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ABSTRACT

In this thesis, we study time-dependent empirical processes, which extend the classi-

cal empirical processes to have a time parameter; for example the empirical process

for a sequence of independent stochastic processes {Yi : i ∈ N}:

(1) νn(t, y) = n−1/2

n∑
i=1

[1Yi(t)≤y − P(Yi(t) ≤ y)], t ∈ E, y ∈ R.

In the case of independent identically distributed samples (that is {Yi(t) : i ∈ N}

are iid), Kuelbs et al. (2013) proved a Central Limit Theorem for νn(t, y) for a large

class of stochastic processes.

In Chapter 3, we give a sufficient condition for the weak convergence of the

weighted empirical process for iid samples from a uniform process:

(2) αn(t, y) := n−1/2

n∑
i=1

w(y)(1Xi(t)≤y − y), t ∈ E, y ∈ [0, 1]

where {X(t), X1(t), X2(t), · · · } are independent and identically distributed uniform

processes (for each t ∈ E, X(t) is uniform on (0, 1)) and w(x) is a “weight” func-

tion satisfying some regularity properties. Then we give an example when X(t) :=

Ft(Bt) : t ∈ E = [1, 2], where Bt is a Brownian motion and Ft is the distribution

function of Bt.

In Chapter 4, we investigate the weak convergence of the empirical processes for

non-iid samples. We consider the weak convergence of the empirical process:

(3) βn(t, y) := n−1/2

n∑
i=1

(1Yi(t)≤y − Fi(t, y)), t ∈ E ⊂ R, y ∈ R
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where {Yi(t) : i ∈ N} are independent processes and Fi(t, y) is the distribution

function of Yi(t). We also prove that the covariance function of the empirical process

for non-iid samples indexed by a uniformly bounded class of functions necessarily

uniformly converges to the covariance function of the limiting Gaussian process for

a CLT.
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NOMENCLATURE

N the set of positive integers 1, 2, 3, · · ·

Q the set of the rational numbers

R the set of the real numbers

iid independent and identically distributed

a.s. almost surely

rv random variable, which is measurable

re random element, which need not be measurable

(Ω,A,P) the underlying probability space; i.e. the canonical

product space of the laws of all independent rv’s or re’s

E expectation on (Ω,A,P)

E∗, P∗ outer expectation on (Ω,A,P)

E∗, P∗ inner expectation on (Ω,A,P)

X, Xnj, X(t), Xt, Xnj(t) random variables or processes on (Ω,A,P)

P , Pnj laws of X, Xnj or laws of X(t), Xnj(t) if defined

Pf , Pnjf
∫
f dP ,

∫
f dPnj

F (·) distribution function of X

F (t, ·), Ft(·) distribution function of X(t)

E(X|Y ), EY (X) conditional expectation of X given Y

F a collection of functions on the sample (state) space

`∞(T ) all bounded functions: T → R

1A indicator function of A

νn(f) n−1/2
∑n

1 (f(Xj)− Ef(Xj))

GP (f), f ∈ F a Gaussian process indexed by F with covariance P(fg)− PfPg
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ρP (f, g) the variance (pseudo) distance (P((f − g)− P(f − g))2)1/2

eP (f, g) the L2 (pseudo) distance (P(f − g)2)1/2

:= equal by definition

L−→; ⇒ convergence in law; weak convergence

CLT Central Limit Theorem

FCLT Functional Central Limit Theorem

df distribution function
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1 INTRODUCTION

1.1 Introduction

Empirical process theory is not only a rich part of probability theory as for example

it has properties “close” to that of a Brownian motion but also a foundation of many

statistical procedures as many statistics, e.g. the Kolmogorov-Smirnov, Cramer-von

Mises and Anderson-Darling statistics, can be seen as functionals of the empirical

processes. The weak convergence or the Central Limit Theorem (CLT) says that

the empirical process is close to a Gaussian process “in distribution” when n is big

enough. Thus in many situations, the empirical process and the limiting Gaussian

process can be exchangeable whichever is more convenient in practice.

Let {X,X1, X2, · · · } be independent real valued random variables (rv’s) with

distribution function (df) F . Let

Fn(x) := Fn(x;ω) =
1

n

n∑
i=1

1(−∞,x](Xi(ω)), −∞ < x <∞

be the (random) empirical distribution function, which is the distribution function

of the (random) empirical measure

Pn(·) := Pn(·;ω) :=
1

n

n∑
i=1

δXi(ω)(·)

where δx assigns mass one at x, i.e. δx(A) = 1 if x ∈ A and δx(A) = 0 otherwise

for any A ⊂ R. In the literature as well as in this thesis, the ω in Fn(·;ω) and

Pn(·;ω) will be omitted. The empirical process based on the samples {X1, X2, · · · }
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with common df F (x) is

νn(x) := n1/2(Fn(x)− F (x)), −∞ < x <∞.

Given a uniform random variable ξ on (0, 1) and a df F , if let

F−(t) := inf{x : F (x) ≥ t}, t ∈ (0, 1),

and X = F−1(ξ), then

{ω : X ≤ x} = {ω : ξ ≤ F (x)}

(cf. Shorack and Wellner (1986) p. 4).

Let {ξ, ξ1, ξ2, · · · } denote independent uniform (0, 1) rv’s, and let Un(t) be the

empirical process of these rv’s:

Un(t) := n−1/2

n∑
i=1

[1ξi≤t − t], t ∈ [0, 1],

which will be called the uniform empirical process. Then (cf. Shorack and Wellner

(1986) p. 4)

Theorem 1.1.1 (cf. Shorack and Wellner (1986), Theorem 2, p. 4). The

sequence of random functions

{n1/2(Fn(·)− F (·)) : n = 1, 2, · · · }

and the sequence of

{Un(F (·)) : n = 1, 2, · · · }

2



on (−∞,∞) have identical probabilistic behavior.

See more detail in Chapter 4, Section 1.

Hence by replacing the argument in Un(·) with the deterministic function F (·),

we can reduce the empirical process for general iid random variables to the uniform

empirical process. In this sense, the uniform empirical process should be of central

importance.

Doob’s heuristic Doob (1949) says, when n is big enough, one can replace func-

tionals of the process {Un(t) : t ∈ [0, 1]} by the corresponding functionals of the Brow-

nian bridge process [0, 1], which is a Gaussian process with covariance min(s, t)− st

for s, t ∈ [0, 1]. This is rigorously proved by Donsker (cf. Donsker (1952)).

Dudley’s paper Dudley (1978) extended Donsker’s theorem to empirical pro-

cesses indexed by a class, C, of Borel measurable sets:

νn(C) := n−1/2
∑
i≤n

(1C(Xi)− E1C(Xi)), C ∈ C.

In turn it is extended to the so called Functional Central Limit Theorem (FCLT).

Let {X,X1, X2, · · · } be independent random elements taking values in an arbitrary

measure space (S,S) with Pi = L(Xi). The empirical measure of {X,X1, X2, · · · }

on S is

Pn = n−1

n∑
i=1

δXi .

The corresponding empirical process is

νn = n−1/2

n∑
i=1

(δXi − Pi).

For a function f on S, write µ(f) =
∫
f dµ for any measure or signed measure µ.

3



Further if given a class of functions F on S, νn can be viewed as a process indexed

by F :

νn(f) = n−1/2

n∑
i=1

(f(Xi)− Ef(Xi)), f ∈ F .

For example, for the set indexed empirical process, the class of functions is F :=

{1C : C ∈ C}; and for the classical empirical process

n−1/2

n∑
i=1

(1(−∞,x](Xi)− F (x)),

for iid samples {X1, X2, · · · } with common df F (x), the class of functions is F =

{1(−∞,x] : x ∈ R}. We will review some FCLT results in Chapter 2, Section 4.

Another important aspect of the classical empirical process theory is the weighted

empirical process:

wn(t) := n−1/2

n∑
i=1

w(t)(1[0,t](Ui)− t), t ∈ [0, 1]

where w(t) is a positive function on (0, 1), symmetric about 1/2, non-increasing

near 0, and limx↓0w(x) = limx↑1w(x) = ∞ and where the rv’s {U1, U2, · · · } are

iid uniform (0, 1). The weighted empirical process is, for example, related to the

Anderson-Darling statistic:

∫ ∞
−∞

n(Fn(x)− F (x))2w(x)2 dx

where w(x) = (F (x)(1− F (x)))−1/2. When w(x) ≡ 1, we get the Cramér-von Mises

statistic.

In the probability aspect, the weighted empirical process is related to the upper

class functions for Brownian motion. Let q(t) (throughout this thesis w(t) = 1/q(t))
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be a function on (0, 1/2] such that infδ≤s≤1/2 q(s) > 0 for all 0 < δ < 1/2 (then we

call it positive) and non-decreasing in a neighborhood of 0. Let

(1.1) β := lim sup
t↓0

|B(t)|/q(t).

By Blumenthal’s 0-1 law (cf. Itô and McKean (1965), p. 25), β is a constant

a.s. If β < ∞, then q(t) is called a Erdös-Feller-Kolmogorov-Petrovski (EFKP)

upper-class function of the Brownian motion (equivalently of the Brownian bridge)

at 0 (cf. Csörgő et al. (1986)); if β = 0, then q(t) is called a Chibisov-O’Reilly

function (weight function). If let {B(t) : t ∈ [0, 1]} be the Brownian bridge, then

B(t) has variance t(1 − t), hence near 0, we can roughly say it grows about t1/2.

One question is to characterize the class of functions q(t) such that the weighted

Brownian bridge B(t)/q(t) is continuous (so called pre-Gaussian property for the

CLT of the weighted empirical process). Since the uniform empirical process, say

{Un(t) : t ∈ [0, 1]}, converges weakly to B(t), another question is to ask whether such

a q(t) also suffice the weak convergence of Un(t)/q(t) to B(t)/q(t)? These questions

are first investigated Čibisov (1964b)), then O’Reilly (1974), and many others, e.g.

Einmahl et al. (1988), Alexander (1987b), Csörgő et al. (1986). In the literature, it

is called the Chibisov-O’Reilly theorem. There are various results by many authors;

Theorem 4.2.1 (3.1.9) in Csörgő et al. (1986) gives a unified answer. we will review

them in Chapter 3, Section 1.

1.2 Summary of the thesis

In many situations, the samples (data) are functions as in the stock market. In

[Swa07], Swanson proved the following. If we write MN(t) for the median of N

independent standard Brownian motion, then N1/2MN(t) converges weakly to a con-
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tinuous Gaussian process {Gt : 0 ≤ t <∞} with covariance

EGsGt = sin−1(
s ∧ t√
st

).

Inspired by this result, Kuelbs et al. (2013) considered a empirical process involv-

ing time dependent data. Given independent and identically distributed stochastic

processes {Y (t), Y1(t), Y2(t), · · · } for t ∈ E, form the empirical process

νn(t, y) = n−1/2

n∑
1

(1Yi(t)≤y − P(Yi(t) ≤ y)), t ∈ E, y ∈ R.

If the process Y (t) satisfies the so called L-condition (see Definition 3.2.5), then

νn(t, y) converges weakly to a mean zero Gaussian process with covariance

EG(s, x)G(t, y) = P(Ys ≤ x, Yt ≤ y)− P(Ys ≤ x)P(Yt ≤ y).

As in the classical empirical process theory, there are two important questions

that one can study: one is the weighted empirical process and the other is the

empirical process for non-iid samples. Thus in this thesis, we pursue in these two

directions but for time-dependent data. We call a process {Xt : t ∈ E} a uniform

process if X(t) is uniformly distributed on (0, 1) for each t ∈ E. We consider the

time dependent weighted empirical process:

(1.2) αn(t, y) := n−1/2

n∑
i=1

w(y)(1Xi(t)≤y − y), t ∈ E, y ∈ [0, 1]

where {X(t), X1(t), X2(t), · · · } are independent and identically distributed uniform

processes. We proved that (Theorem 3.3.3) given iid uniform processes {X(t), X1(t), X2(t), · · · }

on E and a weight function w(y), under the WL-condition (see Theorem 3.3.3) on
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the process and the weight function, the empirical process αn(t, y) converges weakly

to a mean zero Gaussian process Gw with covariance

EGw(s, x)Gw(t, y) = w(x)w(y)[P(Xs ≤ x,Xt ≤ y)− xy].

When we specialize that w(x) ≡ 1, our result gives a different proof of Theorem 3

in Kuelbs et al. (2013) (Corollary 3.3.7) provided the df Ft(·) of Xt for each t ∈ E

is strictly increasing; without this assumption the CLT only holds in `∞(T0) for any

countable set T0 ⊂ E × R.

In the second part of this thesis, we consider non-iid samples. Since there is

no canonical law as in the iid case, which is the common law P , the average of the

first n individual laws {Pj : 1 ≤ j ≤ n} will take this role. We usually need a

uniform bound in n on these averages to suffice a CLT. Given independent processes

{Y1(t), Y2(t), ·} on E, let

νn,t(·) = n−1

n∑
j=1

P(Yj(t) ≤ ·).

If each Yj satisfies the L-condition in addition to some assumptions about νn,t(·) for

all t ∈ E (νn,t-condition), a CLT for the time-dependent empirical process for non-iid

samples (Theorem 4.2.1) follows.

In this section, we also prove it is necessary for the weak convergence of empirical

processes for non-iid samples indexed by a uniformly bounded class of functions that

the covariance function of the empirical process converges uniformly to that of the

limiting process.

Next we briefly discuss the proofs. The definition of weak convergence we will

use is as in Hoffmann-Jørgensen’s theory about general convergence of stochastic

7



processes (Hoffmann-Jørgensen (1991)), which uses outer expectation with respect to

the underlying probability space (cf. Andersen et al. (1988), p. 274). The definition

will be introduced in detail in the second section. In our setting, the sample space is

`∞(E × R) of all bounded functions on E × R and the limiting process takes values

with probability one in the separable space Cu
b (E×R) of all bounded and uniformly

continuous functions with respect to the L2 (pseudo) metric of the limiting process

on E × R.

We will use two theorems in Andersen et al. (1988) to prove our results; one is

for iid samples (Andersen et al. (1988), Theorem 4.4) and the other is for non-iid

samples (Andersen et al. (1988), Theorem 4.1). They are given in Chapter 2, Section

5. According to them, two main parts need to be established.

In order to have a CLT (weak convergence to a Gaussian limit), “a limit” has to

exist. One main part of the proof of a CLT is to establish some regularity property of

the limiting Gaussian process, which is called pre-Gaussian property (or continuity

of a Gaussian process); see precise definitions in Chapter 2. There are different meth-

ods for continuity of a Gaussian process, for example entropy methods (cf. Dudley

(1967)), majorizing measures (cf. Fernique (1975b)), and generic chaining (cf. Tala-

grand (2005)). Generic Chaining method is a metric characterization of continuity

of a Gaussian process (see Theorem 2.3.6). This characterization gives a comparison

theorem (Theorem 2.3.7), which roughly says if a Gaussian process is dominated

by a continuous Gaussian process, then it is continuous. In the proofs of our main

results, we find continuous dominating Gaussian processes under assumptions (like

L-condition, WL-condition or “νn,t-condition”). Hence the comparison theorem gives

the continuity of the limiting Gaussian processes of the time dependent empirical pro-

cesses; see Theorem 3.3.9, which gives a simpler proof of the pre-Gaussian property

than in Kuelbs et al. (2013), and Corollary 3.3.13, and Lemma 4.2.9.
8



The other is some form of small oscillation of the index set (or finite approxima-

tion of it), which is in Andersen et al. (1988) called the local modulus condition. It

roughly says the weak L2 norm of the local modulus (not uniform modulus) on each

“ε-Gaussian ball” (ball in the index set of radius ε with respect to a continuous Gaus-

sian metric) is O(ε). Under the assumptions (the same L-condition, WL-condition,

or “νn,t-condition”!) of our theorems, there exist continuous Gaussian distances and

with respect to which the local modulus condition holds.

9



2 OVERVIEW OF FUNCTIONAL CENTRAL LIMIT THEOREM

2.1 Weak convergence in `∞(T )

The definition of weak convergence we will use is a special case of weak convergence

in `∞(T ) of all bounded functions on an arbitrary set T , endowed with the uniform

norm: for z ∈ `∞(T )

‖z‖ := ‖z‖T := sup
t∈T
|z(t)|.

