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ABSTRACT 

 

The development of a petroleum reservoir would inevitably induce a 

rearrangement of the in-situ stress field. The rearrangement of the stress field would then 

bring about a deformation of the reservoir rock and a change of the permeability. This 

experimental study was carried out to investigate rock deformation and its impact on 

axial permeability. Triaxial compression tests were conducted on Berea sandstone, 

Indiana limestone, Westerly granite and tuff specimens. Axial permeability was 

continuously measured for Berea sandstone and Indiana limestone during triaxial 

compression tests. The axial permeability of fractured Westerly granite specimens was 

also measured during hydrostatic compression tests. Acoustic emission (AE) monitoring 

was performed to help improve the understanding of rock deformation. Results showed 

that Berea sandstone and Westerly granite were relatively brittle, while Indiana 

limestone and tuff were relatively ductile. Rock deformation altered pore structures and 

the change of pore structures considerably impacted fluid flow through rock. For porous 

Berea sandstone and Indiana limestone, the destruction of the pore structure by rock 

deformation led to a decrease in axial permeability. For tight Westerly granite, fractures 

created by rock deformation significantly improved the ease of fluid flow. Acoustic 

emission response was found to be strongly dependent on rock type. Brittle Berea 

sandstone and Westerly granite produced high AE rates during compression tests, while 

ductile Indiana limestone and tuff generated very low AE rates. 
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NOMENCLATURE 

 

AE Acoustic Emission 

DAQ Data Acquisition 

LVDT Linear Variable Differential Transformer 

Pc Confining Pressure 

mD Millidarcy 

nD Nanodarcy 

𝜎1 Maximum Principal Stress 

𝜎2 Intermediate Principal Stress 

𝜎3 Minimum Principal Stress 

𝜏 Shear Stress 

𝜎 Normal Stress 
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1. INTRODUCTION 

 

1.1 Problem statement 

In petroleum engineering, the ultimate goal is to produce hydrocarbon from 

subsurface in a systematic and economical way. Therefore the determination of the 

permeability of reservoir rock is of great interest for petroleum engineers. Permeability 

is an important parameter that is used to quantify the quality of reservoir during 

exploration stage. Permeability is also a key input parameter for reservoir simulation, 

which has significant impact on reservoir development strategy. As oil and gas is 

extracted from underground, the rearrangement of in-situ stress field would inevitably 

induce permeability variation. However, to determine rock permeability accurately is not 

an easy job. Permeability not only depends on rock and fluid type, but also is a function 

of stress state of reservoir rock. More studies are required to obtain a better 

understanding of stress dependent permeability, which would be very beneficial to 

reservoir development. 

1.2 Literature review 

Experimental study has been considered as an effective way to understand rock 

behaviors in rock mechanics. In the early twentieth century, von Kármán (1911) 

conducted the classic triaxial compression test on Carrara marble.  In the so-called 

“triaxial test”, a cylindrical rock specimen was confined by a constant fluid pressure and 

compressed in the axial direction until rock failure occurs. It is not truly triaxial loading 

since the intermediate and minimum principal stresses are both equal to confining 
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pressure (𝜎2 = 𝜎3 = 𝑃𝑐). However, the design of apparatus and operating procedure can 

be relatively easily achieved in the laboratory. After later improvement and 

modification, the triaxial test has become a standard rock testing technique in rock 

mechanics. Several years later, Bӧker (1915) performed a different triaxial test on 

Carrara marble. In his test, axial stress on cylindrical rock specimen was applied first 

and kept constant, and then confining pressure was increased until rock failure occurs. In 

this configuration, the maximum and intermediate stresses are equal to confining 

pressure (𝜎1 = 𝜎2 = 𝑃𝑐).  

Since then, extensive experimental studies have been carried out on different 

types of rocks at various loading conditions to improve our understanding on rock 

deformation. Handin and Hager Jr (1957) performed triaxial compression tests on 23 dry 

sedimentary rocks of various types, including anhydrite, dolomite, limestone, sandstone, 

shale and siltstone. These rocks were tested at room temperature at various confining 

pressures. Despite each rock type exhibits some of unique deformational behaviors, all 

the tested rocks show small increase in elasticity and yield stress, large increase in 

ultimate strength with increasing confining pressure. For some rock types like anhydrite 

and limestone, ductility is also enhanced by increasing confining pressure, while for 

other rock types like silica-cemented sandstone; they still demonstrate considerable 

brittle behavior at high confining pressure. 

Numerous interests have been directed to the experimental study of brittle-ductile 

transition of rock. Paterson (1958) conducted triaxial compression tests on coarse-

grained Wombeyan marble at various confining pressure up to about 100 MPa. As can 
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be seen in Fig. 1.1, uniaxial compression creates axial splitting fractures. Localized 

shear fracture, such as single shear fracture and conjugate shear fractures, would be 

developed as confining pressure increases. At very high confining pressure, deformation 

would fairly uniformly distribute throughout rock specimen. 

 
 
 

 

Fig. 1.1  Brittle-ductile transition of Wombeyan marble (a) Axial splitting under 
uniaixial compression, (b) single shear fracture under Pc = 3.5 MPa, (c) conjugate shear 

fracture under Pc = 35 MPa, (d) bulging under Pc = 100 MPa (Paterson, 1958) 
 
 
 
Since fluid is often present in rock formations, numerous efforts have been made 

on the study of the effect of fluid pressure on rock deformation. The most commonly 

referred effective stress law is developed by Terzaghi (1923) which states that the 

effective stress responsible for the mechanical behavior of rock is equal to the total stress 

subtracted by fluid pressure. A number of rock properties are dependent on the effective 

stress, including permeability, fracture strength, elastic modulus and wave velocity etc. 

Brace and Martin (1968) conducted triaxial experiments on two types of crystalline 

rocks of low porosity at various confining pressures, pore pressures and strain rates. 
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Comparison of fracture strengths at different experimental configurations allowed them 

to test the validity of the effective stress law. They found that a critical loading rate 

exists which is a function of rock type, fluid type and geometrical factors. Below this 

critical loading rate, the law of effective stress holds true even for low porosity rocks. 

Rock deformation would inevitably impact rock properties. One of these 

properties that have attracted great interest is the transport property of rock formation, as 

it is an important aspect of rock mining such petroleum exploration. The key parameter 

for transport property of rock is permeability, which is observed to depend on stress 

subjected on rock. Numerous experimental studies have been conducted to investigate 

the effect of stress state on rock permeability. Brace et al. (1968) developed an 

experimental setup for measuring permeability of Westerly granite using pulse decay 

method. Water and argon were used as fluid medium. Various combinations of confining 

and pore pressures were selected to yield an effective confining pressure up to 400 MPa. 

It was found that Darcy’s law still holds for fluid flow in nanodarcy scale. The 

permeability of Westerly granite varied markedly under different effective confining 

pressure, ranging from 350 nD at 10 MPa effective confining pressure to about 4 nD at 

400 MPa pressure. The strong dependence of permeability on effective confining 

pressure implies that high pore pressure would make rock relatively more permeable.  

