Level of
the computational architecture

alternative. The risk assessment is provided from the Output & Analysis Level.

Figure 3.7: A depiction of the Purchasing Decision output at the Purchase Level of the
computational architecture

The computational approach includes using a discrete-event simulation package to

model the component modules. Each module can be designed so that it can be easily

added, deleted, or modified to fit specific needs for each firm. Python and SimPy have been

used to develop simulation models. Python is an object-oriented programming language.

SimPy is a discrete-event simulation software package that “is written in, and called from,

Python” (Matloff, 2008). All input data needed for each of the modules have been stored

in text files. Output data could be saved to text files or to a common database computer

software package such as SQLite. Data can be queried from the database and used for
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appropriate component modules and system analysis. Analysis of net present value data

may be performed using other statistical analysis packages, e.g., R (R Development Core

Team, 2011). The statistical package R also allows for construction of charts, tables, and

figures related to the data generated. SimPy also has several options to produce graphs and

figures based on the random variables or other attributes generated by a simulation model.

Other open source technologies and software are available to use in risk-based technology

assessment decisions.

The next section describes example models that give a possible representation of the

relationship between a firm’s capital equipment operations and the revenues and costs

associated with the equipment. These cash flows can be triggered by state changes when

the technology is used. There could be multiple states for the technology. One way to

connect the cash flows with the operational information of such a technology is through

the reliability and/or availability of the technology. Examples of this relationship between

the operations and cash flows is given in the Example Models section (Section 3.5) that

follows.

3.5 Example Models

We deploy simple queueing models to show the interaction between a firm’s capital

equipment operations and the revenues and costs associated with the equipment. The first

model in Section 3.5.1 connects the operation of a single machine system with the revenue

and cost streams associated with use of the machine. The second model described in

Section 3.5.2 simulates a system that requires an operator to be available to process jobs

or orders on a machine. Graphs included in this section show the relationship between

revenues and costs corresponding to different states for each of the systems modeled.
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3.5.1 Single Machine Model

One model that could be considered is a system with one machine. Suppose that a firm

has a machine that operates for a random amount of time and then fails. Once the machine

fails, it gets repaired and becomes as good as new. The repair time is also random. The

machine continually cycles between the operational (up) state and the failed (down) state.

Define M(t) as the state of the machine at time t. M(t) is defined by:

M(t) =

 1 if the machine is in the up state at time t

0 otherwise.

Consider the following reward and cost structure for the system. Let r(t) be defined as

the rate ($/unit time) at which revenue is earned at time t and c(t) as the rate ($/unit time)

at which costs are incurred at time t. Revenues and costs are continuous. So r(t) is defined

as:

r(t) =

 r if the machine is in the up state at time t

0 otherwise ;

and c(t) as

c(t) =

 co if the machine is in the up state at time t (operating cost),

cr if the machine is in the down state at time t (repair cost)

for t ≥ 0.

Let Un denote the nth up time of the machine and Dn denote the nth down time of the

machine. Figure 3.8 depicts a possible system sample path and the corresponding revenue

and cost rates. The first graph in Figure 3.8 displays a sample path of the machine states

with respect to time. The machine alternates between the up and down states. As the state

of the machine changes, so do the revenues and costs associated with the system. The
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Figure 3.8: One sample path of machine availability and corresponding revenues and costs

second and third graphs in the figure give the corresponding revenue and cost rates for the

system, respectively. The graph for revenues shows the system gaining revenue of r when

the machine is up and 0 when the machine is down. The cost graph reflects that when

the machine is in the up state, the system incurs a cost of co. When the machine is in the

down state, the cost of cr is incurred. Firms want to compute the net present value of the

system through time t. Let V (t) denote the net present value of the system through time

t. V (t) can be expressed with discrete random variables. Using discrete random variables

for the net present value gives a better representation of how the discrete event simulation

program generates random variables. To express V (t) using discrete random variables,

assume that the system starts at time t = 0 with the machine in the up state.
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To compute V (t), the total amount of time the machine has spent in the each of the up

and down states until time t is needed. Define Un +Dn as the length of the nth operation

cycle, n = 1,2, .... Let N represent the number of operation cycles completed up to time t.

Then, N can be expressed as follows:

N = max

{
n :

n

∑
k=1

(Uk +Dk)≤ t

}
. (3.5)

Let Fn denote the time of the nth failure and Rn denote the time of the nth repair for

n = 1,2, .... The variables Fn and Rn can be expressed in terms of random variables Ui and

Di, i = 1,2, ...,n, as follows:

F1 = U1, (3.6)

Fn =
n−1

∑
i=1

(Ui +Di)+Un, n≥ 2 (3.7)

Rn =
n

∑
i=1

(Ui +Di), ∀n. (3.8)

If time t occurs during the down time of a cycle, we assume that a complete operation

cycle occurs. That is, Dn = t−Fn when t falls during a cycle’s down time. Then V (t) can

be computed using the following equation:

V (t) = (r− co)
N

∑
i=1

Ui− cr

N

∑
i=1

Di

+(r− co) [t−RN ]1(FN+1 ≥ t)

+[(r− co)UN+1− cr(t−FN+1)]1(FN+1 < t) . (3.9)

where the first term in equation 3.9 represents the total profit for the operation cycles

completed up to time t, the second term represents the profit if t occurs in the uptime of the

(N +1)st operation cycle, and the third term represents the profit if t falls in the downtime
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of the (N +1)st operation cycle. Note that 1(A) is an indicator function such that:

1(A) =

 1 if A occurs

0 otherwise.
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Figure 3.9: One sample path of machine availability and corresponding total revenues and
total costs

Figure 3.9 gives an illustration of a possible system sample path. The first graph in

Figure 3.9 shows a sample path of the machine availability with respect to time. The

machine alternates between the up and down states. As the state of the machine changes,
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so do the revenues and costs associated with the system. The second and third graphs

in the figure give the corresponding revenues and costs for the system, respectively. The

graph for revenues has slope of r when the machine is up and no slope when the machine

is down. The slope of the cost graph corresponds to co when the machine is in the up state

and cr when the machine is in the down state.

3.5.2 Single Machine, Single Operator Model

Now consider the single-machine system described above. Assume that an operator

must be available for the machine to function properly. The operator works for a period

of time before becoming unavailable for an amount of time. The operator cycles between

these states of availability and unavailability. When the machine is in the up state and the

operator is available, the system is gaining revenue, r, and incurring an operating cost,

co. If the machine is in the up state but the operator is unavailable, the system incurs a

lost sales cost, cl , in addition to the operating cost, co. When the machine is down, the

system incurs a repair cost, cr. If the operator is available when the machine is down, the

system still incurs the operating cost, co. However, if the machine is in the down state

and the operator is unavailable, the system does not incur the operating cost. Instead, only

the cost of repair is incurred. These changes need to be adjusted in the net present value

calculations.

Let O(t) denote the availability of the operator at time t. Define O(t) as follows:

O(t) =

 1 if the operator is available at time t

0 otherwise.

Since both the machine state and operator availability determine the amount of revenue

or cost accrued in the system, the portion of time when the machine is up and the operator

is available and the portion of time when the machine is up and the operator is unavailable
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must be marked or recorded. Likewise, the portion of time that the operator is available

and unavailable when the machine is down has to be tracked.

In the example given in Section 3.5.1, V (t) can be expressed with discrete random

variables. To express V (t) using discrete random variables, assume that the system starts

at time t = 0 with the machine in the up state and the operator available. Let Un and Dn

denote the nth up time of the machine and the nth down time of the machine, respectively.

Let Wn denote the nth time that the operator is available and Yn denote the nth time that the

operator is unavailable. Now define Z(t) as follows:

Z(t) = M(t)∗O(t), (3.10)

where M(t) is the machine state at time t and O(t) is the operator availability at time

t. When the machine is up and the operator is available, Z(t) = 1. Let Zi denote the

successive, corresponding time periods when Z(t) = 1, with i = 1,2, . . .. Time intervals

when Z(t) = 1 occur only during up periods of the machine. Exploiting this fact assists

in finding out the times of operator unavailability. Consider the ith up period, Ui. There

may be multiple times when the operator is available and unavailable during this single up

period. Summing the total amount of time that Z(t) = 1 during an interval Ui, i.e., ∑Z j,

where Z j ∈ [Ri−1,Fi], gives the time epochs when the system can gain revenue during the

up state. The amount of time that the operator is unavailable during an up period can be

found by taking the difference between Ui and the sum of the times when Z(t) = 1 on Ui,

i.e., Ui−∑Z j∈[Ri−1,Fi]Z j. This procedure is repeated for all Ui’s on interval [0, t].

A similar process can be done with the down periods (Di’s). Let Q(t) be defined as
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follows:

Q(t) = 1
(
(M(t) = 0)(O(t) = 0)

)
=

 1 if M(t) = 0 and O(t) = 0

0 otherwise.

Then Q(t) indicates the time epochs when the machine is in the down state and the operator

is unavailable. Let Q j denote the corresponding time periods when Q(t) = 1, with i =

1,2, . . .. Since Q(t) only takes the value of one during machine down times, this fact

can be used to express the amount of time when the operator is available during a machine

down time. Consider the ith down period, Di. The total time that the operator is unavailable

during this down period can be expressed as follows: ∑Q j∈[Fi,Ri]Q j. The amount of time

that the operator is available during the ith down period can be expressed as follows: Di−

∑Q j∈[Fi,Ri]Q j. This procedure is repeated for all down periods Di on interval [0, t]. Figure

3.10 displays a sample path representation for the system and functions Z(t) and Q(t). The

first graph in Figure 3.10 shows a sample path of the machine availability with respect to

time. The machine alternates between the up and down states. The second graph in Figure

3.10 depicts a sample path of the operator availability with respect to time. O(t) takes

the value one when the operator is available and takes the value zero when the operator

is unavailable. The third graph shows the function Z(t) that corresponds to the first two

graphs in Figure 3.10. When M(t) = 1 and O(t) = 1, then Z(t) = 1. If M(t) = 0 or

O(t) = 0, then Z(t) = 0. The last graph in Figure 3.10 displays the function Q(t), where

Q(t) = 1 if M(t) = 0 and O(t) = 0.

