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ABSTRACT

We have investigated two greedy strategies for finding an approximation to the

minimum of a convex function E, defined on a Hilbert space H. We have proved

convergence rates for a modification of the orthogonal matching pursuit and its weak

version under suitable conditions on the objective function E. These conditions in-

volve the behavior of the moduli of smoothness and the modulus of uniform convexity

of E.
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1. INTRODUCTION

1.1 Convex Optimization

The main goal in convex optimization is the development and analysis of algo-

rithms for solving the problem

inf
x∈Ω

E(x), (1.1)

where E is a given convex function, defined on a bounded convex set Ω. E is called

the objective function and satisfies the convexity condition

E(γx+ δy) ≤ γE(x) + δE(y), x, y ∈ Ω, γ, δ ≥ 0, γ + δ = 1.

Convex optimization has many application domains such as automatic control

systems, estimation and signal processing, communications and networks, electronic

circuit design, data analysis and modeling, statistics, finance, combinatorial opti-

mization and others. Some of the new application areas have stimulated renewed

interest in the subject. While the classical convex optimization deals with objective

functions E defined on subsets in IRn with moderate values of n, see [4], some of the

new applications require that n is quite large or even ∞. The design of algorithms

for such cases is quite challenging and typical convergent results involving the di-

mension n suffer from the curse of dimensionality. Recently, Temlyakov (see [15, 16])

has proposed several greedy strategies for solving (1.1) for some classes of objective

functions E defined on Banach spaces, where he overcomes the curse of dimensional-

ity. The approximate solution to the optimization problem is constructed as a linear

combination of elements from a given system (dictionary) of elements. In this way,

the greedy approximation technique, originally developed in the context of nonlinear

1



approximation theory, has been successfully adjusted for finding a sparse solution to

the optimization problem.

1.2 Problem Setting

This dissertation investigates greedy based strategies for solving (1.1) for partic-

ular classes of objective functions E defined on a Hilbert space H and for domain

Ω = {x ∈ H : E(x) ≤ E(0)}. The function E satisfies the following 3 conditions:

Condition 0: E is a convex function defined on a Hilbert space H, is Frechet

differentiable at each point in Ω and its Frechet derivative is uniformly bounded on

Ω by a constant M0. The set Ω is bounded.

Condition 1: There are constants α ≥ 0, 1 < q ≤ 2 and M > 0, such that

E(x′)−E(x)−〈E ′(x), x′−x〉 ≤ α‖x′−x‖q, for x, x′, such that ‖x−x′‖ ≤M, x ∈ Ω.

(1.2)

Condition 2: There are constants β ≥ 0, 2 ≤ p <∞ and M > 0, such that

E(x′)−E(x)−〈E ′(x), x′−x〉 ≥ β‖x′−x‖p, for x, x′, such that ‖x−x′‖ ≤M, x ∈ Ω.

(1.3)

In both Condition 1 and Condition 2, E ′(x) is the Frechet derivative of E at x.

Temlyakov (see [15], [16]) has studied various greedy strategies for solving problem

(1.1). The objective functions E he considers are defined on Banach spaces X with

norm ‖ · ‖ and the tool he uses for greedy approximation is symmetric dictionaries

D. Recall that D is called a symmetric dictionary if each element ϕ ∈ D has norm

‖ϕ‖ ≤ 1, if ϕ ∈ D, then −ϕ ∈ D, and the closure of

span D := {Σi∈Iciϕi, I finite, ci ∈ IR, ϕi ∈ D}
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is X. Among other results, he has shown that the Orthogonal Matching Pursuit

(OMP), when applied to a function E satisfying certain suitable assumptions on its

modulus of smoothness, described by a parameter q, gives an error at the m-th step

E(xm)− E(x̄) ≤ Cm1−q, (1.4)

with a constant C, where x̄ is the minimizer of E and xm is the output of the OMP.

Our main results are Theorem 4.2.3 and Theorem 4.3.3 from Chapter IV, where we

prove an improved convergence rate for both OMP and the Weak Chebyshev Greedy

Algorithm (WCGA) when they are used to find the minimum of a function E that

satisfies Conditions 0, 1 and 2. For example, we show that if the objective function

E satisfies Condition 0 and Condition 1, is strongly convex on H (therefore

satisfies Condition 2 with p = 2) and its minimizer x̄ is sparse with respect to an

orthonormal basis, the error at the m-th step of the OMP satisfies the inequality

E(xm)− E(x̄) ≤ C0m
1− q

2−q ,

and

‖xm − x̄‖ ≤ C1m
1
2
− q

2(2−q) ,

where C0 = C0(q, x̄), C1 = C1(q, x̄). In contrast, the results from Temlyakov could

provide only the rate 1− q, see (1.4).

In summary, we have shown that imposing more conditions on the convexity of E

(like Condition 2) results in provable improved convergence rate for both OMP

and WCGA. Namely, we prove the following two theorems.

Theorem 1.2.1. Let the objective function E satisfy Conditions 0,1,2 with M0 <

αqM q−1. Let problem (1.1) has a solution x̄ =
∑

i ci(x̄)ϕi ∈ Ω with support S̄ := {i :
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ci(x̄) 6= 0} < ∞, where {ϕi} is an orthonormal basis. Then, at Step k, the OMP

applied to E and {ϕi} outputs xk, where either xk = x̄ or:

• When p 6= q 6= 2, the error ek := E(xk)− E(x̄), k ≥ 2 satisfies the inequality

ek ≤ C0

(
|S̄|

q
2(q−1)

k + C1|S̄|
q

2(q−1) − 1

) p(q−1)
p−q

.

In addition, the sequence {xk}∞k=2 satisfies

‖xk − x̄‖ ≤
(
C0

β

) 1
p

(
|S̄|

q
2(q−1)

k + C1|S̄|
q

2(q−1) − 1

) (q−1)
p−q

,

where C0 = C0(p, q, α, β) and C1 = C1(p, q, α, β, E).

• When p = q = 2, we have

ek ≤ C2

(
1− β

α|S̄|

)k−1

, k ≥ 2,

‖xk − x̄‖ ≤
(
C2

β

) 1
2
(

1− β

α|S̄|

) k−1
2

, k ≥ 2,

with C2 = C2(E).

Theorem 1.2.2. Let the objective function E satisfy Conditions 0,1,2 with M0 <

αqM q−1. Let problem (1.1) has a solution x̄ =
∑

i ci(x̄)ϕi ∈ Ω with support S̄ := {i :

ci(x̄) 6= 0} <∞, where {ϕi} is an orthonormal basis. Then, at Step k, the WCGA

applied to E and {ϕi} outputs xw
k , where either xw

k = x̄ or:

• When p 6= q 6= 2, the error ew
k := E(xw

k )− E(x̄) satisfies the inequality

ew
k ≤ C0

(
|S̄|

q
2(q−1)∑k

i=2 t
q

q−1

i + C1|S̄|
q

2(q−1)

) p(q−1)
p−q

, k ≥ 2.
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In addition, the sequence {xw
k }∞k=2 satisfies

‖xw
k − x̄‖ ≤

(
C0

β

) 1
p

(
|S̄|

q
2(q−1)∑k

i=2 t
q

q−1

i + C1|S̄|
q

2(q−1)

) (q−1)
p−q

, k ≥ 2,

where C0 = C0(p, q, α, β) and C1 = C1(p, q, α, β, E).

• When p = q = 2,

ew
k ≤ C2

k∏
i=2

(
1− β

α|S̄|
t2i

)
, k ≥ 2,

‖xw
k − x̄‖ ≤

(
C2

β

) 1
2

k∏
i=2

(
1− β

α|S̄|
t2i

)1/2

, k ≥ 2,

with C2 = C2(E).

This dissertation is organized as follows. In Chapter 2, we expand on the con-

ditions imposed on the objective function E. In Chapter 3, we present some of the

general results about greedy algorithms and describe the two algorithms (OMP and

WCGA) that we are using for convex optimization. Some auxiliary lemmas needed

for our analysis and the main results are presented in Chapter 4.
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2. CONDITIONS ON E

In this chapter, we discuss the conditions imposed on the objective function E

and justify that they are a natural choice.

2.1 Convexity and Frechet Differentiability

Let us first recall that a function E is Frechet differentiable at x ∈ S ⊂ H if there

exists a bounded linear functional denoted by E ′(x) such that

lim
h→0

|E(x+ h)− E(x)− 〈E ′(x), h〉|
‖h‖

= 0.

