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ABSTRACT 

 

Ion irradiation has been known to be an effective tool for structure modification 

with micro/nano-scale precision. Recently, demonstrations have been made for nano-

machining, such as the cutting and welding of carbon nanotubes. Understanding the 

fundamental effects of ion irradiation on carbon nanotubes is critical for advancing this 

technique as well as for scientific curiosity. Molecular dynamics modeling was 

performed to study irradiation stability, structural changes, and corresponding thermal 

properties. 

In our study, Large-scale Atomic/Molecular Massively Parallel Simulator 

(LAMMPS) was used to perform atomic scale simulation. In order to understand size 

and geometry effects on carbon damage creation, the threshold energy of displacement 

was calculated as a function of recoiling angles for both single-walled and multi-walled 

nanotubes. A strong directional dependence was found to exist in different shells of 

multi-walled carbon nanotubes. We found that carbon atoms on the innermost tube were 

more susceptible to be displaced toward the center of axis. The calculation matrix was 

further extended to nanotubes having different diameters for a full-scale understanding 

of the creation of defects. Besides studies on defects creation, thermal properties of 

carbon nanotubes were studied via a simplified model of the carbon nanotube network. 

Thermal conductivity, were found to be increased nearly one order of magnitude in 

carbon nanotube networks after irradiation and subsequent annealing. All the modeling 

results were compared with experimental observations either obtained from this project 
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as a parallel study or from previous works, for the purpose of verification and validation. 

For experimental works, atomic scale characterization was performed by using 

transmission electron microscopy and the thermal conductivity measurement was 

characterized by using laser flash technique. Through a combination of modeling and 

experimentation, we proved that ion beam techniques can be used to enhance thermal 

conductivity in carbon nanotube bundles by inter-tube defects mediated phonon 

transport. 
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NOMENCLATURE 

 

CNT Carbon Nanotube 

SWNT Single-Walled Carbon Nanotube 

MWNT Multi-Walled Carbon Nanotube 

MD Molecular Dynamics 

LAMMPS Large-scale Atomic/Molecular Massive Parallel Simulator 

Å Angstrom 

nm Nanometer 

eV Electron Volt 

keV Kilo Elctron Volt 

MeV Mega Electron Volt 

kV Kilo Volt 

H Hydrogen 

K Kelvin 

PKA Primary Knock-on Atom 

SRIM Stopping and Range of Ion in Matter 

TEM Transmission electron Microscope 

Td Displacement Energy 

SW Stone-Wales Defects 

MC Monte Carlo 

AIREBO Adaptive Interatomic Reactive Empirical Bond Order 
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REBO Reactive Empirical Bond Order 

LJ Lennard-Jones 

ZBL Zeigler-Biersack-Littmark  

vdW van der Waals 

ps Picosecond 

fs Femtosecond 

ns Nanosecond 

NEMD Non-Equilibrium Molecular Dynamics 

NVE Microcanonical Ensemble 
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1. INTRODUCTION 

 The last few decades witnessed rapidly growing interests in nanostructured 

carbon materials triggered by the breakthrough discoveries of fullerenes, carbon 

nanotubes (CNTs), and graphene [1-3]. These advanced carbon allotropes have been 

reported to demonstrate superior thermal, mechanical, and electronic properties 

compared to graphite and amorphous carbon. Diamond had been considered the best 

heat conductor, with ~2000 Wm-1K-1, until thermal conductivities of single carbon 

nanotubes were measured to be much higher around ~3000-3500 Wm-1K-1 [4]. Tensile 

strength of individual carbon nanotubes is 100 times more than stainless steel and 

predicted strength to weight ratio can be 3 orders of magnitude higher than steels [5]. 

Electron mobility is an important property of materials for electronic applications. Not 

only do electrons travel 70 times faster in carbon nanotubes than in Si, it has also been 

recorded to be able to carry the highest current density, which is 100 times more than 

that in copper [6, 7]. Based on their excellent properties, applications on nano/micro-

scale thermal management, high performance fiber, and nano/micro-electronics have 

been proposed [8-10]. However, one bottleneck before large-scale application is the need 

for precise control of microstructures. 

Ion irradiation has been extensively applied in the semiconductor industry for 

doping and lithography patterning with high repeatability and uniformity even at the 

nano-scale. With intrinsic advantages of being able to be focused to nanometers, ion 
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beams can be effectively utilized for site-selective functionalization and modification of 

carbon nanotubes and graphene. On the other hand, defocused and scanning beam can be 

used over a large area to create a statistically evenly distributed structural change for 

high throughout production. Early studies of electron irradiation upon carbon onion, 

multilayered buckyballs, resulted in the formation of diamond core in the middle due to 

the high pressure induced by irradiation [11]. With an electron beam focused down to 

nanometer size, precise cutting and welding of multi-walled carbon nanotubes 

(MWNTs) have been demonstrated in situ using a transmission electron microscope 

(TEM) [12]. Improved bending modulus of carbon nanotube bundles has been reported 

with the help of ion irradiation at 80 keV. By introducing defects using ion irradiation, 

either impurities or vacancies, the electronic band gap of CNTs and graphene can be 

engineered [13]. 

Understanding radiation effects on carbon nanomaterials is a critical step towards 

engineering microstructures and properties. Previous studies on graphite started as early 

as the 1950s due to its application in fission reactors [14]. However, comprehensive 

microscopic knowledge, e.g. defect creation, migration, and recombination were not 

provided since limited experimental techniques were available at that time. Radiation 

responses and defect evolution in low dimensional nanostructured carbon materials can 

be studied with assistance from modern experimental and theoretical techniques. 

Anomalous anisotropic radiation effects were observed according to a study on electron 

beam irradiation of carbon nanotubes via TEM [15]. Direct manipulation of defects 
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within grain boundaries in polycrystalline graphene has been performed under in situ 

electron beam to directly examine the microstructural evolution [16].  

Theoretical investigations about irradiation effects on nanomaterials can help in 

providing microscopic details that are either too quick or too small to be observed 

experimentally. Molecular dynamics (MD) is a method using Newtonian equations of 

motion to efficiently predict atomic trajectories and shows its strength in modeling 

irradiation as well as post-irradiation processes. For example, a problem that has 

troubled people for a long time is whether or not defects can travel from wall to wall in 

individual MWNT. MD is useful for predicting properties too. Mechanical properties, 

such as tensile strength and Young’s modulus, can be obtained through MD simulation 

[17]. There are some disadvantages as well: the time-scale is often limited to hundreds of 

nano seconds (ns). Recent progress in temperature accelerated MD grants possible 

solutions to the intrinsic limitation and can help to understand defect annealing effects 

[18]. 

Despite the numerous works that have been done to increase our understanding 

of radiation effects on nanostructured carbon, radiation damage and induced effects are 

still deficient in fundamental knowledge.  The goal of this thesis is to explore possible 

explanations to those unconventional phenomena in low dimensional carbon materials. 

Stability of SWNTs and MWNTs under irradiation is a crucial property for applications 

of ion beam structural modification. A fundamental physical value, threshold 

displacement energy (Td), was used as criteria. Results from different literature sources 

indicate that the highly anisotropic effects in nanostructured carbon have been observed 
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and one universal number of displacement energy could lead to over simplification.  

Some published articles reported degradation of nanotubes had started from the 

innermost walls in the first place [19]. The fundamentals of SWNTs and MWNTs 

irradiation stability was further examined by adopting a combination of experimental 

methods and theoretical modeling in this thesis. Irradiation induced structural alternation 

was applied for property manipulation. The tube-tube cross-link defects, which had been 

reported to be responsible for enhanced load transfer, were proposed in this thesis to 

improve thermal conductance in SWNT networks.  
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2. BACKGROUND 

 

2.1 Introduction to Molecular Dynamics 

The strength of molecular dynamics (MD) is to model materials at the atomic 

scale in order to provide information that is either too small or fast to be observed 

experimentally. Molecular dynamics simulation numerically estimates trajectories of 

atoms and molecules based on Newton’s second law of motion. The forces among 

particles during a simulation are described by pre-determined force field or potential, 

which could be either analytical or numerical. The next position and velocity then can be 

determined by solving the Newtonian equations. Analysis of calculated trajectories may 

be used for property prediction, such as thermal conductivity. It is believed the time-

average of simulated system can represent the statistical ensemble averages of 

thermodynamic properties.  