As in equation 3.5, let N represent the number of operation cycles completed up to
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Figure 3.10: A sample path representation of a system with a machine and an operator and
the corresponding graphs for functions Z(t) and Q(t)

time t. We also define the following terms:

A = ∑Zi, where Zi ∈ [0, t] (3.11)

Bi = Ui−∑Z j, where Z j ∈ [Ri−1,Fi] (3.12)

G = ∑Qi, where Qi ∈ [0, t] (3.13)

Hi = Di−∑Q j, where Q j ∈ [Fi,Ri] (3.14)
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Then the net present value can be expressed as follows:

V (t) = f

[
(r− co)A− (co + cl)

N

∑
i=1

Bi− cr(G)− (cr + co)
N

∑
i=1

Hi

]
. (3.15)

The function f in equation 3.15 denotes the discount function for the net present value

calculation. The four terms of the equation deal with the different system states. The first

term in equation 3.15 calculates the profit gained in the system over all the times that the

machine is up and the operator is available during the N complete operation cycles. The

second term accrues the cost associated with any lost sales in the system. Lost sales occur

when the machine is up but the operator is unavailable. The third term of the equation

determines the cost to the system when the machine is down but the operator is available.

The fourth term accounts for the total repair cost of the system when the machine is down

and the operator is unavailable. If time t falls during an up period, then the N +1st failure

(FN+1) has not occurred. For purposes of calculating V (t), we assume that time t corre-

sponds with the time of the (N + 1)st failure, i.e., FN+1 = t. Now, if time t falls during a

down period of a cycle, then we assume that time t corresponds with the time of the Nth

repair, i.e., RN = t.

Figure 3.11 gives an illustration of a possible system sample path. The first graph in

Figure 3.11 shows a sample path of the machine availability with respect to time. The

machine alternates between the up and down states. The second graph in Figure 3.11

depicts a sample path of the operator availability with respect to time. When the machine

and operator states change over time, so do the revenues and costs associated with the

system. The third and fourth graphs in the figure show the corresponding revenues and

costs for the system sample paths shown in the first two graphs of Figure 3.11. The graph

for revenues has slope of r when the machine is up and the operator is available and has

slope of zero when the machine is down. The slope of the cost graph corresponds to co
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when the machine is in the up state and the operator is available. When the machine is up

but the operator is unavailable, the system incurs cost cl + co depicted with slope cl + co

on the fourth graph of Figure 3.11. When the machine and operator are unavailable, the

slope cr is shown in the cost graph. The slope cr + co corresponds to the times when the

machine is down but the operator is available.

Different operations have various triggers for the costs and revenues associated with

the system. In the next Section, we apply the example in this section (3.5.2) to a real-life

healthcare technology assessment decision.
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Figure 3.11: A sample path representation of a system with a machine and an operator and
corresponding revenues and costs
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4. APPLYING RISK-BASED TECHNOLOGY ASSESSMENT∗

This section details the use of our computational architecture to assess new technology.

We summarize some of the various ways in the literature that do not properly account for

risk and highlight them in section 4.1. Section 4.2 summarizes a real-life application of

technology assessment in the healthcare industry. A journal paper (Weingart, 1995) high-

lighted in this section is unique in that the author expounds on several failures made in the

Strong Memorial Hospital (SMH) technology assessment decision. The paper gives a case

study on how the decision to purchase the new technology was made. We illustrate how

incorrect methods were applied in the SMH case. We use data from the paper to demon-

strate our computational architecture and systematic approach for risk-based technology

assessment. Section 4.3 expounds on the operations for the lithotripter. Subsequent sub-

sections of 4.3 detail various aspects of the discrete-event simulation models employed in

constructing the risk. Section 4.3.1 discusses how patient arrivals are generated in the sim-

ulation models. Rationalization for the distributions used in generating patients into the

hospital is given as well. Section 4.3.2 explains the various cash flows for SMH and how

they are modeled in the simulations. The specific elements of the hospital computational

architecture are detailed in section 4.3.3. Details of using SimPy for the simulation mod-

els are given in section 4.3.4. Results from the base simulation model are given in section

4.3.5. Section 4.3.6 explores how different financial measures would influence the SMH

technology assessment decision. Sensitivity analyses occupy the next several sections.

Section 4.3.7 explores how sensitive valuations for the SMH technology are to changes in

discount rate. Section 4.3.8 details how re-entering patient flows impact the technology

∗Part of the data reported in this chapter is reprinted with permission from “Deciding to Buy Expen-
sive Technology: The Case of Biliary Lithotripsy.” by Saul N. Weingart, 1995. International Journal of
Technology Assessment in Health Care, 11(2), 301-315, Copyright [1995] by Cambridge University Press.
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assessment for SMH. Finally, we conclude the Section by discussing how other possible

scenarios for operations can be explored through simulation in section 4.3.9.

4.1 Literature Summary Highlighting Technology Assessment Inadequacies

This section summarizes the inadequacies we found in the literature of risk-based tech-

nology assessment.

One issue with the literature we reviewed in Section 2 was that many companies used

inconsistent techniques to model the value of the technology involved. Kee et al. (1987),

Kee and Robbins (1991), and Sekwat (1996) highlight the percentage of government en-

tities that used simplistic methods such as break-even point (BEP) and benefit-cost ratio

(BCR) to make capital budgeting decisions. Bierman and Smidt (2007) advocate using

net present value (NPV) or internal rate of return (IRR) as they are consistent evaluation

methods. Mukherjee and Henderson (1987) and Goodwin and Wright (2004) also deem

NPV as a technique that is consistent with properties of expected utility theory.

Another concern with technology assessment is not accounting properly for risk. As

Smith (1994) and Amirkhalili (1997) argue, relying only on one point estimate without

incorporating uncertainty in capital budgeting models can lead to an erroneous decision.

The Weingart (1995) case study illustrated this failure to adequately assess risk in pur-

chasing new technology. Both Smith (1994) and Amirkhalili (1997) use spreadsheets to

conduct simulations of the various costs and revenues for new investments. These sources

develop distributions on the net present value, i.e., risk, for the investments.

Although many reviewed sources account for risk and give methods and techniques

to incorporate risk in the capital budgeting decision process [(Smith, 1994), (White et al.,

2010), (Amirkhalili, 1997)], none of the sources reviewed simulated the new technology

through connecting its operations to its projected cash flow trajectories. Simulation is used

or listed as a method to generate potential cost and revenue estimates in several sources
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However, none of the literature sources cite modeling the operations of the system studied

with the new technology.

The case highlighted in the next section, Section 4.2, illustrates how using estimates

for a technology’s value without considering uncertainty can lead to incorrect decisions.

The purpose of the example is to demonstrate how one would use an axiomatically valid

approach to risk-based technology assessment instead of the ineffective method explained

in the reported case study.

4.2 Healthcare Technology Assessment Example: Strong Memorial Hospital

Weingart (1995) details the decision-making process for acquiring expensive medical

technology at Strong Memorial Hospital (SMH), the teaching hospital of the University of

Rochester School of Medicine and Dentistry. Hospital officials contemplated the purchase

of a dual purpose biliary lithotripter, medical equipment used to shatter gallstones and/or

kidney stones. The paper reflects on the learnings SMH administrators gleaned from the

acquisition process. The task force assigned to gather information about the acquisition

decision applied an incorrect method during the technology assessment. According to

Weingart (1995), the task force members did not properly account for the role of risk

in their decision to purchase the lithotripter. The task force appears to have relied on

point estimates which did not account for risk when assessing the financial viability of the

technology. As stated in the paper,

The staff could have prepared estimates based upon alternate assumptions

(e.g., best-case and worst-case scenarios) or they could have used net present

value or rate of return calculations to make comparisons between lithotripsy

and other acquisitions. Task force members’ satisfaction with the estimates

may reflect a lack of expertise among the clinical chiefs in this area or a view-

point that financial considerations are more of a hurdle to be jumped than a
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tool for decision making.

Lithotripsy technology entailed a patient immersed in a tub of water while sonic waves

were emitted to burst gallstones into small fragments. The smaller fragments were ex-

pelled through a patient’s urine. Administrators at Strong Memorial authorized a task force

to study the candidate technology. The task force members sought out information about

the technology. SMH had been very successful in implementing renal (kidney) lithotripsy,

a similar technology to biliary lithotripsy. They gathered information from clinical trials

conducted in Europe. These trials suggested that the technology was effective and widely

successful in gallstone treatment. Manufacturers of biliary lithotripters presented informa-

tion to the task force members as well. The task force decided to recommend one man-

ufacturer because its technology was deemed superior due to patient safety, convenience,

and cost. This manufacturer’s equipment could be used to treat gallstones and kidney

stones. The chosen lithotripter manufacturer also had available investigational sites which

allowed Strong Memorial to apply for discounted equipment pricing. Instead of the $1.2

million retail price tag, Strong Memorial would pay only $650,000 for its lithotripter. An

additional $100,000 was needed for space renovations. There was a projected yearly sav-

ings of over $133,000 from consumable materials factored in use of the biliary lithotripter

instead of the previous equipment used exclusively for kidney stones. Task force mem-

bers estimated that a demand of ninety-two biliary lithotripsy patients would bring in over

$218,000 for each of the first two years, with a reimbursement rate of $2,308 per patient.

Pending approval of the technology by the Food and Drug Administration (FDA), task

force members projected a yearly net revenue of over $550,000 for the technology, with

allocations for labor and other expenses, after the first two years. Income from Medicare

was projected to account for over $461,000 of the net revenue after FDA approval.

Despite the promising projections, the biliary lithotripsy technology was considered
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a disaster. The lithotripter suffered many mechanical breakdowns. Patients considered

the shock treatment painful. Technicians lowered the power of the shock waves to ac-

commodate patients’ concerns. However, the lowered power reduced the effectiveness of

stone fragmentation. As a result, patients required additional treatments. Strong Memorial

realized less than 0.15 of its projected demand for the lithotripter.