The next lemma (see [4],[13]) shows a relation between convexity and Condition 2

with constant β = 0. The proof of this lemma for convex functions on IRn can be

found in [4] but for the readers’ convenience, we include here the proof in our current

setting in which the convex function E is defined on a Hilbert space H.

Lemma 2.1.1. Let E be a Frechet differentiable function on H. E is convex on H

if and only if for some constant M > 0,

E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≥ 0, for all x, x′ ∈ H, ‖x− x′‖ ≤M. (2.1)

Proof. The inequality is trivial if x = x′. Assume first that E is convex and x 6= x′ ∈

H. Then, for all 0 < t ≤ 1, (1− t)x+ tx′ ∈ H and

E((1− t)x+ tx′) ≤ (1− t)E(x) + tE(x′).

6



This is equivalent to

E(x′)− E(x)− E(x+ t(x′ − x))− E(x)

t
≥ 0, 0 < t ≤ 1.

Therefore, we have

E(x′)− E(x)− lim
t→0+

E(x+ t(x′ − x))− E(x)

t
≥ 0. (2.2)

On the other hand, it follows from the definition of Frechet derivative of E at x for

h = t(x′ − x) that

lim
t→0

|E(x+ t(x′ − x))− E(x)− t〈E ′(x), x′ − x〉|
|t|

= 0,

and therefore

lim
t→0+

E(x+ t(x′ − x)− E(x)

t
= 〈E ′(x), x′ − x〉. (2.3)

Combining (2.2) and (2.3) gives

E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≥ 0 x, x′ ∈ H.

Conversely, assume that E satisfies inequality (2.1). For any x, x′ ∈ H, ‖x−x′‖ ≤M ,

we denote by y = tx + (1 − t)x′. Applying (2.1) for x, y ( note that ‖x − y‖ ≤ M)

and for x′, y yields

E(x)− E(y)− 〈E ′(y), x− y〉 ≥ 0, E(x′)− E(y)− 〈E ′(y), x′ − y〉 ≥ 0.

Multiplying the first inequality by t and the second by 1− t and adding them results

7



in

tE(x) + (1− t)E(x′)− E(y) ≥ 0.

Therefore, we have E(tx+(1−t)x′) ≤ tE(x)+(1−t)E(x′) for x, x′ ∈ H, ‖x−x′‖ ≤M ,

which means that E is locally convex on H. Then, see [18], E is convex on H. The

proof is complete.

Recall that a function E is said to be strongly convex on H, if there is a constant

β > 0, such that

E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≥ β‖x′ − x‖2, x, x′ ∈ H.

The constant β is called the convexity parameter of the function E. Note that a

strongly convex function on H satisfies Condition 2 with a value for p, p = 2.

Remark 2.1.2. If Condition 2 holds for a function E that is convex and a set Ω

that is convex and bounded, then Condition 2 holds for all x, x′ ∈ Ω with possibly

smaller β. Further in this dissertation, we assume that Condition 2 holds for all

x, x′ ∈ Ω and all x, x′, such that x ∈ Ω and ‖x− x′‖ ≤M .

Proof. Assume that for a convex function E, Condition 2 holds with some constant

β0. Since Ω is bounded, there is L > 0, such that diam(Ω) ≤ LM . Let x, x′ ∈ Ω. If

‖x− x′‖ ≤M , Condition 2 holds for the pair (x, x′). If not, we chose a point x1,

x1 = γx′ + (1− γ)x ∈ Ω, γ :=
M

‖x− x′‖
≥ L−1.

Clearly ‖x− x1‖ = M , and therefore E(x1)−E(x)− 〈E ′(x), x1 − x〉 ≥ β0‖x1 − x‖p.

Because of the convexity of E, E(x1) ≤ γE(x′) + (1− γ)E(x). A combination of the

8



last two inequalities and the fact that x1 − x = γ(x′ − x) result in

E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≥ β0γ
p−1‖x′ − x‖p ≥ β0L

1−p‖x′ − x‖p.

Therefore, Condition 2 holds for all x, x′ ∈ Ω and all x, x′ such that x ∈ Ω,

‖x− x′‖ ≤M with β = min{β0, β0L
1−p}.

2.2 Moduli of Smoothness

Next, we would like to point out that the class of functions E considered by

Temlyakov (see [15] and [16]) is the same as the class of functions satisfying Condi-

tion 0 and Condition 1. To see this, we first need the following definitions.

Definition 2.2.1. Given a convex function E : H → IR and a set S ⊂ H, the

modulus of smoothness of E on S is defined by

ρ(E, u) := ρ(E, u, S) :=
1

2
sup

x∈S,‖y‖=1

{E(x+ uy) + E(x− uy)− 2E(x)} , u > 0.

(2.4)

Definition 2.2.2. Given a convex function E : H → IR and a set S, the modulus of

uniform smoothness of E on S is defined by

ρ1(E, u, S) := sup
x∈S,‖y‖=1,λ∈(0,1)

{
(1− λ)E(x− λuy) + λE(x+ (1− λ)uy)− E(x)

λ(1− λ)

}
.

(2.5)

Definition 2.2.3. A convex function E : H → IR for which

lim
u→0

ρ(E, u, S)

u
= 0

is said to be uniformly smooth on S.

9



Note that the two moduli of smoothness defined above are equivalent (see [19],

page 205). For the readers’ convenience, we provide the proof below.

Lemma 2.2.4. Let E be a convex function defined on H and ρ(E, ·, S) and ρ1(E, ·, S)

be its modulus of smoothness and modulus of uniform smoothness on S ⊂ H, respec-

tively. Then

4ρ(E,
u

2
, S) ≤ ρ1(E, u, S) ≤ 2ρ(E, u, S). (2.6)

Proof. First, we prove the left inequality. It follows from the definition of ρ1 that for

every y ∈ H, ‖y‖ = 1,

ρ1(E, u, S) ≥ 4
E(x− u

2
y) + E(x+ u

2
y)− 2E(x)

2
.

Taking the suppremum over x ∈ S and y ∈ H, ‖y‖ = 1 results in the desired

inequality. For the second inequality, we use the convexity of E. Observe that

E(x− λuy) = E((1− λ)x+ λ(x− uy)) ≤ (1− λ)E(x) + λE(x− uy),

and

E(x+ (1− λ)uy) = E(λx+ (1− λ)(x+ uy)) ≤ λE(x) + (1− λ)E(x+ uy).

We multiply the first inequality by 1− λ, the second one by λ and add them. This

results in

(1− λ)E(x− λuy) + λE(x+ (1− λ)uy)− E(x)

λ(1− λ)

≤ E(x+ uy) + E(x− uy)− 2E(x) ≤ 2ρ(E, u, S).

10



Taking the supremum over λ ∈ (0, 1), x ∈ S, y ∈ H, ‖y‖ = 1 completes the proof.

The following lemma is a particular case of Corollary 3.5.7 from [19].

Lemma 2.2.5. Let E be a convex function defined on a Hilbert space H and E be

Frechet differentiable on S ⊂ H. The following statements are equivalent.

1. There exist constants α ≥ 0, M > 0 and q ∈ (1, 2] such that for any x ∈ S, x′ ∈

H, ‖x− x′‖ ≤M , we have

E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≤ α‖x′ − x‖q. (2.7)

2. There exist constants α1 ≥ 0, M > 0 and q ∈ (1, 2] such that

ρ1(E, u, S) ≤ α1u
q, 0 < u ≤M. (2.8)

Proof. Let us assume that statement 1 is true. For any x ∈ S, y ∈ H, ‖y‖ = 1 and

any 0 < u ≤ M , let x′ = x + uy and x′′ = x − uy. Then, we have ‖x − x′‖ = u ≤

M, ‖x′′ − x‖ = u ≤M . We apply (2.7) for x′, x and x′′, x to obtain

E(x+ uy)− E(x)− u〈E ′(x), y〉 ≤ αuq,

E(x− uy)− E(x) + u〈E ′(x), y〉 ≤ αuq.

Therefore, we have

E(x+ uy) + E(x− uy)− 2E(x) ≤ 2αuq.

11



We take the supremum over x ∈ S, y ∈ H, ‖y‖ = 1 and derive

ρ(E, u, S) ≤ αuq, 0 < u ≤M.

