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ABSTRACT 

 

New decline curve models have been developed to overcome the boundary-dominated 

flow assumption of the basic Arps’ models, which restricts their application in ultra-low 

permeability reservoirs exhibiting long-duration transient flow regimes. However, these new 

decline curve analysis (DCA) methods are still based only on production rate data, relying on 

the assumption of stable flowing pressure. Since this stabilized state is not reached rapidly in 

most cases, the applicability of these methods and the reliability of their solutions may be 

compromised. In addition, production performance predictions cannot be disassociated from 

the existing operation constraints under which production history was developed. On the other 

hand, DCA is often carried out without a proper identification of flow regimes. The arbitrary 

application of DCA models regardless of existing flow regimes may produce unrealistic 

production forecasts, because these models have been designed assuming specific flow 

regimes. 

The main purpose of this study was to evaluate the possible benefits provided by 

including flowing pressures in production decline analysis. As a result, it have been 

demonstrated that decline curve analysis based on pressure-normalized rates can be used as a 

reliable production forecasting technique suited to interpret unconventional wells in specific 

situations such as unstable operating conditions, limited availability of production data (short 

production history) and high-pressure, rate-restricted wells. In addition, pressure-normalized 

DCA techniques proved to have the special ability of dissociating the estimation of future 

production performance from the existing operation constraints under which production 

history was developed. On the other hand, it was also observed than more consistent and 

representative flow regime interpretations may be obtained as diagnostic plots are improved 

by including MBT, pseudovariables (for gas wells) and pressure-normalized rates. This means 

that misinterpretations may occur if diagnostic plots are not applied correctly. 
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In general, an improved forecasting ability implies greater accuracy in the production 

performance forecasts and more reliable reserve estimations. The petroleum industry may 

become more confident in reserves estimates, which are the basis for the design of 

development plans, investment decisions, and valuation of companies’ assets. 
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Abbreviations 

a Duong’s intercept constant or LGM constant 

B Formation volumetric factor, RB/STB 

b  Hyperbolic exponent 

b’ y-intercept of the square root-time plot  

Ct Total compressibility, psi-1 

D Decline rate or production loss ratio, D-1 

Di  Initial decline rate, D-1 

   Decline constant at "infinite time", D-1 

 ̂   Decline constant, D-1 

Fcd Fracture conductivity, md-ft 

Gp  Cumulative gas production, SCF or MMSCF 

h Reservoir net pay, ft 
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J Productivity index, MSCF/D/psi 

K Carrying capacity 

K Permeability, md 

kf Fracture permeability, md 

Mi  Output of flow regime diagnostic plots 

m Slope of a straight line (Duong, linear, and bilinear plots), unit/log cycle 

n Time or hyperbolic "exponent" 

PE Percent error, % 

P(FR) Probability of flow regime occurrence, % 

p Pressure, psi 

p* Average static reservoir pressure, psi 

pi  Initial pressure, psi 

pwf  Flowing pressure, psi 

q  Production rate at time t, MSCF/D or STB/D 

qcorr Corrected production rate, MSCF/D or STB/D 
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qeco Minimum economic rate, MSCF/D or STB/D 

qo Initial production rate, MSCF/D or STB/D 

qobs Observed production rate, MSCF/D or STB/D 

 ̂   Rate "intercept" for PLE model, MSCF/D or STB/D 

Q  Cumulative production, STB, SCF or MMSCF 

RFR Reliability factor  

RRFst Estimated remaining recovery, MMSCF or STB 

RRReal Real remaining recovery, MMSCF or STB 

S’ Apparent skin effect 

T Temperature, °R 

t Time, D 

ta  Pseudotime, D 

tBLS Bilinear superposition time, D 

tca  Material balance pseudotime, D 

teco Economic time limit, D  
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tSP  Superposition time function 

Wi Weight factor 

wf  Fracture width, ft 

Xf  Half fracture length, ft 

Z Gas compressibility factor 

ψi Pseudopressure at initial reservoir conditions, psi2/cp 

ψwf Pseudopressure at flowing conditions, psi2/cp 

τ Characteristic time parameter for SEPD model, D 

μg Gas viscosity, cp 

μo Oil viscosity, cp 

 

Acronyms 

BDF  Boundary-Dominated Flow 

DCA  Decline Curve Analysis 

EUR   Expected Ultimate Recovery 
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HE  Harmonic Extrapolation 

LGM  Logistic Growth Model 

MSE  Modified Stretch Exponential 

PA  Production Analysis 

PLM  Power Law Exponential Method 

PN  Pressure Normalization 

PN2  Square Pressure Normalization Method (SPN) 

PNR  Pressure-Normalized Rates 

PN-DCA  Pressure-Normalized Decline Curve Analysis 

PTA   Pressure Transient Analysis 

RNP  Rate-Normalized Pressures 

RTA  Rate Transient Analysis 

SEPD  Stretched Exponential Production Decline Model 

SNR  Square Pressure Normalized Rates 

SPN  Square Pressure Normalization (PN2) 
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SRT  Squared Root Time 

SRV  Stimulated Reservoir Volume 

∆PF   Pressure Correction Factor (qcorr) 

∆ΨN  Pseudopressure Normalization method (ΨN) 

ΨN  Pseudopressure Normalization (∆ΨN) 

ΨNR  Pseudopressure-Normalized Rates 
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1. INTRODUCTION  

 

Decline curve analysis is an empirical technique based only on historical production 

rate trends to predict future production performance. Thus, it is fundamentally considered to 

lack a basis in physical principles governing the fluid flow phenomena in the reservoir. In 

addition, Arps’ decline models, also known as basic or traditional DCA, are grounded in the 

concept that boundary-dominated flow is the dominant flow regime and that operating 

conditions and reservoir properties remain constant. Therefore, decline curve analysis assumes 

that reservoir boundaries have been reached and that the main factors involved in the 

production decline process will remain constant during the future well life. In general, DCA 

techniques are extremely valuable tools for production analysis because of their simplicity. 

However, some of those features that make them simple also represent a disadvantage in 

other aspects, as presented below. As a consequence, erroneous reserve estimations may be 

obtained if DCA is applied without considering these limitations. According to Mattar and 

Anderson (2003), traditional decline curve analysis provides reasonable answers in many 

situations, but has its limitations, because it completely ignores flowing pressure data. Another 

important restriction of decline curve analysis is its inability to disassociate the estimation of 

future production performance from the existing operation constraints under which production 

history was developed (Mattar and Anderson, 2003). 

In recent years, as a result of the increasing exploration and production activity in 

unconventional plays, new decline curve models (also known as advanced decline curve 

models) have been developed. The main purpose of these new models—e.g., SEPD, Duong, 

Logistic Growth, Power Law, Dual Models—is to overcome the boundary-dominated flow 

assumption of the basic Arps’ models, which restricts their application in ultra-low permeability 

reservoirs exhibiting a long-duration transient flow regime. Nevertheless, these new DCA 

methods are still based only on production rate data, relying on the assumption of stable 

flowing pressure. Since this stabilized state is not reached rapidly in most cases, the 
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applicability of these methods and the reliability of their solutions may be compromised. 

Examples of such situations are unconventional wells with short or discontinuous production 

histories, variable operating conditions and high pressure rate controlled wells. In these 

particular cases, important reservoir productivity signals are expressed through both pressure 

and rate decline trends. Therefore, ignoring flowing pressures and using only conventional rate-

time techniques to interpret these cases may cause misinterpretations and erroneous reserves 

estimations (Anderson, D.M. et al., 2012; Mattar and Anderson, 2003). 

Several flow regimes may be developed by multi-fractured horizontal wells in 

unconventional plays as a product of the multiple parameters in these complex 

reservoir/fractures systems (Clarkson, 2013; Clarkson and Pedersen, 2010; Liang et al., 2012; 

Luo et al., 2010; Mattar and Anderson, 2003). Because the dominant early flow regime is linear 

flow—followed by boundary-dominated flow—new DCA models specially designed for 

transient (linear) flow have been advocated. Furthermore, modifications have been introduced 

in those models to improve their ability to switch from linear to boundary-dominated flow 

models at an appropriate time (Joshi and Lee, 2013). However, in practice, decline curve 

analysis is often carried out without a proper identification of flow regimes. The arbitrary 

application of DCA models regardless of existing flow regimes may produce unrealistic 

production forecasts. 

1.1. Status of the Question 

An advanced generation of more complex techniques—known as rate transient 

analysis—is available to overcome with the restrictions in DCA mentioned previously. The main 

difference is that these techniques use analytical and numerical models to analyze production 

rates and flowing pressures. Although those methods are more rigorous and provide some 

advantages over DCA techniques, a deep understanding of reservoir characteristics and 

properties is required (some of which are known only approximately and others completely 

unknown). Considering that there is usually high uncertainty associated with most of the 

reservoir properties needed to use these complex methods, high uncertainty should 
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correspondingly be expected in forecasts using this approach. Moreover, as the advanced 

analytical and numerical models depend on copious inputs, there is a high probability that 

different combinations of those parameters could generate equivalent and acceptable history 

matches, but different production forecasts and EUR estimations. Therefore, non-unique 

solutions may be expected (Anderson, D.M. et al., 2012).  

One important feature of rate transient analysis is the application of the pressure-

normalized-rates concept, which incorporates the effects of back pressure changes into the 

reservoir analysis (Mattar and Anderson, 2003). In spite of its advantages, the application of the 

pressure-normalized-rate concept has been mainly limited to rate transient analysis and has 

not been extended to decline curve analysis. Duong (2010) proposed a new decline analysis 

model suited for transient flow regimes. As part of his workflow, he included pressure 

corrected rates in diagnostic plots to compensate for the early choke-back effect and to 

improve identification of the linear flow regime, but not to improve the forecasting capacity of 

the model. So, Duong’s model relies only on production rates. 

 Anderson, S. et al. (2012) proposed a new decline curve analysis method based on 

pressure-normalized rates to estimate ultimate recoveries and future production of high 

pressure, rate restricted wells. This method is grounded in the empirical observation that some 

wells exhibit a linear relationship between pressure-normalized rates and cumulative 

production when plotted on a semi-log scale; i.e., harmonic decline. Therefore, production is 

forecasted by extrapolating the harmonic decline of the pressure-normalized-rates. Although 

this is the first published DCA method to include normalize rates in the analysis, its application 

may be restricted to some specific cases, like high pressure, rate restricted wells exhibiting 

harmonic decline. Additionally, this method assumes that harmonic decline will continue during 

the entire well life. In fact, there is no physical concept supporting this assumption of harmonic 

decline. In conclusion, there is currently no clear methodology or technique to overcome the 

main restrictions in conventional decline curve analysis. Recent efforts have been focused on 

optimizing the switch of DCA models from linear to BDF, to obtain better representations of the 

most common flow regime sequence in unconventional reservoirs. However, two other 
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important assumptions/restrictions continue without being properly addressed: lack of 

pressure data and stable operating conditions. 

1.2. Research Objectives 

• Evaluate the applicability of pressure-normalized decline curve analysis (PN-DCA) as a 

production forecasting technique suited for the interpretation of unconventional wells 

flowing under unstable operating conditions. 

• Determine whether flow regime misinterpretations occur when diagnostic plots are not 

applied correctly.  

• Compare the accuracy of the modern decline curve analysis models with varying 

amounts of historical production data. 

• Assess the forecasting capacity of the pressure-normalized harmonic decline method. 

1.3. Expected Benefits and Application 

The results of this work should provide a better insight of the possible benefits 

provided by including flowing pressures in production decline analysis. As the pressure-

normalized decline curve analysis (PN-DCA) relies on rates and pressure data, an improved 

forecasting ability is expected, especially in specific situation such as unstable operating 

conditions, limited availability of production data (short production history) and high-pressure, 

rate-restricted wells. Improved forecasting ability implies greater accuracy in the production 

performance forecasts and more reliable reserve estimations. The petroleum Industry may 

become more confident in reserves estimates, which are the basis for the optimization of 

development plans, future investments and estimates of companies’ values. 
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2. DECLINE CURVE ANALYSIS 

 

Decline curve analysis is defined as “a graphical procedure used for analyzing declining 

production rates and forecasting future performance of oil and gas wells” (Aderemi and 

Akpara, 2008). Basically, a history match is developed by fitting a decline curve model onto past 

production data. Later, based on the new adjusted model, the existing production profile is 

extrapolated until it reaches a minimum economic rate or time limit, in order to forecast 

possible production performance and the expected ultimate recovery (EUR). Decline curve 

analysis (DCA) is commonly used and is considered a very powerful and efficient tool because 

high-quality results can quickly be obtained with a simple procedure, since it doesn’t require 

sophisticated interpretation software or knowledge of the reservoir and well parameters. The 

concept of decline curve analysis was publicized by Arps (1945) and its application as a 

predicting method quickly spread as a regular practice in the oil and gas industry. Even today, 

when other modern methods (e.g., analytical and numerical models) have been created, it 

continues being a preferred forecasting technique.  

Because DCA is an empirical technique based only on historical production rate trends 

to predict future production performance, it is fundamentally considered to lack a basis in 

physical principles governing the fluid flow phenomena in the reservoir. Fetkovich (1980) 

demonstrated that in some cases decline, curve analysis has solid fundamental bases and can 

be expressed in terms of reservoir variables and engineering concepts. He proved that under 

specific conditions (constant pressure and slightly compressible single phase radial flow 

systems), the empirical exponential decline model is equal to the analytical solution. Although 

Fetkovich’s work clarified the relation of the DCA concept with the fluid flow physics, it is 

strictly restricted to very specific cases. Therefore, DCA is still considered as an empirical 

approach based on production observations. By virtue of its empirical nature, decline curve 

analysis can be applied to production data from any type of reservoir, independently of fluid 

and rock properties, drive mechanism and operating conditions. Additionally, the analysis could 
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also be performed on any fluid stream, including a single fluid (gas, oil or water), multiple fluids, 

or production ratios (WOR, WGR, GOR). The practical procedure is to select a production 

variable showing a recognizable trend that can be used to develop an optimum and reliable 

forecast. Usually, production decline analyses are conducted on a plot of rate-versus-time or 

rate-versus-cumulative production, and as a result, it can predict remaining recoverable 

reserves, but not fluids-in-place. 

Arps’ decline model, also known as basic or traditional DCA, are grounded in the 

concept that boundary-dominated flow is the dominant flow regime and that operating 

conditions and reservoir properties remain constant. Therefore, decline curve analysis assumes 

that reservoir boundaries have been reached and that the main factors involved in the 

production decline process will remain constant during the future well life. If production 

conditions are changed, well performance is altered and the forecast analysis is no longer valid. 

Some of the factors affecting production performance are pressure depletion, number of 

producing wells, drainage area, drive mechanism, reservoir characteristics, skin, saturation 

changes, and relative permeability, as well as operating conditions such as separator pressure, 

tubing size, choke setting, workovers, compression, operating hours, and artificial lift (Fekete, 

2013b). It is important to keep in mind that special operations, like infill drilling, formation 

stimulation or wellbore reconfiguration, can change the reservoir performance by reducing 

reservoir drainage area, altering productivity properties and effective fluid flow areas. 

In general, DCA techniques are extremely valuable tools for production analysis 

because of their simplicity. However, some of those features that make them simple also 

represent a disadvantage in other aspects: 

 Lack of pressure data. According to Mattar and Anderson (2003), traditional decline 

curve analysis provides reasonable answers in many situations, but has its limitations, 

because it completely ignores the flowing pressure data.  

 Boundary-dominated flow assumption. This condition is not readily reached in 

unconventional reservoirs (e.g., tight sands and shales) where the dominant linear flow 

regime can last several years before reaching stabilization. 
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 Consistent production history is needed.  Decline curve analysis may be applied only 

when sufficient and coherent historical production data is available to reliably identify a 

convincing decline trend. 

 Invariable operating conditions. As previously described, one of the main restrictions 

of the decline curve analysis is its inability to disassociate the estimation of future 

production performance from the existing operation constraints under which 

production history was developed (Mattar and Anderson, 2003). This means that 

forecasts provided by DCA models may be considered reliable representative only if 

operating conditions remain unchanged. 

 Non-uniqueness: Decline curve analysis does not provide unique solutions, especially 

when the curve fitting is performed over a short production history or when data 

scattering is significant. A poor quality history match allows the possibility of obtaining 

multiple combinations of potential decline parameters, which in turn will generate a 

wide range of EUR estimations. 

In recent years, as a result of the increasing exploration and production activity in 

unconventional plays, new decline curve models—also known as advanced decline curve 

models—have been developed. The main purpose of these new models (e.g., e.g., SEPD, 

Duong, Logistic Growth, Power Law, and Dual Models) is to overcome the boundary-dominated 

flow assumption of the basic Arps’ models, which restricts its application in ultra-low 

permeability reservoirs, exhibiting long-duration transient flow regime. 

2.1. Basic Decline Curve Analysis 

2.1.1. Arps Decline Equations 

Arps (1945) presented a set of empirical equations to forecast production performance. 

Those equations are based on the concept of loss-ratio (Eq. 1) and its derivative (Eq. 2). The 

inverse of the loss-ratio is known as the decline rate (D) and represents the fractional change of 

rate per time—usually expressed in %/year. 
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The general form of the Arps models is represented by Eq. 3: 

            
      ......................................................................................  (3) 

However three different decline models can be subsequently derived from this general 

equation depending on the different combinations of the production decline parameters (b and 

D), as presented below. 

2.1.1.1. Exponential  

Exponential decline occurs when the decline rate, D, is constant and the b exponent is 

0. This model provides the minimum EUR, so it is the most conservative, as well as the simplest 

basic decline curve. Eqs. 4 and 5 presents the exponential expression for production rates and 

cumulative production, respectively. 

             ...............................................................................................................  (4) 

 

   
  

 
[     ]  ............................................................................................................  (5) 

 

2.1.1.2. Hyperbolic 

The hyperbolic model is equivalent to the general form of the Arps equation. If D is 

changing on time, the decline is considered to be either hyperbolic or harmonic. The hyperbolic 

exponent b represents the varying decline rate. Eqs. 6 and 7 presents the hyperbolic expression 

for production rates and cumulative production, respectively. 
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In this case, the decline rate at any time, D, is expressed as presented in Eq. 8. 

  
  

      
  .........................................................................................................  (8) 

2.1.1.3. Harmonic 

The harmonic model is a special case of hyperbolic declination when b is equal to 1. 

When a harmonic decline is performed, the lower part of the curve tends to become very flat 

with time, so that it appears no decline is happening and the production rate will never be zero. 

Therefore, it is not possible to estimate the maximum EUR (when production rate is zero), but a 

EUR at a specific abandonment rate can be predicted. This type of performance is expected 

when very effective recovery mechanisms, such as gravity drainage, are active. Another 

example of harmonic decline is the production of high viscosity oil driven by encroaching edge-

water (Fekete, 2013b). Eqs. 9 and 10 presents the hyperbolic expression for production rates 

and cumulative production, respectively. 

  
  

       
  .........................................................................................................  (9) 

   
  

  
           .........................................................................................  (10) 

In the case of harmonic decline, the production profile is a straight line when plotting 

log flow rate vs. cumulative production (See Eq. 11): 

      
   

       
        ................................................................................  (11) 

Fig. 1 illustrates the behavior of the three rate-time relationships proposed by Arps. 
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Fig. 1—Traditional Arps Decline Curves (Fekete, 2013a). 

 

2.1.2. Hyperbolic Exponent “b” 

The hyperbolic exponent “b”, also known as the loss ratio (inverse of decline rate) 

derivative, depicts the change of the production decline rate over time (Eq. 12): 

  
 

  
(
 

 
)  

 

  
(

  

     
)  

              

    ........................................................  (12) 

Arps analyzed production data from 149 fields and, as a result of his observations, he 

found that the range of exponent “b” was between 0 and 0.7 with 90% having b less than 0.5. 

No harmonic declines were found and less than 15% had a b value less than 0.1 (Fetkovich et 

al., 1996). Several expected values of b were derived for different reservoir drive or recovery 

mechanisms. Table 1 shows the “b”values that should be expected for homogeneous single-

layer or layered crossflow systems, while Fig. 2 illustrates those observations. In general, the 

higher the b value, the stronger the secondary energy source. 
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Table 1—Decline exponents “b” for various reservoir mechanisms (Fekete, 2013b) 

b value Reservoir Drive Mechanism 

0 

Single phase liquid expansion (oil above bubble point) 

Single phase gas expansion at high pressure 

Poor waterflooding performance 

Tubing restricted gas production 

0.1 - 0.4 Solution gas drive 

0.4 - 0.5 Single phase gas expansion (Typical gas well) 

0.5 Effective edge water drive 

0.5 – 0.9 

Commingled layered reservoirs 

Gas or water injection 

Very active water drive or gas cap drive 

1.0 
Gravity drainage 

High viscosity oil reservoir under edge water drive 

 

In some situations, such as in the case of ultra low permeability shales or tight sands, 

decline curve analysis shows “b” values higher than 1. As pointed out by Fetkovich et al. (1996) 

“attempting to fit all or some of the transient production rate data of a well with the Arps 

pseudosteady-state equation will result in an apparent b value higher than it really is. In some 

cases, it will even be greater than 1”. Production performance in wells producing from 

unconventional reservoirs is dominated by long linear flow periods, where “b” is not constant. 

This topic will be discussed in detail in the next section. 

According to Kanfar and Wattenbarger (2012), Arps equations with “b” values of 2 and 

4 represent either bilinear or linear flow respectively. Nevertheless, basic Arps equations are 

not suitable to model transient flow or multiple flow regimes. So, EUR calculations should be 

addressed with that basic method only when boundary-dominated flow regime is observed. 
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Fig. 2—Decline exponents “b” for various reservoir drive mechanisms (Fetkovich, 1996). 

 

Thompson et al. (2011) found that in those shale wells where desorption plays a 

significant role in the fluids storage and production performance, the late time “b” parameter 

may be affected and its value may increase due to the additional energy provided by the 

desorption capacity of the rock. As consequence, EUR estimations increase when desorption 

effect is included in the analysis. 

2.2. Advanced Decline Curve Analysis 

2.2.1. Application Of Decline Curve Analysis To Unconventional Reservoir 

As previously mentioned, the ultimate recovery of conventional reservoirs can be 

reliably estimated using traditional Arps’ decline analysis equations, which assume boundary-

dominated flow (BDF) as dominant flow regime. But this is not the case of unconventional 

reservoirs, which frequently exhibit long transient flow regimes and don’t reach BDF for most 
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of their production life due to the very low matrix permeability—usually in the range of nano-

Darcies—(Kanfar and Wattenbarger, 2012). Long transient flow periods mean changing 

drainage area, while Arps DCA models assume constant drainage area and flowing pressure. 