In the next section, we model the Strong Memorial operations with the lithotripter

using our computational architecture. We demonstrate how incorporating risk and uncer-

tainty into the assessment decision would have equipped the decision makers at Strong

Memorial to make a more informed decision regarding purchasing the biliary lithotripter.

4.3 Modeling the Strong Memorial Lithotripter Operations

It seems that the task force members failed to recognize the impact that uncertainty had

on the project’s financial success. The projected yearly demand of ninety-two patients was

an educated estimate based on seemingly reasonable ailment patterns and market analysis.

However, the Weingart (1995) paper suggests that the SMH lithotripter task force did not

account for the risk associated with the uncertain number of patients. The revenue for the

hospital’s proposed new technology was directly related to the number of patients treated

at the facility. Any variances in the projected patient demand could vastly impact the finan-

cial viability of the technology. Another consideration that task force members seemed to

overlook in assessing the lithotripter technology is the reliability of the technology. Task

force members appeared to rely on the success of the European trials for the technology.

SMH officials did not account for the risk associated with the lithotripter reliability. There

was no risk analysis based on whether the lithotripter would operate properly or whether

patients would adopt the new technology. Task force members apparently assumed that

the operation of the lithotripter would be highly successful.

More information can be gained about the financial risk associated with Strong Memo-
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rial’s technology assessment decision by modeling the hospital’s operations with the bil-

iary lithotripter. Use of the lithotripter technology is connected to the costs and revenues

associated with its use. Assume that the equipment can be in one of two states, up and

down. Suppose that the equipment operates for a random amount of time and then fails.

Once the equipment fails, it gets repaired and becomes as good as new. The repair time is

also random. The equipment continually cycles between the operational (up) state and the

failed (down) state. Assume that an operator must be available for the equipment to func-

tion properly. The operator works for a period of time before becoming unavailable for an

amount of time. The operator cycles between these states of availability and unavailabil-

ity. The operations of the biliary lithotripter base model are similar to the example system

detailed in Section 3 (section 3.5.2).

The base model assumes that patients enter the system at some given arrival rate. Pa-

tients are served when they enter the system if both the operator is available and the equip-

ment is in the up state. If either of the resources (operator or equipment) is unavailable

when a patient arrives for service, then the patient waits until the resource becomes avail-

able. Assuming a ten hour workday, twenty-five days per month and twelve months per

year, there are 3,000 hours per year for the simulation model. Since Weingart (1995) did

not specify a discount rate, 0% is assumed for the base model. Ramifications of the dis-

count rate on the overall risk are explored using sensitivity analysis later. The financial

data detailed in the paper (Weingart, 1995) were used as guides in setting parameter val-

ues within the simulation model. The next section details how we model the patient arrival

process for the SMH system.

4.3.1 Modeling Patient Arrivals

One prominent variable in the SMH case was the number of patients that would use

biliary lithotripsy. The task force studying the viability of the new technology did not
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seem to account for the uncertainty associated with the number of patients that would

use this technology. One instance of the base simulation model generates the inter-arrival

times between patients arriving to the system as exponentially distributed. The mean of

the exponential distribution accounts for the mean time between arrivals. Each year is

modeled in the simulation as 3000 hours. A patient arrival rate of 92 patients per year

(the estimate given in Weingart (1995)) would then imply a mean interarrival time of

approximately 32.6 hours between patients. To reflect a range of possible patient arrival

patterns, the mean parameters for the arrival distribution were set to various levels. There

were 261 experiments constructed that reflect the different levels for the patient arrivals to

the hospital for lithotripsy treatments. The experiments include patient arrival rates that

vary from an average of one patient per year to an average of 300 patients per year. The

parameters for the experiments are given in Appendix A. Varying the patient interarrival

times is important in modeling so that worst-case and best-case scenarios can be reflected

in the overall technology assessment. Some traditional capital budgeting estimates rely

only on one projection of the net present value for the new technology. The approach that

accounts for risk in the arrival patterns gives a wider range of possible projections for the

net present value used in the technology assessment. The base model assumptions for the

lithotripter are given in Table 4.1.

Table 4.1: Base model assumptions

Simulation Run Time Duration 15,000 hours
(Five years @ 3,000 hours per year)

Number of Experiments 261
Number of Replications per Experiment 1000
Interest Rate 0% effective, compounded yearly

65



Since the case does not list a particular discount rate, we assume a rate of 0% for the

base case. Zero percent would be a best-case scenario regarding discount rate. Most capital

equipment acquisitions would require a non-zero discount rate. We explore how discount

rate changes affect the overall risk in section 4.3.7 below. In the following section, we

explain how cash flows for the SMH lithotripter system and how technology lifetimes and

repair times are generated and modeled in the simulation.

4.3.2 Modeling Projected Lithotripter Cash Flows and Technology Lifetimes

Cost and revenue parameters were modeled using the normal distribution. Estimated

values for each cost or revenue given in Weingart (1995) were used as the mean of a

normal distribution for each cost or revenue parameter modeled in the simulation. The

standard deviation of each of these cost or revenue parameters was assumed to be five per-

cent of their means. For example, the maintenance cost for the lithotripter was estimated

at $75,000 per year. In the simulation, this cost is modeled as a normal distribution with a

mean of 75000 and a standard deviation of 3750. The five percent assumption for the stan-

dard deviations is made to give some variation to the parameter estimates. Cost parameter

values are summarized in Table 4.2, and revenue and cost savings parameter values are

summarized in Table 4.3. There are two parameter values for the revenue gained from

patient reimbursements. During the first two years of operating the lithotripter system,

Strong Memorial Hospital expected to be reimbursed at a lower rate since the FDA had

only approved of the lithotripter for trials. The hospital estimated that it could receive

revenue of $2,380 per patient during years 1-2 using the biliary lithotripsy. Years three

through five have higher reimbursement rates due to predicting the full FDA approval of

the lithotripter and Medicare reimbursement. The Weingart (1995) case did not break

down the additional reimbursement rate by patient, nor did the case project any changes

in the number of lithotripsy patients seen each year. As a result, the estimated patient rate
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per year was unchanged. The reimbursement rate during years 3-5 was assumed to be

$7,398 per patient. The patient reimbursement rate of $7,398 was computed by dividing

the hospital’s yearly projected Medicare reimbursement income of $461,652 by the ex-

pected yearly arrival rate (92 patients per year). This quotient, approximately $5,018, was

added to the $2,380 projected revenue per patient from using biliary lithotripsy.

Table 4.2: Base model cost and expense parameters

Initial Equipment Cost ($) Normal(650000, 37500)
Renovation Cost ($) Normal(100000, 5000)
Equipment Maintenance Cost ($/year) Normal(75000, 3750)
Employee Salaries ($/year) Normal(80073, 4003.65)
Lithotripter Consumables Cost ($/year) Normal(7050, 352.5)
Lost Cholecystectomy Revenue ($/year) Normal(96864, 4843.2)

Table 4.3: Base model revenue and savings parameters

Patient Reimbursements (years 1-2)($/patient) Normal(2380, 119)
Patient Reimbursements (years 3-5)($/patient) Normal(7398, 369.9)
Consumables Savings ($/year) Normal(133286, 6664.3)

For this base model, equipment lifetimes and repair times and operator available and

unavailable times were all assumed to have uniform distributions. Equipment lifetimes

were assumed to be in the range of 1 day (10 hours) to 1 year (3000 hours). Equipment

repair times were also assumed to be in the range of 1 day to 1 year. The range of 1
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day to 1 year incorporates uncertainty with the equipment. From the Strong Memorial

Hospital case study, there were some years with no patients. The range on the equipment

repair times allows for the equipment to break down for up to a year. This simulates

the equipment being unavailable for up to a year. The equipment cycled between the

states of working and in repair as illustrated in the example model given in section 3.5.2

and summarized above in section 4.3. The values for these time parameters are given

in Table 4.4. The amount of time a patient would spend in service was modeled as a

triangular distribution with mode of 50 minutes (0.8333 hours). The customer service

time could range from 40-75 minutes (0.6666-1.25 hours). Patient service time data were

based on estimated times from Lee et al. (1990) and Nealon et al. (1991) with similar

lithotripter technologies. Operator available and unavailable times were assumed based on

a reasonable work schedule for a simulated day. The operator would be available for some

amount of time and have periodic breaks throughout the day. In the model, we assumed the

operator was available from 9-11 hours. After each generated available time, the operator

would be unavailable from 0.75-1.25 hours. Upon completion of an unavailable time, the

operator would be available to work. The operator’s availability and unavailability cycled

back and forth between these two states. More detailed operator work procedures can be

modeled if necessary.

Table 4.4: Lithotripter model equipment, operator, and service time assumptions

Equipment Lifetimes (hours) Uniform(10, 3000)
Equipment Repair Times (hours) Uniform(10, 3000)
Operator Available Times (hours) Uniform(9, 11)
Operator Unavailable Times (hours) Uniform(0.75, 1.25)
Patient Service Times (hours) Triangular(0.8333, 0.6666, 1.25)
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In the next section, we give a depiction of the computational architecture for the Strong

Memorial Hospital. We describe the different modules and elements of the architecture in

detail and explain how the elements influence the risk for the lithotripter.

4.3.3 Strong Memorial Lithotripter Computational Architecture

Figure 4.1: Computational architecture for the biliary lithotripter technology assessment
at Strong Memorial Hospital

The computational architecture for the Strong Memorial Hospital lithotripter technol-

ogy assessment is given in Figure 4.1. The expected SMH cash flows and activities related

to those flows are reflected in the modules. The SMH computational architecture has four

different levels similar to the generic architecture given in Figures 3.2 and 3.3. At the Input

& Operations Level for the lithotripter technology assessment, there are four main cash

flows–two cash inflows and two cash outlays. The two main cash inflows are the Patient

69



Reimbursements and the Consumables Savings from the current kidney stone equipment.

The two main cash outlays are the Equipment Installation and Equipment Operating Costs.