The latter inequality and Lemma 2.2.4 results in

ρ1(E, u, S) ≤ 2αuq, 0 < u ≤M,

which is (2.8) with α1 = 2α.

Conversely, suppose we have statement 2. Therefore, for any λ ∈ (0, 1) and any

x ∈ S, y ∈ H, ‖y‖ = 1, 0 < u ≤M ,

(1− λ)E(x− λuy) + λE(x+ (1− λ)uy)− E(x)

λ(1− λ)
≤ α1u

q.

This is the same as

E(x− λuy)− E(x)

λ
+
E(x+ (1− λ)uy)− E(x)

1− λ
≤ α1u

q.

We let λ → 0+ and by the continuity of E and the definition of Frechet derivative

E ′(x) with h = −λuy, we obtain

〈E ′(x),−uy〉+ E(x+ uy)− E(x) ≤ α1u
q.

Now, for any x ∈ S, x′ ∈ H, ‖x′ − x‖ ≤ M , we let u = ‖x′ − x‖, y = x′−x
‖x′−x‖ . The

above inequality can be written as

E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≤ α1‖x′ − x‖q, x ∈ S, ‖x− x′‖ ≤M,

12



which is (2.7) with α = α1.

2.3 Modulus of Uniform Convexity

In this section, we discuss a concept which is dual to the modulus of uniform

smoothness for convex functions, called modulus of uniform convexity (see [3], [19]).

Definition 2.3.1. Given a convex function E : H → IR and a set S, its modulus of

uniform convexity on S is defined by

δ1(E, u, S) := inf
x∈S,‖y‖=1,λ∈(0,1)

{
(1− λ)E(x− λuy) + λE(x+ (1− λ)uy)− E(x)

λ(1− λ)

}
.

(2.9)

Next, we prove a lemma (see [19]) that shows the equivalence of Condition 2 and

certain behavior of the modulus of uniform convexity δ1 of E.

Lemma 2.3.2. Let E be a convex function defined on a Hilbert space H and E be

Frechet differentiable on S ⊂ H. The following statements are equivalent.

1. There exist constants β ≥ 0, M > 0 and p ∈ [2,∞) such that for any x ∈

S, x′ ∈ H, ‖x− x′‖ ≤M,

E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≥ β‖x′ − x‖p. (2.10)

2. There exist constants β1 ≥ 0, M > 0 and p ∈ [2,∞) such that

δ1(E, u, S) ≥ β1u
p, 0 < u ≤M. (2.11)

Proof. Let us assume that statement 1 is true. For any x ∈ S, y ∈ H, ‖y‖ = 1,

0 < u ≤M and λ ∈ (0, 1), let x′ = x− λuy and x′′ = x+ (1− λ)uy. Then, we have
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‖x − x′‖ = λu ≤ M, ‖x′′ − x‖ = (1 − λ)u ≤ M . We apply (2.10) for x ∈ S, x′ ∈ H

and x ∈ S, x′′ ∈ H to derive

E(x− λuy)− E(x) + λu〈E ′(x), y〉 ≥ βλpup,

E(x+ (1− λ)uy)− E(x)− (1− λ)u〈E ′(x), y〉 ≥ β(1− λ)pup.

Multiplying the first inequality by (1 − λ), the second one by λ and adding them

yields

(1− λ)E(x− λuy) + λE(x+ (1− λ)uy)− E(x) ≥ βλ(1− λ)(λp−1 + (1− λ)p−1)up.

Note that for λ ∈ (0, 1), (λp−1 + (1− λ)p−1) ≥ 22−p. Therefore, we have

(1− λ)E(x− λuy) + λE(x+ (1− λ)uy)− E(x)

λ(1− λ)
≥ 22−pβup.

We take the infimum over x ∈ S, y ∈ H, ‖y‖ = 1 and λ ∈ (0, 1) and obtain

δ1(E, u, S) ≥ 22−pβup, 0 < u ≤M,

which is (2.11) with β1 = 22−pβ.

Conversely, suppose we have statement 2 i.e for some β1 > 0,

δ1(E, u, S) ≥ β1u
p, 0 < u ≤M.

It follows from the definition of δ1 that for any λ ∈ (0, 1), x ∈ S, y ∈ H, ‖y‖ = 1 and
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0 < u ≤M ,

(1− λ)E(x− λuy) + λE(x+ (1− λ)uy)− E(x)

λ(1− λ)
≥ β1u

p.

This is the same as

E(x− λuy)− E(x)

λ
+
E(x+ (1− λ)uy)− E(x)

1− λ
≥ β1u

p.

We let λ → 0+ and by the continuity of E and the definition of Frechet derivative

E ′(x) at x for h = −λuy, we obtain

〈E ′(x),−uy〉+ E(x+ uy)− E(x) ≥ β1u
p.

Now, for any x ∈ S, x′ ∈ H, ‖x′−x‖ ≤M , we let u = ‖x′−x‖, y = x′−x
‖x′−x‖ and derive

E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≥ β1‖x′ − x‖p,

which is (2.10) with β = β1.

We combine Lemma 2.2.5 and Lemma 2.3.2 to state conditions on E that are

equivalent to Condition 1 and Condition 2.

Lemma 2.3.3. Let E be a convex function defined on a Hilbert space H, Ω = {x ∈

H : E(x) ≤ E(0)} and δ1(E, ·,Ω), ρ1(E, ·,Ω) be its moduli of uniform convexity and

uniform smoothness on Ω, respectively. Let E be Frechet differentiable on Ω. The

following two statements are equivalent

• E satisfies Condition 1 and Condition 2.

• There exist constants α1 ≥ 0, β1 ≥ 0, M > 0, p ∈ [2,∞) and q ∈ (1, 2], such
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that

β1u
p ≤ δ1(E, u,Ω) ≤ ρ1(E, u,Ω) ≤ α1u

q, u ∈ (0,M ]. (2.12)

Remark 2.3.4. All our proofs go through if instead of Condition 0, Condition 1

and Condition 2, E satisfies the following three conditions:

Condition 0′: E is a function defined on a Hilbert space H, is Frechet differentiable

at each point in H and its Frechet derivative is uniformly bounded on Ω by a constant

M0.

Condition 1′: There are constants α ≥ 0, 1 < q ≤ 2 and M > 0, such that

E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≤ α‖x′ − x‖q, for x, x′ such that ‖x− x′‖ ≤M.

(2.13)

Condition 2′: There are constants β ≥ 0, 2 ≤ p <∞ and M > 0, such that

E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≥ β‖x′ − x‖p, for x, x′ such that ‖x− x′‖ ≤M.

(2.14)

In both Condition 1′ and Condition 2′, E ′ is the Frechet derivative of E.

Note that Condition 2′ implies that E is locally convex on H (see Lemma 2.1.1),

that is

E(γx+ δy) ≤ γE(x) + δE(y), x, y ∈ H, ‖x− y‖ ≤M, γ, δ ≥ 0, γ + δ = 1,

and therefore ( see [18]) E is convex on H. In this case Ω is a level set of a convex

function and hence Ω is convex.

Conditions similar to Condition 1 and Condition 2 have been considered by

Zhang in [20], where he solves a sparse optimization problem in IRn, using greedy

based strategies. More precisely, the class of functions he considers is the set of all
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convex functions E for which there are constants α(s), β(s) > 0 such that

β(s)‖x′ − x‖2
2 ≤ E(x′)− E(x)− 〈E ′(x), x′ − x〉 ≤ α(s)‖x′ − x‖2

2, (2.15)

for any x, x′ ∈ IRn, where x − x′ has ≤ s nonzero coordinates. In particular, when

E(x) = ‖Ax− b‖2
2, where ‖x‖2

2 = x2
1 +x2

2 + · · ·+x2
n is the Euclidean norm of x ∈ IRn

and A is a given k × n matrix with k << n, E ′(x) can be computed explicitly. In

this case, we have that the linear functional E ′(x) is given by the formula

〈E ′(x), ·〉 = 2〈AT (Ax− b), ·〉,

and we can compute

E(x′)− E(x)− 〈E ′(x), x′ − x〉

= ‖Ax′ − b‖2
2 − ‖Ax− b‖2

2 − 2〈AT (Ax− b), x′ − x〉

= ‖Ax′ − b‖2
2 − ‖Ax− b‖2

2 − 2〈Ax− b, Ax′ − Ax〉

= ‖Ax′‖2
2 − 2〈Ax′, b〉+ ‖b‖2

2 − (‖Ax‖2
2 − 2〈Ax, b〉+ ‖b‖2

2)

−2(〈Ax,Ax′〉 − 〈b, Ax′〉 − ‖Ax‖2 + 〈b, Ax〉)

= ‖Ax′‖2
2 − 2〈Ax′, Ax〉+ ‖Ax‖2

2

= ‖Ax′ − Ax‖2
2 = ‖A(x− x′)‖2

2.