When Arps curves are used to fit shale wells production data, “b” values higher than 1 are 

obtained, and extrapolation of those models often forecast infinite unrealistic reserves 

(Anderson, D.M. et al., 2012). 

Initially, during transient flow, the decline rate is high and the production rate steeply 

decreases, but it stabilizes when boundary-dominated flow is reached. For most wells, 

especially in conventional reservoirs, this happens within a few months of production. 

However, transient flow conditions can last several years in very low permeability wells (Fekete, 

2013b). Actually, in some cases, wells are abandoned before reaching any drainage boundary.  

Those problems led to the development of new empirical equations more suitable for 

production analysis in unconventional reservoirs. The main strength of this new generation of 

decline curve models is its great ability to generate efficient solutions to complex 

unconventional reservoir systems by just applying simple time-rate relations (Mangha et al., 

2012). In practice, they share most of the features of basic decline analysis techniques, with the 

exception of the boundary-dominated flow restriction. This new set of advanced decline curve 

methods overcome this problem by introducing a new way of adjusting the changing decline 

parameter. They better model the transition from transient into boundary-dominated flow 

regime after an estimated time or upon achieving a certain region of investigation. In general, 

the fundamental concept of this modification is grounded in the assumption that depletion will 

dominate the production performance as soon as transient flow ends (Anderson et al., 2010). 

As well as in the case of the traditional Arps equations, there may be an analytical theory to 

explain the basis of these new models, but at present it has not be demonstrated. Thus, they 

are considered completely empirical (Mangha et al., 2012). 

Some of the most popular advanced decline curve models are: 

 Power-Law Exponential Model  (Ilk et al., 2008) 
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 Stretched Exponential Model  (Valko and Lee, 2010)  

 Logistic Growth Model  (Clark et al., 2011)  

 Duong Model  (Duong, 2010) 

It is important to mention that decline curve methods, as well as other forecasting 

techniques, do not provide an unique solution because of the difficulty of predicting the 

influence of the multiple reservoir variables affecting production performance. Additionally, 

according to (Mangha et al., 2012), it is difficult to have one single rate-time model that 

accurately works for all the different unconventional plays—one model could be adequate for 

one play, but possibly not for another one. When analyzing production data, all the available 

models should be considered, so it is critical to have a good understanding of each of those 

methods.  

Additionally, Mangha et al. (2012) presented a workflow to analyze and forecast rate-

time data of wells in low/ultra-low permeability reservoirs. The key component of the proposed 

workflow is the application of the "Db," "β-derivative," and "q/Gp" diagnostic plots as an 

analysis guide to obtain model parameters for the time-rate models. After obtaining the model 

parameters, the production profile can be extrapolated to generate the "estimated ultimate 

recovery" (EUR) at a specified time limit or abandonment rate. This methodology is based on 

the concept that diagnostic plots provide direct insight into our understanding of decline 

behavior, ensuring a more comprehensive and representative analysis. Competent results are 

obtained when sufficient production history is available.  

The next sections provide a practical insight of the most important models proposed in 

the literature and applied by the industry: 

2.2.2. Stretched Exponential Production Decline Model (SEPD) 

This method, proposed by Valko and Lee (2010), is a new form of the hyperbolic model 

with a varying “b” exponent over the production time, deducted from the observation of a 

large group of wells with production profiles exhibiting a stretched exponential decline trend. 
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According to Valko and Lee (2010), SEPD model offers two important advantages. The first one 

is its ability of forecasting bounded ultimate recoveries (EUR) without requiring the definition 

of any rate and/or time limits, producing more realistic reserve estimates for unconventional 

reservoirs. Second, the recovery potential relation (RP) as function of cumulative production 

can be obtained. 

The principles behind the stretched exponential model assumes that “the actual 

production decline is determined by a great number of contributing volumes individually in 

exponential decay (i.e., in some kind of pseudo-steady state), but with a specific distribution of 

characteristic time constants”, mentioned by Valko and Lee (2010). 

The SEPD model includes two new parameters (n, τ). In general, the “τ” parameter is 

the median of the characteristic time constants and “n” is the exponent parameter. The closer 

n is to zero, the larger the distribution tail. (Valko and Lee, 2010). 

The following equation corresponds to the SEPD relations to calculate production rate 

(Eq. 13), decline rate (Eq. 14), cumulative production (Eq. 15), EUR (Eq. 16) and recovery 

potential (Eq. 17). 
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In the SEPD cumulative equation, the first term inside the brackets is the complete 

gamma function, while the second one is the incomplete gamma function, as defined by 

Abramowitz and Stegun (1964). Gamma function is shown in the Eq. 18: 

 [   ]  ∫          
 

 
 ..................................................................................  (18) 

Once positive values of n, τ and q0 are given, finite values of EUR are obtained, even if 

rate and/or time limits are not specified. As pointed out by Kanfar and Wattenbarger (2012), 

unlike the PLE model, SEPD does not consider a late time term—   is always considered to be 

zero. Additionally, the SEPD model provides a cumulative production function, what is 

considered an important advantage. Because of the smoothness of cumulative production data 

in comparison with noisy rate data, the SEPD model may be easier fitted when its cumulative 

production function is used instead of its rate function. As well as in the PLE method, a 

representative EUR estimation can be obtained if a meaningful portion of BDF is present 

(Freeborn and Russell, 2012). 

This model is complex and difficult to solve, so it tends to be underutilized in spite of its 

great advantages. Freeborn and Russell (2012) presented a practical guideline to better 

understand and easily apply this model, as well as an error minimizing algorithm to determine 

the value for the “n” exponent. He also suggests that the Power Equation and the Stretched 

Equation provide similar solutions and that the most practical approach is to apply both models 

in concert and to select the most conservative forecast. 

2.2.3. Duong Model 

Duong’s method is based on the consideration that most of the production from ultra-

low permeability unconventional reservoirs (super-tight sands or shales) is mainly carried out 

by the fracture network, in such a way that linear flow is the dominant regime for several years. 

In fact, some of these wells are abandoned even before reaching a pseudo-steady state (BDF), 

so neither permeability nor drainage area can be estimated. This long transient flow 

performance is additionally supported by the theory that the connected fracture network in the 
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stimulated region (SRV) increases over time due to local stress variations caused by depletion 

of the fractures—i.e., reactivation of existing fractures/faults because of pressure depletion, 

matrix shrinkage and effective stress changes. Since matrix contribution is insignificant in 

comparison with fracture network contribution, EUR cannot be established by traditional 

methods based on the drainage area concept (Duong, 2010). These observations led Duong to 

develop an alternative approach to forecast production performance and estimate EUR for 

fracture dominated wells. 

In general, Duong’s model is grounded on the concept that the rate-time function, 

material balance time     ⁄  vs. time, exhibits a power law relation (as presented in the Eq. 19) 

forming a straight line when plotted on a log-log scale (See Fig. 3). However, note that when 

BDF is reached, the production trend may deviates from the log-log straight line (Kanfar and 

Wattenbarger, 2012). In Eq. 19, “m” represents the slope and “a” is the intercept. Although 

slope is always negative, “m” value is always positive and greater than unity for unconventional 

reservoirs. If “m” is less than unity, it might indicate a conventional low permeability reservoir 

(Duong, 2010). 

 

 
       .........................................................................................................  (19) 

Even though two different flow regimes usually are developed in fracture dominated 

production systems (bilinear flow in finite conductivity fractures, exhibiting a quarter-slope line 

on a log-log plot of production rate vs. time, and linear flow in infinite conductivity fractures, 

indicated by half slope line on the same plot), Duong showed that both cases exhibit a slope 

close to -1 in a log-log plot of q/Gp versus time (Mishra, 2012). Fig. 3 shows log-log plots of 

q/Gp vs. t for various shale gas wells with more than 5 years of production. 
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Fig. 3—q/Gp vs t plot for varios shale gas wells (Duong, 2010). 

 

The Duong’s equations for rate (Eq. 20), cumulative production (Eq. 21), EUR (Eq. 22) 

and time function (Eq. 23) are presented below: 
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The second term in the rate equation (    was added to get a better fit of the model in 

some field cases where a straight line doesn’t intercept the origin in the q vs. t(a,m) plot. This 

term can be negative or positive. Since the cumulative production equation was not deducted 

considering this term, this should not be used if     . Otherwise, an inaccurate EUR 

estimation might be produced (Kanfar and Wattenbarger, 2012). 

According to Freeborn and Russell (2012), it is a very attractive method given its 

simplicity (i.e., easy to understand and apply). Nevertheless, since this method is founded on 

the production extrapolation for one single flow regime, it should be considered a poor 

forecasting tool when multiple flow regimes are shown. So, this model should be suitably 

applied only while linear flow lasts (Freeborn and Russell, 2012). 
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Similar to other DCA methods, if a well is shut in for a significant time period, a rate 

initialization may be required. Additionally, some factors (water production, liquid holdup in 

wellbore and/or fracture network) may cause the deviation of flow behavior from linear flow, 

accelerating the rate decline (Duong, 2010). 

As pointed out by Mangha et al. (2012), unlike of those models that don’t exhibit linear 

behavior—such as power-law exponential, stretched exponential, and logistic growth—Duong's 

model is a linear based model (q/Gp-t data trend on a log-log scale) and its EUR estimates may 

be higher or optimistic in comparison with the results from those other models. Some models, 

such as modified-hyperbolic and power-law exponential, include a late time term which 

diverges its behavior from the linear trend and constrains EUR over-estimations, while Duong’s 

model not. 

2.2.4. Power Law Exponential Method 

This technique, proposed by Ilk et al. (2008), was derived from their observations on 

the behavior of the loss ratio function and its derivative, and is based mainly on modeling the 

power law trend of the D-parameter with time (i.e., straight line on log-log scale). The 

fundamentals of this model suggest that the loss ratio can be represented by a decaying power 

law function with a constant behavior at large times and that the loss ratio derivative (b-

parameter) does not exhibit a constant trend as assumed in the traditional hyperbolic model. 

As stated by Ilk et al. (2011), this power-law behavior is a common feature of unconventional 

reservoirs. 

As presented in Section 2.1.1, the loss ratio (1/D) and its derivative (b) are defined as 

presented in Eqs. 24 and 25: 
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An alternate calculation of these two parameters using rate-cumulative data instead of 

rate-time data was provided by Ilk et al. (2008), as presented in Eqs. 26 and 27: 
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The Power Law D-parameter model (loss ratio) is defined as presented in Eq. 28. The 

first term of this equation (    is a constant and corresponds to the loss-ratio at infinite time, 

while the second one is the time-dependent power law function (Kanfar and Wattenbarger, 

2012). 

        
        ......................................................................................  (28) 

According to Ilk et al. (2008), this equation is totally flexible and offers the advantage of 

modeling multiple flow regimes (transient, transition, and boundary-dominated flow) because 

the “b hyperbolic exponent varies with time. However, it has the special feature that at late 

times the relation behaves as the basic exponential decline model.  

Fig. 4 shows a schematic plot for hyperbolic and power law exponential models for 

orientation purposes. It offers a clear comparison between the traditional hyperbolic and the 

power law models. It can be readily seen that the D-parameter of the traditional hyperbolic 

model is practically constant at early times and decays as a power law function at late times. 

Meanwhile, the power law model behaves in an opposite way, such that at early times it decays 

as a power law function and then turns gently towards a constant value (Ilk et al., 2008). It 

happens because at early times the offset term (    is negligible, so the model performs as a 

power law function from transient through transition flow, matching linear or bilinear flow 

(Kanfar and Wattenbarger, 2012). Finally, at late times the first term dominates and the loss 

ratio is constant, representing the boundary-dominated flow regime and behaving as an 

exponential rate decline model. 
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Fig. 4—Schematic plot for hyperbolic and power law exponential models (Ilk et al., 2008) 

 

The Power law rate-time relation is defined as presented in Eqs. 29 and 30: 

   ̂    [     ̂  
 ]  ................................................................................  (29) 

 ̂        .......................................................................................................  (30) 

Since it is not possible to integrate this rate-time relationship, it is necessary to 

estimate cumulative production by numerical integration. The Power Equation is solved by 

multivariate linear regression when the “n” time exponent value is known. Freeborn and 

Russell (2012) provides an error minimizing algorithm to determine the “n” value and some 

practical indications about the PLE solution. As stated by Freeborn and Russell (2012), the PLE 
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equation doesn’t have the ability of neither identifying the occurring flow regimes nor 

predicting the BDF onset. Instead, the PLE D-parameter allows switching to a terminal decline 

rate when enough historical BDF production data is available. 

2.2.5. Logistic Growth Model 

Logistic Growth Models (LGM) is a set of mathematical models commonly used to 

predict growth in different disciplines. Their main feature is the carrying capacity term (K), 

which limits the population growth limit or define the maximum population size at which 

growth rate will finish (Clark et al., 2011). A particular logistic growth model specially adapted 

for oil and gas production forecasting purposes was developed by Clark et al. (2011). Eq. 31 

corresponds to the rate-time expression, while Eq. 32 is the cumulative production function. 
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In this case, the carrying capacity term (K) represents the maximum recoverable 

volume, independent of time or economic restrictions, so it is close to the EUR without 

considering any economic analysis. As the carrying capacity term is the restriction parameter 

that controls the rate decline up to reaching the maximum cumulative production, it is 

recommended to try to determine EUR in a different way prior to performing a production 

forecast. When EUR is unknown, “K” and the other LGM parameters can be determined by 

matching the historic production data (Clark et al., 2011). Unfortunately, LGM is a very flexible 

model, so multiple solutions can be obtained with different combinations of parameters—

including the carrying capacity term (K) that define the maximum cumulative production. The 

Fig. 5 illustrates a production data fit with the LGM technique without a previous knowledge of 

the carrying capacity. Multiple good fits were obtained, as well as multiple EUR estimations. 

Moreover, the logistic growth model, just like the power-law exponential and the stretched 
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exponential relations, tends to generate conservative production forecasts (Mangha et al., 

2012). 

 

 

Fig. 5—Production data analysis by applying LGM (Clark et al., 2011) 

 

2.2.6. Dual Models 

Dual models are compound models resulting from the combination of two different 

single models—e.g., Duong, SEPD, Hyperbolic, Exponential—where each of these models has 

the advantage of better forecasting production performance during a specific flow regime. For 

unconventional reservoirs, the best dual-model configurations are those with the ability of 

modeling linear flow during the early well lifetime, and later switching into a BDF model when a 

limiting condition is reached—i.e., certain time or a minimum decline rate. As pointed out by 
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Freeborn and Russell (2012), the switching point (tsw) represents the transitions from linear to 

boundary-dominated flow. Selecting this point is very important because it has a large effect on 

the production model behavior and on the subsequent EUR forecast. In most occasions, 

identifying the BDF onset is very difficult or just impossible. Therefore, one of the biggest 

uncertainties related to dual models is the precise selection of the switching point, especially 

when BDF is not evident. In these cases, it may be estimated from analog wells or could be an 

arbitrary number based on company's policies and/or the analyst's experience (Mangha et al., 

2012). Because Arps models were designed to analyze production data in BDF conditions, these 

are considered the best terminal decline models. Two of the most commons Arps’ BDF models 

are either a hyperbolic curve with a b exponent between 0.3-0.4 (0.4 for gas wells or 0.3 for oil 

wells) or an exponential curve. Three of the most common dual models are presented below.  

2.2.6.1. Modified Hyperbolic 

In this case, an initial Arp’s hyperbolic decline curve—usually with a b exponent higher 

than 1—switches into a terminal Arp’s BDF model either at a specific time (tsw) or when a 

predetermined nominal decline is reached (Dlim). This is a very practical and widely used way to 

constrain the EUR overestimations caused by fitting early-time transient data with the 

traditional hyperbolic equations and the resulting “b” parameter higher than 1 (Ilk et al., 2011). 

The Fig. 6 shows an illustration of the modified hyperbolic model used to forecast 

production for a shale gas well. This forecast includes 4 production scenarios resulting from 

fitting the same historic production data using 4 different models. The blue line corresponds to 

the extrapolation of the basic hyperbolic model (b>1), while the other 3 scenarios correspond 

to the modified hyperbolic model at three different terminal decline rates (12.5%, 19.0% and 

30%). It can be observed that the basic DCA model brings about a production performance 

overestimation, while the modified models produce more conservative results. The transition 

point depends on the specified terminal decline and has a direct impact on the EUR forecast. 
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Fig. 6—Example of the Modified Hyperbolic Technique. 

 

2.2.6.2. Modified Duong 

As previously mentioned, the Duong method is a single flow regime model focused only 

on the transient flow regime, so it is not flexible enough to provide a solution for later BDF. 

Considering this constraint, some modifications to Duong’s model have been proposed by Joshi 

and Lee (2013) in order to account for the BDF effects in long production wells or new wells 

with high fracture density and improved permeability in the stimulated reservoir volume (SRV). 

Additionally, they made important observations on the late time Duong’s model term (   : 

 Using a non-zero    can produce unrealistic forecasts, especially when production 

history is short. 

 In the case of short production history, the error can be minimized if the fitted line is 

forced to intercept the origin (    ). 
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Fig. 7—Comparison of original Duong and modified Duong models (Joshi and Lee, 2013). 

 

Considering these facts, two important modifications have been proposed by Joshi and 

Lee (2013): 

 When applying the straight line method to establish “q1”, it should be forced to 

intercept the origin and avoid     , especially when short historic production data is 

available (Less than 24 months approximately). 

 As the Duong model assumes transient flow and Arps models assume BDF, the best 

solution is to use a dual model that switch from Duong to Arps after certain time or 

when a defined rate is reached—ideally at the BDF onset. In their study a switch point 

equal to 5% of declination rate (Dswitch @ 5%) is proposed, but the optimal Dswitch and 

“b” values for the BDF Arps model should be selected through a rigorous study of each 

case.  
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Fig. 7 illustrates the advantage of the modified Duong model over the original one. 

Here a comparison of the original Duong, the modified Duong and the Modified Duong (Dswitch 

@ 5%) is developed for a Barnett simulation case (48 months of history match). 

2.2.6.3. Modified Stretched Exponential 

Also known as MSE, this model switches from SEPD into a terminal Arp’s BDF model 

when a limiting condition is reached, just like the modified Duong and the modified hyperbolic 

models do.  
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3. RATE TRANSIENT ANALYSIS APPLIED TO MULTI-FRACTURED HORIZONTAL 

WELLS IN UNCONVENTIONAL RESERVOIRS 

 

This section presents a brief summary of the main concepts and fundamentals related 

to rate transient analysis methods (RTA), which are classified as advanced analytical techniques 

to evaluate reservoir production performance—i.e., estimation of reservoir properties, original 

volumes in place, and ultimate recovery. In essence, RTA methods are analogues to pressure 

transient (PTA) methods, with the difference that RTA is centered on the declining production 

rates and not on pressure data. 

The approach of this work is mainly focused on providing a better understanding of the 

RTA methods commonly used to analyze production data from multi-fractured horizontal wells 

(MFHW), since this is the most common completion method in the modern unconventional 

plays. As an introduction to the RTA concepts, Table 2 shows a comparison of DCA and RTA 

methods to understand their main differences. 

In general, RTA techniques are grounded on the same principles of the fluid flow in 

porous media theory—i.e., diffusivity equation—just like PTA techniques. However, there are 

several different RTA techniques and each technique has different additional assumptions, 

considerations and restrictions that go into the model itself. For this reason, it is advised that 

interpreters understand the principles and the special features of each method to avoid 

misapplications and misleading results.   

Initially, RTA methods were designed for conventional reservoirs (vertical wells mainly), 

but recently such interpretation techniques have evolved to provide better solution to the fluid 

flow and storage complexities of the new unconventional wells—i.e., naturally occurring 

fractures, multiple lithology, multiple fractures in long horizontal wells, multiphase flow, 

adsorption capacity, non-Darcy flow, and non-static (stress dependent) permeability. One of 
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the most important advantages of the RTA techniques over the DCA models is the capability to 

account for these special attributes is. Consequently, the RTA methods are suited to estimate 

reservoir and completion (fracture network) characteristics—from transient flow data—and to 

forecast ultimate recovery (EUR) and original volumes-in-place (OGIP/OOIP)—from boundary-

dominated flow data—even under changing operational conditions (Clarkson, 2013b). 

However, as pointed out by Anderson, D.M. et al. (2012), the same reservoir complexities of 

the unconventional plays lead to non-unique solutions of reservoir characteristics and 

production forecasts, which is a big challenge for RTA techniques. 

 

Table 2—Comparison of DCA and RTA techniques. 

 

 

RTA techniques include a wide range of methods that can be divided into the following 

categories:  

 Specialized plots (straight line analysis). 

Features DCA RTA

Main Input Data Production rates Production rates  and flowing pressures

Additional Required Data

Fluid and reservoir properties , wel lbore 

configuration* and number of fracture s tages  

(MFHW)

Fundamentals Empirica l Fluid flow phys ics

Methodology
Historica l  production decl ine trends  are 

fi tted by rate-time models

Formation properties  characterization and 

s imulation of the reservoir production 

performance according to speci fic analytica l  

models

Deliverables

Production forecast and prediction of 

recoverable reserves  under current 

flowing conditions

Original  volumes  in-place, production forecast, 

estimation of recoverable reserves  under 

variable flowing conditions , reservoir 

properties  (e.g., K and S), completion features  

(e.g., Xf, kf), dra inage area, estimation of 

reservoir pressure

*RTA: Some methods don’t require it.
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 Type-curve analysis. 

 Flowing material balance. 

 Analytical models. 

 Numerical models. 

Due to the high complexity associated to unconventional reservoirs, it is recommended 

to combine several RTA techniques to find the best possible solution, particularly when 

analyzing MFHW exhibiting a wide range of flow regime signatures (Clarkson and Pedersen, 

2010). Additionally, diagnostic analysis should be carefully performed and be based not only on 

the production performance fundamentals, but also on the analyst’s knowledge and experience 

of each case. A summary of RTA techniques will be presented in this section, giving special 

importance to those designed to provide solution to MFHW in unconventional reservoirs. 