It is well known that the general form of Newtonian equation of motion for N-

body system can be written as following, 

 ∑    
 
   
   

   
    

   
               (2.1) 

where Fij is the collective force from all other j atoms on atom i, mi is the mass, ri is the 

position vector, and t is the time in the system. One widely used method for integration 

of the above Newtonian equation to yield coordinates of particles is the leapfrog method, 

also named Verlet integrator. The coordinate variable ri can be expressed via Taylor 

expansion, shown below 
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  (    )   ( )    
  

  
 
   

 

   

   
  (   ) (2.2) 

in which   
  

 is the velocity and  
  

   
 is the acceleration. The acceleration term can be pre-

determined since forces upon atom i is pre-determined by its coordinates from potentials. 

The summation with  (    ) can result in equation with error of order  (   ) 

  (    )    ( )   (    )     
   

   
  (   ) (2.3) 

The velocity can be calculated using similar approach by subtraction of  (    ) with 

 (    ) . The leapfrog/Verlet method requires only minimum storage and thus is 

suitable for extremely large-scale studies; because of its time-reversible nature, it 

provides better energy-conservation in LJ-type potentials even at large   . 

The interatomic potential is one of the most critical parts in MD simulation. It 

describes how atoms interact with each other, in other words, what is the total force 

exerted on an atom by ensembles of other atoms. The accuracy of the results obtained 

from the MD simulation directly relies on how well the potential describes the 

interatomic interactions. Since potentials are fitted to either experimental data or ab 

initio calculations or both, the potential precision is determined by how accurate the 

experimental data is. The simplest potential type is the one that only consider 

interactions between pairs of atom. For example, Lennard-Jones potential [20] is often 

used in molecular dynamics to describe long range interaction between graphite layers. It 

also has been applied to describe interactions between noble gas. A 12-6 type Lennard-

Jones potential is defined as  

     [(
 

 
)
  

 (
 

 
)
 

] (2.4) 
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where ε is the depth of the potential wall, σ is the finite distance at which the potential 

energy between two particles is zero and r is the particle spatial distance. The positive 

term describes the repulsive forces that are induced by the Pauli repulsion at short ranges 

due to overlapping electron orbital; while the latter term represent the attraction between 

nuclei and electrons. Interactions described by pair potential are not affected by 

neighboring particles and the bonding energy of the center atom is therefore increased 

with the number of bonds. A disadvantage of LJ potential is that when atoms are close to 

each other, the sharp repulsive potential may create instability and unrealistic 

movements. LJ potential is also not good at describing directional interactions, such as 

covalent bonds and ionic bonds.  

Bond order potential has been developed for describing sophisticated condensed 

matter system. This type of potential has the advantages over conventional pair 

potentials such that the interaction not only depends on interatomic distance but also the 

center atom’s local surroundings. Another advantage for bond order potential is that with 

even one set of parameters, it is able to simulate several different binding states of an 

atom and allow bond breaking and forming. For example, in graphite, the sp2 bond and 

sp3 bond transformation during simulation is allowed. Tersoff [21] and Reactive 

Empirical Bond Order (REBO) [22] are two most widely used many body potentials in 

carbon systems. In Tersoff potential, the total energy of the system E is defined as 

   
 

 
∑ ∑         (2.5) 

where Vij is the bonding energy between atoms defined as 

       (   )[  (   )       (   )] (2.6) 
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in which the fC is the function to smooth the cutoff, fR and fA are repulsive and attractive 

terms using Mores type potential, respectively. These functions are written as below 

   (   )  {

                   
 

 
 
 

 
   (

 

 

   

 
)            

                    

 (2.7) 

   (   )      (      ) (2.8) 

   (   )       (      ) (2.9) 

R+D is the cutoff distance, above which the atoms will have no interactions at all; while 

below R-D has all interactions considered. The pre-factor bij is the bond order term 

which depends on the center atom’s surroundings, described as follows 

     (   
    

 )
 
 

   (2.10) 

     ∑        (   ) (    )    [  
 (       )

 
] (2.11) 

  ( )      (  
  

  
 

  

[   (          ) ]
) (2.12) 

θijk is the bond angle between ij and ik. The REBO potential was developed from the 

Tersoff potential and further improvement has been done to include van der Waals 

interaction for Adaptive Intermolecular REBO (AIREBO), in the form below 

                   (2.13) 

the LJ term defines the long range van der Waals interaction and the torsion term 

describes dihedral angle of four atoms.  
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2.2 Models of Carbon Nanotubes 

Atomic coordinates in carbon nanotubes used in this study are generated in 

Materials Studio. Materials Studio is a powerful software that was designed to allow 

researchers to model and simulate complex material systems. It also provides 

functionalities in building various structures, such as surfaces, amorphous structures, and 

carbon nanotubes. Carbon nanotubes are constructed according to desired chirality, n 

and m. The chiral vectors is 

           (2.14) 

where a1 and a2 are the basis vector of hexagonal graphene sheet. The integer n and m 

are used to define how the carbon nanotubes are rolled from graphene sheet, as shown in 

figure 1.  

 

Figure 1. Chiral vectors on graphene sheet. 

 

Three types of carbon nanotube, armchair (n, n), zigzag (n, 0) and chiral (n, m) 

were characterized based on chiral vectors. The electrical property is strongly affected 
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by nanotube structure: armchair is metallic, zigzag and chiral are small band gap 

semiconducting if n-m is a multiplier of 3, and otherwise are moderate semiconducting 

[23]. The desired length of carbon nanotubes can be obtained via replicating in axial 

direction, e.g. 20 unit cells of (10, 10) SWNT is of ~50 Å. To rule out chirality effects on 

the displacement energy investigation and thermal property study, all CNTs in this thesis 

are armchair. Table 1 shows corresponding diameter and atoms in unit cells. Materials 

Studio generates carbon nanotubes coordinates in a different format of file than the 

simulation software we used and therefore conversions have been done using excel. 

Figure 2 a) shows a 5 nm (10, 10) SWNT generated and rendered in Materials Studio. 

Multi-walled carbon nanotubes consist of three SWNTs are developed with inter-wall 

spacing of 3.4 Å, as shown in figure 2 b). 

 

Tube Chirality Diameter (Å) Atoms in unit cell 

(3, 3) 4.07 12 

(5, 5) 6.78 20 

(8, 8) 10.85 32 

(10, 10) 13.56 40 

(15, 15) 20.34 60 

(20, 20) 27.12 80 

(25, 25) 33.9 100 

Table1. Chirality of SWNTs in this study and corresponding diameters 
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a)  

b)  

Figure 2. Snapshots of SWNT and MWNT.  

a) single-walled carbon nanotubes; b) multi-walled carbon nanotubes. 

 

2.3 Non-Equilibrium Molecular Dynamics 

Thermal conductivity is the physical property that describes the heat conduction 

ability of materials. In molecular dynamics simulations to estimate thermal properties, 

there are two methods one can be used: equilibrium molecular dynamics using Green-

Kubo formula and non-equilibrium state molecular dynamics using applied temperature 
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gradient. In the first method, the heat flux of a system can be obtained from fluctuations 

of per-atom potential and kinetic energies at steady-state simulation and then relate 

ensemble average of auto-correlation of the heat flux to thermal conductivity [24]. Two 

approaches can be taken for the NEMD method. One is to establish a temperature 

gradient [25] by fixing two opposite ends region temperature and the energy added to the 

hot zone or subtracted from cold zone is the heat flux; the other is to establish a constant 

heat flux, which is also named reversed non-equilibrium molecular dynamic or Muller-

Plathe method [26], and recording corresponding temperature profile by swapping 

kinetic energy of atoms in opposite ends. Figure 3 a) and b) shows a typical simulation 

schematics and temperature profile of a SWNT. The temperature profile is almost linear 

along the axial direction, which agrees with literatures results. 
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a)     

b)  

Figure 3. Typical schematics and temperature gradient of a single SWNT. 

a) NEMD simulation setup; b) temperature profile in a typical SWNT of (10,10). 

 

The thermal conductivities, both theoretically calculated or experimentally 

measured, of carbon nanotubes are of large deviation from each other in different 

literatures, as shown in table 2. The κ of carbon nanotubes can be affected by a lot of 

factors, such as diameter, chirality, tube length, interatomic potential, and simulation 

method, etc. The temperature dependences of thermal conductivities are also not 
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concluded. Berber et al. found a peak of κ at around 100 K [24]; while Osman claimed 

findings that the maximum happened around 300-400 K [27]. The potentials used for 

thermal conductivity calculation can affect lots of those dependences and were thought 

partially responsible for the variations [28]. The experimental result discrepancies could 

be originated from various sample forms and measurement methods. 