Let f : (Ω,A,P)→ R be any function. Define the outer integral of f by

P∗f = inf{Pg : g ≥ f and g is (A,B(R)) measurable},

and the inner integral

P∗f = sup{Pg : g ≤ f and g is (A,B(R)) measurable}.

For any set A ⊂ Ω, define the outer probability P∗(A) = P∗(1A) and inner probability

P∗(A) = P∗(1A).

Since (`∞(T ), ‖ · ‖) is generally non-separable, we first review some definitions

and results about weak convergence in a (generally non-separable) metric space, say

(S, d). Let S0 be the σ-algebra generated by open ball in (S, d). Let B(S) be the

Borel σ-algebra (generated by open sets in (S, d)). Dudley (1966) and Wichura (1968)

defined the weak convergence of a net of probability measures defined on different

σ-algebras, say Pα defined on Sα with S0 ⊂ Sα ⊂ B(S), to a tight Borel measure P0

10



on (S, d) if

lim
α
P ∗α(f) = P0(f) = lim

α
(Pα)∗(f)

for each bounded continuous f : S → R where P ∗α(f) and (Pα)∗(f) are the outer and

inner integral of f respect to Pα.

Hoffmann-Jørgensen (1991) suggested a weak convergence for random elements

in (S, d).

Definition 2.1.1 (cf. Gaenssler (1992)). Let (S, d) be an arbitrary (non-

separable in general) metric space and (Ωn,An,Pn) be a sequence of probability

spaces. Further for n = 1, 2, · · · let ηn : Ωn → S be arbitrary maps and η0 : Ω0 → S

be (A0,B(S))-measurable (where B(S) denotes the Borel-σ-algebra in (S, d)).

Let Cb(S) := {f : S → R : f bounded and d-continuous}. Then

ηn
L−→ η0 if and only if lim

n→∞
E∗f(ηn) = Ef(η0) for all f ∈ Cb(S).

If, in addition, for some separable subspace S0 of S with S0 ∈ B(S),P(η0 ∈ S0) = 1,

we write ηn
L−→
sep

η0 or ηn ⇒ η0 and say ηn converges weakly to η0. For weak

convergence of the empirical measure, we always require the limiting map η0 with

probability one taking values in a separable subspace S0 ⊂ S.

In this thesis, the metric space (S, d) is (`∞(T ), ‖ · ‖).

In this section, Xn : (Ωn,An,Pn)→ (S, d) for n = 1, 2, · · · will denote a sequence

of arbitrary maps, where (Ωn,An,Pn) is a probability space and (S, d) is a metric

space. We use E∗ or P∗ denote the outer expectation on (Ωn,An,Pn) instead of P∗n

if no confusion occurs. The same applies to E∗ or P∗.

To characterize the weak convergence in (`∞(T ), ‖ · ‖), we need a concept of

tightness of a family of random elements.

11



Definition 2.1.2. A sequence of random elements Xn in (S, d) is asymptoti-

cally tight if for every ε > 0 there exists a compact set K such that

lim inf
n→∞

P∗(Xn ∈ Kδ) ≥ 1− ε, for every δ > 0.

Here Kδ = {y ∈ S : d(y,K) < δ}.

In the classical theory when (S, d) is C([0, 1]) with uniform metric or D([0, 1])

with Skorokhod metric, the uniform tightness is used instead.

Definition 2.1.3. A sequence of Borel measurable maps Xn in (S, d) is uni-

formly tight if for every ε > 0 there exists a compact set K such that

P(Xn ∈ K) ≥ 1− ε, for all n.

Remark 2.1.4 (see van der Vaart and Wellner (1996), p. 27 Exercise 9). For

Borel measurable sequences in a Polish space, uniform tightness and asymptotic

tightness are the same.

Theorem 2.1.5 (cf. van der Vaart and Wellner (1996), Theorem 1.5.4). Let

Xn : Ωn → `∞(T ) be arbitrary. Then Xn converges weakly to a tight limit if and only

if Xn is asymptotically tight and the marginals Xn(t1), · · · , Xn(tk) converge weakly

to a limit for ever finite subset t1, · · · , tk of T . If Xn is asymptotically tight and

its marginals converges weakly to the marginals (X(t1), · · · , X(tk)) of a stochastic

process X, then there is a version of X with uniformly bounded sample paths and Xn

converges weakly to X.

To prove the weak convergence, the main task is to establish tightness. The

following are two characterizations.

12



Theorem 2.1.6 (cf. van der Vaart and Wellner (1996), Theorem 1.5.6). A

sequence Xn : Ωn 7→ `∞(T ) is asymptotically tight if and only if Xn(t) is asymptoti-

cally tight in R for every t and, for every ε > 0, η > 0, there exists a finite partition

T = ∪ki=1Ti such that

lim sup
n

P∗[sup
i

sup
s,t∈Ti

|Xn(s)−Xn(t)| > ε] < η.

Theorem 2.1.7 (cf. van der Vaart and Wellner (1996), Theorem 1.5.7). A

sequence Xn : Ωn 7→ `∞(T ) is asymptotically tight if and only if Xn(t) is asymptoti-

cally tight in R for every t and there exists a totally bounded pseudo-metric ρ on T

such that the asymptotically uniformly ρ-equicontinuous in probability condition: for

every ε > 0, η > 0, there is a δ > 0 so that

lim sup
n

P∗( sup
ρ(s,t)<δ

|Xn(s)−Xn(t)| > ε) < η

holds.

Since we only consider the limiting process, sayX, is Gaussian (i.e. the marginals

(X(t1), · · · , X(tk)) for any finite subset t1, · · · , tk of T are jointly normal), we have

the following specific characterization.

In the following, ρp(s, t) := (E|X(s)−X(t)|p)1/(p∨1) for 0 < p <∞, where X is

understood as the limiting process.

Theorem 2.1.8 (van der Vaart and Wellner (1996), p. 40 Example 1.5.10).

Let X be a Gaussian process and let Xn be a sequence of random elements with

values in `∞(T ). Then there exists a version of X which is a tight Borel measurable

map into `∞(T ), and Xn converges weakly to X if and only if for some p (and then

for all p):
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(i) the marginals of Xn converges weakly to the corresponding marginals of X;

(ii) Xn is asymptotically equicontinuous in probability with respect to ρp: for every

ε, η > 0, there exists a δ > 0 such that

lim sup
n

P∗( sup
ρp(s,t)<δ

|Xn(s)−Xn(t)| > ε) < η.

(iii) T is totally bounded for ρp

Theorem 2.1.9 (van der Vaart and Wellner (1996), p. 41). A Gaussian process

X in `∞(T ) is tight if and only if (T, ρp) is totally bounded and almost all paths

t→ X(t, ω) are uniformly ρp-continuous for some p and (and then for all p).

2.2 Weak convergence of νn(·) in `∞(F)

As in the introduction, the general empirical process, νn(·), indexed by a classes of

functions, can be seen as an random element in `∞(F), thus the general theory of

weak convergence in `∞(T ) in the previous section applies to the sequence of random

elements (νn(·))n≥1 in `∞(F).

Since we always work in this setting, we state the definition of weak convergence

separately following the definitions as in Andersen et al. (1988).

Let (S,S) be a measure space. Let {Pnj : j = 1, · · · , n, n ∈ N} be probability

measures on (S,S) and let F ⊂
⋂
n,j

L1(S,S, Pnj) such that

sup
f∈F
|f(s)| <∞ for all s ∈ S.

Let also (Ωn,Σn,Prn) = (Sn,Sn, Pn1⊗ · · ·⊗Pnn)× ([0, 1],B, λ), let Xnj : Ωn → S be

the coordinate projections and let {an} be a sequence of real positive numbers. For

14



the following, let E∗ or P∗ denotes Pr∗n, the outer expectation on (Ωn,Σn,Prn).

Recall

Pr∗n(f) := inf{Prn(g) : g ≥ f, g is (Σn,B(R)) measurable }.

Then:

Definition 2.2.1. F satisfies the CLT with centering at expectation with

respect to {Pnj; an} – F ∈ CLT{Pnj; an} for short – if there exists a (centered)

Radon (tight) measure γ on `∞(F) such that for all H : `∞(F) → R bounded and

continuous,

E∗(H(a−1
n

n∑
j=1

(δXnj − Pnj)) →
n→∞

∫
H dγ.

In this case, we say F is {Pnj; an}-Donsker; say F is P -Donsker for iid case with

an = n1/2 and write F ∈ CLT(P ).

For the following ρP (f, g) := (P ((f − g − P (f − g))2)1/2. Following is a conse-

quence in the context of FCLT of Theorem 2.1.8 with p = 2. Also see Giné and Zinn

(1984), Theorem 2.12.

Theorem 2.2.2. The following are equivalent

(i) F is P -Donsker

(ii) (F , ρP ) is totally bounded and νn is asymptotically uniformly ρP -equicontinuous

in probability with respect to ρP : for every ε > 0

lim
δ→0

lim sup
n→∞

P∗( sup
ρP (f,g)<δ

|νn(f)− νn(g)| > ε) = 0
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(iii) (F , ρP ) is totally bounded and νn is asymptotically uniformly ρP -equicontinuous

in mean with respect to ρP :

lim
δ→0

lim sup
n→∞

E∗[ sup
ρP (f,g)<δ

|νn(f)− νn(g)|] = 0

2.3 Pre-Gaussian

In order to have a FCLT (a weak convergence to a limit of a mean zero Gaussian

process), a limit, say G := {G(f) : f ∈ F}, with some regularity property, has to

exist at first place. The covariance and L2 distance of the limiting Gaussian process

are the corresponding limits of the covariance and L2 distance of the empirical process

as n→∞. For iid samples with law P , the covariance and square of the L2 distance

of G are

EG(f)G(g) = P (fg)− PfPg,

E(G(f)−G(g))2 = P [f − g − P (f − g)]2;

and for the non-iid samples with laws {P1, P2, · · · }, they are

EG(f)G(g) = n−1

n∑
i=1

[Pi(fg)− PifPig],

E(G(f)−G(g))2 = n−1

n∑
i=1

[Pi(f − g − P (f − g))2].

If a covariance function is given, by Kolmogorov’s consistency theorem, we can

construct a Gaussian process with the given covariance. If two Gaussian processes

have the same covariance function, then we say they are versions to each other.

Given a law P on a measure space (S,S), recall ρP (f, g) := (P (f − g − P (f −
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g))2)1/2 for f, g ∈ L2(S, P ).

Definition 2.3.1. We say F ⊂ L2(P ) is P -pre-Gaussian if

(i) the mean zero Gaussian process {G(f) : f ∈ F} with covariance Pfg −

PfPg has a version with all the sample functions bounded and uniformly ρP -

continuous and

(ii) the pseudo-metric space (F , ρP ) is totally bounded.

We say such a Gaussian process is continuous (or tight); and we say its L2 distance

dG(f, g) := (E(G(f)−G(g))2)1/2 is a continuous (or tight) Gaussian distance.

Definition 2.3.2. A Radon (tight) measure µ on `∞(F) is a finite Borel mea-

sure µ which is regular from below by compacts, i.e. µ(B) = sup{µ(K) : K ⊂

`∞(F), K is compact }.

This is a rephrase in the context of FCLT of Theorem 2.1.9; also cf. Proposi-

tion 2.3.5 and Theorem 2.3.4.

Theorem 2.3.3. Let F ⊂ L2(P ). The following are equivalent.

(i) F is P -pre-Gaussian.

(ii) the mean zero Gaussian process {G(f) : f ∈ F} with covariance Pfg − PfPg

is tight in `∞(F); that is for every ε > 0, there is a compact set K ⊂ `∞(F)

such that P(G ∈ K) ≥ 1− ε.

The following is a criterion for a subset in `∞(T, ρ) with ρ totally bounded to

be compact.

Theorem 2.3.4 (Arzela-Ascoli; cf. van der Vaart and Wellner (1996), p. 41

Exercise 1). Let (T, ρ) be a totally bounded (pseudo) metric space and K ⊂ `∞(T ).
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Suppose that for some ε > 0, δ > 0 and every z ∈ K: |z(s) − z(t)| < ε whenever

ρ(s, t) < δ. Moreover, suppose {z(t) : z ∈ K} is bounded for every t. Then

(i) K is uniformly bounded;

(ii) K can be covered with finitely many balls of radius 2ε with centers in Cu(T, ρ),

where Cu(T, ρ) is the class of all uniformly continuous functions on (T, ρ).

Consequently, a uniformly bounded, uniformly ρ-equicontinuous subset of `∞(T ) is

totally bounded.

It follows that

Proposition 2.3.5 (cf. Gaenssler and Schneemeier (1990), Corollary 2). Let

(S, d) be a (pseudo) metric space and Cu
b (S, d) be the set of all bounded and uniformly

continuous functions on (S, d). Define ‖z‖S = sups |z(s)| for z ∈ Cu
b (S, d). Then

(Cu
b (S, d), ‖ · ‖S) is separable if and only if (S, d) is totally bounded.

To determine a mean zero Gaussian process has a version with bounded and

uniform continuous sample paths a.s. with respect to its L2 metric, the following is

a metric characterization. We call a sequence of partitions {An : n ∈ N} of a set

T is admissible if the cardinality, |An|, of An is less or equal 22n and the partitions

are increasing. Let ∆d(An(t)) be the diameter of the unique element in An which

contains t.

Theorem 2.3.6 (Talagrand (2005)). Let {Xt : t ∈ T} be a centered Gaussian

process with L2 metric dX where T is countable, and (T, dX) is totally bounded. Then

the following are equivalent:

(i) Xt is uniformly continuous on (T, dX) with probability one.

(ii) limε→0 E( sup
d(s,t)≤ε

(Xs −Xt)) = 0.
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(iii) There exists an admissible sequence of partitions of T such that

lim
k→∞

sup
t∈T

∑
n≥k

2n/2∆dX (An(t)) = 0.

For a complete proof of this theorem, see Kuelbs et al. (2013), Theorem 4.

Using this characterization, the following comparison theorem is immediate,

which gives a criterion of pre-Gaussian property.

Theorem 2.3.7 (cf. Kuelbs et al. (2013), Proposition 1). Let H1 and H2

be mean zero Gaussian processes with L2 distances dH1, dH2, respectively, on T .

Furthermore, assume T is countable, and dH1(s, t) ≤ dH2(s, t) for all s, t ∈ T .

Then, H2 sample bounded and uniformly continuous on (T, dH2) with probability one,

implies H1 is sample bounded and uniformly continuous on (T, dH1) with probability

one.

The assumption that T is countable is not much a restriction provided that T

is given a totally bounded metric. We call following the extension lemma.

Lemma 2.3.8. Let {G(t) : t ∈ T} be a mean zero Gaussian process with co-

variance function ρ. Further assume supt∈T EG(t)2 < ∞. Let dG(s, t) := dρ(s, t) :=

(E(G(s)−G(t))2)1/2. Then, if T0 is a dense set in (T, dG) and the restricted process

{G(t) : t ∈ T0} is sample bounded and uniformly dG-continuous, then {G(t) : t ∈ T}

has a version with bounded and uniformly dG-continuous sample paths.

Before the proof of this lemma, we need the following.

Lemma 2.3.9. Let {Lt : t ∈ T} be a centered Gaussian process with covariance

function γ(s, t). Then

|γ(f, g)− γ(h, l)| ≤M(dL(f, h) + dL(g, l)),
19



where M = supt∈T (EL2
t )

1/2.

Proof. First note that d2
G(f, g) = γ(f, f)− 2γ(f, g) + γ(g, g).

|γ(f, g)− γ(h, l)| = |EL(f)L(g)− EL(h)L(l)|

= |EL(f)L(g)− EL(h)L(g) + EL(h)L(g)− EL(h)L(l)|

≤ |EL(f)L(g)− EL(h)L(g)|+ E|L(h)L(g)− EL(h)L(l)|

≤ (EL(g)2)1/2(E(L(f)− L(h))2)1/2

+ (EL(h)2)1/2(E(L(g)− L(l))2)1/2

≤M(dL(f, h) + dL(g, l)).