3.1. Superposition Time Functions and Gas Flow Considerations 

3.1.1. Superposition Time Functions 

Superposition functions are grounded on the principle that the final response of a 

system submitted to several rate changes is equal to the sum of the individual response of each 

rate change—i.e., multiple single drawdowns starting at different times (Agnia et al., 2012). 

This principle means that superposition time functions (STF) have an improved analysis capacity 

for production data from wells flowing under unstable operating conditions, such as step-

changes and fluctuations of flowing pressures. However, these time functions transform the 

data, so that its flow regime signature in the diagnostic plots tends to look like the flow regime 

for which they have been created (Clarkson, 2013b). Thus, analyzing wells submitted to 

multiple and frequent operational changes—where a high degree of discontinuities is 

expected—tends to make this effect more prominent and increases the risk of a possible 

misinterpretation of flow regimes (Anderson and Mattar, 2003). According to Agnia et al. 

(2012), superposition-time functions can be biased and misleading in many cases due to 

multiple factors such as well cleanup, outliers, liquid loading, high scatter and interference. As a 
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result, superposition functions may generate erroneous straight-line trends in the diagnostic 

and analysis plots, which can be misinterpreted as unrealistic flow regimes and erroneous 

reservoir properties may be estimated. They have proposed a workflow to check if bias on 

superposition-time specialized plots exists and to avoid those mistakes by filtering the input 

data. One of the main bias sources is the flow rate instability, centered on two key effects, the 

noise and outliers. While noise is related to the scattered points that are slightly deviated from 

the main central production decline trend, outliers refer to those points placed away from the 

average production decline trend. Some causes of those worthless points are rate averaging, 

liquid loading, variable operating conditions, production interference, and measurement and 

allocation problems.  

 

Table 3—Superposition time functions for different flow regimes (Agnia et al., 2012). 

 

 

The general form of the superposition time functions (tSP) is presented in Eq. 33. The 

specific time function [f(tn)] depends on the flow regime, as presented in Table 3.  
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    ∑
         

  
          

 
     ..................................................................  (33) 

In theory, the ideal STF should be a compound function with the ability of changing 

between the single functions depending on the happening flow regime. However, in reality, it is 

not possible (Liang et al., 2012). In the case of UCR, boundary-dominated and linear are the two 

most common superposition functions because those are the prevalent flow regimes in these 

kinds of ultra-low permeability reservoirs. Therefore, the two most important superposition 

functions are the linear superposition and the material balance time function (MBT or tMB). 

 

 

Fig. 8—Material Balance Time plot showing the equivalency of qD and 1/pD (Fekete, 2013a) 

 

The Material Balance Time function (MBT), developed by Blasingame et al. (1991), 

effectively converts the constant pressure solutions into the equivalent constant rate solutions 

during BDF regime and provides a good approximation in case of linear flow. For production 

analysis purposes, it is a great advantage since most of the fluid flow solutions have been 

developed in the well testing field assuming constant flow rate (Anderson and Mattar, 2003). 

Fig. 8 illustrates the fundamentals of the MBT and how the constant pressure solution (which is 
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originally exponential) is converted to constant rate (which is harmonic). According to Liang et 

al. (2012), although the material balance time was created for BDF conditions and should only 

be used when all the drainage area boundaries have been reached, it is also recommended as 

the best superposition time to analyze variable production data in linear flow regime. A study 

developed by Anderson and Mattar (2003) has also shown that when material balance time is 

used in diagnostic plots to identify flow regimes and estimate reservoir properties, it provides 

reliable results, independent of the flow regime. Fig. 9 illustrates the practical concept of 

material balance time. Note that MBT is frequently represented by the symbol tc also, which 

means corrected time based on cumulative production (Fekete, 2013b). 

 

 

Fig. 9—Illustration of the Material Balance Time concept (Fekete, 2013a) 

 

3.1.2. Pseudovariables 

The main purpose of pseudovariables is to account for the variation of some gas 

properties with pressure (Z-factor, compressibility and viscosity), in such a way that the 

analytical solutions for fluid flow—which assume single phase flow of a slightly-compressible or 

non-compressible fluid—can be applied to gas wells (Clarkson, 2013a). The next three 

equations correspond to the pseudopressure (Eq. 34), pseudotime (Eq. 35) and material 

balance pseudotime (Eq. 36). Note that the pseudopressure correlation accounts for changes in 

viscosity and Z-factor, while pseudotime and material balance pseudotime corrects for the 
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pressure-dependency of gas compressibility and viscosity, both of which are evaluated at 

average reservoir pressure conditions. 
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3.2. Specialized Plots (straight-line analysis) 

Specialized plots, also known as straight-line methods, offer two important 

applications: flow regime identification and reservoir properties characterization. Flow regimes 

identification is a critical and important task in the production analysis, because the following 

steps depend on the proper diagnosis of the flow regimes. Thus, a mistake in this step will 

affect the entire analysis. Once flow regimes have been identified, specific plots are used to 

linearize the dataset corresponding to each flow geometry, and depending on each case, 

reservoir properties and fracture network features may be derived (Clarkson, 2013b). 

Therefore, specialized plots are considered as a valuable tool and a compulsory technique 

when analyzing production performance.  

3.2.1. Flow Regimes in Multi-Fractured Horizontal Wells 

Several flow regimes may be developed by multi-fractured horizontal wells in 

unconventional plays as a product of the multiple parameters in the complex 

reservoir/fractures system (Clarkson, 2013a; Clarkson and Pedersen, 2010; Liang et al., 2012; 

Luo et al., 2010; Mattar and Anderson, 2003). The ideal flow regimes sequence is described 

below. Generally, most of these flow regimes are not developed or its duration is insignificant. 

Therefore, only the dominant flow regime are exhibited and easily identified.  
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3.2.1.1. Bilinear Flow 

Initial production is dominated by the high conductivity induced fracture network. 

However, due to the fracture’s low storage capacity, its effect is short—sometimes, impossible 

to observe—and declines quickly. On the contrary, the low permeability matrix develops long 

and stable transient flow periods (Anderson et al., 2010). The fracture transient flow signature 

and its performance depend on the type of fracture. Three models have been proposed 

(Ahmed, 2010). Infinite-conductivity vertical fractures, finite-conductivity vertical fractures and 

uniform-flux vertical fractures. The two most common models are described as follows:  

 Infinite-conductivity vertical fractures: Characterized by very high conductivity 

(considered infinite for practical applications) and no pressure loss along the 

fracture extension. This kind of fractures exhibits a linear flow period, followed 

by formation flow regimes. This type of fracture is representative of highly 

propped fractured wells. 

 Finite-conductivity vertical fractures: Characterized by lower fracture 

conductivity in comparison with the infinite-conductivity fractures and the 

consequent pressure drop along the fracture extension (from fracture tip to 

wellbore). These fractures usually result from massive hydraulic fracture 

operations where fractures are not very well propped, so it is considered the 

distinguishing type of fracture of the MFHW in UCR.  This kind of fractures 

initially exhibits a very short linear flow period (flow inside the fracture), 

followed by a bilinear flow period (linear flow inside the fracture and the linear 

flow from matrix to fracture). The first linear flow period is so insignificant that 

it is ignored. Thus, the bilinear flow period is considered as the first flow 

signature of the MFHW, although in most cases it is rarely observed.  
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3.2.1.2. Early Linear Flow 

Also known as “primary formation linear flow”, early linear flow is caused by dominant 

linear flow from formation towards fractures. Flow direction is perpendicular to fracture planes 

and each fracture behaves independently.  

3.2.1.3. Early Radial Flow 

The flow transient effect continues growing perpendicular to the fracture plane, but it 

also extends out of the area stimulated by the fracture network. Therefore, a radial flow profile 

is generated, although it could be more elliptical depending on the fracture network geometry. 

3.2.1.4. Early Transition Flow 

This flow period, also known as “fracture interference”, corresponds to the transition 

between the early (linear/radial) and the late (compound) linear flow regimes. At that time, the 

drainage area of each fracture has extended in such a way, that they start to interfere with 

each other. 

3.2.1.5. Late Linear Flow 

Also known as “compound formation linear flow”, late linear flow occurs after the 

fractures’ transient effects have interfered as wells the drainage area has extended beyond the 

stimulated region, and the main contribution to flow comes from the outer matrix region. The 

flow direction is parallel to fracture planes. 

3.2.1.6. Late Transition Flow 

Late transition flow corresponds to the final transition between the transient flow and 

the late radial flow, in case of a closed reservoir system. 
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3.2.1.7. Late Radial Flow 

At this stage, depending on the matrix properties, fluid flow out of the stimulated 

region may not be completely parallel to fracture planes. Instead, it extends out of the area 

limited by the horizontal well section forming a radial or an elliptical flow pattern. As the 

drainage area growths, the well and the fractures behave like a unique system and its flow 

signature becomes less important, while the outermost matrix properties become more 

dominant. 

3.2.1.8. Boundary-Dominated Flow 

Also known as the depletion state, the boundary-dominated flow regime is the final 

period occurring when the flow effect has finally reached the reservoir boundaries and all the 

drainage pore volume has been connected. Ultimate reserves of fluids-in-place can only be 

estimated with confidence if this condition is reached (Mattar and Anderson, 2003). 

Depending on the reservoir features and the fracture network geometry, some flow 

regimes may or may not be exhibited, and even if present, some may not be easily observed. 

Fig. 10 shows a practical illustration of a flow sequence in a MFHW, including some of the 

previously mentioned flow regimes. According to Clarkson (2013a), it is possible to have 

multiple linear flow periods (e.g., early and late linear, early and late radial). Note that due to 

the very low permeability of the UCR, the linear transient flow regimes—i.e., early and late 

linear flows—dominate the reservoir production performance for a long time and are 

considered as the most representative of this kind of reservoirs. BDF is also observed in 

unconventional reservoirs during their late productive life, while bilinear and radial flows are 

less commonly observed during early production times (Anderson et al., 2010). 

Several diagnostic methods—i.e., log-log, square root of time, fourth root of time,  and 

linear and radial derivative—are available to identify the different flow regimes that may 

develop in MFHW, including transient (bilinear, linear, elliptical, and radial), transitional, and 

boundary-dominated  flows. 
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Fig. 10—Example of flow regimes in a MFHW generated by streamlines simulation (Luo et al., 2010) and flow regime 

signatures in a radial derivative plot (Clarkson, 2013a) 

 

Flow regime signatures appear not only in the previously mentioned diagnostic plots, 

but in most of the analysis plots. For example, in the Flowing Material Balance plot, the BDF is 

exhibited as a straight line. Although the main purpose of analysis plots is not to diagnose flow 

regimes, they can be used to verify the proper identification and selection of the flow regimes 

during the diagnostic work. 



  

39 

 

This study is not intended to provide a detailed guideline of how to apply diagnostic 

plots, but to present a summary of the main diagnostic plots presented in literature and those 

commonly used by interpreters, including its advantages and some practical applications. 

Production performance is affected by multiple production mechanisms, as well as by a 

combination of complex reservoir properties and unique completion features. Therefore, each 

case is different and there is not a simple diagnostic workflow to investigate all the possible 

outcomes. Following, the superposition-time-functions concept will be explained and later, the 

most important Log-Log and Cartesian straight line methods to analyze MHFW will be 

described, including plotting parameters (axis variables), estimated reservoir/fracture 

properties, pseudotime corrections and flow regime diagnostic concepts (slopes).   

3.2.2. Log-Log Plots 

Basically, the Log-Log plot is used to identify flow regimes and it is very useful when 

there is noisy data, since scattered data tends to be amplified in the derivative plots (Clarkson, 

2013a). Different Log-Log plots are frequently used by interpreters, depending on the type of 

fluid and on the flowing conditions. Those plots can be grouped on two sets according to the 

selected dependent variable (x-axis): Pressure-Normalized Rates or Rate Normalized Pressures. 

As pointed out by Clarkson (2013a), normalized variables (PNR and RNP) and superposition 

functions are used to account for variable flowing conditions (See Section 3.1.1), while 

pseudovariables, such as pseudotime (tca) and pseudopressure (Ψ), are used to better 

represent the changing pressure-dependent gas properties (See Section 3.1.2). 

Note that if pressure data is absent, the Log-Log analysis may be performed only with 

rate data (y-axis) to have an approximate approach of the flow regimes. In the same way, when 

analyzing gas wells, if pseudo-pressure data is not available, regular pressure data may be used. 

However, it should be considered that, depending on the stability of the flowing conditions, the 

reliability of the results may be compromised. Additionally, though real time or superposition 

time could be used, material balance time (MBT: tc or tca) is recommended as the best 

superposition function (x-axis) to account for the variable operating conditions. In conclusion, 

the best practice is to use normalized variables (PNR or RNP) and MBT for oil wells, while 
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pseudo-variables (pseudo-pressures) and pseudo time functions (material balance pseudo-

time, tca) are encouraged for gas cases, if possible (See Table 4). 

 

Table 4—Log-Log plots for flow regime identification. 

 

 

Flow regimes exhibit the next signatures (slopes) in the Log-Log plots: 

 Pressure-Normalized Rates:  

o Bilinear Flow: -1/4 

o Linear Flow: -1/2 

o BDF:  -1 

 Rate Normalized Pressures:  

o Bilinear Flow: 1/4 

o Linear Flow: 1/2 

o BDF:  1 

Fig. 11 shows an example of a gas well, where bilinear and linear flows were identified 

using the ΨNR vs. MBT plot. Note that BDF line is shown only for reference, because production 

Pressure Normalized Rates (PNR) y-axis x-axis

PNR vs. Time q/ΔP t

PNR vs. MBT q/ΔP tc

PNR vs. Pseudo-time q/Δm(P) ta

PNR vs. MBpT q/Δm(P) tca

Rate Normalized Pressures (RNP) y-axis x-axis

RNP vs. Time ΔP/q t

RNP vs. MBT ΔP/q tc

RNP vs. Pseudo-time Δm(P)/q ta

RNP vs. MBpT Δm(P)/q tca

Gas

Oil

Oil

Gas
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data doesn’t exhibit the -1 slope yet. According to Anderson et al. (2010), the skin damage may 

mask the linear signature on the Log-Log plot. 

 

 

Fig. 11—Example of flow regimes identified by using a Log-Log plot. 

 

3.2.3. Derivative Plots 

As with the previous Log-Log technique, production data is plotted on logarithmic 

scales, but in this case the dependent variable (y-axis) corresponds to the radial, linear or 

bilinear derivative, as presented in Table 5. Note that all parameters are in real units. In case of 

gas wells, pressures should be replaced by pseudopressures and time by pseudotime. If flowing 

conditions are not stable, real time should be replaced by material balance time (oil cases) or 

material balance pseudotime (gas cases). However, be aware that in any case derivatives are 

significantly affected by noisy data, this being its main drawback. 
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Table 5—Derivative plots 

Plot Axis Parameters 

Radial Derivative 
 

    
[
      

 
]       

Linear Derivative 
 

   √ 
[
      

 
]       

Bilinear Derivative 
 

   √ 
 [

      

 
]       

 

Flow regimes can be identified from the previous plots using the following guideline: 

 Bilinear flow appears as a flat (zero) slope in the bilinear derivative and as a 

quarter-slope (1/4) in the radial derivative. 

 Linear flow is exhibited as a clear half-slope on the radial derivative, while it 

appears as a flat (zero) slope in the linear derivative. As Anderson et al., (2010) 

mentioned, the skin effect impacts the classic straight trend of the linear flow 

in the SRT plot, but not in the derivative plots, which represents a considerable 

advantage. 

 Radial flow is exhibited as a flat (zero) slope in the radial derivative. 

 BDF appears as a positive unitary-slope (1) in the radial derivative plot 

Fig. 12 shows a schematic representation of the different possible flow signatures 

exhibited by a MFHW on a radial derivative plot (Clarkson and Pedersen, 2010). 

3.2.4. Fourth Root-Time Plot (Bilinear Flow) 

Bilinear flow appears as a straight line on the fourth root-time specialized plot 

(Cartesian). From slope, information about the hydraulic fracture conductivity (kfwf) can be 

extracted, if average reservoir permeability is known (Clarkson, 2013a). 
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Fig. 12—Illustration of flow regime sequence for a MFHW in a single porosity reservoir (Clarkson and Pedersen, 

2010). 

 

In case of oil wells, plot 
  

  
   √  . In case of gas wells, plot 

  

  
   √  

 . The time 

variable (t) is real time for oil wells and pseudo-time (ta) for gas wells. In case of variable flowing 

conditions, the bilinear superposition time function (tBLS) should be used instead of √ 
  (Eq. 37). 

     ∑
         

  
         

    
     ..............................................................  (37) 

Finally, the hydraulic fracture conductivity can be estimated from the straight line slope 

(m), according to the next equation (gas case): 

(    )
  ⁄

 
      

√  
 

   √       
   ............................................................................  (38) 

3.2.5. Square Root-Time Plot (Linear Flow) 

This is considered one of the most important diagnostic plots, since linear flow 

resulting from the long transient matrix drainage into the fractures is the dominant flow regime 
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in most of the unconventional reservoirs (Anderson et al., 2010). In addition, valuable 

information of the reservoir and the fracture network may be extracted from its analysis. 

Basically, the fracture network features are expressed by three variables (Rasdi and Chu, 2012), 

slope of the formation linear flow straight line, time of end linear flow, and the Y-axis intercept. 

Linear flow appears as a straight line on the squared root-time (SRT) specialized plot in 

Cartesian coordinates. The fracture half-length (xf) can be estimated if average reservoir 

permeability is known. In case of oil wells, 
  

  
   √  is plotted, while 

  

  
   √    is plotted in 

case of gas wells. If variable flowing conditions are presented, the linear superposition time 

function (tLS) should be used instead of √  (Eq. 39). In any case, the time variable (t) is real time 

for oil wells and pseudo-time (ta) for gas wells. 

    ∑
         

  
         

    
     ................................................................  (39) 

Finally, the fracture half-length can be estimated from the straight line slope (m), 

according to Eq. 40 (gas case): 

   
      

√     √       
  ..........................................................................................  (40) 

Additionally, OGIP can be also estimated from the SRT plot by detecting the end of the 

linear flow, which appears as a deviation from the straight line. Clarkson (2013a); Nobakht and 

Clarkson (2012b); Wattenbarger et al. (1998) provide a detailed description of such 

calculations. Fig. 13 shows an example of the SRT plot, showing the end of the linear flow (the 

green dotted line represents the end of the linear flow and the beginning of the BDF). 
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Fig. 13—Example of the squared root time plot (Clarkson, 2013a) 

 

Most of the time, a skin effect is observed in fractured unconventional wells during the 

linear flow period due to the flow convergence or pressure loss along the finite conductivity 

hydraulic fractures. This apparent skin effect (S’)—different from the mechanical skin damage 

in the wellbore sandface—corresponds to a constant pressure loss that can be identified on the 

square root-time plot as the y-intercept b’. It can be calculated using the following equation 

(Anderson et al., 2010) 

   
  

     
    ....................................................................................................  (41) 

Production analysts must be aware of the masking effect of the apparent skin 

generated by the finite conductivity of the fracture network because it may affects the primary 

linear flow pattern of the production data. Anderson, D.M. et al. (2012) suggest using the semi-

log derivative to avoid the skin impact. 

Another linear flow diagnostic method is the “Linear Flow Plot”, which is similar to the 

SRT plot, but linear superposition time (or linear superposition pseudotime in case of gas wells) 
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is used instead of real time. According to (Clarkson, 2013a) superposition time is advised when 

analyzing linear flow data with variable flowing conditions. 

3.2.6. Specialized Plots Summary 

Table 6, presented by Clarkson and Pedersen (2010), provides a summary of the main 

straight line methods used to analyze MFHW, including plotting parameters (axis variables), 

estimated reservoir/fracture properties, pseudo-time corrections and flow regime diagnostic 

concepts (slopes). Note that besides the previously discussed specialized plots, other flow 

regimes (i.e., elliptical and pseudo-radial) are included in this summary, despite the fact these 

flow regimes are not frequently observed in unconventional reservoirs.  

 

 

Fig. 14—Example of straight-line specialized plots (a: linear, b: elliptical, c: radial, d: BDF) 
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Fig. 14 (Clarkson, 2013a) shows an example of some of the most common specialized 

plots to analyze flow-patterns in MFHW (identification of flow regimes and estimation of 

reservoir properties and features). 

 

Table 6—Summary of specialized plots for straight-line analysis (Clarkson and Pedersen, 2010). 

 

 

 Fig. 15  (Clarkson, 2013a) presents an example of how to identify flow regimes by 

applying different specialized plots, including: (a) Log-Log, (b) Transient productivity index, (c) 
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Semi-log (Radial) derivative and (d) Linear derivative. As pointed out by Clarkson (2013b), linear 

flow exhibits a half-slope on log–log diagnostic and radial derivative plots, a −1/2 slope on 

transient PI plot and a zero slope on the linear derivative; while BDF appears as a flat slope on 

the transient PI plot and as an upward deviation from half-slope on all the other plots 

(Although, if MBT is used instead of real time, BDF would appear as an unitary slope). Finally, it 

is important to keep in mind that better results are obtained if multiple diagnostics are 

simultaneous applied. 

 

 

Fig. 15—Identification of flow regimes by applying different specialized plots (a: Log-Log, b: Transient productivity 

index, c: Radial derivative, d: Linear derivative) by Clarkson (2013b). 
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3.3. Type-curve Analysis  

This graphical procedure consists on matching real production data—expressed in 

dimensionless form—to dimensionless type-curves representing analytical or empirical 

solutions to particular reservoir models (Clarkson and Pedersen, 2010). As a result, fluids in 

place, reservoir and completion properties can be obtained from this procedure. Additionally, 

type-curves may be used to identify the dominant flow regime: Infinite Acting (radial, liner or 

bilinear flow), transitional (partial boundary effect) or boundary-dominated (Mattar and 

Anderson, 2003). EUR estimations may be obtained from typecurves analysis. However, the 

other production analysis techniques (i.e., the non-typecurve methods, such as DCA, specialized 

plots, and analytical and numerical models) should be considered as the first option to evaluate 

fluids-in-place, because they use Cartesian plots instead of Log-log plots. Therefore, the late 

time data where the BDF signal is received is not compressed by time scale (Mattar and 

Anderson, 2003). 

3.3.1. Fetkovich Typecurves 

In 1980 Fetkovich presented his work about decline curve analysis using typecurves. 