 

 κ  
(Wm-1K-1) 

Tube  
length  
(nm) 

Cross-sectional 
area  
(nm2) 

chirality Method 

Berber et al [24] 6600 2.5 2.9 (10, 10) HNEMD 

Osman et al [27] 1700 30 1.46 (10, 10) NEMD 

Che et al [29] 2980 40 0.43 (10, 10) EMD 

Maruyama [30] 260-400 10-400 1.46 (10, 10) NEMD 

Kim et al [31] 3000 2500 14  Experiment 

Choi et al [32] 300 1400 20  Experiment 

Table 2. Thermal conductivity from previous works. 

 

2.4 Fundamental of Ion-Solid Interactions 

It is crucial to understand the fundamentals of ion-solid interactions during the 

irradiation process on solid materials. With the help of such knowledge, the collision 

cross-section, which describes the probability of collision between incident ions and 

target atoms, can be predicted. For example, it can be then used to calculate the ion 

range and the depth distribution of created defects in target materials. In terms of energy, 

the energy loss of incident ions interacting with materials through two mechanisms: 
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nuclear collision and electronic collision, as illustrated in figure 4. The total energy loss 

per unit length equals to the sum of loss in nuclear and electronic collision, shown in 

following equation 

   

  
 
  

  
|
 
 
  

  
|
 
 (2.15) 

where   
  
 is the energy loss per unit path length, n and e are represented for nuclear and 

electronic, respectively. 

 

 

Figure 4. Illustration of nuclear and electronic stopping. 

 

Nuclear stopping power is the average energy loss per unit path length caused by 

interactions between incident ions and nuclei of atoms. It dominates the collision process 

when incident ions are of low energy. As velocity of incident ions increase, the time for 

momentum transfer to target nuclei decreases. Therefore at higher energy, the nuclear 

stopping power can diminish. The collision between incident ions and the nucleus are 
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thought to be responsible for the cause of atom displacements in a wide range of solid 

materials. It can be predicted using a simple model of binary-collision through classical 

mechanic analysis. 

The energy loss caused by electronic excitations or ejections is similarly defined 

as the electronic stopping power. It is considered very influential to the total energy loss 

when incident ions possess large velocities. Electronic excitations can lead to covalent 

bond dissociation in organic molecules. However, in order to estimate the electronic 

collision effects, more complex simulations involving quantum mechanics level theory 

need to be performed. 

Figure 5 shows nuclear and electronic stopping power as a function of ion 

velocity and its atomic mass. The Bohr velocity, v0, is the electron velocity in first-level 

orbit. Nuclear stopping decrease quickly with increasing ion velocity and the percentage 

it contributed to overall stopping power become small compared to electronic stopping 

power. 

 

 

Figure 5. Nuclear and electronic stopping at different ion energy. 
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As described above, the impinging ions lose energy and slowdown in materials 

by energy and momentum transfer to lattice atoms. The first atom that is displaced from 

its lattice site by an incident particle is defined as the primary knock-on atom (PKA). 

The creation of PKA can result in displacement sequence of collision events known as 

displacement cascade. During the damage cascade, knock-out atoms can be displaced to 

interstitial positions and leave vacancies behind, which are named Frenkel pairs, and 

cause lattice disorder in materials. A typical image of damage cascade is shown in figure 

6. The deposited energy can also cause thermal spikes, which result in local heating, 

along with damage cascades. The thermal energy within the damage cascade dissipates 

quickly to surrounding atoms and then they quench to an equilibrium state. Defect 

migrations are often considered to happen in longer time intervals after quenching, such 

as 10-9s. A timeline of those four stages is shown in figure 7. 

 

 

Figure 6. Damage cascade in solid materials. 
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Figure 7. Time-scale of damage creation. 

 

Traditionally, the amount of defects for high-energy irradiation can be 

qualitatively estimated by Kinchin-Pease model [33], also named NRT equation, as 

described in following 

        
   

       
 (2.16) 

for any nuclear deposited energy above 2Td,ave/0.8, where NFP is the number of Frenkel 

pairs, FDn is the nuclear deposited energy, and Td,ave is the averaged minimum energy 

from all non-equivalent crystallographic directions. However, there are some 

disadvantages that prevent it from accurately predicting damages in materials, e.g. it 

does not include the thermally activated defect recombination.  
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3. IRRADIATION STABILITY OF CARBON NANOTUBES 

 

3.1 Background 

Radiation damages in carbon-based materials are mainly caused by atom 

displacements. These can be induced by knock-on collisions of energetic particles with 

nuclei of the atoms if transferred energy between incident particles and target atoms is 

higher than threshold energy (Td). It is defined as the minimum energy to displace the 

atom to form an interstitial-vacancy (Frenkel) pair which will not recombine 

spontaneously. In close packed crystal, such as metals, the Frenkel pair is usually formed 

by a replacement sequence of collisions in densely packed directions. The created 

interstitial and vacancy pairs are of large separation so that immediate recombination 

become impossible. However, a different defect creation process exists in nanostructured 

carbon. The primary knock-on atom (PKA) can be displaced far away into free space 

and leave a vacancy behind even if the transferred energy is slightly higher than Td. The 

existence of conventionally defined interstitial has not been observed and is thought to 

be unlikely due to sp2 bonding nature. Instead, the adatom, which is the atom adsorbed 

to carbon nanotube surface, is commonly treated as the interstitial type defect. More 

complex defects have been reported, such as the Stone-Wales (SW) defect. The SW 

defects may be generated by irradiation induced rotating of a carbon-carbon bond 90° in 

the graphitic plane [34].Similar to the inter-layer defects in graphite, inter-shell defects 

that link neighboring walls can be formed in MWNTs and SWNTs bundles as well. If 
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the particle transferred enough energy to the PKA, secondary collisions can happen. 

Irradiation effects in nanostructured carbon cannot be fully understood without 

knowledge of how those defects are created. 

Computer simulations have proved to be effective tools to study ion irradiation 

effects on various materials. For example, the stopping and range of ion in matter (SRIM) 

package [35] is often used for prediction of ion range, stopping power and defect 

numbers in metals and semiconductors. The code is based on the binary collision 

approximation-based method and statistical algorithm to determine how the incident ion 

interacts with target solid. However, it lacks the capability to predict defect distribution 

in highly anisotropic materials, such as carbon nanotubes, since the target system is 

constructed based on homogeneous amorphous model. MD simulations have been 

successfully used to simulate irradiation process in nanostructured carbon. The 

simulation results enabled a better understanding of defect creation mechanisms and 

atomic scale defect structure evolution. These studies showed that single vacancy and 

multi-vacancies could be created while recoil PKAs were sputtered away from the tube 

[36-38]. The recoil atoms could later be absorbed to carbon nanotube surface. 

Amorphous structures can be induced if irradiated heavily [39]. Although direct 

simulation of electron-nuclei interaction is not feasible in MD, defect formation under 

electron irradiation can be modeled [40] by adding kinetic energy to target atoms 

through a Monte Carlo (MC) approach. The electron-nuclei interactions were described 

via elastic-scattering cross section during MC iterations. To properly simulate a long 

time electron irradiation, atoms were randomly selected from the region of interests and 
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then to be assigned velocity vectors before iteration of MD simulation started. The 

drawback of such approach is that it is computationally expensive for estimating electron 

irradiation with realistic current since MD iterations between successive collision events 

have to be prolonged. 

Irradiation induced defects are not of the same abundance in nanostructured 

carbon. It can be affected by energy and species of the incident particles as well as 

environmental temperatures. Under argon ion irradiation with ~0.05-2 keV, the 

probability of forming single vacancies was higher than that of di-vacancies and adatoms 

[41]. In bulk materials, the amount of defects increases with increasing incident energy, 

pushing damage peak deeper below the surface. While in an individual carbon nanotube, 

number of defects decrease when bombarded with higher energy ions, since time 

intervals for momentum transfer to atoms in one tube decreases too. Computer 

simulation found that the heavier the incident particles, the more defects it would create 

[42]. It can be explained by the concept of a scattering cross-section, a hypothetical area 

that describes the likelihood of being scattered by a particle, is decreasing with 

increasing kinetic energy at high energy regime and increasing with increasing atomic 

mass. High temperature irradiation showed that relatively abundance in vacancies could 

be accomplished [43]. It is believed point defects become mobile at high temperature 

and could recombine simultaneously when irradiated. Two mechanisms for defect 

reconstruction have been proposed: either through interstitial-vacancy recombination or 

vacancies invoked saturation of dangling bonds. If substrates had been considered, the 
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numbers of created defects was reported to be larger than free-standing ones due to 

secondary collision from surface sputtering from substrates [38]. 

