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ABSTRACT 

 

Uncertainty has a large effect on projects in the oil and gas industry, because 

most aspects of project evaluation rely on estimates. Industry routinely underestimates 

uncertainty, often significantly. The tendency to underestimate uncertainty is nearly 

universal. The cost associated with underestimating uncertainty, or overconfidence, can 

be substantial. Studies have shown that moderate overconfidence and optimism can 

result in expected portfolio disappointment of more than 30%. It has been shown that 

uncertainty can be assessed more reliably through look-backs and calibration, i.e., 

comparing actual results to probabilistic predictions over time. While many recognize 

the importance of look-backs, calibration is seldom practiced in industry. I believe a 

primary reason for this is lack of systematic processes and software for calibration. 

 The primary development of my research is a database application that provides 

a way to track probabilistic estimates and their reliability over time. The Brier score and 

its components, mainly calibration, are used for evaluating reliability. The system is 

general in the types of estimates and forecasts that it can monitor, including production, 

reserves, time, costs, and even quarterly earnings. Forecasts may be assessed visually, 

using calibration charts, and quantitatively, using the Brier score. The calibration 

information can be used to modify probabilistic estimation and forecasting processes as 

needed to be more reliable. Historical data may be used to externally adjust future 

forecasts so they are better calibrated. Three experiments with historical data sets of 

predicted vs. actual quantities, e.g., drilling costs and reserves, are presented and 
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demonstrate that external adjustment of probabilistic forecasts improve future estimates. 

Consistent application of this approach and database application over time should 

improve probabilistic forecasts, resulting in improved company and industry 

performance. 
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1. INTRODUCTION AND BACKGROUND  

 

1.1 Introduction 

The oil and gas industry is full of uncertainty. In addition to significant 

subsurface uncertainty and uncertainty in oil and gas prices, there are other risks, e.g., 

political, that contribute to uncertainty in oil and gas projects. The problem, as suggested 

by Capen (1976), is that the industry routinely underestimates uncertainty, often 

significantly. Underestimation of uncertainty (overconfidence) is almost a universal 

tendency. The cost associated with underestimating uncertainty can be substantial. 

According to McVay and Dossary (2012), moderate overconfidence and optimism can 

result in expected portfolio disappointment of more than 30%, and greater average 

disappointment has been experienced by the industry. Capen (1976) and other authors 

have pointed out that uncertainty can be assessed more reliably through look-backs and 

calibration, i.e., comparing actual results to probabilistic predictions over time. While 

many recognize the importance of look-backs, calibration is seldom practiced in the 

industry. We believe a primary reason for this is lack of a systematic process and lack of 

appreciation for the cost of underestimating uncertainty. 

1.2 Literature Review 

Capen (1976) demonstrated the tendency to underestimate uncertainty through 

several experiments. The first was a ten-question survey that required participants to 

provide 80% confidence intervals to general-knowledge questions. The actual 
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confidence intervals participants provided were too narrow, and actually only 32% on 

average. What Capen demonstrated is the tendency to be overconfident in assessment 

causes ranges to be too narrow. There were several other experiments conducted by 

Capen which yielded similar results, displaying underestimation of uncertainty. One 

explanation for the narrow estimate ranges is the failure to include all possible outcomes, 

specifically the ones that are unknown (Capen, 1976). Participants’ ranges were too 

narrow because they are unable to envision all possibilities. One way to improve 

probability ranges, as Capen demonstrated, is to understand that ranges are generally too 

narrow, and to use prior knowledge of this fact to scale the ranges appropriately. 

To quantify the cost of underestimating uncertainty, McVay and Dossary (2012) 

analyzed the effect overconfidence has on portfolio values. They found “for moderate 

amounts of overconfidence and optimism, expected disappointment was 30-35% of 

estimated NPV for industry portfolios and optimization cases…” (McVay and Dossary, 

2012). The expected disappointment percentage is equal to the estimated portfolio value 

minus the realized portfolio value, divided by the estimated portfolio value. It was 

shown that reducing overconfidence should result in a more reliable portfolio NPV 

estimate and lower expected disappointment. While McVay and Dossary assessed the 

cost of underestimating uncertainty, they did not fully address how to better assess 

uncertainty. 

The Brier score is a proper scoring rule that is commonly applied in other 

industries for assessing forecasts and was initially developed to assess weather forecasts 

(Brier, 1950). Lichtenstein and Fischhoff (1977) summarized the background for the 
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Brier score and its components. The Brier score ranges from 0 to 1, providing a way to 

rank probabilistic estimates. The Brier score is negatively oriented; a Brier score of 0 is a 

perfect score. The Brier score was intended to assess forecasts for events with a binary 

outcome. The initial application of this scoring rule was to assess the occurrence of a 

future event. The Brier score has also found application in assessing knowledge by 

assessing the proportion of correct responses (Bjorkman, 1992). The difference between 

the two types of assessments is detailed in a paper by Bjorkman (1992). In the first case, 

the Brier score is assessing an event and its corresponding uncertainty of occurrence; in 

the second case, the score is assessing the knowledge of a subject. The equations for 

both cases are the same, but perspective of the components in the Brier score change 

depending on what is being assessed. 