The two main cash outlays for Strong Memorial can be broken down to smaller, distinct

outlay streams. The Equipment Installation can be divided into two outlays, Equipment

Purchase Price and Renovation Costs. The Equipment Operating Costs can be divided

into several other separate cash flow streams: Equipment Maintenance Costs, Employee

Salaries, Lithotripter Consumables Costs, and Lost Cholecystectomy Revenue. Each of

these projected cash flow streams were modeled in the simulation based on their projected

schedule of occurring in the actual system. For example, the Equipment Purchase Price

of $650,000 was modeled using a normal distribution with mean of 650000 and standard

deviation of 32500. Since the initial equipment price is a one-time occurrence, this cash

flow is generated only once for each simulation replication (i.e., run). Likewise, the Reno-

vation Costs of $100,000 were modeled following a Normal(100000, 5000). Since Strong

Memorial projected each of the operating costs to occur yearly, those costs were generated

in the simulation on a yearly basis. The Equipment Maintenance Costs of $75,000 were

generated at the beginning of each year. Since the simulation run time was for 5 years,

these yearly costs were modeled at the beginning of the simulation run (time 0) and at the

beginning of years 2-5. The other yearly costs and revenues for Strong Memorial include

the following: Employee Salaries, Lithotripter Consumables Costs, Lost Cholecystectomy

Revenue, and Consumables Savings.

Reimbursement cash flows are generated in the simulation as the patients finish lithotripter

treatments. As explained in Section 4.3.2 above, the Patient Reimbursements module has

a two-tiered structure. When patients complete service in the simulation, a patient revenue

is generated based on the two-tiered structure. Patients treated throughout years 1 and 2 of

the simulation produce revenue distributed as Normal(2380, 119) for the hospital. Patient

reimbursements in years 3-5 are distributed as Normal(7398, 369.9).
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Another piece of information at each level in Figure 4.1 is the software used to model

the Strong Memorial technology assessment decision. At the Input & Operations Level,

text files were used to organize data from each of the modules presented in this level.

The software used is listed in the bottom left portion of the dashed box denoted Input &

Operations Level in Figure 4.1.

At the Simulation Level, the information and data from the modules from the Input

& Operations Level are incorporated in the Cash Outlays and Cash Inflows modules. The

Value module represents the value put on the equipment. In the Strong Memorial simula-

tions, net present value is used to measure the value of the equipment. In the simulation

models, calculations are computed to obtain the net present value associated with each

replication or run. The software packages used at this level include Python programming

language, SimPy simulation package, and SQLite database package. Additional output to

text files were used as well.

At the Output & Analysis Level, the risk for the equipment is constructed. An em-

pirical cumulative distribution function to characterize the risk is generated from the net

present values input from the Simulation Level. Charts, graphs, and other results are pro-

duced based on the output from simulation models. Statistical analysis is also done at this

output level. The R statistical package and OpenOffice applications are employed to an-

alyze the output at this level. These software tools are denoted at the Output & Analysis

Level on Figure 4.1.

Finally, at the Purchase Level, the decision is made to purchase the equipment or

not. In the Strong Memorial Hospital context, the administrators would have to make the

Purchase Decision regarding the biliary lithotripter.

After gathering all the data and information relating to the operations of the lithotripter,

the information was used to model the operations for the lithotripter. Simulation was cho-

sen to investigate the value and operational uncertainty of the lithotripter. The operational
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behavior for the lithotripter is connected to its potential revenue and cost projections in the

simulation models. The open source discrete-event simulation software SimPy was used

to model the operations for the Strong Memorial Hospital lithotripter system. The next

section details the simulation modeling process using SimPy.

4.3.4 Simulation of the Strong Memorial Lithotripter Operations Using Python and

SimPy

For the 261 experiments, 1000 replications of each experiment were run using SimPy,

an open source, discrete-event simulation package (SimPy Developer Team). The same

1000 seeds were used in each of the experiments to seed the random number generator for

the simulation package. Keeping the same seeds across the experiments insured that any

differences in the outcomes were not due to randomness from the random number gen-

erator. This approach ensures sensitivity analyses focus on how sensitive the net present

values are to changes in the different parameters. Each replication of an experiment pro-

duced a net present value for the proposed lithotripter. These net present values represent

how much the investment in the biliary lithotripter would be worth using the parameters

and assumed costs and revenues stated in the simulation model. The risk associated with

the biliary lithotripter was found by using the empirical cumulative distribution function

within the R statistical package.

There are several sections of the SimPy simulation models which are used to model the

operations of the Strong Memorial Hospital lithotripter. These sections include the global

data, model components, experiment data, and the model/experiment itself.

4.3.4.1 Global Data Section

The global data section includes information and variables that may be used in several

model components. The advantage to using the global data is that multiple components

can access to the data from global variables when changes or modifications of the global
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variables are made throughout the simulation run. One such global variable in the Strong

Memorial Hospital lithotripter base model is a connection variable. The connection vari-

able allows access to the databases that store output data generated throughout the simu-

lation runs. Multiple instances of the connection variable are used in various places in the

simulation model.

4.3.4.2 Model Components Section

The model components section includes the classes and functions that control the be-

havior of the entities in the simulation model. One important process method is the Source

process. The Source process generates entities (customers, arrivals, etc.) randomly into

the simulation system. The probability distribution used to generate entities is defined

in a function under Source to propagate entities in the model until the simulation ends.

One SimPy defined function in the Source process is the activate. SimPy’s activate

function instantiates each entity that is generated in the Source process. The activate

function “gives life” to the entity. During the instantiation of the entity, activate calls

a function from the process that governs the behavior of the entity. For example, in the

SMH base model, customers (i.e., patients) arrive into the system and are “given life”

by the activate function under the Source process. The activate function calls the

function use under the Customer process.

Process Customer contains all the functions which controls any type of behavior that

customers exhibit in the simulation model. The SMH base model Customer process con-

tains the use function. This function models how customers use the SMH lithotripter

system. When customer entities arrive into the system, they must grab access to both the

operator and the lithotripter machine. If either resource is not available when the cus-

tomer entity arrives into the system, then the customer must wait until both resources are

available to proceed into processing. When both the machine and operator resources are
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available, then the customer is processed using them. The processing time is according

to the patient service times distribution listed in Table 4.4. After a customer is processed

then both resources are released to process other customers. When customers complete

processing, the system accrues a random amount of revenue according to the simulation

time and the reimbursement rates as listed in Table 4.3.

Another process in the SMH base model is the Equipment process. This process han-

dles the breakdown and repair behavior for the lithotripter. When a machine instance

is instantiated in the SMH model, the operate function under the Equipment process is

called and activated. The breakdown function first generates an uptime for the machine ac-

cording to the Equipment Lifetimes distribution listed in Table 4.4. The machine resource

stays in the up state for this generated time. After the uptime has elapsed, the breakdown

function then generates a downtime for the machine according to the Equipment Repair

Times distribution also listed in Table 4.4. When the downtime for the machine has ex-

pired, the function then generates another uptime for the machine. The cycle of uptimes

and downtimes continues until the simulation ends.

The Operator process in the SMH base model governs the behavior of the operator

assigned to assist lithotripter patients. When an operator entity is instantiated in the SMH

system model, the function work within the Operator process is activated. This func-

tion generates an available time for the operator entity according to the Operator Available

Times distribution listed in Table 4.4. Throughout the available time, the operator is able

to process any customer entities that arrive into the system. When the duration of the avail-

able time ends, the work function then is prompted to generate an unavailable time. The

operator entity then changes state from available to unavailable for the length of the gen-

erated unavailable time variable. The unavailable time variables are generated according

to the Operator Unavailable Times distribution listed in Table 4.4. The Operator process

continues generating the cycles of available and unavailable times until the simulation

74



ends.

The YearlyCosts and YearlyRevenues processes generate yearly cash flows for vari-

ous costs and revenues, respectively, in the SMH base simulation model. The YearlyCosts

process takes in parameter values from all of the recurring yearly costs. Strong Memorial

Hospital provided yearly cost estimates for the operator salary, equipment maintenance,

consumable materials to operate the lithotripter, and lost revenue from cessation of chole-

cystectomies. These parameter values are used to generate cost estimates according to a

normal distribution. Since the estimates are yearly, at the end of each year, the function

generateCosts generates a new value for each of the yearly costs according to each es-

timate’s distribution. For example, the yearly equipment maintenance cost was estimated

to be $75,000. Recall that a year of simulation time is equivalent to 3000 hours of system

operation. Beginning at 3000 hours of simulated time in the model, the generateCosts

function generates a yearly equipment maintenance cost for the lithotripter using a normal

distribution with mean of 75000 and standard deviation of 3750. At successive multiples

of 3000 hours (i.e., 6000, 9000, 12000, and 15000 hours) this function generates another

estimate of the maintenance cost for those years. The process stops at the end of the simu-

lation run (5 years = 15000 hours). The generateCosts process generates cost estimates

for all yearly costs at the end of each year. When a cost estimate is generated, the over-

all net present value estimate is updated by subtracting the appropriately discounted yearly

cost estimate. Readers may refer to Table 4.2 for a summary of all yearly cost distributions

and parameters.

The YearlyRevenues process receives parameter values from the only recurring yearly

revenues for the Strong Memorial Hospital, the savings for discontinuance of the Dornier

renal lithotripter. Beginning at 3000 hours and at successive multiples of 3000 hours, the

generateRevenues function under the YearlyRevenues process generates a yearly rev-

enue estimate for consumables savings. The savings are modeled as a normal distribution
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with mean of 133286 and standard deviation of 6664.3 for the SMH base case simulation.

After the yearly revenue estimates are generated, the overall net present value estimate

is updated by adding the discounted yearly revenue estimate. Table 4.3 summarizes the

yearly revenue distributions and for Strong Memorial.

4.3.4.3 Experimental Data Section

The experimental data section of a SimPy simulation model includes data for use in the

various parts of a simulation model. In the case of the SMH simulation models, data were

read in from text files for further use in the simulation models. All parameters and data for

the various costs, revenues, operator, equipment and service times, and customer arrival

information were included in this section. For example, for each of the 261 experiments

for the SMH simulation model, this section reads in the mean time between customer

arrivals from a text file containing the mean times.