Experimental studies on defects creations have been done by both ion irradiation 

and in-situ electron irradiation. The single point defects in MWNTs, which were 

irradiated with 30 keV ions with a dose of 1011 ions/cm2, were observed and confirmed 

by STM [44]. Initial studied using high dose ion irradiation on carbon nanotubes resulted 

in completely destructed structures, while later studies showed potentials in making 

cross-linking carbon nanotubes [37]. Gradual amorphization of MWNTs was found to be 

related with ion species and energy. TEM can not only be used for controlled creation of 

defects, but also monitor in-situ defect evolution. TEM investigations on various 

SWNTs suggested a diameter dependence of stability should be considered [15]. Using 

80 keV electrons beam, only SWNTs with smaller diameter than 1 nm were destroyed 

while others with larger than 1.3 nm diameter were left intact. A focused electron beam 

was able to deform SWNT shrinking the diameter from 1.4 nm to 0.4 nm by removal of 

carbon atoms [45]. Similar experiments in MWNTs resulted in collapsing of innermost 

walls while outer shell structures were maintained. This phenomenon was considered as 

evidence of anisotropic irradiation effects in carbon nanotubes.  

Theoretical studies using both tight-binding MD and classical MD verified the 

anisotropic effects in that it was easier for the atom to be displaced in direction 

perpendicular to surface and harder to be knocked out in tangential directions within the 

surface. The minimum energy to displace the atom was found to have diameter 

dependence and chirality dependence as well. Based on a graphene sheet, the detailed 
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displacement energy was plotted for all possible displacement angles using tight-binding 

MD [46]. Their findings suggested a threshold value of around 113 keV electron beam 

was needed for damage production. 

Due to the complexity in MWNTs, less attention has been paid to them than 

SWNTs. A systematic, theoretical investigation on stability in terms of displacement 

energy of both SWNTs and MWNTs was performed in this thesis. In particularly, the 

anisotropic responses, as a function of displacement angles and tube diameter, to ion or 

electron irradiation were studied. Simulation results were compared with previous works. 

 

3.2 Methodology 

MD simulations were performed using LAMMPS (Large-scale 

Atomic/Molecular Massively Parallel Simulator), an open-source computer program 

developed by Sandia National Laboratory, to model defect production process. In order 

to correlate damage build up to electron irradiated carbon nanotubes, an alternative 

method was used since electron interactions were not included in MD method. The 

initial velocity vectors of atoms were assigned to cover all directions 3-dimensionally in 

order to generate detailed anisotropic displacement data. For each orientation vector, 

kinetic energy started at 13 eV and increased by 1 eV until the atom was displaced far 

enough and did not recombine with the vacancy immediately. However, it remained 

unclear how to properly define such a criteria distance in limited simulation steps. 

Previous works used a value of 5 A during 40 fs simulation as condition to decide a 

displacement event [46] In this thesis the criteria for displacement was defined as 2 Å. 
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Whenever target atom moved 2 Å or farther from its original position by the end of 

simulation time, a displacement event was recorded and simulations proceeded to other 

directions. The reason for the criteria was that 2 Å was approximately the distance from 

atom’s original position to its nearest adatom site. Further, immediate adatom-vacancy 

recombination was not likely to happen in such configuration at room temperature. 

Orientation vectors were generated in Matlab using a spherical coordination generation 

function. Coordinates of vectors endpoints were extracted from the matrix of the 

spherical surface. 

For all simulations in this section, Adaptive Intermoleular Reactive Empirical 

Bond Order (AIREBO) potential [22] was employed in displacement energy calculations. 

The potential consisted of three parts: the original Reactive Empirical Bond Order 

potential (REBO), the Lennard-Jones (LJ) potential for long range interactions, and a 

torsion term. REBO potential, developed from the Tersoff potential, was mainly 

designed to simulation short range (< 2 Å) interactions in hydrocarbon system. To 

properly model properties of MWNTs, the van der Waals (vdW) interaction between 

shells should not be neglected. This was one motivation for using AIREBO potential. 

The LJ potential cutoff was set to 6.8 Å, which meant atoms within twice of the vdW 

radius were considered interacting through vdW forces. If this value was too large, 

calculating forces from all neighbors within the cutoff would make simulation more time 

consuming; if cutoff was too small, accuracy would be sacrificed. The lower bound for 

LJ interaction was limited to 2 Å to avoid a repulsive term in force evaluation. Moreover, 

AIREBO potentials had been successfully used for energetic particles collision in carbon 
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system from previously published papers [47]. Unlike first generation empirical 

potentials, such as Morse potential, where atoms were forced to be bonded according to 

initial geometric files, the REBO potential allow bond breaking and reconstructing 

during simulation according to local neighboring configurations. This feature makes 

them suitable for modeling irradiation damage cascades and defect formation since 

atoms interacting with incident energetic particles can be displaced far more away from 

equilibrium positions.  

Irradiation is usually treated as an isolated thermodynamic process so that a 

microcanonical ensemble (also named NVE ensemble, N for number of particles, V for 

volume and E for energy), where the system remains at a constant energy, was applied. 

A timestep of 0.2 fs was set for first 1000 steps and a timestep of 1 fs was used for 

another 1000 steps to relax the irradiated structures. Before irradiation simulation, 

structure was fully relaxed at 300 K. Two ends of the nanotube were fixed to their initial 

positions to avoid translational movements and preventing rotation from bombardment. 

 

3.3 Result and Discussion 

The displacement angles were originally generated in terms of equally spaced 

polar angle θ and azimuthal angle ψ in a spherical coordinates, as illustrate in figure 8 a), 

from Matlab. Hundreds of points were sampled in order to successfully reproduce 3-

dimensional meshes. It is worth noting that v in this study was the same as the 

transferred momentum, which was not necessarily the same as incident beam direction. 

Figure 8 b) shows a typical image for displacement threshold energy of a (10, 10) 
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SWNT mapped in 3-dimensional space. The center of spherical graph was placed to be 

superposed on carbon atom lattice site for demonstration and neighboring atoms were 

arranged correspondingly. The color on the sphere represents the magnitude of 

calculated Td at that direction: red colored areas indicate that displacing carbon atoms 

toward nearest neighbor in graphitic plane required more kinetic energy to be transferred. 

On the other hand, blue colored areas, mostly on the upper and lower spherical caps, 

imply lower Td at out-of-plane directions (e.g. θ < 45°) since there were few constrains 

compared to in-plane displacement. 

 

a) b)  

Figure 8. Schematics of defining displacement directions. 

a) definition of directions Td; b) a typical Td distribution with regard to nearby lattice. 

 

Figure 9 a) shows that Td increased with growing θ until ~90° and then dropped. 

The minimum displacement energy was found to be ~20 eV in (10, 10) tube, which was 

close to previously reported values between ~20-23 eV using more accurate ab initio 
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methods [43]. The minimum value was limited to appear only in few directions 

according to knock-on event counts as a function of threshold energy in figure 9 b). The 

Td for majority of displacement angles were distributed in the range of ~22-36 eV with a 

peak at ~27 eV. The relatively abundance of lower Td agreed with the fact that out-of-

plane displacements were predominant when irradiated with electrons. The angular 

dependence of Td in SWNTs has been used to explain anisotropic collapse of MWNTs 

under electron irradiation [15]. It is believed that displaced atoms at directions close to 

parallel of the graphitic plane are more difficult than perpendicular ones. The MD 

simulation results can be used to support such assumption as well. 

a)  
Figure 9. Angular dependence of Td and displacement frequency of (10,10) tube. 

a) Td as a function of polar angles; b) displacement events counted for each Td. 
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b)  
Figure 9. continued 

 

Unlike sp2 bonds in graphite, carbon-carbon bonds are constantly forced to bend 

due to the curvature in CNTs. The diameter dependence of minimum displacement 

threshold energy, which has not been averaged, is plotted in figure 10. The similar trend 

has been reported using tight-binding MD despite lower Td, ~16 eV, for small diameter 

tubes was predicted [43]. A Td around 18 eV was observed in the smallest diameter (3, 3) 

tube. The overestimation of Td can be attributed to inaccuracy in potentials [48]. With 

increasing diameter of the tube, the curvature decreased and local bond geometry was 

similar to that of graphene. However, it could not grow without bound. The Td of a 

single layer of graphite was expected to be the limit since local bonding geometry would 

be very similar in large SWNTs. Although fluctuations existed, which may be a result 
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from temperature effects during irradiation modeling [49], the trend was not susceptible 

to change.  

 

 
Figure 10. Minimum displacement energy as a function of diameters. 

