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ABSTRACT

In wireless communication systems, relays are widely used to extend coverage.

Over the past years, relays have evolved from simple repeaters to more sophisticated

units that perform signal processing to improve signal to interference plus noise ratio

(SINR) or throughput (or both) at the destination receiver. There are various types

of relays such as amplify and forward (AF), decode and forward (DF), and compress

and forward (CF) (or estimate and forward (EF)) relays. In addition, recently there

has been a growing interest in two-way relays (TWR). By utilizing the concept of

analog network coding (ANC), TWRs can improve the throughput of a wireless sys-

tem by reducing the number of time slots needed to complete a bi-directional message

exchange between two destination nodes. It’s well known that the performance of a

TWR system greatly depends on its ability to apply signal processing techniques to

effectively mitigate the self interference and noise accumulation, thereby improving

the SINR. We study a TWR system that is equipped with multiple antennas at the

relay node and a single antenna at the two destination nodes. Different from tra-

ditional work on TWR, we focus on the case with imperfect knowledge of channel

state information (CSI).

For such a TWR, we formulate a robust optimization problem that takes into ac-

count norm-bounded estimation errors in CSI and designs an optimal beamforming

matrix. Realizing the fact that this problem is extremely hard to solve globally, we

derive two different methods to obtain either optimal or efficient suboptimal beam-

forming matrix solutions. The first method involves solving the robust optimization

problem using the S-procedure and semidefinite programming (SDP) with rank-one

relaxation. This method provides an optimal solution when the rank-one relaxation
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condition for the SDP is satisfied. In cases where the rank-one condition cannot be

satisfied, it’s necessary to resort to sub-optimal techniques. The second approach pre-

sented here reformulates the robust non-convex quadratically constrained quadratic

programming (QCQP) into a robust linear programming (LP) problem by using

first-order perturbation of the optimal non-robust beamforming solution (which as-

sumes no channel estimation error). Finally, we view the TWR robust beamforming

problem from a practical standpoint and develop a set of iterative algorithms based

on Newton’s method or the steepest descent method that are practical for hardware

implementation.
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NOMENCLATURE

a,A Scalar - normal font letters

a Vectors - bold lower case

A Matrix - bold upper case

IM ,OM Identity matrix and Zero matrix of dimension M

1M×1 All one column vector of dimension M

vec(A) Vectorization of matrix A

ivec(a) Inverse operation of vec(A)

⊗ Kronecker product

� Hadamard (elementwise) multiplication

A � 0 A is positive semi-definite

(·)T Matrix transpose

diag(a) Matrix with diagonal entry diag(a)

tr(·) Trace of a matrix

rank(·) Rank of a matrix

(·)T transpose

(·)H Hermitian transpose

(·)∗ conjugate operations

<(·) real part of a complex variable

=(·) imaginary part of a complex variable

R, C Real and complex number fields respectively

RN×1, CN×1 N × 1 Real and complex vector fields respectively

RN×N , CN×N N ×N Real and complex matrix fields respectively
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1. INTRODUCTION

A wireless system always faces the inherent challenges of communicating over

the freespace media (wireless channel). In many cases, the wireless channel can be

very harsh thereby posing serious challenges for the system to operate effectively.

Below are some typical conditions under which a wireless system may need to oper-

ate. First, the electromagnetic waves travelling from the transmitter to the receiver

always undergo path loss, whereby the electromagnetic signal strength decays ac-

cording to an inverse power-law over the distance traveled [1]. In addition to path

loss, signals suffer from large-scale shadowing which is dependent on the terrain in

which the system is operating, where large object such as hills or large buildings

obscure the main signal path between the transmitter and the receiver. Then there

are the effects of small-scale multipath fading, which is due to the multipath sig-

nal reflection, propagation, and non coherent combining. Depending on the relative

speed between the source and destination nodes, the fading fluctuations can be very

drastic. A deep channel fade can cause the received signal strength to drop drasti-

cally, hindering the ability of the destination node to decode the source message. At

last, transmissions from other nodes can cause interferences, which is inevitable in

wireless communications.

To combat the above issues, modern digital wireless communication systems em-

ploy a variety of techniques, some of which assume additional hardware resources

such as multiple transmitter and (or) receiver antennas and relay nodes. In some

cases, as in a distributed network, the antennas can even be geographically dis-

tributed. Most of these communication systems use sophisticated signal processing

and channel coding techniques to take the full advantage of the additional hardware
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resources to combat harsh wireless channel conditions. Beamforming is a technique

that is widely used to obtain significant boost in performance in a wireless system. In

addition, wireless relays are deployed to extend coverage and to improve the quality

of service (QoS). In the following subsections of this chapter, we will discuss various

types of wireless relay systems and in particular, two-way relay (TWR) systems.

We will then discuss the concept of beamforming in wireless communications system

and its application to relay networks. Next, we will introduce the concept of robust

beamforming followed by a discussion on prior works in beamforming and robust

beamforming, and finally we will discuss the main contribution of this dissertation.

1.1 Relays for Wireless Systems

In a wireless communication system, relays may be used to improve coverage and

signal quality. A relay node typically resides between the source and the destination

to assist in communications. Wireless relays can be roughly categorized into three

major types : amplify and forward (AF), decode and forward (DF), and compress

and forward (CF) (or estimate and forward (EF)). AF relays, traditionally known

as repeaters, simply amplify the received signal at the relay node and forward that

to the destination. There is no signal processing done (in single-antenna relays) to

improve the signal to interference-plus-noise ratios (SINR) of the forwarded signal,

such that both signal and noise get amplified. In a DF relay, the signals received at

the relay node are decoded and re-encoded before being forwarded to the destination,

thereby improving the SINR. In the case of CF (or EF), the received signals at the

relay nodes are decoded and re-encoded to improve signal quality. The DF and CF

schemes can provide significant performance gain at the expense of some nominal

encoding/decoding latency and added complexity.

In addition to the various relaying methods mentioned above, there are also
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Figure 1.1: One-Way Relay System.

different signal multiplexing techniques for relay systems. In a typical one-way relay

(OWR) system, as shown in the Fig. 1.1, it takes four time slots for the information

exchange between nodes S1 and S2. This can be reduced to two time slots using

the concept of analog network coding (ANC) [2] and TWR system [3–5]. Network

coding [2] allows intermediate network nodes to mix the data or signals received

from multiple links. As opposed to completely avoiding interference by separating

interference and signals of interest, ANC tries to take advantage of the presence of

interference and improve the overall spectral efficiency of the system.
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Figure 1.2: Two-way Relay System.

Consider the TWR network of Fig. 1.2. In the first time slot, both S1 and

S2 transmit their information to the relay node R. The relay node receives the

two “interfering” signals and performs some signal processing and broadcasts that

signal to S1 and S2 simultaneously. Since S1 and S2 know their own transmitted

information, they can remove the “self-interference” from the received signal that

was broadcasted by the relay in the second time slot, thereby achieving a better

decoding of the intended information. The applications of channel coding techniques

for TWR systems by the authors of [6], where they introduced the use of lattice codes

to directly decode a function of the two transmitted signals, which is closely related

to the sum of the two functions. They proposed a scheme that can be thought of as

a joint physical-layer network-layer code which showed significant gain over general

analog network coding schemes. In addition to channel coding, beamforming is a

technique that can be used both at the transmitter side or at the receiver side of a

communication system to improve system performance with multiple antennas. In

the following section we will introduce the idea of beamforming in general and how
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it applies to wireless relay systems in particular.

1.2 Beamforming in Wireless Systems

Single-antenna systems have fixed radiation pattern, that cannot be flexibly

changed to concentrate the energy in a particular direction without physically re-

orienting the antenna element. When the transmitter/receiver or both nodes con-

tain multiple antenna elements, beamforming can be applied on both side to further

enhance the signal quality (through diversity). Beamforming is a technique that has

historically evolved from radar and sonar applications, where it is used to detect and

locate objects by steering the angular response of an antenna array in any target

direction [7–10]. In this sense, beamforming is a signal processing technique that

enables a system to direct the signals in the direction of interest by controlling the

phase and amplitude of the transmitted or received signals from each antenna ele-

ment. This is typically achieved by applying complex gains at the antenna array to

create the beam patterns.

Beamforming can be divided into two major categories: static beamforming or

beamsteering and adaptive beamforming. Beamsteering involves applying a set of

fixed predetermined weights (including phase shifts) to an antenna array where the

array elements have some fixed spacing (typically ≥ λ/2 apart, where λ is the wave-

length of the carrier). Adaptive beamforming can be performed at the transmitter

side or at the receiver side. In the case of transmit beamforming, the transmitter can

use the channel state information (CSI) between the transmitter and the intended

receiver as an input to a beamforming algorithm to determine the antenna weights

that are required to achieve a given performance target. For transmit beamform-

ing, typically CSI is estimated at the receiver side and fed back to the transmitter.

The transmitter uses this CSI to adapt/design the beamformer. There are several
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Figure 1.3: Adaptive Beamforming in a Wireless System.

advantages to this type of adaptive beamforming schemes, for instance beams can

be designed very effectively to avoid interference to other unintended users. The

direction of the beam can also be dynamically changed to accommodate variations

in the channel condition and mobility. In addition, beamforming with geographically

distributed antenna elements can be possible [11].

Fig.1.3 shows a typical application of beamforming in modern day cellular com-

munication system. In Fig. 1.3, the base stations are identified as eNB1 and eNB2

and the mobile devises are identified as UE1 and UE2 respectively. The base station

eNB1 is trying to maximize its transmitted signal energy towards its intended user

UE1 while at the same time trying to minimize its interference power to mobile user

UE2. Similarly the base station eNB2 is trying to maximize its transmitted energy

to user UE2 while minimizing its interference to UE1. Note that eNB1 needs to know

both the channel to its intended user UE1 and the unintended user UE2 in order to

design this type of beamforming solution. A similar situation holds for eNB2.

In a practical wireless system, most parameter such as CSI, frequency offsets,

timing offsets, SINR etc. that are critical to the operation of the system are usually
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estimated. CSI are typically estimated at the receiver side and the estimates are

fedback to the transmitter. Errors in CSI are inevitable and can come from at least

three sources. First, there is error in estimating the CSI [12, 13]; second, typically

there is restriction in the amount of data that is allowed to be fedback, which in

turn effects the granularity/accuracy of the CSI [14] and third the channel may

evolve (change) from the time it was observed to the time when the information

is received at the transmitter [15]. If the errors in CSI are not taken into account

in the design of the beamformer, the performance of the beamforming scheme can

degrade very significantly and can even completely fail to provide any reasonable

performance [16]. The importance of making an optimization problem (related to

beamforming) immune to design parameter variation was emphasized in [16], where

it was shown that a slight variation in the design parameter rendered the solution

nearly useless. So, robust beamforming design is very important from a practical

standpoint.