Brace (1978) compiled fluid permeability data of different rock types from 

literature and showed pronounced variation in stress dependent permeability for different 

rock types. For low porosity rock such as Westerly granite, permeability first decreases 

slightly with increasing stress in confined compression test, then it increases 
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dramatically as the sample is approaching failure. An increase of several-fold was 

observed at around 80 percent of the fracture stress. For high porosity rock such as 

Darley Dale sandstone, the permeability variation with increasing stress is similar to 

granite, except that permeability prior to failure increases only 20 percent and for some 

cases even drops a few percent. For granular aggregates, however, permeability 

decreases dramatically with increasing confining pressure. It was found by Zoback and 

Byerlee (1975); Zoback and Byerlee (1976) that the law of effective stress breaks down 

for sand and sandstone based on the observations of hydrostatic and triaxial compression 

tests. Experimental results also show that permeability of rocks containing joints or 

fractures is highly sensitive to changes of effective stress. 

Walsh (1981) theoretically analyzed the effect of confining and pore pressures on 

fracture permeability. The fluid flow rate through fracture can be viewed as the product 

of two factors: one describes the effect of aperture and the other one describes the effect 

of tortuosity. The effect of aperture on flow rate is much more pronounced than that of 

tortuosity. The effect of pore pressure and confining pressure on fluid flow through 

fractures can be described by effective stress law 𝑃𝑒 = 𝑃𝑐 − 𝜕𝑃𝑝. The coefficient 𝜕 is not 

always equal to one as indicated in many literatures. It was found that 𝜕 depends on the 

topography of fracture surfaces and rock type. If the fracture is created by tensile failure, 

𝜕 is very close to unity. But for polished smooth fracture surfaces, 𝜕 could be as low as 

0.56. If a joint is filled with clay, 𝜕 is more likely to be greater than unity. 

Wang and Park (2002) performed triaxial compression tests on sedimentary 

rocks and permeability was measured for a complete stress-strain process. Experimental 
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results show that rock permeability changes with rock deformation. Permeability 

decreases at initial loading and starts to increase as specimen is approaching failure. At 

strain softening stage in the stress-strain curve, permeability reaches its peak value. After 

that permeability drops a little but still maintain at a level higher than initial value. It is 

obvious that permeability is significantly enhanced after rock failure. 

Another frequently used experimental technique in rock mechanics is acoustic 

emission (AE) monitoring. During rock deformation, some processes such as 

microcracking, pore collapse and frictional sliding can generate acoustic waves. 

Detection and analysis of AE signal provide useful information to help us better 

understand deformational behavior of rock. Lockner (1993) reviewed the successes and 

limitations of acoustic emission monitoring in the study of rock fracture. He divided the 

laboratory studies of AE test into four categories 1) the study of damage development in 

rock during loading through the counting of AE events; 2) the study of fracture 

nucleation and growth through the determination of AE source locations; 3) the study of 

source mechanism through the analysis of AE full waveform data; 4) the study of rock 

properties through detecting AE wave velocities and attenuation.  

The most commonly used AE technique is the counting of AE events. Scholz 

(1968) developed an AE testing system of high sensitivity. With this system, he tested 

several types of rocks at confining pressure up to 500 MPa to investigate the 

microcracking processes during rock deformation. A typical stress-strain curve with AE 

activity is shown in Fig. 1.2. For brittle rocks, such as Westerly granite, the inelastic 

deformation was found to be directly proportional to AE activity. It was concluded that 
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the phenomenon of dilatancy in brittle rocks can be completely accounted for by the 

microcracking processes. For ductile rocks and frictional sliding, AE activity behaved 

quite differently from that of brittle rocks. Since Griffith’s criterion is not applicable to 

rock, a simple statistical model based on the inhomogeous nature of rock was introduced 

to describe the microcracking processes during rock deformation. 

 
 
 

 

Fig. 1.2 Stress & AE activity versus strain for two rocks in uniaxial compression (a) 
Westerly granite; (b) Colorado rhyolite tuff (Scholz, 1968) 

 
 
 
Lockner and Byerlee (1977) conducted creep tests on Weber sandstone and 

Westerly granite samples with AE monitoring. Two samples for each type were tested 

by stepping differential stresses up to rock strength at constant confining pressure of 100 

MPa. At each stress level, the acoustic emission rate ν was found to decay exponentially 

with the total number of events N. Mathematically it takes the form logν = β − αN, 

where α  and β  are constants. Experimental results also show that α  decreases 
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systematically with increasing differential stress and becomes negative as sample 

approaches failure. Among many empirical creep laws, Lomnitz’s relation was found to 

best fit the experimental data. 

The Kaiser effect is a well-known phenomenon of acoustic emission in 

metallurgy. It was found that a material under loading would emit acoustic waves only 

after the previous load level is exceeded. Kaiser (1950) first observed this phenomenon 

in tensile tests of metals. In rock mechanics, the Kaiser effect has been used to determine 

in-situ stress through testing oriented cores from underground with AE monitoring. 

Holcomb (1993) interpreted the Kaiser effect based on a micromechanical model 

developed by Costin (1983). Using the concept of damage surface, it was shown that the 

prediction from the theory agrees well with experimental observation. The 

micromechanical model also helps explain why the commonly-used uniaxial loading 

method (ULM) for determining in-situ stress is not valid. An alternative method, the 

extensional loading method (ELM), was developed to determine general stress histories. 

Hirata (1987) conducted uniaxial compression test on basalt with AE monitoring. 

The sample was loaded to about 85% of its fracture strength. Then the axial stress was 

held constant until fracturing occurs. Individual bursts of AE events were identified from 

the creep stage and treated as mainshock-aftershock sequences. Two models, the 

Omori’s power law model and the exponential decay model, were used to describe the 

time series characteristics of the shock sequences. It was found that the AE bursts 

changed from exponential decay to power law decay as the sample approaches failure. 

Analysis of p-value in the Omori’s law for different AE burst sequences shows it 
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decreases with stress. It is believed that the decrease of p-value during the evolution of 

the fracture process may serve as precursor of earthquake and the estimation of the 

degree of fracture of the local crust. 

To study fluid pressure diffusion in rock, Kranz et al. (1990) conducted fluid 

injection tests with AE monitoring. Three experiments with different loading 

configurations were presented. AE Source locations and focal mechanisms were 

determined for each experiment. Results showed that it is very difficult to monitor fluid 

migration by simply analyzing AE signals induced solely by fluid pressure diffusion. 

The reason is that only with sufficient differential stress can diffusing fluid produce 

useful AE signals, both the differential stress and fluid diffusion (deceases effective 

confining pressure) can result in damage in rock and it is very difficult to distinguish 

between the two AE generation mechanisms. A model was also established to explain 

the difficulty.  

In order to investigate the role of pre-existing cracks in rock fracture, Lei et al. 

(2000) performed triaxial tests on two types of crystalline rock. With most other 

properties being the same, the only difference between the two rocks is that one contains 

main large pre-existing cracks, whereas the other one is almost crack-free. Experimental 

results showed significant different responses in AE activities under triaxial compression. 

The sample with large pre-existing cracks showed low AE activity and increasing b-

value before fault nucleation. On the contrary, the crack-free sample showed strong AE 

activity and short-term b-value anomalies. These results confirmed that the faulting 

process, especially the nucleation, is predominantly governed by pre-existing cracks. 



 

10 

 

The dominant role of pre-existing crack can be explained by the fact that stress 

concentration at a crack tip is generally much severer than that caused by other types of 

heterogeneity.  

Stanchits et al. (2006) measured compressional (P), shear (S) wave velocities, 

AE activity of basalt and granite samples in both triaxial and hydrostatic compression 

tests. While hydrostatic pressure was increased to 120 MPa, P-wave velocity increased 

more than 50% and 20% for basalt and granite, respectively. AE source mechanism 

analysis showed that pore collapse was dominant during compaction. In triaxial loading, 

evolution of velocity field demonstrated that anisotropy in basalt was more pronounced 

than in granite. In the early loading stage, tensile failure was the dominant source 

mechanism. As the sample approached failure, more double couple (shear) events were 

identified, which revealed that shear cracks interconnected previously formed tensile 

cracks and eventually leaded to faulting. 