Proof of Lemma 2.3.8. We denote the restricted process {G(t) : t ∈ T0} by

G0. Then almost surely its sample paths are uniformly continuous on T0. Each

sample path can be extended to a uniformly continuous sample path on T . Indeed,

if let G0(ω) is a sample path and t ∈ T , then there is a sequence, say (tm) ⊂ T0, such

that dG(tm, t)→ 0 as m→∞ and define G̃(t)(ω) := limm→∞G(tm)(ω). It’s easy to

see it’s well defined and is uniformly dG continuous on T . Let ρ̃ is the covariance of

G̃. It remains to show ρ = ρ̃. But that ρ and ρ̃ coincide on T0 × T0 together with

Lemma 2.3.9 implies they coincide on T × T .

For the boundedness and continuity of a Gaussian process, see, e.g., Dudley

(1967), Dudley (1978), Fernique (1975a), Talagrand (2005) etc.

2.4 Finite Approximation and some Theorems about FCLT

For a FCLT to hold, the size of the class of functions can’t be too big. We review

some different ways to control the size and the related results.
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2.4.1 Vapnik-Červonenkis classes

Let (S,S) be a measurable space. Let C ⊂ S. We recall C ⊂ S is a Vapnik-

Červonenkis (VC) class if the VC dimension of the class:

V (C) := inf{n ∈ N : for any n-subset F ⊂ S, |F ∩ C| < 2n}

is finite.

Theorem 2.4.1. If V (C) < ∞, then for any probability measure on (S,S), C

is a P -Donsker class.

2.4.2 Entropy conditions

Let P be a probability on the measure space (S,S). Let ‖f‖r := (
∫
|f |r dP )1/r.

Define the covering number of F with respect to ‖ · ‖Lr(P ) := ‖ · ‖r

Nr(ε,F , P ) := min{k : for some f1, · · · , fk ∈ Lr(P ), min
1≤i≤k

‖f−fi‖r < ε for all f ∈ F}.

Then function

Hr(ε) := Hr(ε,F , P ) := logNr(ε,F , P )

is called the metric entropy of F in Lr(P ).

Another type of entropy of F is called metric entropy with bracketing. For

f, g ∈ L0(S,S), the set of all real-valued S-measurable functions on S, let

[f, g] := {h ∈ L0(S,S) : f ≤ h ≤ g}.
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Given ε > 0, r > 0, and a probability measure P on (S,S), define

N [ ]
r (ε,F , P ) = min{k : for some f1, · · · , fk ∈ Lr(P ),F ⊂ ∪i,j{[fi, fj] : ‖fi−fj‖ ≤ ε}.

The function

H [ ]
r (ε) := H [ ]

r (ε,F , P ) := logN [ ]
r (ε,F , P )

is called metric entropy with bracketing.

Theorem 2.4.2 (Ossiander’s CLT). Let F ⊂ L2(P ), if

∫ 1

0

[H
[ ]
2 (u,F , P )]1/2 du <∞,

then F ∈ CLT(P ).

The third (combinatorial) entropy (an extension of VC-dimension for classes of

subsets to “VC-dimension” for classes of functions) is called the Kolčinskii-Pollard

entropy. As before let (S,S) be a measurable space and F ⊂ L0(S,S), the space of all

real-valued measurable functions on S. Write FF(x) := supf∈F |f(x)|. A measurable

function F with F ≥ FF will be called an envelope function for F . If a law P is given

on S, then F ∗ := F ∗F for P will be called the envelope function of F for P , defined

up to equality P -a.s. Let Γ be the set of all laws on (S,S) of the form n−1
∑

i≤n δs(j)

for some s(j) ∈ S : j = 1, · · · , n, and n ∈ N where the s(j)’s need not be distinct.

For δ > 0, 0 < p <∞, and γ ∈ Γ let

D
(p)
F (δ, γ,F) := sup{m : for some f1, · · · , fm ∈ F and all i 6= j,

∫
|fi−fj|p dγ > δp

∫
F p dγ}.
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Let

D
(p)
F (δ,F) := sup

γ∈Γ
D

(p)
F (δ, γ,F).

Theorem 2.4.3 (Pollard’s CLT). Let (S,S, P ) be a probability space and F ⊂

L2(S,S, P ). Let F ∗F ≤ F ∈ L2(S,S, P ). Suppose that

∫ 1

0

(logD
(2)
F (x,F)1/2 dx <∞.

Then F is a P -Donsker class.

2.5 AGOZ (Two theorems for FCLT under local conditions)

In the literature, all the theorems about FCLT assume sufficient conditions. The

following two theorems (one for iid-P samples; the other for non-iid samples) are

sharp in some sense. If (cf. Ossiander’s CLT)

∫ 1

0

[H
[ ]
2 (u,F , P )]1/2 du <∞,

then (1) P ∗F 2 < ∞ where F (·) := supf∈F |f(·)| and (2) if GP is the limiting Gaus-

sian process, then its associated distance dG := [E(GP (f)−GP (g))2]1/2 satisfies the

metric entropy condition,
∫

0
log[N(ε,F , dG)]1/2 < ∞, where N(ε,F , dG) is the cov-

ering number of F by dG (the minimal number of balls in F with dG-radius less or

equal to ε). Neither P ∗F 2 < ∞ (although in case supf∈F |Pf | < ∞, the weak L2

norm, t2P ∗(F > t)→ 0, as t→ is (cf. Giné and Zinn (1986), Proposition 2.7) nor is

the entropy condition necessary for GP to have a version with bounded dG-uniformly

continuous sample paths. But the first two conditions in Theorem 2.5.1 are nec-

essary. About condition (iii) in this theorem, improved from Ossiander’s CLT, the

L2-brackets are replaced by Λ2,∞-brackets (here Λ2,∞(X) := [supu>0 u
2P (X > u)]1/2
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for a rv X) and the entropy condition (a sufficient condition for continuity of the

limiting Gaussian process) is replaced by the weaker majorizing measure condition

(which is a sufficient and necessary condition for continuity of a Gaussian process).

Also, Theorem 2.5.1 gives Jain-Marcus central limit theorem for C(S)-valued ran-

dom variables, the Chibisov-O’Reilly theorem without continuity assumption on the

weight, etc.

We will use the following theorem to prove the main result in Chapter 3 for iid

samples. Note that the Gaussian process in (iii) of the following theorem or in (ii)

of the one after it is not necessarily the limiting Gaussian process of the empirical

process; any continuous (tight) Gaussian process would do the job. In the proofs

of our main theorems (Theorem 3.3.3, Theorem 4.2.1), we provide such ones under

assumptions.

Theorem 2.5.1 (Theorem 4.4, Andersen et al. (1988)). Let F ⊂ L2(S,S, P )

and let F (x) := sup{|f(x)| : f ∈ F}. Assume supf∈F |Pf | <∞ and

(i) lim
t→∞

t2P ∗(F > t) = 0.

Assume further that

(ii) F is P-pre-Gaussian

24



and that

(iii)
there exists a bounded and uniformly dG-continuous centered Gaussian process

G such that for all ε > 0 and all f ∈ F

lim
α→∞

α2P ∗([ sup
g∈BdG (f,ε)

|f − g|] > α) ≤ Cε2.

Then F ∈ CLT(P ).

For non-iid samples in Chapter 4, we will use

Theorem 2.5.2 (AGOZ, 1988). Let F ⊂ L1(S,S, Pnj) and such that sup
f∈F
|f(s)| <

∞, and let F be the envelope function of F . Assume

(i) For every k ∈ N, and f1, . . . , fk ∈ F , the finite dimensional distributions

{
L
[
a−1
n

n∑
j=1

(fi(Xnj)− Pnjfi)
]k
i=1

}∞
n=1

converges weakly;

(ii)
∑n

j=1 P
∗
nj{F > tan} −→

n→∞
0 for all t > 0 and that there exits a pseudo-distance

ρ on F dominated by the distance dG of a centered Gaussian process G on F with

bounded uniformly dG-continuous paths, such that

(iii) a−2
n

∑n
j=1 Pnj(f − g)2 ≤ ρ2(f, g) for all f, g ∈ F and

(iv) for all f ∈ F and ε > 0,

sup
t>0

t2
n∑
j=1

P ∗nj{ sup
g∈Bρ(f,ε)

|f − g| > tan} ≤ ε2.
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Then F ∈ CLT{Pnj; an} and the limiting measure is Gaussian.

Note that by the comparison theorem, conditions (iii) in the above theorem

ensures the pre-Gaussian condition for a CLT.
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3 WEAK CONVERGENCE OF WEIGHTED EMPIRICAL PROCESSES

BASED ON UNIFORM PROCESSES

3.1 Introduction

Given a sequence of iid uniform (0, 1) random variables {Xi : i ∈ N}, we can form the

uniform empirical process Un(x) = n−1/2
∑n

i=1(1Xi≤x − x). Donsker’s theorem says

Un(x) converges weakly to the Brownian bridge process B(x), on [0, 1]. Weighted

empirical processes consider suitable weight functions w(x) such that w(x)Un(x) con-

verges weakly to the weighted Brownian bridge process w(x)B(x); in the literature,

such a result is called the Chibisov-O’Reilly theorem. There is a long history of it.

Denote by L(X) the distribution of a real random variable X. That L(Xn) ⇒

L(Xn) is understood as weak convergence of distributions on the real line; that is, if

FXn , FX denote the df’s of Xn, X respectively, then FXn(u) converges to FX(u) for

each u ∈ R at which FX(u) is continuous.

For following Let the function w(t) ≥ 0 is continuous on the interval (0, 1) and

is regularly varying in the neighborhoods of 0 and 1; define a metric for functions

x(t), y(t) on [0, 1] by

ρw(x(t), y(t)) = sup
0<t<1

w(t)|x(t)− y(t)|.

Let Rw be the metric space of functions on [0, 1] without 2nd-type discontinuity (i.e.

only jump or removable discontinuities) with the metric ρw. Let h1(t) = 1/(t1/2w(t))

and h2(t) = 1/(t1/2w(1− t)).

Theorem 3.1.1 (Čibisov (1964a), Theorem 3). A necessary and sufficient con-
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dition that for any continuous functional on Rφ

L[f(βn(u))]→ L[f(β(u))]

is the convergence of the integral

∫
0+

exp(−l2h2
i (u)/2)

du

u
, i = 1, 2

for each l > 0. Here and following
∫

0+
is understood as integration from 0 to any

small constant.

Theorem 3.1.2 (O’Reilly (1974)). Let q(t) be a continuous, nonnegative func-

tion on [0, 1], bounded away from zero on [γ, 1 − γ] for some γ > 0, non-decreasing

(non-increasing) on [0, γ] ([1− γ, 1]). Then

(3.1)

∫ 1

0

t−1 exp(−εh(t)2) dt <∞ for all ε > 0, i = 1, 2

is both necessary and sufficient for the weak convergence of Un(t) to B(t) in (D[0, 1], ρq)

where ρq(x, y) = sup{|x(t) − y(t)|/q(t) : 0 ≤ t ≤ 1} and h1(t) = t−1/2q(t) and

h2(t) = t−1/2q(1− t).

A function q(s) on (0, 1) is going (only in this section) to be called positive if

infδ≤s≤1−δ q(s) > 0 for all 0 < δ < 1/2.

A function q(s) on (0, 1/2] is going (only in this section) to be called positive if

infδ≤s≤1/2 q(s) > 0 for all 0 < δ < 1/2.

Definition 3.1.3. Let q(t) be a positive function on (0, 1/2], non-decreasing

in a neighborhood of 0. Such a q will be called an Erdös-Feller-Kolmogorov-Petrovski
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(EFKP) upper-class function of a Brownian bridge {B(s); 0 ≤ s ≤ 1} if

(3.2) lim sup
t↓0

|B(t)|/q(t) <∞, a.s.

Remarks 3.1.4. (1) By the usual representation of a Brownian bridge in terms

of a standard Wiener process, q is an EFKP upper-class function of a Brownian

bridge if and only if it is an EFKP upper-class function of a standard Brownian

motion (Wiener process).

(2) By Blumenthal’s 0 -1 law (cf. Itô and McKean (1965), p. 25), (3.2) holds if

and only if there is a constant 0 ≤ β <∞ such that

(3.3) lim sup
t↓0

|B(t)|/q(t) = β, a.s.

Definition 3.1.5. A function q(t) (t > 0) belongs to the upper class for a

Brownian motion {B(t) : t ∈ [0, 1]} if

lim
τ→0

P{ sup
0<t≤τ

B(t)

q(t)
> 1} = 0.

Definition 3.1.6. A function q(t) (t > 0) belongs to the lower class for a

Brownian motion {B(t) : t ∈ [0, 1]} if for all τ

P{ sup
0<u≤τ

B(t)

q(t)
> 1} = 1.

Theorem 3.1.7 (Kolmogorov’s test). Let h ∈ C(0, 1] and h > 0 on (0, 1].

Assume h is nondecreasing and h(t)/t1/2 is nonincreasing for small t > 0. Then,

h is in the upper class or lower class according as
∫

0+
t−3/2he−h

2/(2t) dt converges or

diverges.
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The following is a connection between Kolmogorov’s test and Chibisov-O’Reilly

Theorem.

Theorem 3.1.8 (Csörgő et al. (1986), Theorem 3.4). Let q(t) be a positive

function on (0, 1/2], nondecreasing in a neighborhood of zero. The following are

equivalent.

(i) lim sup
t↓0

|B(t)|/q(t) = 0 a.s.

(ii)
∫ 1/2

0
s−3/2q(s) exp(−cs−1q2(s)) ds <∞ for all c > 0

and q(s)/s1/2 →∞ as s ↓ 0.

(iii)
∫ 1/2

0
s−1 exp(−cs−1q2(s)) ds <∞ for all c > 0.

Theorem 3.1.9 (Csörgő et al. (1986), Theorem 4.2.1). Let q(t) be a posi-

tive function on (0, 1) such that it is nondecreasing in a neighborhood of zero and

nonincreasing in a neighborhood of one. On the (common) probability space of The-

orem 1.1 in Csörgő et al. (1986), we have, as n→∞,

sup
0<t<1

|Un(t)−Bn(t)|/q(t) = oP (1)

if and only if

β = 0 in (3.3),

that is, if and only if

(3.4)

∫ 1

0

(t(1− t))−1 exp(−c(t(1− t))−1q(t)2) dt <∞ for all c > 0,

where {Bi(t) : i = 1, 2, · · · } is a sequence of Brownian bridges.

It’s easy to check the functions
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(i) q(t) = tα, α < 1/2,

(ii) q(t) = tαL(t), α < 1/2 and L(t) is slowly varying

(iii) and q(t) = t1/2(log(1/t))α) for any α ≥ 1/2

satisfy (ii) and (iii) in Theorem 3.1.8; but q(t) = t1/2(log log(1/t))1/2 doesn’t.

3.2 KKZ

Given a sequence of independent real rv’s {Y, Y1, Y2, · · · }, we can form the classical

empirical process

νn(y) := n−1/2

n∑
i=1

[1Yi≤y − P(Yi ≤ y)], y ∈ R.

Kuelbs et al. (2013) considered instead iid processes {Y (t), Y1(t), Y2(t), · · · } for t ∈ E

where E is a general parameter set. Under the L-condition (see Definition 3.2.5),

they proved a CLT for the empirical process

νn(t, y) := n−1/2

n∑
i=1

[1Yi(t)≤y − P(Yi(t) ≤ y)], t ∈ E, y ∈ R.

The research in this thesis starts from this result.

Theorem 3.2.1 (Kuelbs et al. (2013)). Let ρ be given by ρ(s, t)2 = E(H(s)−

H(t))2, for some centered Gaussian process H that is sample bounded and uniformly

continuous on (E, ρ) with probability one. Further, assume that for some L < ∞,

and all ε > 0, the L-condition holds, and D(E) is a collection of real valued functions

on E such that Pr(X(·) ∈ D(E)) = 1. If

C = {Cs,x : s ∈ E, x ∈ R},
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where

Cs,x = {z ∈ D(E) : z(s) ≤ x}

for s ∈ E, x ∈ R, then C ∈ CLT(P ).

In this case, we also say the empirical process based on {1Y (t)≤y−P(Y (t) ≤ y) :

t ∈ E, y ∈ R} satisfies the CLT or write {1Y (t)≤y − P(Y (t) ≤ y) : t ∈ E, y ∈ R} ∈

CLT.