There are different ways to view the modeling of parameter uncertainties in an

optimization framework. Some of the techniques that are of importance are : sce-

nario analysis, stochastic programming and robust optimization. The choice of the

modeling typically depends on the problem at hand, available information about

the uncertainty parameter and the desired optimization goal. Scenario analysis is

conceptually the simplest. If there are relatively few scenarios for the uncertainty

parameter then this approach maybe the best one. In this case each of the possi-

ble scenario are included separately and the optimization problem is solved for each

scenario. This method becomes prohibitive in complexity if there are many cases to

consider. The next approach is stochastic programming, wherein the assumption is

that some knowledge about the uncertainty set, such as its distribution, is available.

The field of robust optimization was started by the seminal work of Ben-Tal and Ne-
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mirovski [17]. robust optimization uses an uncertainty modeling approach suitable

for a situation where the range of the uncertainty is known and not necessarily the

distribution. Typically in robust optimization it is assumed that some of the inputs

take an uncertain value anywhere between a fixed minimum and a fixed maximum.

Solutions are designed to be feasible for all the constraints when the inputs drift

within the uncertainty ranges. An extension of robust optimization is the idea of

introducing a chance constraint, i.e one can provide a probability for a solution to sat-

isfy specific constraints. After the introduction of the robust optimization framework

by the authors of [17], it spurred interest in researchers to investigate its application

in variety of different fields of study. The robust optimization framework assumes

that the optimization problem is convex. If the problem is not convex, then typically

the problem is relaxed into a convex problem. In this dissertation we mainly adopt

the robust optimization framework [17] for our uncertainty modeling.

1.3 Prior Results on Optimal Beamformer Design

The design of optimal beamforming solution in the context of wireless systems

have been studied extensively by various authors. Even though the concept of opti-

mal beamformer design is the same, the actual solution and the problem definition

vary widely based on the target application. Significant progress has been made in

the field after the introduction of the convex optimization framework [18] and its

efficient solution by using interior point methods [19]. The authors in [20] were some

of the first to formulate an optimal transmit strategy for downlink beamforming

and show the solution can be calculated efficiently using interior point methods for

semidefinite programming (SDP). Their algorithm minimized the total transmitted

power under certain constraints to guarantee a specific QoS. A more recent survey

on application of convex optimization for beamforming is provided in [21]. Design
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of downlink beamforming solution that is robust to channel uncertainty was consid-

ered by the authors in [22]. Their design criterion was to provide robustness against

uncertainty in the downlink channel covariance matrices. They assumed a Gaussian

distribution of the estimation error to obtain the covariance matrix for uncertainty.

Then the problem was formulated to minimize the total downlink transmit power

under the constraint that the outage probability does not exceed a certain thresh-

old value. The non-convex optimization was recast into a convex rank-relaxed SDP

and solved with interior point method. In [23], the authors also consider the design

of beam-formers for broadcast channels with some QoS constraints for each user,

under uncertain CSI at the transmitter. They considered a norm-bonded channel

uncertainty for each user, and set out to design a robust beamformer that minimizes

the total transmission power while satisfying each user’s SINR constraint. Again,

this problem is computationally intractable. They then relaxed the problem into a

convex problem by applying some restriction on the uncertainties such as indepen-

dence in the uncertainty between the left and righthand side of the constraint thereby

making the problem convex. In other cases the uncertainty set was made more re-

strictive to yield convex solutions. These approaches allowed the robust problem

to be reformulated into a SDP and solved via standard SDP solvers. The results

were then validated empirically. In [24], the problem of transmit beamforming to

multiple co-channel multicast groups were considered for the special case when the

channel vectors are Vandermonde. This arises when a uniform linear antenna (ULA)

array is used at the transmitter under far-field line-of-sight propagation conditions.

Two design approaches were considered, the first one minimizes the total transmitted

power subject to SINR constraints for each intended receiver; and second approach

was maximizing the minimum received SINR under a total transmit power restric-

tion. It was shown that for Vandermonde channel vectors, it is possible to recast the
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optimization in terms of the autocorrelation sequences of the beamforming vectors,

yielding an equivalent convex reformulation and the optimal beamforming vectors

can be recovered using spectral factorization. In addition to that, the robust exten-

sions of this problem is a special case that admit convex reformulation due to the

channel structure. The authors in [25] address the robust downlink beamforming

problem by using an iterative method to solve an alternating sequence of optimiza-

tion and worst-case analysis, where in each step, a convex optimization problem is

solved with interior-point method.

Next, we look at some of the prior results for robust beamformig with AF-relay.

In [26], the authors considered the problem of designing a distributed beamfroming

solution for non-regenerative relaying with imperfect CSI at the relays. The beam-

former design was based on the minimization of the total relay transmit power under

a SINR constraint. They adopted a worst-case design approach to recast the problem

into a convex optimization problem that is tractable. In [27] the optimal beamform-

ing solution for distributed AF relay under channel uncertainty was provided (with

additional condition on the quality of the estimated CSI). The design problem was

also defined as minimization of the relay transmit power subject to SINR constraints

at the destination nodes. They formulated the robust optimization problem with

S-Procedure and rank relaxation techniques and obtained an optimal solution under

some restrictions. In addition, a sub-optimal solution with a lower complexity was

proposed.

The design of a optimal non-robust beamforming matrix associated with a TWR

with multiple antennas at the relay node and a single antenna at each source node

was addressed by the authors of [5], where they characterized the capacity region for

a TWR system. They formulated the problem to minimize the relay transmit power

subject to SINR constraints at the source nodes. The problem was then transformed

10



into a SDP and solved with rank-one relaxation. They also showed that it is always

possible to find a solution which is rank-one and hence optimal. Their work provided

a upper bound on for optimal performance in a TWR system equipped with multiple

antennas at the relay node and a single antenna at each source node.

In [28] the authors presented a joint optimization of the precoders, equalizers and

relay beamformer of a multiple input multiple output (MIMO) TWR channel oper-

ating under norm-bounded CSI error. They minimized the sum mean square error

(SMSE) subject to power constraints at both source nodes and the relay node. This

problem is nonconvex and semi-infinite in its constraints. They used a generalized

version of Peterson’s lemma to handle the semi-infiniteness and reduced the original

problem to a single linear matrix inequality (LMI). Then they used an iterative al-

gorithm based on the alternating convex search methodology to solve the problem.

The authors of [29] setup their TWR robust beamforming problem to maximize the

minimum SINRs of two source nodes subject to a total relay power budget. They

decomposed the non-convex problem into a series of relay power minimization prob-

lems under minimum SINR constraints by using bisection search. Then the relay

power minimization problem was recast to a rank-relaxed SDP. Based on this they

obtained a suboptimal solution.

1.4 Motivation and Contribution

To the best of our knowledge, there are limited work ( [28] and [29]) done on

robust beamforming design for TWR systems. In this dissertation we extend the

design [5] and make it robust to channel estimation errors. We represent the channel

estimation errors as norm-bounded i.e. the uncertainty region as a sphere. We then

define the robust optimization problem to minimize the maximum transmit power at

the relay node subject to the constraints that the worst-case SINR at the two source
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nodes are above a predefined threshold.

The key difference of our approach to [28] and [29] is that we minimize the max-

imum relay power subject to SINR constraints at the terminal nodes. Unlike [28],

we do not make any additional signal processing requirements at the terminal nodes.

Although we can not guarantee global optimality for the robust solution (as this prob-

lem is not convex in general, which renders the globally optimal solution extremely

hard to obtain), but we can claim optimality for certain beamforming matrix solution

that satisfy the convex relaxation rank-one criteria. This is an advantage over [28]

and [29], as it provides a very useful upper bound on power which can be used to

imperially compare other computationally efficient methods. Furthermore, we pro-

pose a very low complexity method to create a robust beamforming solution from

the optimal non-robust TWR beamforming solution [5]. Lastly, we develop a more

practical view for TWR robust beamforming problem based on iterative search. In

order to evaluate the performance of the methods, we define two performance metric,

power and outage.

In the following we summarize the main contribution of this dissertation :

• In our first approach the optimization problem is cast into an SDP problem

by using the S-procedure and rank one relaxation and solved using standard

SDP solver. The robust beamforming matrix is then extracted using a prin-

ciple eigenvector based rank-one reconstruction. A Rank-one solution, when

obtained, guarantees an optimal solution and therefore provides a lower bound

for the power required by the TWR system to operate under CSI error.

This rank-one relaxed SDP solution suffers from two weaknesses - a) optimum

solution may not exist due to rank-one condition violation b) the problem can

become infeasible after convex relaxation. In order to address these problem
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we propose a “robust-hybrid” approach that combines the non-robust solution

of [5] when the robust method fails to provide an “acceptable” beamforming

solution.

• Realizing the fact that the original non-robust TWR beamforming design prob-

lem always provides a guaranteed optimal solution [5] and the fact that the

channel estimation errors are typically small; we propose a method to obtain

a linearized robust counterpart of the non-robust problem [5] by using pertur-

bation and worst-case analysis. The reformulated problem becomes a linear

programming (LP) problem which can be solved analytically to obtain a so-

lution that is “acceptable” both in terms of power and outage performance.

This approach has very low complexity and is a good candidate for practical

implementation.

• Finally, we develop a set of iterative algorithms for TWR robust beamforming

that is suitable from a practical standpoint. This technique uses the Newton’s

method and the steepest descent method to solve the TWR robust beamform-

ing problem by a process of alternating between a worst-case CSI error vector

search and solving an optimization problem.

The rest of the dissertation is organized as follows. In Chapter 2, we provide the

system model and formulate the TWR robust beamforming optimization problem

and cast it into convex SDP problem with rank-relaxation. In Chapter 3, we extend

the results from [5] and introduce a linearization framework for obtaining a robust

beamforming solution starting from the optimum non-robust solution [5]. In Chapter

4, we develop an iterative technique for robust TWR beamforming that is more

suitable for deployment on practical system. At last we conclude our work in Chapter

5.
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2. ROBUST BEAMFORMING FOR THE TWO-WAY RELAY SYSTEM WITH

CONVEX RELAXATION

In this chapter we presents the design of a robust beamforming scheme for a

TWR network, composed of one multi-antenna relay node and two single-antenna

terminals, with the consideration of channel estimation errors. Given the assumption

that the channel estimation errors are within a certain range, we aim to minimize

the transmit power at the multi-antenna relay node and guarantee that the SINRs

at the two terminals are larger than a predefined value. Such a robust beamforming

matrix design problem is formulated as a non-convex optimization problem, which

is then converted into an SDP problem by the S-procedure and rank-one relaxation.

The robust beamforming matrix is then derived from a principle eigenvector based

rank-one reconstruction algorithm. We further propose a hybrid approach based on

the best-effort transmission to improve the outage probability performance, which is

defined as the probability that one of two resulting terminal SINRs is less than the

predefined value. Simulation results are presented to show that the robust design

leads to better outage performance than the traditional non-robust approaches.