 

The 3-dimensional displacement energy mappings, together with averaged Td as 

a function of θ, for different diameter SWNTs are shown in figure 11 a) and b). The Td 

mappings are presented as two hemispheres that correspond to directions inward 

(towards center of axis of SWNT) and outward (away from center of axis). In small 

carbon nanotubes, the inward displacement (θ > 90°) was less energetically favorable for 

(3, 3) SWNT. In large diameter CNTs, the preference angles for displacement were not 

as obvious. The asymmetrical distributions of Td as function of θ in smaller tubes could 

be a result from curvature effect of neighboring atoms, where the bent carbon-carbon 
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bonds exert forces preventing inward moving as well. Td distribution becomes almost 

symmetrical for θ > 90° and θ < 90° in larger ones since the curvature induced strain was 

reduced. The knock-on event counts versus Td at various diameters are shown in figure 

11 c). The broad peak in (3, 3) implies a wide range of Td existed. The shape of curves 

does not change a lot at different diameters. Almost all tested tubes expressed a peak 

value of ~27-29 eV and a peak width several electron-volts. The cutoff of energy was set 

to 80 eV in this figure. Correlating the displacement energy to knock-out probability is 

non-trivial. A detailed discussion for conversion of angular-dependent Td to total 

electron knock-on cross section in carbon nanotube using Td of carbon atom in graphene 

has reported by Zobelli, et al [46]. The anisotropic cross section data predicted that 

electrons with energy between 120-150 keV could only knock-out atoms on the tube 

base since atoms on carbon nanotube sides required higher kinetic energy to be 

transferred than the maximum amount available. 
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a)  

Figure 11. Comparison of Td among different diameter SWNTs. 

a) spherical distributed Td; b) polar angle dependence of Td for different diameters of 

SWNTs; c) displacement events counted for Td in corresponding SWNTs. 
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b) c)  
Figure 11. Continued. 
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Although SWNTs have been extensively studied, the stability of MWNTs under 

irradiation has not been systematically studied in the past due to the more complicated 

geometry. MWNTs are commonly considered as rolled graphite layers or concentric 

arranged SWNTs. All tubes in MWNTs were selected to be armchair to exclude chirality 

effects. For example, MWNT1 consists of (3, 3), (8, 8), (13, 13) SWNTs. Inter-wall 

distance was ~3.39 Å, which was close to commonly accepted vdW radius of 3.4 Å, in 

these configurations. The indexes for component walls in four triple-walled CNTs are 

listed in table 3. Two hemispheres corresponding to inward and outward displacement 

energy of (15, 15) tube in MWNT3 were plotted in figure 12 a). The observed 

distribution is similar to Td in SWNTs. However, in some out-of-plane directions, higher 

Td was observed. Figure 12 b) shows the knock-on events as a function of Td of the same 

tube. A broader peak than single-walled (15, 15), which is shown in figure 12 c), 

suggests that constrains from other walls could raise displacement threshold energy for 

some directions. Figure 12 d) shows a rise of Td in both inward and outward directions 

compared to its SWNT with same tube diameter. 

 

 Innermost Middle Outermost 

MWNT1 (3, 3) (8, 8) (13,13) 

MWNT2 (5, 5) (10, 10) (15, 15) 

MWNT3 (10, 10) (15, 15) (20, 20) 

MWNT4 (20, 20) (25, 25) (30, 30) 

Table 3. SWNTs components for each multi-walled carbon nanotubes. 
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a)  

b)  

Figure 12. Comparison of Td between MWNT3 and SWNT with same diameter. 

a) distribution of Td on MWNT3 middle wall; b) and c) counted displacement events for 

Td in MWNT3 and in SWNT; d) angular dependence of Td in MWNT3 middle wall. 
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c)  

d)  

Figure 12. Continued 
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Unlike middle tubes in MWNTs which are often confined by neighboring walls, 

the innermost tubes are free to move inward towards center of axis. The difference for 

outward (away from center of axis) and inward displacement can be easily distinguished 

in 3-dimentional displacement energy mapping of MWNT3. Figure 13 a) and b) shows 

that it is generally easier to displace atoms into the void at the center of MWNTs. To 

quantitatively analyze Td mappings, averaged data within spherical caps of θ<30° or 

θ>150° are used to exclude the noises from in-plane displacements. The diameter 

dependence of averaged outward and inward Td were plotted in figure 13 c) and d) for 

innermost walls and middle walls respectively. For the case of innermost tube, the 

displacement energy is about 10 eV higher in outward direction than inward. For middle 

tubes, the preference of inward displacing is only marginal in tube MWNT2-4. 

Therefore, the inward emission of atoms may be more likely to happen at lower ion 

energy compared to the middle layer ones. The abnormal trend in MWNT1 can be 

attributed to the small diameter of a (3, 3) tube as discussed previously. Of only 4.07 Å, 

the distance of two farthest atoms is comparable to inter-wall distance and the atoms one 

the tube side could be even closer. Such constraints inside the tube can give rise to 

inward Td values. A small diameter innermost tube also means that the atoms in middle 

tube have lower probabilities to collide with it and thus can be seen as having fewer 

confinements. For single-walled counterparts, such preferences in inward displacements 

were not observed, according to figure 13 e). It also confirmed that the abnormality in 

MWNT1 was originated from the geometry of (3, 3) tube since the Td difference was 

obvious for inward and outward directions. ~4-8 eV increments of overall averaged Td in 
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MWNTs than in SWNTs were observed. The higher Td can be applied to explain better 

radiation tolerance observed experimentally in MWNTs than SWNTs [48]. 

 

a)  

b)  

Figure 13. Comparison of Td in inward and outward direction in CNTs. 

a) distribution of Td on MWNT3 innermost wall; b) angular dependence of Td; c)-e) 

inward and outward Td in innermost walls, in middle walls and in SWNTs. 
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c)  

d)  
Figure 13. Continued. 
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e)  
Figure 13. Continued 

 

In summary, out findings of highly anisotropic of displacement energy in 

innermost tubes in MWNTs provided alternative explanation to the reported observation 

of inside collapse in MWNTs under irradiation. The preference in displacing inward may 

be the reason that innermost tube lost atoms faster than middles tubes. Previous 

assumptions suggested that the inside collapse was the result from threshold 

displacement energy variation in different tubes. However, the Td of SWNTs as a 

function of diameter suggests in this study show that for large tubes, the Td is limited by 

the value of graphite. The diameter of experimentally used MWNTs is usually in the 

range from ~1-5 nm, which already exceeds the rapid growth region of Td. Therefore, 

the deviations of observed Td should not be originated from diameter dependence. Other 
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theoretical investigations also showed that Td increase rates at large diameter tubes were 

slowing down [19].  
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4. THERMAL PROPERTIES AND STRUCTURAL CHANGES 

 4.1 Background 

The rapid downsizing of microscale and nanoscale systems, such as electronic 

chips, requires advanced heat dissipation techniques due to larger power density 

generation in these systems. Carbon nanotubes (CNTs), of which thermal conductivity (κ) 

can be as high as ~3000-3500 Wm-1K-1 at room temperature, are considered good 

candidates for thermal management [8, 50], and received attention from both academia 

and industry. Studies of the thermal properties of CNTs, single or bundled wires, are 

critical for applications. Although extraordinary in terms of individual CNT performance, 

CNT ensembles are measured to be 1-3 orders of magnitude lower[51,52] of thermal 

conductivity than that of its own individual components. Most previous investigations 

focused on one single carbon nanotube due to simpler geometry. Theoretical 

investigations predict anisotropic thermal conductance in close-packed aligned carbon 

nanotube bundles: 0.5 Wm-1K-1 in radial directions to carbon nanotube and ~950-1000 

Wm-1K-1 along axis[53]. Experimental characterizations have shown a very low value of 

in-plane thermal conductivity of ~0.1-0.2 Wm-1K-1 for randomly oriented multi-walled 

carbon nanotubes[54] (MWNTs) networks with length of 60-100 nm. By using a 

bolometric technique, ultrathin films made of 10-100 nm SWNTs[55] have been 

reported exhibiting a κ value of ~30-80 Wm-1K-1. It is believed that such drastically 
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decreasing thermal conductivities in macroscopic CNTs samples was a result of high 

contact resistance at tube-tube interfaces[56,57].  

Ion irradiation has been proved to be promising as an effective tool for structure 

modification and property manipulation of low-dimensional carbon systems[45,,48]. 

Using a focused beam of 30 keV Ga+, precise thinning, cutting, and welding of MWNTs 

at nanoscale have been reported[58]. Electrical conductivity of a free-standing SWNTs 

matrix has been improved several times higher with Ar+ irradiations[59]. With the 

assistance of 80 keV Ar+ ion bombardment at high temperature, a 30-fold increase in 

bending modulus of SWNTs bundles has been achieved[60]. Molecular dynamics 

simulation suggests that in MWNTs, inter-wall defects are responsible for a better wall-

wall shear coupling so that growing load transfer was gained[61]. These cross-planar 

defects at tube-tube interface region can be potentially used to enhance inter-tube 

coupling for promoting phonon transport through tube-tube junction.   