Fortin et al. (2009) applied AE technique in the test of porous sandstone samples. 

Three experiments are reported which exhibits three different modes of deformation, 

namely shear localization, compaction localization and cataclastic compaction. It was 

shown that critical stress states at which pore collapse and grain crushing occur are well 

corresponded to a surge in both cumulative AE events and AE rate. Spatial and temporal 

distribution of AE source location revealed that preexisting cracks and high porosity 

regions control the nucleation process in the early stage of loading. As loading 

progresses, AE events tend to uniformly distribute across the sample in hydrostatic 

loading (cataclastic compaction), while in triaxial loading AE events nucleate either 



 

11 

 

around the faulting plane (shear localization) or several compaction bands (compaction 

localization). Source locations are in good agreement with microstructural observation of 

the samples using SEM. Source mechanism analysis demonstrated that pore collapse and 

shear type events dominate in all three experiments and only a small number of tensile 

type events are identified.  

1.3 Objectives of this study 

This study will be mainly based on experimental investigation and the objectives 

of this study include the following. 

1. Prepare experimental setup and measure permeability of different rock types under 

various stress states. 

2. Analyze the effect of rock type and stress state on permeability. 

3. Characterize the acoustic response during rock deformation. 
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2. EXPERIMENTAL SETUP 

 

2.1 General description of experimental setup 

The experimental setup for this study consists of three sub-systems: triaxial rock 

testing system, permeability measurement system and acoustic emission monitoring 

system. All the equipment is shown Fig. 2.1. Detailed description of each sub-system 

will be given in the following sections. 

 
 
 

 

Fig. 2.1 Photo of the experimental setup 
 
 
 
2.2 Triaxial rock testing system 

2.2.1 General description 

The triaxial rock testing system used in this work was manufactured by 

Geotechnical Consulting & Testing Systems (GCTS). The major components of the 
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triaxial rock testing system include load frame, high pressure triaxial cell, hydraulic 

pump, confining and pore pressure cabinets, data acquisition cabinet and software. The 

schematic diagram of GCTS triaxial rock testing system is shown in Fig. 2.2. 

 
 
 

 

Fig. 2.2 Schematic diagram of GCTS triaxial rock testing system 
 
 
 
The loading system has 1,500 kN load capacity and 1,750 kN/mm stiffness. The 

high pressure cell (Model HTRX-200) can accommodate rock specimens with a 

diameter ranging from 25 mm to 100 mm and with the ratio of height to diameter of 2. 

The cell is capable of applying up to 210 MPa confining pressure and 3,500 kN axial 

load. Forty-eight high pressure electrical feedthroughs allow connections for LVDT 

transducer, acoustic emission sensor and other gauges. Both confining pressure and pore 

pressure cabinets are installed with HPVC-210 pressure intensifier which can generate 

up to 210 MPa fluid pressure. The load cell, confining and pore pressure transducers 
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were well calibrated by the manufacturer and calibration files were stored in the data 

acquisition software.  

During triaxial compression test, the axial and radial displacements of rock 

specimen are measured by LVDT transducers, which were not calibrated by the 

manufacturer. Therefore, calibration of LVDT transducers was performed at the very 

beginning of triaxial test. The LVDT transducer calibrator, which has a precision of 

0.0025 mm, is shown in Fig. 2.3. With this calibrator, two axial and one circumferential 

LVDTs were calibrated between -2.5 and +2.5 mm using ten points in the DAQ 

software. 

 
 
 

 

Fig. 2.3 LVDT transducer calibrator 
 
 
 
2.2.2 Data acquisition 

The data acquisition and control of triaxial test are achieved by SCON-2000 

digital controller and CATS 1.8 software, both of which are produced by GCTS. The 

SCON-2000 digital controller applies direct closed-loop digital servo control of axial 

stress, axial strain, radial strain, confining and pore pressures, and several other 
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variables. The CATS 1.8 is a Graphical User Interface (GUI) software that allows easy 

and rapid control and record of triaxial test. Fig. 2.4 shows typical software screen 

layout for triaxial test. 

 
 
 

 

Fig. 2.4 DAQ Software screen layout of triaxial rock testing system (GCTS) 
 
 
 
2.3 Permeability measurement system 

2.3.1 General description 

The permeability measurement system is incorporated in triaxial rock testing 

system, as is shown in Fig. 2.5. 



 

16 

 

 

Fig. 2.5 Schematic diagram of permeability measurement system 
 
 
 

The permeability measurement system was built based on steady state method, 

which requires the measurements of fluid flow rate, upstream and downstream pressures. 

TeledyeIsco D-series pump was used to provide accurate and continuous flow. Two 

HEISE DXD series digital pressure transducers were used for pressure measurement. 

These pressure transducers have an accuracy of ±0.02% of full scale, including the 

effects of nonlinearity, hysteresis, non-repeatability and temperature. In order to obtain 

more accurate measurement of differential pressure across rock specimen, the 

downstream pressure was elevated to around 2.1 MPa. In the triaxial cell, flow lines 

were connected to top and bottom loading platens, which has been carved with multiple 

flow channels (Fig. 2.6) and allow uniform fluid diffusion across end surfaces of rock 

specimen. 
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Fig. 2.6 Loading platens with carved fluid diffusion channels 
 
 
 
2.3.2 Data acquisition 

Microsoft Visual BASIC program was created to record flow rate and pressure 

readings from syringe pump and pressure transducers, respectively. The start time of 

permeability measurement was also recorded and used to correlate permeability with 

triaxial compression test. The screen layout of the DAQ program is shown in Fig. 2.7. 

 
 
 

 

Fig. 2.7 DAQ program screen layout of permeability measurement 
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2.4 Acoustic emission monitoring system 

2.4.1 General description 

In order to monitor acoustic emission response of rock specimen during triaxial 

test, P-wave AE sensor was coupled inside loading platen.  Besides, the AE system also 

includes preamplifier, filter, amplifier and signal conditioning board. The schematic 

diagram of acoustic emission monitoring system is shown in Fig. 2.8. 

 
 
 

 

 

Fig. 2.8 Schematic diagram of acoustic emission monitoring system 
 
 
 

AE signal generated during rock deformation propagates through loading platen 

and is detected by AE sensor bonded with the platen. AE sensor converts acoustic 

vibration into electric voltage. Since AE signal is usually very weak and always 

accompanied by lasting background noise, preamplifier is used to amplify small 
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electrical signals for further processing, as well as to reduce the effects of noise and 

interference. Then the signal is filtered by band-pass frequency filter to eliminate low 

and high frequency noise. After further amplification and conditioning, AE signal is 

displayed and analyzed with the aid of DAQ software. 

2.4.2 Data acquisition 

The data acquisition of AE signal is achieved using a single channel AE digital 

signal processor (USB AE Node) and AEwin software, both of which were produced by 

Physical Acoustics Corporation. USB AE Node can be easily interfaced to a computer 

and allows rapid acquisition of time-based AE features, such as count, event and 

waveform. AEwin DAQ software is capable of real-time AE feature and waveform 

processing, as well as 2-D & 3-D graphing. Fig. 2.9 shows typical screen layout of AE 

DAQ software. 