2.1 Introduction

In the next-generation wireless communication systems, smart relaying is one

of the key technology that is being investigated to extend the cell coverage and to

increase system capacity. For example, relaying will be standardized for the long

term evolution-advanced (LTE-A) wireless systems, In particular TWR has drawn a

great amount of attentions where multiple terminal nodes utilize common relays to

c©2012 IEEE. Reprinted, with permission, from [Aziz, A.; Meng Zeng; Jianwei Zhou; Georghi-
ades, C.N.; Shuguang Cui, Robust beamforming with channel uncertainty for two-way relay net-
works, IEEE International Conference on Communications (ICC), 10-15 June 2012]
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perform two-way information exchanges [2, 5, 30–32].

Specifically, the authors in [5], considered the beamforming design at the relay

and characterized the capacity region with the assumption that the relay is equipped

with multiple antennas and the terminal nodes are each equipped with a single-

antenna. Afterwards, different variations and various system setups were considered.

For example, the authors of [32] studied the achievable rate region for the two-

way collaborative relay beamforming problem, where multiple collaborative single

relays were considered. The authors in [30] studied the AF-based TWR system

with collaborative beamforming, where the focus is to minimize the total transmit

power across the terminal nodes and the relay cluster under a given pair of SINR

constraints. In [31], the authors studied the case where all the nodes in the network

are equipped with multiple antennas and proposed some suboptimal solutions.

However, all the above results on beamforming design for the TWR system are

based on the assumption that the CSI at all links are perfectly known. Unfortunately,

this assumption may not be true in practice, since CSI can only be obtained by

channel estimation, which is usually not perfect. As a result, in this chapter we

consider the robust TWR beamfroming under channel uncertainty where the SINR

at each terminal is constrained to be larger than a predefined value. Similar problems

for OWR relay robust beamforming were studied in [27] and [33] for single-antenna

relays was further extended to multiple antenna in [34].

The rest of chapter is organized as follows. In Section 3.2, we present the system

model and formulate the problem. Afterwards, we transform the original non-convex

problem into a SDP problem in Section 2.3 with the help of the S-procedure and

rank-one relaxation. In Section 2.4, we propose the principle eigenvector based rank-

one reconstruction approach to obtain the beamforming matrix. In Section 2.5,

simulation results are presented to show the performance improvement. In Section
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3.5, we conclude the chapter.

2.2 System Model

We consider a two-way relay system similar to the one introduced in Chapter 1,

Fig. 1.2, which consists of the relay node R and two terminal nodes S1 and S2.

The relay is equipped with M antennas and the terminal nodes are each equipped

with a single antenna. Based on the principle of ANC [2], the two terminal nodes

exchange information in two consecutive time slots via the help of R. In the first

time slot, terminal nodes S1 and S2 send messages s1 and s2 with power level p1

and p2 respectively to R, and the received signal at R is given as

yR = h1
√
p1s1 + h2

√
p2s2 + zR, (2.1)

where h1,h2 ∈ CM×1 are complex channel gains from the terminal nodes S1 and S2

to the relay respectively, zR is the circularly symmetric complex Gaussian (CSCG)

noise with covariance σ2
RI, and E[si] = 1, i = 1, 2. In the second time slot, the relay

R multiplies a beamforming matrix A to the received signal yR and transmits the

resulting vector signal AyR to the two terminal nodes. Based on the assumption of

channel reciprocity [32], the received signals at S1 and S2 are given as

y1 = hT1Ah1
√
p1s1 + hT1Ah2

√
p2s2 + hT1AzR + z1, (2.2)

y2 = hT2Ah2
√
p2s2 + hT2Ah1

√
p1s1 + hT2AzR + z2, (2.3)

where z1 and z2 are the CSCG noise at S1 and S2 with variances σ2
1 and σ2

2, respec-

tively. In the ideal CSI case as in [5], S1 and S2 can cancel out the self-interference

terms hT1Ah1
√
p1s1 and hT2Ah2

√
p2s2 from y1 and y2, respectively. However, in

practical scenarios, the terminal nodes only have access to the estimated versions of
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h1 and h2, which could be modeled as ĥ1 = h1 −∆h1 and ĥ2 = h2 −∆h2, where

∆h1 and ∆h2 are the channel estimation errors. Here we assume that ‖∆h1‖ ≤ ε1

and ‖∆h2‖ ≤ ε2 where ε1 and ε2 are some small positive constant. Note that we

could represent the true channel gains as h1 = ĥ1 + ∆h1 and h2 = ĥ2 + ∆h2. By

substituting h1 and h2 into (2.2) and (2.3) and using the fact that the amplitude of

channel estimation error is usually much smaller than the estimated channel gain,

the second-order terms of the channel estimation errors can be neglected. After sub-

tracting out the self interference terms ĥ
T

1Aĥ1
√
p1s1 and ĥ

T

2Aĥ2
√
p2s2 from y1 and

y2 respectively, we obtain the received signals ỹ1 and ỹ2 as in (2.4).

ỹ1 ≈ (ĥ
T

1A∆h1 + ∆hT1Aĥ1)
√
p1s1︸ ︷︷ ︸

remaining self−interference

+ (ĥ
T

1Aĥ2 + ĥ
T

1A∆h2 + ∆hT1Aĥ2)
√
p2s2︸ ︷︷ ︸

desired signal

+ (ĥ
T

1A+ ∆hT1A)zR + z1︸ ︷︷ ︸
noise

,

ỹ2 ≈ (ĥ
T

2A∆h2 + ∆hT2Aĥ2)
√
p2s2︸ ︷︷ ︸

remaining self−interference

+ (ĥ
T

2Aĥ1 + ĥ
T

2A∆h1 + ∆hT2Aĥ1)
√
p1s1︸ ︷︷ ︸

desired signal

+ (ĥ
T

2A+ ∆hT2A)zR + z2︸ ︷︷ ︸
noise

.

(2.4)

The corresponding transmit power at the relay R is given by (2.5) and the SINRs at

node Si are given by the SINRi (i = 1, 2, j = 3− i) in (2.6).

pR(A) = ‖Ah1‖2p1 + ‖Ah2‖2p2 + tr(AHA)σ2
R

= p1ĥ
H

1 A
HAĥ1 + p2ĥ

H

2 A
HAĥ2 + tr(AHA)σ2

R

+ 2<(p1ĥ
H

1 A
HA∆h1) + 2<(p2ĥ

H

2 A
HA∆h2)

+ p1∆hH1 A
HA∆h1 + p2∆hH2 A

HA∆h2.

(2.5)
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SINRi =
|ĥTi Aĥj + ĥ

T

i A∆hj + ∆hTi Aĥj |2pj
|ĥTi A∆hi + ∆hTi Aĥi|2pi + ‖(ĥTi + ∆hTi )A‖2σ2

R + σ2
i

. (2.6)

In order to guarantee the SINR requirements at both S1 and S2 in the presence of

channel uncertainty, the SINRs are desired to be greater than or equal to γ1 and γ2,

respectively, for all possible estimation errors. Since we assume the estimation errors

are bounded, i.e., ‖∆h1‖ ≤ ε1, ‖∆h2‖ ≤ ε2, the robust beamforming design problem

can be formulated as follows,

min
A

max
‖∆h1‖≤ε1,‖∆h2‖≤ε2

pR

s.t. min
‖∆h1‖≤ε1,‖∆h2‖≤ε2

SINR1 ≥ γ1 (2.7)

min
‖∆h1‖≤ε1,‖∆h2‖≤ε2

SINR2 ≥ γ2.

2.3 SDP Formulation with Rank-one Relaxation

We note that the problem in (2.7) is not convex in general, which renders the

globally optimal solution extremely hard to obtain. Therefore, we resort to sub-

optimal solutions, that achieves an “acceptable” performance in terms of power and

bears a low outage probability.

The problem in (2.7) could be equivalently recast as

Q1 : min
A,t

t (2.8)

s.t. min
‖∆h1‖≤ε1,‖∆h2‖≤ε2

SINR1 ≥ γ1 (2.9)

min
‖∆h1‖≤ε1,‖∆h2‖≤ε2

SINR2 ≥ γ2 (2.10)

max
‖∆h1‖≤ε1,‖∆h2‖≤ε2

pR ≤ t. (2.11)
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Definition 1 Given the SINR thresholds γ1 and γ2, define the system outage as the

event that the resulting SINR1 < γ1 or/and SINR2 < γ2.

In the optimization problem Q1, the number of constraints is essentially infinite,

since ∆h1 and ∆h2 are of continuous complex values. As a result, problem Q1

cannot be solved directly. Therefore, we need to transform the original problem

into an effectively solvable problem of finite dimensions by applying the following

theorem [35].

Theorem 1 (S-procedure) Given Hermitian matrices Aj ∈ Cn×n, vectors bj ∈

Cn, and numbers cj ∈ R, define the functions fj(x) = xHAjx+ 2<(bHj x) + cj with

x ∈ Cn, j = 0, 1, 2. The following two conditions are equivalent.

1. f0(x) ≥ 0 for every x ∈ Cn such that f1(x) ≥ 0 and f2(x) ≥ 0;

2. There exist λ1, λ2 ≥ 0 such that

 A0 b0

bH0 c0

 � λ1

 A1 b1

bH1 c1

+λ2

 A2 b2

bH2 c2

.

Some details about S-procedure can be found in [36] and its applications can be

found in [27].

Based on the S-procedure, we first need to transform the constraints of problem

Q1 into the quadratic forms in terms of ∆h1 and ∆h2. We then transform the

constraints into linear matrix inequalities (LMIs). Let us define following notations:

h̃i , ĥi⊗1M×1, h̆i , 1M×1⊗ĥi, ∆h̃i , ∆hi⊗1M×1, and ∆h̆i = 1M×1⊗∆hi, for i =

1, 2, with 1M×1 an all-one M-dimensional column vector. In addition, a , vec(A),

Ā , aaH , h = vec(h1,h2), ∆h = vec(∆h1,∆h2), G1 = [IM ,OM ], G2 = [OM , IM ],

DR = IM ⊗ 1M×1, and DL = 1M×1 ⊗ IM , with OM and IM as the M ×M all-

zero and identity matrices respectively. It is easy to see that ∆h̃i = DRGi∆h and

∆h̆i = DLGi∆h, for i = 1, 2.