3.2.1 L-condition

Definition 3.2.2. Let F (x) be a distribution function on R. The (random-

ized) distributional transform of F (x) is defined as

F̃ (x) := F̃ (x, V ) := F (x−) + (F (x)− F (x−))V,

where V is a uniform random variable on [0, 1].

Next we record some simple properties of the distributional transform.

Lemma 3.2.3. (i) F̃ (x) ≤ F (x) for all x ∈ R.

(ii) If x < y, then F (x) ≤ F̃ (y).

(iii) If x ≤ y, then F̃ (x) ≤ F̃ (y).

(iv) If x < y and F (·) is strictly increasing, then F (x) < F̃ (y).

Proof. By definition, (i) is obvious. For (ii), take x < z < y, hence F (x) ≤

F (z). Since F (z) ≤ F (y−) and F (y−) ≤ F̃ (y), hence F (x) ≤ F̃ (y). For (iii), if

x = y, there is nothing to prove; assume x < y. By (i) and (ii), we get (iii). For

(iiii), take x < z < y. Since F (·) is strictly increasing, F (x) < F (z). But by (ii),

F (z) ≤ F̃ (y). Hence F (x) < F̃ (y).
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For a continuous df F of a random variable X, the random variable F (X) is

uniform on [0, 1]; but for a general df F , this might not be the case. However using

the (randomized) distributional transform overcomes this.

Lemma 3.2.4. If F (x) is the distribution function of a random variable X,

then F̃ (X) := F̃ (X, V ) is uniform on [0, 1]. Here V is a uniform random variable

on [0, 1] independent of X.

Proof. For a proof, see Rüschendorf (2009).

Definition 3.2.5 (L-condition for a stochastic process). Let X = {Xt : t ∈ E}

be a stochastic process. We say the process X satisfies the L-condition if there exists

a continuous Gaussian distance ρ on E such that for every ε > 0

(3.5) sup
t∈E

P∗( sup
s:ρ(s,t)≤ε

|F̃t(X(t))− F̃t(X(s))| > ε2) ≤ Lε2,

where F̃t(·) is the distributional transform of the distribution function Ft(·) of Xt.

3.3 Weak convergence of the time-dependent weighted empirical process

In view of KKZ result (a time-dependent empirical process taking processes as sam-

ples) and the classical weighted empirical process (taking independent uniform (0, 1)

samples), a natural direction is to put these two together in some way. Hence if we

are given a uniform process (see Definition 3.3.1) and “weight” functions, we consider

the following process, which we call the time-dependent weighted uniform empirical

process,

αn(t, y) := n−1/2
∑
i≤n

w(y)(1Xi(t)≤y − y), t ∈ E, y ∈ R
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where {X(t), X1(t), X2(t), · · · } are iid uniform processes. We are interested in con-

ditions to ensure a CLT for the empirical process αn.

Definition 3.3.1. We call a process X = {X(t) : t ∈ E} a uniform process if

for each t ∈ E, X(t) is uniformly distributed on (0, 1).

We call the main condition in our theorem the WL-condition.

Definition 3.3.2. [WL-condition for (X;w)] Given a uniform process X :=

{Xt : t ∈ E} where E is a general parameter set and a function w := w(x) > 0 on

(0, 1), we say (X;w) satisfies the WL-condition if for some constant L (depending

on w(x), but not on x), some continuous Gaussian distance ρ on E and all ε > 0,

0 < x < 1, we have

sup
t

P∗( sup
s:ρ(s,t)≤ε

1Xs≤x<Xt > 0) ≤ Lε2

w(x)2
,

sup
t

P∗( sup
s:ρ(s,t)≤ε

1Xt≤x<Xs > 0) ≤ Lε2

w(x)2
.

(WL-condition)

The following is the main result of this chapter.

Theorem 3.3.3. Let X := {Xt : t ∈ E} be a uniform process on a parameter

set E. Let w := w(x) > 0 be a measurable function symmetric about 1/2 for which

there exists γ ∈ (0, 1/2] such that w is non-increasing and xw(x)2 is non-decreasing

on (0, γ) and such that w is uniformly bounded on [γ, 1/2]. Further, assume that w(x)

is regularly varying in a neighborhood of zero and satisfies the integral condition

∫ γ

0

t−1 exp[−c/(tw(t)2)] dt <∞ for all c > 0.

If

lim
α→∞

α2P∗(sup
t∈E

w(Xt) > α) = 0
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and the WL-condition for (X;w) (3.3.2) are satisfied, then the empirical process based

on {w(x)(1Xt≤x − x) : t ∈ E, x ∈ [0, 1]} converges weakly in `∞(E × [0, 1]).

Remarks 3.3.4. (1) We require the function w(x) is symmetric about 1/2 is no

loss of generality. As the Brownian bridge has the same behavior at 0 and 1. Moreover

we only give the proof of the theorem for 0 < x < 1/2. Indeed, if let X̃t := 1 −Xt,

then (X̃;w) satisfies the WL-condition. The result for X̃ for 0 < x ≤ 1/2 gives a

result of X for 1/2 < x ≤ 1. The fact that if F1 and F2 are Donsker classes, then

F := F1 ∪ F2 are Donsker class gives the result for F = E × [0, 1].

(2) For a general process Y := {Yt : t ∈ E}, if define X := Xt := F̃t(Yt), where

F̃t(·) is the (randomized) distributional transform of the df Ft of Xt, then X is a

uniform process (see Lemma 3.2.4). Such a process X is called a copula process.

If we have a CLT for the X process, then we have a CLT for the Y process; see

Proposition 3.3.5 for precise statement. In case of w ≡ 1, this theorem gives a proof

of Kuelbs et al. (2013), Theorem 3 provided that Ft(·) for each t ∈ E is strictly

increasing; see Corollary 3.3.7.

(3) If the uniform process X comes in such a way in (2), then the weight function

w(x) for which the time dependent weighted empirical process satisfies a CLT, is a

measure of the local modulus of the process Y ; we give an example in Section 3.4

when Y is a Brownian motion.

The proof of the theorem is given at the end of this section.

The following is a possible way that a CLT for the time dependent empirical

process for Y can be obtained from proving a CLT for the process X.

Proposition 3.3.5. Let w(x) be any function on (0, 1). Let {Yt : t ∈ E} be a

process and Ft(·) is the df of Yt. Let Xt := F̃t(Yt). Then the following hold :
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(i) If Ft(·) is strictly increasing for each t ∈ E, then

{w(x)(1Xt≤x − x) : t ∈ E, x ∈ [0, 1]} ∈ CLT

implies

{w(Ft(y))(1Yt≤y − Ft(y)) : t ∈ E, y ∈ R} ∈ CLT.

(ii)

{w(x)(1Xt≤x − x) : t ∈ E, x ∈ [0, 1]} ∈ CLT

implies

{w(Ft(y))(1Yt≤y − Ft(y)) : (t, y) ∈ T0} ∈ CLT

where T0 is any countable subset of E × R.

Proof. Proof of (i). Recall that F̃ (x) ≤ F̃ (y) for x ≤ y and F̃ (x) ≤ F (x)

for all x ∈ R and for any df F (see Lemma 3.2.3). Hence Yt ≤ y implies that

F̃t(Yt) ≤ Ft(y); i.e.

(3.6) 1Yt≤y ≤ 1F̃t(Yt)≤Ft(y), uniformly in t ∈ E, y ∈ R.

Since Ft(·) is strictly increasing, by the same lemma if x < y, then F (x) < F̃ (y).

Now if F̃t(Yt) ≤ Ft(y) and Yt > y for some t ∈ E and y ∈ R, then Ft(y) < F̃t(Yt).

We have a contradiction: Ft(y) < Ft(y) . Thus F̃t(Yt) ≤ Ft(y) implies Yt ≤ y; i.e.

1Yt≤y ≥ 1F̃t(Yt)≤Ft(y), uniformly in t ∈ E, y ∈ R.
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Combining the two displays, we have

(3.7) 1Yt≤y = 1F̃t(Yt)≤Ft(y), uniformly in t ∈ E, y ∈ R.

Since {Ft(y) : t ∈ E, y ∈ R} is a subset of [0, 1], thus if the empirical process

based on {w(x)(1F̃t(Yt)≤x − x) : t ∈ E, x ∈ [0, 1]} satisfies CLT in `∞(E × [0, 1]),

then, by substituting x with Ft(y) and using (3.7), the empirical process based on

{w(Ft(y))(1Yt≤Ft(y) − Ft(y)) : t ∈ E, y ∈ R} satisfies the CLT in `∞(E × R).

Proof of (ii). Fix t ∈ E and y ∈ R. If F̃t(Yt) ≤ Ft(y), since F̃t(Yt) = Ft(y) has

probability zero, then, after throwing out this null set, F̃t(Yt) < Ft(y), which will

imply Yt ≤ y. If not, then Yt > y, by Lemma 3.2.3, hence Ft(y) ≤ F̃t(Yt). Again

we have a contradiction Ft(y) < Ft(y). Thus almost surely 1F̃t(Yt)≤Ft(y) ≤ 1Yt≤y.

Combining this with 3.6 gives, almost surely,

(3.8) 1Yt≤y = 1F̃t(Yt)≤Ft(y), uniformly in (t, y) ∈ T0,

where T0 is any countable set in E × R. Restricting to the countable set, we have

the stated implication as in (i).

Remark 3.3.6. We need the assumption that Ft(·) is strictly increasing for

each t in order to have equation (3.7). Without this assumption, we only have 3.8.

If we can show T0 is dense in E × R with respect to the L2 distance of the limiting

Gaussian, then a version of the empirical process based on {w(Ft(y))(1Yt≤Ft(y) −

Ft(y)) : (t, y) ∈ E × R} converges weakly to the limiting Gaussian process.

Corollary 3.3.7 (cf. Kuelbs et al. (2013), Theorem 3). Let Y := {Yt : t ∈ E}

be a process. Let Ft be the df of Yt. In addition, assume that Ft(·) is strictly increasing
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for each t ∈ E and that Y satisfies the L-condition:

(3.9) sup
t∈E

P∗( sup
s:ρ(s,t)≤ε

|F̃t(Yt)− F̃t(Ys)| > ε2) ≤ Lε2,

for a constant L and a continuous Gaussian metric ρ(s, t) on E. Then

{1Yt≤y − P(Yt ≤ y) : t ∈ E, y ∈ R} ∈ CLT.

Remark 3.3.8. Under the L-condition, we will see from the proof of The-

orem 3.3.9 that there is a countable dense set in E × R with respect to the L2

distance, say ρP , of the limiting Gaussian process. Hence without the restriction

that Ft(·) is strictly increasing, we still have a CLT but on a countable dense set;

since this set is ρP -dense in E×R, we have a version of the empirical process, which

converges weakly in `∞(E × R).

The following is a simpler proof than in Kuelbs et al. (2013) of the pre-Gaussian

property of the empirical process considered there under the L-condition for a process.

Theorem 3.3.9. Let {Y (t), Y1(t), Y2(t), · · · } on E are iid and {Y (t) : t ∈ E}

satisfies the L-condition, then the centered Gaussian process on E×R with covariance

either

P(Ys ≤ x, Yt ≤ y)− P(Ys ≤ x)P(Yt ≤ y)

or

P(Ys ≤ x, Yt ≤ y)

has a version, which is sample bounded and uniformly continuous with respect to its

L2 distance.

Proof. Let {G1(t, y) : t ∈ E, y ∈ R} and {G2(t, y) : t ∈ E, y ∈ R} be the
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Gaussian processes on E × R with covariance P(Ys ≤ x, Yt ≤ y)− P(Ys ≤ x)P(Yt ≤

y) and P(Ys ≤ x, Yt ≤ y), respectively. Let dG1 and dG2 be their L2 distances,

respectively; i.e,

dG1((s, x), (t, y))2 = E(1Ys≤x − 1Yt≤y)
2 − (E(1Ys≤x − 1Yt≤y))

2,(3.10)

dG2((s, x), (t, y))2 = E(1Ys≤x − 1Yt≤y)
2.

And,

dG2((s, x), (t, y))2 = E(1Ys≤x − 1Yt≤y)
2(3.11)

= E(1Ys≤x − 1Yt≤x + 1Yt≤x − 1Yt≤y)
2

≤ 2E(1Ys≤x − 1Yt≤x)
2 + E(1Yt≤x − 1Yt≤y)

2

≤ 2(P(Ys ≤ x < Yt) + P(Yt ≤ x < Ys)) + |Ft(y)− Ft(x)|

≤ 6(L+ 1)ρ(s, t)2 + |Ft(y)− Fs(x)|,

where in the last line of the above display, we used Lemma 4.2.5.

Let W (·) be a Brownian motion on [0,∞). Define the centered Gaussian process

H2(t, y) := W (Ft(y)) : t ∈ E, y ∈ R,

where Ft(·) be the df of Yt. Then its L2 distance dH2((s, x), (t, y)) = |Ft(y)−Fs(x)|1/2.

It follows that H2 is sample bounded and uniformly continuous with respect to

dH2 . By the L-condition, let {H1(t) : t ∈ E}, independent from H2, be a Gaussian

process with bounded and uniformly continuous sample paths with it’s L2 distance

ρ. Define H(t, y) = H2(t, y) + (6L + 6)1/2H1(t). Then {H(t, y) : t ∈ E, y ∈ R} is

sample bounded and uniformly continuous with respect to it’s L2 distance dH . Total
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boundedness of dH1 and dH2 implies that of dH as can be seen from the equation

dH((t1, y1), (t2, y2))2 = dH2((t1, y1), (t2, y2))2 + (6L+ 6)dH1(t1, t2)2.

Thus let T0 be a countable dense subset in (E × R, dH). Since dG1 ≤ dH in view of

(3.10) and (3.11), by the comparison theorem 2.3.7, {G1(s, x) : (s, x) ∈ T0} is sample

bounded and uniformly continuous with respect to dG1 . Since T0 is also dense in

(E × R, dG1), by the extension lemma, Lemma 2.3.8, {G1(s, x) : (s, x) ∈ E × R} is

samples bounded and uniformly dG1-continuous.

Proof of Corollary 3.3.7. By Proposition 3.3.5, we only need to check

the conditions in Theorem 3.3.3 with w(x) ≡ 1.

Under the L-condition, we have (cf. Kuelbs et al. (2013), Lemma 1)

sup
x
|Ft(x)− Fs(x)| ≤ 2(L+ 1)ρ(s, t)2.

Consequently by passing to the limit,

sup
x
|Ft(x−)− Fs(x−)| ≤ 2(L+ 1)ρ(s, t)2.

Recalling that F̃s(x) = Fs(x−) + V (Fs(x)− Fs(x−)), we obtain

sup
x
|F̃t(x)− F̃s(x)| ≤ sup

x
|Ft(x−)− Fs(x−)|+ sup

x
|V (Ft(x)− Fs(x))|

+ sup
x
|V (Ft(x−)− Fs(x−))|

≤ 6(L+ 1)ρ(s, t)2.

For t ∈ E fixed, let A := { sup
s:ρ(s,t)≤ε

|F̃t(Yt)− F̃t(Ys)| > ε2}.
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On Ac, we have for all s with ρ(s, t) ≤ ε,

|F̃s(Ys)− F̃t(Yt)| ≤ |F̃s(Ys)− F̃t(Ys)|+ |F̃t(Ys)− F̃t(Yt)|

≤ 6(L+ 1)ρ(s, t)2 + ε2

≤ (6L+ 7)ε2.

Hence

P( sup
s:ρ(s,t)≤ε

1F̃s(Ys)≤x<F̃t(Yt) > 0) = P(Ac, sup
s:ρ(s,t)≤ε

1F̃s(Ys)≤x<F̃t(Yt) > 0)

+ P(A, sup
s:ρ(s,t)≤ε

1F̃s(Ys)≤x<F̃t(Yt) > 0)

≤ P(Ec, 1F̃t(Yt)−(6(L+1)ε2+ε2)≤x<F̃t(Yt) > 0) + Lε2

≤ (7L+ 7)ε2.