However, large amount of other defects, which are phonon scattering centers, on 

CNTs graphitic planes are coupled with beneficial cross-linking defects. Annealing of 

CNTs at elevated temperature has been extensively used for structural relaxation and 

defect removal[62]. Previous Raman spectroscopy study of defective carbon nanotube 

networks shows defect removal requires an overall activation energy of 0.36 eV[63]. 

First principle investigations indicate that experimentally measured energy could be a 

combined effect from highly mobile interstitials on CNT surface and more stable defects 

trapped between tubes[64],[65]. For example, two nearby vacancies in different graphitic 

planes may form a metastable cross-plane divacancy-type defect to covalently link two 
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sheets, of which migration energy can be as high as 3.6 eV. Further, interstitials trapped 

in such cross-planar defects need to overcome a ~1.4 eV barrier before recombining with 

vacancies. Healing excessive defects on tube walls while preserving the irradiation-

enhanced interfacial coupling through annealing is thus feasible. 

 

4.2 Methodology 

Molecular dynamics simulations in this work were performed using large-scale 

atomic/molecular massively parallel simulation (LAMMPS), a software distributed by 

Sandia National Lab[66]. With an emphasis on tube-tube interface thermal conduction 

effects, a simplified model was made for representing carbon nanotube matrix. Two 25 

nm long (10,10) single walled carbon nanotubes were placed parallel with an overlap 

length of 10 nm, as illustrated in inset of figure 14 a). The smallest distance between 

them was set to a van der Waals distance of 3.4 A. Before any data production, structure 

relaxations had been performed under desired temperature. In reality, thermal 

conductivity consists of two parts, the electron contribution and the phonon contribution. 

Due to sp2 bonding in carbon nanotubes, phonon contribution from lattice vibration is 

considered dominant and electron part is negligible. Non-equilibrium molecular 

dynamics (NEMD) was employed for thermal conductivity calculation. A temperature 

gradient was imposed by assigning Nose-Hoover thermostat controlled heat source/sink 

to each end of the model. To prevent whole system from rotational vibrations, two layers 

of atoms at each end were fixed and not allowed to move. Atoms between heat 

reservoirs were under the control of microcanonical ensemble for position and velocity 
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updating. Ion bombardment process was simulated in isothermal condition (NVE 

ensemble) with a timestep of 0.01 femtoseconds (fs) for defect creation. After that, 

CNTs were relaxed at room temperature and then annealed at 1000 K with AIREBO 

potential for ~1000 picoseconds (ps). Empirical bond-order potentials, Tersoff and 

REBO[22],[21] , were employed for describing many-body type interactions among 

carbon atoms for covalent bonding. But both of them were limited to a short interaction 

distance of ~2 A. For description of long range van der Waals (vdW) interactions among 

CNTs, 12-6 Lennard-Jones (LJ) potential was implemented with parameters ε=2.96 meV 

and σ=3.407 A for representing tube-tube vdW potential[67]. A modified version of 

Tersoff that implemented with Zeigler-Biersack-Littmark (ZBL) potential at short range 

for accuracy in describing nuclei-nuclei scattering was employed in ion bombardment 

simulation [68]. For thermal property modeling, a recently adjusted Tersoff [28] was 

employed. A timestep of 0.2 femtoseconds was used unless stated otherwise. 

Experimentally, buckypaper, used as received from NanoLab, Inc, USA, was 

irradiated by 3 MeV hydrogen ion beam to a fluence of 2×1015/cm2. Projected ranges of 

3 MeV H ions, calculated by binary collision approximation Monte Carlo simulation 

code SRIM[68], was 335 μm in amorphous carbon with density of 0.5 g/cm3. Although 

atomic structure was not considered in SRIM, previous studies suggest that it is suitable 

to predict ion range in nanostructured carbon [69]. H ions were able to pass through 100 

μm thick buckypaper without introducing chemical effects. Previous study confirmed 

CNTs in buckypaper remained tubular structure with clearly visible lattice planes under 

transmission electron microscopy (TEM) even at higher doses[70]. Therefore, the 
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assumption that point defects and defect clusters sparsely distributed on CNTs in MD 

simulation stands. Annealing of all specimens was performed at 1173 K for 15 minutes 

in a vacuum furnace. Thermal diffusivities of all samples at various temperatures from 

300 K to 450 K were determined by using Netzsch LFA 447 NanoFlash through a laser 

flash technique.  

 

4.3 Result and Discussion 

Fig 14 b) shows a typical temperature profile of individual tubes (red and blue) 

and the whole system (green). Temperature was calculated on groups of atoms every 5 

nm along axis using equation (4.1). The left most and right most points correspond to 

heat source/sink with 10 % higher or lower than environmental temperature. 

Temperature profiles in each single CNT are almost linear, while the jump between two 

steady-state temperatures among overlap region is due to strong tube-tube junction 

thermal resistance. Thermal conductivity is commonly defined as equation (4.2) through 

Fourier’s law, where q is heat flux (heat flow per unit time per unit area) and   ⃗⃗ T is the 

temperature gradient. Heat flow in NEMD simulation is the energy added or subtracted 

to heat reservoirs and thus is easy to track. Figure 14 c) presents “instantaneous” thermal 

conductivities during finite time intervals as functions of cumulated timesteps. Since 

CNTs were previously relaxed under a constant environment temperature, transition 

from equilibrium temperature to steady states with gradient temperature took time to 

achieve. Due to this reason, at the very beginning, κ is of large fluctuations. Observed 

convergence after simulation of 2×106 steps, which corresponds to 400 ps, suggests 
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validated data should be taken at least after that. Therefore, all data were collected in the 

range of 5×106 to 1×107 simulation steps. 

   
 

    
∑    

  (4.1) 

       ⃗⃗   (4.2) 

 

a)  

b)  

Figure 14. Typical simulation setup and temperature profile in networked SWNTs. 

a) schematics simulation setup; b) temperature profiles for individual CNTs in annealed 

CNTs networks; c) instantaneous thermal conductivity as a function of simulation time. 
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c)  

Figure 14. Continued. 

 

Computed thermal conductivities are shown in figure 15 a) for unirradiated, 

irradiated and annealed CNTs networks. At room temperature, κ was increased by a 

factor of ~4 from intrinsic ~5.85 Wm-1K-1 to ~23.99 Wm-1K-1 after ion irradiation. A 

value of ~51.49 Wm-1K-1 has be achieved through annealing of irradiated networked 

CNTs. Although our model only consists of two overlapped carbon nanotubes, it is 

reasonable to study carbon nanotube matrix as a simplified model due to dominant 

interfacial thermal resistance in most CNTs ensembles[56],[57]. Study on temperature 

dependence of thermal conductivity has only found almost unchanged in terms of 

absolute values in the range from 300 to 450 K. Small relative variations, ~3%, have 

been detected in damaged CNT networks (red and blue), while for unirradiated case 

(black), a 16% increment of κ occurred from ~5.85 Wm-1K-1 at 300 K to ~6.79 Wm-1K-1 
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at 450 K is noted. Unlike temperature dependence of κ in isolated CNTs[24], which is 

expected to decrease above 300 K, different trends suggest more complexities in CNTs 

matrix. Measurements from at 300 to 350 K on highly aligned MWNTs reported an 

increasing thermal conductivity value[51]. Such a different behavior might be attributed 

to competition of temperature dependence of high interfacial thermal resistance and that 

of individual nanotube. For better understanding the reason behind, thermal resistances 

at junction region and of single tubes have been studied separately. Thermal resistance 

(R), the inverse of thermal conductance, is well defined in the form of equation 3[71], 

where A is the interface area, ΔT is the temperature difference between two ends and q 

is the heat flow rate. The reason for choosing thermal resistance as the measurement for 

junction region is that temperature gradient around interface is ill-defined. The cross 

sectional area, A, can be viewed as a planar surface between hot reservoir and cold 

region because overall heat flux, is one dimensional from higher temperature source to 

lower temperature sink in our study. Hence, it is reasonable to use that in carbon 

nanotubes[72] as stated in equation 4, where r is the radius of CNT and Δr is ~0.17 nm--

the van der Waals radius. As shown in figure 15 b) and c), the ion bombardment induced 

cross-link defects reduce thermal resistances at junction regions by a factor of ~5, and 

post-irradiation thermal treatment further lower resistances ~2 times more compared to 

irradiated ones. Although single nanotubes suffered from the increased defect-phonon 

scattering due to ion irradiation induced defects, annealed proved to be effective to 

counter such effects through defects reconstruction. The thermal resistances of single 

nanotubes in anneal CNTs networks were cut back close to intact ones in unirradiated 
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CNTs matrix. Since thermal resistance is additive, competition effects of increasing R in 

single nanotubes and drops of resistance at tube-tube interface result in an overall 

enhanced heat dissipation in whole CNTs networks. Interfacial R of unirradiated CNTs 

diminishes from 3.80×10-9 m2KW-1 at 300 K to that of 3.26×10-9 m2KW-1 at 450 K, 

while R increased from ~6.9×10-11 to ~8.1×10-11 m2KW-1 in single CNTs. Moreover, the 

resistance data confirms that heat conduction in defect-free CNTs network is 

predominantly determined by thermal resistance at junction region which are 

approximately two orders of magnitude larger. Therefore in unirradiated CNTs networks 

such temperature dependence was observed. For damaged CNTs and annealed sample, 

thermal resistances of tubes and interfaces are at the same order of magnitudes and also 

appear to be fairly steady against temperatures. Thus an overall almost steady 

temperature dependence was observed.  