19



Let α1 be the numerator of SINR1 (as given in (2.6)). Note that gTAh =

[(h⊗ 1M×1)� (1M×1 ⊗ g)]T vec(A), we could write α1 as

α1 = |
(
h̃2 � h̆1 + ∆h̃2 � h̆1 + h̃2 �∆h̆1

)T
a|2p2. (2.12)

After some mathematical manipulations α1 can be rewritten as

α1 = ∆hTQ1∆h∗ + 2<(qH1 ∆h∗) + c1,

where

Q1 = p2G
T
2D

T
Rdiag(h̆1)Ādiag(h̃

∗
2)DLG1

+p2G
T
1D

T
Ldiag(h̃2)Ādiag(h̆

∗
1)DRG2

+p2G
T
2D

T
Rdiag(h̆1)Ādiag(h̆

∗
1)DRG2

+p2G
T
1D

T
Ldiag(h̃2)Ādiag(h̃

∗
2)DLG1,

qH1 = p2(h̃2 � h̆1)T Ādiag(h̆
∗
1)DRG2

+p2

(
h̃2 � h̆1

)T
Ādiag(h̃

∗
2)DLG1,

c1 = p2

(
h̃2 � h̆1

)T
Ā
(
h̃2 � h̆1

)∗
,

Similarly, the denominator of SINR1, denoted by β1, can be written as

β1 = ∆hTQ2∆h∗ + 2<(qH2 ∆h∗) + c2,
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where

Q2 = p1G
T
1D

T
Rdiag(h̆1)Ādiag(h̆

∗
1)DRG1

+p1G
T
1D

T
Ldiag(h̃1)Ādiag(h̃

∗
1)DLG1

+p1G
T
1D

T
Ldiag(h̃1)Ādiag(h̆

∗
1)DRG1

+p1G
T
1D

T
Rdiag(h̆1)Ādiag(h̃

∗
1)DLG1

+σ2
RG

T
1D

T
LE � ĀDLG1,

qH2 = σ2
Rh̆

T

1E � ĀDLG1,

c2 = σ2
Rh̆

T

1E � Āh̆
∗
1 + σ2

1.

Now, we rewrite constraint (2.9) as



∆hT (Q1 − γ1Q2)∆h∗

+2<
(
(q1 − γ1q2)H∆h∗)) + c1 − γ1c2 ≥ 0

∆hTGH
1 G1∆h∗ ≤ ε21

∆hTGH
2 G2∆h∗ ≤ ε22.

According to the S-procedure in Theorem 1, the above quadratic three-inequality

system in equivalent to the following LMI:

Q1 − γ1Q2 + λ1G
H
1 G1 + λ2G

H
2 G2 q1 − γ1q2

qH1 − γ1q
H
2 c1 − γ1c2 − λ1ε

2
1 − λ2ε

2
2

 � 0
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Similarly, for SINR2, we have

α2 = ∆hTQ3∆h∗ + 2<(qH3 ∆h∗) + c3

β2 = ∆hTQ4∆h∗ + 2<(qH4 ∆h∗) + c4,

where

Q3 = p1G
T
1D

T
Rdiag(h̆2)Ādiag(h̃

∗
1)DLG2

+p1G
T
2D

T
Ldiag(h̃1)Ādiag(h̆

∗
2)DRG1

+p1G
T
1D

T
Rdiag(h̆2)Ādiag(h̆

∗
2)DRG1

+p1G
T
2D

T
Ldiag(h̃1)Ādiag(h̃

∗
1)DLG2

qH3 = p1(h̃1 � h̆2)T Ādiag(h̆
∗
2)DRG1,

+p1

(
h̃1 � h̆2

)T
Ādiag(h̃

∗
1)DLG2,

c3 = p1

(
h̃1 � h̆2

)T
Ā
(
h̃1 � h̆2

)∗
,

and

Q4 = p2G
T
2D

T
Rdiag(h̆2)Ādiag(h̆

∗
2)DRG2

+p2G
T
2D

T
Ldiag(h̃2)Ādiag(h̃

∗
2)DLG2

+p2G
T
2D

T
Ldiag(h̃2)Ādiag(h̆

∗
2)DRG2

+p2G
T
2D

T
Rdiag(h̆2)Ādiag(h̃

∗
2)DLG2

+σ2
RG

T
2D

T
LE � ĀDLG2,

qH4 = σ2
Rh̆

T

2E � ĀDLG2,

c4 = σ2
Rh̆

T

2E � Āh̆
∗
2 + σ2

2.
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In a similar way, constraint (2.10) could be shown equivalent to

Q3 − γ2Q4 + λ3G
H
1 G1 + λ4G

H
2 G2 q3 − γ2q4

qH3 − γ2q
H
4 c3 − γ2c4 − λ3ε

2
1 − λ4ε

2
2

 � 0

At last, we address the power constraint in (2.11). LetK be the commutation matrix

such that vec(AT ) = Kvec(A). Then according to (2.5), pR can be rewritten as

pR = c0 + 2<(qH0 ∆h) + ∆hHQ0∆h,

where

Q0 = p1G
T
1D

T
LE � [KĀKT ]DLG1

+p2G
T
2D

T
LE � [KĀKT ]DLG2,

qH0 = p1h̆
H

1 E � [KĀKT ]DLG1

+p2h̆
H

2 E � [KĀKT ]DLG2,

c0 = p1h̆1
T
E � [KĀKT ]h̆

∗
1

+p2h̆2
T
E � [KĀKT ]h̆

∗
1 + tr(Ā).

As such, (2.11) is equivalent to

−Q0 + κ1G
H
1 G1 + κ2G

H
2 G2 −q0

−qH0 t− c0 − κ1ε
2
1 − κ2ε

2
2

 � 0.
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Therefore, the original problem Q1 can be transformed into the following form.

Q2 : min
Ā,t,λ,κ

t

s.t.

Q1 − γ1Q2 + λ1G
H
1 G1 + λ2G

H
2 G1 q1 − γ1q2

qH1 − γ1q
H
2 c1 − γ1c2 − λ1ε

2
1 − λ2ε

2
2

 � 0

Q3 − γ2Q4 + λ3G
H
1 G1 + λ4G

H
2 G2 q3 − γ2q4

qH1 − γ2q
H
2 c3 − γ2c4 − λ3ε

2
1 − λ4ε

2
2

 � 0

−Q0 + κ1G
H
1 G1 + κ2G

H
2 G2 −q0

−qH0 t− c0 − κ1ε
2
1 − κ2ε

2
2

 � 0

Rank(Ā) = 1, (2.13)

where λ = (λ1, λ2, λ3, λ4), and κ = (κ1, κ2). Since constraint (2.13) is not convex,

problem Q2 is still not a convex problem. Note that, however, if we ignore the

rank-one constraint in (2.13), this problem becomes

Q3 : min
Ā,t,λ,κ

t

s.t.

Q1 − γ1Q2 + λ1G
H
1 G1 + λ2G

H
2 G1 q1 − γ1q2

qH1 − γ1q
H
2 c1 − γ1c2 − λ1ε

2
1 − λ2ε

2
2

 � 0

Q3 − γ2Q4 + λ3G
H
1 G1 + λ4G

H
2 G2 q3 − γ2q4

qH1 − γ2q
H
2 c3 − γ2c4 − λ3ε

2
1 − λ4ε

2
2

 � 0

−Q0 + κ1G
H
1 G1 + κ2G

H
2 G2 −q0

−qH0 t− c0 − κ1ε
2
1 − κ2ε

2
2

 � 0,

which is convex and actually a SDP problem. Such a relaxation procedure is called

SDP relaxation. In general, the relaxed solution may not be of rank-one. In the next
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section, we will discuss how to obtain an approximate rank-one solution from the

relaxed problem.

2.4 Rank-one Approximation and Outage Condition

The SDP problem Q3 can be efficiently solved by numerical methods, such as the

interior point method [37]. If the resulting solution Ā∗ is of rank-one, the optimal

beamforming matrix at relay A∗ can be easily obtained as A∗ = ivec(aopt), where

aopta
H
opt = Ā∗. However, given the SINR thresholds γ1 and γ2, problem Q3 may not

be feasible, which leads to outage. In addition, even when the problem Q3 is feasible,

the resulting matrix Ā∗ may not be of rank-one. Next, we first propose the rank-one

reconstruction approach for the case when Q3 is feasible.

2.4.1 Principle Eigenvector Rank-one Approximation

Since matrix Ā∗ is Hermitian, we have Ā∗ = UDUH . Let A∗ = ivec(u1), where

u1 is the column vector in U that corresponds to the largest eigenvalue. In general,

this approach is suboptimal unless Rank(Ā∗) = 1. However, this approach is easy to

implement with reasonably good performance, which will be shown in Section 2.5.

2.4.2 Outage Consideration: Robust-Hybrid Approach

Besides the feasibility-caused outage, we have another source of outage if the

above principle eigenvector based rank-one approximation leads to a solution that

does not satisfy the SINR constraints in (13). This happens more often when the

largest eigenvalue is not dominating the others. To reduce the overall outage proba-

bility, we propose the following robust-hybrid approach :

1. Solve problem Q3, if it is feasible, obtain A∗ = ivec(u1).

2. If problem Q3 is not feasible, adopt the non-robust approach given in [5].
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The robust-hybrid approach is motivated by the observation that the feasibility of

the non-robust optimization problem is easier to satisfy given the less number of

constraints.

2.5 Simulation Results

In the simulation, we make the following assumptions: 1) all nodes have unit noise

power; 2) power values p1 and p2 are 10 W; 3) ĥi ∼ CN (0, I), ∆hi ∼ ai√
M
ejθ, i = 1, 2,

where ai is uniformly distributed in [0, εi] and θ is uniformly distributed over [0, 2π];

and 4) ε1 = ε2. We compute the outage probability over 1000 channel realizations.

First, we show the relationship between the overall outage probability and the

error bound. We compare the hybrid approach against the non-robust approach

by assuming that the number of relay antennas are four. As we see in Fig. 2.1,

a significantly smaller outage probability is achieved with the robust approach. In

particular, when the error bound ε1 and ε2 are large, the outage probability almost

remains the same as the error bound changes. When the error bound decreases

to a certain critical point, the outage probability decreases significantly with the

error bound. To further understand this phenomenon, we decompose the outage

probability into two parts. One is the probability that problem Q3 is infeasible,

denoted as P1 and shown by the solid curve with squares in Fig. 2.2. The other is

the conditional outage probability P2 given that problem Q3 is feasible, shown by

the solid curve in Fig. 2.2. As we see, P1 increases when error bound increases,

since it is more difficult for the robust approach to find feasible solutions given

larger channel uncertainty. When the problem is feasible, the conditional outage

probability P2 is low compared to the non-robust approach. Interestingly, we see

that P2 first increases and then decreases when error bound decreases. The overall

outage probability is given as P1 +P2−P1P2 ≈ P1 +P2. As we see from Fig. 2.2, the

26



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Error Bound ε
1
, ε

2

O
ut

ag
e 

P
ro

ba
bi

lit
y

 

 

Outage Prob. Non−Robust Algorithm
Outage Prob. Robust Algorithm
Outage Prob. Robust−Hybrid Algorithm

Figure 2.1: Outage Probability vs. Error Bound.

sum of P1 and P2 almost remains constant when the error bound is larger than 0.1.