 
 
 

  
Fig. 2.9 DAQ Software screen layout of AE monitoring 
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3. EXPERIMENTAL PROCEDURE 

 

3.1 Specimen preparation 

Rock specimens were first cored from rock block in one-inch diameter. Then 

they were cut into approximately two inch in length with an electrical saw. End surfaces 

of rock specimens were then polished in Buehler polishing machine. Rock specimens 

were further polished in Brown and Sharp 818 micromaster hydraulic surface grinder to 

obtain a parallelness of end surfaces within 0.025 mm. All the specimens of the same 

rock type were cored from the same rock block, therefore uniformity in properties were 

maintained.  

3.2 Triaxial compression test 

3.2.1 Installation of loading platens and LVDT transducers 

The first step of triaxial compression test is to install loading platens and LVDT 

transducers on specimen. The procedure is as follows. 

1. Measure and record the diameter and length of rock specimen to be tested. 

2. Slide rock specimen into heat-shrinkable jacket and install top and bottom 

loading platens, heat the jacket with a heat gun until jacket wrap around rock 

specimen tightly. 

3. Tighten jacket with both top and bottom platens by applying two-round wires. 

This will make an initial sealing between rock specimen and confining fluid. 

4. Install two axial LVDT ring holders and make sure they are horizontal and on the 

specimen. 
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5. Install two axial LVDTs and one circumferential LVDT and fix them in place. 

6. Measure and record axial gauge length which is the distance between the centers 

of top and bottom LVDT ring holders. This parameter will be used to calculate 

axial strain.  

 
 
 

 

Fig. 3.1 Photo of rock specimen installed with loading platens and LVDT transducers 
 
 
 

After finishing the above procedure, the rock specimen is ready to be installed 

into triaxial cell. Fig. 3.1 shows an example of a well prepared rock specimen installed 

with platens and transducers. 

The next step is to install rock specimen into triaxial cell by screwing bottom 

platen into triaxial cell base. The rock specimen should be handled with care and make 

sure every part is still tight when screwing bottom platen. Then connect gauge cables 

with feedthroughs in the triaxial cell base and hook up flow lines to top and bottom 
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platens. Before closing triaxial cell, all three LVDTs should be adjusted and make sure 

they are in the appropriate range. The total measuring range of LVDTs is between -2.5 

and +2.5 mm. For axial LVDTs, it is usually placed around -1.3 mm before test, which 

gives enough stroke when rock is compressed. For circumferential LVDT, it is usually 

set up to be around zero since rock specimen can either shrink in hydrostatic 

compression test or expand in triaxial compression test. 

After appropriate configuration of LVDT transducers, triaxial cell is closed and 

placed under loading actuator. Then triaxial cell is filled with confining oil through 

confining pressure cabinet. At this stage, it is import to check readings of LVDTs from 

DAQ software and make sure they are still in the pre-configurated position. If not, 

triaxial cell should be opened and LVDT transducers should be set up again until they 

work properly. Otherwise, it makes no sense to run a test as strain measurement is not 

accurate. 

3.2.3 System leak check 

As triaxial cell is full of confining oil, it is necessary to check if there is any 

leaking throughout the system. The method to check is to apply a small confining 

pressure and watch the cell pressure intensifier LVDT versus time curve. The system is 

well sealed if the curve first increases and then stays constant once the target confining 

pressure is reached. If the curve keeps increasing and the desired confining pressure 

cannot be achieved, it is an indication of leaking. If this happens, stop applying 

confining pressure and drain confining oil out of triaxial cell, check all the fitting 

connections and rock specimen setup to identify the location of leak. 
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3.2.3 Preloading of rock specimen 

If the system passes leak check, it is now ready to preload rock specimen before 

running a test. In preloading, a small differential stress is first applied on rock specimen 

as seating stress, which allows rock specimen and loading platens to be in good contact. 

Then confining pressure is slowly increased to the target value. At this stage, it is also 

important to keep an eye on cell pressure intensifier LVDT versus time curve and make 

sure good seal is maintained throughout the test. Confining pressure and seating stress 

are held until the readings from LVDT transducers stop changing, which indicates both 

the rock specimen and system is stable and ready for testing. Before starting a test, make 

sure to zero LVDT transducers through DAQ software. 

3.3 Permeability measurement 

In this work, axial permeability was measured continuously during triaxial test. 

The measurement of axial permeability includes system leak check, air elimination and 

rock specimen saturation. 

3.3.1 System leak check 

Before conducting permeability measurement, the flow lines are checked for leak 

section by section. First, upstream valve is closed, and then syringe pump is set up with a 

constant pressure. If the target pressure can be reached in a short time and flow rate 

varies between -0.001 and +0.001 ml/min, this section passes leak check. If not, change 

fitting and tubing and redo leak check until a good seal along flow line is guaranteed. 

After checking upstream section, open upstream valve and connect upstream and 

downstream lines without installing rock specimen, close downstream valve and start 
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pumping at constant pressure. The criterion for leak test is same as before. After 

checking downstream flow lines, open downstream valve and set up pressure constraint 

in the backpressure regulator, and start pumping at constant flow rate. If the downstream 

pressure can be kept at the desired pressure, the system is free of leaking. By performing 

leak check in this way, it is easy to identify the location of leaking and change fitting or 

tubing accordingly. 

3.3.2 Air elimination 

During the preparation of rock specimen, air is often trapped in the flow lines due 

to pump fill and connection/disconnection of fittings. Air is much more compressible 

than water and hence brings about errors in the measurement of pressure and flow rate. It 

is necessary to eliminate air from the system before every test. To get rid of air from 

pump, pump is always filled up at slow flow rate. Then immerse discharge line into 

water and start pumping. If no bubble was observed from discharge line for about three 

minutes, the pump is free of air and can be connected to permeability measurement 

system. During the saturation of rock specimen in the triaxial cell, the discharge line is 

also immersed into water. Usually it is expected to see bubbles come out of water 

intermittently at the beginning of saturation. The saturation process is always kept long 

enough to make sure all the air has been removed from the system. 

3.3.3 Rock specimen saturation 

Before starting triaxial test, rock specimens are fully saturated. The saturation 

process is long enough so that not only air is removed from the system, but also a 

constant initial differential pressure across rock specimen is obtained.  
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3.4 Acoustic emission monitoring 

3.4.1 Threshold amplitude determination 

Acoustic emission test is always accompanied by lasting background noise. 

Sources of acoustic noise include fluid flow in pumps and valves, vibration of structures 

and any friction processes etc. In our lab, the hydraulic pump for triaxial machine is a 

major source of noise. One way to deal with noise is to set up threshold amplitude for 

AE wave signal in the DAQ software. Only the signal with higher amplitude than the 

threshold can be recorded by the DAQ software. This is an effective way to eliminate the 

lasting low amplitude noise. However, the threshold value should be determined with 

caution. High threshold value is helpful in filtering noise, but it would also reject true 

signal as well, which negatively affects the integrity of real data. Therefore, before 

loading rock specimen, the AE testing system would keep running until steady response 

is achieved, as is shown in Fig. 3.2. Then the threshold amplitude is determined 

accordingly. Take Fig. 3.2 as an example, the main background noise is below 55dB. As 

a result, the threshold amplitude should be set as 55 dB during test. This process should 

be performed before each test, since environmental noise may vary with time.  