Through simple combination of material balance equations and pseudosteady-state rate 

equations, he demonstrated that, under specific conditions, the analytical reservoir solutions 

are equivalent to the empirical exponential decline model. Additionally, he provided an 

alternative approach when non-unique solutions are obtained from DCA. He was the first to 

propose typecurves for production analysis purposes—previously reserved for welltest 

analysis—(Mattar and Anderson, 2003) and to show that this new method  could deliver a more 

representative solution if production mechanism is known or indicated (Fetkovich, 1980). 

Fetkovich typecurves combine the early time, transient, analytical solution with the late 

time, pseudosteady-state empirical Arps decline curves in a single dimensionless plot. As shown 

in Figs. 16 through 19, the left side correspond to the analytical solution for transient flow 

(infinite acting period), considering an unfractured well in the center of a finite circular 
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reservoir producing at a constant wellbore flowing pressure. Meanwhile, the right side is the 

graphical depiction of the Arps equations and represents the depletion period in boundary-

dominated flow. After finishing transient flow, independently of the reservoir size, all the 

analytical solutions for different re/rw ratios converge to the single exponential decline curve 

during BDF (Fetkovich, 1980). For this reason, the exponential decline model is considered the 

common solution for both flow regimes (BDF and transient). As a result, the two regions (Fig. 

18) are able to represent the whole production life from transient flow during early times to 

boundary-dominated flow during late times (Fekete, 2013b). 

 

 

Fig. 16—Fetkovich "transient" rate type curve (Fetkovich, 1973) 

 

Reservoir properties, such as skin, permeability and reservoir radius, can be calculated 

from transient data, while recoverable reserve may be estimated from depletion (BDF) data 

(Fetkovich et al., 1996). Even so, a problem of non-uniqueness solution exists when only early-

time data (transient region) is available. Therefore, although reservoir properties are estimated 

from transient data, BDF data is necessary to avoid this non-uniqueness problem. 
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Fig. 17—Fetkovich "empirical" rate type curve (Fetkovich, 1973) 

 

The normal range for the hyperbolic exponent “b” is between 0 and 1, but Fetkovich 

realized that in some cases it could be higher than 1. He explained this phenomenon as the 

result of forcing transient regime data to fit into the boundary-dominated region. So, forcing 

the production data match into the decline region (BDF) when this stabilization condition has 

not been reached will produce abnormal “b” values, leading to the overestimation of 

production performance. Production performance and EUR estimations cannot be 

disassociated from historical operating constraints. Although Fetkovich’s plots were initially 

proposed for stable flowing conditions—constant flowing pressures, it is possible to apply them 

with pressure-normalized rates, which enable this technique for a better analysis in case of 

unstable flowing conditions. As Fetkovich et al. (1987) mentioned: “If flowing pressures are 

available and are not reasonably constant but smooth and monotonically decreasing, the 

pressure-normalized rate, log q/Δp vs. log t, should be used for analysis”. 
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Fig. 18—Fetkovich typecurves: Composite of analytical and empirical solutions with comments (After Fetkovich, 

1980). 

 

 

Fig. 19—Fetkovich typecurves: Composite of analytical and empirical solutions including the linear solution (Chen 

and Teufel, 2000). 
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3.3.2. Advanced Typecurves 

In contrast to Fetkovich typecurves, modern typecurves (e.g., Blasingame, Agarwal-

Gardner, Wattenbarguer and Normalized Pressure Integral) use analytical solution to calculate 

hydrocarbons-in-place and consider the pressure-dependent properties of gas by using the 

pseudo-time function in the analysis (Mattar and Anderson, 2003). In addition, there are two 

special concepts associated with the modern type curve theory (the rate integral function and 

the rate integral derivative function) which reduce the noisiness of the production data, but 

may attenuate the reservoir signal at the same time. The rate integral function is a cumulative 

average rate, while the rate integral-derivative function is defined as the semi-logarithmic 

derivative of the rate integral function with respect to material balance time (Fekete, 2013b). 

Fig. 20 shows Blasingame’s integral-derivative typecurves for fractured horizontal wells, and 

Fig. 21 illustrates the rate integral concept. 

 

 

Fig. 20—Blasingame integral-derivative for fractured horizontal wells (Fekete, 2013a). 
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Fig. 21—Illustration of the concept of rate integral (Fekete, 2013a). 

 

3.4. Flowing Material Balance 

The Flowing Material Balance method (FMB), proposed by Mattar and McNeil (1995), is 

a simple linear plot of Normalize Rate versus Normalized cumulative production used to 

estimate volumes in-place in oil and gas wells by extrapolating the straight line formed during 

boundary-dominated flow (Anderson et al., 2010). Opposite to the traditional material balance 

method, which requires static reservoir pressures measurements, the FMB method is based on 

flowing pressures instead of static pressure. This special feature avoids production losses 

during measurements (Mattar and Anderson, 2005). As pointed out by Mattar and Anderson 

(2003), and Thompson et al. (2011), ultimate recoveries may only be predicted with confidence 

after boundaries (BDF) conditions have been reached—when all the pore volume have been 

connected, and the reservoir is flowing under volumetric depletion—so the pressure at every 

point in the reservoir declines at the same rate. Nevertheless, if BDF is still not observed in the 

diagnostic plots, FMB may be used to estimate the minimum (conservative) volume of fluids in-

place, assuming that depletion will be presented right immediately after the transient flow. The 

FMB technique was initially designed for constant rate wells flowing at boundary conditions 

(stabilized or pseudo-steady-state). However, Mattar and Anderson (2005) introduced an 

extension of the FMB, known as Dynamic Material Balance (DMB), which extends the 

application of this technique to wells with variable production rates. In practice, the DMB 

technique converts flowing pressures to average reservoir pressures at each time step. It 
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means that DMB is an indirect method of estimating average reservoir pressures without 

shutting-in wells. As a result, a continuous plot of average static reservoir pressures in function 

of time may be obtained. Finally, hydrocarbon volumes can be estimated by applying the 

traditional material balance technique. Fig. 22 shows an example of the application of the DMB 

method in a gas well. 

 

 

Fig. 22—Application of the dynamic material balance technique to a shale gas well. 

 

3.5. Analytical Models (Multi-Fractured Horizontal Wells) 

Horizontal wells with multiple hydraulic fractures (MFHW) are the most common 

completion technique in most of the unconventional plays, because they provide an effective 

solution to the low production performance of these complex reservoirs. In fact, in most cases 

this is the unique solution to economically produce them (Clarkson, 2013b). Analyzing the 
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production behavior of these wells represents a difficult challenge because of the intricate flow 

patterns of the MFHW along with the other multiple complexities associated to the process 

(i.e., dual porosity effects, multi-layer behavior, reservoir heterogeneities, desorption effects, 

multi-phase flow and non-static absolute permeability) (Clarkson and Pedersen, 2010). 

Different analytical models have been created to overcome with these problems, including 

special options to include most of these special features.   
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4. PRESSURE NORMALIZED DECLINE CURVE ANALYSIS 

 

As previously mentioned in Section 2, one of the main drawbacks of the DCA methods 

is that they are based only on production rates, relying on the assumption of stable flowing 

pressures. Since this stabilized state is not reached rapidly in most cases, the applicability of 

these methods and the reliability of their solutions may be compromised. Examples of such 

situations are unconventional wells with short or discontinuous production histories, variable 

operating conditions, and high pressure, rate-controlled wells. In these particular cases, 

important reservoir productivity signals are expressed through both pressure and rate decline 

trends. Therefore, ignoring flowing pressures and using only conventional rate-time techniques 

to interpret these cases may cause misinterpretations and erroneous reserve estimations 

(Anderson, D.M. et al., 2012; Mattar and Anderson, 2003). As pointed out by Mattar and 

Anderson (2003), there is a possibility of over-predicting EUR if a steeply declining pressure is 

observed, even if a conservative exponential decline is applied. In addition, normalizing 

production rates with flowing pressure drops (q/Δp) incorporates the effects of back pressure 

changes into the reservoir analysis.  

More complex and advanced techniques are available to overcome the restrictions in 

DCA mentioned previously. The main difference is that these techniques use analytical and 

numerical models to analyze production rates and flowing pressures. Although those methods 

are more rigorous and provide some advantages over DCA techniques, a deep understanding of 

reservoir characteristics is required (some of them are known only approximately, and others 

are completely unknown). Considering that there is usually high uncertainty associated with 

most of the reservoir properties needed to use these complex methods, high uncertainty 

should correspondingly be expected in forecasts using this approach. Moreover, as the 

advanced analytical and numerical models depend on copious inputs, there is a high probability 

that different combinations of those parameters could generate equivalent and acceptable 

history matches, but different production forecasts and EUR estimations. Therefore, non-

unique solutions may be expected (Anderson, D.M. et al., 2012).  
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The new pressure-normalized DCA techniques (PN-DCA) may provide a suitable 

solution to the previously stated problem, without recurring to complex analytical and 

numerical models. These techniques preserve the simplicity and the other advantages of the 

traditional DCA methods because their fundamentals are fairly similar, with the only difference 

being that pressure data is included in the analysis. Additionally, as pointed out by Thompson 

et al. (2011), decline curve analysis is the favorite language between reserve evaluators, even 

though advanced analytical models provide a better insight of the reservoir performance and a 

more flexible forecasting capacity. In general, as the pressure-normalized decline curve analysis 

(PN-DCA) relies on rate and pressure data, an improved forecasting capacity may be expected. 

Additionally, unlike decline curve analysis, different future operating conditions can be 

assumed and multiple ultimate recoveries may be predicted. 

4.1. Pressure Normalization of Production Rates 

The pressure-normalized decline curve analysis is grounded on the concept that 

pressure-normalized rates (PNR), or their reciprocal (RNP), may better represents the real 

production performance of wells flowing under unstable conditions. This theory is supported by 

the fluid flow analytical solution, which relates production rates, flowing pressures, and the 

reservoir productivity properties, as a function of time. Considering that linear flow is the 

dominant flow regime in most of unconventional reservoirs, the analytical solution for transient 

linear flow is presented as main reference (See Eqs. 42 through 44). Note that for gas wells, 

pseudovariables (pseudopressures and pseudotime) should be included in the analysis to 

account for the changing gas properties (Agarwal et al., 1999; Clarkson, 2013a; Nobakht and 

Clarkson, 2012b). Initially, Eq. 42 was derived assuming constant flowing pressures. Thus, the 

independent variable was the reciprocal of production rate, 1/q (El-Banbi and Wattenbarger, 

1998; Wattenbarger et al., 1998). This is a fair assumption for ultra-low permeability wells, 

which produce under very high drawdowns to maximize their productivity (Fekete, 2013b; 

Nobakht et al., 2010). However, the reality is that this condition is not reached easily in most 

cases. Therefore, normalized variables (PNR or RNP) have been introduced to deal with 

production analysis where flowing pressures and rates change through time (Anderson et al., 
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2010; Clarkson, 2013a; Fekete, 2013b; Nobakht and Clarkson, 2012a). In fact, most of the 

modern production analysis techniques (e.g., Agarwal-Gardner and Blasingame typecurves, and 

flowing material balance) rely on pressure-normalized rates, instead of production rates only. 

In general, as demonstrated by the transient linear flow solution, pressure-normalized 

rates are closely related to the reservoir properties affecting the production performance 

process, and have the special advantage to account for unstable flowing conditions. Therefore, 

pressure-normalized rates are expected to better represent the real well deliverability 

potential, in comparison with production rates only. As a result, more reliable production 

performance predictions may be obtained if both signals, production rates and flowing 

pressures, are included in the analysis. 
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The three normalization functions (PN, ∆ψN, SPN) used in this work to generate the 

pressure-normalized rates are presented below (Eq. 45 through 47). Eq. 46 applies only for gas 

wells. Note that Eq. 47 is an additional function introduced in this study. This relationship was 

deducted based on the approximation of the productivity index for gas wells in the low 

pressure region (i.e., both flowing pressure and average static reservoir pressure are lower than 

2000 psi), where the gas pressure-dependent functions exhibit a linear relation with pressure. 

However this function will be tested on both oil and gas wells.  
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4.2. Pressure Corrected Rates 

Duong (2010) proposed a new decline analysis model suited for transient flow regimes. 

As part of his technique’s workflow, pressure corrected rates are used in diagnostic plots to 

compensate for the early choke-back effect and to improve the identification of the linear flow 

regime (Fig. 23), but not to improve the forecasting capacity of the DCA model. Thus, Duong’s 

model relies only on production rates. In this work, the same technique will be applied, along 

with the previously mentioned pressure normalization functions, to trying to improve the 

forecasting capacity of the DCA models (see Eq. 48). 

 

 

Fig. 23—Application of pressure corrected rates in diagnostic plots to compensate for the early choke-back effect 

(Duong, 2010). 
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4.3. Applicability of Pressure-Normalized Decline Curve Analysis 

In general, PN-DCA techniques can be applied to the same cases where DCA methods 

are applied, but their main strength is the capability of providing solutions to those special 

cases where regular DCA models are constrained. A better description of such cases is 

presented below.  

4.3.1. Variable Operating Conditions 

 

 

Fig. 24—Plot of Pwf vs. time for a high pressure rate restricted shale well. 

 

During their productive life, most wells are subject to stimulation operations to 

improve their productivity or are submitted to variations in the operating conditions resulting 

from different factors, such as workover activities, change of production strategy and 
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wellbore/production facilities reconfiguration. Consequently, the constant flowing condition 

assumption on which DCA methods rely is not valid anymore. For this reason, these rate-time 

relations should not be applied to unstable historic data to forecast future productions, 

because unrealistic estimations could be yielded. As an example, Fig. 24 shows flowing pressure 

of a shale well. Note that bottomhole flowing pressures declined during the firsts two years of 

production (red points). Thus, in theory, decline curve analysis techniques should not be 

applied until a stable flowing pressure condition is reached. One of the most important 

advantages of PN-DCA is its ability to disassociate future performance predictions from actual 

operating conditions. As flowing pressures are included in the analysis, the predicted decline 

curve (q/ΔP) may be used to estimate production performance at different flowing pressures. 

The impact of these unstable conditions on the production performance will depend on 

their severity and duration. Sometimes, operational fluctuations involve either short shut-ins or 

slight variations of the flowing conditions, but in some other cases, flowing conditions are 

dramatically altered or significant downtimes are produced by long closures. When major 

changes occur, flow regimes could equally change. Agnia et al. (2012) demonstrated that when 

the production rate is severely reduced, a new transient effect is generated in the reservoir 

once again, even if the well has been flowing in BDF. One common situation is the case of a well 

that is reopened to production after a long shut-in. Accordingly, a new transient effect may be 

restarted in the wellbore, even if the well had been producing in BDF regime for long time 

previous to the closure (Fekete, 2013b). Therefore, it is highly recommended to perform a flow 

regime diagnosis to identify alterations in the fluid flow patterns after significant downtimes. If 

unsteady-state (transient) flow is observed, a time reinitialization is advised. This method was 

proposed by Fetkovich to evaluate production data with multiple transient periods. Basically, it 

consists of resetting the start time of each transient period to zero, as well as its production 

history. On the other hand, when a well is submitted to any stimulation job, it is highly probable 

that its deliverability potential is affected and consequently, the remaining recoverable 

reserves are equally altered. So, the production analysis must be reinitialized and any 

production data (rates and pressures) collected before this moment is no longer representative 

of the new reservoir performance and cannot be used to forecast future production trends.  
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Fig. 25—Example of the effect of changing operating conditions on production rates. 

 

 

Fig. 26—Example of an unconventional shale gas well producing under variable operating conditions. 

 

Additionally, there are other operations or phenomena that can alter the production 

performance of a well, invalidating any previous production analysis and forcing the restart of 



  

64 

 

its production history, as well as any forecast yielded by it. Examples of such situations are: infill 

drilling (affecting drainage area), water breakthrough (affecting relative permeability) and 

completion reconfiguration (affecting effective flow area), among others. 

 

 

Fig. 27—Example of monthly averaged and filtered production rates. 

 

As an example, Fig. 25 shows the effect of changing operating conditions. Production 

rates increase as an effect of decreasing flowing pressures. Using the first ten months of 

production to forecast future performance will result in underestimated predictions, as shown 

by the black dotted line. Fig. 26 shows daily flowing pressures and production rates from an 

unconventional shale gas well producing under very unstable operating conditions (i.e., a short 

shut-in after 260 days of production, and multiple closures and production changes after 600 

days). When drastic operating fluctuations are presented during a significant time, production 

data may be severely affected and should not be used for production analysis purposes 

because its decline trend doesn’t represent the real well performance with confidence. Fig. 27 

shows average monthly production rates for the same well after smoothing filters have been 

applied, a common practice in the industry. Amazingly, all the inconsistences and production 
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disturbances have apparently disappeared, and the data seems to be ready to be analyzed. 

Several questions may come up in this case. Has this data correction process managed to 

overcome all the production instabilities? Is this new production profile a true representation 

of the real reservoir performance? Could the future production behavior be reliably forecasted 

based on this data? Is the constant flowing pressure assumption of the DCA methods still valid? 

As each well is unique, most of the answers to these questions depend on each case and will 

have to be addressed by each interpreter. The PN-DCA techniques and the workflow presented 

in this work attempt to provide a better understanding of such phenomena, as well as an 

improved approach to get a more accurate solution to those complex cases. 

4.3.2. High Pressure Rate Restricted Wells 

 

 

Fig. 28—Example of a high pressure, rate restricted gas well (EF-4). 

 

As mentioned by Anderson, S. et al. (2012), production rates from some high 

deliverability or high pressure unconventional wells, such as those in Haynesville and Eagle Ford 
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plays, are restricted during extended periods of time. In these cases, regular DCA methods are 

disqualified as production analysis tools because production rates are controlled to be kept 

constant during some time. Additionally, flowing pressures of those wells operating under 

restricted flow conditions exhibit a declining trend, violating the constant flowing pressure 

assumption of the DCA methods. For these reasons, rate-time techniques can only be applied in 

later production times when the required stable conditions are reached. Pressure normalized 

rates may be used instead of simple production rates to reproduce a decline curve, which can 

be used for DCA purposes. Fig. 28 presents an example of a high pressure, rate controlled gas 

well. Note that production rates and flowing pressures don’t exhibit a natural decline trend. 

Instead, the average production rates are controlled to be nearly constant during months of 

production (see black dotted line), while flowing pressures decrease slowly (green dotted line).  

4.3.3. Short Production History 

Typically, wells flow at high rates—over its expected normal performance—during the 

beginning of its productive life, and in response, high decline rates are presented. 

Subsequently, those high production and declination rates continuously decrease until reaching 

more stable values. Simultaneously, bottomhole flowing pressures exhibits a similar behavior, 

decreasing steeply from the initial average pressure until reaching a more stable profile. In the 

case of multi-fractured horizontal wells in unconventional reservoirs, this behavior is 

attributable to the dominant transient linear flow. Early production is mainly driven by near 

wellbore productivity features (fracture network properties). This is considered an unstable 

period because the unusual high production and decline rates are far from representing the 

true long term reservoir potential. In addition, the constant flowing pressure assumption of 

DCA technique is not valid. Considering these reasons, production forecasts based on short 

production histories should be avoided. Ideally, reliable production analyses should be based 

on data from BDF, which is not the dominant flow regime in unconventional reservoirs 

(especially at early times). Unfortunately, unconventional wells with short and unstable 

production history frequently need to be analyzed, and interpreters are forced to find a 

solution. In most cases, DCA models are mechanically applied, and the resulting matched model 
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is extrapolated to estimate ultimate recovery, regardless of the stability of flowing conditions. 

Of course, this common practice may yield unrealistic outcomes.  

Fig. 29 shows an example of a shale gas well producing under changing flowing 

conditions (Variations in operating conditions are indicated by the dotted blue lines). Note that 

during the first 100 days of production, high production and decline rates are easily observed, 

while flowing pressures decrease continuously until reaching some stable conditions (after 

approximately 550 days of production). At the end, flowing pressures change once again in 

consequence of new induced operating conditions. 

 

 

Fig. 29—Example of unstable flowing conditions at early production times. 

 

The PN-DCA technique attempts to provide a more realistic approach to the big 

challenge of forecasting production and estimating ultimate recoveries to those wells with 

short and unstable production history. Even if the constant flowing pressure condition has been 

reached, unrealistic results may still be produced depending on how long the stabilized period 

is in comparison with the unstable early production period. Since it is extremely difficult to 
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estimate how affected the forecast could be by the early time effect, it is highly recommended 

to try to correct this pressure effect. So, in any case better results could be obtained if 

production rates are corrected by pressure.  

4.3.4. Flow Regime Identification 

An important application of pressure-normalized rates is the flow regime identification. 

The arbitrary application of DCA models without a previous identification of flow regimes may 

produce unrealistic production forecasts, because each model has specific flow regime 

limitations that need to be considered seriously. Usually, flow regimes are characterized using 

basic diagnostic plots that include only production rates. The most common flow regimes 

diagnostic plot is Log q vs. Log t. Nevertheless, because important flow pattern signals are 

expressed through both flowing pressures and production rates, this plot may be a misleading 

approach in some cases. Hence, it is highly recommended to use diagnosis plots based on 

pressure-normalized rates, instead of production rates, to reliably identify flow regimes before 

proceeding with decline curve analysis. 

4.4. Production Forecasting Techniques For Pressure-Normalized Rates 

4.4.1. Decline Curve Analysis Based on Normalized Rates 

This technique, called pressure-normalized decline curve analysis (PN-DCA), consists of 

performing decline curve analysis (DCA) using pressure-normalized rates (PNR) instead of real 

production rates. Note that in this study PNR refers to any of the pressure normalization 

methods (PN, ψNR, and SNR). Different pressure normalization methods can be used to 

transform regular production rates into pressure-normalized rates. In this study, three pressure 

normalization functions (∆p, ∆ψ, and ∆p2) are proposed along with an additional pressure 

correction method (qcorr). Although the square pressure normalization method was specially 

deducted for gas wells (See Section 4.1), it will be tested in oil wells likewise. A summary of 

these methods are presented in Table 7. Unlike pressure normalization functions, the pressure 
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correction method generates production rates, which have been corrected by applying a 

pressure correction factor (∆PF) that accounts for flowing instabilities (i.e., flowing pressures 

different to the stable flowing pressure, if observed).  

 

 

Fig. 30—Illustration of the application of decline curve analysis using pressure-normalized rates. Red and green lines 

represent PN-DCA method, while blue lines correspond to the traditional application of DCA models. 