Similarly,

P( sup
s:ρ(s,t)≤ε

1F̃t(Yt)≤x<F̃s(Ys) > 0) ≤ (7L+ 7)ε2.

In addition, obviously for w(x) ≡ 1

lim
α→∞

α2P(sup
t∈E

w(F̃t(Yt)) > α) = 0.

Thus we have verified the conditions in Theorem 3.3.3.

We will prove Theorem 3.3.3 only for 0 < x < 1/2 as explained in Remark 3.3.4.

We will check the pre-Gaussian condition (ii) and the local modulus condition (iii)

in Theorem 2.5.1
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3.3.1 Pre-Gaussian

Let {G0((s, x)) : s ∈ E, x ∈ [0, 1]} be the mean zero Gaussian process with covari-

ance

(3.12) EG0(s, x)G0(t, y)) = w(x)w(y)P(Xs ≤ x,Xt ≤ y).

Under the assumptions of Theorem 3.3.3, we will prove G0(s, x) has a version with

bounded and uniformly continuous sample paths with its L2 distance dG0 a.s. by

comparing it with some other continuous Gaussian distance.

Lemma 3.3.10 (see Andersen et al. (1988), Example 4.8). Let W (y) be a Brow-

nian motion and w(y) as in Theorem 3.3.3. Then the Gaussian process {w(y)W (y) :

y ∈ [0, 1]} is sample bounded and uniformly continuous w.r.t. its L2 distance, which

is given by

(3.13)

d(x, y)2 := E(w(y)W (y)− w(x)W (x))2 = w(x ∨ y)2|y − x|+ (x ∧ y)(w(x)− w(y))2.

Lemma 3.3.11. If xw(x)2 is non-decreasing and w(x) is non-increasing for

0 < x < δ, then

d(x, y) ≤ d(x, z)

for 0 < x ≤ y ≤ z ≤ δ.

Proof. Let 0 < x ≤ y ≤ z ≤ δ. Using definition (3.13) and the monotonicity
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of xw(x)2 and w(x), we obtain

d(x, y)2 = w(y)2(y − x) + x(w(y)− w(x))2

= xw(x)2 + yw(y)2 − 2xw(x)w(y)

≤ xw(x)2 + zw(z)2 − 2xw(x)w(z)

= d(x, z)2.

Next we give an upper bound for dG0 under WL-condition in Theorem 3.3.3.

Lemma 3.3.12. Let d(x, y) be as in (3.13) and dG0((s, x), (t, y)) the L2 distance

of the Gaussian process G0 in 3.12. Then under the WL-condition, we have

d2
G0
≤ 2d2 + 4Lρ(s, t)2.

Proof. First observe that for t ∈ E

(3.14) d(x, y)2 = E(w(y)W (y)− w(x)W (x))2 = E|w(x)1Xt≤x − w(y)1Xt≤y|2.

Using by WL-assumption for fixed s and t

(3.15) P(Xs ≤ x < Xt) ≤
Lρ(s, t)2

w(x)2
and P(Xt ≤ x < Xs) ≤

Lρ(s, t)2

w(x)2
,
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we obtain

dG0((s, x), (t, y))2(3.16)

= E|w(x)1Xs≤x − w(y)1Xt≤y|2

= E|w(x)1Xs≤x − w(x)1Xt≤x + w(x)1Xt≤x − w(y)1Xt≤y|2

≤ 2E|w(x)1Xs≤x − w(x)1Xt≤x|2 + 2E|w(x)1Xt≤x − w(y)1Xt≤y|2

= 2w(x)2E|1Xs≤x − 1Xt≤x|2 + 2d(x, y)2 by (3.14)

≤ 2w(x)2(P(Xs ≤ x < Xt) + P(Xt ≤ x < Xs)) + 2d(x, y)2

≤ 4Lρ(s, t)2 + 2d(x, y)2 by (3.15).

Corollary 3.3.13. Under the WL-assumption, the process G0(t, y) is sample

bounded and uniformly continuous with its L2 distance.

Proof. By assumption, ρ is the L2 distance of a mean zero Gaussian pro-

cess on E, say {H0(t) : t ∈ E}, with bounded and uniformly ρ-continuous sample

paths. Let the metric d on [0, 1] as given in 3.13 with the corresponding Gaus-

sian process w(x)W (x), which is sample bounded and uniformly d-continuous. Let

H2((t, y)) := 21/2w(y)W (y) + 2L1/2H0(t) : t ∈ E, y ∈ [0, 1]. Then the L2 dis-

tance, dH2((s, x), (t, y)), of H2 is 21/2d(x, y) + 2L1/2ρ(s, t). Total boundedness of d

and ρ implies that of dH2 . Thus let T0 be a dense subset in (E × [0, 1], dH2); since

dG0 ≤ dH2 by (3.16), T0 is also a dense subset in (E × [0, 1], dG0); Using the com-

parison Theorem 2.3.7 with H1 := G0 and that dG0 ≤ dH2 , the Gaussian process

{G0 : (s, x) ∈ T0} is sample bounded and uniformly dG0 continuous. By the exten-

sion lemma, Lemma 2.3.8, {G0 : (s, x) ∈ E × R} is sample bounded and uniformly

dG0-continuous.
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3.3.2 Local modulus

Recall that a positive function L(x) defined on (0,∞) is slowly varying at infinity

(in a neighborhood of zero) if L(λx)/L(x)→ 1, x→∞ (x→ 0) for every λ > 0 (see

(Feller, 1971, p. 276)). One says a function U(x) is regularly varying at infinity (in

a neighborhood of zero) if U(x) = xρL(x) for some −∞ < ρ < ∞, and some slowly

varying at infinity (in a neighborhood of zero) function L(x); ρ is called the exponent

(see (Feller, 1971, p. 275)).

Lemma 3.3.14. Let w(x) > 0 for 0 < x ≤ 1/2 and is regularly varying in a

neighborhood of 0 with nonzero exponent. Let θ0 > 0 be small enough such that w(x)

is non-increasing for 0 < x < θ0. Then for 0 < θ < θ0

∞∑
k=0

1

w(2−kθ)2
≤ C

w(θ)2
,

where C depends only on the weight function w(x), but not on the argument x.

Proof. Since w(x) is non-increasing for 0 < x < θ0,

(ln 2)
∞∑
k=1

1

w(2−kθ)2
≤
∫ θ

0

1

w(y)2

dy

y
≤ (ln 2)

∞∑
k=0

1

w(2−kθ)2
.

By Theorem 1 in (Feller, 1971, p. 281), we have

1
w(θ)2∫ θ

0
1

w(y)2
dy
y

→ α, as θ → 0,

where α 6= 0 is the exponent of the regularly varying function 1/w(x)2 (note that if

w(x) is regularly varying, so is 1/w(x)2). Therefore, there is a constant C(w) such
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that ∣∣∣∫ θ0 1
w(y)2

dy
y

1
w(θ)2

∣∣∣ ≤ C(w), 0 < θ < θ0.

Lemma 3.3.15. Given ε > 0, under the assumptions of Theorem 3.3.3, we have

for 0 < a < b < 1 and t fixed

P(∃s, ρ(s, t) ≤ ε,∃x ∈ (a, b] : Xs ≤ x < Xt) ≤
Cε2

w(b)2
+ (b− a),

and

P(∃s, ρ(s, t) ≤ ε,∃x ∈ (a, b] : Xt ≤ x < Xs) ≤
Cε2

w(b)2
+ (b− a),

where C is a constant depending only on the function w(x).
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Proof. Let N ≥ 0 be the biggest integer such that b/2N ≥ a. Then,

P(∃s, ρ(s, t) ≤ ε,∃x ∈ (a, b] : Xs ≤ x < Xt)

≤
N−1∑
k=0

P(∃s, ρ(s, t) ≤ ε,∃x ∈ (2−k−1b, 2−kb] : Xs ≤ x < Xt)

+ P(∃s, ρ(s, t) ≤ ε,∃x ∈ (a, 2−Nb] : Xs ≤ x < Xt)

≤
N−1∑
k=0

P(∃s, ρ(s, t) ≤ ε,∃x ∈ (2−k−1b, 2−kb] : Xs ≤ 2−kb < Xt) +
N−1∑
k=0

P(2−k−1b < Xt ≤ 2−kb)

+ P(∃s, ρ(s, t) ≤ ε,∃x ∈ (a, 2−Nb] : Xs ≤ 2−Nb < Xt) + P(a < Xt ≤ 2−Nb)

≤
N−1∑
k=0

P(∃s, ρ(s, t) ≤ ε,∃x ∈ (2−k−1b, 2−kb] : Xs ≤ 2−kb < Xt) +
N−1∑
k=0

(2−kb− 2−k−1b)

+ P(∃s, ρ(s, t) ≤ ε,∃x ∈ (a, 2−Nb] : Xs ≤ 2−Nb < Xt) + 2−Nb− a

≤
N∑
k=0

P(∃s, ρ(s, t) ≤ ε : Xs ≤ 2−kb < Xt) +
N−1∑
k=0

(2−kb− 2−k−1b) + 2−Nb− a

≤
∞∑
k=0

Lε2

w(2−kb)2
+ (b− a) using WL-condition to bound the probabilities

≤ Cε2

w(b)2
+ (b− a) by Lemma 3.3.14.

The proof for the second part is similar; just change from Xt ≤ x < Xs for 2−k−1b <

x ≤ 2−kb to Xt ≤ 2−k−1b < Xs, with the same exceptional probability (2−kb −

2−k−1b).

For the following, we use C to denote a constant which may change from line to

line and depends only on the weight function w(x).

Let e((s, x), (t, y)) := max{d(x, y), ρ(s, t)}, which is bounded by the Gaussian

distance (d(x, y)2 + ρ(s, t)2)1/2 on E × (0, 1) and will be used as the ‘ρ’ in (iii) of

Theorem 2.5.1.
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Lemma 3.3.16. For t ∈ E, y ∈ (0, 1), let x0 := inf{x : for some s, e((s, x), (t, y)) <

ε}, then

(3.17) d(x0, y) ≤ ε.

Proof. Indeed there exist a sequence (sn, xn)n∈N in the set over which the

infimum is taken such that |xn − x0| → 0 as n → ∞ and that d(xn, y) ≤ ε. By the

continuity of w(x), we have d(xn, y)→ d(x0, y) as n→∞. Hence we have obtained

d(x0, y) ≤ ε.

Remark. The finiteness of d(x0, y) implies that x0 can’t be zero in view of

(3.13) since w(x)→∞ and xw(x)2 → 0 as x→ 0.

Lemma 3.3.17. For t ∈ E, y ∈ (0, 1), let x1 := sup{x : for some s, e((s, x), (t, y)) <

ε}, then

(3.18) d(y, x1) ≤ ε.

Proof. By a similar argument as in the proof of the previous lemma.

Lemma 3.3.18. Under the assumptions of Theorem 3.3.3, we have for all

ε > 0 and (t, y) ∈ E × [0, 1],

w(y)2P( sup
(s,x):e<ε,x≤y

|1Xs≤x − 1Xt≤x| > 0) ≤ Cε2.
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Proof.

w(y)2P( sup
(s,x):e<ε,x≤y

|1Xs≤x − 1Xt≤x| > 0)

= w(y)2
(

P(∃(s, x), e((s, x), (t, y)) < ε, x ≤ y : Xs ≤ x < Xt)

+ P(∃(s, x), e((s, x), (t, y)) < ε, x ≤ y : Xt ≤ x < Xs)
)

= w(y)2
(

P(∃(s, x), e((s, x), (t, y)) < ε, x ∈ (x0, y] : Xs ≤ x < Xt)

+ P(∃(s, x), e((s, x), (t, y)) < ε, x ∈ (x0, y] : Xt ≤ x < Xs)
)

≤ w(y)2(Cε2/w(y)2 + (y − x0)) by Lemma 3.3.15

≤ Cε2.

For the last inequality, we used

w(y)2(y − x0) ≤ d(x0, y)2 ≤ ε2 by (3.17).

Lemma 3.3.19. Under the assumptions of Theorem 3.3.3, we have for all

ε > 0 and (t, y) ∈ E × [0, 1],

w(x1)2P( sup
(s,x):e<ε,x>y

|1Xs≤x − 1Xt≤x| > 0) ≤ Cε2.
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Proof.

w(x1)2P( sup
(s,x):e<ε,x>y

|1Xs≤x − 1Xt≤x| > 0)

= w(x1)2
(

P(∃(s, x), e((s, x), (t, y)) < ε, x > y : Xs ≤ x < Xt)

+ P(∃(s, x), e((s, x), (t, y)) < ε, x > y : Xt ≤ x < Xs)
)

= w(x1)2
(

P(∃(s, x), e((s, x), (t, y)) < ε, x ∈ (y, x1] : Xs ≤ x < Xt)

+ P(∃(s, x), e((s, x), (t, y)) < ε, x ∈ (y, x1] : Xt ≤ x < Xs)
)

≤ w(x1)2(Cε2/w(x1)2 + (x1 − y)) by Lemma 3.3.15

≤ Cε2.

For the last inequality, we used

w(x1)2(x1 − y) ≤ d(y, x1)2 ≤ ε2 by (3.18).

In the following lemma, for fixed (t, y) ∈ E×[0, 1], we write sup
(s,x):e<ε

for sup
{(s,x):e((s,x),(t,y))<ε}

and the same token applies to other similar quantities.

Lemma 3.3.20. Under the assumptions of Theorem 3.3.3, we have for all

ε > 0 and (t, y) ∈ E × [0, 1],

sup
α>0

α2P( sup
(s,x):e<ε

|w(x)1Xs≤x − w(y)1Xt≤y| > α) ≤ Cε2.

Proof. We split the quantity:

w(x)1Xs≤x − w(y)1Xt≤y = [w(x)1Xt≤x − w(y)1Xt≤y] + [w(x)(1Xs≤x − 1Xt≤x)].

50



Consider the weak L2 norms of the components:

A := sup
α>0

α2P( sup
(s,x):e<ε

|w(x)1Xt≤x − w(y)1Xt≤y| > α)(3.19)

B := sup
α>0

α2P( sup
(s,x):e<ε

w(x)|1Xs≤x − 1Xt≤x| > α).(3.20)

First we estimate A. Since

sup
α>0

α2P( sup
(s,x):e<ε

|w(x)1Xt≤x − w(y)1Xt≤y| > α)

≤ sup
α>0

α2P( sup
x:d(x,y)<ε

|w(x)1Xt≤x − w(y)1Xt≤y| > α)

and t is fixed, this is the case in Example 4.9 in Andersen et al. (1988). Hence we

have

(3.21) A := sup
α>0

α2P( sup
(s,x):e<ε

|w(x)1Xt≤x − w(y)1Xt≤y| > α) ≤ Cε2.

Now we consider B. Since

sup
α>0

α2P( sup
(s,x):e<ε

w(x)|1Xs≤x−1Xt≤x| > α) ≤ sup
α>0

α2P( sup
(s,x):e<ε,x≤y

w(x)|1Xs≤x−1Xt≤x| > α)

+ sup
α>0

α2P( sup
(s,x):e<ε,x>y

w(x)|1Xs≤x − 1Xt≤x| > α),

it suffices to consider the to bound the later two quantities. Without loss of generality,

we assume w(x) is monotone on (0, 1/2]. Let xα = sup{x ∈ [0, 1/2] : w(x) > α} for

α > 0.

Case x ≤ y.

Recall x0 = inf{x : e((s, x), (t, y)) < ε}. First we consider the extreme cases for xα.
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(1). If xα > y, then α < w(y), consequently

sup
α<w(y)

α2P( sup
(s,x):e<ε,x≤y

w(x)|1Xs≤x − 1Xt≤x| > α)

≤ w(y)2P( sup
(s,x):e<ε,x≤y

|1Xs≤x − 1Xt≤x| > 0) ≤ Cε2.

by Lemma 3.3.18. consider α ≥ w(y), i.e. xα ≤ y.

(2). If xα ≤ x0, then w(x0) ≤ α, hence w(x) ≤ α for x0 ≤ x. For such α, the event

under the probability of (4.14) is empty.