4.3.4.4 Model/Experiment Section

The model/experiment section of a SimPy simulation model initializes the simulation

model and model components. This section also defines the length of the simulation model

run. The model portion governs the behavior of the simulation run. In the case of the

SMH simulation models, the model/experiment section includes logic for the handling

of all 261 experiments used in the simulation. One thousand replications or runs of the

experiment are performed. Output data from each of the 1000 runs are gathered in database

and/or text files for further analysis and processing. Between each run of an experiment,

global variables are refreshed and initial model parameters and values are restored. A

new seed is used with each experiment to randomize the generated values for the various

costs, revenues, and times used in the simulation model. Across all 261 experiments, the

same 1000 seeds are used to allow comparison of the results for those experiments. By

using the same seeds, randomness from the generation of model parameters is avoided
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and distinctions between experiments are assured to be a result of differences between the

variables that are changed and not because of randomly generated parameter values.

Results for the base simulation model are given in the next section. The results include

a comparison using some of the data in Weingart (1995). We also compare the results from

the base model to results gained from using incorrect assessment methods.

4.3.5 Base Model Results
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Figure 4.2: Risk associated with purchasing the biliary lithotripter without discounting

Figure 4.2 gives the risk associated with purchasing the biliary lithotripter (i.e., cumu-

lative distribution function of the NPV) using the assumptions and parameters summarized
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in Tables 4.1, 4.2, 4.3, and 4.4. Note that using the set of parameters and assumptions

made with this particular model, the lithotripter seems far less profitable than the analysis

presented in the Strong Memorial Hospital case. There is a probability of 0.69 that the

simulated net present values for the lithotripter are negative after a five-year horizon. In-

cluding the initial cost of $650,000 for the purchase of the lithotripter and the $100,000

building upgrades, Strong Memorial’s projection for the net present value of the lithotripter

would be about $1,101,251, after five years of operation. There is a probability of about

0.84 that the investment will be less than or equal to the projected value of $1,101,251.

The next section details how different financial measures might have influenced the Strong

Memorial decision to purchase the lithotripter if different measures had been used.

4.3.6 Exploring Financial Measures

As discussed earlier in the literature review section, many companies use different

financial measures to make capital budgeting decisions. However, many of these measures

are not consistent with normative axioms. We use the Strong Memorial Hospital data to

illustrate that using these measures can lead to erroneous decisions.

Previous surveys including Block (1997) and Runyon (1983) note that several small

firms used break-even point analysis to determine their capital budgeting needs. If Strong

Memorial had calculated the payback period (PBP) or break-even point (BEP) for the

investment using the base model assumptions without accounting for risk or variation in

the revenue, cost, or parameter estimates (i.e., only using the mean values), then the BEP

would be approximately 3.09 years. However, when computing the BEPs for each of the

261,000 NPV point estimates, the probability that point estimates completed the entire

five-year simulation run horizon without breaking-even is 0.68. The net present value

for these point estimates stayed negative throughout the length of the simulation. Using

5 years as the break-even point for these negative point estimates, the mean BEP is just
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over 4.36 years for the investment to reach a value of zero. However, this mean BEP is

not accurate because the point estimates that remained negative were encoded as breaking

even after 5 years. Excluding the five-year point estimates, the average BEP was just

over 2.98 years. However, the average BEP that excludes the five-year point estimates is

optimistic, too, as 600 of the data points in Figure 4.2 are generated from experiments

where average patient arrival rates are over twice the average of 92 patients per year that

Strong Memorial projected it would treat. Since more patient arrivals directly translate to

more revenue, then the higher the yearly arrival rate, the higher the revenue will be, when

all other parameters are held at the same levels. The high patient arrival rate may not be

realistic to the number of patients Strong Memorial expected to treat using the lithotripter.

Another financial measure highlighted in the literature is the accounting rate of return

(ARR). The ARR takes the ratio of the average net income to the average investment as

shown in (4.1).

ARR = Average net income/Average investment (4.1)

There are several variations on ARR computations. We use the definition of average net

income as the average profit, i.e., the average revenue less the average cost. The average

investment is defined as the average of the sum of the book value of an investment at the

beginning of year 1 and the book value of the investment at the end of its useful life, i.e.,

Average Investment = (Book Value in Year 1+Book Value at End of Life)/2 (4.2)

For the average profit, we use the estimated profit that Weingart (1995) cited for the Strong

Memorial Hospital case. The lithotripter task force members expected the technology to

net an average of $93,259 for the first two years of operations. In successive years, the

lithotripter would bring in approximately $554,911 after FDA approval. We assume the
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lithotripter purchase price of $650,000 to be the book value for the investment in the first

year. In the Strong Memorial Hospital case there was no indication of the salvage value of

the lithotripter after 5 years. We calculate the ARR using two extremes for the book value

at the end of useful life for the lithotripter: the original book value in year 1 of $650,000,

and a $0 salvage value. Then for a time period of five years, we calculated the accounting

rate of return. When the end of useful life is $650,000, we have the following:

ARR =
Average Profit

Average Investment
(4.3)

=
∑

5
i=1 Pi

BV 0+BV 5
2

(4.4)

=
2(93,529)+3(554,911)

650,000+650,000
2

(4.5)

= 2.85 (4.6)

where Pi represents the average profit in year i and where BV0 and BV5 denote the book

value of the investment at the beginning of the first year and the end of the fifth year,

respectively. The ARR is 2.85 for this system.

If a zero salvage value is used instead to compute the end of useful life, then the ARR

is 5.70:

ARR =
Average Profit

Average Investment
(4.7)

=
∑

5
i=1 Pi

BV 0+BV 5
2

(4.8)

=
2(93,529)+3(554,911)

650,000+0
2

(4.9)

= 5.70 (4.10)

These ARR values imply that for every dollar invested in the lithotripter, Strong Memo-
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rial can expect to return anywhere from $2.85 to $5.70, depending on the salvage value

of the lithotripter. Relying on this measure would give a very optimistic viewpoint on the

lithotripter investment, giving an impression that the company can make almost 3-6 times

the initial investment in the technology.
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Figure 4.3: Histogram of the net present value point estimates associated with purchasing
the biliary lithotripter without discounting

Although the investment seems to be profitable, there is a significant probability for

the investment to lose money after a five-year simulation period. The distribution on the

net present value ranges from approximately -$1,636,000 to about $8,722,000. Figure 4.3

81



displays a histogram of the net present value point estimates. There are over 153,000 net

present value points in the histogram bin range of [-1,500,000, -1,000,000) of Figure 4.3.

The probability that a simulated point estimate falls in this bin is 0.58. The steep slope in

risk depicted in Figure 4.2 before the net present value reaches the $0 mark is explained

by the large number of estimates that populate this bin. Further analysis of the investment

reveals that the average net present value is just less than -$310,000. For the 261,000 sim-

ulated net present value point estimates, the median value is approximately -$1,199,000.

Based on this simulation model, the probability of the simulated NPVs being negative is

about 0.69. According to Weingart (1995), Strong Memorial Hospital projected a yearly

net revenue of over $550,000 after FDA approval. However, the results from the base

simulation model show a different view on projected revenue. Under the base model as-

sumptions, the probability that the lithotripter will lose the hospital over $550,000 after

five years of operation is over 0.66. The probability that SMH would capture at least the

estimated $1,101,251 projection is only around 0.16. Would the Strong Memorial Hospi-

tal board approve of the lithotripter if there was a probability of 0.69 of losing the money

invested? For example, a risk-neutral decision maker “does not care about risk and can

ignore risk aspects of the alternatives that he or she faces” (Clemen and Reilly, 2001).

The utility function for a risk-neutral decision maker is linear. Hence, maximizing ex-

pected utility is the same as maximizing the expected monetary value of the technology

alternative (Clemen and Reilly, 2001). For the SMH biliary lithotripter case, the esti-

mated expected net present value of the technology from the simulated NPVs is a about

-$310,500. This implies that the decision to purchase the lithotripter would not have been

made for the risk-neutral decision maker. We chose to consider the risk-neutral decision

maker because he or she is the least risk-averse decision maker we could have. A more

risk-averse decision maker is even more likely to reject this investment. Although this ap-

proach does not guarantee firms the best possible outcome (which can never be guaranteed
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for risky capital equipment acquisition decisions), it does guarantee that the best bet will

be made. It is important that small firms follow a risk-based, prescriptive approach. This

type of approach conforms to accepted expected utility theory. Since there is no way to

repeat the trials for these one-off bets, there is no way to verify if the decision made is the

“right” one. When decision makers choose not to abide by the axioms of expected utility,

they expose themselves to decisions that may defeat the purpose of maximizing utility.

The following procedure taken from Law (2007) is used to find point estimates and

confidence intervals for the mean of each of the 261 experiments. Assume that n indepen-

dent replications of a terminating simulation are made. Let X j be a random variable for the

jth replication with j = 1,2, . . . ,n. Further assume that the random variables X1,X2, . . . ,Xn

are independently and identically distributed with finite population mean and population

variance, µ and σ2, respectively. Let X̄(n) denote the sample mean of the random variables.

Then the sample mean is calculated as follows:

X̄(n) =

n
∑

i=1
Xi

n
(4.11)

Let S2(n) denote the sample variance of the random variables. The sample variance is

calculated as the following:

S2(n) =

n
∑

i=1
[Xi− X̄(n)]2

n−1
(4.12)

Estimators X̄(n) and S2(n) are unbiased estimators of µ and σ2, respectively, i.e.,

E[X̄(n)] = µ and E[S2(n)] = σ2. Using different random generator seeds for each repli-

cation allows for independence of the random variable produced during each replication.

When X ′js are normal random variables, then a random variable tn that has a t distribution

83



with n−1 degrees of freedom can be defined as follows:

tn = [X̄(n)−µ]/
√

S2(n)/n. (4.13)

When the sample size n ≥ 2, a 100(1−α) percent t confidence interval for µ can be

constructed using the following equation

X̄(n)± tn−1,1−α/2

√
S2(n)

n
. (4.14)

The value tn−1,1−α/2 represents the upper 1−α/2 critical value for the t distribution

with n−1 degrees of freedom. The product added or subtracted from X̄(n) in the t confi-

dence interval is the half-length of the confidence interval.