Let us denote by z = x′ − x. Then, condition (2.15) becomes

β(s)‖z‖2
2 ≤ ‖Az‖2

2 ≤ α(s)‖z‖2
2. (2.16)

Condition (2.16) is known as the Restricted Isometry Property (RIP) and is widely
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used in Compressed Sensing. The RIP (see, for example, [7],[2],[11]) was first in-

troduced by Candes and Tao (see [5], [6], [10]) with β(s) = 1 − δs, α(s) = 1 + δs,

δs ∈ (0, 1) and vectors z that have at most s non-zero coordinates. In our case, the

constants α(s), β(s) only need to be uniformly bounded as in [20].

18



3. GREEDY ALGORITHMS

3.1 Introduction

Greedy algorithms were first introduced in non-linear approximation as a tool to

find the best approximant to a function using the elements of a symmetric dictionary

(see [1],[9],[12],[16]). In [9], DeVore and Temlyakov studied three greedy algorithms

(pure greedy, orthogonal greedy and relaxed greedy) for approximating functions f

from a Hilbert space H using elements from a symmetric dictionary D.

Here, we describe the orthogonal greedy algorithm from [9] for approximating f

in a Hilbert space H with inner product 〈·, ·〉. A modification of this algorithm for

the purposes of solving problem (1.1) was investigated by Temlyakov in [16].

In what follows below, we denote by g(h) := argmax{〈h, ϕ〉, ϕ ∈ D} for any element

h ∈ H.

Orthogonal Greedy Algorithm (OGA)

• Step 0:

Start with initial guess G0(f) := 0 and set R0(f) := f .

• Step k, k = 1, . . . ,m:

Find the space Hk := Hk(f) := span{g(R0(f)), . . . , g(Rk−1(f))}.

Find Gk(f) := Gk(f,D) := PHk
f , where PHk

f is the orthogonal projection of

f onto Hk.

Find the residual Rk(f) := Rk(f,D) := f −Gk(f).

• Step m+ 1:

Output Gm(f).
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If we denote by A1(D, P ) the closure in H of the set

{f ∈ H : f = Σk∈Ickϕk, ϕk ∈ D, I finite, Σk∈I |ck| ≤ P},

the following theorem from [9] shows the approximation properties of OGA.

Theorem 3.1.1 ( see [9], Theorem 3.7). Let D be a symmetric dictionary in H.

Then for each f ∈ A1(D, P ), we have

‖f −Gm(f)‖ ≤ Pm−
1
2 .

3.2 OMP and WCGA for Optimization

In this section, we describe the analogues of OGA that are used for convex

optimization. The algorithm (OMP) and its weak version (WCGA) are introduced

in [16], where the approximation properties of these methods are also proved.

Orthogonal Matching Pursuit (OMP)

• Step 0:

Start with initial guess x0 = 0.

If E ′(x0) = 0, xm := x0 = 0. Go to Step m+ 1.

• Step k, k = 1, 2, . . .m:

Find ϕjk := argmax{|〈E ′(xk−1), ϕ〉|, ϕ ∈ D}.

Find xk := argminx∈span{ϕj1
,ϕj2

,...,ϕjk
}E(x).

If E ′(xk) = 0, xm := xk. Go to Step m+ 1.

• Step m+ 1:

Output xm.
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In order to describe the main convergence results for this algorithm, proved in

[16], we need some additional notation. We denote the closure ( in H) of the convex

hull of D by A1(D).

Theorem 3.2.1 ([16] Theorem 2.2). Let E be a uniformly smooth convex function

defined on a Banach space X and let the set Ω := {x : E(x) ≤ E(0)} be bounded.

Let the modulus of smoothness of E, ρ(E, u,Ω) ≤ γuq, where 1 < q ≤ 2. Take ε > 0

and an element ϕε ∈ D, such that

E(ϕε) ≤ inf
x∈Ω

E(x) + ε, ϕε/A(ε) ∈ A1(D),

for some constant A(ε) ≥ 1. Then, the output xm of the OMP satisfies the inequality

E(xm)− inf
x∈Ω

E(x) ≤ max{2ε, C1A(ε)q
(
C2 +m

)1−q},

with constants C1 = C1(q, γ) and C2 = C2(E, q, γ).

Next, we describe the weak version of the OMP, called Weak Chebysev Greedy

Algorithm (WCGA). We call the sequence {tk}∞k=1, tk ∈ (0, 1], a weakness sequence.

It is used to weaken the condition on the choice of ϕjk (see [14], [17]). Notice that

when all tk = 1, the WCGA is actually the OMP.

Weak Chebysev Greedy Algorithm (WCGA)

• Step 0:

Start with initial guess xw
0 = 0.

If E ′(xw
0 ) = 0, xw

m := xw
0 = 0. Go to Step m+ 1.

• Step k, k = 1, 2, . . .m:
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Find ϕjk such that |〈E ′(xw
k−1), ϕjk〉| ≥ tk supϕ∈D |〈E ′(xw

k−1), ϕ〉|.

Find xw
k := argminx∈span{ϕj1

,ϕj2
,...,ϕjk

}E(x).

If E ′(xw
k )=0, xw

m := xw
k . Go to Step m+ 1.

• Step m+ 1:

Output xw
m.

For the weak version, the following result is proved by Temlyakov.

Theorem 3.2.2 ([16] Theorem 2.2). Let E be a uniformly smooth convex function

defined on a Banach space X and let the set Ω := {x : E(x) ≤ E(0)} be bounded.

Let the modulus of smoothness of E, ρ(E, u,Ω) ≤ γuq, where 1 < q ≤ 2. Take ε > 0

and an element ϕε ∈ D, such that

E(ϕε) ≤ inf
x∈Ω

E(x) + ε, ϕε/A(ε) ∈ A1(D),

for some constant A(ε) ≥ 1. Then, the output xw
m of the WCGA satisfies the

inequality

E(xw
m)− inf

x∈Ω
E(x) ≤ max{2ε, C1A(ε)q

(
C2 + Σm

k=1t
q/(q−1)
k

)1−q},

with constants C1 = C1(q, γ) and C2 = C2(E, q, γ).
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4. MAIN RESULTS

4.1 Auxiliary Lemmas

In this section, we will prove several auxiliary lemmas that we will need for the

analysis of the above greedy algorithms. We start with the statement of the following

lemma.

Lemma 4.1.1. Let E be a Frechet differentiable convex function, defined on a convex

set Ω. Then E has a global minimum at x0 ∈ Ω if and only if E ′(x0) = 0.

Proof. Clearly, if E has a global minimum at x0, by Fermat’s theorem, see [4], we

have that E ′(x0) = 0. This result holds not only for a convex function E, but for any

function E. Now, suppose that E is convex on Ω and E ′(x0) = 0. For any x ∈ Ω,

t ∈ (0, 1], (1− t)x0 + tx ∈ Ω, and

E((1− t)x0 + tx) ≤ (1− t)E(x0) + tE(x).

This is equivalent to

E(x)− E(x0)− E((1− t)x0 + tx)− E(x0)

t
≥ 0, 0 < t ≤ 1.

Therefore, we have

E(x)− E(x0)− lim
t→0+

E(x0 + t(x− x0))− E(x0)

t
≥ 0.

Since E is Frechet differentiable at x0 and E ′(x0) = 0, we have

E(x) ≥ E(x0), x ∈ Ω.
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The proof is completed.

Lemma 4.1.2. For every convex function E defined on the whole Hilbert space H,

the set Ω := {x ∈ H : E(x) ≤ E(0)} is convex and all {xk}∞k=1 generated from the

OMP and all {xw
k }∞k=1 generated from WCGA are in Ω.