(3). Now x0 < xα ≤ y. In this case, w(y) ≤ α < w(x0). Take ε > 0. We have

B := sup
w(y)≤α<w(x0)

α2P( sup
(s,x):e<ε

w(x)|1Xs≤x − 1Xt≤x| > α)

≤ 4 sup
w(y)≤α<w(x0)

α2P( sup
(s,x):e<ε

w(x)1Xs≤x<Xt > α)

+ 4 sup
w(y)≤α<w(x0)

α2P( sup
(s,x):e<ε

w(x)1Xt≤x<Xs > α)

= 4I + 4II.

For I,

I = sup
w(y)≤α<w(x0)

α2P( sup
(s,x):e<ε

w(x)1Xs≤x<Xt > α)

≤ sup
x0<xα≤y

w(xα)2P( sup
(s,x):e<ε

w(x)1Xs≤x<Xt > α)

≤ sup
x0<xα≤y

w(xα)2P( sup
(s,x):e<ε

1Xs≤x<Xt,x≤xα > 0)

≤ sup
x0<xα≤y

w(xα)2
(
Cε2/w(xα)2 + (xα − x0)

)
using Lemma 3.3.15

≤ Cε2.
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For the last inequality, we used

w(xα)2(xα − x0) ≤ d(x0, xα)2 ≤ d(x0, y)2 ≤ ε2.

by Lemma 3.3.11 and Lemma 3.3.16.

II can be handled in the same way.

Case x > y.

Recall x1 = sup{x : e((s, x), (t, y)) < ε}. First we consider the extreme cases for xα.

(1). If xα > x1, then α < w(x1), consequently

sup
α<w(x1)

α2P( sup
(s,x):e<ε,x>y

w(x)|1Xs≤x − 1Xt≤x| > α)

≤ w(x1)2P( sup
(s,x):e<ε,x>y

|1Xs≤x − 1Xt≤x| > 0) ≤ Cε2.

by Lemma 3.3.19. consider α ≥ w(y), i.e. xα ≤ y.

(2). If xα ≤ y, then w(y) ≤ α, hence w(x) ≤ α for y ≤ x. For such α, the event

under the probability of (4.14) is empty.

(3). Now y < xα ≤ x1. In this case, w(x1) ≤ α < w(y). Take ε > 0. We have

B := sup
w(x1)≤α<w(y)

α2P( sup
(s,x):e<ε

w(x)|1Xs≤x − 1Xt≤x| > α)

≤ 4 sup
w(x1)≤α<w(y)

α2P( sup
(s,x):e<ε

w(x)1Xs≤x<Xt > α)

+ 4 sup
w(x1)≤α<w(y)

α2P( sup
(s,x):e<ε

w(x)1Xt≤x<Xs > α)

= 4I + 4II.
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For I,

I = sup
w(x1)≤α<w(y)

α2P( sup
(s,x):e<ε

w(x)1Xs≤x<Xt > α)

≤ sup
y<xα≤x1

w(xα)2P( sup
(s,x):e<ε

w(x)1Xs≤x<Xt > α)

≤ sup
y<xα≤x1

w(xα)2P( sup
(s,x):e<ε

1Xs≤x<Xt,x≤xα > 0)

≤ sup
y<xα≤x1

w(xα)2
(
Cε2/w(xα)2 + (xα − y)

)
using Lemma 3.3.15

≤ Cε2.

For the last inequality, we used

w(xα)2(xα − y) ≤ d(y, xα)2 ≤ d(y, x1)2 ≤ ε2.

by Lemma 3.3.11 and Lemma 3.3.17.

II can be handled in the same way. Hence we have B ≤ Cε2. This together

with (3.21) completes the proof.

Proof of Theorem 3.3.3. We use Theorem 2.5.1. In this case, the random

element is the uniform process {Xs : s ∈ E}, the class of functions is F = {fs,x(·) =

w(x)1δs(·)≤x : s ∈ E, x ∈ [0, 1/2]}, where δs(·) is the evaluation at s, hence fs,x(X) =

w(x)1Xs≤x. Since X(s) takes values on (0, 1) and xw(x)→ 0 as x→ 0, almost surely

sup
s∈E, x∈[0,1/2]

fs,x(X) = sup
s∈E, x∈[0,1/2]

w(x)1Xs≤x <∞.

Also we observe for each s ∈ E, x ∈ [0, 1/2]

Pfs,x(X)2 = P(w(x)1Xs≤x)
2 = w(x)2x <∞,
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and

sup
s∈E,x∈(0,1/2]

|Pfs,x| = sup
s∈E,x∈(0,1/2]

|Pw(x)1Xs≤x| = w(x)x <∞.

Thus we have F ⊂ L2(P) and supf∈F |Pf | <∞.

Since w(x) is decreasing near 0,

lim
α→∞

α2P( sup
s∈E,x∈(0,1/2]

w(x)1Xs≤x > α) ≤ lim
α→∞

α2P(sup
s∈E

w(Xs) > α)

= 0 by assumption of Theorem 3.3.3,

which verifies (i) in Theorem 2.5.1. This together with Proposition 3.3.13 for the

Pre-Gaussian condition (ii) and Lemma 3.3.20 for the local modulus condition (iii)

completes the proof.

3.4 An example

A special class of uniform processes (copula processes) can be obtained from distri-

butional transform. Specifically, given a process Y := {Yt : t ∈ E}. Define X :=

Xt := F̃t(Yt), where F̃t(·) is the distributional transform of the df of Yt. Now, we give

an example as an application of Theorem 3.3.3 when {Yt : t ∈ E} = {Bt : t ∈ [1, 2]}.

Theorem 3.4.1. Let {Bt : t ≥ 0} be a Brownian motion and Ft(x) be the

distribution function of Bt. Let w(x) = x−αL(x), for 0 < x < 1, 0 < α < 1/2, and

L(x) slowly varying at 0 and assume w(x) is symmetric about 1/2. Further assume

that xw(x)2 is non-decreasing near 0. Then

{w(Ft(y))(1Bt≤y − Ft(y)) : t ∈ [1, 2], y ∈ R} ∈ CLT.

Remark 3.4.2. The interval [1, 2] is not special; the theorem remains true for
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any interval [a, b] provided a > 0.

We will verify the conditions in Proposition 3.3.5 to prove this theorem at the

end of this section. To this end, we start with some lemmas. For the following, let

φ(x) = (2π)−1/2e−x
2/2 and Φ(y) := (2π)−1/2

∫ y
−∞ e

−s2/2 ds.

Lemma 3.4.3 (Feller (1968), p. 175). For y > 0,

y−1(1− y−2)(2π)−1/2e−y
2/2 ≤ Φ(−y) ≤ y−1(2π)−1/2e−y

2/2.

In particular, we have for y >
√

2,

2−1y−1(2π)−1/2e−y
2/2 ≤ Φ(−y) ≤ y−1(2π)−1/2e−y

2/2.

Lemma 3.4.4 (Seneta (1976), p. 18). Let L(x) be a slowly varying function at

0, then for any γ > 0,

xγL(x)→ 0, x−γL(x)→∞ as x→ 0.

Consequently, for 0 < γ1 < 2α < γ2 < 1 and a function L(x) slowly varying (at 0),

there are constants c1, c2,

c1x
γ2 ≤ x2α/L(x) ≤ c2x

γ1 , 0 < x < 1/2.

For c > 0, let Lc(x) = exp(c
√

ln(1/x)).

Lemma 3.4.5. The function Lc(x) is slowly varying at 0; that is for all λ > 0

lim
x→0

Lc(λx)

Lc(x)
= 1.
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Proof. By definition.

Lemma 3.4.6. For 0 < x < 1/4, let y = −Φ−1(x). Then

y ≤
√

2 ln(1/x)

and

φ(−Φ−1(x) + c) ≤ CxLC(x) for c < 0,

φ(−Φ−1(x) + c) ≤ 23/2x
√

ln(1/x) for c ≥ 0,

where C depends only on c.

Proof. By Lemma 3.4.3, for y > (2π)−1/2, x ≤ e−y
2/2; hence y ≤

√
2 ln(1/x).

φ(−Φ−1(x) + c) = (2π)−1/2 exp(− (y+c)2

2
)

= (2π)−1/2 exp(−y2

2
) exp(−yc) exp(−c2/2)

≤ 2yΦ(−y) exp(−yc) by Lemma 3.4.3

≤ 2xy exp(−yc).

The statement for c > 0 follows from that exp(−yc) ≤ 1 and y ≤
√

2 ln(1/x). For

c ≤ 0 the statement follows from that y ≤ C exp(yC) for some constant C.

Theorem 3.4.7 (Borell, see also Ledoux (2001), Theorem 7.1). Let G =

(Gt)t∈T be a centered Gaussian process indexed by countable set T such that supt∈T Gt <

∞ almost surely. Then, E(supt∈T Gt) <∞ and for every r > 0

P({sup
t∈T

Gt ≥ E(sup
t∈T

Gt) + r}) ≤ e−r
2/2σ2

,

where σ = supt∈T (EG2
t )

1/2.
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For the following, let Bt be a Brownian motion and Ft(x) the distribution func-

tion of Bt, which is Φ( x√
t
). Also for 1 ≤ t ≤ 2, 0 < ε < 1/2

D := sup
t<s≤t+ε

Bs−Bt√
s

m := m(t, ε) := E sup
t<s≤t+ε

Bs−Bt√
s

m0 := sup{m(t, ε) : 1 ≤ t ≤ 2, 0 < ε < 1/2}.

We use C to denote a constant, which may vary in each occurrence.

Lemma 3.4.8. For 1 ≤ t ≤ 2, 0 < ε < 1/2

m ≤ 2(2/π)1/2ε1/2.

Proof.

m = E sup
t<s≤t+ε

Bs−Bt√
s

≤ E sup
t<s≤t+ε

|Bs−Bt|√
t

≤ Eε1/22|N(0, 1)|

≤ 2(2/π)1/2ε1/2.

Lemma 3.4.9. Let d := E(sup1≤t≤2
Bt√
t
) > 0, then

P( inf
1≤t≤2

Ft(Bt) ≤ x) ≤ (2π)1/2φ(−Φ−1(x)− d).
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Proof.

P( inf
1≤t≤2

Ft(Bt) ≤ x) = P( inf
1≤t≤2

Bt√
t
≤ Φ−1(x))

= P( sup
1≤t≤2

−Bt√
t
≥ −Φ−1(x))

= P( sup
1≤t≤2

−Bt√
t
≥ d− Φ−1(x)− d)

by Theorem 3.4.7 and for x so that −Φ−1(x)− d > 0

≤ exp(− (−Φ−1(x)−d)2

2
)

= (2π)1/2φ(−Φ−1(x)− d).

Note that here σ2 = sup1≤t≤2 E(−Bt√
t

)2 = 1.

Lemma 3.4.10. Let w(x) = x−αL(x), 0 < α < 1/2 and L(x) a slowly varying

function (growing to infinity as x ↓ 0). Assume w(x) is decreasing near 0. Then

lim
λ→∞

λ2P( sup
1≤t≤2

w(Ft(Bt)) > λ) = 0.

Proof. Let λ = w(x).

lim
λ→∞

λ2P( sup
1≤t≤2

w(Ft(Bt)) > λ) = lim
λ→∞

λ2P(w( inf
1≤t≤2

Ft(Bt)) > λ)

= lim
x→0

w(x)2P( inf
1≤t≤2

Ft(Bt) ≤ x)

≤ lim
x→0

w(x)2(2π)1/2φ(−Φ−1(x)− d)

≤ lim
x→0

x−2αL(x)2(2π)1/2CxLC(x)

= 0 by Lemma 3.4.4, Lemma 3.4.9.
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Lemma 3.4.11. For 1 ≤ t ≤ 2, 0 < ε < 1/2, and l > m,

P(Bt√
t
< l ≤ sup

t<s≤t+ε

Bs√
s
) ≤ Ctε

1/2φ(l −m)
t+ε
t+2ε ,

where Ct is a constant depending only on t. In particular, if let C := sup1≤t≤2Ct,

and recall m0 := sup{m(t, ε) : 1 ≤ t ≤ 2, 0 < ε < 1/2}, then for l > m0

(3.22) P(Bt√
t
< l ≤ sup

t<s≤t+ε

Bs√
s
) ≤ Cε1/2φ(l −m0)

t+ε
t+2ε .

Proof. Since σ2 := supt<s≤t+ε E(Bs−Bt√
s

)2 = ε
t+ε

, by Borell’s concentration in-

equality [3.4.7], it follows that for r > 0

(3.23) P(D > m+ r) ≤ e−r
2(t+ε)/(2ε).

Hence,

P(Bt√
t
< l ≤ sup

t<s≤t+ε

Bs√
s
) ≤ P(Bt√

t
< l ≤ sup

t<s≤t+ε
(Bs√

s
− Bt√

s
) + sup

t<s≤t+ε

Bt√
s
)

= EBt√
t

P(Bt√
t
< l ≤ sup

t<s≤t+ε
(Bs√

s
− Bt√

s
) + sup

t<s≤t+ε

Bt√
s
|Bt√

t
) conditioning on Bt√

t

by the independence of {Bs −Bt : s > t} and Bt

=

∫ ∞
−∞

P
(
(y < l ≤ D + sup

t<s≤t+ε
{(t/s)1/2y}

)
1√
2π
e−y

2/2 dy

=

∫ ∞
0

P
(
y < l ≤ D + sup

t<s≤t+ε
{(t/s)1/2y}

)
1√
2π
e−y

2/2 dy

+

∫ 0

−∞
P
(
y < l ≤ D + sup

t<s≤t+ε
{(t/s)1/2y}

)
1√
2π
e−y

2/2 dy

= I + II.(3.24)
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Note

sup
t<s≤t+ε

{(t/s)1/2y} = y for y > 0,

sup
t<s≤t+ε

{(t/s)1/2y} = ((t/(t+ ε))1/2y =: ay for y ≤ 0.

Therefore,

I =

∫ ∞
0

P
(
y < l ≤ D + y

)
1√
2π
e−y

2/2 dy

=

∫ l−m

0

P
(
y < l ≤ D + y

)
1√
2π
e−y

2/2 dy +

∫ l

l−m
P
(
y < l ≤ D + y

)
1√
2π
e−y

2/2 dy

=

∫ l−m

0

P
(
D ≥ l − y

)
1√
2π
e−y

2/2 dy +

∫ l

l−m
P
(
y < l ≤ D + y

)
1√
2π
e−y

2/2 dy

by inequality (3.23) for the first summand and noting r := l − y −m > 0

≤
∫ l−m

0

e
−

(l−y−m)2(t+ε)
2ε

1√
2π
e−y

2/2

dy +

∫ l

l−m
P
(
y < l ≤ D + y

)
1√
2π
e−y

2/2 dy

by completing the square in y for the first summand

≤ ( ε
t+2ε

)1/2e
−

(l−m)2

2
t+ε
t+2ε +mφ(l −m)

bounding m using Lemma 3.4.8

≤ ( ε
t+2ε

)1/2(2π)1/2φ(l −m)
t+ε
t+2ε + 2(2/π)1/2ε1/2φ(l −m).

(3.25)
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For II,

II =

∫ 0

−∞
P
(
y < l ≤ D + ay

)
1√
2π
e−y

2/2 dy

≤
∫ 0

−∞
P
(
D ≥ l − ay

)
1√
2π
e−y

2/2 dy

by equation (3.23)

≤
∫ 0

−∞
e
−

(l−ay−m)2(t+ε)
2ε

1√
2π
e−y

2/2

dy

by completing the square in y

≤ ( ε
t+ε

)1/2e−
(l−m)2

2

= ( ε
t+ε

)1/2(2π)1/2φ(l −m).(3.26)

Combining (3.24), (3.25), and(3.26) completes the proof.

Lemma 3.4.12. For 1 ≤ t ≤ 2, 0 < ε ≤ 1/2, there is a universal constant C

such that for 0 < x < 1/4

P(Bt√
t
≤ Φ−1(x) < sup

t<s≤t+ε

Bs√
s
) ≤ Cε1/2(x ln 1

x
).

Proof.