         (4.3) 

       ((    )  (    ) ) (4.4) 
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a)  

b)  
Figure 15. Temperature dependence of thermal conductivity in networked SWNTs. 

a) thermal conductivities of the whole system; b) thermal resistances of tube-tube 

junction regions; c) thermal resistances of single nanotubes in CNT networks. 
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c)  
Figure 15. Continued. 

 

Experimental data that supports our MD simulations are plotted in figure 16. The 

thermal diffusivity of buckypaper was improved from ~0.84×10-7 m2/s of unirradiated 

sample to ~2.2×10-7 m2/s of 3 MeV irradiated buckypaper at room temperature. 

Annealing of irradiated sample resulted in further gain to ~2.84×10-7 m2/s. The fact that 

annealed intrinsic buckypaper only had a slightly higher κ proves that enhancement is 

mainly originated from ion irradiation and also exclude the heating effects caused by ion 

beam energy deposition. Temperature dependence of thermal conductivities in all 

specimens shows slightly increase as a function of environment temperatures. The 

relationship of thermal diffusivity to thermal conductivity is described in equation 4.5, 

where κ is the thermal conductivity, ρ is the density of material and Cp is the specific 
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heat of the sample. The laser-flash technique cannot precisely determine specific heat of 

the sample so that accurate conversion to thermal conductivity is difficult. Nonetheless, 

we focused on the trend of increasing thermal conduction capability of irradiation and 

subsequently annealing. 

   
 

   
 (4.5) 

 

 

Figure 16. Experimental data for temperature dependence of thermal conductivity. 

 

Investigations on microstructural changes with atomic scale simulation provide 

insights into why enhancement of heat conducting capability via irradiation and 

annealing happen. Figure 17 a) illustrates that 18 carbon atoms, each with a kinetic 

energy of 300 eV, were spread almost evenly across areas of interests along axis 
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direction as initial configuration, while two ends of CNTs with a width of 5 nm, which 

will serve as heat reservoirs, were left intact. Figure 17 b) is a snapshot of defective 

CNTs after ion bombardment. Colored atoms correspond to coordination defects in 

CNTs, which is defined as the number of atoms with coordination other than three. Most 

defects distribute on top surface or plane that perpendicular to initial ion trajectories and 

several cross-link covalent bonds appear between two tubes at the junction region. As 

illustrated in figure 17 c), number of defects decrease after annealing. The reconstruction 

under high temperature reduces ion bombardment induced defect number from 217 to 64 

Further studies on this phenomenon will focus on cross-link defect restoration though 

annealing. 

 

(a)  

(b)  

(c)  

Figure 17. Defects distribution on SWNT bundle. 

a) structure before irradiation; b) after irradiation; c) after annealing. Red, green, and 

yellow represent defects with coordination number of 1, 2, and 4. 
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Extended MD simulation under 2000 K for 10 nanoseconds (ns) reveals defects 

that cross-link tube-tube are very stable within simulation time interval, while migrations 

of a dimer interstitial consists of two carbon atoms and vacancy are observed, as shown 

in figure 18. The initial structure in figure 18 a), with outmost layers of atoms on the 

right fixed, was created via the same procedure of ion bombardment as discussed 

previously. A cross-link defect, red colored, a dimer interstitial, in purple, and a vacancy, 

marked with green are selected to demonstrate defects evolution as a function of elapsed 

simulation time. At 84 ps, figure 18 b), the mono vacancy transformed to a 5-6 defect[73] 

and the dimer reconstructed itself from inward to outward. For the next ~5.2 ns, 5-6 

defect and dimers migrated around randomly. A snapshot of defects is shown in figure 

18 c), d) and e). Random walk of dimer on CNTs graphitic plane ended by trapping at 

the complex tube-tube defects at 5.268 ps of simulation. No dissociations or bond 

breakings of cross-link defects were observed during 10 ns simulation. Although not 

highlighted with other color, defects reconstruction near interface was carried on the 

same time.  The stability of inter-tube defects and defects reconstruction support our 

hypothesis that annealing can be used for promoting defects reconstruction while 

without significantly weakening tube-tube cross-linking defects. 
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a) initial structure       b) 84 ps                     c) 2614 ps 

 

d) 4288 ps                 e) 5200 ps                  f) 5268 ps 

Figure 18. Defects evolution under high temperature. 

a)-f) defects migration and reconstruction under high temperature. Mono-vacancy 

(green), inter-tube defect (red) and dimer interstitial (purple) are highlighted. The mono-

vacancy is able to transform into a 5-6 type defect (also green) at high temperature. 
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A systematic study on dose-dependence of thermal conductivity in individual 

SWNTs and SWNTs networks were conducted. Various amounts of incident atoms were 

applied to bombard the interested systems. The created defects numbers is plotted in 

figure 19 a). The damage build up are almost linear in single SWNTs and almost 

parabolic in networked SWNTs at the ion energy of ~300 eV. The corresponding 

thermal conductivities are shown in figure 19 b) and c). An exponentially decreased κ 

was observed in irradiated individual SWNTs due to irradiation induced defects. Defects 

are strong phonon scattering centers such that even a low concentration of defects can 

significantly lower κ. Sevik et al reported that the thermal conductivity in SWNTs 

showed an exponentially decay with increasing defects concentration [72]. However, an 

enhancement of κ from ~6 Wm-1K-1 in unirradiated model to ~35 Wm-1K-1 in 9 ions 

bombarded was observed for lower doses bombardment. Continued bombardments 

resulted in reducing κ compared to peak value. Two competing effects were involved in 

such a curve: the bombardment enhanced junction region thermal conductance and the 

damage in each single tube which reduced phonon mean-free-path. At smaller doses, the 

irradiation induced enhancements of κ overcome the drawbacks of lowered thermal 

conductivity in single tubes of the network and reached overall improvements. While in 

heavily damaged SWNT networks, the overall κ was determined by that of single tubes. 

As discussed in previously, the annealing of SWNTs networked can improve due to 

defect reconstruction at high temperature that reduce the number of defects, as shown in 

figure 19 d). The peak of κ in annealed systems shifted towards higher doses also can be 

explained by combined effects of different thermal conductivity changes under 
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irradiation at junctions and single tubes in SWNT networks, according our previous 

analysis on thermal resistance on each part. Thermal resistance at junction and single 

tubes were decreased after annealing. 

a)  

Figure 19. Dose dependence of thermal conductivity. 

a) defects number in individual SWNT and SWNT networks; b) thermal conductivity of 

single SWNTs of different damages; c) thermal conductivity of networked SWNTs with 

respect to incident ions; d) number of defects changes before and after annealing. 
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b)  

c)  

Figure 19. Continued. 
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d)  

Figure 19. Continued 

 

In summary, this study provides both theoretical and empirical evidences for 

using ion beam technique and subsequently annealing treatment to achieve greater 

thermal properties in CNTs matrix. Unlike in individual CNTs, where thermal 

conductivity decreases since radiation-induced defects are phonon scattering center [72], 

ion beam technique is able to introduce inter-tube defects that cross-link neighboring 

tubes covalently for improved tube-tube coupling in CNTs matrix. The thermal 

resistance at CNTs overlapped region can be reduced nearly one order of magnitude due 

to those inter-tube defects. Moreover, our results show that annealing is effective for 

promoting defects reconstruction in CNT graphitic plane while not reducing inter-tube 

defects too much. Thermal properties are further improved due to reducing concentration 
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of phonon scattering centers. Thus, phonon engineering of CNTs with ion beam 

technique is feasible for potential applications, such as thermal management.  
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5. SUMMARY AND CONCLUSIONS 

 This thesis was aimed to study the irradiation stability, defects creation and 

evolution and thermal conductivities changes in CNTs. Molecular dynamics simulation 

was heavily involved in our study together with experimental results to understand the 

mechanism behind. The threshold displacement energy was mapped in 3-dimensional 

spheres to study anisotropic effects in CNTs. Extended MD simulations at high 

temperature were performed to investigate atomic details of defects evolution when 

annealed. Non-equilibrium MD was used for thermal conductivity and thermal resistance 

calculation of ion bombarded individual and networked SWNTs. 