For the 261 experiments used in the lithotripter base model, fifty replications or runs

of each of the experiments were conducted. A different random number generator was

used for each replication. During each replication, a net present value was generated. For

each experiment the mean NPV of the fifty generated NPVs is found. Confidence inter-

vals are found for each of the mean NPVs by using a 90% t confidence level. Consider

the experiment with an average patient interarrival rate of 1 patient every 32.5 hours (Ex-

periment # 45 in Appendix A). This experiment corresponds to a yearly average of 92

patients per year, which is the patient rate SMH considered when assessing its purchase of

the biliary lithotripter. The mean NPV of this experiment is -$136293, and the 90% con-

fidence interval is (-$159155, -$113431). Appendix B gives the list of mean NPV values

and the lower and upper confidence bounds for each of the 90% confidence intervals for

each experiment.

Another thing to consider from the base model is that the operational parameter as-

sumptions are generally optimistic. The assumption that there is no discount rate does

84



not account for the time value of money in these projections. In the Weingart (1995) case,

there is an implication that some patients had to come back for subsequent visits due to the

treatment efficacy. Patients encountered pain and lithotripter operators had to reduce the

intensity of the treatment due alleviate patients. However, gallstones and/or kidney stones

were not effectively shattered to allow for safe passage from patients. The reduction of

intensity meant that patients had to return for more treatments. This operational phe-

nomenon can be modeled and analyzed through simulation.The system can be stressed by

changing these parameters and/or modeling these situations to assess how the net present

value would be affected. The next several subsections explore different modifications to

the base model. Sensitivity analyses are conducted on several parameters to show how

changes to these different parameter levels would affect the risk for the lithotripter. The

next section, Section 4.3.7, explores what happens when discount rates are incorporated in

the valuation of the investment. In Section 4.3.8, a system where patients have to re-enter

the system to complete multiple treatments is studied. The impact of patient re-entry and

loss on the risk is shown.

4.3.7 Sensitivity to Discount Rates

One consideration that is not addressed in the case study is the discount rate that is

used for the net present value calculations. When the discount rate is not incorporated into

computations, the firm can have an unrealistic view on the amount of the risk. Figure 4.4

displays the risk associated with the lithotripter under different discount rates. The same

261 experiments were used from the previous base case model. The varying parameter

was the discount rate. Note the difference in the expected net present values and the risk

when the discount rates are changed. The risk with no discount rate is displayed along

with the risk when the discount rate is 2%, 4%, 6%, 8%, 10%, 12%, 14%, respectively.

A vertical reference line at the $0 value delineates the portions of the risk curves where
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Figure 4.4: Risk associated with purchasing the biliary lithotripter with various discount
rates (0%-14%, by 2%)

the investment is negative or positive. The percentage of positive NPVs by discount rate

declines as the discount rate increases. Table 4.5 summarizes the average investment net

present values and percent of positive net present values by discount rate. The average net

present values get more negative as the discount rate increases. The number of net present

value point greater than zero decreases with an increase in the discount rate.

Figure 4.5 displays the risk associated with the lithotripter using different discount

rates of 0%, 5%, 10%, 15%, 20%, 25%, and 30%. As before, the same 261 experiments

were used from the base case model. The probability of negative NPVs ranges from 0.68

when there is no discount rate used to over 0.86 when there is a 30% discount rate for
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Table 4.5: Comparison of net present values by discount rate

Discount Rate (%) Average NPV ($) Percent(%) NPVs ≥ 0
0 -310,500 30.6
2 -354,200 30.0
4 -393,700 29.2
6 -429,400 28.1
8 -461,800 26.8

10 -491,100 25.5
12 -517,800 24.1
14 -542,200 22.8

the revenues and costs associated with the equipment. Table 4.6 summarizes the average

investment net present values and percent of positive net present values by discount rate

from Figure 4.5. Again, the general trend for the average net present values holds here

as in the comparison in Table 4.5, i.e., as the discount rate increases, the average NPV

decreases.

Table 4.6: Summary of discount rates with corresponding average NPVs and percentage
of positive NPVs

Discount Rate (%) Average NPV ($) Percent(%) NPVs ≥ 0
0 -310,500 30.6
5 -412,000 28.6

10 -491,100 25.5
15 -553,500 22.1
20 -603,300 19.1
25 -643,300 16.5
30 -675,800 14.2

In the next section, we explore the relationship between multiple treatments with the
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Figure 4.5: Risk associated with purchasing the biliary lithotripter using various discount
rates (0%-30%, by 5%)

overall risk for the lithotripter. One of the issues encountered by the Strong Memorial

Hospital lithotripter case (Weingart, 1995) was patients who experienced unbearable pain

during the shock wave treatments. Lithotripter operators had to decrease the treatment

intensities which resulted in incomplete kidney stone or gallstone fragmentation. There-

fore, follow-up treatments were required. Re-entering customer flows for SMH and their

impact on investment value are approached in the following section.
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4.3.8 Sensitivity to Re-entering Flows

One other important concern for the biliary lithotripsy operations was the intensity

of the shock waves administered during treatments. Several patient complaints about the

pain encountered during treatment led to lowered intensity of the shock waves. The lower

intensity levels were less effective in breaking up the kidney stones or gallstones. As a

result, patients needed to have more treatments. However, the hospital had trouble getting

patients to come back for successive treatments. One way to incorporate this phenomenon

into the model is through re-entrant flows. Assume that a certain percentage of patients

will have to re-enter the system to undergo additional treatment. When patients complete

treatment after the first or second service encounter, then the hospital accrues revenue for

these patients. However, if a re-entering patient is selected for a third treatment, then that

patient is lost and will not re-enter the system. The hospital gains no revenue for lost

patients.

In the re-entering experiments, simulation parameters were set at the base case pa-

rameter values. The only factor that was varied in these experiments is the percentage of

patients that were lost after each service encounter. It is assumed that each patient would

enter at most twice for service. At the end of the first service encounter, there is a prob-

ability that the patient will have to re-enter the system again due to ineffective treatment

of the gallstone or kidney stone. The re-entering probability is generated randomly using

a uniform (0,1) distribution. If the patient must re-enter service, then there is a delay of

at least a day before the patient is allowed to be served again. At completion of the sec-

ond service encounter, patients face a certain probability that the gallstone or kidney stone

was not adequately busted. If patients do not complete service after the second service

encounter, then those patients are lost. Again, this probability is generated randomly using

a uniform (0,1) distribution. Figure 4.6 displays a comparison of the effect that re-entering

89



and/or lost patients have on the risk.

−2000000 0 2000000 4000000 6000000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Risk with Re−entering and No Discount Rate

Net Present Value ($)

P
ro

ba
bi

lit
y

Figure 4.6: Risk associated with purchasing the biliary lithotripter with patient re-entering

The probability of negative NPV points is greater with the re-entering experiments than

in the base case simulation experiments. There is a probability of 0.765 that the simulated

NPV values for the re-entering system are below $0. The base case simulation results

presented earlier in Section 4.3.5 showed that there is a probability of about 0.69 that

simulated NPV values are less than $0. In the Strong Memorial Hospital lithotripter case

study, there was an assumption that the efficacy of the European trials of the lithotripsy

technology would be repeatable in the United States. Unfortunately, the technology was
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apparently uncomfortable for patients in the United States. Simulation models that incor-

porate potential patient behavior which impacts usage of the technology are beneficial in

assessing the affect on the overall risk for the technology.

4.3.9 More Simulation Scenarios

Over the last several sections, the sensitivity analyses were conducted by changing

only one parameter at a time to see the effect that change would have on the overall risk.

More scenarios can be analyzed by varying more than one parameter at a time to determine

the effect on the risk. For instance, if the decision makers at Strong Memorial Hospital

decided that the discount rate should be say, 5%, rather than 0% and that they wanted

to focus on scenarios with more unreliable equipment and impatient patients, then corre-

sponding parameters could be changed and modeled all at once. The object oriented nature

of modeling with SimPy and Python allows for easy customization of possible scenarios

for the technology assessment.
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5. CONCLUSION AND FUTURE WORK

Small firms and businesses have limited budgets for capital expenditures. This disser-

tation provides an analytical framework and a computational strategy to support capital

equipment budgeting in firms where the value of candidate technologies can represent

nearly all the firm’s value. The analytical framework employs a straightforward, objective

approach that appeals to well established principles in economics, finance and decision

making. Our approach relies on utility theory to determine the candidate technology hav-

ing the most preferred risk. Deficiencies associated with other subjective capital budgeting

methods and procedures are explored. Characterizing a technology’s value as a function

of fixed and operational costs through discrete-event simulation directly ties use of the

new technology with the finances of the organization. When analyzing the risk for a given

technology, a probability law is assigned to the value of the new technologies. It is this

characterization of risk that is required when appealing to the expected utility theorem:

the foundational principle underlying our analysis and methods.

The computational strategy for this research employs software and tools that allow

highly customizable simulation modeling. The modularity of the computational architec-

ture allows for a straightforward formulation of simulation models. Our approach obviates

the need for generic models that do not address the unique operational features that direct

technology value for small firms. All of our analyses rely only on free, open source soft-

ware applications. This shows that small firms need not invest a lot of money in software

tools to correctly, effectively and systematically evaluate and assess new technologies.

The analytical framework and computational architecture was applied to a technology

assessment at a research hospital. The application used data from a previously published

study on the hospital’s decision to purchase new equipment to treat gallstones and kidney
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stones. The objective of the example was to illustrate how small firms could use an ax-

iomatic approach to technology assessment. Projected use of the new equipment with the

equipment’s expected cash flows was simulated using Python and SimPy software pack-

ages. The net present value of the equipment was found using the projected cash flows.