P(Bt√
t
≤ Φ−1(x) < sup

t<s≤t+ε

Bs√
s
)

= P(Bt√
t
≤ Φ−1(x) < [ sup

t<s≤t+ε

Bs√
s
− Bt√

s
] + sup

t<s≤t+ε

Bt√
s
)
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letting D = supt<s≤t+ε
Bs√
s
− Bt√

s
and noting Bt < 0 inside the probability above

≤ EDP(Bt√
t
≤ Φ−1(x) ≤ D + Bt√

t+ε
|D)

by independence of {Bs −Bt : s > t} and Bt

= EDP(Bt√
t
≤ Φ−1(x) ≤ Bt√

t+ε
+D)

= EDP(( t+ε
t

)1/2(Φ−1(x)−D) ≤ Bt√
t
≤ Φ−1(x))

bounding the density of Bt√
t

from above by φ(Φ−1(x))

≤ EDφ(Φ−1(x))[(1− ( t+ε
t

)1/2)Φ−1(x) + ( t+ε
t

)1/2D]

≤ φ(Φ−1(x))(−Φ−1(x))(ε/t) + φ(−Φ−1(x))( t+ε
t

)1/2EDD

≤ C(x ln 1
x
)(ε/t) + Cx(ln 1

x
)1/28ε1/2 by Lemma 3.4.6 and Lemma 3.4.8

≤ Cε1/2(x ln 1
x
).

Proposition 3.4.13. For 1 ≤ t ≤ 2, 0 < ε ≤ 1/2, there is a universal constant

C such that for 0 < x < 1/4

P(Ft(Bt) ≤ x < sup
s:|s−t|≤ε

Fs(Bs)) ≤ Cε(x ln 1
x
) + Cε1/2φ(−Φ−1(x)−m0)

t
t+ε .
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Proof.

P(Ft(Bt) ≤ x < sup
{s:|s−t|≤ε}

Fs(Bs))

= P(Φ(Bt√
t
) ≤ x < sup

{s:|s−t|≤ε}
Φ(Bs√

s
))

= P(Bt√
t
≤ Φ−1(x) < sup

{s:|s−t|≤ε}

Bs√
s
)

≤ P(Bt√
t
≤ Φ−1(x) < sup

t<s≤t+ε

Bs√
s
) + P(Bt√

t
≤ Φ−1(x) < sup

t−ε≤s<t

Bs√
s
)

= I + II.

By Lemma 3.4.12,

(3.27) I ≤ Cε1/2(x ln 1
x
).

Now we consider II.

II = P(Bt√
t
≤ Φ−1(x) < sup

t−ε≤s<t

Bs√
s
)

= P( Bt−ε√
t−ε ≤ Φ−1(x), Bt√

t
≤ Φ−1(x) < sup

t−ε≤s<t

Bs√
s
)

+ P( Bt−ε√
t−ε > Φ−1(x), Bt√

t
≤ Φ−1(x) < sup

t−ε≤s<t

Bs√
s
)

≤ P( Bt−ε√
t−ε ≤ Φ−1(x) < sup

t−ε<s≤t

Bs√
s
) + P(Bt√

t
≤ Φ−1(x) < Bt−ε√

t−ε)

≤ P( Bt−ε√
t−ε ≤ Φ−1(x) < sup

t−ε<s≤t

Bs√
s
) + P( Bt−ε√

t−ε ≤ −Φ−1(x) < Bt√
t
)

≤ Cε1/2(x ln 1
x
) + Cε1/2φ(−Φ−1(x)−m0)

t
t+ε by Lemmas 3.4.12 and 3.4.11.

(3.28)

64



Proposition 3.4.14. For 1 ≤ t ≤ 2, 0 < ε ≤ 1/2, there is a universal constant

C such that for 0 < x < 1/4

P( inf
{s:|s−t|≤ε}

Fs(Bs) ≤ x < (Ft(Bt)) ≤ Cε1/2φ(−Φ−1(x)−m0)
t
t+ε + Cε1/2(x ln 1

x
).

Proof. First we consider the case {s > t : |s−t| ≤ ε}. Let D = supt<s≤t+ε
Bs√
s
−

Bt√
s
.

P( inf
t<s≤t+ε

Fs(Bs) ≤ x < Ft(Bt))

= P( inf
t<s≤t+ε

Bs√
s
≤ Φ−1(x) < Bt√

t
)

= P(Bt√
t
< −Φ−1(x) ≤ sup

t<s≤t+ε

Bs√
s
)

≤ Cε1/2φ(−Φ(x)−m0)
t+ε
t+2ε by Lemma 3.4.11.

For the the case {s < t : |s− t| ≤ ε},

P( inf
t−ε≤s<t

Fs(Bs) ≤ x < Ft(Bt))

= P(Bt√
t
< −Φ−1(x) ≤ sup

t−ε≤s<t

Bs√
s
)

= P( Bt−ε√
t−ε < −Φ−1(x), Bt√

t
< −Φ−1(x) ≤ sup

t−ε≤s<t

Bs√
s
)

+ P( Bt−ε√
t−ε ≥ −Φ−1(x), Bt√

t
< −Φ−1(x) ≤ sup

t−ε≤s<t

Bs√
s
)

= P( Bt−ε√
t−ε < −Φ−1(x) ≤ sup

t−ε≤s<t

Bs√
s
) + P(Bt√

t
< −Φ−1(x) ≤ Bt−ε√

t−ε)

= P( Bt−ε√
t−ε < −Φ−1(x) ≤ sup

t−ε≤s<t

Bs√
s
) + P( Bt−ε√

t−ε ≤ Φ−1(x) < Bt√
t
)

≤ Cε1/2φ(−Φ(x)−m0)
t
t+ε + Cε(x ln 1

x
) by Lemmas 3.4.11 and 3.4.12 .
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Proof of Theorem 3.4.1. Let 0 < ε < 1/2 and 1 ≤ t ≤ 2. Choose θ > 4

big enough such that t
t+εθ

> 2α uniformly in t and ε. Let ρ(s, t) = |s − t|1/θ. Then

ρ(s, t) is a continuous Gaussian metric on [0, 1] (indeed it is the L2 distance of the

fractional Brownian motion with Hurst index 1/θ). By Lemmas 3.4.4, 3.4.5, and

3.4.6, it follows that

φ(−Φ−1(x)−m0)
t

t+εθ ≤ [CxLC(x)]
t

t+εθ ≤ Cx2α/L(x) =
C

w(x)2
.

Hence Propositions [3.4.13] and [3.4.14] verify the WL-condition in Theorem 3.3.3

and Lemma 3.4.10 verifies the envelope function condition therein. Hence by Propo-

sition 3.3.5 and noting the distribution functions Ft of Bt are strictly increasing , we

conclude the proof.
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4 WEAK CONVERGENCE OF EMPIRICAL PROCESSES BASED ON

NON-IID STOCHASTIC PROCESSES

4.1 Introduction

Since there is no common law P for non iid samples, the n-th average of the laws

{P1, P2, · · · , Pn} would take this role. Thus to have a CLT for non iid samples, it

would be advisable to have assumptions on this average. The following also illus-

trates, in real rv case, how empirical processes on general df’s (for Xni’s here) can be

reduced (in some sense and in terms of probabilistic behavior) to empirical processes

for continuous df’s or to the uniform empirical process by changing the indexing

argument.

Let Xn1, Xn2, · · ·Xnn be independent rv’s with arbitrary df’s Fn1, Fn2, · · ·Fnn

and let

Fn(x) := n−1

n∑
i=1

1(−∞,x](Xni),(4.1)

F̄n(x) := n−1

n∑
i=1

Fni(x).(4.2)

In case that all Fn1, Fn2, · · ·Fnn are continuous, if

αni := F̄n(Xni), Gni := Fni ◦ F̄−1
ni , and ξni := Gni(αni),

then the following hold (see Shorack and Wellner (1986), p. 99):

• αni has absolutely continuous df Gni on [0, 1]

• ξni are uniform (0, 1)
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• n−1
∑n

i=1 Gni = t, for 0 ≤ t ≤ 1,

and it is almost surely true that

• [αni ≤ t] = [ξni ≤ Gni] for all 0 ≤≤ t ≤ 1

• [Xni ≤ x] = [αni ≤ F̄n(x)] = [ξni ≤ Gni(F̄n(x))] for all−∞ < x <∞

The empirical df based on αni’s,

Gn(t) :=
1

n

n∑
i=1

1αni≤t,

is called the reduced empirical df; and

Xn(t) := n1/2[Gn(t)−t] = n−1/2

n∑
i=1

(1αni≤t−t) = n−1/2

n∑
i=1

(1ξni≤Gni−Gni) for 0 ≤ t ≤ 1

the reduced empirical process.

We have the fundamental equation (see Shorack and Wellner (1986), Section

3.2)

(4.3)
√
n[Fn − F̄n] = Xn(F̄n) on (−∞,∞) for all n, holds a.s.

The point of this equation is that Xn is the empirical process based on contin-

uous df’s (αni’s are absolutely continuous for continuous df’s); when Xni’s are not

continuous rv’s, the fundamental equation remains true for some changed but still

continuous αni’s. See more detail in Shorack and Wellner (1986), p. 102-103. There

says “ the empirical process n1/2[Fn − F̄n] only ‘looks in on’ the reduced empirical

process Xn of the associated array of continuous rv’s at points in the range of F̄n ”.
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For a FCLT to hold for non-iid samples, the covariance, say ρn, of the nth

empirical process {νn(f) : f ∈ F} (which is n−1
∑

i≤n(Pi(fg) − PifPig)) has to

converge point-wise on F ×F . Consequently the L2 metric of the empirical process

converges point-wise on F×F as we can write the L2 metric in terms of the covariance

function. Actually we will prove that the convergence is uniform if the L2(P ) norm

of the functions are uniformly bounded. Before the proof, we need the following

lemma.

Lemma 4.1.1 (Kolmogorov-Prokhorov exponential inequality; cf Stout (1974),

Theorem 5.2.2). Let {X1, X2, · · · } be a sequence of independent mean zero random

variables. Let Sn =
∑

i≤nXi and s2
n =

∑
i≤n EX2

i . Assume for a constant c > 0,

|Xi| ≤ csn a.s

for each 1 ≤ i ≤ n and n ≥ 1. Suppose ε > 0 and γ > 0. Then there exist constants

ε(γ) > 0 and π(γ) > 0 such that if ε(γ) ≤ ε ≤ π(γ)/c, then

P(Sn/sn > ε) ≥ exp(−(ε2/2)(1 + γ)).

The following theorem is an extension of Theorem 3.1 in Alexander (1987b) for

empirical processes for non-iid samples indexed by sets to a index set consisting of

uniformly bounded functions (actually we only need the functions are uniformly L2

bounded).

Theorem 4.1.2. Let {X1, X2, · · · } be independent random elements in (S,S).

Let F be a class of functions each of which uniformly bounded by 1. Let {νn(f) : f ∈

F} be the empirical process indexed by F . Assume it converges weakly to a mean

zero Gaussian process G(·). Let ρn(f, g) = Eνn(f)νn(g) and ρ(f, g) = EG(f)G(g).
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Then

ρn converges to ρ uniformly on F × F .

Proof. Let dρn and dρ be the L2 distances of the process νn and G; i.e.

dρn(f, g)2 = ρn(f, f)− 2ρn(f, g) +ρn(g, g) and dρ(f, g)2 = ρ(f, f)− 2ρ(f, g) +ρ(g, g).

First we prove for all f, g, h, l ∈ F

(4.4) |ρ(f, g)− ρ(h, l)| ≤ dρ(f, h) + dρ(g, l).

|ρ(f, g)− ρ(h, l)| = |EG(f)G(g)− EG(h)G(l)|(4.5)

= |EG(f)G(g)− EG(h)G(g) + EG(h)G(g)− EG(h)G(l)|

≤ |EG(f)G(g)− EG(h)G(g)|+ E|G(h)G(g)− EG(h)G(l)|

= (EG(g)2)1/2(E(G(f)−G(h))2)1/2

+ (EG(h)2)1/2(E(G(g)−G(l))2)1/2

≤ (E(G(f)−G(h))2)1/2 + (E(G(g)−G(l))2)1/2

= dρ(f, h) + dρ(g, l),

where we used that (EG(f)2)1/2 ≤ 1 for any f ∈ F as each f is uniformly bounded by

1. Thus we proved (4.4); it remains true if ρ is replaced by ρn. By definition, (F , ρ)

is totally bounded; hence for any α > 0, let Fα be a α dense set in F with |Fα| <∞.

Write fα ∈ Fα be within α for f ∈ F . Since {νn(f) : f ∈ F} converges weakly

to {G(f) : f ∈ F}, by continuous mapping theorem, {νn(f) : f ∈ Fα} converges

weakly to {G(f) : f ∈ Fα}. Hence ρn converges uniformly to ρ on Fα ×Fα.

Suppose on the contrary that ρn does not converges uniformly to ρ on F × F .

Then there exist η > 0, subsequences (nk)k≥1 and (fnk)k≥1 ⊂ F and (gnk)k≥1 ⊂ F
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such that

|ρnk(fnk , gnk)− ρ(fnk , gnk)| ≥ η.

By passing to the subsequence {nk : k = 1, 2, · · · }, we write the full sequence {n :

n = 1, 2, · · · }. Fix α < η/4. Using (4.4), and the uniform convergence of ρn on

Fα ×Fα, we have for all n big enough

η ≤ |ρn(fn, gn)− ρ(fn, gn)|

≤ |ρn(fn, gn)− ρn(fαn , g
α
n)|+ |ρn(fαn , g

α
n)− ρ(fn, gn)|

+ |ρ(fαn , g
α
n)− ρ(fαn , g

α
n)|

≤ dρn(fn, f
α
n ) + dρn(gn, g

α
n) + η/4

+ dρ(fn, f
α
n ) + dρ(gn, g

α
n)

≤ dρn(fn, f
α
n ) + dρn(gn, g

α
n) + 3η/4.

We thereby obtain sequence (fn), (gn) for which dρ(fn, gn) < α but dρn(fn, gn) > η/8.

By applying Lemma 4.1.1 with Sn = νn(f − g), there exist δ = δ(η) > 0 and

ε = ε(η) > 0 such that dρn(f, g) > η/8 implies P(|νn(f)− νn(g)| > ε) ≥ δ. Therefore

lim sup
n

P∗(sup{|νn(f)− νn(g)| : f, g ∈ F , dρ(f, g) < α} > ε) ≥ δ.

This contradicts the asymptotic equicontinuity condition in Theorem 2.2.2.

4.2 Weak convergence

Following is the main result of this section.

Theorem 4.2.1. Let {Yj(t) : t ∈ E} for j ∈ N be a sequence of indepen-
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dent processes and let Fj(t, y) be the distribution functions of Yj(t), i.e.Fj(t, y) =

P(Yj(t) ≤ y). Further let νn,t(y) = n−1
∑n

j=1 Fj(t, y). Assume the following condi-

tions hold.

(i) there are continuous distribution functions νt(·) for t ∈ E such that |νn,s(x)−

νn,t(y)| ≤ |νs(x)− νt(y)| for all x, y ∈ R and all n ∈ N,

(ii) there is a continuous Gaussian distance ρ(s, t) on E, constants Lj for j ∈ N

and L such that for all ε > 0

(4.6) sup
t∈E

P∗( sup
s:ρ(s,t)≤ε

|F̃j(t, Yj(t))− F̃j(t, Yj(s))| > ε2) ≤ Ljε
2, j ∈ N

and

(4.7) sup
n
n−1

n∑
j=1

Lj ≤ L

(iii) the covariances of the empirical process

βn(t, y) := n−1/2

n∑
j=1

(1Yj(t)≤y − Fj(t, y)), t ∈ E, y ∈ R

converge.

Then the empirical process βn converges weakly to a Gaussian process.

When the input processes {Y (t), Y1(t), Y2(t), · · · } on E are iid with continuous

marginal distributions, we have

Corollary 4.2.2. Given iid processes {Y1(t), Y2(t), · · · , } on E, assume F (t, ·),

the distribution function of Y (t) are continuous for each t ∈ E. Further assume
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the process Y (t) satisfies the L-condition. Then the empirical process based on

{1Y (t)≤y − F (t, y) : t ∈ E, y ∈ R} converges weakly.

Proof. In Theorem 4.2.1, νn(t, y) becomes F (t, y), thus we can take ν(t, y) :=

F (t, y) and the other conditions in the theorem are satisfied trivially.