As a result, the overall outage probability almost remains unchanged till the error

bound decreases to some critical point, after which the outage probability decreases

significantly with the error bound. Fig. 2.3, shows the probability of finding an

optimal solution as a function of channel estimation error bound. It is clear that

as the channel estimation error bound increases, the probability of obtaining an

optimal solution decreases drastically. This highlights the importance of exploring

sub-optimal techniques that can provide “acceptable” performance. In addition, in

Fig. 2.4, we show the relationship between the outage probability and the number

of relay antennas. The errors are bounded at ε1 = ε2 = .01. As we see, the outage

probabilities for both the robust and non-robust approaches decrease. This is due to
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Figure 2.2: Decomposed View of Outage Probability : Conditional Outage Proba-
bility and Probability of Infeasibility.

the fact that higher spatial dimension offers a higher degree-of-freedom.

2.6 Conclusion

In this chapter we proposed the robust beamforming approach under realistic

channel estimation conditions (i.e., with estimation errors) for a TWR system with

ANC. By using the S-procedure, the original constraints with infinite dimensions are

converted to several LMIs and then the relaxed SDP is solved by applying rank-

one relaxation. A principle eigenvector based rank-one reconstruction approach is

proposed to reconstruct the solution. To reduce the outage probability, we fur-

ther proposed a hybrid approach that incorporates the non-robust approach when

robust problem formulation is infeasible. Simulations are conducted to show that

the proposed hybrid approach leads to significant improvement in terms of outage

probability over the non-robust one.
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Figure 2.3: Probability of Obtaining Rank-one (optimal) Solution
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3. LINEARIZED ROBUST BEAMFORMING

In this chapter, we present a novel robust beamforming method against channel

estimation errors for TWR systems. The proposed method obtains a solution of

the associated non-convex robust optimization problem by solving a set of closed-

form linear equations. Simulations show a considerable performance gain over the

rank-one relaxation-based SDP solutions, especially for the cases where the relaxed

problem becomes infeasible. In addition, there is significant reduction in complexity,

making this method very attractive for practical implementation.

3.1 Introduction

In previous chapter, we extended the results of [5] to incorporate channel esti-

mation errors by adopting a robust optimization framework [16]. Similar problems

for OWR robust beamforming were studied in [27] and [33] for single-antenna col-

laborative relays. This was further extended to the case of multiple antennas in [34].

Robust downlink beamforming design for a multiuser multiple input single output

(MISO) cognitive radio network where multiple primary users coexist with multiple

secondary users was studied in [38]. More recently, robust beamforming design for a

TWR system was studied by the authors of [29], where they maximized the minimum

SINR between two source nodes subject to a total relay power budget. The non-

convex problem was decomposed into a series of relay power minimization problems

under minimum SINR constraints by using bisection search. Then the relay power

minimization problem was recast into a rank-relaxed SDP and a suboptimal solution

was proposed. In their formulation, they ignored the impact of channel estimation

error on the cost function (relay power) for the robust optimization problem.

In all these cases the robust optimization framework proposed in [16] was ap-
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plied, where the channel estimation error was assumed to be norm-bounded and

the optimization problem was solved by convex relaxation. It was observed in [39]

that when the non-convex robust optimization problem for TWR was solved with

SDP rank-one relaxation, frequently the optimum solution was not available due to

either infeasibility or failure of relaxation conditions. In this chapter we explore a

new technique that uses the non-robust beamforming solution of [5] as the initial

guess and then obtains the robust solution by a first-order perturbation of the initial

guess. This approach utilizes the gradients of both the constraint and cost functions

along with the worst-case (norm-bounded) channel estimation errors to design the

perturbation matrix. The resulting robust QCQP problem is linearized and recast

into a LP problem, which is then used to find a beamforming solution under worst-

case channel estimation error assumptions. The final beamformimg matrix is then

obtained by solving a set of closed-form equations analytically, which significantly

reduces the computational complexity, making the proposed method more practical

for implementation.

The rest of the chapter is organized as follows. In Section 3.2, we present the

system model and formulate the problem. In Section 4.3, we present our approach for

transforming the original non-convex problem into a linearized robust optimization

problem. Simulation results are presented in Section 3.4 to show the performance

improvement and finally we conclude the chapter in Section 3.5.

3.2 System Model

We consider a two-way relay system similar to the one introduced in Chapter 2,

Fig. 1.2, which consists of the relay node R and two terminal nodes S1 and S2. In

this chapter we introduce the following modifications to the notation for the ease of

understanding. The transmit power at the relay R is given by (3.1) and the SINRs
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at node Si are given by fi(A,∆h) (i = 1, 2, j = 3− i) in (3.2)

Gp(A,∆h) = ‖Ah1‖2p1 + ‖Ah2‖2p2 + Tr(AHA)σ2
R

=p1ĥ
H

1 A
HAĥ1 + p2ĥ

H

2 A
HAĥ2 + Tr(AHA)σ2

R

+2<(p1ĥ
H

1 A
HA∆h1) + 2<(p2ĥ

H

2 A
HA∆h2)

+p1∆hH1 A
HA∆h1 + p2∆hH2 A

HA∆h2.

(3.1)

fi(A,∆h) =
|ĥTi Aĥj + ĥ

T

i A∆hj + ∆hTi Aĥj |2pj
|ĥTi A∆hi + ∆hTi Aĥi|2pi + ‖(ĥTi + ∆hTi )A‖2σ2

R + σ2
i

. (3.2)

Based on these definitions, the robust optimization problem to minimize the worst-

case relay power under worst-case SINR constraints can be formulated as follows.

min
A

[
max
‖∆h‖≤ε

Gp(A,∆h)

]
(3.3)

s.t. min
‖∆h‖≤ε

f1(A,∆h) ≥ γ1,

min
‖∆h‖≤ε

f2(A,∆h) ≥ γ2,

Where γ1 and γ2 are the respective SINR targets at S1 and S2. We note that

the problem in (3.3) is not convex in general, which renders the globally optimal

solution extremely hard to obtain. Therefore, we resort to sub-optimal solutions.

The challenges of obtaining a feasible solution for a similar problem were observed

in chapter II [39]. In particular, for some specific channel configurations and CSCG

noises, the robust TWR beamforming problem of (3.3) has no feasible solutions. In

addition, the particular method used for solving the robust optimization problem may

fail to obtain a feasible solution. Overall, we call it as a “system outage” when we

can not find a feasible solution for (3.3). Therefore, it is desirable to have an efficient
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algorithm to solve (3.3), which achieves an “acceptable” performance in terms of

power and bears a low outage probability. We will demonstrate the “goodness” of

the proposed algorithm by comparing it against the optimal non-robust solution of [5]

under perfect channel knowledge, with the same instantaneous channel realization

and CSGC noises setup. We also compare the performance of the method presented

in this chapter against the results of [5] and [39], under same channel estimation

error setup.

3.3 Robust Beamforming Using Perturbation

We now propose an algorithm that linearizes the robust optimization problem

of (3.3) in the neighborhood of the non-robust optimal solution. Such lineariza-

tion enables us to convert the non-convex robust optimization problem into a linear

optimization problem (under the worst-case channel estimation error assumption),

which is then analytically solvable to obtain an optimal perturbation matrix Ap.

The final sub-optimal beamforming matrix Ã for (3.3) is the perturbed version of

the non-robust beamforming matrix from [5] (by the optimal perturbation matrix

Ap). Specifically, the proposed algorithm is initialized byA0, the optimal non-robust

solution [5], which is give by

A0 =argmin
A

[Gp(A,0)]

s.t. fi(A,0) ≥ γi, i = 1, 2.

(3.4)

It is important to note that the method in [5] always provides an optimal solution

when the channel is perfectly known. As such, our objective is to perturb the solution

A0 in such a way as to increase the relay power as little as possible, while trying to

meet the SINR constraints in (3.3) under channel estimation errors.

In particular, after we obtain a non-robust solution for (3.4) using the method
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suggested in [5], there are three possible cases that may be easily distinguished:

f1(A0, 0) = γ1; f2(A0, 0) = γ2; (3.5a)

f1(A0, 0) = γ1; f2(A0, 0) > γ2; (3.5b)

f1(A0, 0) > γ1; f2(A0, 0) = γ2. (3.5c)

Before examining these cases, we first introduce some simplified notations to repre-

sent the gradient functions

~gA = ∇~AGp(A, 0)
∣∣
A=A0

;~gh = ∇ ~h′Gp(A0,h
′)
∣∣
h′=0

;

~fA,i = ∇~Afi(A, 0)
∣∣
A=A0

; ~fh,i = ∇ ~h′fi(A0,h
′)
∣∣
h′=0

;

(3.6)

where ~gA, ~fA,i ∈ R2M2×1 and ~gh, ~fh,i ∈ R4M×1. Next we present the steps for

linearizing the optimization problem. The first-order Taylor expansion for the relay

power function Gp(A0 +Ap,∆h) and the SINR constraint functions fi(A0 +Ap,∆h)

under a small channel estimation error ∆h and a small perturbation matrix Ap ∈

CM×M is given by:

Gp(A0 +Ap,∆h) ≈ Gp(A0, 0) + ~Ap · ~gA + ~∆h · ~gh,

fi(A0 +Ap,∆h) ≈ fi(A0, 0) + ~Ap · ~fA,i + ~∆h · ~fh,i,

Where,

~Ap = [vec(<(Ap)); vec(=(Ap))]
T ∈ R1×2M2

,

~∆h = [<(∆h1);=(∆h1);<(∆h2);=(∆h2)]T ∈ R1×4M .

Note that (3.7) is a good approximation only when ~Ap and ~∆h are sufficiently small
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such that higher-order terms in the Taylor expansions are negligible. Here we do not

provide rigorous bounds on the resulting approximation error; however, we later will

show from simulations that such approximations are valid. Using the above linear

approximations, the problem for choosing the optimal Ap can now be cast as

Ap
∗ = argmin

~Ap

[
max
‖∆h‖≤ε

[
Gp(A0, 0) + ~Ap · ~gA + ~∆h · ~gh

]]
s.t. min

‖∆h‖≤ε

[
fi(A0, 0) + ~Ap · ~fA,i + ~∆h · ~fh,i

]
≥ γi, i = 1, 2,

(3.7)

where Ap
∗ is the optimal perturbation matrix. Since only the middle term in the

cost function of (3.7) depends on Ap, it follows that all the other terms in the cost

function can be dropped. Similarly the constraints can be rearranged as

max
‖∆h‖≤ε

[
~∆h · ~fh,i

]
− (fi(A0, 0)− γi) ≤ ~Ap · ~fA,i, i = 1, 2. (3.8)

Where we used the fact that

−min
‖∆h‖≤ε

[
~∆h · ~fh,i

]
= max

‖∆h‖≤ε

[
~∆h · ~fh,i

]
, (3.9)

Considering the worst-case channel estimation error bound (‖∆h‖ = ε ) and applying

Cauchy-Schwarz inequality, the first term in the left-hand side of the inequality (3.8)

can be replaced by

~∆h · ~fh,i ≤ ‖~fh,i‖ · ‖∆h‖,

and simplified using the fact

max
‖∆h‖≤ε

[
~∆h · ~fh,i

]
= ε‖~fh,i‖. i = 1, 2.
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The optimization problem in (3.7) can then be converted to the following LP problem

Ap
∗ = argmin

~Ap

[
~Ap · ~gA

]
s.t. ε‖~fh,i‖ − (fi(A0, 0)− γi) ≤ ~Ap · ~fA,i, i = 1, 2.