There are three components to the Brier score - calibration, resolution, and 

knowledge. Calibration is a measure of how close an assessor’s assigned probabilities 

match with the proportion of correct responses. Lichtenstein and Fischhoff (1977), 

consider the case where assessments are binary, and may be reduced to a situation of 

true or false. This will allow one to gauge if the probabilities assigned match the actual 

distribution. As stated in the paper by Lichtenstein and Fischhoff (1977), “The perfectly 

calibrated judge assigns probabilities so that, for all propositions assigned the same 

probability, the proportion true is equal to the probability assigned.” The equation for 

calibration is defined as, 

calibration 
 

 
∑    

 
     -   

 
 ........................................................................... (1) 
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In Eq. 1, N is the total number of assessments, T is the total number of different response 

percentages,    is the number of assessments for the response percentage   , as stated    is 

the percent assigned to an assessment, and    is the percent correct. The percent correct is 

the proportion of times a binary assessment is correct for a specific response percentage 

  . In other words, the percent correct is the sum of the binary assessments, 1 or 0, 

divided by the number of assessments in the percentage category. It may be seen in Eq. 1 

that when the forecasts response percentage,   , equals the percent correct   , the 

calibration is zero. The worst calibration score possible is equal to one. An additional 

way to test the calibration of an assessor is through calibration plots. Calibration plots 

are generated by plotting    vs.    . For a perfectly calibrated assessor the graph will 

display a linear correlation with unit slope. An example of a calibration plot is provided 

in Fig. 1. When an assessor is under confident, the response percentage is less than the 

percent correct resulting in a point above the unit slope line. Likewise when an assessor 

is overconfident, the percent assigned is greater than the percent correct, which results in 

a point below the unit slope line.  
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Fig. 1 Calibration plot 

 

Resolution ranks the range of varying percentages that are used to describe the 

forecast. When the individual percent correct varies from the overall percent correct, the 

resolution term will be large. The resolution is proportional to the squared difference 

between the individual proportion correct and the total proportion correct. The equation 

for the resolution component is 

resolution  
 

 
∑    

 
     -  

 
 ........................................................................... (2) 

The only new component in Eq. 2 that differs from Eq. 1 is c, the overall percent correct. 

The overall percent correct is the same as the percent correct, except the sum of the 

binary assessment is not segmented by response percentage. The overall percent correct, 

c, is the number of times the binary assessment is correct divided by the total number of 

responses. In a perfect forecast the resolution component equals the knowledge 
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component. Since the resolution is a negative component in the Brier score, the larger it 

is the better. The final component, knowledge, is related to the overall percent correct 

associated with a forecast. The knowledge component is defined in Eq. 3, 

 nowledge     -   ......................................................................................... (3) 

In Eq. 3, c is the overall percent correct, which is multiplied by its compliment. The 

knowledge score ranges from 0 to .25, and is maximized when the overall percent 

correct is 50%. Like calibration, knowledge is also negatively oriented, with a score of 

zero being perfect. According to Bjorkman (1992), a high knowledge score results from 

an assessor’s lac  of  nowledge, guessing on all assessments. Viewing the knowledge 

component from the event perspective, the knowledge component is actually measuring 

the uncertainty associated with an event, not the knowledge of an assessor. An event that 

happens frequently or infrequently will have a low knowledge score. The equation for 

the Brier score containing the three components is,  

 rier score  calibration - resolution    nowledge ........................................ (4) 

The Brier score is just one proper scoring rule; there are others that may be 

applied to rank predictions. One other scoring rule worth mentioning is logarithmic. 

Bickel (2010) compared the logarithmic scoring rule with the spherical and quadratic. 

The Brier score is negatively oriented and is equivalent to 1 minus the quadratic score. 

Bickel (2010) showed that the logarithmic scoring rule depends primarily on the percent 
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assigned to the correct answer. Each scoring rule may provide a different perspective on 

the way that it ranks estimates. 

Uncertainty assessment is an area in need of improvement in the petroleum 

industry. Bickel and Bratvold (2007) conducted a survey to determine the status of 

uncertainty quantification and decision making in industry. The paper addresses the need 

to move from merely quantifying uncertainty to using it to improve decisions. The 

survey was made up of 494 participants from SPE chapters and technical groups. In two 

separate questions participants identified the major obstacles in improving uncertainty 

quantification and decision making. The responses stated that uncertainty quantification 

was limited by a lack of time, and decision making was limited by a lack of management 

understanding. In an open-ended portion of the survey, participants were asked to 

provide the aspect in need of greatest improvement in quantifying uncertainty and 

decision making in their organizations. The two main responses were speed and 

consistency. Another paper that analyzes techniques to handle uncertainty in industry is 

Wolff (2010). Wolff concludes that in order to deal with uncertainty effectively in our 

industry, a common process should be developed that is easy to audit, which agrees with 

the findings of Bickel and Bratvold. 

In conclusion, there is a need to promote and improve uncertainty assessment in 

the oil and gas industry. Capen (1976) showed that there is a universal tendency to 

underestimate uncertainty and McVay and Dossary (2012) showed that the cost 

associated with underestimating this uncertainty can be large. While McVay and 

Dossary provided an understanding of the cost of underestimating uncertainty, there 
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remains a need for methodology to facilitate look-backs on forecasts to assess their 

reliability. More reliable forecasts, ones that reliably quantify uncertainty, are expected 

to have a lower disappointment (McVay and Dossary, 2012). Proper scoring rules such 

as the Brier score provide a method to rate assessors, and quantify the quality of their 

forecasts. Additional shortcomings of uncertainty assessment in industry were brought to 

light by Bickel and Bratvold (2007) through surveying industry professionals. 