We found a stronger anisotropic effect of displacement energy in innermost wall 

of MWNTs than expected. The deviation in inward and outward directions of them can 

be applied to explain experimental observations that the MWNTs started collapse from 

the innermost tubes in the first place. The tubes in the middle of MWNTs were found to 

have higher averaged displacement energy than their SWNTs counterparts and thus 

explained better irradiation tolerance in MWNTs than SWNTs. 

We theoretically demonstrated that the enhancement of thermal conductivity 

could be achieved using ion beam modification. Post-thermal treatments were proved to 

improve thermal conductance further. Extended MD simulations at high temperature 

revealed that inter-tube defects could be stable even point defects had become mobile. 

The interfacial resistance at the tube-tube junction region was found to be predominant 
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in intrinsic carbon nanotube networks. When CNTs had been lightly damaged, κ had 

exhibited monotonic increase until reached a peak. Higher doses of ion bombardment 

would reduce the ability of heat dissipation due to high defects concentration. The 

competing effects of irradiation response about thermal resistance from junctions and 

single tubes were identified. Previous experimental measurements or proton irradiated 

carbon nanotube matrix confirmed our simulation predictions. 
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APPENDIX A 

INPUTFILE USED FOR FOR LAMMPS 

 

For displacement energy calculation, an input file of following format was used 

 

log SWNT1515_long_disp.log 

clear 

units metal 

boundary f f f 

atom_style atomic 

read_data SWNT1515_equ.lammps05 

pair_style airebo 2.0 1 1 

pair_coeff * * CH.airebo C 

thermo 100 

thermo_style custom step pe ke etotal enthalpy vol press temp 

thermo_modify lost warn 

neigh_modify every 1 delay 1 check yes page 100000 

region fix1 block INF INF INF INF -5 5 side in units box 

region fix2 block INF INF INF INF 45 55 side in units box 

group fix1 region fix1 

group fix2 region fix2 

velocity fix1 set 0 0 0 units box 
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velocity fix2 set 0 0 0 units box 

define_group 

define_velocity 

timestep 0.0002 

fix 1 all nve 

fix 2 fix1 setforce 0 0 0 

fix 3 fix2 setforce 0 0 0 

dump 1 all custom 50 SWNT1515_long_disp_collison.lammpstrj id x y z vx vy vz 

run 1000 

unfix 1 

unfix 2 

unfix 3 

undump 1 

timestep 0.001 

fix 1 all nve 

fix 2 fix1 setforce 0 0 0 

fix 3 fix2 setforce 0 0 0 

dump 2 all custom 100 SWNT1515_long_disp.lammpstrj id x y z vx vy vz 

run 1000 

unfix 1 

unfix 2 

unfix 3 
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undump 2 

write_restart SWNT1515_long_disp.restart 

 

For thermal conductivity calculation, a typical input file is written as below 

 

# MD simulation of carbon nanotube thermal conductivity via NEMD method 

# Initialization 

log SWNT1010_250A_double_equ300_thermal.log 

clear 

units             metal 

newton            on 

boundary          p p f 

atom_style        atomic 

read_data SWNT1010_250A_double_equ300.lammps05 

pair_style hybrid/overlay tersoff lj/cut 10.2 

pair_coeff * * tersoff C_thermal.tersoff C C 

pair_coeff 1 2 lj/cut 2.968e-3 3.407 10.2 

#define variables used in simulation**************************************** 

variable T0 equal 300 

variable THot equal 330 

variable TCold equal 270 

variable tau equal 1.0 
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variable dt equal 0.0002 

variable N equal atoms 

variable kB equal 8.6173324e-5 # in [ev/K] units 

# define fixed ends 

region fixEnd1 block INF INF INF INF INF 0 units box 

region fixEnd2 block INF INF INF INF 400 INF units box 

group fixEnd1 region fixEnd1  

group fixEnd2 region fixEnd2 

velocity fixEnd1 set 0 0 0 units box 

velocity fixEnd2 set 0 0 0 units box 

# define hot cold sink****************************************************** 

region hot  block  INF INF  INF INF 0.0001 50  units box 

group hot  region  hot 

region cold  block  INF INF  INF INF 350.0001 400  units box 

group cold  region  cold 

# define central and mobile atoms******************************************** 

region central block INF INF INF INF 50.0001 350 units box 

group central region central 

group mobile subtract all fixEnd1 fixEnd2 

#define spatially temp gradient group**************************************** 

region temp_spat_2 block INF INF INF INF 50.0001 100 units box  

region temp_spat_3 block INF INF INF INF 100.0001 150 units box  
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region temp_spat_4 block INF INF INF INF 150.0001 200 units box  

region temp_spat_5 block INF INF INF INF 200.0001 250 units box  

region temp_spat_6 block INF INF INF INF 250.0001 300 units box  

region temp_spat_7 block INF INF INF INF 300.0001 350 units box  

group temp_spat_2 region temp_spat_2 

group temp_spat_3 region temp_spat_3 

group temp_spat_4 region temp_spat_4 

group temp_spat_5 region temp_spat_5 

group temp_spat_6 region temp_spat_6 

group temp_spat_7 region temp_spat_7 

group type1 type 1 

group type2 type 2 

group temp_spat_4_type1 intersect temp_spat_4 type1 

group temp_spat_4_type2 intersect temp_spat_4 type2 

group temp_spat_5_type1 intersect temp_spat_5 type1 

group temp_spat_5_type2 intersect temp_spat_5 type2 

# thermal cond calc **************************************************** 

timestep ${dt} 

fix               hotzone hot nvt temp ${THot} ${THot} ${tau} 

fix    coldzone cold nvt temp ${TCold} ${TCold} ${tau} 

fix    central central nve 

fix    end1 fixEnd1 setforce 0 0 0 
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fix    end2 fixEnd2 setforce 0 0 0 

fix_modify  hotzone  energy yes 

fix_modify  coldzone  energy yes 

compute 1 mobile temp 

compute temp1 hot temp 

compute temp2 temp_spat_2 temp 

compute temp3 temp_spat_3 temp 

compute temp4 temp_spat_4 temp 

compute temp5 temp_spat_5 temp 

compute temp6 temp_spat_6 temp 

compute temp7 temp_spat_7 temp 

compute temp8 cold temp 

compute temp9 temp_spat_4_type1 temp 

compute temp10 temp_spat_4_type2 temp 

compute temp11 temp_spat_5_type1 temp 

compute temp12 temp_spat_5_type2 temp 

# obtain average value***************************************************** 

fix temp_profile mobile ave/time 1 100000 100000 c_temp1 c_temp2 c_temp3 c_temp4 

c_temp5 c_temp6 c_temp7 c_temp8 c_temp9 c_temp10 c_temp11 c_temp12 file 

temp.profile 

# thermal output****************************************************** 

thermo_style      custom step c_1 c_temp1 f_hotzone c_temp8 f_coldzone etotal vol 
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thermo_modify     lost warn 

thermo            100 

#dumpfile************************************************************   

dump 1 all custom 10000 SWNT1010_250A_double_equ300_thermal.lammpstrj id type 

x y z vx vy vz              

# Run  

run               10000000 

write_restart SWNT1010_250A_double_equ300_thermal.restart 
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APPENDIX A 

MATLAB CODE FOR INTERPOLATE Td 

datafile = SWNT33; 
   
[Theta,Phi,R]=cart2sph(datafile(:,1),datafile(:,3),datafile(:,2)); 
  
%to correct an error that during transform, -pi are automatedly written as 
%pi 
for i=1:28 
    line= 2 + 30*(i-1); 
    tmp = -Theta(line,1); 
    Theta(line,1)= tmp; 
end 
  
%another correction needed to correct pole point missing 
  
  
  
%start interpolating 
F = TriScatteredInterp(Theta,Phi,datafile(:,4),'linear'); 
  
ti1 = -pi:pi/100:pi; %X range 
ti2 = -pi/2:pi/200:pi/2; %Y range 
%ti3 = -1:0.066:1; %Z range 
[qx,qy] = meshgrid(ti1,ti2); 
qE = F(qx,qy); 
  
n=201; %dimension for R matrix 
  
qR=ones(n); 
  
[X,Y,Z]=sph2cart(qx,qy,qR); 
surf(X,Y,Z,qE); 
 