Proof. The first statement is straight forward by the property of convex function. It

is usually said as every level set of a convex function is also convex. Indeed, for any

x, y ∈ Ω and any t ∈ [0, 1],

E((1− t)x+ ty) ≤ (1− t)E(x) + tE(y) ≤ (1− t)E(0) + tE(0) = E(0),

which means that (1− t)x+ ty ∈ Ω.

Now, we will prove that all {xk}∞k=1 generated from OMP belong to Ω. The proof

for the WCGA sequence is similar. By the definition of the algorithm,

xk := argminx∈span{ϕj1
,ϕj2

,...,ϕjk
}E(x),

xk−1 := argminx∈span{ϕj1
,ϕj2

,...,ϕjk−1
}E(x),

and therefore we have E(xk) ≤ E(xk−1). Thus the sequences {E(xk)}∞k=1 is decreas-

ing and hence E(xk) ≤ E(x0) = E(0) for every k = 1, 2, . . . . In other words, the

sequence {xk}∞k=1 ⊂ Ω.

Lemma 4.1.3. Let F : H → IR be a Frechet differentiable function. Let Vk :=

span{ϕj1 , . . . , ϕjk} ⊂ H and xk = argmin{F (x) : x ∈ Vk}. Then

〈F ′(xk), ϕ〉 = 0 for every ϕ ∈ Vk.
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Proof. F is Frechet differentiable at xk, and hence

lim
y→0

|F (xk + y)− F (xk)− 〈F ′(xk), y〉|
‖y‖

= 0.

We fix ` ∈ {1, . . . , k} and let y = tϕj` , where t ∈ IR. Without loss of generality we

can assume that ‖ϕj`‖ = 1. We have

lim
t→0

∣∣∣∣F (xk + tϕj`)− F (xk)

t
− 〈F ′(xk), ϕj`〉

∣∣∣∣ = 0,

and therefore

〈F ′(xk), ϕj`〉 = lim
t→0

F (xk + tϕj`)− F (xk)

t
.

From the definition of xk it follows that F (xk + tϕj`) − F (xk) ≥ 0 for every t ∈ IR.

Then, we have

〈F ′(xk), ϕj`〉 = lim
t→0+

F (xk + tϕj`)− F (xk)

t
≥ 0,

and

〈F ′(xk), ϕj`〉 = lim
t→0−

F (xk + tϕj`)− F (xk)

t
≤ 0.

This results in 〈F ′(xk), ϕj`〉 = 0.

Our next lemma can be viewed as a generalized version of Lemma 2.16 in [17].

Lemmas of this type are well known in approximation theory (see [8]).

Lemma 4.1.4. Let ` > 0, r > 0, B > 0, and {am}∞m=1 and {rm}∞m=2 be sequences of

non-negative numbers satisfying the inequalities

a1 ≤ B, am+1 ≤ am

(
1− rm+1

r
a`m

)
, m = 1, 2, . . . .
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Then, we have for m = 2, 3, . . .

am ≤



r1/`

(rB−` + Σm
k=2rk)

1/`
, if ` ≥ 1,

r1/`

(rB−` + `Σm
k=2rk)

1/`
, if 0 < ` ≤ 1.

(4.1)

Proof. Let us first notice that since all am’s are non-negative, it follows from the

recursive relation that

0 ≤ 1− rm+1

r
a`m ≤ 1, m = 1, 2, . . . . (4.2)

We prove the lemma by induction.

Case 1: ` ≥ 1. If a2 = 0, all am = 0, m = 3, 4, . . ., and the lemma is true. Let

us assume that a2 > 0. This also means that a1 > 0 and it follows from the recursive

relation, (4.2) and the fact that ` ≥ 1 that

a−`2 ≥ a−`1 (1− r2

r
a`1)−` ≥ a−`1 (1− r2

r
a`1)−1 ≥ a−`1 (1 +

r2

r
a`1) = a−`1 +

r2

r
≥ B−` +

r2

r
.

This gives

r

rB−` + r2

≥ a`2,

and we have (4.1) for m = 2.

We now assume that (4.1) is true for m and will prove it for m+ 1. Similarly to

the case m = 2, we may assume that am+1 > 0. Because of the recursive relation,
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this also means that am > 0 and using (4.2) and that ` ≥ 1, we derive

a−`m+1 ≥ a−`m (1− rm+1

r
a`m)−` ≥ a−`m (1− rm+1

r
a`m)−1

≥ a−`m (1 +
rm+1

r
a`m) = a−`m +

rm+1

r
. (4.3)

Now, from the induction hypothesis we have that

a−`m ≥
rB−` + Σm

k=2rk
r

,

which combined with (4.3) proves the lemma in the case ` ≥ 1.

Case 2: 0 < ` < 1. Again, we only consider the case when a2 > 0. We will use

the fact that for 0 < ` < 1, the function (1− t)` is concave. Therefore, we have

(1− t)` ≤ 1− `t, 0 ≤ t ≤ 1. (4.4)

We apply this inequality with t = r2
r
a`1 ∈ [0, 1] and obtain

a−`2 ≥ a−`1 (1− r2

r
a`1)−` ≥ a−`1 (1− `r2

r
a`1)−1 ≥ a−`1 (1+ `

r2

r
a`1) = a−`1 + `

r2

r
≥ B−`+ `

r2

r
.

This gives

r

rB−` + `r2

≥ a`2,

and we have (4.1) for m = 2. Next , we assume that (4.1) is true for m and prove it

for m+ 1. We consider only the case am+1 > 0 (the lemma is true if am+1 = 0), and

therefore am > 0. From the recursive relation and (4.4) with t = rm+1

r
a`m ∈ [0, 1], we
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have

a−`m+1 ≥ a−`m (1− rm+1

r
a`m)−` ≥ a−`m (1−`rm+1

r
a`m)−1 ≥ a−`m (1+`

rm+1

r
a`m) = a−`m +`

rm+1

r
.

This inequality, combined with the induction hypothesis gives that

a−`m+1 ≥
rB−` + `Σm+1

k=2 rk
r

,

and the proof is completed.

The previous lemma can be stated in the following way.

Lemma 4.1.5. Let ` > 0, r > 0, B > 0, and {am}∞m=1 and {rm}∞m=2 be sequences of

non-negative numbers satisfying the inequalities

a1 ≤ B, am+1 ≤ am(1− rm+1

r
a`m), m = 1, 2, . . . .

Then, we have for m = 2, 3, . . .

am ≤ max{1, `−1/`}r1/`(rB−` + Σm
k=2rk)

−1/`. (4.5)

Proof. The inequality (4.5) follows from Lemm 4.1.4 and the fact that for 0 < ` ≤ 1

r1/`

(rB−` + `Σm
k=2rk)

1/`
≤ `−1/` r1/`

(rB−` + Σm
k=2rk)

1/`
.
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4.2 Convergence Results for OMP

In this section, we analyze the performance of the OMP algorithm when applied

to the minimization problem (1.1) in the case that the dictionary D is an orthonormal

system {ϕi}∞i=1. Let us denote by ek the error of the algorithm at Step k, namely

ek := E(xk)− E(x̄).

Lemma 4.2.1. Let the objective function E satisfy Conditions 0,1 and 2 with

M0 < αqM q−1. Let problem (1.1) have a solution x̄ =
∑

i ci(x̄)ϕi ∈ Ω with support

S̄ := {i : ci(x̄) 6= 0} <∞,

where {ϕi} is an orthonormal basis. Then the OMP applied to E and {ϕi} satisfies

the following inequality

e1 ≤ E(0)− E(x̄), (4.6)

and

ek ≤ ek−1 −
1

A|S̄|
q

2(q−1)

e
(p−1)q
(q−1)p

k−1 , k ≥ 2, (4.7)

where

A =
(p− 1)

q(p−1)
p(q−1)

(q − 1)

(
αqq

βq/ppq

) 1
q−1

.

Proof. Clearly e1 = E(x1)−E(x̄) ≤ E(0)−E(x̄) since x1 := argminx∈span{ϕj1
}E(x).

Note that by Lemma 4.1.2, all {xk} generated from the algorithm OMP are in Ω.