Participants in the survey indicated a need to develop a quick and consistent method to 

assess uncertainty. Based on prior research, there is a need for methods to apply 

calibration and proper scoring to improve uncertainty assessment. 

1.3 Objectives 

The objectives of this research are to: 

1. Develop a widely applicable method for tracking and improving probabilistic 

estimates over time, by storing the estimates, performing look-backs, 

assessing proper scoring, and applying external calibration. 

2. Demonstrate the utility of the method by providing application examples 

from the petroleum industry. 

1.4 Methodology 

 I have created a database that will allow users to store probabilistic estimates 

and improve them over time. The database allows users to input new assessments and 

assign 10%, 50%, or 90% probabilities to their estimates. The true values corresponding 

to the estimates are stored in the database when available. The Brier score and its 
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components, mainly calibration, are used to evaluate the estimates, once the true values 

are available. Using historic estimates in the database and the corresponding percent 

correct values, external calibration may be applied to new estimates. External calibration 

is a method of externally modifying and improving new estimates using knowledge of 

the percent correct values from previous estimates. 
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2. DATABASE MODEL  

 

2.1 Relational Database 

 I developed a relational database for tracking and improving estimates using 

Microsoft Access (2010). A relational database is able to reduce redundancy of data by 

storing information in one table and linking it, as required, to other tables. A relational 

database improves the efficiency of updating data. If a user updates a data entry in one 

place it will be applied throughout the rest of the database where linked. The relational 

database is able to sort and process data using queries, which manipulate the data based 

on assigned criteria. I developed queries in the database to calculate the Brier score and 

its components from assessments. Forms may be used to interact with queries and 

display results. The database application I developed uses a form to specify the criteria 

to run different scoring rules. After the criteria are specified, the scoring rules may be 

run by linking to the appropriate queries. Forms may also be used to display graphs of 

tables and queries. 

2.2 Database Structure 

When designing the database, the first thing that I considered was its structure. It 

is important to understand primary keys and their function when designing a relational 

database. A primary key acts as a unique identifier for the entries in the table. A unique 

identifier is necessary in order to establish relationships between tables and perform 
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queries. Microsoft Access may automatically generate a primary key field, by assigning 

an increasing unique number to additional entries in a table.   

When developing the structure of the relational database I followed the 

normalization rules that were developed by Dr. E. F. Codd, a former employee at IBM. 

A summary of Dr. Codd’s rules for relational databases may be found in a book by 

Balter (2010). The three rules of normalization are referred to as the first, second and 

third normal forms, which serve as a guide to developing the database structure. The first 

normal form requires that each field in a table is reduced to its simplest possible form. 

For example, in order to maintain first normal form you cannot store first and last name 

in the same field (Balter, 2010). The first normal form also requires that fields have no 

repeated information. In order to agree with the repetition rule of the first normal form, 

there should not be multiple columns of data with the same type of information. An 

example that demonstrates repeated information would be columns that list out multiple 

orders such as order 1, order 2, and order 3. This structure of the database would limit 

the addition of a 4
th 

order and cause similar information to be repeated in a different 

field. The fields in tables should be reduced so that fields do not repeat similar 

information.  

The second normal form requires that each field in a table must be dependent on 

the primary key. The second normal form only applies if there are composite primary 

keys, which are made up of two or more fields. The database I designed has only one 

primary key in each table, which is a unique increasing number for each additional row. 

For example, in an orders table the primary key, call it Order ID, is a unique increasing 
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number for each order. It is possible to have a primary key that is made up of multiple 

fields, in which case it is important for all other fields to be fully dependent on the 

primary key fields. 

The third normal form requires that each field is independent of the other fields 

in a table. The third normal form prevents storing in a field the results of calculations 

involving data from other fields in the table, which would establish a dependency 

between the fields. For example, you would not store total cost in a table, which is a 

function of unit price and quantity. Instead, queries should be used to manipulate the 

data to perform calculations. The three rules of normalization are the guidelines that I 

followed when constructing my relational database.   

There are three main tables in the database structure, the Assessor table, the 

Question table, and the Assessment table. The Assessor table contains the names and 

identification of the people and/or entities making estimates. The Assessor table holds 

the information for the First Name, Last Name, and Group ID. The primary key for the 

Assessor table is the ID field, which is an increasing unique number. The Assessor table 

and its fields are shown in Fig. 2.  

The Question table stores the information about what is being assessed. The 

Question table holds the fields for the Assessed Quantity, True Value (of the quantity 

assessed), Date of True Value, Category, and Units. The Assessed Quantity field 

describes what is being assessed. The True Value field is the actual value for the 

quantity, and Date of True Value is the date the actual value was obtained or will be 

available. The Category and Units fields are used to describe and sort the types of 
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questions. The primary key for the Question table is the Question ID field, which is an 

increasing unique number for each of the question entries. The Question table and its 

fields are shown in Fig. 3.  

The Assessment table stores the assessments made by assessors for a specific 

question. The Assessment table contains the percentiles assigned in the field Probability 

Assigned, along with their corresponding values in the Value Assigned field. The intent 

is to ultimately allow a user to assign any percentile for their estimate, but currently the 

database only works for P10, P50, and P90 percentiles. The Assessment table also 

contains the Date of Assessment field, which contains the date that the assessment was 

made. The Assessor and Question tables link through ID fields to the Assessment table 

so that information is not redundant, and the appropriate assessor and question are linked 

to the assessment. A Details field was added to the Assessment table so that additional 

information about the model or method used to make the assessment may be described. 