 

The application of decline curve analysis using PNR is illustrated in Fig. 30 and is 

described as follows: 

 PNR are generated by the respective pressure normalization functions (∆p, ∆ψ, 

∆p2), and corrected rates (qcorr) are generated by the pressure correction 

method. 

 Forecasting is performed by applying the traditional DCA models to the 

generated PNR and qcorr profiles. 

 PNR forecasting outputs are pressure-normalized rates, just like input data. 

Therefore, these values must be converted back to real production rates. Then, 

the forecasted PNR must be multiplied by the corresponding delta-pressure 

function (i.e., ∆p, ∆ψ, ∆p2), which represents the expected future operating 

(flowing pressure) conditions. Contrary to traditional DCA models, which 
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assume constant flowing conditions, PN-DCA forecasts are not restricted to 

historic operating condition. Therefore, multiple production trends can be 

forecasted, assuming diverse operating scenarios.  

 In the case of corrected rates (qcorr), the previous step is not necessary because 

forecasting outputs are real production rates. Therefore, predictions based on 

this technique don’t need any transformation after forecasting analysis. 

However, this method lacks the advantage of the PN methods to disassociate 

future production estimations from past operating conditions. 

 

Table 7—Summary of pressure normalization methods and pressure-normalized rates (PNR) 

Normalization Method Oil Wells Gas Wells 

Pressure Normalization                  

(PN) 

   
  

  
 

  

      

    
  

  
 

  

      

 

Pseudopressure Normalization 

(∆ψN) 

--     
  

  
 

  

  
̅̅̅     

 

Square Pressure Normalization  

(SPN or PN2) 

    
  

   
 

  

  
     

 
     

  

   
 

  

  
     

 
 

Pressure Correction Factor          

(ΔPF) 
           [

         
         

]            [
         
         

] 

 

4.4.2. Harmonic Decline of PNR vs. Cumulative Production 

Anderson, S. et al. (2012) proposed a new decline curve analysis method based on 

pressure-normalized rates to estimate ultimate recoveries and future production of high 
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pressure, rate restricted wells. This method is grounded in the empirical observation that some 

wells exhibit a linear relationship between pressure-normalized rates and cumulative 

production when plotted on a semi-log scale; i.e., harmonic decline (See Fig. 31). Therefore, 

production is forecasted by extrapolating the harmonic decline of the pressure-normalized 

rates. Although this is the first published DCA method to include normalized rates in the 

analysis, its application may be restricted to some specific cases, like high pressure, rate 

restricted wells exhibiting harmonic decline. Additionally, this method assumes that harmonic 

decline will continue during the entire well life. In fact, even if this is a fair consideration, there 

is no physical concept supporting this assumption of harmonic decline. 

In this work, the harmonic decline extrapolation method will be applied and compared 

with the other DCA and PN-DCA techniques. In the case of gas wells, this technique will be 

implemented using pressure-normalized rates (PNR), as well as pseudopressure-normalized 

rates (ΨNR). Oil wells will be analyzed using PNR only.  

 

 

Fig. 31—Pressure normalized rate versus cumulative production. 
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5. FIELD DATA ANALYSIS AND DISCUSSION OF RESULTS 

 

Initially, this section presents a detailed description of the methodology used in this 

study to evaluate the applicability of pressure-normalized decline curve analysis (PN-DCA) as a 

production forecasting technique suited for the interpretation of unconventional wells. At the 

end, the results of this evaluation are presented, including flow regimes diagnosis, an 

assessment of the pressure-normalized harmonic decline method, and the comparative 

evaluation of the different DCA models and techniques based on pressure-normalized rates. 

5.1. Description of the Analysis Workflow (Methodology) 

5.1.1. Production Data Diagnosis and Preparation 

This is the first step of the analysis workflow (See Fig. 32). The target of the data 

diagnostic process is to assure that production analyses are developed using high quality data. 

Thus, representative results may be equally expected. In practice, the data diagnostic process 

consists of identifying anomalous events during wells life that affect flowing conditions and that 

could represent a violation of the fluid flow theory assumptions on which production analysis 

techniques are based. Since the application of DCA techniques is restricted to specific cases, 

where certain conditions must prevail, violating such assumptions may yield unreliable and 

meaningless results deviating from the true reservoir performance (See Section 2). 

Unlike pressure transient analysis (PTA), where production/pressure data is accurately 

obtained as part of a controlled operation, production analysis (PA) is performed using 

surveillance and monitoring data acquired in variable operating conditions, and in most cases it 

is measured with questionable accuracy. Therefore, when analyzing production data, 

interpreters must be aware of possible biases or misinterpretations due to poor quality input 

data (low frequency/low resolution production rates). However, while production rates are 
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continuously recorded most of times—independent of its quality, pressure historic data for 

production analysis purposes is not frequently available or it is totally inexistent in some cases 

(Anderson et al., 2006). 

 

 

Fig. 32—Workflow of the PN-DCA Methodology 

 

5.1.1.1. Data Availability Checking 

The purpose of this first step is verifying if the data required for the analysis is available. 

Although DCA methods rely only on production rates, PN-DCA technique needs production 

rates, flowing pressure data, and in some cases, fluid and reservoir properties are also required. 

Usually, surface flowing pressures are not an exact indication of sandface conditions because of 

the multiple phenomena happening at wellbore during fluids production (particularly in the 

case of multiphase flow). Therefore, PN-DCA techniques should be applied using bottomhole 

flowing pressures instead of tubing head pressures (THP). If downhole pressures have been 

measured, which is an ideal situation, next information is needed: 

 Production rates. 
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 Bottomhole flowing pressure  

 Average initial reservoir pressure 

If downhole flowing pressure (Pwf) measurements are not available, wellhead flowing 

pressure data (i.e., casing or tubing head pressure), as well as some basic fluid and reservoir 

properties are required to calculate pressure losses through wellbore/completion system, and 

to estimate sandface flowing pressures. Pressure differences between surface and bottomhole 

reference points are generated by three main effects: hydrostatic pressure loss, frictional 

pressure loss and kinetic pressure loss (this last one is usually ignored). In normal production 

operations, upward fluid flow must overcome two opposite pressures in its pathway from 

reservoir to surface: the backpressure exerted by the effective hydrostatic column and friction 

losses due to physical interaction between the fluids and the wellbore surfaces (Fekete, 2013b). 

Most common pressure loss correlations are Fanning for single-phase flow, and Beggs & Brill, 

Gray, Hagedorn & Brown, and Petalas and Aziz for multiphase flow.  

The following list describes the input data required to analyze each well if bottomhole 

flowing pressures are unknown. Note that most of this information is required by pressure loss 

correlations.  

 Production rates. 

 Wellhead flowing pressure. Casing or tubing head pressures 

 Average initial reservoir pressure 

 Formation and fluid properties. Basic PVT Information is needed. Otherwise, 

basic fluid properties are required to generate synthetic PVT from reservoir 

fluid’s correlations. Input data varies depending on each correlation. Usually, 

surface and bottomhole temperatures, as well as average fluid and reservoir 

properties (i.e., porosity, net pay, gas gravity, API, GOR, bubble pressure and 

fluid saturations) are needed.  
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 Wellbore diagram. Deviation survey is needed, if possible. Otherwise, basic 

measurements (MD and TVD) of vertical and horizontal well section, tubing and 

casing dimensions, and producing (open to flow) section length are required. 

According to Mattar and Anderson (2003), the accuracy of the flowing pressures 

measurements is less important (has a lower effect on the analysis) when the drawdown is 

higher than 50-60% of the static reservoir pressure. Additionally, he stated that casing 

pressures are more suitable to calculate bottomhole flowing pressures than tubing pressures. 

Preferably, data sources should be known, in order to establish the reliability and limitations of 

the gathered information. In the case of production rates, accurate individual well metering is 

strongly required, if possible. Otherwise, the reservoir signal and the representativeness of the 

analysis results could be meaningfully compromised.  

Another important issue is the data frequency availability. In the case of high 

productivity wells, monthly data may lack the required detail and could be insufficient to 

estimate reservoir properties with confidence. However, this data frequency may be enough to 

provide trusty solutions in low permeability wells, where transient flow extends for long times. 

In any case, daily historic data is desirable for production analysis purposes, since more 

accurate estimates may be generated from high frequency, high quality data (Anderson et al., 

2006).  

5.1.1.2. Quality Control Verification (Correlation and Consistency) 

Through a simple check, it is possible to assess the quality and completeness of the 

production data by detecting misleading segments that needs to be corrected or discarded to 

avoid the generation of possible erroneous results—unrepresentative of the real reservoir 

features (Mattar and Anderson, 2003).  

Some of the most common undesirable events and phenomena affecting the dreamed 

constant flowing conditions—i.e., the required fluid flow theory assumptions—are: 
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 Liquid Loading: Due to low production rates of the unconventional gas wells, 

liquids tend to accumulate downhole, especially at late production times when 

wells lack enough energy to carry out liquid columns to surface. This 

phenomenon can be caused by depletion of the reservoir pressure, changes in 

operating conditions or by an over-dimensioned completion string. As 

consequence, production rates may abnormally fluctuate or decrease more 

than expected, and a misleading unitary slope could appear on diagnostic plots 

(Agnia et al., 2012). The Turner Plot is one of the methods used to identify the 

likelihood of liquid loading. According to Turner correlation, if the gas-

rate/critical-Turner-rate ratio is less than 1, the flow rate is lower than the 

critical liquid lift velocity and there is a chance of liquid loading (Fekete, 2013b). 

Another liquid loading diagnostic plot grounded on the same concept is the 

Coleman plot. Other indications of unstable flowing conditions caused by liquid 

loading or slugging are abnormal difference between casing and tubing 

pressure, very noisy production data and fluctuations or sudden decreases in 

the water-gas ratio.  

 Interference Effects: Production analysis techniques assume constant reservoir 

drainage. Therefore, if interference due to new infill wells is observed, it is 

recommended to avoid performing production analysis based on historic data 

preceding that event. In a few words, if the drainage area changes, the 

reservoir performance changes completely, and future productions should only 

be forecasted using data acquired under the new prevalent conditions. 

 Alteration of reservoir productivity. As mentioned in section 2 (Decline Curve 

Analysis), DCA methods are grounded on the assumption that reservoir 

properties remain constant, because ultimate recovery depends on the 

formation production performance. So, any change in the reservoir 

productivity (e.g., stimulation jobs, water breakthrough, condensate rings, etc.) 

immediately disqualifies DCA models as predicting tool for those cases. In the 

case of multi-fractured horizontal wells, the most common completion 

technique in unconventional plays, abnormal high water production is 
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expected at early times, as a product of fractures clean-up. Consequently, as 

water production declines until reaching normal values, skin factor varies, as 

well as reservoir productivity. 

 Surface or wellbore reconfiguration. In the same way, any alteration on 

operating conditions, as well as in completion configuration, affecting the 

effective flow area and the flowing pressure will have the same effect as 

discussed in the previous paragraph. 

Nonetheless, given the high complexity of the unconventional wells, many other 

problems may come out depending on each case. Therefore, interpreters must be aware of 

these undesirable situations and carefully treat each case as unique, always inquiring about the 

quality of the input data and the hidden reservoir signals in it. These unstable flowing 

conditions, as well as production and metering problems, are reflected in different ways. Most 

common effects are: 

 Scattered data. It refers to dispersed points slightly deviated from the main 

central production decline trend (Noisy data) or points placed away from the 

average production decline trend (Outliers). Some causes of these worthless 

points are liquid loading, variable operating conditions, production 

interference, and measurement and allocation problems (Agnia et al., 2012). 

 Steep decrease of production rates with the corresponding increase in flowing 

pressures. 

 Change of the production deliverability potential (variation of flowing rates 

with an uncorrelated flowing pressure response). 

 Abnormal flowing rate fluctuations. 

 Time periods without recorded data. 

 Significant differences between casing and tubing pressures. 

 In the case of gas wells, very low flowing pressures may be indication of very 

low well energy and its inability to efficiently lift bottom-hole liquids (i.e., liquid 

loading). 
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A practical way of identifying data history inconsistencies is by using the next diagnostic 

plots:  

 Flowing pressures vs. rates. To check the inverse correlation between 

pressures and rates (Pressures should increase when rates decrease, and 

Pressures should decrease when rates increase). 

 Production data (Flowing pressures and rates) vs. time. To detect abnormal 

events (liquid loading, workovers, operational setbacks and variations on 

operation conditions, among others). 

 Normalized rate vs. time. According to the fluid flow principles, the q/Δp ratio 

should decrease continuously with time. Any increasing trend is a clear 

indication of potential non-reservoir effects affecting production behavior 

(Nobakht and Mattar, 2009). 

 Fluids ratios (WGR, WOR, CGR and GOR) vs. time. To identify water 

breakthroughs, liquid loading, cement leakage. WGR is very useful to identify 

abnormal high water rates after fracturing (fractures clean-up). 

 Tubing and casing pressures vs. time. To identify anomalous behavior of fluid 

columns in the wellbore. 

 Turner or Coleman plots. To detect the likelihood of liquid loading. 

Anderson et al. (2006) and Ilk et al. (2011) presented a practical guideline for a 

systematically diagnosis of production data, including important recommendations and 

description of most common problems, pitfalls and challenges. 

5.1.1.3. Data Filtering and Correction 

After identifying inconsistent production data with the diagnostic plots, anomalous 

data must be corrected (if possible) or filtered and removed to avoid misleading results in the 

following steps (i.e., flow regime identification and production analysis). The data filtering and 

correction procedure below was followed in this work. 
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 Misleading initial data. As mentioned in the previous section, abnormal high 

water productions are usually presented at early times just after stimulation 

jobs as a product of fractures clean-up. This effect alters reservoir productivity. 

In addition, irregular highly fluctuating or increasing oil/gas rates may be 

presented. Therefore, this data must not be used for production analysis 

purposes, because outcomes are not representative of the true reservoir 

performance—i.e., DCA parameters should not be determined from this data. 

 Incomplete data segments. Although it is not a mandatory step, interpolation 

should be intended if: a) The missing segment is relatively short in comparison 

with the whole production history, b) Trend of surrounding flowing conditions 

(before and after the event) is stable, c) Well’s record doesn’t indicate that a 

workover, stimulation or any other major operation affecting the reservoir 

performance was executed during that time period. Interpolated data should 

be in accordance with the natural trend of the analyzed variables (production 

rate and flowing pressure), and it may not significantly affect the DCA model 

match. Depending on each case, this step may be done before or after 

removing outliers, noise smoothing and rate averaging steps.  

 Outlier removal and noise smoothing. Scattered data needs to be corrected to 

discard worthless/distracting points and to make easier the recognition and 

interpretation of decline patterns. The first step is removing outliers (i.e., those 

points that look like spikes). Advanced filtering techniques are available in 

commercial software (e.g., wavelet decomposition and other range filters). 

However, in this work a simple algorithm was used to identify and filter out 

those points out of a band threshold (above and below of the average 

production trend). This band threshold can be adjusted depending on the 

standard deviation of the production data in a time window around of each 

data point. The second step is the noise reduction. In this study, the smoothing 

process was performed by applying the centered moving average method with 

an “n” exponent equal to 7. 
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 Rate Averaging: Considering that original input data (rates and flowing 

pressures) is usually provided in a daily format and most of the DCA 

applications are designed to work with monthly data (As production volumes 

are commonly published on this format), a time format conversion may be 

required for DCA purposes. In contrary, production data on a daily format is 

strongly advised for RTA purposes. Converting the daily production format to a 

monthly basis should be done with special care, especially if the well has been 

inactive during some days of the month. So, rate averaging must account for 

those discontinuities to avoid unrealistic lower monthly production rates (Agnia 

et al., 2012). As pointed out by Mattar and Anderson (2003) “The quality of the 

results may decrease significantly with the degree of averaging performed”.  

 

 

Fig. 33—Correction of production rates from a shale gas well. 

 

Fig. 33 presents an example of a shale gas well where production rates were filtered 

and converted from a daily to a monthly basis format. Red points correspond to original raw 
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data, black points are filtered and smothered data in a daily format, and yellow points are final 

production rates (corrected and presented in a monthly format, and ready for production 

analysis). 

5.1.2. Flow Regime Identification 

A complex sequence of different flow regimes may be developed by multi-fractured 

horizontal wells in ultra-low permeability wells (See Section 3.2.1 for more details). However, 

the most common flow regimes are transient (linear) and boundary-dominated flow; transient 

flow is the dominant flow regime. For this reason, modern DCA models specially designed for 

transient (linear) flow have been advocated. Moreover, dual models—composite models with 

the particular ability to switch from linear to boundary-dominated flow models at an 

appropriate time—have been introduced recently (Joshi and Lee, 2013). In practice, decline 

curve analysis is carried out regardless of the existing flow regimes. As mentioned in Section 

4.3.4, inaccurate production forecasts and reserve estimations may be obtained if decline curve 

analyses are performed without a previous identification of flow regimes (FRI). Each DCA model 

relies on specific assumptions about flow regimes. Hence, an adequate FRI results in a better 

understanding of DCA models’ limitations, ensure consistent analyses, offers confidence on 

estimations, and decreases uncertainty associated with DCA forecasts (Mangha et al., 2012). 

Taking into account these reasons, flow regime identification is considered a key step of this 

methodology. 

A comprehensive explanation of most important flow regime identification techniques 

is presented in Section 3.2.2. In this methodology, derivative plots have not been included 

Table 8 describes the diagnostic plots used in this study for flow regime identification purposes.  

Two different flow regime identification approaches are presented in this methodology. 

The first approach—single method approach—is grounded in the consideration that flow 

regimes can be identified with confidence by applying a single optimized method, which has 

the special ability of overcoming most of the inconsistencies that usually affect diagnosis 
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processes. The second approach—multi-method approach—relies on the concept that a 

combined analysis applying all the diagnosis methods may generate more reliable estimations. 

 

Table 8—Diagnostic plots for flow regime identification 

Diagnostic Plots Flow Regimes Description 

1 
Log q - Log t Bilinear, Linear, and BDF Logarithmic plot of production rate vs. real time 

2 
Log q - Log MBT Bilinear, Linear, and BDF Logarithmic plot of production rate vs. MBT 

3 
Log q/∆P - Log MBT Bilinear, Linear, and BDF Logarithmic plot of PNR vs. MBT 

4 
Log q/∆Ψ - Log Tca Bilinear, Linear, and BDF Logarithmic plot of PNR vs. material balance pseudotime 

5 
∆P/q - SR(Tc) Linear and BDF Cartesian plot of RNP vs. square root of MBT 

6 
∆Ψ/q - SR(Tca) Linear and BDF 

Cartesian plot of rate-normalized pseudopressure vs. square 
root of material balance pseudotime 

7 
∆P/q - FR(Tc) Bilinear Cartesian plot of RNP vs. fourth root of MBT 

8 
∆Ψ/q - FR(Tca) Bilinear 

Cartesian plot of rate-normalized pseudopressure vs. fourth root 
of material balance pseudotime 

 

Multi-fractured horizontal wells are the most common completion technique in 

unconventional plays, as mentioned in section 5.1.1.2. Therefore, abnormal high water 

production may be presented at early times due to fractures clean-up. In this process, water 

production rates tend to decrease until reaching normal values, and as a result, formation skin 

factor changes. Thus, misleading bilinear flow signatures may appear as consequence of the 

changing skin effect. In practice, no data prior to linear flow should be used to determine 

parameters for any decline model, in order to avoid misinterpretations. 
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5.1.2.1. Single Method Approach 

The first four methods (Log-Log plots) are considered as the preferred flow regime 

identification method. In practice, all these plots are based on the same concept (Bilinear Flow: 

-1/4; Linear Flow: -1/2; BDF: -1). However, plot variables are different on each case. The first 

plot (Log q - Log t) is the most common flow regime identification plot used by interpreters. 

But, as this plot relies only on production rates and real time, flow regimes shouldn’t be 

diagnosed based on its outputs. The second plot (Log q - Log MBT) includes material balance 

time, instead of real time, which represents an improved analysis capacity for wells flowing 

under unstable operating conditions (See Section 3.1.1). Third and fourth plots (Log q/∆P - Log 

MBT, Log q/∆Ψ - Log Tca) are recommended as the best option to identify with confidence flow 

regimes, because they both are based on PNR, and real time has been replaced by the material 

balance time function. Taking into account these considerations, these two plots should be 

used as main diagnostic plots. As the fourth one (Log q/∆Ψ - Log Tca) includes pseudo-variables 

(pseudopressure and material balance pseudotime), it is recommended for gas cases. The third 

plot (Log q/∆P - Log MBT) is used for oil cases mainly. Advantages of pseudovariables are 

described in Section 3.1.2.  

5.1.2.2. Multi-Method Approach 

This approach considers that a single diagnostic plot is not enough to identify flow 

regimes with confidence. Instead, a combined perspective may provide a better insight and 

reduce the uncertainty associated to a method in particular. Therefore, the final determination 

about flow patterns occurrence is the product of different methods. However, as some 

diagnostic methods offer special advantages over others, no all the single solutions should be 

treated equitably. Thus, single methods are prioritized and final solution is estimated as a 

weighted average of all single solutions. Eq. 49 shows the expression for the probability of 

occurrence of a flow regime. Mi represents each method’s output (1 means that the flow 

regime has been positively identified by that method in particular; 0 means the opposite. 

Intermediate values may also be used to express specific uncertainties). Wi is the weight 

assigned to each method and express how confident interpreters are with each method in 
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particular. Additionally, an optional reliability factor (RRF) is included to account for the 

confidence that interpreters have in quality of input data. Finally, wells may be classified 

according to the probability of occurrence of each flow regime [P(FR)], as presented below. 

Presenting FRI results in probabilistic terms is an advantage because in most cases, it is difficult 

to affirm with certainty that a flow regime has occurred, especially when production data 

quality is questionable.  

          ∑        
 
     .......................................................................  (49) 

 No evidence:  P(FR) = 0% 

 Possible:  P(FR) < 30% 

 Probable: 30% ≤ P(FR) < 70% 

 Very likely: P(FR) ≥ 70% 

The specialized bilinear and linear flow regimes identification plots are recommended 

to be included in this approach along with Log-Log methods (See plots 5 through 8 in Table 8). 

The concept of those plots is extensively explained in Sections 3.2.5 and 3.2.4, respectively.  