Next, we consider Step k, k = 2, 3, . . . of the algorithm. Observe that if at Step

(k-1) we have that S̄ ⊂ {j1, . . . , jk−1}, then xk−1 = x̄, E ′(xk−1) = 0 and the OMP

would have stopped with output xk−1 = x̄. If the algorithm has not stopped, then
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we have found xk and ϕjk . Since xk := argminx∈span{ϕj1
,ϕj2

,...,ϕjk
}E(x), we have for

any 0 < t < M

E(xk) ≤ E(xk−1 − t · sgn{〈E ′(xk−1), ϕjk〉}ϕjk). (4.8)

Now, we use Condition 1 with x′ = xk−1− t · sgn{〈E ′(xk−1), ϕjk〉}ϕjk and x = xk−1

to obtain

E(xk−1 − t · sgn〈E ′(xk−1), ϕjk〉ϕjk) ≤ E(xk−1)− t|〈E ′(xk−1), ϕjk〉|+ αtq, (4.9)

since ‖ϕjk‖ = 1. It follows from (4.8) and (4.9) that for any 0 < t < M ,

E(xk) ≤ E(xk−1)− t|〈E ′(xk−1), ϕjk〉|+ αtq =: Φ(t).

The function Φ achieves a minimum value

Φ(t∗) = E(xk−1)− q − 1

q
(αq)−

1
q−1 |〈E ′(xk−1), ϕjk〉|q/(q−1)

at

t = t∗ = (αq)−
1

q−1 |〈E ′(xk−1), ϕjk〉|
1

q−1 .

Notice that t∗ ≤
[
M0

αq

]1/(q−1)

< M . Therefore, we have

E(xk) ≤ Φ(t∗) = E(xk−1)− q − 1

q
(αq)−

1
q−1 |〈E ′(xk−1), ϕjk〉|q/(q−1). (4.10)

Now, we will find a lower bound for |〈E ′(xk−1), ϕjk〉|. First, we use Condition 2
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with x′ = x̄ and x = xk−1 to obtain

〈E ′(xk−1), xk−1 − x̄〉 ≥ E(xk−1)− E(x̄) + β‖x̄− xk−1‖p. (4.11)

Let us recall the generalized Cauchy inequality

p1

p1 + p2

a+
p2

p1 + p2

b ≥ a
p1

p1+p2 b
p2

p1+p2 , a, b, p1, p2 > 0,

and apply it for p1 = p− 1, p2 = 1, a = E(xk−1)−E(x̄)

p−1
, b = β‖x̄− xk−1‖p. We have

E(xk−1)− E(x̄) + β‖x̄− xk−1‖p = p

(
(p− 1)

p

E(xk−1)− E(x̄)

p− 1
+

1

p
β‖x̄− xk−1‖p

)
,

and therefore

E(xk−1)− E(x̄) + β‖x̄− xk−1‖p ≥ C‖x̄− xk−1‖ (E(xk−1)− E(x̄))(p−1)/p ,

with C = pβ1/p(p− 1)(1−p)/p. We combine this inequality with (4.11) to obtain

〈E ′(xk−1), xk−1 − x̄〉 ≥ C‖x̄− xk−1‖ (E(xk−1)− E(x̄))(p−1)/p . (4.12)

It follows from Lemma 4.2.3 that

〈E ′(xk−1), ϕi〉 = 0, i = j1, . . . , jk−1.

Therefore, if we write

xk−1 − x̄ =
∑
i

ci(xk−1 − x̄)ϕi,
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since the support of xk−1 is {j1, . . . , jk−1}, we obtain

〈E ′(xk−1), xk−1 − x̄〉 =
∑

i∈S̄\{j1,...,jk−1}

ci(xk−1 − x̄)〈E ′(xk−1), ϕi〉,

≤
∑

i∈S̄\{j1,...,jk−1}

|ci(xk−1 − x̄)||〈E ′(xk−1), ϕjk〉|

≤ |〈E ′(xk−1), ϕjk〉||S̄|1/2‖xk−1 − x̄‖. (4.13)

We combine this with (4.12) to obtain

|〈E ′(xk−1), ϕjk〉|‖x̄− xk−1‖|S̄|1/2 ≥ C‖x̄− xk−1‖ (E(xk−1)− E(x̄))(p−1)/p ,

and therefore we have the desired lower bound

|〈E ′(xk−1), ϕjk〉| ≥ C|S̄|−1/2 (E(xk−1)− E(x̄))(p−1)/p .

We combine this result with (4.10) to obtain the estimate

E(xk) ≤ E(xk−1)− 1

A|S̄|
q

2(q−1)

(E(xk−1)− E(x̄))
(p−1)q
(q−1)p ,

where

A =
(p− 1)

q(p−1)
p(q−1)

(q − 1)

(
αqq

βq/ppq

) 1
q−1

.

Subtracting E(x̄) from both sides of the inequality results in (4.7) and the proof is

completed.

Remark 4.2.2. Note that in the proof of Lemma 4.2.1 Condition 1 needs to hold

only for vectors x and x′ such that (x− x′) is 1-sparse.

The next theorem is the main result about OMP.
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Theorem 4.2.3. Let the objective function E satisfy Conditions 0,1 and 2 with

M0 < αqM q−1. Let problem (1.1) have a solution x̄ =
∑

i ci(x̄)ϕi ∈ Ω with support

S̄ := {i : ci(x̄) 6= 0} <∞, where {ϕi} is an orthonormal basis. Then, at Step k, the

OMP applied to E and {ϕi} outputs xk, where either xk = x̄ or:

• When p 6= q 6= 2,

ek ≤ C0

(
|S̄|

q
2(q−1)

k + C1|S̄|
q

2(q−1) − 1

) p(q−1)
p−q

, k ≥ 2.

In addition, the sequence {xk}∞k=2 satisfies

‖xk − x̄‖ ≤
(
C0

β

) 1
p

(
|S̄|

q
2(q−1)

k + C1|S̄|
q

2(q−1) − 1

) (q−1)
p−q

,

where C0 = C0(p, q, α, β) and C1 = C1(p, q, α, β, E).

• When p = q = 2, we have

ek ≤ C2

(
1− β

α|S̄|

)k−1

, k ≥ 2,

‖xk − x̄‖ ≤
(
C2

β

) 1
2
(

1− β

α|S̄|

) k−1
2

, k ≥ 2,

with C2 = C2(E).

Proof. In the case p 6= q 6= 2, we define the sequence of non-negative numbers

rk = 1, ak = E(xk)− E(x̄), k = 1, 2, . . . ,
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and

` =
p− q
p(q − 1)

> 0, r =
(p− 1)

q(p−1)
p(q−1)

(q − 1)

(
αqq

βq/ppq

) 1
q−1

|S̄|
q

2(q−1) > 0, B = E(0)−E(x̄).

It follows from Lemma 4.2.1 that the above defined sequences satisfy the conditions

of Lemma 4.1.5, and therefore we have

E(xk)− E(x̄) ≤ C0

(
|S̄|

q
2(q−1)

k + C1|S̄|
q

2(q−1) − 1

) p(q−1)
p−q

,

where

C0 = C0(p, q, α, β) =
(p− 1)

q(p−1)
p−q

(q − 1)
p(q−1)
p−q

(
αqq

βq/ppq

) p
p−q

·max

{
1,

(
p(q − 1)

p− q

) p(q−1)
p−q

}
,

C1 = C1(p, q, α, β, E) =
(p− 1)

q(p−1)
p(q−1)

(q − 1)

(
αqq

βq/ppq

) 1
q−1

· (E(0)− E(x̄))
q−p

p(q−1) ,

Next, we apply Condition 2 with x′ = xk and x = x̄ and use Lemma 4.1.1 to derive

the estimate for ‖xk − x̄‖.

In the case p = q = 2, Lemma 4.2.1 gives that E(x1)−E(x̄) ≤ E(0)−E(x̄) and

E(xk)− E(x̄) ≤
(

1− β

α|S̄|

)
(E(xk−1)− E(x̄)), k = 2, 3, . . . .

It follows then that

E(xk)− E(x̄) ≤ (E(0)− E(x̄))

(
1− β

α|S̄|

)k−1

, k = 2, 3, . . . .