 
3.4.2 Pencil lead break test 

Once threshold amplitude is set up in the DAQ software, it is also advisable to 

perform pencil lead break test to check AE system. As the name implies, the lead of a 

mechanical pencil is broken around AE sensor, which is a perfect imitation of rock 

fracturing process. Then AE response is checked through software. By doing this, the 

sensitivity of AE system is verified. Fig. 3.3 presents typical AE response during pencil 
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lead break test. Pencil lead was broken five times which were all well responded in the 

AE monitoring system. This indicates the system is ready for real test. 

 
 
 

 

Fig. 3.2 Detection of AE background noise 
 
 
 

 

Fig. 3.3 Pencil lead break test (five times) 
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4. RESULTS & DISCUSSION 

 

4.1 Sample description 

In this study, four different types of rocks are selected for testing, including 

Berea sandstone, Indiana limestone, Westerly granite and tuff. It is intended to test 

different rock type with various permeability levels. For each rock type (except tuff), 

specimens used in the test are cored from the same block so that uniform properties can 

be maintained between specimens. Fig. 4.1 shows photos of specimens of different rock 

type used in the test. A brief description of these rocks will be given in the following 

paragraphs. 

 
 
 

  

  

Fig. 4.1 Photos of rock specimens (from top left to bottom right: Berea sandstone, 
Indiana limestone, Westerly granite and tuff) 
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Berea sandstone has been widely used in the laboratory for mechanical and 

petrophysical experiments. It is a sedimentary rock which is predominantly composed of 

quartz. Berea sandstone has relatively high porosity and permeability which makes it a 

good reservoir rock. The AP-608 Automated Permeameter-Porosimeter was used to 

measure gas permeability and porosity of several Berea sandstone specimens. The 

average gas permeability and porosity are 364 mD and 20.1%, respectively, at confining 

pressure of 5.7 MPa. 

Indiana limestone has also been widely tested in the laboratory. It is also a type 

of sedimentary rock which is predominantly composed of calcium carbonate. Comparing 

to Berea sandstone, Indiana limestone has lower porosity and permeability. The 

measured gas permeability and porosity are 3.36 mD and 12.67%, respectively, at 

confining pressure of 5.7 MPa.  

Westerly granite is a type of igneous rock which is granular in texture. It has low 

permeability which is in nanodarcy scale. Brace et al. (1968) reported the permeability 

of Westerly granite of 350 nD at 10 MPa confining pressure. 

Tuff is a type of rock that is composed of consolidated volcanic ash or dust 

ejected during volcanic eruption. It is our interest to study this type of rock. However, 

unlike the other three rocks, we have very limited tuff specimens. In this study, three tuff 

specimens were tested, which were labeled as Tuff-3V, Tuff-4V and Tuff-1H. Visual 

inspection shows certain heterogeneity between these specimens. 
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4.2 Triaxial compression test  

Triaxial compression tests were performed on all four types of rock to study their 

deformational behaviors. Except for tuff, various confining pressures were used in 

triaxial compression tests. For tuff, since only three specimens were available to us, we 

decided to test them in the formation pressure.  

4.2.1 Berea sandstone 

Triaxial compression tests were performed at four different confining pressure 

levels. Fig. 4.2 shows the stress-strain curves of four triaxial compression tests, while 

Fig. 4.3 shows combined differential stress-axial stress curves. At relatively low 

confining pressures (8.2 MPa, 18.5 MPa), Berea sandstone exhibits brittle fracturing, 

which is marked by a drastic stress drop at the time of failure. A single shear-induced 

fracture can be observed on specimen after test. As confining pressure increases to 

higher levels (32.2 MPa, 45.9 MPa), Berea sandstone becomes ductile, without showing 

drastic decrease in differential stress at the time of failure. According to Wong et al. 

(1997), Berea sandstone is experiencing a transition from brittle faulting to cataclastic 

flow. 
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Fig. 4.2 Stress-strain curves at different confining pressures (Berea sandstone) 
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Fig. 4.3 Combined differential stress-axial strain curves at different confining pressures 
(Berea sandstone) 

 
 

 

Fig. 4.4 Mohr circles and failure envelop (Berea sandstone) 
 
 

Failure envelope was established based on triaxial test data (peak stress) and is 

shown in Fig. 4.4. Clearly, the failure envelope cannot be fit by Mohr-Coulomb failure 
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Instead, the failure envelop is better fit by curved line, which has the following 

expression. 

567.13867.00022.0 2 ++−= σστ  

Where 𝜏 is shear stress in MPa, 𝜎 is normal stress in MPa. 

Fig. 4.5 shows a photo of rock specimens after test. At lower confining pressures 

(8.2 MPa, 18.5 MPa), one though-going fracture extended to about two thirds of the 

length of each rock specimen. At higher confining pressures (32.2 MPa, 45.9 MPa), two 

short fractures developed at one end of each rock specimen. 

 
 
 

 

Fig. 4.5 Rock specimens after test (Berea sandstone) 
 
 
 
4.2.2 Indiana limestone 

Triaxial compression tests were performed at three different confining pressure 

levels. Fig. 4.6 shows the stress-strain curves of three triaxial compression tests, while 

Fig. 4.7 shows combined differential stress-axial stress curves.  It can be clearly seen 
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that Indiana limestone displays markedly ductile feature at all three confining pressures. 

Differential stress drops only several megapascals after peak strength even at low 

confining pressure level (10.9 MPa). Comparing to Berea sandstone, Indiana limestone 

is much more ductile in nature. 

Failure envelope was also established for Indiana limestone based on triaxial test 

data (peak stress), which is shown in Fig. 4.8. For Indiana limestone, the failure 

envelope is best fit by linear relationship, which has following expression. 

067.17514.0 += στ  

Where 𝜏 is shear stress in MPa, 𝜎 is normal stress in MPa. 

Fig. 4.9 shows a photo of Indiana limestone specimens after test. In three tests, 

only the specimen tested at lower confining pressures (10.9 MPa) developed evident 

fracture. The other two specimens have no noticeable fractures. This is also a strong 

evidence for ductile behavior. 
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Fig. 4.6 Stress-strain curves at different confining pressures (Indiana limestone) 
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Fig. 4.7 Combined differential stress-axial strain curves at different confining pressures 
(Indiana limestone) 

 
 
 

 

Fig. 4.8 Mohr circles and failure envelop (Indiana limestone) 
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Fig. 4.9 Rock specimens after test (Indiana limestone) 
 
 
 
4.2.3 Westerly granite 

One uniaxial compression and two triaxial compression tests were conducted on 

Westerly granite. Fig. 4.10 presents the stress-strain curves, while Fig. 4.11 shows 

combined differential stress-axial stress curves. It can be seen that Westerly granite is 

very brittle. For uniaxial compression test, axial stress dropped to almost zero instantly 

at the time of failure, during which the DAQ system didn’t catch any data. For two 

triaxial compression tests, Westerly granite was failed by brittle fracturing, characterized 

by a drastic stress decrease after peak stress. 

Fig. 4.12 shows a photo of Westerly granite specimens after test. For uniaxial 

compression, multiple vertical fractures are observable on rock specimen. For other two 

tests, at least one through-going fracture was created. All three specimens look much 

darker after test than before test. This is because permeability measurement was 

attempted after failure and confining oil leaked into specimen at the end of permeability 

measurement. 
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Fig. 4.10 Stress-strain curves at different confining pressures (Westerly granite) 
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Fig. 4.11 Combined differential stress-axial strain curves at different confining pressures 
(Westerly granite) 

 
 
 

 

Fig. 4.12 Rock specimens after test (Westerly granite) 
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specimens exhibit considerable difference. This is most likely due to the heterogeneity 

between specimens. At this confining pressure, tuff-3V and tuff-4V exhibit appreciably 

ductile deformation. 