The primary key for the Assessment table is the Assessment ID field, which is an 

automatically generated increasing number for each new assessment. The fields in the 

Assessment table are shown in Fig. 4. 

 

 

Fig. 2 Fields in the assessor table 
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Fig. 3 Fields in the question table 

 

 

Fig. 4 Fields in the assessment table 

 

 

Fig. 5  Index button in design view of database 

 

When designing the database structure I set up the tables so that some fields are 

required, and some are unique so that record redundancies are not permissible. In 

addition to the primary fields there are indexed and required fields that reduce record 

duplicates. For example, in the Assessor table I decided to have the combination of the 

First Name, Last Name, and Group ID set as unique. This is accomplished by creating a 

unique index with the three fields. The Index button is shown in the database in Fig. 5. 

This prevents assessors from being duplicated in the database. If there are two assessors 

with the same first and last name, a user may alter the Group ID to distinguish between 
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the two assessors. In the Assessor table the First Name, Last Name, and Group ID are 

required fields.  

When considering how the Question table records should be unique, I decided 

that the fields Assessed Quantity, Date of True Value, and Category would provide the 

unique combination. The logic behind this is that some events, for example quarterly 

earnings, repeat every year but the unique field is the date. Including the Category field 

in the indexing provides additional flexibility in the naming convention used for 

Assessed Quantity. For example, if the Assessed Quantity is a well name, the Category 

may be modified to specify a unique attribute of the well, such as production or facilities 

cost, for the same Date of True Value. This indexing prevents duplication of the same 

Assessed Quantity with the same Date of True Value and Category fields. This structure 

allows questions to be filtered by Assessed Quantity to display all events. When setting 

the required fields for the Question table, I specified Assessed Quantity, Category, and 

Units to be required. The Category and Units fields are required to maintain the integrity 

of the records in the database; if a quantity happens to be unitless it may be specified in 

the Units field. It is important to note that if the Date of True Value is not specified for a 

question, the database may allow an Assessed Quantity name to be duplicated. Care 

should be taken when naming an Assessed Quantity and the Date of True Value should 

be entered when available. 

In the Assessment table the fields Probability Assigned, Value Assigned, and 

Date of Assessment are required. In order to keep the entries in the assessment table 

unique, I indexed the Question ID, Assessor ID, Probability Assigned, Date of 
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Assessment, and Details. This will prevent an assessment from being made for the same 

question, by the same person, and with the same probability and approach (Details) more 

than once on the same day.  

2.3 Scoring Rules and Queries 

After developing the structure of the database I programmed the Brier score and 

its components. In order to maintain the normalization of the tables, queries were used to 

manipulate the data. The equations that were programed in the database are Eqs. 1–4, 

which may be found in the literature review above. It is important to clarify that Eqs. 1–

4 are for a continuous cumulative distribution; the binary assessment described by 

Lichtenstein and Fischhoff (1977) is modified slightly. The binary assessment for the 

percent correct, according to the cumulative convention, is correct if the True Value is 

less than the assessment value. The percent correct, which is the ratio of correct 

responses to the number of responses in a percentage category, is modified in the 

equations when the binary assessment for the cumulative distribution convention is used. 

Likewise, the overall percent correct is affected by the cumulative distribution 

convention. 

The knowledge component as defined by Lichtenstein and Fischhoff (1977) does 

not have the same significance for the continuous distribution convention being used 

here. Knowledge is meant to gauge an assessor’s ability to ma e correct binary 

assessments. In order for an assessor to have a high knowledge score, the estimates for a 

continuous distribution require either the True Value to be less than the Value Assigned 

100% of the time, indicating perfect knowledge, or 0% of the time, indicating perfect 
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lack of knowledge. The knowledge score does not reveal much about well-calibrated 

continuous distribution estimates. A well-calibrated continuous distribution would 

require the proportion of times the True Value is less than the Value Assigned to match 

the Probability Assigned. Since the probability values assigned are currently limited to 

10, 50, and 90 percent, a well-calibrated continuous distribution would have a 

knowledge value of .25, which is the worst knowledge score possible. 

Resolution ranks the range of varying percentages that are used to describe a 

forecast. The resolution is proportional to the squared difference between the individual 

proportion correct and the total proportion correct. The resolution term does not reveal 

as much as it would about the assessments if the probability values were not restricted. 

The resolution for these assessments is not as meaningful because the majority of 

assessments provided include 10 and 90 percent estimates. These estimates at the 

extremes have a larger effect on the resolution than the 50-percent estimate since the 

overall percent correct tends to be centralized. The overall percent correct may be 

calculated by a weighted average of the relative percent correct values, and graphically 

should be near the vertical center of the points on a calibration plot (Wilks, 2011). 

The calibration component of the Brier score, which measures how close an 

assessor’s assigned probabilities match the proportion of correct responses, still makes 

logical sense for the continuous distribution convention used for the binary assessment. 

Due to the convention, calibration will be the primary component of the Brier score used 

for evaluating estimates.  
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In order to program the percent correct in the database I used an IIF statement in 

Microsoft Access, which works just like a logical If statement. The IIF statement assigns 

a 1 if the True Value of the assessed quantity is less than the Value Assigned. If the True 

Value is not less than the Value Assigned then a null value is assigned. The percent 

correct is equal to the number of times the True Value is less than the Value Assigned 

divided by the total number of assessments. When programming the resolution and 

calibration components I added an additional IIF statement that returned a value of zero 

if there are no assessments in a percentage category. The extra IIF statement prevents an 

error statement in Access from a division by zero in the percent correct. Since both the 

resolution and calibration are multiplied by zero if the number of assessments is zero, the 

extra IIF statement does not alter the equations, but only prevents the database from 

returning an error. 