(3.10)

We now examine the implications of the three cases in (3.5a)-(3.5c). Using our

simplified notations, the KKT conditions for the non-robust beamforming solution

of problem (3.4) are

~gA = λ1
~fA,1 + λ2

~fA,2, (3.11)

(γi − fi(A0, 0))λi = 0, i = 1, 2, (3.12)

where λ1, λ2 ≥ 0 are the Lagrange multipliers.

In case of (3.5a) and by substituting (3.11) into the objective function of (3.10),

the linearized problem (3.10) becomes

Ap
∗ = argmin

~Ap

[
λ1

~Ap · ~fA,1 + λ2
~Ap · ~fA,2

]
s.t. ε‖~fh,i‖ ≤ ~Ap · ~fA,i, i = 1, 2.

(3.13)

Since λ1, λ2 ≥ 0 and the fact that the right-hand side of the constraints in (3.13)

also appears in the cost function, implies that the cost function will be minimized

as long as both constraints are satisfied with equality. This also follows from basic

properties of linear programming.

In case of (3.5b), from (3.12) it follows that λ1 ≥ 0, λ2 = 0. The corresponding
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linearized problem becomes

Ap
∗ = argmin

~Ap

[λ1
~Ap · ~fA,1]

s.t. ε‖~fh,i‖ ≤ ~Ap · ~fA,1,

ε‖~fh,i‖ − (f2(A0, 0)− γ2) ≤ ~Ap · ~fA,2.

(3.14)

The cost function in (3.14) is proportional to the right-hand side of the first con-

straint, such that the cost function will be minimized when the first constraint is

satisfied with equality. Furthermore, since f2(A0, 0) − γ2 > 0, any Ap that satisfies

the second constraint in (3.13) will also satisfy the second constraint in (3.14). Sim-

ilar arguments could be applied to case (3.5c). Therefore to find the solution, we

could just focus in the problem in (3.13). By the properties of linear programming,

we conclude that any Ap that satisfies

ε‖~fh,i‖ = ~Ap · ~fA,i, i = 1, 2, (3.15)

is an optimal solution (Ap
∗) to the linearized problem in cases (3.5a), (3.5b), and

(3.5c). It is also observed that there are many possible solutions for ~Ap in (3.15).

Specifically, we choose ~Ap to be in the subspace spanned by the gradient vectors

~fA,1 and ~fA,2 :

~Ap = c1

[
~fA,1

]
+ c2

[
~fA,2

]
. (3.16)

Substituting (3.16) into (3.15), we have

ε‖~fh,1‖ = c1‖~fA,1‖2 + c2
~f
T

A,2 · ~fA,1, (3.17)

ε‖~fh,2‖ = c1
~f
T

A,1 · ~fA,2 + c2‖~fA,2‖2. (3.18)
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From (3.17) and (3.18), we could solve for c1 and c2 to construct the optimal pertur-

bation matrix Ap. Given the perturbation matrix Ap, the proposed robust beam-

forming matrix is obtained as Ã = A0 +Ap.

3.4 Simulation Results

We now simulate a TWR system with channel estimation errors, and compare

the performance of the proposed beamforming method with those presented in [5]

and [39]. We used the true channel in [5] to serve as the upper bound for both

the performance metric of outage and power. The setups are M = 4, σR
2 = 1W ,

σi
2 = 1W ; i=1,2, pi = 10W ; i = 1, 2, γi = 10; i = 1, 2, and εi = [0.05, 0.4] with

increments of 0.05. The channel was generated as ĥi ∼ CN (0, I) and the channel

estimation error is set as ∆hi ∼ ai√
M
ejθ, i = 1, 2, withai uniformly distributed in

[0, εi] and θ uniformly distributed over [0, 2π]M .

In this setup an outage is declared when any of the SINRs at the source nodes fall

below γi. In Fig. (3.1), and (3.2), we respectively plot the outage probability and 95−

th percentile of the empirical cumulative density function (cdf) [40] of the transmit

power required to achieve the corresponding outage performance. The performance

of the algorithm in [5] under perfect channel knowledge is indicated by “Perfect-

channel” which serves as performance bound. Also, the curve labeled “Non-Robust”

indicates the performance of the algorithm in [5] under estimated CSI and the curves

labeled “Robust-Hybrid” indicates the performance of the algorithm in [39]. We

observe in Fig. (3.1) that significantly smaller outage probabilities are achieved with

the linearized robust beamforming approach compared to the ones in [5] and [39]. In

particular, when the channel estimation error increases, the outage probability for

the robust-hybrid method [39] becomes very large. This can be attributed to the

fact that, as the channel estimation error increases, the SDP relaxation approach
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fails to find an optimal solution and has to resort to the principal eigenvector based

suboptimal solution [39]. In terms of power, it is seen from Fig. (3.2) that our

linearized robust method outperforms the robust-hybrid method significantly.

3.5 Conclusion

In this chapter we presented a linearized robust beamforming scheme for the TWR

system that operates under realistic channel estimation error assumptions. We lin-

earized the non-convex robust optimization problem and analytically obtained the

optimal perturbation matrix to perturb the corresponding non-robust optimal beam-

forming matrix. Simulations showed that the proposed approach led to significant

improvement in both outage probability and relay power.
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Figure 3.1: Performance of TWR System with Linearized Robust Beamforming Un-
der Channel Estimation Error : Outage vs. Channel Estimation Error.
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4. A PRACTICAL VIEW OF ROBUST BEAMFORMING FOR TWO WAY

RELAY SYSTEMS

In this chapter we present a practical view of robust TWR beamforming. A TWR

system operating on a hardware target has limited resources and time to compute

its beamforming matrix. It is therefore desirable to investigate a method that ad-

dresses the problem from this practical stand point that also has an “acceptable”

performance in terms of outage probability and relay power requirements. With this

motivation, we develop an iterative technique that uses Newton’s method and the

steepest-descent method (with zero and first order approximations) to solve the TWR

robust beamforming problem by a process of alternating between a worst-case CSI

error vector search and solving an optimization problem to obtain a beamforming

matrix. We assume that the algorithms only operate for an arbitrary number of it-

erations in order to meet practical real time execution requirements. The algorithm

terminates once the KKT conditions for optimality are satisfied or the maximum

number of allowable iterations are reached. We provide empirical results to show the

performance of the iterative-robust algorithm compared to the techniques presented

in the earlier chapters.

4.1 Introduction

The importance of considering a robust optimization framework for practical

systems which exhibit parameter uncertainty was shown in [16, 25]. In the previous

chapters, we presented two different methods for obtaining a robust beamforming

solution for a TWR system. The SDP relaxation approach of Chapter 2, provided

some useful insights into the upper bound on relay power consumption. The method

presented in Chapter 3 extended the optimal non-robust solution [5] to a robust
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solution using a low complexity first-order perturbation method that showed very

attractive system performance. In the linearized robust method of Chapter 2, it was

assumed that the non-robust solution was available. In addition, we assumed that

the CSI error was small enough for the linearization to hold.

While both these methods demonstrated very good performance, they both rely

on solving an SDP problem using interior point methods. In recent years, there

has been some interesting work [35] on looking at the practical implication of im-

plementing such methods on hardware targets such as FGPAs, GPUs and DSPs.

Solving these types of problems efficiently with limited resources on a hardware tar-

get which also meets the real-time execution requirements remain an area of active

research [35]. In a practical system, the size of the problem at hand typically justifies

the choice of one solution method over another. Many times the overhead of setting

up a more sophisticated computational framework can be significant compared to

the problem itself. While we do not compare the relative implementation complexity

of our proposed method in this chapter to that of an interior point based one, it is

fair to say that the hardware resource utilization for solving a non-convex QCQP

with rank relaxed SDP via such a method can be significant [41, 42] on a hardware

target.

In this chapter we take a practical view for solving the robust TWR beamforming

problem by an iterative approach. The robust optimization problem for TWR beam-

forming under study has two explicit constrains and typically such a TWR system

will have small number of antennas. We have also seen in previous chapters, that

the robust TWR beamforming design problem is not convex, therefore obtaining an

optimal solution is extremely hard. Therefore, a simple method to solve this prob-

lem could very likely outweigh the benefits of faster convergence of an interior point

method that is observed for a typical convex problem. Our method is similar in
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spirit to [25], where the authors address the robust downlink beamforming problem.

They use an iterative method to solve an alternating sequence of optimization and

worst-case analysis, where in each step, a convex optimization problem is solved with

interior-point method.

At each iteration of the method presented here, we first solve three optimization

problems (relay power maximization and two SINR minimizations), each under the

norm-bounded channel uncertainty constraint, in order to identify the worst-case

CSI’s corresponding to a fixed beamforming matrix solution. In the next step, we find

a beamforming matrix that achieves the desired outage performance with minimum

power for the optimization problem under these worst-case CSI conditions. This

process is iterated, until a final beamforming matrix that solves the robust TWR

beamforming problem of Chapter 2 is found.

In the following we present a detailed description of our iterative method. We

then present simulation results to compare the performance of our proposed method

to the others presented in the previous chapters.

4.2 System Model

We use the same system model as in Chapter 2, but for completeness we present

the relay transmit power and source node SINR equations from the previous chapter

and also restate the robust optimization problem under study. The transmit power

at the relay R is given by

Gp(A,∆h) = ‖Ah1‖2p1 + ‖Ah2‖2p2 + Tr(AHA)σ2
R

=p1ĥ
H

1 A
HAĥ1 + p2ĥ

H

2 A
HAĥ2 + Tr(AHA)σ2

R

+2<(p1ĥ
H

1 A
HA∆h1) + 2<(p2ĥ

H

2 A
HA∆h2)

+p1∆hH1 A
HA∆h1 + p2∆hH2 A

HA∆h2.