 
 
 

 

    

Fig. 4.13 Stress-strain curves at same confining pressures (tuff) 
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Fig. 4.15 shows a photo of tuff specimens after test. For all of these tests, one 

through-going fracture was created in each of these specimens. Axial permeability 

measurement was attempted after failure. But none of them was successful. The reason 

is that the intact rock is really tight and fluid cannot flow through. The generated 

macroscopic fracture didn’t connect end surfaces, where pore fluid was injected into. 

Thus it was also impossible to flow fluid in the axial direction. For tuff-4V, confining oil 

leaked into specimen as plastic jacket was broken during deformation of rock specimen. 

 
 
 

 

Fig. 4.14 Combined differential stress-axial strain curves at same confining pressures 
(tuff) 
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Fig. 4.15 Rock specimens after test (tuff) 
 
 
 
4.2.5 Summary 

In this section, the triaxial compression test data of four types of rocks was 

analyzed. It can be seen that Berea sandstone and Westerly granite demonstrate 

significant brittle behavior, while Indiana limestone exhibits strong ductile behavior. 

Tuff specimens were tested at the same confining pressure and show appreciable 

heterogeneity. 

4.3 Permeability measurement 

In order to study the dependence of permeability on stress, axial permeability 

measurement was carried out during triaxial compression test. Berea sandstone and 

Indiana limestone are permeable enough to allow continuous permeability measurement 

throughout compression test. For Westerly granite and tuff, the permeability of their 

intact samples is in nanodarcy scale. Our current experimental setup is not capable of 

measuring such a low permeability. Instead, we attempted to measure axial permeability 
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of fractured rock specimen. However, not all of those measurements on tight rock turned 

out to be successful. One reason is the leak of confining oil due to rock specimen 

breakage. Before failure specimen jacket was already deformed with the deformation of 

rock specimen. Further loading can easily break jacket, which is problematic for 

permeability measurement of fractured rock. Another reason is that the through-going 

fracture developed at high confining pressure test does not connect all the way to top and 

bottom platens through which fluid is injected into rock specimen. Fluid still cannot flow 

through rock specimen in the axial direction even with fracture present. As a result, we 

were only able to measure axial permeability of fractured Westerly granite. None of the 

axial permeability measurement on tuff specimens was successful. 

During axial permeability measurement, differential pressure across rock 

specimen was measured while flowing deionized water under constant flow rate. With 

measured differential pressure and specimen dimension, axial permeability can be 

calculated based on Darcy’s law. In this study, it is intended to measure axial 

permeability continuously during the process of rock deformation. Therefore, it is 

necessary to verify that the permeability measurement system can respond quickly 

enough to give the instantaneous axial permeability as stress on rock specimen varies. A 

verification test was performed, which increases differential stress at a constant rate and 

then holds the differential stress for some time. The obtained axial permeability is 

compared with stress to check if they are well correlated to each other. In a typical 

triaxial compression test, rock specimen is usually compressed under constant strain rate. 

In the verification test, the constant strain rate control is not favorable because constant 
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stress cannot be accomplished by maintaining a constant strain. Analysis of triaxial 

compression data shows that the majority part of the constant strain rate controlled test 

has a stress rate lower than 0.35 MPa/second. Take the triaxial compression test on 

Berea sandstone as an example (Fig. 4.16), the stress rate exceeds 0.35 MPa/second at 

the beginning test. This is because the triaxial machine tries to adjust itself to achieve the 

target strain rate. After the system is stabilized, stress rate goes below 0.35 MPa/second. 

At the time of failure, especially brittle fracturing, the stress rate can be much higher 

than 0.35 MPa/second. As it is impractical to use a very high stress rate in the 

verification test due to the limitation of testing system, the measured axial permeability 

at the time of failure may not be the instantaneous axial permeability. But it is believed 

that the trend of axial permeability change can still be observed as the rate of stress 

change goes back to below 0.35 MPa/second after failure. 

 
 
 

 

Fig. 4.16 Instantaneous stress rate during triaxial compression test 
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Fig. 4.17 Verification of axial permeability measurement with increasing stress 
 
 
 

Therefore the stress rate used in the verification test was chosen to be 0.35 

MPa/second. As Indiana limestone is less permeable than Berea sandstone, Indiana 

limestone specimen was chosen to perform the verification test. Fig. 4.17 shows the 

result of verification test on Indiana limestone. It can be seen that the measured axial 

permeability is well correlated to stress change. This proves that continuous 

measurement of axial permeability on permeable Berea sandstone and Indiana limestone 

is feasible. 

4.3.1 Berea sandstone 

Continuous axial permeability measurement was performed during triaxial 

compression tests on Berea sandstone. Figs. 4.18-21 show stress-strain curves and 

corresponding axial permeability variation of four triaxial compression tests at different 

confining pressures. In all tests, axial permeability keeps decreasing during rock 

deformation, even after rock breaks and macroscopic fracture forms.  
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Rock deformation is divided into three stages based on the characteristics of 

stress-strain curves. Three stages include linear elastic deformation, inelastic 

deformation, after fracturing (brittle behavior) or after peak strength (ductile behavior). 

In the stage of linear elastic deformation, the major deformation mechanisms include 

closure of pre-existing microcracks and grain compression. In the stage of inelastic 

deformation, microcracking develops in rock specimen. At low confining pressure, the 

stress-induced microcracks tend to coalesce and become localized, leading to brittle 

fracturing of rock specimen characterized by drastic drop in differential stress. While at 

high confining pressure, microcracking tends to develop homogeneously throughout 

rock specimen and results in more ductile behavior. 

From Figs. 4.18-21, it is apparent that axial permeability variation is well 

correlated to different deformational stages. At low confining pressures (8.2 MPa, 18.5 

MPa, Figs. 4.18-19), the closure of pre-existing microcraks and grain compression in the 

linear elastic deformation stage reduce pore space, which leads to axial permeability 

decrease. It is interesting to note that axial permeability decrease almost linearly at this 

stage. As rock specimen enters inelastic deformation, extensive microcracking tends to 

increase the overall pore space of rock specimen. This is evidenced by differential stress 

versus volumetric strain curves, where volumetric strain deflects from positive values 

(shrinkage of rock specimen) to negative values (dilatancy of rock specimen) before 

brittle fracturing. However, axial permeability does not increase due to the increase of 

porosity at this stage. Rather the decrease of axial permeability is accelerated. To 

understand this phenomenon, it is important to bear in mind that the intact Berea 
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sandstone is very permeable, with an initial fluid permeability of about 90 mD. Pore 

space is homogeneously distributed and well-sorted, and flow paths are well established. 

As rock specimen is deformed under stress, microcracking tends to destroy original pore 

structures and flow paths. As a result, the tortuosity of pore space is significantly 

increased, which leads to accelerated axial permeability decrease. At the time of brittle 

fracturing, the decrease of axial permeability is further accelerated (more obvious in Fig. 

4.18). The creation of macroscopic fracture (Fig. 4.5) does not increase the ease of fluid 

flow in the axial direction. This can be explained when comparing intact rock surface 

and fracture rock surface of SEM images in later sections. As fractured rock specimen 

starts sliding, axial permeability continues to decrease at a lower speed. 

 
 
 

 

Fig. 4.18 Differential stress and axial permeability versus strain (Berea sandstone Pc = 
8.2 MPa) 
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Fig. 4.19 Differential stress and axial permeability versus strain (Berea sandstone Pc = 
18.5 MPa) 
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on axial permeability as at low confining pressure, except at the time of brittle 

fracturing. 