 When using queries in the relational database it is possible to make calculated 

fields. To use calculated fields as part of an equation requires saving the query and 

referencing it in an additional query. In Microsoft Access it is not possible to reference 

calculated fields without saving them as a separate query. This causes the number of 

queries used for simple equations to become large. When building the queries used to 

calculate the components of the scoring rules I had to create queries for the separate 

percentages assigned. The calibration and resolution queries each have three components 

related to the 10, 50, and 90 percent cases. The knowledge component is only based on 

the overall percent correct (Eq. 3).  
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 The criteria I used to select how the scoring components were applied include the 

fields for Assessor ID, Group ID, Category, Date of Assessment, Date of True Value, 

and Details of the assessment. This set of criteria had to be applied to each of the 

components of the Brier score to provide a way to sort and filter the scoring rule. I set up 

the criteria for the queries so that they would be linked to a form, where the inputs for 

the criteria may be specified. Having the criteria applied in a form allows a clean 

interface for the user to specify the criteria they choose. I programed the criteria so that 

if a field is left blank in the form it would not be included for sorting. The form that I 

created to run the Brier score and its component queries is shown in Fig. 6. The criteria 

are entered in the text boxes of the form and scoring rule calculations are run by 

selecting the desired scoring rule component with the buttons on the bottom right of the 

form. 
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Fig. 6 Form for running the Brier score and its components 

 

 The form in Fig. 6 may be used to sort the different queries based on the 

available fields. If all of the fields are left blank when a query is selected the database 

will run the query for all the data available in the database. It is possible to run a query 

for an individual assessor by entering their Assessor ID. If an evaluation of a group is 

desired, the Assessor ID should be left blank and the Group ID may be used to filter the 

data. It is possible to combine the criteria fields so that an even narrower data set is used 

for the desired query. For example, Assessor ID, Category, and Date of Assessment may 

be used in combination to find assessments for a specific person, category, and date.   
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2.4 Importing and Exporting Data 

After designing the structure of the database I imported student assessments as a 

test case. Probabilistic assessments from students were collected for the Fall of 2011 and 

2012 during a senior level petroleum engineering course to test students’ calibration and 

to track their improvement over time. There are several different ways that data may be 

imported into a Microsoft Access database. One way data may be imported is through 

using the external data tab (Fig. 7). When importing all of the student estimates I used 

this method to pull the data from Microsoft Excel into Access. In order to import data 

into an existing table in Access the field headers in Excel must match the corresponding 

column headers in Access. Changing the headers requires a small amount of formatting. 

I created a template Excel file with the appropriate names for the headers. Fig. 8 shows 

the required headers for importing into the Assessor table. Fig. 9 shows the headers for 

the Question table. Typically when I import data, I begin by adding the assessor(s) and 

then importing the questions, so that I know the Question ID and Assessor ID numbers 

to create in the Assessment table. The template for the headers of the Assessment table 

may be found in Fig. 10. With additional programming, for example a program in Visual 

Basic, it may be possible to pull the data from Excel into the respective tables all at once. 

It is important to note that when importing dates they should be saved with a general 

format in Excel in order to import correctly into Access. 
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Fig. 7 External data tab in Microsoft Access 

 

 

Fig. 8 Template headers for importing into assessor table 

 

 

Fig. 9 Template headers for importing into question table 

 

 

Fig. 10 Template headers for importing into the assessment table 

 

Data may also be entered in the database manually, by opening a table and typing 

in the required fields. Another manual option for importing data is through the use of a 

form. I created an example form named Assessment to show how a form may be used to 

quickly make assessments for existing assessors and questions (Fig. 11). As seen in Fig. 

11, the Probability Assigned, Value Assigned, Question ID, and Assessor ID may be 

quickly assigned. 
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Fig. 11 Assessment form for manually inputting assessments 

 

 Just like importing data from Microsoft Excel, data may be quickly exported 

from Microsoft Access to Excel through a similar process. The external data tab in 

Access has the option to export data to Excel. Once a query is run or the data in a table 

are filtered as desired, they may be exported to an Excel spreadsheet, PDF, or even an 

email. 

2.5 Plotting Data 

 In the database I developed it is possible to generate plots of the data. The 

plotting capabilities of Microsoft Access are very limited. It is difficult to include 

multiple series of graphs and to manipulate the format of the charts. I created a 

calibration plot in the database that plots the percent correct vs. percent assigned to be 

able to check the calibration of an assessor (Fig. 12). 
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Fig. 12 Calibration plot in database 

 

The plot in Fig. 12 pulls data from queries that are linked to the criteria available 

in the interface shown in Fig. 6. If criteria are not selected in the interface shown in Fig. 

6, the criteria will be requested upon opening the plot. Since there is limited capability to 

manipulate plots in Microsoft Access, it is also possible to export data and results to 

Microsoft Excel where there is more plotting flexibility. 
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3. RESULTS  

 

3.1 Introduction 

 In the following sections, three examples are presented to demonstrate the 

application of the database. The first two examples are from the petroleum engineering 

industry, and the third is from a general set of assessments, which show the general 

utility of the database. The first is a data set of drilling cost predictions for Barnett shale 

wells, the second is a set of externally calibrated reserves estimates for the Barnett shale, 

and the third is a data set of general knowledge assessments made by students. 