5.1.3. Hindcasting Analysis  

This is a testing method used to validate mathematical models by comparing model’s 

outputs with known historic data from past events. For production analysis purposes, hindcasts 

offer the possibility of measuring the relative error of results provided by a forecasting model in 

relation with the real production performance. Considering the purpose of this study, hindcasts 

will be used to evaluate the applicability and the accuracy of pressure-normalized decline curve 

analysis (PN-DCA) as a production forecasting technique. 

Although this step is not required to analyze production data, it is advised to perform a 

hindcasting analysis to tune/calibrate the forecasting analysis methodology (selecting adequate 

DCA models and techniques) before estimating future production and recoveries. In any case, it 

may help interpreters to better understand prediction models and to reduce uncertainty 
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associated to estimations. Wells production performance depends on multiple fluid and 

reservoir features. Given the high heterogeneity of these parameters in any play, wells exhibit 

particular production behaviors. Therefore, DCA models effectiveness may vary depending on 

the particular features of each case. While certain DCA models achieve outstanding results in 

some plays, the same models may not work very well in other cases, even if there is a high level 

of similarity.  

5.1.4. Forecasting Analysis 

This step corresponds to the application of decline curve analysis techniques to 

forecast future production performance and to estimate remaining reserves. This study is 

focused on the application of the pressure-normalized decline curve analysis (PN-DCA) 

techniques, which consist of performing decline curve analysis (DCA) using pressure-normalized 

rates (PNR) instead of real production rates. In this work, eight DCA models (Arps, Modified 

Hyperbolic, SEPD, MSE, Duong, Modified Duong, PLE and LGM) and five pressure normalization 

techniques have been implemented (PN, ∆ψN, SPN, ∆PF, and HE). A comprehensive description 

of DCA models is presented in Section 2. Additional details about the transformation of real 

production rates into pressure-normalized rates, and the application of PN-DCA techniques are 

described in Section 4.4. 

As mentioned in Section 2.2, each DCA model relies on specific flow regimes. Arps 

models assume BDF, modern DCA models (SEPD, Duong, Logistic Growth, and Power Law 

Exponential) are based on linear flow, and dual models are specially designed to switch from an 

early transient model to a terminal BDF model when a limiting condition is reached (switching 

time or a terminal decline rate). Ideally, this limiting condition should correspond to the BDF 

onset. However, if BDF conditions have not been reached, which is the most common case in 

UCR’s, reasonable limiting conditions should be estimated by the interpreter. If the BDF 

signature is identified in the flow regime analysis, production forecast should be performed 

using just the BDF portion of the production history with a BDF model (if that portion is enough 

to match the model with confidence). In this work three dual models have been included in the 

analysis (Modified Hyperbolic, MSE, and Modified Duong). If BDF is not observed, a minimum 
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decline rate of 10%/yr has been assumed, and the terminal decline model is Arps’ Hyperbolic 

with a b factor of 0.3 for oil wells and 0.4 for gas wells.  

Along this work, the traditional DCA technique (based on production rates only) and 

the novel pressure normalization techniques (based on PNR) will be all referred as DCA 

techniques. Decline curve analysis was developed using PDCA, an application created by the 

Unconventional Reservoir Research Group of Texas A&M University to perform deterministic 

and probabilistic decline curve analysis. 

5.2. Evaluation of Pressure-Normalized Decline Curve Analysis (PN-DCA) as 

Production Forecasting Technique  

The principal purpose of this section is to assess the feasibility of implementing decline 

curve analysis based on pressure-normalized rates (PN-DCA) as a reliable production 

forecasting technique. The best way to evaluate the accuracy of this new method is through 

hindcasting analyses (see Section 5.1.1), where predictions generated by PN-DCA methods are 

compared with real cumulative production data. In order to obtain more representative results, 

this process will be applied on multiple wells. In addition, several comparisons will be done 

considering different conditions, in order to identify under which specific conditions PN-DCA 

techniques may produce more accurate results, if possible.  

5.2.1. Production Data Diagnosis and Preparation  

The representativeness of this comparative study depends on the quality and amount 

of production data available for the analysis. Indeed, the main restriction of this work was 

obtaining real and reliable production data. As mentioned in Section 5.1.1.1, a large amount of 

well data is required to apply PN-DCA techniques, especially if bottomhole pressure 

measurements are not available. As most of this information is considered confidential by 

operator companies, it is extremely difficult to have access to the required whole set of well 

data. Nevertheless, some companies agreed to provide this information with the commitment 
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of keeping confidential the source and some specific details of each well (e.g., name and 

location). Therefore, wells names have been modified, and specific well parameters are not 

shown in this work.  

 

 

Fig. 34—Location of unconventional wells used in this study. After Gale and Holder (2010). 

 

In total, production data of 47 wells, located in four different unconventional plays 

(Marcellus, Cana Woodford, Eagle Ford and Bakken), was provided by different operators. 31 

wells (66%) are gas producers and 16 wells are oil producers (34%). Fig. 34 shows a map with 

the approximate locations of these wells. Table 9 presents a summary of these wells, including 

some features like type of fluid, production history, data quality and liquid loading. Production 

rates and pressures were provided in a daily basis format. This format was preserved for flow 

regime identification purposes, but it was converted to a monthly format for the application of 

PN-DCA techniques. Bottomhole flowing pressure (BHP) measurements were not available. 
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Therefore, tubing head pressures (THP) were converted to sandface conditions (BHP) using 

Fekete Harmony suite.  

 

 

Fig. 35—Histogram of the production histories duration for all wells. 

 

As unconventional wells are expected to produce for long times, it is necessary that 

forecasting models have the ability of accurately predict production performance over long 

periods. Therefore, another important factor that has a big impact on the representativeness of 

this study is the duration of production histories. The longer the production history, the more 

representative the results. Fig. 35 shows a histogram of the duration of production histories for 

all wells included in this study. Fig. 36 presents a comparative illustration of the duration 

(minimum, average, maximum) of production history of each play. Input data quality is also 

another important issue.  
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Table 9—List of wells used for the hindcasting analysis 

 

Liquid 

Loading

Days Months B R G Turner Plot

G/O No. No. X X X PLL/FLL

M-1 G 1288 43 X 60%

M-2 G 1187 40 X 20%

M-3 G 1188 40 X 0%

M-4 G 1285 43 X 100%

M-5 G 1234 41 X 0%

M-6 G 1254 42 X 60%

M-7 G 1254 42 X 81%

M-8 G 1226 41 X 0%

M-9 G 1135 38 X 0%

M-10 G 1156 39 X 29%

M-11 G 1017 34 X 0%

M-12 G 1226 41 X 29%

M-13 G 1161 39 X 20%

M-14 G 1016 34 X 0%

WF-1 G 1304 44 X 100%

WF-2 G 793 27 X 100%

WF-3 G 1138 38 X 100%

WF-4 G 1314 44 X 100%

WF-5 G 1315 44 X 100%

WF-6 G 1289 43 X 100%

WF-7 G 570 19 X 100%

WF-8 G 565 19 X 100%

WF-9 G 826 28 X 100%

WF-10 G 1112 37 X 100%

WF-11 G 1265 42 X 100%

WF-12 G 1048 35 X 100%

EF-1 O 437 17 X --

EF-2 O 421 16 X --

EF-3 O 414 15 X --

EF-4 G 310 11 X 100%

EF-5 G 675 24 X 100%

EF-6 O 565 21 X --

EF-7 O 420 16 X --

EF-8 O 415 16 X --

EF-9 O 259 10 X --

EF-10 O 241 9 X --

EF-30 O 247 9 X --

EF-31 G 467 16 X 80%

EF-40 G 609 21 X 0%

EF-41 O 371 13 X --

EF-42 O 556 19 X --

EF-43 O 397 14 X --

BK-1 O 382 14 X --

BK-2 O 382 14 X --

BK-3 O 291 11 X --

BK-4 G 531 18 X 100%

BK-20 O 854 29 X --

Fluid

Marcellus

Woodford

Production History Data Quality

Eagle Ford

Bakken

WellPlay
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Fig. 36—Production history times (minimum, mean and maximum) for each play. 

 

Quality control has been verified by following indications presented in Section 5.1.1.2. 

Table 9 includes a data quality column showing qualification assigned to each well depending 

on the accomplishment of these criteria (B: bad, R: regular, G: good). Bad quality means that 

well’s production performance has been severely affected by strong fluctuations in operational 

conditions, frequent discontinuities and multiple outliers appear during production history, 

matching decline models with confidence is difficult, and flowing pressures may not correlate 

with production rates. In general, there is a high uncertainty associated with predictions 

derived from this kind of data. Regular quality refers to minor problems that don’t affect 

significantly production forecasts. Minor problems include few outliers, slightly scattered data 

and short discontinuities that don’t deform the natural decline profile. In general, production 

rates correlate well with flowing pressures, and it is easy to apply DCA models with confidence. 

In opposite, good quality means that most of production data is not severely affected by the 

previously mentioned problems. Note that major and long-lasting changes in operating 

conditions (e.g., increase of production rates caused by an intentional reduction of tubing head 

pressures) are not considered a quality problem. In all cases, operators have not reported or 

provided information about major operations affecting reservoir productivity features. Thus, it 
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is assumed that there are not restrictions to apply DCA (See Section 5.1.1.2). Main observations 

about data quality, production history and other specific details of each play are discussed 

below.  

5.2.1.1. Marcellus 

This study includes 14 gas wells from Marcellus shale with an average production 

history of 39 months (See Fig. 36). Fig. 37 shows original production rates and flowing pressures 

of well M-1. Fig. 38 presents production rates in both daily and monthly format, after being 

processed (i.e., data filtering and correction), as described in Section 5.1.1.3. 

 

Fig. 37—Production rates and flowing pressures of M-1 well. 

 

In general, average quality of production data is regular, excepting 2 wells that were 

classified as bad quality. This means that most of wells exhibit similar minor problems that 

don’t significantly affect production forecasts, as previously described. Only 6 wells don’t 

exhibit liquid loading problems. Four wells present minor problems of liquid loading (<30% of 

production history), while 4 wells show liquid loading throughout the majority of their 

productive life. Most times, liquid loading problems are observed at late times, when 

production rates have decreased significantly. However, no major fluctuations or 
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inconsistencies due to liquid loading were observed. Although it doesn’t represent a significant 

problem for decline curve analysis, flow regime diagnosis may be affected. This issue will be 

discussed in Section 5.2.2. Fig. 39 shows the liquid loading diagnostic analysis of well M-1. Note 

that liquid loading occurs during around 60% of well life. Initial reservoir pressures range 

between 3594 and 4029 psi, and the average is 3830 psi (See Fig. 40). 

 

 

Fig. 38—Production rates of well M-1 presented in daily and monthly format 

 

5.2.1.2. Woodford 

This study includes 12 gas wells from Woodford shale with an average production 

history of 35 months (See Fig. 36 and Table 9). Fig. 41 shows original production rates and 

flowing pressures for well W-10. In general, the average data quality of these Woodford wells is 

excellent, excepting 2 wells that were classified as regular. Although all wells present liquid 

loading problem, it seems not to affect production performance—fluctuations and 

discontinuities are not observed. Initial reservoir pressures range between 8361 and 9020 psi, 

and the average is 8694 psi (See Fig. 40). 
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Fig. 39—Liquid loading diagnostic plot (Turner plot) of well M-1 

 

 

Fig. 40—Histogram of initial reservoir pressures for each play. 
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Fig. 41—Production rates and bottomhole flowing pressures of well W-10. 

 

5.2.1.3. Eagle Ford 

This study includes 16 wells from Eagle Ford shale with an average production history 

of 15.4 months (See Fig. 36 and Table 9). There are 12 oil producer and 4 gas producers. Fig. 37 

shows original production rates and flowing pressures of well EF-7. In general, production data 

quality is variable (See Table 9). Most of wells exhibit major problems of discontinuity and 

dispersion that may significantly affect production forecasts. In addition, three of the 4 gas 

wells exhibit liquid loading problem. Given these quality problems and the short production 

history of some wells, five wells were excluded from the hindcasting analysis, although they all 

are considered in the flow regime identification analysis. Fig. 42 shows production data of one 

of these wells. Note how dispersed data is early on and the frequent discontinuities later on. 

On the other hand, 7 of 16 wells correspond to high pressure, rate controlled wells (See Section 

4.3.2). Fig. 43 shows an example of a high pressure, rate restricted well. Note that average 

production rates practically don’t decline during the first year (black line), while bottomhole 

flowing pressures slowly decline. Initial reservoir pressures range between 5000 and 10000 psi, 

and the average is 9198 psi (See Fig. 40). Most of the wells are in the high pressure area (initial 

reservoir pressure: 10.000 psi). 
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Fig. 42—Production rates and flowing pressures of well EF-7. 

 

 

Fig. 43—High pressure, rate controlled Eagle Ford well (EF-2). 

 

5.2.1.4. Bakken 

This study includes only 5 wells from Bakken shale with an average production history 

of 17.2 months (See Fig. 36 and Table 9). There are 4 oil producer and 1 gas producer. Fig. 44 
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shows original production rates and flowing pressures for well BK-2. In general, production data 

quality is variable, just like Eagle Ford wells (See Table 9). However, unlike Eagle Ford wells, the 

most common problem is high data scattering, which may not significantly affect production 

forecasts. Initial reservoir pressures range between 8300 and 10226 psi, and the average is 

9278 psi (See Fig. 40). 

 

 

Fig. 44—Production data for well BK-2 

 

5.2.2. Flow Regimes Diagnosis 

Flow regimes identification (FRI) has been developed following procedures described in Section 

5.1.2. Table 10 summarizes these results. A green “x” marks that the corresponding flow 

regime has been identified by that diagnostic plot. Diagnostic plots using pseudopressures 

don’t apply to oil wells. Thus, an “NA” mark appears on the corresponding plots for those cases. 

The flow regimes diagnosis was focused on the identification of linear and BDF because of their 

direct relation with the DCA models. However, bilinear flow was also included in this analysis. 
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Table 10—Summary table, including flow regime identification results. 

 

 

Note that for convenience, the names of the diagnostic plots have been replaced by numbers, 

as presented below. 

 Plot 1:  Log q - Log t 

Liquid 

Loading

Days Months B R G
Turner 

Plot

G/O No. No. X X X PLL/FLL 1 2 3 4 7 8 1 2 3 4 5 6 1 2 3 4 5 6 BL LN BDF

M-1 G 1288 43 X 60% X X X X X X X X X X X X X X X X X X 60% 100% 100% 60%

M-2 G 1187 40 X 20% X X X X X X X X X X X X X X X X X X 60% 100% 100% 60%

M-3 G 1188 40 X 0% X X X X X X X X X X X X 40% 0% 100% 34%

M-4 G 1285 43 X 100% X X X X X X X X X X X X X X X X 60% 85% 100% 60%

M-5 G 1234 41 X 0% X X X X X X X X X X X X X X 40% 40% 100% 40%

M-6 G 1254 42 X 60% X X X X X X X X X X X X X X X X X 20% 100% 100% 20%

M-7 G 1254 42 X 81% X X X X X X X X X X X X X X 10% 45% 100% 10%

M-8 G 1226 41 X 0% X X X X X X x X X X X X X X X X 60% 100% 100% 57%

M-9 G 1135 38 X 0% X X X X X X X X X X X X X X 70% 100% 100% 11%

M-10 G 1156 39 X 29% X X X X X X X X X X X X X X X X 60% 100% 100% 57%

M-11 G 1017 34 X 0% X X X X X X X X X X X X 70% 45% 100% 28%

M-12 G 1226 41 X 29% X X X X X X X X X X X X X X 40% 100% 100% 16%

M-13 G 1161 39 X 20% X X X X X X X X X X X X X X 40% 45% 100% 38%

M-14 G 1016 34 X 0% X X X X X X X X X X X X 60% 45% 100% 24%

WF-1 G 1304 44 X 100% X X X X X X X X X X X X X 100% 100% 100% 0%

WF-2 G 793 27 X 100% X X X X X X X X X X X X X 100% 100% 100% 0%

WF-3 G 1138 38 X 100% X X X X X X X X X X X 100% 60% 80% 15%

WF-4 G 1314 44 X 100% X X X X X X X X X X X X X X 100% 100% 100% 15%

WF-5 G 1315 44 X 100% X X X X X X X X X X X 100% 20% 100% 0%

WF-6 G 1289 43 X 100% X X X X X X X X X 100% 0% 100% 0%

WF-7 G 570 19 X 100% X X X X X X X X X X X X 100% 45% 100% 20%

WF-8 G 565 19 X 100% X X X X X X X X 100% 0% 100% 0%

WF-9 G 826 28 X 100% X X X X X X X X X X X X X 100% 100% 100% 0%

WF-10 G 1112 37 X 100% X X X X X X X X X X X 100% 60% 100% 0%

WF-11 G 1265 42 X 100% X X X X X X X X X X X X X 100% 60% 100% 20%

WF-12 G 1048 35 X 100% X X X X X X X X X X X X X 70% 20% 100% 39%

EF-1 O 437 17 X -- X X NA NA X NA X NA X X NA X NA 40% 20% 80% 40%

EF-2 O 421 16 X -- X NA X NA X NA X NA X X NA X NA 60% 80% 80% 60%

EF-3 O 414 15 X -- X NA X NA X X NA X NA X X X NA X NA 70% 80% 100% 70%

EF-4 G 310 11 X 100% X X X X X X X X X X X X X X 60% 100% 100% 60%

EF-5 G 675 24 X 100% X X X X X X X X X X X X X X X 40% 55% 100% 40%

EF-6 O 565 21 X -- X NA X NA X X NA X NA X X X NA X NA 70% 80% 80% 70%

EF-7 O 420 16 X -- X X NA X NA X X NA X NA X X X NA X NA 40% 100% 40% 40%

EF-8 O 415 16 X -- X X NA X NA X X X NA X NA X X X NA X NA 70% 40% 100% 70%

EF-9 O 259 10 X -- X X X NA X NA X X X NA X NA X X NA X NA 20% 100% 100% 20%

EF-10 O 241 9 X -- X NA X NA X X X NA X NA X X NA X NA 50% 40% 100% 40%

EF-30 O 247 9 X -- X X X NA X NA X X X NA X NA X X NA X NA 100% 100% 100% 80%

EF-31 G 467 16 X 80% X X X X X X X X X X X X 70% 60% 100% 56%

EF-40 G 609 21 X 0% X X X X X X X X X X X X X X 100% 100% 100% 20%

EF-41 O 371 13 X -- X X NA X NA X NA X NA X X X NA X NA 60% 40% 80% 60%

EF-42 O 556 19 X -- X X X NA X NA X X X NA X NA X X X NA X NA 80% 100% 100% 80%

EF-43 O 397 14 X -- X X X NA X NA X X X NA X NA X X X NA X NA 80% 100% 100% 80%

BK-1 O 382 14 X -- X X X NA X NA X X X NA X NA X X X NA X NA 80% 100% 100% 80%

BK-2 O 382 14 X -- X X X NA X NA X X X NA X NA X X X NA X NA 80% 100% 100% 80%

BK-3 O 291 11 X -- X X X NA X NA X X X NA X NA X X X NA X NA 80% 100% 100% 80%

BK-4 G 531 18 X 100% X X X X X X X X X X X X X X X X 60% 100% 100% 60%

BK-20 O 854 29 X -- NA X NA X X X NA X NA X NA NA 80% 20% 100% 16%
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 Plot 2:  Log q - Log MBT   

 Plot 3:  Log q/∆P - Log MBT  

 Plot 4:  Log q/∆Ψ - Log Tca  

 Plot 5:  ∆P/q - SR(Tc)  

 Plot 6:  ∆Ψ/q - SR(Tca)  

 Plot 7:  ∆P/q - FR(Tc)  

 Plot 8:  ∆Ψ/q - FR(Tca)  

An important consideration when identifying bilinear flow regimes in unconventional reservoirs 

is the misleading effect generated by abnormally high water rates presented at initial 

production due to fractures clean-up. Thus, misleading bilinear flow signatures may appear as a 

consequence of the changing skin effect produced by the decreasing water rates just after 

stimulation jobs. In this study, most of wells presented abnormally high water rates during the 

first days of production. The majority of this data was discarded. However, some wells continue 

to exhibit a soft declining water production trend, even after a few months. As bilinear flow is 

not a major flow regime with a significant relation to the DCA models, further analysis was not 

performed. 

5.2.2.1. Bilinear Flow - Single Method Approach 

The main objective of this section is to determine whether misinterpretations of flow 

regimes occur when diagnostic plots are not applied correctly. In this study, the results from 

the main diagnostic plot (plot 4 for gas cases and plot 3 for oil cases) are considered to be the 

right solution. All the other plots are referred as alternative (secondary) FRI plots. Therefore, 

results provided by each alternative diagnostic plot have been compared with results 

generated by the main (reference) FRI plots. Two parameters have been calculated to assess 

the effectiveness of the complementary diagnostic plots. The first parameter corresponds to 

the percent error (E), which expresses the percentage difference between main and alternative 

methods. A positive difference (percent error) means that the complementary method 

overestimated the number of wells exhibiting that particular flow regime. On the contrary, a 

negative difference (percent error) means that the complementary method is underestimating 
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the number of wells exhibiting that particular flow regime. The second parameter is the 

matching index, which represents the accuracy of the alternative methods. A match of 100% 

means that both methods (main and alternative) agreed in all the cases. 0% match means that 

the wells that the alternative plot identified don’t correspond to those wells indicated by the 

main FRI plot. Then the alternative plot is completely wrong, even if there is not any difference 

on the number of estimations. The ideal combination of parameters is 0% difference (not 

overestimation/underestimation) and 100% match (accurate predictions). 

In general, 16 out of 31 gas wells (52%) and 11 out of 16 oil wells (69%) exhibited the 

bilinear flow signature. Table 11 summarizes results of flow regimes analysis. Results have been 

separated by fluid type. Main outputs are encircled in red to be easily distinguishable from 

alternative methods.  

 

Table 11—Comparison of FRI results for gas and oil wells. 