Zhu and Wong (1997) observed similar phenomenon from triaxial compression 

tests on different sandstones. Before the onset of dilatancy, both axial permeability and 

porosity decrease with increasing stress. As rock starts dilating, axial permeability 

continues to decrease. And the formation of shear-induced fracture accelerates the 

decrease of axial permeability.  

 
 
 

 

Fig. 4.20 Differential stress and axial permeability versus strain (Berea sandstone Pc = 
32.2 MPa) 
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Fig. 4.21 Differential stress and axial permeability versus strain (Berea sandstone Pc = 
45.9 MPa) 
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Fig. 4.22 SEM images of Berea sandstone: Left, intact rock surface; Right, fracture rock 
surface (200x magnification) 

 
 
 
4.3.2 Indiana limestone 

Continuous axial permeability measurement was also performed during triaxial 

compression tests on Indiana limestone. Figs. 4.23-25 show stress-strain curves and 

corresponding axial permeability change of three triaxial compression tests at different 

confining pressures. The axial permeability of intact Indiana limestone is around 1 mD. 

Although Indiana limestone is much less permeable than Berea sandstone, the axial 

permeability variation of Indiana limestone is in general similar to that of Berea 

sandstone. 

As with Berea sandstone, rock deformation is divided into three stages based on 

the characteristics of stress-strain curves: linear elastic deformation, inelastic 

deformation and after peak strength. It can be seen that Indiana limestone demonstrates 

appreciable ductile behavior. No drastic drop in differential stress is observed at low 
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confining pressure (10.9 MPa) and work hardening is observable at high confining 

pressure (17.4 MPa). Therefore it is believed that inelastic deformation such as 

microcracking is more homogeneously developed in the rock specimen. 

For Indiana limestone, the variation of axial permeability is also well correlated 

to different deformational stages. At all three tested confining pressure levels, the 

variation of axial permeability behaves very similar in the first two stages. In the linear 

elastic deformation stage, axial permeability decreases at relatively lower speed. Unlike 

Berea sandstone, the decrease of axial permeability no longer resembles linear 

relationship. In the inelastic deformation stage, axial permeability tends to decrease more 

rapidly. It is interesting to note that the decrease of axial permeability first accelerates 

and then decelerates, which is shown in all three tests. This phenomenon can be also 

observed in the Berea sandstone which exhibits ductile behavior. At this stage, it seems 

that initial alteration of pore space by process like microcracking has a stronger impact 

on axial permeability. As pore space is further altered, the decrease of axial permeability 

tends to stabilize to a lower speed. In the third stage, different Indiana specimen behaves 

rather differently. At low confining pressure (10.9 MPa), axial permeability reverses 

from decrease to increase. At intermediate confining pressure (17.4 MPa), axial 

permeability increases slightly at the end. While at high confining pressure (30.2 MPa), 

axial permeability decreases slightly at the end. 
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Fig. 4.23 Differential stress and axial permeability versus strain (Indiana limestone Pc = 
10.9 MPa) 

 
 
 

 

Fig. 4.24 Differential stress and axial permeability versus strain (Indiana limestone Pc = 
17.4 MPa) 
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Fig. 4.25 Differential stress and axial permeability versus strain (Indiana limestone Pc = 
30.2 MPa) 
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pore space and microcracks are connected after formation of fracture, which results in an 

increase in axial permeability. From Fig. 4.9 we can see that the rock specimen tested at 

low confining pressure (10.9 MPa) developed a single fracture, while the other two 

specimens tested at higher confining pressures (17.4 MPa, 30.2 MPa) have no noticeable 

fractures. The presence of macroscopic fracture helps connect pore space and 

microcracks on two sides of fracture surface, which results in the increase of axial 

permeability after failure. While at confining pressure of 30.2 MPa, rock specimen 

exhibits work hardening, which indicates the shear-enhanced cataclastic flow as the 

major deformation mechanism. As microcracking distributes fairly homogenously 

throughout rock specimen, pore structure is further altered, resulting in increasing 

tortuosity and decreasing axial permeability. The test at confining pressure of 17.4 MPa 

seems to be transitional, microcracking distributes rather locally. The variation of axial 

permeability depends on the extent of localization of inelastic deformation. 

 
 

  

  

Fig. 4.26 SEM images of Indiana limestone: Left, intact rock surface; Right, fracture 
rock surface (200x magnification) 
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4.3.3 Westerly granite 

The permeability of intact Westerly granite is in nanodarcy scale; our 

experimental setup is not capable of measuring such a low permeability. As a result, 

axial permeability was not measured for Westerly granite before failure. However, 

attempts were made to measure the axial permeability after rock failure. For uniaxial 

compression test, multiple vertical fractures were created after failure. Rock specimen 

was kept at a constant initial hydrostatic pressure of 10.4 MPa for some time, which 

allowed the fractured dry specimen to be fully saturated. The saturation process was long 

enough so that a steady flow of pore fluid was established. Then hydrostatic pressure 

was increased at a constant rate of 3.5 MPa/min, which was slow enough to allow 

continuous axial permeability measurement. Fig. 4.27 shows the hydrostatic pressure 

and axial permeability versus volumetric strain. As shown in the plots, the decrease of 

axial permeability experiences two stages. At initial loading, axial permeability 

decreases rapidly, which is mostly due to the rapid initial fracture closure. As hydrostatic 

pressure further increases, the contact of fracture planes reaches a point that fracture 

closure slows down. As a result, the decrease of axial permeability slows down as well. 
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Fig. 4.27 Hydrostatic pressure and axial permeability versus volumetric strain 
(Uniaxially fractured Westerly granite) 
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vertical fractures, while only one fracture connects the end surfaces of rock specimen for 

triaxial compression test at 20.7 MPa confining pressure. This is probably the main 

reason that uniaxially fractured specimen has a much higher initial axial permeability. 

4.3.4 Summary 

In this section, the axial permeability data was analyzed along with triaxial 

compression test data for Berea sandstone, Indiana limestone and Westerly granite.  

SEM images were used to improve the understanding of the effect of rock deformation 

on axial permeability variation. Axial permeability can be well correlated to different 

rock deformational stages. It was found that rock deformation alters pore structures and 

hence impact fluid flow through rock. For permeable rock like Berea sandstone and 

Indiana limestone, the destruction of pore structure by rock deformation usually leads to 

the decrease of axial permeability. For tight rock like Westerly granite, fractures created 

by rock deformation significantly improve the ease of fluid flow. 

4.4 Acoustic emission monitoring 

It was intended to monitor acoustic emission response during triaxial 

compression and axial permeability measurement. However, the flow of pore fluid 

generates significant amount of high strength noise, which completely blankets the 

signal generated during rock deformation. As a result, there is no point to monitor AE 

during triaxial compression with axial permeability measurement as no valuable 

information can be obtained. In order to obtain AE data of Berea sandstone and Indiana 

limestone, AE monitoring was performed on a different set of specimens without axial 

permeability measurement at corresponding confining pressures. This set of specimens 
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was prepared from the same block for axial permeability measurement. For Westerly 

granite and tuff, AE monitoring was conducted on the same set of specimens as axial 

permeability measurement was only attempted after rock failure. 