(4.1)
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We define fSINR1(A,∆h) and fSINR2(A,∆h) as the SINRs at S1 and S2 respectively,

where fSINRi
, i = 1, 2 are given by

fSINRi(A,∆h) =
|ĥTi Aĥj + ĥ

T

i A∆hj + ∆hTi Aĥj |2pj
|ĥTi A∆hi + ∆hTi Aĥi|2pi + ‖(ĥTi + ∆hTi )A‖2σ2

R + σ2
i

. (4.2)

Based on the definitions of SINR and transmit power, the robust optimization prob-

lem can be formulated similar to Chapter 3 as

min
A

[
max
‖∆h‖≤ε

Gp(A,h)

]
(4.3)

s.t. min
‖∆h‖≤ε

fSINR1(A,∆h) ≥ γ1

min
‖∆h‖≤ε

fSINR2(A,∆h) ≥ γ2,

where ‖∆h‖2 ≡ ‖∆h1‖2 + ‖∆h2‖2 and ∆h is the CSI error vector. Given the SINR

thresholds γ1 and γ2, the system outage can be defined as the event that results in

fSINR1(A,∆h) < γ1 and/or fSINR2(A,∆h) < γ2, i.e. no feasible solution to problem

(4.3) could be found.

It is convenient to re-express the optimization problem in terms of the revised

SINR functions (note that fi(A,∆h) in this chapter is expressed in a different from

Chapter 3)

fi(A,∆h) ≡ |hTi Ahk + hTi A∆hk + ∆hTi Ahk|2pk

−γi|hTi A∆hi + ∆hTi Ahi|2pi (4.4)

−γiσ2
R‖(h

T
i + ∆hTi )A‖2, i = 1, 2 k = 3− i.

Note that, this formulation reduces the need for divisions in the iterative formulation.

Divisions are expensive in a hardware target. In terms of f1(A,∆h) and f2(A,∆h),
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the optimization problem becomes

min
A

[
max
‖∆h‖≤ε

Gp(A,h)

]
(4.5)

s.t. min
‖∆h‖≤ε

f1(A,∆h) ≥ 0

min
‖∆h‖≤ε

f2(A,∆h) ≥ 0.

4.3 Robust Beamforming Using an Iterative Method

We now propose an iterative method to solve the non-convex robust TWR beam-

forming problem (4.5). In Chapter 3, it was observed that the linearized robust

beamforming solution works very well in practice, as long as the channel estimation

error is moderate and an optimal non-robust solution is available to serves as an ini-

tial guess. In contrast the method presented in this chapter does not require previous

computation of an optimal non-robust solution. Instead, we initialize the algorithm

using a zero-forcing solution similar to the one proposed in [39].

The iterative technique can be primarily broken down into the following steps:

1. Initialize the algorithm with a beamforming matrix A obtained using the zero-

forcing method proposed in [5].

2. Set ε the radius of the error sphere according to design requirements.

3. For the beamforming matrixA, find three “worst case” CSI error vectors ∆ĥGp ,

∆ĥf1 and ∆ĥf2 , that maximize the relay transmit power and minimize the two

source node SINRs, respectively. (This step is referred to as “Stage I” in the

subsequent description of the algorithm.)

4. Perturb the beamforming matrix A to find a new beamforming matrix Ā that

satisfies the target SINR at the two source nodes S1 and S2, and also minimizes
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the transmit power at the relay node under the three worst-case CSI error vector

∆ĥGp , ∆ĥf1 and ∆ĥf2 (this step is referred to as “Stage II” in the detailed

algorithm description).

5. Check if ‖~̄A− ~A‖ < τ , where τ is an arbitrarily chosen small constant. If this

check returns true then we conclude a feasible and “acceptable” beamforming

solution to (4.5) is found. Otherwise, A is set to Ā and the algorithm returns

to step-3 and continues until ‖Ā−A‖ < τ is satisfied. (this step is referred to

as “Stage III” in the detailed algorithm description.)

6. If ‖Ā−A‖ < τ is not satisfied after a predefined number of iteration, then the

design requirement on epsilon is relaxed (i.e. ε is reduced) and the algorithm

returns to Step-3 and the iteration continues until a feasible solution to (4.3)

is found.

In Stage-I, the three worst-case CSI error vectors ∆ĥGp , ∆ĥf1 and ∆ĥf2 are

specified by the following three optimization problems:

∆ĥGp = argmax
∆h

[Gp(A,∆h)] (4.6a)

s.t. ‖∆h‖ ≤ ε,

∆ĥf1 = argmin
∆h

[f1(A,∆h)] (4.6b)

s.t. ‖∆h‖ ≤ ε,

∆ĥf2 = argmin
∆h

[f2(A,∆h)] (4.6c)

s.t. ‖∆h‖ ≤ ε.

We now prove that the inequalities in (4.6a, 4.6b and 4.6c) can all be replaced

with equalities; in other words, the worst case CSI error vector that maximizes the
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power function (4.1) and the two worst case CSI error vectors that minimize the two

SINR functions in (4.4), all lie on the surface of the CSI error sphere. The proof for

this proceeds as follows.

• To establish equality in (4.6a), we observe from (4.1) that the expression

for Gp is quadratic in ∆h, and the second-order terms p1∆hH1 A
HA∆h1 +

p2∆hH2 A
HA∆h2 depend on the hermitian positive semidefinite form AHA. It

follows that Gp as a function of ∆h has no local maxima. Thus, the maximum

of Gp on the set {‖∆h‖ ≤ ε} cannot occur in the interior of ∆h sphere i.e

{‖∆h‖ < ε}, it occurs on the surface of the sphere i.e {‖∆h‖ = ε}.

• To establish equality in (4.6b) and (4.6c), we observe that the function fi(A,∆h)

depends on ∆hj through a single term in the numerator. It follows that

fi(A,∆h) as a function of ∆hj, is a constant on a hyperplane ĥ
T

i A∆hj = ζ

where ζ ∈ C. Any such plane that passes through the interior of the ∆h sphere

i.e ‖∆h‖ < ε will also intersect the sphere at the boundary ‖∆h‖ = ε (since

sphere is bounded and the plane is unbounded). This implies that, any value

which fSINRi
(A,∆h) assumes in the interior of the ∆h sphere, it also assumes

the same value on the boundary of the sphere. In particular, the minimum

value of fi(A,∆h) on ‖∆h‖ ≤ ε must be assumed over the boundary of the

∆h sphere.

Hence equality in (4.6a, 4.6b and 4.6c) has been established. For convenience of
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reference, we restate the optimization problems with equality:

∆ĥGp = argmax
∆h

[Gp(A,∆h)] (4.7a)

s.t. ‖∆h‖ = ε,

∆ĥf1 = argmin
∆h

[f1(A,∆h)] (4.7b)

s.t. ‖∆h‖ = ε,

∆ĥf2 = argmin
∆h

[f2(A,∆h)] (4.7c)

s.t. ‖∆h‖ = ε.

Before proceeding further, we introduce the following simplified notations for the

gradient functions

~g∆h ≡ ∇ ~∆hGp(A,∆h);

~f∆h,i ≡ ∇ ~∆hfi(A,∆h) i = 1, 2.

(4.8)

Where ∆h ∈ C1×2M and ~∆h ≡ [<(∆h1);=(∆h1);<(∆h2);=(∆h2)]T ∈ R1×4M is the

CSI error vector. Also, ~A = [vec(<(A)); vec(=(A))]T ∈ R1×2M2
is the beamforming

matrix A ∈ CM×M represented as a vector with real entries. In the following we

provide detailed description for the three main stages of the algorithm.

4.3.1 Stage I: Worst-case CSI Error Vector

Throughout this stage, the matrix A is assumed to be fixed. Starting with a

beamforming matrix A, this stage of the algorithm finds three “worst-case” CSI

errors ∆ĥGp , ∆ĥf1 and ∆ĥf2 corresponding to the optimization problems (4.7a) for

relay power and (4.7b,4.7c) for the SINR functions. We adopt Newton’s method to

compute ∆ĥGp , and steepest-descent methods to compute ∆ĥf1 and ∆ĥf2 . In the
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following we present Stage-I of our algorithm in details.

Worst-case CSI error vector for relay power In this section we will discuss how

Newton’s method (with lowest non-vanishing order i.e zero or first order) is used

to obtain the worst-case CSI error vector associated with the relay power. For

ease of representation we use ∆h = [∆h1; ∆h2] ∈ C1×2M to represent ∆ĥGp .

Also, ∆h(k) and ∆h(k + 1) are used to represent an estimate of ∆ĥGp at the

k’th and k + 1’th iteration of the following algorithm.

Algorithm Initialization: The iterative TWR beamforming algorithm is ini-

tialized with a beamforming matrixA, obtained by the zero-forcing method

proposed in [5]. We use, ε~gh/‖~gh‖ and ε~fh,i/‖~fh,i‖ (with i=1,2) as initial

guess for ∆ĥGp and ∆ĥfi (with i=1,2) respectively. These guesses cor-

respond to the linearized approximations of gradient of Gp(A,∆h) and

fi(A,∆h) with respect to ∆h (Appendix A). During subsequent execu-

tions of Stage-I, the initialization step is omitted, and updated value of A

obtained in Stage-III and previously computed value of ∆ĥGp and ∆ĥfi

(with i=1,2) are used to start the iteration for Stage-I.

Subsequent Iterations: Using our notations defined above, we assume that

∆h(k) approximates ∆ĥGp at the k’th iteration of the algorithm, such

that ∆ĥGp ≈ ∆h(k) + δ where δ ∈ C1×2M is a small perturbation. By

replacing ∆h in (4.7a) by ∆h(k)+δ′, where δ′ ∈ C1×2M is an independent

variable defined by δ′ ≡ ∆ĥGp − ∆h(k) and considering ∆h(k) to be a

constant in each iteration, the optimization problem (4.7a) for finding

∆ĥGp can be recast in terms of the δ as: find ∆h(k) + δ where δ is the
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solution to

~δ = argmax
~δ
′

[Gp(A,∆h(k) + δ′)]

s.t. ‖∆h(k) + δ′‖2 = ε2.

(4.9)

Where ~δ = [<(δ1); =(δ1); <(δ2); =(δ2)] ∈ R1×4M . The KKT condition

of the optimization problem in (4.9) along with the constraint is given by

~g∆h(k)+δ = λ( ~∆h(k) + ~δ) (4.10a)

‖ ~∆h(k) + ~δ‖2 = ε2. (4.10b)

A value for ~δ can be obtained by solving (4.10a) and (4.10b) iteratively.

Once ~δ is found in each iteration, an improved estimate of ∆ĥGp can

be obtained by ∆ĥGp = ∆h(k) + δ. In order to solve the above set of

equation we linearize the KKT condition and the constraint (4.10a and

4.10b by using approximations to the lowest non-vanishing order). The

Lagrange multiplier in (4.10a) is approximated to lowest order (zero’th

order) by λ′ and obtained by taking the inner product of both sides of

(4.10a) with ~∆h(k) and solving for “approximate” value of λ denoted by

λ′ (approximated to the zero’th order in ~δ i.e. in particular ~δ ≈ 0) as

follows

λ′ ≡
~∆h(k)T · ~g∆h(k)

~∆h(k)T · ~∆h(k)
. (4.11)

Note that the exact value of λ is given by λ ≡ ∆λ + λ′, where ∆λ is the

estimation error and we assume ∆λ << λ′.