 

 

For gas wells, according to the first FRI plot (log q–log t), 29 of 31 gas wells exhibited 

the bilinear signature, which correspond to 94% of total number of gas wells. Although there is 

a complete match (100%), this method overestimated the number of wells with bilinear flow 

(81% of difference or percent error), because the right estimation is 16 wells instead of 29 

wells. Fig. 45 and Fig. 46 illustrate these results (dotted red and blue lines indicate ideal 

Fluid Type

Flow Regimes

Diagnostic plot Wells % Match E (%) Wel ls % Match E (%) Wel ls % Match E (%) Wel ls % Match E (%)

Log q - Log t 29 94% 100% 81% 3 10% 19% -81% 10 63% 64% -9% 12 75% 80% -20%

Log q - Log MBT 29 94% 94% 81% 25 81% 94% 56% 12 75% 73% 9% 14 88% 87% -7%

Log q/∆P - Log MBT 23 74% 88% 44% 14 45% 81% -13% 11 69% -- -- 15 94% -- --

Log q/∆Ψ - Log Tca 16 52% -- -- 16 52% -- -- -- -- -- -- -- -- -- --

∆P/q - SR(Tc) 26 84% 88% 63% 11 35% 50% -31% 15 94% 100% 36% 15 94% 100% 0%

∆Ψ/q - SR(Tca) 20 65% 88% 25% 18 58% 75% 13% -- -- -- -- -- -- -- --

Bilinear BDF Bilinear BDF

Oil (16 wells)Gas (31 wells)
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parameters). Note that matching indexes are good, but most of plots overestimated the 

number of wells with bilinear pattern. The specialized bilinear plot [∆Ψ/q-FR(Tca)] and the third 

plot (Log q/∆P - Log MBT) provided the lower percent error (lower overestimation).   

 

 

Fig. 45—Comparison of bilinear diagnostic plots for gas wells according to the single method approach. 

 

 

Fig. 46—Comparison of bilinear diagnostic plots for oil wells according to the single method approach. 
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For oil wells, the ∆P/q-SR(Tc) plot showed a perfect match (Fig. 46), although the 

percent error was the highest (overestimation).  

5.2.2.2. Bilinear Flow - Multi-Method Approach 

According to the multi-method approach, it is very likely that bilinear flow had occurred 

in 26 out of 47 wells (55%). It is probable that 14 more wells had exhibited a bilinear pattern. In 

addition, three wells didn’t show any signal of bilinear flow, while four other wells showed 

weak indications of bilinear flow (See Table 12). According to the single method approach, 27 

wells exhibited bilinear flow signature, which is in accordance with the estimation obtained in 

the “very likely” category from the multi-method approach (26 wells).  

 

Table 12—Bilinear flow diagnosis according to the multi-method approach. 

 

 

Fig. 47 shows results for each play by separately. Weight factors used in this study are 

presented in Table 13. Reliability factor for bilinear flow diagnosis was ignored because most of 

the wells didn’t present significant signals of major discontinuities/dispersions at early times, 

when bilinear flow is developed.  

 

wel ls % wel ls % wel ls % wel ls %

Marcellus 14       1      7% -  0% 5      36% 8      57%

Woodford 12       2      17% 2      17% 4      33% 4      33%

Eagle Ford 16       -  0% 1      6% 5      31% 10   63%

Bakken 5         -  0% 1      20% -  0% 4      80%

Total 47       3      6% 4      9% 14   30% 26   55%

Bilinear Flow

Play
Total 

Wells

No 

Evidence
Possible Probable Very Likely
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Fig. 47—Bilinear flow diagnosis according to the multi-method approach. 

 

Table 13—Weight factors for the multi-method approach. 

 

 

 

# Diagnostic Plot
Bi l inear 

Gas

Bi l inear 

Oi l

BDF

Gas

BDF

Oi l

1 Log q - Log t

2 Log q - Log MBT 20% 20%

3 Log q/∆P - Log MBT 40% 60% 40% 60%

4 Log q/∆Ψ - Log Tca 40% 40%

5 ∆P/q - SR(Tc) 5% 20%

6 ∆Ψ/q - SR(Tca) 15%

7 ∆P/q - FR(Tc) 5% 20%

8 ∆Ψ/q - FR(Tca) 15%
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Fig. 48—Identification of linear flow regime for well EF-2. Top: Log q - Log t; middle: Log q - Log MBT; bottom: Log 

q/∆P - Log MBT. Dash line represents linear flow (slope: -1/2). 
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5.2.2.3. Linear Flow 

Linear flow is the dominant flow regime in general, although a few exceptions were 

observed. It was readily identified by all method in majority of wells, excepting some of Eagle 

Ford wells, where the diagnostic plots based on production rates (Log q - Log t and Log q - Log 

MBT) did not show clearly the linear signature. But the main reason is attributable to poor 

quality data. In those cases, diagnostic plots based on PNR were used to improve the FRI 

analysis (See Fig. 48).  

On the other hand, two side effects were observed in some Eagle Ford wells when 

using pressure-normalized rates. Seven out of 16 wells showed a weaker linear flow signature, 

and transition signatures get stronger in four of those wells (See Fig. 49 and Fig. 50). The effect 

of amplification of the transition flow was also observed in 4 more wells of Woodford play. 

  

 

Fig. 49—Diagram showing the occurrence of side effect when using pressure-normalized rates in Eagle Ford cases. 
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Fig. 50—Transition signature becomes dominant and linear signature shortens when pressure-normalized rates are 

used. Dash line: linear flow, dotted line: bilinear flow, solid line: BDF. 

 

5.2.2.4. Boundary-Dominated Flow - Single Method Approach 

In general, 16 out of 31 gas wells (52%) and 15 out of 16 oil wells (94%) exhibited the 

BDF signature. Table 11 summarizes the results of the flow regimes analysis, which have been 
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separated by fluid type. Reference outputs are encircled in red to be easily distinguishable from 

alternative methods. Main observations are presented below: 

 According to the first FRI plot (log q – log t), only 3 out of 31 gas wells exhibited 

the BDF signature, which correspond to -81% of error—a clear indication of 

underestimation. Matching index is very low also (19%), which confirms that 

this method provided a very poor approach.  

 In the second plot (log q – log MBT), material balance time is included and the 

matching index increase to 94%, but the percent error is high (overestimation).  

 The third method includes PNR (Log q/∆P - Log MBT), and the difference drops 

to minimum level (-13%), while match continues high (81%).  

 

 

Fig. 51—Comparison of BDF diagnostic plots for gas wells according to the single method approach. 

 

These observations indicate that more representative results are obtained as diagnostic 

plots are improved by including MBT and pressure-normalized rates. A similar effect happens 

with the specialized linear plots [∆P/q - SR(Tc) and ∆Ψ/q - SR(Tca)]. Matches increase and 
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differences reduce as pseudovariables are included. The same effect was observed for oil wells. 

Fig. 51 and Fig. 52 illustrate these results (dotted red and blue lines indicate ideal parameters).  

 

 

Fig. 52—Comparison of BDF diagnostic plots for oil wells according to the single method approach. 

 

5.2.2.5. Boundary-Dominated Flow - Multi-Method Approach 

According to the multi-method approach, it is very likely that BDF is exhibited in 9 out 

of 47 wells (55%), and it is probable that 18 more wells are in BDF also. In addition, seven wells 

didn’t show any BDF signal, and other 13 wells showed weak indications of a possible BDF 

occurrence (See Table 14). According to the single method approach, 31 wells exhibited BDF 

signature, which correlate with estimations obtained in the “very likely” and “probable” 

categories from the multi-method approach (27 wells). These are the wells that were 

considered as BDF dominated well in the hindcasting analysis. Fig. 53 shows results for each 

play by separate. Weight factors used in this study are presented in Table 13. Fig. 54 shows BDF 

onsets for each play. 
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Table 14—BDF diagnosis by the multi-method approach 

 

 

 

Fig. 53—BDF diagnosis according to the multi-method approach. 

 

wel ls % wel ls % wel ls % wel ls %

Marcellus 49% 14       -  0% 6      43% 8      57% -  0%

Woodford 98% 12       7      58% 4      33% 1      8% -  0%

Eagle Ford 63% 16       -  0% 2      13% 8      50% 6      38%

Bakken 76% 5         -  0% 1      20% 1      20% 3      60%

Total 72% 47       7      15% 13   28% 18   38% 9      19%

Probable Very Likely

Play

BDF 

Reliability 

Factor

Total 

Wells

No 

Evidence
Possible
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Fig. 54—Statistics of BDF onsets for each play (minimum, mean and maximum). 

 

Using MBT in FRI diagnostic plots may lead to misinterpretation, because time 

functions transform the data in a way that its flow regime signatures tend to look like the flow 

regime for which they have been created (Clarkson, 2013b). This effect tends to increase when 

production data is scattered. Fig. 55 through Fig. 58 present examples of the diagnostic plots 

suggested in this study to identify flow regimes. Note that red lines are guide lines to ease the 

flow regime identification, and they don’t necessarily indicate the existence of that particular 

flow regime. The previously mentioned effect can be easily observed in the two first plots (See 

plots at top of Fig. 55). Scattered data, which in the first plot appears as vertical dispersion 

lines, adopts an inclined straight trend with a slope equal to -1, just like BDF. Similar behaviors 

were observed in most of wells with scattering problem. Unfortunately, BDF is reached at late 

times, just when most dispersion and discontinuities problems occur (wells are continuously 

intervened, liquid loading may occur in gas wells, and diverse operational changes are executed 

to improve production rates). This effect represents a disadvantage when using the MBT 

function on highly scattered data, because it increases uncertainty on estimations of the 

boundary-dominated flow regime. For this reason, a reliability factors for BDF flow diagnosis 

have been included in this methodology (See Section 5.1.2.2). In this case, reliability factors are 

presented in Table 10 (well by well) and Table 14 (for each play).  
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Fig. 55—FRI analysis of well M-1. Dash line: linear flow, dotted line: bilinear flow, solid line: BDF. From left to right 

and from top to bottom: Log q - Log t, Log q - Log MBT, Log q/∆P - Log MBT, Log q/∆Ψ - Log Tca, ∆P/q - SR(MBT), 

∆Ψ/q - SR(Tca), ∆P/q - FR(MBT), ∆Ψ/q - FR(Tca). 
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Fig. 56—FRI analysis of well WF-1. Dash line: linear flow, dotted line: bilinear flow, solid line: BDF. From left to right 

and from top to bottom: Log q - Log t, Log q - Log MBT, Log q/∆P - Log MBT, Log q/∆Ψ - Log Tca, ∆P/q - SR(MBT), 

∆Ψ/q - SR(Tca), ∆P/q - FR(MBT), ∆Ψ/q - FR(Tca). 
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Fig. 57—FRI analysis of well BK-3. Dash line: linear flow, dotted line: bilinear flow, solid line: BDF. From left to right 

and from top to bottom: Log q - Log t, Log q - Log MBT, Log q/∆P - Log MBT, Log q/∆Ψ - Log Tca, ∆P/q - SR(MBT), 

∆Ψ/q - SR(Tca), ∆P/q - FR(MBT), ∆Ψ/q - FR(Tca). 
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Fig. 58—FRI analysis of well EF-3. Dash line: linear flow, dotted line: bilinear flow, solid line: BDF. From left to right 

and from top to bottom: Production rates and flowing pressures (THP), Log q - Log t, Log q - Log MBT, Log q/∆P - Log 

MBT, ∆P/q - SR(MBT), ∆P/q - FR(MBT). 

 

5.2.3. Hindcasting Analysis 

The target of this hindcasting analysis is to evaluate the applicability of the pressure 

normalization decline curve analysis as a production forecasting technique. As discussed in 
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Section 5.1.1, DCA models outputs are compared with known historic production data from a 

large set of real wells to determine the effectiveness and representativeness of these models.  

Comparisons are based on remaining recoveries to the end of production histories and 

differences are expressed as percent error (See Eq. 50). Although estimations were done on a 

per-well basis, the comparative analysis was performed on a group basis. Thus, wells were 

grouped according to different features and conditions to analyze the behavior of the DCA 

models and the pressure normalization techniques under different scenarios. For each group, 

two statistic measurements of the percent error were calculated, the mean and the standard 

deviation.  The mean represents the accuracy of the predictions and the capacity of the models 

to generate unbiased results (close to the real values). The standard deviation represents the 

precision of these estimations and the capacity of the models to consistently reproduce similar 

outputs. Basically, the lower the standard deviation, the more precise the method. On the 

other hand, the closer the mean percent error is to zero, the more accurate the method. A 

negative percent error means that the method tends to be conservative, underestimating the 

production performance. A positive percent error means that the method tends to be 

optimistic, overestimating the production performance.  

   (
            

      
)        .........................................................................  (50) 

5.2.3.1. Hindcasting Scenarios 

Production data from 47 wells from 4 different plays was available. However, 42 wells 

were finally selected for the hindcasting analysis, and 5 wells were omitted due to poor data 

quality and/or short production history. 30 wells are gas producers and 12 are oil producers. 

Different prediction start points (hindcasting onset) have been selected for each well. 

Depending on the amount of production history, up to three predictions were done for a single 

well. Table 15 shows a summary of all the wells used in this study, including the starting times 

for the predictions and for the BDF regimes.  
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Table 15—Wells summary table, including prediction start points and BDF onsets. 

 

 

Fig. 59 illustrates the hindcasting concept. Fig. 60 and Fig. 61 show the hindcasting 

analysis of well M-8 using DCA and PN-DCA methods, respectively. In this case the modeling is 

Liquid 

Loading

Days Months B R G
Turner 

Plot
#1 #2 #3

G/O No. No. X X X PLL/FLL BL LN BDF Months Months Months Months

M-1 G 1288 43 X 60% 100% 100% 60% 7 17 23 24

M-2 G 1187 40 X 20% 100% 100% 60% 7 14 19 23

M-3 G 1188 40 X 0% 0% 100% 34% 6 12 14 31

M-4 G 1285 43 X 100% 85% 100% 60% 9 20 26 21

M-5 G 1234 41 X 0% 40% 100% 40% 7 16 21 24

M-6 G 1254 42 X 60% 100% 100% 20% 6 9 14 --

M-7 G 1254 42 X 81% 45% 100% 10% 7 10 16 --

M-8 G 1226 41 X 0% 100% 100% 57% 7 12 19 33

M-9 G 1135 38 X 0% 100% 100% 11% 6 13 19 --

M-10 G 1156 39 X 29% 100% 100% 57% 6 12 19 23

M-11 G 1017 34 X 0% 45% 100% 28% 6 12 19 --

M-12 G 1226 41 X 29% 100% 100% 16% 8 17 25 --

M-13 G 1161 39 X 20% 45% 100% 38% 6 12 18 23

M-14 G 1016 34 X 0% 45% 100% 24% 8 14 7 --

WF-1 G 1304 44 X 100% 100% 100% 0% 6 16 22 --

WF-2 G 793 27 X 100% 100% 100% 0% 6 14 17 --

WF-3 G 1138 38 X 100% 60% 80% 15% 6 15 20 --

WF-4 G 1314 44 X 100% 100% 100% 15% 6 15 22 --

WF-5 G 1315 44 X 100% 20% 100% 0% 6 16 22 --

WF-6 G 1289 43 X 100% 0% 100% 0% 6 15 22 --

WF-7 G 570 19 X 100% 45% 100% 20% 6 10 -- --

WF-8 G 565 19 X 100% 0% 100% 0% 6 9 12 --

WF-9 G 826 28 X 100% 100% 100% 0% 6 12 16 --

WF-10 G 1112 37 X 100% 60% 100% 0% 6 12 18 --

WF-11 G 1265 42 X 100% 60% 100% 20% 6 16 22 --

WF-12 G 1048 35 X 100% 20% 100% 39% 11 21 24 27

EF-1 O 437 17 X -- 20% 80% 40% 5 10 -- 8

EF-2 O 421 16 X -- 80% 80% 60% 5 9 -- 7

EF-3 O 414 15 X -- 80% 100% 70% 5 8 -- 2

EF-4 G 310 11 X 100% 100% 100% 60% 5 -- -- 2

EF-5 G 675 24 X 100% 55% 100% 40% 6 10 13 18

EF-6 O 565 21 X -- 80% 80% 70% 7 12 -- 9

EF-7 O 420 16 X -- 100% 40% 40% -- -- -- 4

EF-8 O 415 16 X -- 40% 100% 70% 5 -- -- 7

EF-9 O 259 10 X -- 100% 100% 20% -- -- -- --

EF-10 O 241 9 X -- 40% 100% 40% -- -- -- 7

EF-30 O 247 9 X -- 100% 100% 80% -- -- -- 4

EF-31 G 467 16 X 80% 60% 100% 56% -- -- -- 6

EF-40 G 609 21 X 0% 100% 100% 20% 6 10 13 --

EF-41 O 371 13 X -- 40% 80% 60% -- 6 -- 7

EF-42 O 556 19 X -- 100% 100% 80% 6 9 12 9

EF-43 O 397 14 X -- 100% 100% 80% 5 -- -- 5

BK-1 O 382 14 X -- 100% 100% 80% -- 5 -- 5

BK-2 O 382 14 X -- 100% 100% 80% 6 -- -- 3

BK-3 O 291 11 X -- 100% 100% 80% 5 -- -- 5

BK-4 G 531 18 X 100% 100% 100% 60% 6 9 -- 8

BK-20 O 854 29 X -- 20% 100% 16% 6 15 18 --

BDF 

Onset

Eagle Ford

Bakken

WellPlay

Hindcast Onsets
Probability of Flow 

Regime Ocurrence
Fluid

Marcellus

Woodford

Production History Data Quality
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done using 16 months of production only. Thus, the production for the next 24 months is 

estimated by applying DCA models and then is compared with actual production data. For this 

comparative analysis, eight DCA models (Arps, modified hyperbolic, SEPD, MSE, Duong, 

modified Duong, PLE and LGM) and five pressure normalization (PN) techniques have been 

implemented [pressure-normalized DCA (PN-DCA), pseudopressure-normalized DCA (∆ΨN-

DCA), square pressure-normalized DCA (SPN-DCA), and pressure corrected DCA (ΔPF-DCA)], in 

addition to the traditional decline curve analysis (DCA). A comprehensive description of the 

DCA models is presented in Section 2, while PN techniques are described in Section 4.4. The 

harmonic decline model (harmonic decline of PNR vs. cumulative production), proposed by 

Anderson, D.M. et al. (2012), has also been included in the comparison. 

 

 

Fig. 59—Example of production data preparation for a hindcasting analysis. Green points indicate the portion of real 

data that is used to match the DCA models. Remaining red points correspond to the production data that will be 

compare with the predicted decline curve. 
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Fig. 60—Hindcasting analysis of DCA models for well M-8. Red points indicate the portion of production history used 

to match the DCA models. Green points are the portion of the production history used to compare the accuracy of 

the forecasts provided by the DCA models. The red line represents the prediction start point (PSP). 

 

 

Fig. 61—Application of hindcasting with PN-DCA for well M-8. 
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5.2.3.2. Analysis of Results – General Scenario (All Wells included) 

The first level of comparison is a general scenario where all the wells are included along 

with all the predictions, DCA models and techniques. In total, 4272 hindcasts comprise the 

entire set of outputs included in this scenario. Further comparison will be presented to analyze 

hindcast results for specific scenarios depending on the type of fluid. Main observations about 

the general scenario are presented below: 

 Overall, the traditional DCA technique—based on production rates only—

provided the most accurate approach (lower mean percent error) when all DCA 

models’ outputs are averaged (See top line of Table 16). 

 Although all methods showed similar values of standard deviation, the lower 

value was produced by the harmonic decline method (HE), meaning that this 

may generally provide a more precise output.  

 All of the techniques generally provide conservative results (negative mean 

percent error). However, the traditional DCA gives the least conservative 

results.  

 

 

Fig. 62—Results of the comparative analysis, all wells included. 
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Fig. 63—Histogram of results (percent error) for each DCA technique in the general scenario (all wells included). The 

red line on each plot corresponds to the probabilistic function that best fits the results. This probabilistic function is 

presented only for visualization purposes, because comparative analysis is based on calculated data. 

 

Results for each DCA technique (DCA, PN, ∆ΨN, SPN, and ΔPF) are presented in Table 

16 and Fig. 62 through Fig. 64.  
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Fig. 64—Comparison of probabilistic functions representing the average tendency of the results for the general 

scenario (all wells included).  

 

The results of the comparative analysis between the DCA models are presented in 

Table 17 and Fig. 65. The green cells indicate the best DCA technique (traditional DCA or 

Pressure Normalize DCA) for each particular DCA model (e.g., Arps, SEPD, Duong). Specific 

observations about the DCA models and techniques are discussed below: 

 Arps’ models, as well as Modified Hyperbolic and Modified SEPD, provided 

better estimations if applied with the traditional DCA method.  

 SEPD, Modified Duong, and Power Law models provided better estimations 

when applied with the SPN method.  

 LGM and Duong’s model provided better results if applied with ∆ΨN and PN 

methods, respectively.  
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 If the outputs of all DCA techniques are averaged (See bottom line of Table 17), 

the Modified Duong’s model may provide the best average solution (Average of 

mean percent errors: 0.4%).  

 The forecasting capacity of Duong and modified Duong was optimized by 

applying the PN-DCA techniques.  

 SEPD and MSE produced the most conservative estimations (lower percent 

error). 

 In general, the PN-DCA techniques tend to generate more conservative 

estimations than the traditional DCA technique (See Fig. 65).  

 

Table 16—Results of the comparative analysis of DCA techniques (general, oil, and gas scenarios). 

 

 

 

All DCA PN ∆ΨN PN2 ΔPF HE Average

Mean -1.8% -8.8% -9.2% -6.1% -9.1% -3.9% -6.5%

Std. Dev 0.26 0.27 0.21 0.26 0.27 0.18 0.24

Minimum -90.1% -72.7% -69.7% -65.2% -72.6% -44.8% -69.2%

Maximum 115.6% 126.8% 78.7% 109.8% 113.7% 74.2% 103.1%

Gas DCA PN ∆ΨN PN2 ΔPF HE Average

Mean 0.0% -11.1% -9.1% -6.8% -11.3% -4.2% -7.1%

Std Dev 0.23 0.22 0.21 0.24 0.22 0.18 0.22

Minimum -90.1% -68.5% -69.7% -65.2% -67.7% -44.8% -67.7%

Maximum 101.4% 126.8% 78.7% 109.8% 95.1% 55.7% 94.6%

Oil DCA PN ∆ΨN PN2 ΔPF HE Average

Mean -9.3% 0.9% -- -3.1% 0.1% -0.2% -2.3%

Std Dev 0.34 0.42 -- 0.33 0.42 0.22 0.34

Minimum -85.2% -72.7% -- -63.9% -72.6% -20.3% -63.0%

Maximum 115.6% 110.2% -- 94.5% 113.7% 74.2% 101.6%
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Table 17—Summary of results (mean percent error) for the general comparative analysis (all wells included). 