When specializing the time set E to have only one point, we obtain

Corollary 4.2.3. Let X1, X2, · · · be a sequence of independent real valued

random variables. Let νn(x) = n−1
∑n

i=1 P(Xi ≤ x). Let Zn(x) = n−1/2
∑n

i=1(1Xi≤x−

P(Xi ≤ x)) and Kn(x, y) = EZn(x)Zn(y). If

(i) there is a continuous distribution function ν(x) for which

|νn(x)− νn(y)| ≤ |ν(x)− ν(y)|

and

(ii) KN(x, y)→ some K(x, y) as n→∞ for all x, y ∈ R,

then Zn(x) converges weakly to a Gaussian process with the limiting covariance func-

tion K(x, y).

Remarks 4.2.4. (1) By the quantile transformation, this corollary is Shorack

(1979), Theorem 1.1.

(2) It has an extension to empirical processes indexed by VC-class (Alexander

(1987a), Corollary 5.2).

Before the proof of Theorem 4.2.1, we collect some lemmas.
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Lemma 4.2.5 (Kuelbs et al. (2013), Lemma 1). Let Lj be as in the L-condition

for processes {Yj(t) : t ∈ E} for j ∈ N. Then

(4.8) P(Yj(s) ≤ x < Yj(t)) ≤ (Lj + 1)ρ(s, t)2,

and

(4.9) sup
x
|Fj(t, x)− Fj(s, x)| ≤ 2(Lj + 1)ρ(s, t)2.

Lemma 4.2.6. Let W (y) be a Wiener process. Let Z(t, y) = W (νt(y)). Then

Z(t, y) is a continuous Gaussian process w.r.t. its L2 distance

dZ((s, x), (t, y)) = |νs(x)− νt(y)|1/2.

Proof. Only note that W (·) has continuous sample paths and (E(W (u) −

W (v))2)1/2 = |u− v|1/2.

Lemma 4.2.7.

sup
x∈R
|νn,s(x)− νn,t(x)| ≤ 2(L+ 1)ρ(s, t)2.
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Proof.

|νn,s(x)− νn,t(x)| = |n−1

n∑
j=1

Fj(s, x)− n−1

n∑
j=1

Fj(t, x)|

≤ n−1

n∑
j=1

|Fj(s, x)− Fj(t, x)|

≤ n−1

n∑
j=1

2(Lj + 1)ρ(s, t)2 by (4.9)

≤ 2(L+ 1)ρ(s, t)2.

In the setting of Theorem 4.2.1, let τj((s, x), (t, y)) = (E(1Yj(s)≤x − 1Yj(t)≤y)
2)1/2

and λn((s, x), (t, y))2 := 1
n

∑n
j=1 τj((s, x), (t, y))2.

Lemma 4.2.8. Under assumptions of Theorem 4.2.1, we have

λn((s, x), (t, y))2 ≤ 2|νs(x)− νt(y)|+ 4(L+ 1)ρ(s, t)2.

Consequently, if let τ be the L2 distance of the limiting Gaussian process of the

empirical process βn in Theorem 4.2.1, then

(4.10) τ((s, x), (t, y)) ≤ 21/2dZ((s, x), (t, y))|+ 2(L+ 1)1/2ρ(s, t),

where dZ is the L2 distance of the Gaussian process in Lemma 4.2.6.
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Proof.

λn((s, x), (t, y))2 = n−1

n∑
j=1

E(1Yj(s)≤x − 1Yj(t)≤y)
2

≤ n−1

n∑
j=1

E{2(1Yj(s)≤x − 1Yj(t)≤x)
2 + 2(1Yj(t)≤x − 1Yj(t)≤y)

2}

≤ 2n−1

n∑
j=1

[
(P(Yj(s) ≤ x < Yj(t)) + P(Yj(t) ≤ x < Yj(s)))

+ |Fj(t, x)− Fj(t, y)|
]

≤ 4n−1

n∑
j=1

(Lj + 1)ρ(s, t)2 + 2|νn,s(x)− νn,t(y)|

≤ 4(L+ 1)ρ(s, t)2 + 2|νs(x)− νt(y)|.

Since τ((s, x), (t, y))2 ≤ lim supn→∞ λn((s, x), (t, y)), and by Lemma 4.2.6, the last

statement in the Lemma follows.

Lemma 4.2.9. Under the assumptions of Theorem 4.2.1, the limiting Gaussian

process of the empirical process βn in Theorem 4.2.1 has a version whose sample paths

are bounded and uniformly continuous with respect to its L2 metric.

Proof. Let {H1 : t ∈ E} be a mean zero Gaussian process with its L2 distance

ρ(s, t) on E and have bounded and uniformly ρ-continuous sample paths. Since

(E, ρ) is totally bounded, let E0 be a countable dense subset in (E, ρ). Let {Z(t, y) :

(t, y) ∈ E × R}, independent from H1, be the Gaussian process in Lemma 4.2.6.

Observe that it is sample bounded and uniformly continuous with respect to its L2

distance. Define H(t, y) := 21/2Z(t, y) + 2(L+ 1)1/2H1(s, t) for t ∈ E, y ∈ R. Then,

dH((s, x), (t, y))2 = 2|νs(x)− νt(y)|+ 4(L+ 1)ρ(s, t)2.

76



Let Q denote the set of rational numbers. By the continuity of νt(·) for all t ∈ E from

the assumption, E0×Q is a (countable) dense subset in (E×R, dH). Since τ ≤ dH by

Lemma 4.10, (recall τ is the L2 distance of the limiting Gaussian process, say G, in

theorem 4.2.1), then E0×Q is countable dense in (E×R, τ). Hence by the comparison

theorem 2.3.7, {G((s, x)) : (s, x) ∈ E0×Q} has bounded and uniformly τ -continuous

sample paths; by the extension lemma, Lemma 2.3.8, {G((s, x)) : (s, x) ∈ E × R}

has a version with bounded and uniformly τ -continuous sample paths.

Lemma 4.2.10. If λn((s, x), (t, y)) ≤ ε and ρ(s, t) ≤ ε, then

|νn,s(x)− νn,t(y)| ≤ (6L+ 8)ε2.

Proof.

|νn,s(x)− νn,t(y)| ≤ |νn,s(x)− νn,t(x)|+ |νn,t(x)− νn,t(y)|

≤ 2(L+ 1)ρ(s, t)2 + |n−1

n∑
j=1

Fj(t, x)− n−1

n∑
j=1

Fj(t, y)|

≤ 2(L+ 1)ρ(s, t)2 + n−1

n∑
j=1

|(Fj(t, x)− Fj(t, y))|

= 2(L+ 1)ρ(s, t)2 + n−1

n∑
j=1

E(1Yj(t)≤x − 1Yj(t)≤y)
2

≤ 2(L+ 1)ρ(s, t)2 + n−1

n∑
j=1

E{2(1Yj(t)≤x − 1Yj(s)≤x)
2

+ 2(1Yj(s)≤x − 1Yj(t)≤y)
2}

≤ (6L+ 6)ρ(s, t)2 + 2λn((s, x), (t, y))2

≤ (6L+ 8)ε2.
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Next we prove a lemma about the local modulus.

Let en((s, x), (t, y)) = max{λn((s, x), (t, y)), ρ(s, t)}.

Lemma 4.2.11. Under the assumptions in Theorem 4.2.1, we have for all (t, y)

and ε > 0,

1

n

n∑
j=1

P∗( sup
(s,x):en((s,x),(t,y))≤ε

|1Yj(t)≤y − 1Yj(s)≤x| > 0) ≤ (18L+ 22)ε2.

Proof. First we observe that

1

n

n∑
j=1

P∗( sup
(s,x):en((s,x),(t,y))≤ε

|1Yj(t)≤y − 1Yj(s)≤x| > 0)

=
1

n

n∑
j=1

P∗( sup
(s,x):en((s,x),(t,y))≤ε

1Yj(t)≤y,Yj(s)>x + 1Yj(t)>y,Yj(s)≤x > 0).

By the fact that x < y implies Fj(t, x) ≤ F̃j(t, y), we have

1

n

n∑
j=1

P∗( sup
(s,x):en((s,x),(t,y))≤ε

|1Yj(t)≤y − 1Yj(s)≤x| > 0)

≤ 1

n

n∑
j=1

P∗( sup
(s,x):en((s,x),(t,y))≤ε

1F̃j(t,Yj(t))≤F̃j(t,y),F̃j(t,Yj(s))≥Fj(t,x) > 0)

+
1

n

n∑
j=1

P∗( sup
(s,x):en((s,x),(t,y))≤ε

1F̃j(t,Yj(t))≥Fj(t,y),F̃j(t,Yj(s))≤F̃j(t,x) > 0) =: I + II.

Using the Lj condition, i.e. |F̃j(t, Yj(s))− F̃j(t, Yj(t))| ≤ ρ(s, t)2 with probability
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at least 1− Ljε2, and that F̃j(t, y) ≤ Fj(t, y) we obtain

I ≤ 1

n

n∑
j=1

[
P∗( sup

(s,x):en((s,x),(t,y))≤ε
1Fj(t,x)−ε2≤F̃j(t,Yj(t))≤Fj(t,y) > 0) + Ljε

2
]

≤ 1

n

n∑
j=1

[
P∗( inf

(s,x):en((s,x),(t,y))≤ε
(Fj(t, x)− ε2) ≤ F̃j(t, Yj(t)) ≤ Fj(t, y)) + Ljε

2
]

≤ 1

n

n∑
j=1

[
Fj(t, y)− inf

(s,x):en((s,x),(t,y))≤ε
(Fj(t, x)− ε2) + Ljε

2
]

≤ 1

n

n∑
j=1

[
sup

(s,x):en((s,x),(t,y))≤ε
(Fj(t, y)− Fj(t, x))

]
+ (L+ 1)ε2

≤ 1

n

n∑
j=1

[
sup

{x:νn,t(x,y]≤ε2}
(Fj(t, y)− Fj(t, x))

]
+ (L+ 1)ε2

(4.11)

The second inequality follows from that F̃j(t, Yj(t)) is uniform on [0, 1]. For j =

1, 2, · · · , n, let xnj be the limit point in the set over which the supremum is taken

in the last line of the last display. The supremum is actually maximum because of

right continuity of Fj(t, ·). Indeed, for fixed n and 1 ≤ j ≤ n there are sequences

(s
(m)
nj , x

(m)
nj )m∈N such that en((s

(m)
nj , x

(m)
nj ), (t, y)) ≤ ε for m ∈ N and that x

(m)
nj ↓ xnj as

Fj(t, ·) is monotone increasing.

Therefore

79



1

n

n∑
j=1

sup
(s,x):en((s,x),(t,y))≤ε

(Fj(t, y)− Fj(t, x))

≤ 1

n

n∑
j=1

Fj(t, y)− Fj(t, xnj)

≤ max
1≤j≤n

(νn,t(y)− νn,t(xnj))

≤ max
1≤j≤n

{ [νn,t(y)− ν
n,s

(m)
nj

(x
(m)
nj )] + [ν

n,s
(m)
nj

(x
(m)
nj )− ν

n,s
(m)
nj

(xnj)] + [ν
n,s

(m)
nj

(xnj)− νn,t(xnj)] }

(4.12)

Let

A := νn,t(y)− ν
n,s

(m)
nj

(x
(m)
nj ),

B := ν
n,s

(m)
nj

(x
(m)
nj )− ν

n,s
(m)
nj

(xnj),

C := ν
n,s

(m)
nj

(xnj)− νn,t(xnj).

By Lemma 4.2.10 and note that en((s
(m)
nj , x

(m)
nj ), (t, y)) ≤ ε, we have

(4.13) A ≤ (6L+ 8)ε2.

By continuity of νt(·) for each t,

(4.14) lim
m→∞

B = 0.

By Lemma 4.2.7,

(4.15) C ≤ (2L+ 2)ρ(s
(m)
nj , t)

2 ≤ 2(L+ 1)ε2.
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Combining (4.11), (4.12),(4.13), (4.14) (4.15) gives

(4.16) I ≤ (9L+ 19)ε2.

Similarly II ≤ (9L+ 11)ε2.

Proof of Theorem 4.2.1. Since Lemma 4.2.9 and Lemma 4.2.11 verify the

pre-Gaussian and local modulus conditions respectively in Theorem 2.5.2, it suffices

to check the finite dimensional convergences. But this follows from the classical CLT

by noting that the summands (indicators) are bounded and the covariances converge

by assumption.
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5 CONCLUSION

Using the L-condition and WL-condition, we extended some classical empirical pro-

cess theorems to time dependent ones starting from the paper Kuelbs et al. (2013).

Specifically, we have obtained weak convergence theorems for time dependent weighted

empirical processes and time dependent empirical processes for independent and not

necessarily identically distributed processes.

In the recent work of Mason and Kevei, they proved some strong approximation

results for time dependent empirical processes based on fractional Brownian motions.

Kuelbs and Zinn Kuelbs and Zinn (2013) proved empirical quantile CLTs involving

time dependent data.

In the first part of this thesis, we considered empirical processes for uniform

processes on E. A uniform process {X(t) : t ∈ E} can be obtained, e.g., from

any stochastic process by the (randomized) distributional transform: {X(t) :=

F̃ (t, Y (t)) : t ∈ E} where Y (t) is a stochastic process on E and F̃ (t, ·) is the ran-

domized distributional transform of the distribution of Y (t). Such a uniform process

is called copula process. If further given a weight function, under the WL-condition,

we obtained the weak convergence of the time dependent weighted empirical pro-

cess. The weight function w(y) in Theorem 3.3.3 doesn’t dependent on t. In the

future work, we could consider w(t, y). In particular, to investigate the continuity

of {w(t, y)G(t, y) : t ∈ E, y ∈ R} where the Gaussian process G(t, y) is the limiting

Gaussian process from the time dependent empirical process of Kuelbs et al. (2013).

Also, we can consider the LIL among others for the time dependent empirical process

for some class of stochastic processes.

In the second part of this thesis, we considered independent and not necessarily
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identically distributed stochastic processes (non-iid samples). We assume each pro-

cess satisfies the L-condition for the same Gaussian metric on E and the averages

of these L constants uniformly bounded in n. Further assume some uniform bound

on the averages of the distribution functions of these processes. Then we obtained

a weak convergence theorem for the time dependent empirical process for non-iid

stochastic processes. In the future work, we can consider the case that in each Lj

condition, the Gaussian metric is different, say ρj, for the process {Yj(t) : t ∈ E}.

Then consider what conditions lead to a CLT. For example, if we have some uniform

convergence for the nth averages of ρj’s, the weak convergence might holds.

For some other possible extensions, we can consider the case that the input

processes (samples) take values in Rd.
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L. Rüschendorf. On the distributional transform, Sklar’s theorem, and the empirical

copula process. J. Statist. Plann. Inference, 139(11):3921–3927, 2009. ISSN 0378-

3758.

E. Seneta. Regularly varying functions. Lecture Notes in Mathematics, Vol. 508.

Springer-Verlag, Berlin, 1976.

G. R. Shorack. Weak convergence of empirical and quantile processes in sup-norm

metrics via KMT-constructions. Stochastic Process. Appl., 9(1):95–98, 1979. ISSN

0304-4149.

G. R. Shorack and J. A. Wellner. Empirical processes with applications to statistics.

Wiley Series in Probability and Mathematical Statistics: Probability and Mathe-

matical Statistics. John Wiley & Sons Inc., New York, 1986. ISBN 0-471-86725-X.

W. F. Stout. Almost sure convergence. Academic Press [A subsidiary of Harcourt

Brace Jovanovich, Publishers], New York-London, 1974. Probability and Mathe-

matical Statistics, Vol. 24.

M. Talagrand. The generic chaining. Springer Monographs in Mathematics. Springer-

Verlag, Berlin, 2005. ISBN 3-540-24518-9. Upper and lower bounds of stochastic

processes.

87



A. W. van der Vaart and J. A. Wellner. Weak convergence and empirical processes.

Springer Series in Statistics. Springer-Verlag, New York, 1996. ISBN 0-387-94640-

3. With applications to statistics.

M. J. Wichura. On the weak convergence of non-borel probabilities on a metric space.

ProQuest LLC, Ann Arbor, MI, 1968. Thesis (Ph.D.)–Columbia University.

88