As in the previous case, we use Condition 2 with x′ = xk and x = x̄ and Lemma

4.1.1 to derive the estimate for ‖xk − x̄‖.
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Remark 4.2.4. The constants C0, C1 and C3 from Theorem 4.2.3 can be explicitly

found. They are

C0 = C0(p, q, α, β) =
(p− 1)

q(p−1)
p−q

(q − 1)
p(q−1)
p−q

(
αqq

βq/ppq

) p
p−q

·max

{
1,

(
p(q − 1)

p− q

) p(q−1)
p−q

}
,

C1 = C1(p, q, α, β, E) =
(p− 1)

q(p−1)
p(q−1)

(q − 1)

(
αqq

βq/ppq

) 1
q−1

· (E(0)− E(x̄))
q−p

p(q−1) ,

and

C2 = C2(E) := E(0)− E(x̄).

Remark 4.2.5. The same statement as Theorem 4.2.3 holds if instead of Condi-

tions 0,1,2 we have that E satisfies Conditions 0′, 1′, 2′.

Next, we show that with our analysis we can recover the convergence rate for

OMP from [15]. In what follows, D is a symmetric dictionary and

‖x̄‖1 := inf{
∑
ϕ

|cϕ(x̄)| : x̄ =
∑
ϕ

cϕ(x̄)ϕ}.

We prove the following lemma.

Lemma 4.2.6. Let the objective function E satisfy Condition 0 and Condition 1

with M0 < αqM q−1. Let problem (1.1) have a solution x̄ =
∑

ϕ cϕ(x̄)ϕ ∈ Ω, where

{ϕ} = D is a symmetric dictionary. Then OMP applied to E and D satisfies the

inequality

e1 ≤ E(0)− E(x̄), (4.14)

and

ek ≤ ek−1 −De
q

q−1

k−1, k ≥ 2, D :=
q − 1

q
(αq)−

1
q−1 ‖x̄‖−q/(q−1)

1 . (4.15)
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Proof. As in Lemma 4.2.1, one shows that

E(xk) ≤ E(xk−1)− q − 1

q
(αq)−

1
q−1 |〈E ′(xk−1), ϕjk〉|q/(q−1). (4.16)

Now, instead of (4.11), we use Lemma 2.1.1 from Chapter II to derive

〈E ′(xk−1), xk−1 − x̄〉 ≥ E(xk−1)− E(x̄). (4.17)

Lemma 4.2.3 gives that 〈E ′(xk−1), ϕi〉 = 0, i = j1, . . . , jk−1. For any ε > 0, we choose

a representation

x̄ =
∑
ϕ

cεϕ(x̄)ϕ, with
∑
ϕ

|cεϕ(x̄)| > ε+ ‖x̄‖1.

Since the support of xk−1 is {j1, . . . , jk−1}, we obtain

〈E ′(xk−1), xk−1−x̄〉 = −
∑

ϕ 6=ϕj1
,...,ϕjk−1

cεϕ(x̄)〈E ′(xk−1), ϕ〉 ≤ |〈E ′(xk−1), ϕjk〉|(‖x̄‖1+ε).

Taking ε→ 0, we get

〈E ′(xk−1), xk−1 − x̄〉 ≤ |〈E ′(xk−1), ϕjk〉|‖x̄‖1. (4.18)

Next, we substitute (4.18) in (4.17) and (4.16) to derive that

E(xk) ≤ E(xk−1)− q − 1

q
(αq)−

1
q−1 ‖x̄‖−q/(q−1)

1 (E(xk−1)− E(x̄))q/(q−1).

We subtract E(x̄) from both sides of this inequality and the proof is completed.

The next theorem is the same as Theorem 2.2 from [15], see Theorem 3.2.2 from
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Chapter 3 .

Theorem 4.2.7. Let the objective function E satisfy Condition 0 and Condition

1 with M0 < αqM q−1. Let problem (1.1) have a solution x̄ =
∑

ϕ cϕ(x̄)ϕ, where

{ϕ} = D is a symmetric dictionary. Then, at Step k, the OMP applied to E and D

outputs xk, where

ek = E(xk)− E(x̄) ≤ C0(C1 + k)1−q, C0 = C0(q, α, x̄), C1 = C1(q, α, x̄).

Proof. We define the sequence of non-negative numbers

rk = 1, ak = E(xk)− E(x̄), k = 1, 2, . . . ,

and

` =
1

q − 1
> 0, r = D−1 > 0, B = E(0)− E(x̄).

It follows from Lemma 4.2.6 that the above defined sequences satisfy the conditions

of Lemma 4.1.5, and therefore we have

ek = E(xk)− E(x̄) ≤ C0 (k + C1)1−q ,

where

C0 = α(q − 1)1−qqq‖x̄‖q1, C1 = (q − 1)−1

(
αqq‖x̄‖q1

E(0)− E(x̄)

) 1
q−1

− 1,
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4.3 Convergence Results for WCGA

In this section we analyze the convergence of the WCGA when applied to prob-

lem (1.1) in the case of D being an orthonormal basis. Let

ew
k := E(xw

k )− E(x̄)

be the error of the algorithm. Similar results as Lemma 4.2.1 hold here.

Lemma 4.3.1. Let the objective function E satisfy Conditions 0,1, and 2 with

M0 < αqM q−1. Let problem (1.1) have a solution x̄ =
∑

i ci(x̄)ϕi ∈ Ω with support

S̄ := {i : ci(x̄) 6= 0} <∞,

where {ϕi} is an orthonormal basis. Then, at Step k, the WCGA applied to E and

{ϕi} outputs xw
k , where either xw

k = x̄ or

ew
1 ≤ E(0)− E(x̄), (4.19)

ew
k ≤ ew

k−1 −
t

q
q−1

k

A|S̄|
q

2(q−1)

[
ew
k−1

] (p−1)q
(q−1)p , k = 2, 3, . . . , (4.20)

where

A =
(p− 1)

q(p−1)
p(q−1)

(q − 1)

(
αqq

βq/ppq

) 1
q−1

.

Proof. The proof follows the lines of the one of Lemma 4.2.1. The derivation of

(4.19) is the same as in Lemma 4.2.1.

Next, we consider Step k, k = 2, 3, . . .. As in Lemma 4.2.1, if at Step (k-1) we

have that S̄ ⊆ {j1, . . . , jk−1}, then xw
k−1 = x̄, E ′(xw

k−1) = 0 and the WCGA would

have stopped with output xw
k−1 = x̄. If the algorithm have not stopped, then we have
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found xw
k and ϕjk and obtained, as in Lemma 4.2.1, the estimates

E(xw
k ) ≤ Φ(t∗) = E(xw

k−1)− q − 1

q
(αq)−

1
q−1 |〈E ′(xw

k−1), ϕjk〉|q/(q−1). (4.21)

and

〈E ′(xw
k−1), xw

k−1 − x̄〉 ≥ E(xw
k−1)− E(x̄) + β‖x̄− xw

k−1‖p

≥ C|S̄|−1/2
(
E(xw

k−1)− E(x̄)
)(p−1)/p

, (4.22)

with C = pβ1/p(p− 1)(1−p)/p. Like in Lemma 4.2.1, we have

〈E ′(xw
k−1), xw

k−1 − x̄〉 = Σi∈S̄\j1,...,jk−1
ci(x

w
k−1 − x̄)〈E ′(xw

k−1), ϕi〉

≤ Σi∈S̄\j1,...,jk−1
|ci(xw

k−1 − x̄)||〈E ′(xw
k−1), ϕi〉|

≤ t−1
k |〈E

′(xw
k−1), ϕjk〉|Σi∈S̄|ci(xw

k−1 − x̄)|

≤ t−1
k |〈E

′(xw
k−1), ϕjk〉|‖x̄− xw

k−1‖|S̄|1/2, (4.23)

where in the second inequality we have used the choice of ϕjk .

Using together (4.22) and (4.23) results in

t−1
k |〈E

′(xw
k−1), ϕjk〉|‖x̄− xw

k−1‖|S̄|1/2 ≥ C|S̄|−1/2
(
E(xw

k−1)− E(x̄)
)(p−1)/p

,

and therefore

|〈E ′(xw
k−1), ϕjk〉| ≥ Ctk|S̄|−1/2

(
E(xw

k−1)− E(x̄)
)(p−1)/p

.
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We combine this result with (4.21) to obtain the desired estimate

E(xw
k ) ≤ E(xw

k−1)− t
q

q−1

k

A|S̄|
q

2(q−1)

(
E(xw

k−1)− E(x̄)
) (p−1)q

(q−1)p ,

with constant A = (p−1)
q(p−1)
p(q−1)

(q−1)

(
αqq

βq/ppq

) 1
q−1

.