 

 

 

Fig. 65—Comparison of results for all DCA models (All wells included). 

 

5.2.3.3. Analysis of Results – Gas Scenario 

All gas wells have been grouped in this scenario. In total, 3612 hindcasts comprise the 

entire set of outputs included in this scenario. Most important observations are presented 

below: 

 In general, the traditional DCA technique provided the best average result 

(mean percent error: 0.0%) for the whole scenario (Fig. 66).  

All Arps MHyp SEPD MSE DNG MDng LGM PLE HE

DCA -2.3% -2.5% -16.1% -13.2% 10.4% 6.7% 9.9% -7.2%

PN -7.7% -9.2% -25.8% -24.6% 1.2% -1.9% 12.0% -14.3% -3.8%

∆ΨN -5.2% -6.3% -22.7% -23.3% -3.2% -4.6% 3.4% -11.2% -3.9%

SPN -17.2% -16.4% -15.5% -14.6% 2.3% -0.3% 12.2% 0.7%

ΔPF -8.9% -10.3% -25.8% -24.4% 5.0% 2.0% 9.0% -19.7%

Average -8.3% -8.9% -21.2% -20.0% 3.1% 0.4% 9.3% -10.3% -3.8%
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 The traditional DCA technique provided better results for Arps, Modified 

Hyperbolic, SEPD and MSE models. 

 The forecasting capacity of Duong and Modified Duong significantly improves if 

applied with the PN-DCA techniques—especially with SPN—instead of the 

traditional DCA. 

 LGM methods worked better with the ΔPF technique, while PLE yielded better 

results with the SPN method. See Table 18 and Fig. 67 for more details.  

 If the average of all techniques is considered, Duong’s model may provide the 

best approach (Average: 0.3%).  

 Just like in the general scenario (all wells included), PN-DCA techniques tend to 

generate more conservative estimations than the traditional DCA technique 

(See Fig. 67).  

 On average, SEPD and MSE produced the most conservative estimations (lower 

percent error).  

 An important observation is that in all cases ∆ΨN provided better outputs than 

the simple PN technique, which proves that more representative results may 

be obtained if the pressure-dependent properties of gas are included in 

production analysis by using pseudovariables (pseudopressures, pseudotime, 

and material balance pseudotime). 

 

Table 18—Summary of results (mean percent error) of the comparative analysis for gas wells. 

 

 

Gas Arps Mhyp SEPD MSE Duong MDng LGM PLE HE

DCA 0.8% 0.2% -11.0% -10.6% 9.6% 8.8% 5.9% -3.8%

PN -7.3% -8.7% -25.4% -26.2% -5.2% -7.1% 5.0% -13.5% -4.6%

∆ΨN -5.2% -6.3% -22.7% -23.3% -3.2% -4.6% 3.4% -11.2% -3.9%

SPN -15.7% -16.5% -15.0% -15.7% 1.0% -0.2% 9.1% -1.2%

ΔPF -8.4% -9.8% -25.5% -26.3% -0.5% -2.3% 1.7% -19.0%

Average -7.2% -8.2% -19.9% -20.4% 0.3% -1.1% 5.0% -9.8% -4.2%
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Fig. 66—Results of the comparative analysis, only gas wells included. 

 

 

Fig. 67—Comparison of results for gas wells only. 

 

Considering that 71% of the wells used in this analysis are gas producers, it is not 

strange to find similar observations between the general and the gas well scenarios.  
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5.2.3.4. Analysis of Results – Oil Scenario 

All oil wells have been grouped in this scenario. In total, 660 hindcasts comprise the 

entire set of outputs included in this scenario. Most important observations are presented 

below. 

 

Table 19—Summary of results (mean percent error) of the comparative analysis for oil wells. 

 

 

 Overall, the PN-DCA techniques provided much better results than the 

traditional DCA method.  

 If the average of all DCA models is considered, the ΔPF technique provided the 

most accurate output (lower mean percent error: 0.1%) for this scenario (See 

Fig. 68).  

 Arps’ models yielded better estimations when applied with the PN-DCA 

technique, while the other models worked better with the SPN technique (See 

Fig. 69 and Table 19).  

 If the average of all techniques is considered, modified Duong’s model may 

provide the best approach (Average: 9.5%) in comparison with the other DCA 

models.  

 The best approximation was produced by the Harmonic Decline (HE) model 

(mean percent error: -0.2%), which also has the lowest standard deviation, and 

by Modified Duong with the SPN-DCA technique (See).  

Oil Arps Mhyp SEPD MSE Duong MDng LGM PLE HE

DCA -15.3% -13.9% -38.0% -24.0% 14.1% -2.6% 26.6% -21.4%

PN -9.3% -11.3% -27.7% -17.6% 28.5% 20.6% 41.6% -17.4% -0.2%

SPN -23.5% -15.9% -17.4% -9.9% 8.1% -0.5% 25.3% 9.1%

ΔPF -11.4% -12.1% -27.1% -16.0% 28.4% 20.6% 40.4% -22.4%

Average -14.9% -13.3% -27.5% -16.9% 19.8% 9.5% 33.5% -13.0% -0.2%
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 In general, Arps, SEPD, MSE and PLE showed a tendency to underestimate 

forecasts (conservative), while the other models showed a more optimistic 

behavior. 

 

 

Fig. 68—Results of the comparative analysis, only oil wells included. 

 

 

Fig. 69—Comparison of results for oil wells only. 
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5.2.3.5. Analysis of Results by Play 

In this section, the results are presented for each play in separate. 

Table 20—Summary of results (mean percent error) for each play. 

 

 

Woodford Arps MHyp SEPD MSE DNG MDng LGM PLE HE
Average DCA 

and PN-DCA

DCA -3.6% -3.6% -12.2% -12.2% 2.7% 2.7% -4.1% -6.0% -4.5%

PN -3.6% -3.6% -20.5% -20.5% -3.5% -3.5% 3.5% -7.7% -8.8% -7.4%

∆ΨN -5.2% -5.2% -22.3% -22.3% -4.5% -4.5% 0.0% -9.0% -10.2% -9.1%

SPN -33.8% -33.8% -12.8% -12.8% -0.1% -0.1% 4.9% -4.4% -11.6%

ΔPF -3.7% -3.7% -21.2% -21.2% 2.9% 2.9% -0.9% -13.9% -7.3%

Average -10.0% -10.0% -17.8% -17.8% -0.5% -0.5% 0.7% -8.2% -9.5% -8.0%

Eagle Ford Arps Mhyp SEPD MSE Duong MDng LGM PLE HE
Average DCA 

and PN-DCA

DCA -13.7% -14.3% -41.2% -27.9% 18.0% -0.1% 27.6% -17.6% -8.7%

PN -1.0% -7.9% -26.0% -19.2% 34.0% 25.8% 47.7% -14.2% 3.6% 4.9%

SPN -25.1% -16.5% -12.8% -8.4% 18.8% 9.8% 28.1% 13.3% 0.9%

ΔPF -6.0% -12.5% -24.8% -18.0% 34.0% 25.8% 47.1% -18.8% 3.3%

Average -11.4% -12.8% -26.2% -18.4% 26.2% 15.3% 37.6% -9.4% 3.6% 0.1%

Bakken Arps Mhyp SEPD MSE Duong MDng LGM PLE HE
Average DCA 

and PN-DCA

DCA -19.2% -12.8% -30.5% -14.9% 5.0% -8.5% 24.1% -30.3% -10.9%

PN -28.8% -19.3% -31.7% -13.8% 15.5% 8.6% 27.2% -24.9% -9.3% -8.4%

SPN -19.7% -14.7% -28.3% -13.2% -16.8% -24.5% 18.9% -0.5% -12.3%

ΔPF -23.9% -11.4% -32.2% -11.2% 15.5% 8.6% 24.7% -30.8% -7.6%

Average -22.9% -14.6% -30.7% -13.3% 4.8% -3.9% 23.7% -21.6% -9.3% -9.8%

Marcellus Arps Mhyp SEPD MSE Duong MDng LGM PLE HE
Average DCA 

and PN-DCA

DCA 2.4% 1.3% -7.7% -8.2% 12.6% 11.6% 10.0% -0.8% 2.6%

PN -9.5% -11.2% -30.0% -31.0% -10.6% -12.4% -3.0% -16.4% -1.1% -15.5%

∆ΨN -4.0% -5.3% -23.4% -24.0% -5.2% -6.4% -1.0% -10.7% 1.3% -10.0%

SPN -1.9% -2.9% -19.0% -19.6% -0.7% -1.9% 5.0% -6.0% -5.9%

ΔPF -11.7% -13.3% -29.6% -30.6% -7.4% -9.0% -4.1% -22.5% -16.0%

Average -4.9% -6.3% -21.9% -22.7% -2.3% -3.6% 1.4% -11.3% 0.1% -9.0%
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Fig. 70—Comparison of results for each play. 
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Overall, similar trends may be observed between the gas plays, as well as between the 

two oil plays (See Fig. 70). Therefore, general observations are similar to those mentioned in 

the two previous sections for oil and gas scenarios. It means that the play by play inspection 

confirmed the observation deducted from the analysis by fluid type (gas and oil scenarios). 

Table 20 presents a summary of results obtained for each play. Note that the green cells show 

the best technique for each DCA model, the red cells indicate the best DCA model in general 

(considering an average of all techniques), and the yellow cells point out the worst DCA model. 

 

 

Fig. 71—Comparison of results for wells on BDF. 
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5.2.3.6. Analysis of Results – Wells on Boundary-Dominated Flow  

All wells exhibiting the BDF signature have been grouped in this scenario. In total, 1941 

predictions comprise the entire set of outputs included in this scenario (1512 correspond to gas 

wells, while 429 correspond to oil wells). The prediction start points are before the BDF onsets. 

According to this classification, DCA models and techniques display similar trends for oil and gas 

wells (See Table 21 and Fig. 71). The most important observations are presented below: 

 Dual models (Modified Hyperbolic, MSE, and Modified Duong), which are 

specially designed to better switch from transient to BDF, produced slightly 

better results in comparison with their parent models (Arps, SEPD and Duong). 

 Consistently, SEPD and MSE generated the most conservative results.  

 With few exceptions, Arps, SEPD, MSE and PLE are generally conservative 

models (average of all techniques). 

 For gas wells, the traditional DCA technique yielded very optimistic results for 

Arps, Duong, Modified Duong and LGM models. However, applying Pressure 

Normalization techniques reduced the overestimation tendency of these 

models and generally provided more conservative estimations. 

 On average, Duong and modified Duong models generated more accurate 

forecasts for gas wells if applied with Pressure Normalization techniques. 

However, for oil wells the performance of these two models was better if 

applied with the traditional DCA techniques. 

 LGM tends to be optimistic, even if Pressure Normalization techniques are 

used. 

 The Harmonic Extrapolation (HE) method presented attractive results. 
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Table 21—Summary of results (mean percent error) for wells exhibiting BDF. 

 

 

5.2.3.7. Evolution of Forecasting Accuracy in Function of Amount of Production 

History 

The target of this section is to evaluate how the forecasting accuracy of DCA models 

and techniques evolve depending on the amount of production history available for the history 

match. It is expected that estimations accuracy improve as more production history is available. 

Multiple prediction start times (hindcasting onset) have been selected for each well. 

Depending on the amount of production history, up to three predictions were performed on 

each well. Fig. 72 presents the average prediction start point (PSP) for each play. The first set of 

predictions (PSP 1) is indicated in red, while the second and third sets of predictions (PSP 2 and 

3) correspond to the green and blue bars, respectively. Note that PSP consistently increase. 

There is not a third prediction scenario in Bakken because production the histories of these 

wells are short in comparison to the other plays.   

Gas - BDF Arps MHyp SEPD MSE DNG MDng LGM PLE HE
Average DCA 

and PN-DCA

DCA 9.5% 8.5% -6.6% -5.5% 19.5% 18.2% 14.6% 3.1% 7.7%

PN -9.6% -12.2% -29.1% -30.7% -5.3% -9.0% 8.9% -18.0% -2.4% -13.1%

∆ΨN -5.8% -7.9% -24.2% -25.2% -2.5% -5.2% 6.2% -14.0% -0.4% -9.8%

SPN -2.1% -3.8% -16.6% -17.8% 1.4% -0.9% 13.3% 2.6% -3.0%

ΔPF -11.5% -14.2% -28.8% -30.3% 0.6% -2.9% 6.5% -23.8% -13.1%

Average -3.9% -5.9% -21.1% -21.9% 2.7% 0.0% 9.9% -10.0% -1.4% -6.3%

Oil - BDF Arps Mhyp SEPD MSE Duong MDng LGM PLE HE
Average DCA 

and PN-DCA

DCA -20.7% -19.5% -30.0% -26.4% 2.4% -3.2% 16.9% -26.4% -13.4%

PN -15.5% -18.4% -31.0% -28.7% 13.8% 8.1% 31.1% -21.4% -7.6% -7.7%

SPN -26.0% -24.6% -17.5% -16.3% -4.9% -8.5% 19.2% 5.1% -9.2%

ΔPF -16.8% -18.3% -29.9% -27.5% 13.8% 8.1% 28.9% -27.2% -8.6%

Average -19.8% -20.2% -27.1% -24.7% 6.3% 1.1% 24.0% -17.5% -7.6% -9.7%
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Fig. 72—Average prediction start times for each play. 

 

 

Fig. 73—Forecasting improvement indexes for gas wells (Comparison between PSP 1 and 3). 

 

The evolution of the forecasting accuracy has been measured by a forecasting 

improvement index (FII), which represents the relative difference between the accuracy of two 

predictions for the same well (See Eq. 51). As previously stated, most of the wells in this 

analysis have 2 or 3 predictions (from different start times). Prediction onset times are 

presented in Table 15. Therefore, this index indicates how the accuracy (A) changes if more 

production data is available. Fig. 73 presents the average FII for gas wells. A positive FII means 
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that the accuracy of the estimations improves when more production data is available. On the 

other hand, a negative FII means that the accuracy of the estimations decreases when more 

production data is available.  

    (
     

  
)        ...................................................................................  (51) 

For gas wells, comparisons were performed between the first and the third prediction 

scenarios. Regarding the oil wells, most of them have a short production history in relation to 

the gas wells. Thus, it was not possible to perform more than 2 predictions per well. In fact, in 

some cases, there is only one prediction per well. In addition, given that the average difference 

between first and second prediction scenarios is relatively short, comparisons cannot be 

considered very representative. Therefore, meaningful observations cannot be deducted with 

confidence for the oil wells. 

The main observations from gas wells (Fig. 73) are presented below: 

 For most of the DCA models, the ∆ΨN technique had a higher improvement 

capacity than the PN technique, as expected. 

 The Duong and Modified Duong were highly benefited from the 

implementation of Pressure Normalization techniques. Arps’ models also 

presented significant improvements when Pressure Normalization techniques 

were implemented. 

 The traditional DCA technique showed higher improvement capacity than 

Pressure Normalization techniques for SEPD, MSE and LGM models. 

 Modified Hyperbolic and PLE presented intermediate behaviors. 

 HE showed to have a high capacity to improve its forecasting potential as more 

historic data is available. 
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5.2.3.8. High Pressure Rate Controlled Wells 

Pressure Normalizes techniques have an important application in high pressure, rate 

controlled wells, mentioned in Section 4.3.2. Given that high deliverability wells are constrained 

and production rates are maintained at constant values for some time, traditional DCA models 

cannot be used to forecast production performance. In those cases, pressure-normalized DCA 

techniques may provide a solution. Fig. 74 and Fig. 75 present two high pressure Eagle Ford 

wells that have been rate restricted during 6 month approx. As there is not declination, the DCA 

models cannot be applied. A simple solution is to skip the inconsistent production history. But 

in some cases, it could be a big portion of the available information. However, if production 

rates are corrected by pressure normalization (PNR), a smooth decline trend appears and the 

entire production history can be included in the forecasting analysis. 

 

 

Fig. 74—Application of pressure-normalized rates in well EF-10. Data is presented in a daily basis format. 

 

In this study, 7 out of 16 Eagle Ford wells were classified as high pressure, rate 

restricted wells, and in 6 out of those 7 wells, PNR enabled the application of decline curve 
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analysis on early production data. This is an important advantage, especially for those wells 

with short production history. 

 

  

Fig. 75—Application of pressure normalizes rates in well EF-7. Data is presented in a monthly basis format. 

 

 

Fig. 76—Number of high pressure, rate controlled Eagle Ford wells identified in this study. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

Based on the flow regime diagnosis and hindcasting analysis of the 47 wells from 4 

different unconventional plays (Marcellus, Woodford, Eagle Ford and Bakken) with an average 

production history of 27.8 months (Minimum: 9; Maximum: 44), the following general 

conclusions have been deducted from this study: 

 It was demonstrated that decline curve analysis based on pressure-normalized 

rates can be used as a reliable production forecasting technique suited for the 

interpretation of unconventional wells flowing under unstable operating 

conditions. 

 Pressure normalized DCA (PN-DCA) techniques may offer special advantages 

over the traditional DCA technique in some specific cases.  

 PN-DCA techniques proved to have the special ability to dissociate estimations 

of future production performance from the existing operating constraints 

under which production history is developed. 

 Pressure normalized rates (PNR) proved to have the ability to offer an alternate 

solution to high pressure, rate restricted wells by enabling and improving the 

application of decline curve analysis on early production data. 

 Duong and Modified Duong produced outstanding results when applied with 

the PN-DCA techniques. 

 SEPD and MSE were the models that produced the most conservative 

estimations. 

 Overall, the traditional DCA technique provided accurate predictions when the 

outputs from all DCA models were averaged—a combined models approach. 

Likewise, Modified Duong’s model produced the best solution when the 

outputs from all techniques were averaged—a combined techniques approach.  
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 In general, all the techniques produced conservative estimations. However, the 

least conservative approaches were provided by the traditional DCA. 

 In general, the harmonic decline model generated very accurate and precise 

estimations—comparable or in some cases even better than the traditional 

DCA models and techniques. 

 In the short term, dual models (Modified Hyperbolic, MSE, and Modified 

Duong), produced slightly better results in comparison with their parent 

models (Arps, SEPD and Duong). However, this difference may increase or 

change in the long term. 

Fluid type showed to be a major driver of the behavior of DCA models and techniques. 

When wells were grouped according to these conditions, they exhibited similar trends of 

percent error (accuracy). Therefore, additional conclusions are presented below depending on 

each scenario. 

Gas wells scenario: 

 In general, the PN-DCA techniques tend to generate more conservative 

estimations than the traditional DCA technique. 

 The traditional DCA technique provided better results for Arps, Modified 

Hyperbolic, SEPD and MSE models. 

 The forecasting capacity of Duong and Modified Duong significantly improves if 

applied with the PN-DCA techniques—specifically with SPN and ∆PF.  

 The pseudopressure normalization technique (∆ΨN) provided better outputs 

than the simple pressure normalization technique (PN), which proves that 

more representative results may be obtained if the pressure-dependent gas 

properties are included in production analysis by using pseudovariables 

(pseudopressures, pseudotime, and material balance pseudotime). 

 In general, the majority of DCA models improved their forecasting capacity as 

more historic production was available. Arps, Harmonic Decline, Duong, and 
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Modified Duong models presented significant improvements when applied 

with the pressure normalization techniques, while SEPD and MSE did the same 

when applied with the traditional DCA technique. 

Oil wells scenario: 

 Overall, the PN-DCA techniques provided much better results than the 

traditional DCA method.  

 Modified Hyperbolic and Arps’ models yielded better estimations when applied 

with the pressure normalization (PN) technique, while all the other models 

worked better with the square pressure normalization (SPN) technique. 

 In general, Arps, SEPD, MSE and PLE showed a tendency to underestimate 

forecasts (generate conservative solutions), while the other models showed a 

more optimistic behavior. 

Regarding the flow regime diagnosis, the following conclusions were deducted: 

 More consistent and representative flow regime interpretations may be 

obtained as diagnostic plots are improved by including the material balance 

time function, pseudovariables (for gas wells), and pressure-normalized rates. 

This means that misinterpretations may occur if diagnostic plots are not 

applied correctly. 

 The multi-methods approach proved to be a consistent and reliable solution to 

identify flow regimes. In addition, uncertainties associated to particular 

diagnostic plots may be reduced. 

 Two side effects were observed when using pressure-normalized rates in flow 

regime diagnostic plots. The linear flow signature weakened, while transition 

signatures got stronger.  

 Using the material balance time function (MBT) in flow regime diagnostic plots 

may lead to misinterpretation if production data is scattered, because it tends 
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to transform the data in such a way that a fake boundary-dominated flow 

signature may appear.  

6.2. Recommendations 

The most important restriction of this work is the amount and quality of the input data 

used in the analysis. Presently, many unconventional plays are being exploited in North 

America. Each one of these plays has very different fluids and reservoir properties—in addition 

to local variations. Therefore, a wide range of production performance behaviors may be 

expected for each well. Moreover, hundreds of wells are usually drilled in each of these plays, 

which are expected to be on production during long periods of time (tens of years). Considering 

these observations, the number of wells used in this work is a very small sample compared to 

the number of existing unconventional wells and all the possible production outcomes. 

Additionally, the historic production data of these wells is relatively short in comparison to the 

average expected time of production of an unconventional well. For this reason, some the 

conclusions of this work—especially those about particular DCA models—may not be valid for 

long term production forecasts. 

Considering these limitations, the following recommendations are proposed: 

 A similar study with a larger amount of wells, including cases from different 

plays with longer historic production data, should be performed to validate the 

findings of this work. 

 A complementary simulation study should be also developed to better 

understand the long-term behavior of the DCA models and techniques. 

 Unconventional liquid-rich plays are becoming more important. Therefore, it is 

recommended to continue evaluating PN-DCA techniques with more data from 

these plays. Only 36% of wells used in this study are oil producers (some of 

them with short production history and poor quality data). 
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Finally, it is unlikely that a single DCA model or technique can provide reliable and 

accurate solutions for different cases and scenarios. An alternate approach that need to be 

addressed are the combined solutions—average outputs from different DCA models and/or 

techniques. Therefore is recommended to develop further studies to assess the applicability 

and accuracy of this alternate approach. 
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