Several scenarios were studied for the use of the technology. The risk for the new equip-

ment was found by constructing a distribution on the net present value estimates. With the

parameters used in the simulation, there was a probability of 0.69 that the value projections

were unprofitable. The probability that the projections met or exceeded the healthcare fa-

cility’s original financial projections was only 0.16. The application highlighted the danger

in relying on only one point estimate for the assessment of new technology. The example

also showed that relying on non-discounted cash flow measures, such as the payback pe-

riod or the accounting rate of return, for determining the profitability of new technology

can be erroneous. The impact that machine reliability and customer behavior have on risk

were also studied.

Future directions for this research could include the impact that income taxes and de-

preciation strategies have on the risk of new technologies. Tax implications and different

depreciation techniques could influence the cash flows on the small businesses. Invest-

ments in insurance can also affect the viability of the new technology. These cash flow

impacts can be explored in the simulation models. Studying how valuable technology risk

information is to decision makers would be another future research direction.

Although the healthcare example presented in Section 4 focuses on a research hos-

pital, many other types of health care facilities and organizations can benefit from this

research when considering the purchase of new technologies. One possible application

of risk-based technology assessment in healthcare may be in the adoption of telemedicine

and/or home health monitoring equipment. Health care providers can explore the impact

these potential technologies would have on revenues and costs associated with their or-
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ganizations by simulating the use of equipment in patients’ homes. In addition to health

care providers, governmental health agencies and policymakers would benefit from this

research. Results from this research can be used to target proposed legislation and policies

to reduce redundant health care costs and make the health care system more efficient.

Health care is only one of several industries that may benefit from this risk-based tech-

nology assessment. Alternative energy companies or investors may use this research to

evaluate various technologies available to them. One example could be assessing different

battery technologies for applications in hybrid or electric vehicles. Electric car manufac-

turers have to assess the likelihood that various battery technologies would be beneficial to

their companies. This research would give a detailed view on evaluating the different bat-

tery/energy storage technologies. Wind and solar energy resource companies could also

use this research to evaluate potential technologies.

Another important issue in small firm technology assessment is the availability of

financing for capital equipment purchases. In Block (1997), the author highlights that

“smaller firms have less access to public capital markets and fewer alternatives overall

than larger firms.” Not only can small business owners benefit in using this computational

approach and research, but capital investors would gain insight into the riskiness of their

potential investments. In particular, banks and credit unions could enhance their lending

practices by exploring the risk of their prospective borrowers’ loans. Technology venture

capitalists could also use the computational architecture to help identify which investments

are appropriate based on the capitalists’ utility.
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APPENDIX A

EXPONENTIAL DISTRIBUTION ARRIVAL PARAMETERS

The parameters for the patient arrival distributions in the healthcare example are given

in the tables below. Some of the experiments for the healthcare example draw the rate of

patients arriving to the system from the exponential distribution (Poisson arrivals). For

each of the 261 experiments, the mean for the time between patient arrivals was varied.

The experiment number (labeled ‘Exp#’ in the tables) and the mean (labeled ‘Mean’ in

the tables) interarrival time in hours between patients are listed in the tables below. The

experiments include average patient arrival rates that vary from one patient per year to

over 285 patients per year.
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Exp# Mean Exp# Mean Exp# Mean Exp# Mean Exp# Mean
1 10 37 28 73 46 109 190 145 370
2 10.5 38 28.5 74 46.5 110 195 146 375
3 11 39 29 75 47 111 200 147 380
4 11.5 40 29.5 76 47.5 112 205 148 385
5 12 41 30 77 48 113 210 149 390
6 12.5 42 30.5 78 48.5 114 215 150 395
7 13 43 31 79 49 115 220 151 400
8 13.5 44 31.5 80 49.5 116 225 152 405
9 14 45 32 81 50 117 230 153 410

10 14.5 46 32.5 82 55 118 235 154 415
11 15 47 33 83 60 119 240 155 420
12 15.5 48 33.5 84 65 120 245 156 425
13 16 49 34 85 70 121 250 157 430
14 16.5 50 34.5 86 75 122 255 158 435
15 17 51 35 87 80 123 260 159 440
16 17.5 52 35.5 88 85 124 265 160 445
17 18 53 36 89 90 125 270 161 450
18 18.5 54 36.5 90 95 126 275 162 455
19 19 55 37 91 100 127 280 163 460
20 19.5 56 37.5 92 105 128 285 164 465
21 20 57 38 93 110 129 290 165 470
22 20.5 58 38.5 94 115 130 295 166 475
23 21 59 39 95 120 131 300 167 480
24 21.5 60 39.5 96 125 132 305 168 485
25 22 61 40 97 130 133 310 169 490
26 22.5 62 40.5 98 135 134 315 170 495
27 23 63 41 99 140 135 320 171 500
28 23.5 64 41.5 100 145 136 325 172 510
29 24 65 42 101 150 137 330 173 520
30 24.5 66 42.5 102 155 138 335 174 530
31 25 67 43 103 160 139 340 175 540
32 25.5 68 43.5 104 165 140 345 176 550
33 26 69 44 105 170 141 350 177 560
34 26.5 70 44.5 106 175 142 355 178 570
35 27 71 45 107 180 143 360 179 580
36 27.5 72 45.5 108 185 144 365 180 590
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Exp# Mean Exp# Mean Exp# Mean
181 600 208 870 235 1700
182 610 209 880 236 1750
183 620 210 890 237 1800
184 630 211 900 238 1850
185 640 212 910 239 1900
186 650 213 920 240 1950
187 660 214 930 241 2000
188 670 215 940 242 2050
189 680 216 950 243 2100
190 690 217 960 244 2150
191 700 218 970 245 2200
192 710 219 980 246 2250
193 720 220 990 247 2300
194 730 221 1000 248 2350
195 740 222 1050 249 2400
196 750 223 1100 250 2450
197 760 224 1150 251 2500
198 770 225 1200 252 2550
199 780 226 1250 253 2600
200 790 227 1300 254 2650
201 800 228 1350 255 2700
202 810 229 1400 256 2750
203 820 230 1450 257 2800
204 830 231 1500 258 2850
205 840 232 1550 259 2900
206 850 233 1600 260 2950
207 860 234 1650 261 3000
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APPENDIX B

CONFIDENCE INTERVALS FOR EXPONENTIAL DISTRIBUTION ARRIVAL

EXPERIMENTS

The confidence intervals for the experiments from APPENDIX A are listed in the

tables below. The parameters for the patient arrival distributions in the healthcare example

are given in the tables below. The experiment number (labeled ‘Exp#’ in the tables) and

the mean net present value (labeled ‘Mean NPV’ in the tables) are given in the tables

below. The upper and lower bounds (‘Upper Bound’ and ‘Lower Bound’, respectively in

the tables) are found for each of the mean NPVs by using a 90% t confidence level.
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Exp# Mean NPV Lower Bound Upper Bound
1 6,456,822 6,421,113 6,492,531
2 6,098,384 6,063,156 6,133,613
3 5,731,412 5,698,096 5,764,727
4 5,414,132 5,381,351 5,446,914
5 5,151,080 5,121,290 5,180,871
6 4,880,264 4,850,185 4,910,343
7 4,618,046 4,589,353 4,646,739
8 4,383,919 4,355,610 4,412,228
9 4,218,942 4,191,915 4,245,970