Subtracting E(x̄) from both sides of the inequality results in (4.7) and the proof is

completed.

Remark 4.3.2. Note that in the proof of Lemma 4.2.1 Condition 1 needs to hold

only for vectors x and x′ such that (x− x′) are 1-sparse.

The next theorem is the main result about the WCGA algorithm.

Theorem 4.3.3. Let the objective function E satisfy Conditions 0,1,2 with M0 <

αqM q−1. Let problem (1.1) have a solution x̄ =
∑

i ci(x̄)ϕi ∈ Ω with support S̄ :=

{i : ci(x̄) 6= 0} < ∞, where {ϕi} is an orthonormal basis. Then, at Step k, the

WCGA applied to E and {ϕi} outputs xw
k , where either xw

k = x̄ or

• When p 6= q 6= 2,

ew
k ≤ C0

(
|S̄|

q
2(q−1)∑k

i=2 t
q

q−1

i + C1|S̄|
q

2(q−1)

) p(q−1)
p−q

, k ≥ 2.

In addition, the sequence {xw
k }∞k=2 satisfies

‖xw
k − x̄‖ ≤

(
C0

β

) 1
p

(
|S̄|

q
2(q−1)∑k

i=2 t
q

q−1

i + C1|S̄|
q

2(q−1)

) (q−1)
p−q

, k ≥ 2,

where C0 = C0(p, q, α, β) and C1 = C1(p, q, α, β, E).
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• When p = q = 2,

ew
k ≤ C2

k∏
i=2

(
1− β

α|S̄|
t2i

)
,

‖xw
k − x̄‖ ≤

(
C2

β

) 1
2

k∏
i=2

(
1− β

α|S̄|
t2i

)1/2

, k = 2, 3, . . . ,

with C2 = C2(E).

Proof. Like in the proof of Theorem 4.2.3, we apply Lemma 4.1.5 and Lemma 4.2.1

to the sequences of non-negative numbers

rk = t
q

q−1

k , ak = E(xw
k )− E(x̄), k = 1, 2, . . . ,

and

` =
p− q
p(q − 1)

> 0, r =
(p− 1)

q(p−1)
p(q−1)

(q − 1)

(
αqq

βq/ppq

) 1
q−1

|S̄|
q

2(q−1) > 0, B = E(0)−E(x̄).

It follows from Lemma 4.2.1 that the above defined sequences satisfy the conditions

of Lemma 4.1.5, and therefore we have

E(xw
k )− E(x̄) ≤ C0

(
|S̄|

q
2(p−1)∑k

k=i t
q

q−1

i + C1|S̄|
q

2(p−1)

) p(q−1)
p−q

,

where

C0 = C0(p, q, α, β) =
(p− 1)

q(p−1)
p−q

(q − 1)
p(q−1)
p−q

(
αqq

βq/ppq

) p
p−q

·max

{
1,

(
p(q − 1)

p− q

) p(q−1)
p−q

}
,

and

C1 = C1(p, q, α, β, E) =
(p− 1)

q(p−1)
p(q−1)

(q − 1)

(
αqq

βq/ppq

) 1
q−1

· (E(0)− E(x̄))
q−p

p(q−1) ,
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Next, we apply Condition 2 with x′ = xw
k and x = x̄ and use Lemma 4.1.1 to derive

the estimate for ‖xw
k − x̄‖.

In the case p = q = 2, Lemma 4.3.1 gives that E(xw
1 )−E(x̄) ≤ E(0)−E(x̄) and

E(xw
k )− E(x̄) ≤

(
1− β

α|S̄|
t2k

)
(E(xw

k−1)− E(x̄)), k = 2, 3, . . . .

It follows then that

E(xw
k )− E(x̄) ≤ (E(0)− E(x̄))

k∏
i=2

(
1− β

α|S̄|
t2i

)
, k = 2, 3, . . . .

As in the previous case, we use Condition 2 with x′ = xw
k and x = x̄ and Lemma

4.1.1 to derive the estimate for ‖xw
k − x̄‖.

Remark 4.3.4. The constants C0, C1, C2 and C3 can be computed explicitly. They

are

C0 = C0(p, q, α, β) =
(p− 1)

q(p−1)
p−q

(q − 1)
p(q−1)
p−q

(
αqq

βq/ppq

) p
p−q

·max

{
1,

(
p(q − 1)

p− q

) p(q−1)
p−q

}
,

C1 = C1(p, q, α, β, E) =
(p− 1)

q(p−1)
p(q−1)

(q − 1)

(
αqq

βq/ppq

) 1
q−1

· (E(0)− E(x̄))
q−p

p(q−1) ,

and

C2 = C2(E) := E(0)− E(x̄).

Remark 4.3.5. The same theorem as Theorem 4.3.3 holds if instead of Conditions

0,1,2 we impose Conditions 0′, 1′, 2′ on E.

The next theorem is the weak version of Theorem 4.2.6 and it is the same as

Theorem 2.2 from [16].
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Theorem 4.3.6. Let the objective function E satisfy Condition 0 and Condition

1 with M0 < αqM q−1. Let problem (1.1) have a solution x̄ =
∑

ϕ cϕ(x̄)ϕ, where

{ϕ} = D is a symmetric dictionary. Then, at Step k, the WCGA applied to E and

D outputs xw
k , where

ew
k = E(xw

k )−E(x̄) ≤ C0(C1+Σk
i=2t

q
q−1

i )1−q, C0 = C0(q, α, x̄), C1 = C1(q, α, x̄, E).

Proof. We define the sequence of non-negative numbers

rk = t
q

q−1

k , ak = E(xw
k )− E(x̄), k = 1, 2, . . . ,

and

` =
1

q − 1
, r = D−1, B = E(0)− E(x̄).

It follows from Lemma 4.2.6 that the above defined sequences satisfy the conditions

of Lemma 4.1.5, and therefore we have

ew
k = E(xw

k )− E(x̄) ≤ C0

(
Σk
i=2t

q
q−1

i + C1

)1−q
,

where

C0 = α(q − 1)1−qqq‖x̄‖q1, C1 = (q − 1)−1

(
αqq‖x̄‖q1

E(0)− E(x̄)

) 1
q−1

.
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5. SUMMARY

In this dissertation, we have proved that if a convex function E satisfies certain

assumption on its modulus of smoothness and modulus of uniform convexity and its

minimizer is sparse with respect to an orthonormall basis in a Hilbert space H, then

the orthogonal matching pursuit and the weak Chebysev greedy algorithm have rates

of convergence depending on the order of smoothness and the order of convexity.

In our analysis, we have used the fact that the minimizer x̄ is sparse with respect

to an orthonormal basis D for the Hilbert space H. My future research plans are to

investigate the convergence rates of two other greedy algorithms: the Weak Relaxed

Greedy Algorithm ( WRGA) and the Weak Greedy Algorithm with Free Relaxation

(WGAFR). These greedy algorithms (see [15, 16]) have less computational cost and

are described below.

Weak Relaxed Greedy Algorithm (WCGA):

• Step 0:

Start with initial x0 = 0.

If E ′(x0) = 0, xm := x0 = 0. Go to Step m+ 1.

• Step k, k = 1, 2, . . .m:

Find ϕjk such that |〈E ′(xk−1), ϕjk〉| ≥ tk supϕ∈D |〈E ′(xk−1), ϕ〉|.

Find λk := argminλ∈[0,1]{E((1− λ)xk−1 + λϕjk)}.

Set xk := (1− λk)xk−1 + λkϕjk .

If E ′(xk)=0, xm := xk. Go to Step m+ 1.

• Step m+ 1:
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Output xm.

Weak Greedy Algorithm with Free Relaxation (WGAFR):

• Step 0:

Start with initial x0 = 0.

If E ′(x0) = 0, xm := x0. Go to Step m+ 1.

• Step k, k = 1, 2, . . .m:

Find ϕjk such that |〈E ′(xk−1), ϕjk〉| ≥ tk| supϕ∈D〈E ′(xk−1), ϕ〉|.

Find (λk, µk) := argmin{λ,µ}{E(λxk−1 + µϕk)}.

Set xk := λkxk−1 + µkϕk.

If E ′(xk)=0, xm := xk. Go to Step m+ 1.

• Step m+ 1:

Output xm.
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