3.2 Barnett Shale Drilling Cost Predictions  

 One of the data sets used to demonstrate the application of the database is a set of 

drilling cost predictions from the Barnett shale. Deterministic drilling cost predictions by 

engineers and the actual drilling costs were provided by an operating company. Valdes 

(2013) used this dataset to develop a model to improve deterministic drilling cost 

estimates. In the data set there are 158 wells drilled in 2011, 237 wells drilled in 2010, 

and 87 wells drilled in 2009. 

The model that Valdes developed uses historical data to convert deterministic 

estimates into probabilistic estimates (Valdes, 2013). The model uses the actual cost 

divided by the estimated cost from historical data in order to obtain ratios for the 

deterministic estimates. Once ratios are obtained from historical data, distributions are fit 

to the ratios to obtain correction factors, and correlations are determined to account for 
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dependencies between the correction factors. Using simulation with Latin Hypercube 

sampling, deterministic estimates for future wells may be converted to probabilistic 

estimates using the correction factor distributions. The probabilistic cost estimates were 

demonstrated to be more accurate than the deterministic cost estimates. Treating the 

deterministic estimates as median (P50) values, the probabilistic cost estimates were also 

demonstrated to be better calibrated graphically, and quantitatively. 

Valdes developed models for three different Barnett drilling-cost datasets. One 

model uses 2009 well costs to predict 2010 well costs, one uses both 2009 and 2010 

costs to predict 2011 wells costs, and the last uses only 2010 costs to predict 2011 well 

costs. Each of the three cases has different correction factor distributions, due to the 

different historical data. I imported the engineers’ deterministic estimates, Valdes’ 

probabilistic estimates, and the true well costs into the database.  

 After importing the data into the database, the calibration and proper scoring of 

the engineers’ estimates and the probabilistic estimates were evaluated by running the 

calibration query in the database. The results for both the engineers and the probabilistic 

estimates may be found in Table 1 which contains the percent correct values for the 

corresponding assigned probabilities of 10%, 50%, and 90%, as well as the calculated 

calibration scores. The deterministic estimates of the engineers were treated as P50 

estimates. 
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Table 1 Drilling cost prediction results 

Assessor Model Calibration 

Actual Percent 

Correct Values 

10% 50% 90% 

Valdes 
2011 Well Cost  

(Using 2010 Historic Data) 
.00005 .09 .50 .91 

Valdes 
2011 Well Cost 

(Using 2009 – 2010 Historic Data) 
.00134 .11 .54 .94 

Valdes 
2010 Well Cost  

(Using 2009 Historic Data) 
.00407 .06 .6 .93 

Engineers 
2011 Well Cost  

(Deterministic Estimates 50%) 
.00901  .405  

Engineers 
2010 Well Cost  

(Deterministic Estimates 50%) 
.00748  .414  

  

The probabilistic estimates proved to be better calibrated than those of the 

engineers. The 2011 well cost estimates made by Valdes using the 2010 historical data 

have a calibration score two orders of magnitude smaller than the engineers’ 

deterministic estimates for 2011. The model that Valdes used to predict the 2011 well 

costs using the 2009-2010 historic data was not as well-calibrated as the case that used 

just the  0 0 history, but it is still better calibrated than the engineers’ estimates for 

2011. The 2010 well cost estimates made by Valdes using the 2009 historical data have a 

calibration score .003 less than the engineers’ calibration for  0 0 well costs. 

 To demonstrate some of the flexibility of the database, calibration scores for the 

drilling cost estimates were calculated by quarter using the Date of True Value criterion. 

The results of the drilling cost predictions for 2011 by quarter are shown in Table 2.  

The engineers’ calibration improved for the second quarter, while Valdes’s calibration 

was nearly the same for both quarters. Valdes’s correction factors were not recalculated 
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for each quarter, which could explain why the calibration for the probabilistic estimates 

remained nearly constant for both quarters. 

 

Table 2 Drilling cost predictions for 2011 sorted by quarter 

Assessor Model Calibration 

Actual Percent 

Correct Values 
Quarter 

10% 50% 90% 

Valdes 
2011 Well Cost  

(2010 Historic Data) 
.00946 .01 .36 .88 Q1 

Engineers 

2011 Well Cost  

(Deterministic 

Estimates 50%) 

.05216  .272  Q1 

Valdes 
2011 Well Cost  

(2010 Data) 
.00942 .17 .65 .94 Q2 

Engineers 

2011 Well Cost  

(Deterministic 

Estimates 50%) 

.00207  .545  Q2 

  

In order to better explain the application of the relational database for this drilling 

prediction case, a scenario is provided to summarize the process. Historic estimates are 

stored over time in the database, both the estimates and true values. The historic 

estimates are used to correct the new estimates. The new estimates may also be stored in 

the database. All of the estimates, both the historic and new estimates, may be easily 

exported to Valdes’s model in Microsoft Excel. In this case since the estimates are 

deterministic, Valdes’s model is used to improve the estimates and convert them to 

probabilistic estimates using distributions of correction factors. The probabilistic 

estimates may then be imported back into the database to evaluate the calibration, once 

the true values are available. The deterministic estimates may also be used as historic 
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data for the next set of estimates once the true values for the new estimates are available. 

The database is an effective way to evaluate if an assessor is well calibrated. The results 

show that keeping track of estimates and calibration over time may be used to improve 

estimates. 