4.4.1 Berea sandstone 

AE monitoring was performed on Berea sandstone at confining pressures of 8.2 

MPa, 18.5 MPa, 32.2 MPa and 45.9 MPa, which correspond to the confining pressure 

levels used in the axial permeability measurement. The threshold amplitudes used in 

these tests are around 55 dB. Figs. 4.28-31 show stress-strain curves as well as AE rate 

versus axial strain curve. AE data was collected with the change of time. The axial strain 

in the AE rate curve was converted from time by multiplying strain rate applied during 

triaxial compression test.  

At confining pressure of 8.2 MPa (Fig. 4.28), AE rate stays at low level at the 

early stage of loading. It increases with increasing stress. After peak strength, AE rate 

reaches its peak value and maintains at high level until the final fracturing of rock 

specimen.  

At confining pressure of 18.5 MPa (Fig. 4.29), AE rate keeps increasing until the 

time of rock failure. It drops to a low level with the drop of differential stress at the time 

of brittle fracturing. As broken rock specimen starts sliding, AE rate climbs and 

maintains at a level during steady frictional sliding. 
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Fig. 4.28 Differential stress and AE rate versus axial strain (Berea sandstone Pc = 8.2 
MPa) 

 
 
 

 

Fig. 4.29 Differential stress and AE rate versus axial strain (Berea sandstone Pc = 18.5 
MPa) 

 
 
 
 
 
 

0

50

100

150

200

250

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2

A
E 

R
at

e 
(e

ve
nt

/s
ec

on
d)

 

D
iff

er
en

tia
l  

St
re

ss
 (M

Pa
) 

Strain (%) 

Berea Sandstone Pc=8.2MPa 

Differential Stress

AE Rate

0

100

200

300

400

500

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A
E 

R
at

e 
(e

ve
nt

/s
ec

on
d)

 

D
iff

er
en

tia
l  

St
re

ss
 (M

Pa
) 

Strain (%) 

Berea Sandstone Pc=18.5MPa 

Differential Stress

AE Rate



 

60 

 

At higher confining pressure levels (32.2 MPa and 45.9 MPa, Figs. 4.30-31), AE 

rate quickly increases to its peak value and maintains at this high level until sliding 

occurs. It is interesting to note that the highest AE rate at confining pressures of 18.5 

MPa, 32.2 MPa and 45.9 MPa is consistently similar, which is around 300 

events/second. High AE rate marks strong microcracking during loading. It is apparent 

that higher confining pressure leads to longer period of strong microcracking. As a 

result, pore structure would be more severely destroyed, resulting in more pronounced 

permeability decrease. 

 
 
 

 

Fig. 4.30 Differential stress and AE rate versus axial strain (Berea sandstone Pc = 32.2 
MPa) 
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Fig. 4.31 Differential stress and AE rate versus axial strain (Berea sandstone Pc = 45.9 
MPa) 
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for limestone, the inelastic deformation mainly comes from pore collapse, which initiates 

from stress concentration on the surface of pore structure. It seems that grain crushing in 

Berea sandstone produces much higher acoustic energy, comparing to pore collapse in 

Indiana limestone. 

 
 
 

 

Fig. 4.32 Differential stress and AE rate versus axial strain (Indiana limestone Pc = 10.9 
MPa) 
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Fig. 4.33 Differential stress and AE rate versus axial strain (Indiana limestone Pc = 17.4 
MPa) 

 
 
 

 

Fig. 4.34 Differential stress and AE rate versus axial strain (Indiana limestone Pc = 30.2 
MPa) 
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4.4.3 Westerly granite 

AE monitoring was conducted for all three compression tests on Westerly 

granite. Figs. 4.35-37 show stress-strain curves as well as AE rate versus axial strain 

curve.  

For uniaxial compression test, AE rate increases with increasing axial strain and 

reaches its peak value at the time of failure. After failure, AE rate decreases to almost 

zero. It can be seen in Fig. 4.12 that several vertical fractures were created. As axial 

strain further increases, rock specimen almost lost its entire load carrying capability. 

 
 
 

 

Fig. 4.35 Differential stress and AE rate versus axial strain (Westerly granite uniaxial 
compression) 
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rock specimen slides. It can be seen that rock sliding generates relatively constant AE 

response. 

 
 
 

 

Fig. 4.36 Differential stress and AE rate versus axial strain (Westerly granite Pc = 6.9 
MPa) 

 
 
 

For triaxial compression test at confining pressure of 20.7 MPa (Fig. 4.37), 

similarly, AE rate increases with increasing axial strain and reaches its peak value before 

failure. Comparing to lower confining pressure, the peak value of AE rate is reached 

earlier with respect to the peak strength of rock specimen. At the time of failure, AE rate 

doesn’t drop but maintains at the peak value.  
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Fig. 4.37 Differential stress and AE rate versus axial strain (Westerly granite Pc = 20.7 
MPa) 

 
 
 

For three different compression tests, peak AE rate increases with increasing 

confining pressure. This indicates that more damage is accumulated in rock to arrive at 

failure at higher confined conditions. 

4.4.4 Tuff 

AE monitoring was performed on all three tuff specimens at the same confining 

pressure. The AE response of tuff specimens is different from all other three rock types 

(Figs. 4.38-40). In the linear elastic part of the stress-strain curve, AE rate is almost zero. 

As rock starts yielding, AE rate increases rapidly and attains its peak value after peak 

strength of rock. Unlike Berea sandstone and Westerly granite which almost maintain a 

constant peak value, AE rate fluctuates considerably at high level for tuff specimens. 

Comparing to Berea sandstone and Westerly granite, the peak value of AE rate for tuff is 

much lower, which is below 50 events/second. 
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Fig. 4.38 Differential stress and AE rate versus axial strain (Tuff-3V Pc = 20.7 MPa) 
 
 
 

 

Fig. 4.39 Differential stress and AE rate versus axial strain (Tuff-4V Pc = 20.7 MPa) 
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Fig. 4.40 Differential stress and AE rate versus axial strain (Tuff-1H Pc = 20.7 MPa) 
 
 
 
4.4.5 Summary 

In this section, the AE data was analyzed along with triaxial compression test 

data of four types of rocks. Although each rock type has its unique AE response during 

rock deformation, it seems that the AE response can be well correlated to the brittleness 

and ductility of rock. Ductile rocks like Indiana limestone and tuff generate very low AE 

response, while brittle Berea sandstone and Westerly granite produce much higher AE 

rate throughout rock deformation. 
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5. CONCLUSION & RECOMMENDATION 

 

In this study, four different rock types, including Berea sandstone, Indiana 

limestone, Westerly granite and tuff, were tested for mechanical, axial permeability and 

acoustic emission data. Based on experimental results, following conclusions can be 

drawn  

1. Mechanical data shows that Berea sandstone and Westerly granite are relatively 

brittle, while Indiana limestone and tuff are relatively ductile. 

2. Rock deformation alters pore structures and hence impact fluid flow through rock. 

For permeable rock like Berea sandstone and Indiana limestone, the destruction of 

pore structure by rock deformation usually leads to decrease of axial permeability. 

For tight rock like Westerly granite, fractures created by rock deformation 

significantly improve the ease of fluid flow. 

3. AE response of rock deformation is strongly dependent on rock type. Brittle Berea 

sandstone and Westerly granite produce high AE rate during compression test, while 

ductile Indiana limestone and tuff generate very low AE rate. 

Recommendations for future work are listed as follows 

1. It is recommended to apply alternative permeability measurement technique to 

measure permeability variation of tight rock during triaxial compression test before 

failure. 
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2. It is also interesting to test more rock types with wider permeability range, so that 

more comprehensive study can be performed on the dependence of permeability on 

rock deformation.  
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