10 3,988,612 3,963,814 4,013,410
11 3,835,051 3,810,161 3,859,941
12 3,665,517 3,642,081 3,688,954
13 3,495,570 3,471,084 3,520,056
14 3,354,175 3,331,866 3,376,484
15 3,191,536 3,169,507 3,213,564
16 3,061,055 3,039,214 3,082,897
17 2,942,419 2,922,292 2,962,545
18 2,840,549 2,820,710 2,860,388
19 2,723,362 2,703,017 2,743,707
20 2,618,842 2,599,533 2,638,151
21 2,491,827 2,472,827 2,510,827
22 2,407,612 2,389,371 2,425,853
23 2,301,099 2,282,941 2,319,258
24 2,216,655 2,199,368 2,233,943
25 2,160,646 2,143,389 2,177,902
26 2,057,531 2,040,863 2,074,200
27 1,979,005 1,962,166 1,995,844
28 1,921,319 1,904,493 1,938,146
29 1,841,009 1,825,480 1,856,538
30 1,772,485 1,757,148 1,787,822
31 1,702,901 1,687,660 1,718,142
32 1,637,930 1,623,036 1,652,824
33 1,585,276 1,570,529 1,600,023
34 1,520,060 1,505,657 1,534,463
35 1,469,327 1,454,532 1,484,123
36 1,413,534 1,399,353 1,427,715
37 1,362,339 1,348,509 1,376,169
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Exp# Mean NPV Lower Bound Upper Bound
38 1,316,074 1,302,247 1,329,901
39 1,272,647 1,259,448 1,285,846
40 1,214,391 1,200,988 1,227,795
41 1,164,959 1,151,760 1,178,158
42 1,126,352 1,113,247 1,139,456
43 1,085,576 1,072,898 1,098,253
44 1,046,320 1,033,567 1,059,072
45 1,007,998 995,123 1,020,874
46 963,264 951,344 975,183
47 936,712 924,102 949,323
48 892,145 879,712 904,577
49 859,897 848,101 871,694
50 819,248 807,156 831,339
51 801,359 789,603 813,116
52 775,561 764,084 787,038
53 736,029 724,809 747,249
54 716,882 705,640 728,124
55 671,657 660,447 682,866
56 638,676 627,699 649,652
57 611,337 600,719 621,956
58 586,076 575,361 596,792
59 573,487 563,018 583,955
60 532,768 522,533 543,004
61 514,082 503,591 524,572
62 485,548 474,678 496,418
63 459,756 449,748 469,763
64 446,588 436,249 456,928
65 416,991 407,296 426,686
66 391,652 382,218 401,086
67 371,064 361,029 381,099
68 356,309 346,711 365,906
69 334,654 325,001 344,307
70 305,530 295,981 315,079
71 280,713 270,972 290,454
72 263,031 253,764 272,298
73 249,684 240,347 259,022
74 231,966 222,940 240,993
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Exp# Mean NPV Lower Bound Upper Bound
75 223,753 214,926 232,579
76 195,164 185,855 204,473
77 189,199 179,995 198,404
78 158,937 150,000 167,874
79 153,878 145,078 162,679
80 138,946 130,602 147,291
81 115,604 106,848 124,360
82 -31,100 -38,819 -23,381
83 -154,840 -162,311 -147,369
84 -251,634 -258,744 -244,525
85 -335,037 -341,871 -328,203
86 -412,665 -419,296 -406,035
87 -480,801 -487,293 -474,310
88 -537,503 -543,601 -531,406
89 -593,225 -599,155 -587,295
90 -639,101 -644,568 -633,633
91 -678,550 -683,851 -673,249
92 -714,561 -719,760 -709,362
93 -751,540 -756,632 -746,448
94 -782,210 -787,327 -777,094
95 -815,807 -820,428 -811,186
96 -835,373 -840,157 -830,589
97 -864,818 -869,541 -860,095
98 -885,446 -890,012 -880,881
99 -904,443 -909,045 -899,841
100 -923,118 -927,589 -918,648
101 -943,324 -947,483 -939,166
102 -962,663 -966,968 -958,359
103 -977,236 -981,375 -973,097
104 -993,815 -997,959 -989,671
105 -1,007,955 -1,012,064 -1,003,845
106 -1,022,278 -1,026,368 -1,018,187
107 -1,033,233 -1,037,212 -1,029,254
108 -1,048,833 -1,052,848 -1,044,819
109 -1,053,156 -1,057,067 -1,049,246
110 -1,065,429 -1,069,336 -1,061,522
111 -1,075,324 -1,079,177 -1,071,472
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Exp# Mean NPV Lower Bound Upper Bound
112 -1,086,926 -1,090,752 -1,083,100
113 -1,092,154 -1,095,947 -1,088,361
114 -1,103,560 -1,107,172 -1,099,947
115 -1,113,161 -1,116,680 -1,109,641
116 -1,121,627 -1,125,261 -1,117,993
117 -1,126,825 -1,130,605 -1,123,045
118 -1,137,326 -1,140,931 -1,133,722
119 -1,144,892 -1,148,512 -1,141,272
120 -1,148,110 -1,151,774 -1,144,447
121 -1,158,094 -1,161,682 -1,154,507
122 -1,159,425 -1,163,087 -1,155,764
123 -1,165,478 -1,169,015 -1,161,940
124 -1,171,948 -1,175,346 -1,168,551
125 -1,178,669 -1,182,171 -1,175,167
126 -1,184,795 -1,188,172 -1,181,418
127 -1,189,784 -1,193,065 -1,186,503
128 -1,198,158 -1,201,430 -1,194,885
129 -1,197,660 -1,200,998 -1,194,323
130 -1,205,979 -1,209,239 -1,202,718
131 -1,210,260 -1,213,570 -1,206,950
132 -1,215,400 -1,218,775 -1,212,024
133 -1,218,306 -1,221,568 -1,215,044
134 -1,217,970 -1,221,303 -1,214,636
135 -1,226,923 -1,230,049 -1,223,797
136 -1,228,371 -1,231,703 -1,225,040
137 -1,231,861 -1,234,997 -1,228,725
138 -1,238,550 -1,241,692 -1,235,408
139 -1,240,784 -1,243,988 -1,237,581
140 -1,244,001 -1,247,105 -1,240,897
141 -1,244,543 -1,247,834 -1,241,251
142 -1,252,301 -1,255,460 -1,249,142
143 -1,253,006 -1,256,081 -1,249,931
144 -1,256,551 -1,259,726 -1,253,375
145 -1,261,249 -1,264,358 -1,258,140
146 -1,263,069 -1,266,168 -1,259,969
147 -1,265,436 -1,268,477 -1,262,394
148 -1,266,588 -1,269,708 -1,263,469
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Exp# Mean NPV Lower Bound Upper Bound
149 -1,269,745 -1,272,854 -1,266,635
150 -1,272,475 -1,275,565 -1,269,385
151 -1,273,729 -1,276,744 -1,270,713
152 -1,277,661 -1,280,675 -1,274,647
153 -1,280,002 -1,283,022 -1,276,982
154 -1,283,001 -1,286,050 -1,279,952
155 -1,283,755 -1,286,717 -1,280,792
156 -1,288,707 -1,291,729 -1,285,686
157 -1,286,378 -1,289,377 -1,283,380
158 -1,291,610 -1,294,571 -1,288,648
159 -1,292,329 -1,295,370 -1,289,288
160 -1,294,404 -1,297,397 -1,291,411
161 -1,295,648 -1,298,583 -1,292,713
162 -1,299,175 -1,302,024 -1,296,327
163 -1,298,733 -1,301,645 -1,295,821
164 -1,301,695 -1,304,650 -1,298,740
165 -1,304,270 -1,307,187 -1,301,352
166 -1,304,977 -1,307,872 -1,302,081
167 -1,308,672 -1,311,503 -1,305,841
168 -1,309,366 -1,312,369 -1,306,364
169 -1,311,291 -1,314,149 -1,308,434
170 -1,312,380 -1,315,305 -1,309,456
171 -1,314,150 -1,316,971 -1,311,328
172 -1,318,323 -1,321,134 -1,315,511
173 -1,321,317 -1,324,074 -1,318,559
174 -1,321,130 -1,323,833 -1,318,427
175 -1,325,838 -1,328,535 -1,323,141
176 -1,330,896 -1,333,908 -1,327,884
177 -1,332,318 -1,335,079 -1,329,557
178 -1,333,474 -1,336,270 -1,330,678
179 -1,337,556 -1,340,309 -1,334,803
180 -1,338,610 -1,341,435 -1,335,784
181 -1,341,274 -1,343,910 -1,338,638
182 -1,342,518 -1,345,379 -1,339,657
183 -1,346,007 -1,348,789 -1,343,225
184 -1,348,146 -1,350,827 -1,345,464
185 -1,346,697 -1,349,537 -1,343,857
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186 -1,351,372 -1,354,015 -1,348,729
187 -1,353,390 -1,356,043 -1,350,737
188 -1,356,750 -1,359,400 -1,354,101
189 -1,357,618 -1,360,340 -1,354,896
190 -1,358,562 -1,361,240 -1,355,884
191 -1,359,040 -1,361,705 -1,356,374
192 -1,363,078 -1,365,744 -1,360,412
193 -1,361,880 -1,364,512 -1,359,249
194 -1,363,508 -1,366,157 -1,360,858
195 -1,365,754 -1,368,375 -1,363,134
196 -1,370,119 -1,372,791 -1,367,447
197 -1,368,307 -1,371,045 -1,365,568
198 -1,370,367 -1,372,983 -1,367,752
199 -1,371,888 -1,374,529 -1,369,248
200 -1,373,295 -1,375,879 -1,370,711
201 -1,373,674 -1,376,389 -1,370,960
202 -1,374,870 -1,377,564 -1,372,176
203 -1,375,225 -1,377,886 -1,372,563
204 -1,379,811 -1,382,405 -1,377,218
205 -1,380,488 -1,383,103 -1,377,873
206 -1,379,489 -1,382,047 -1,376,931
207 -1,380,620 -1,383,134 -1,378,106
208 -1,381,051 -1,383,629 -1,378,474
209 -1,382,624 -1,385,220 -1,380,028
210 -1,384,013 -1,386,649 -1,381,377
211 -1,386,161 -1,388,706 -1,383,616
212 -1,386,583 -1,389,170 -1,383,997
213 -1,386,705 -1,389,247 -1,384,163
214 -1,387,044 -1,389,609 -1,384,479
215 -1,388,566 -1,391,161 -1,385,972
216 -1,388,652 -1,391,169 -1,386,134
217 -1,391,342 -1,394,023 -1,388,660
218 -1,390,670 -1,393,288 -1,388,052
219 -1,393,203 -1,395,746 -1,390,661
220 -1,395,122 -1,397,600 -1,392,644
221 -1,394,356 -1,396,916 -1,391,796
222 -1,399,231 -1,401,728 -1,396,735
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223 -1,401,310 -1,403,837 -1,398,783
224 -1,404,529 -1,407,069 -1,401,989
225 -1,407,695 -1,410,203 -1,405,188
226 -1,410,271 -1,412,732 -1,407,810
227 -1,412,243 -1,414,700 -1,409,785
228 -1,413,703 -1,416,135 -1,411,272
229 -1,417,032 -1,419,463 -1,414,601
230 -1,418,182 -1,420,625 -1,415,738
231 -1,419,417 -1,421,906 -1,416,928
232 -1,421,476 -1,423,951 -1,419,001
233 -1,424,520 -1,426,860 -1,422,181
234 -1,424,439 -1,426,940 -1,421,937
235 -1,428,163 -1,430,593 -1,425,732
236 -1,426,958 -1,429,453 -1,424,463
237 -1,428,979 -1,431,389 -1,426,568
238 -1,431,511 -1,433,861 -1,429,161
239 -1,429,284 -1,431,749 -1,426,820
240 -1,432,346 -1,434,777 -1,429,915
241 -1,435,638 -1,437,996 -1,433,280
242 -1,435,699 -1,438,050 -1,433,347
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243 -1,437,283 -1,439,651 -1,434,916
244 -1,436,747 -1,439,138 -1,434,357
245 -1,439,059 -1,441,405 -1,436,713
246 -1,439,263 -1,441,627 -1,436,899
247 -1,440,745 -1,443,046 -1,438,444
248 -1,439,691 -1,442,122 -1,437,259
249 -1,440,100 -1,442,480 -1,437,720
250 -1,442,797 -1,445,091 -1,440,503
251 -1,441,767 -1,444,142 -1,439,393
252 -1,440,231 -1,442,614 -1,437,848
253 -1,444,041 -1,446,374 -1,441,708
254 -1,442,892 -1,445,267 -1,440,517
255 -1,444,301 -1,446,703 -1,441,898
256 -1,444,126 -1,446,553 -1,441,699
257 -1,446,265 -1,448,632 -1,443,898
258 -1,444,749 -1,447,107 -1,442,391
259 -1,446,745 -1,449,062 -1,444,428
260 -1,447,627 -1,449,996 -1,445,258
261 -1,446,634 -1,448,964 -1,444,304
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