3.3 Barnett Shale Reserves and External Calibration 

 An additional data set that is used to show the application of this database comes 

from a set of reserves estimates for Barnett wells. There are 197 Barnett wells that were 

used to hindcast reserves using half of the known history to predict the other half. The 

wells have roughly 80 months of production data. The hindcast for the wells were based 

on the first 40 months, to predict the last 40 months. The Arps decline curve analysis is 

applied with the constraints of      0, and      1. The Jochen and Spivey method 

was the probabilistic method used to make the predictions (Jochen and Spivey, 1996). 

The Jochen and Spivey method is based on the bootstrap method in this case with 120 

realizations. From Gong et al. (2011) it is known that the Jochen and Spivey method is 

not well calibrated. The data for the Barnett wells were imported into the database from 

a Microsoft Excel file. The data set includes P10, P50, and P90 estimates and the true 

value for the reserves. The database was used to evaluate the calibration of the wells and 

the percent correct values as shown in Table 3.  
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Table 3 Calibration of Barnett shale reserves estimates using Jochen and Spivey model 

Assessor Model Calibration 

Actual Percent 

Correct Values 

10% 50% 90% 

Gonzalez, Raul Jochen and Spivey 0.07981 .17 .29 .46 

 

The calibration results in Table 3, may also be viewed graphically in a calibration 

plot generated with the database, and shown in Fig. 13. The calibration plot uses a query 

to plot the percent correct versus the percent assigned. It may be seen in Fig. 13 that the 

percentages assigned values of 50% and 90% are greater than the percent correct. When 

the percent assigned is greater than the percent correct it is a sign of overconfidence. A 

perfectly calibrated case would match the unit slope red line shown in Fig. 13.  

 

 

Fig. 13 Calibration plot of uncalibrated reserves estimates 
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 In order to improve estimates, Raul Gonzalez developed a model to externally 

calibrate data. The model that Gonzalez developed uses knowledge of the calibration to 

improve estimates. This example of the Barnett shale will be used to describe the method 

of external calibration. For each well, estimates were made at P10, P50, and P90 

probabilities. These first estimates will be referred to as the uncalibrated estimates, 

because external calibration has not been performed. At the field level, for the 197 wells, 

the percent correct values may be assessed, which will only match the percentages 

assigned if the wells are perfectly calibrated. Using the knowledge of the percent correct 

values a distribution may be defined for the wells. In order to perform the external 

calibration a lognormal distribution is chosen to obtain estimates that match the 

percentages assigned of 10%, 50%, and 90%. In order to define the lognormal 

distribution a mean and standard deviation are required. A guess for the mean and 

standard deviation are initially chosen to define the lognormal distribution for each well. 

The three percent correct values, obtained from the 197 wells, may be used to obtain 

reserves values from the lognormal distribution. The squared difference between the 

reserves values from the distribution and the uncalibrated reserves values are set as an 

objective function. The three squared differences are minimized to solve for the mean 

and variance of each well. Once the distribution is defined for each well the externally 

calibrated reserve values may be solved for using the assigned percentage values of 

10%, 50%, and 90%. The external calibration uses the distribution to properly calibrate 

the estimates, for the appropriate response percentages. 
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The external calibration process was used to externally calibrate the estimates for 

the Barnett wells in this example. The results for the externally calibrated case are shown 

in Table 4. 

 

Table 4 External calibration for Barnett reserves forecast using Jochen and Spivey model 

Assessor Model Calibration 

Actual Percent 

Correct Values 

10% 50% 90% 

Gonzalez, Raul Jochen and Spivey 0.00067 .12 .54 .91 

 

The results in Table 4 show a major improvement in the calibration and Brier 

score of the estimates. In order to visualize the calibration for the case in Table 4, a 

calibration plot for the externally calibrated estimates is shown in Fig. 14. The results in 

Fig. 14 are well calibrated and follow the unit slope almost perfectly. 
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Fig. 14 Calibration plot of externally calibrated reserves estimates  
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repeated using 2 years of production history to predict 7 years and 4 years. The percent 

correct values and calibration will be evaluated again, and external calibration will be 

performed using the new percent correct values. The reason for repeating the process is 

to use the new production data to accurately capture the production decline. The number 

of look-backs may vary based on the amount of history available and expected life of the 

wells. It is expected that the externally calibrated forecasts should become more 

consistent as more production data is used in the forecast. This example demonstrates 

the importance of storing historic data in the database over time, for the purpose of look-

backs and external calibration. As additional knowledge is acquired over time, additional 

look-backs and external calibration may be applied to improve future estimates. 

External calibration may be applied by managers throughout a company or on an 

individual basis. Knowledge of a consistent error in the percent correct values of a 

company or an individual’s estimates may be used to externally calibrate future 

estimates. Since external calibration is preformed after the initial estimates, external 

calibration may be performed by the estimator or an outside party such as a manger.  

3.4 Student Estimates 

Student estimates were collected for petroleum engineering and general 

knowledge questions. The estimates were collected throughout a semester and students 

were provided with feedback of their results. The goal of recording students’ estimates 

was to make them aware of their overconfidence, and to keep track of their progress over 

time. At the onset of my research a Microsoft Excel spreadsheet was used to keep track 

of the student estimates, but it became apparent that there were limitations to using a 
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spreadsheet and that a database would be more suitable for keeping track of estimates. 

The student estimates were imported into the database for the Fall semesters of 2011, 

and 2012. The student estimates were used as a test case when developing the database.  

 The student data set provides an example of how the database is general enough 

to be applied in other industries. There were three question categories that students were 

tasked with estimating. The first category is a list of questions from a paper by Capen 

(1976), the second were Texas A&M football games, and the third petroleum 

engineering questions. The questions imported in the database included the Capen 

questions, and the football games. The petroleum engineering questions were not 

imported because they were in multiple choice format. The database currently is not 

designed to handle multiple choice assessments. 

 The calibration of the students’ estimates for the football games showed 

interesting results. The calibration of the students improved over the course of the 

semester for the estimates of football games in 2012. I used the database to evaluate the 

calibration for the students for the first and second half of the football seasons. The 

calibration for the students for the first 6 games and last 6 games of the 2012 football 

season may be seen in Table 5. The results for the 2011 estimates were evaluated also, 

but no conclusions could be easily drawn between the first and second half of the 

semester, because there were an odd number of assessments. 
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Table 5 Calibration of 2012 Texas A&M football estimates 

1st half of 2012 season football games 
Actual Percent 

Correct Values 

Assessor Calibration 10% 50% 90% 

501-2012 0.03944 .11 .38 .59 

2nd half of the 2012 season football games 
Actual Percent 

Correct Values 

Assessor Calibration 10% 50% 90% 

501-2012 0.01544 .04 .31 .81 

 

The results of Table 5 show that the calibration for the estimates of the last six 

games improved from the first six games. The students showed an improvement of 

calibration for the second half of the semester from the first. The calibration plot for the 

results shown in Table 5 may be seen in Fig. 15.  

 

 

Fig. 15 Student estimates for the 2012 Texas A&M football season 
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The results of Fig. 15 show that the calibration for the 90
th

 percentile estimates 

improved for the students in the second half of the semester. The results convey that the 

students became better calibrated the second half of the semester compared to the first. 

The reason for the improvement in calibration is related to the students applying look-

backs for their estimates. Look-backs, provided students the opportunity to learn from 

their previous estimates and make better estimates in the future by scaling their estimates 

accordingly.  
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4. CONCLUSIONS 

 

 I created a relational database that facilitates the process of applying calibration 

and improving probabilistic estimation. The database stores probabilistic estimates and 

the true values over time, performs look-backs, and assesses proper scoring. The three 

application examples presented show how the database may be applied to improve 

probabilistic estimates. The first two examples were from the petroleum engineering 

industry; the third was from a general set of assessments and shows how the database 

may be applied in other industries. Each of the examples demonstrates the value of 

storing historical estimates and their actual values in the database over time, for the 

purpose of externally modifying and improving future estimates. The drilling cost 

prediction results show how historical drilling cost estimates may be used to improve 

future cost estimates. The reserves prediction example shows how reserves estimates 

may be improved using knowledge of previous reserves estimates. The student estimates 

example illustrates the broad application of the database, and demonstrates how look-

backs contributed to better quantification of uncertainty and improvement of the 

students’ estimates over time. Improving probabilistic estimation is expected to reduce 

disappointment. Continuous application tools and methods similar to those proposed 

herein should improve probabilistic forecasting, benefitting company and industry 

performance.  
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5. FUTURE WORK 

 

There are areas for future work to improve the database that I have developed. 

Areas for improvement include extending the database functionality to allow assessors to 

assign any probability to assessments, functionality to accommodate multiple choice 

assessments, and providing methods of external calibration within the database. There 

are also additional areas that would add to the overall functionality of the database.  

 Currently the database allows assessors to make numerical assessments and 

assign probabilities of 10%, 50%, and 90% to their assessments. It could be beneficial to 

provide the functionality within the database for an assessor to assign any probability 

from a continuous distribution. Allowing assessors to assign any probability would 

impact the resolution score. The resolution is dependent on the probabilities assigned 

that have the largest difference from the overall percent correct. It may be that the 

resolution score would have more meaning if an assessor could assign any percentage 

from a continuous distribution.  

 The database currently allows users to make numerical assessments and assign a 

probability to their assessments which has, or will have, a true value. The database is not 

designed however to evaluate the scoring and calibration for multiple choice 

assessments. It would benefit the general nature of the database to add the capability for 

multiple choice assessments. There may be a situation where a questionnaire or survey is 

given in multiple-choice format. It might be beneficial to add functionality to the 
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database so that multiple-choice assessments may be included in evaluating an assessor’s 

calibration. 

 In addition to the previous two improvements mentioned, it would be beneficial 

to add functionality within the database for external calibration. Currently it is possible 

to export the assessments to Microsoft Excel and perform external calibration using 

models developed in Excel. It would provide value to the database to have an external 

calibration method within the database. It could be difficult to provide a method of 

external calibration in the database since one of the limitations of Microsoft Access is 

the ability to easily manipulate data, or perform complex operations. It might be more 

practical to export the data to Excel, and perform the external calibration using models 

developed in Excel. 

 There are some additional alterations to the database that would improve 

functionality. One of which is the ability to run a loop of queries for a particular group of 

assessors so that the proper scoring for each person in the group is evaluated. Currently a 

user is required to run the Brier score components for each assessor individually or a 

group collectively. One is not able to automatically generate the individual results for 

each assessor in a group. In addition to adding a loop for the queries, there may be 

additional fields that the user may want to define to describe the quantities assessed or 

the assessments. The database was designed for general use, and it was not possible to 

foresee every scenario in which it would be used. The diverse applications for the 

database will drive the need for new descriptive fields, and its continued development. 
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