Next, using the fact that ‖∆h(k)‖ = ε, equation (4.10b) can be approxi-
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mated to the lowest order (first order in this case assuming higher order

terms are negligible) as follows:

‖~δ‖2 + 2 ~∆h(k) · ~δ = 0

=⇒ ~∆h(k) · ~δ ≈ 0

=⇒ ~∆h1(k) · ~δ1 + ~∆h2(k) · ~δ2 ≈ 0.

(4.12)

Now, using the gradient function ~g∆h given in Appendix A, with ~∆h =

~∆h(k)+δ, the KKT condition in (4.10a) can be expanded and written as

2
[
p1

−−−−−−−−−−−−−−−−−−−−→(
AH

0 A0(h1 + ∆h1(k) + δ1)
)

; p2

−−−−−−−−−−−−−−−−−−−−→(
AH

0 A0(h2 + ∆h2(k) + δ2)
)]

= λ[ ~∆h1(k) + ~δ1 ; ~∆h2(k) + ~δ2].

(4.13)

Next, replacing λ with λ′ + ∆λ in (4.13), and retaining only lowest order

terms (first order) in ~δ and ∆λ we obtain

2p1vec
(
AH

0 A0δ1

)
− λ′~δ1−(∆λ) ~∆h1(k) =

λ′ ~∆h1(k)− 2p1vec
(
AH

0 A0(h1 + ∆h1(k))
)
,

2p2vec
(
AH

0 A0δ2

)
− λ′~δ2−(∆λ) ~∆h2(k) =

λ′ ~∆h2(k)− 2p2vec
(
AH

0 A0(h2 + ∆h1(k))
)
.

(4.14)

Equations (4.14) can be rearranged into 4N + 1 real equations, which can

than be solved for the 4N + 1 real unknowns <[δ1],=[δ1],<[δ2],=[δ2] and

∆λ. Using the solution of ~δ from above, we obtain ∆h(k) +δ which is an

improved estimate for ∆ĥGp . However, we know from (4.7a) that ∆ĥGp

has a norm equal to ε, so we apply re-scaling to ensure that our esti-

mate meets this condition. The final expression for ∆h(k + 1) (improved
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estimate of ∆ĥGp at k + 1’th iteration) is given by

∆h(k + 1) = ε
∆h(k) + δ

‖∆h(k) + δ‖
. (4.15)

The process described above is iterated until ‖∆h(k + 1)−∆h(k)‖ < τ ,

where τ is an arbitrary chosen small tolerance value.

Worst-case CSI error vector for the destination SINRs: In this section

of the algorithm, we will show how the CSI error vector ∆ĥfi associated

with the worst-case SINR value at source nodes Si (where i = 1, 2) are

estimated using the steepest descent method. Once again, for ease of rep-

resentation, we will use ∆hi ∈ CM×1 to represent ∆ĥfi . Also, ∆hi(k)

and ∆hi(k+ 1) are used to represent an estimate of ∆ĥfi at the k’th and

k + 1’th iteration of the following algorithm.

Initialization: The initial guess for the worst-case CSI error vector is

given by

∆ĥfi(0) = ε
∇ ~h′fi(A,h

′)
∣∣
h′=0

‖∇ ~h′fi(A,h
′)
∣∣
h′=0
‖
. i = 1, 2

The exact expression for the gradient function ∇ ~h′fi(A,h
′)
∣∣
h′=0

is

given in Appendix A.

Subsequent Iteration: The estimate for the worst-case CSI related to

the SINR function at the k’th iteration is denoted by ∆hi(k). The

normalized gradient
~̂
f∆hi(k) ∈ C2M×1 at the k’th iteration is given by

~̂
f∆hi(k) ≡

∇∆hi(k)fi(A,∆hi(k))

‖∇∆hi(k)fi(A,∆hi(k))‖
i = 1, 2. (4.16)

The exact expression for the gradient function ∇∆hi(k)fi(A,∆hi(k))

is given in Appendix A. Using the normalized gradient values obtained
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above and the current estimate of the CSI error vector, ∆hi(k), we

evaluate three new linear estimates of CSI error vectors associated

with each destination node SINR as follows

∆ĥ`,i = ε

[
∆hi(k)− `µ~̂f∆hi(k)

]
‖∆hi(k)− `µ~̂f∆hi(k))‖

; ` = 0, 1, 2, i = 1, 2, (4.17)

and µ is a fixed (small) parameter.

Using the three CSI error estimates from above and three correspond-

ing values of the SINR fi(A,∆ĥ`,i), we apply quadratic interpolation

to obtain a better estimate for the CSI error vector. This is done

by fitting a parabola through the three points (`, fi(A,∆ĥ`,i)), and

finding the x coordinate where the parabola’s vertex is located. Using

this x coordinate, an interpolated estimate for the CSI error vector is

obtained as follows

∆ĥ3,i = ε

[
∆hi(k)− xµ~̂f∆hi(k)

]
‖∆hi(k)− xµ~̂f∆hi(k)‖

, i = 1, 2. (4.18)

Given four CSI error vector estimates, the best value for the CSI

error vector ∆ĥ`∗,i is chosen from {∆ĥ0,i,∆ĥ1,i,∆ĥ2,i,∆ĥ3,i} such

that fi(A,∆ĥ`∗,i) is minimized. Finally ∆hi(k + 1) (the improved

estimate of ∆ĥfi at iteration k + 1)is set to ˆ∆hl∗,i. The iteration

continues until ‖∆hi(k+1)−∆hi(k)‖ is less than some fixed tolerance.
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4.3.2 Stage-II: Optimal Beamforming Matrix Search Under Worst-case CSI Error

Vectors

After identifying the three estimates of worst-case CSI error vectors ∆ĥGp , ∆ĥf1

and ∆ĥf2 corresponding to a beamforming matrix A, the next step is to find a

beamforming matrix Ā that solves the following optimization problem

Ā =argmin
A

[
Gp(A,∆ĥGp)

]
s.t. fi(A,∆ĥfi) ≥ γi, i = 1, 2.

(4.19)

Starting with an initial guess for the beamforming matrix A(0) = A, the iterative

search proceeds to find Ā ∈ CM×M , the solution for the optimization problem (4.19).

The solution of the beamforming matrix at the m’th iteration of this stage is given

by A(m) ∈ CM×M . The m’th estimate of the beamforming matrix A(m), can give

rise to two conditions : (a) A(m) is feasible (i.e both SINR constraints are met) but

not optimal (that is, the power is not minimized) (b) A(m) is infeasible (that is, the

two SINR constraints are not met). In the following, we describe how the algorithm

proceeds for these two conditions

1. If A(m) is feasible but not optimal, we proceed to reduce the power by a fixed

(small) percentage while remaining feasible. We obtain the next estimate of

the beamforming matrix A(m + 1) at the m + 1’th iteration by perturbing

the beamforming matrix by a perturbation matrix Ap that is parallel to the

steepest-descent direction of the function Gp(A,∆ĥGp).

2. IfA(m) is not feasible, then we obtainA(m+1) by adding a perturbationAp ∈

CM×M along a direction that is perpendicular to the steepest-descent direction

with respect to Gp(A,∆ĥGp) the power gradient, but at the same time, in a
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direction which improves both the SNR (values of functions f1(A,∆ĥf1) and

f2(A,∆ĥf2)) towards feasibility. If it is not possible to improve the worst-

case SINR’s (within tolerance) while remaining perpendicular to the gradient

of the power function at the relay node, then the perpendicularity condition is

temporarily relaxed.

Finally for both of the above two cases, the m + 1’th estimate of the beamforming

matrix is given by A(m + 1) = A(m) + Ap. In order to compute the optimal

beamforming solution for (4.19) using steepest descent method, we represent all the

matrices in vector forms i.e. ~A = [vec(<(A)); vec(=(A))]T ∈ R1×2M2
and ~Ap =

[vec(<(Ap)); vec(=(Ap))]
T ∈ R1×2M2

and in addition to that, we use the following

gradient vectors (all are real 2N2 × 1 vectors)

~gA(m) ≡ ∇~AGp(A,∆ĥGp)
∣∣∣
A=A(m)

,

~f i,A(m) ≡ ∇~Afi(A,∆ĥfi)
∣∣∣
A=A(m)

, i = 1, 2.

(4.20)

An explicit expression for ~gA(m) and ~f i,A(m) are given in Appendix A.

During the search for ~Ap, the perpendicularity condition to the steepest-descent

direction of the power gradient ~gm is imposed by choosing a perturbation ~Ap such

that

~gm · ~Ap = 0; ~f i,A(m) · ~Ap = ξi, i = 1, 2.

where

ξi ≡ γi − fi(A(m),∆ĥfi) (i = 1, 2),

and ξi represents the “shortfalls” between the minimum target SINRs and the SINRs

achieved with worst-case CSI error vectors ∆ĥfi , (i = 1, 2). Based on the above
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mentioned conditions, ~Ap is obtained by

~Ap = Γ(ΓTΓ)−1[0 ξ1 ξ1]T ,

where

Γ ≡ [~gm ~f 1,A(m)
~f 2,A(m)] ∈ R2M2×3.

Thus, a small (first order) perturbation of ~A(m) along the ~Ap direction will produce

almost negligible increase in power, and will increase the two SINRs in the same

ratio as their respective shortfalls.

When perpendicularity condition is not imposed, the direction of the perturbation

~Ap is found by

~Ap = Γ(ΓTΓ)−1[ξ1 ξ2]T ,

where

Γ ≡ [~f 1,A(m)
~f 2,A(m)] ∈ R2M2×2.

In this case, we have

~f i,A(m) · ~Ap = ξi, i = 1, 2.

Once again, a small (first order) perturbation of ~A(m) along the ~Ap-direction will

produce small increase in power but it will increase the two SINRs in the same ratio

as their respective shortfalls.

The magnitude of ~Ap is determined by extrapolation as follows. Two trial per-

turbations are defined as

~Ap,` = `µ
~Ap

‖~Ap‖
, ` = 1, 2,
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where µ << 1 is a small parameter. Then, two interpolating parabolas ℘i (one for

each SINR function with i = 1, 2) are computed through the three corresponding

points

(
0, fi

(
A(m),∆ĥfi

))
,
(

1, fi

(
A(m) +Ap,1,∆ĥfi

))
and

(
2, fi

(
A(m) +Ap,2,∆ĥfi

))
.

If ℘i attains a y-value of ξi, then xi is defined as the corresponding x-value. Other-

wise, xi is defined as the vertex of ℘i. In terms of xi (i = 1, 2), the perturbation ~Ap

is finally defined as

~Ap ≡ x~Ap,l, where x ≡


x2 if ξ1 ≤ 0;

x1 if ξ1 > 0 and ξ2 ≤ 0;

min(x1, x2) if ξ1 > 0 and ξ2 > 0,

and finally A(m+1) = A(m)+Ap. The iterative search for the beamforming matrix

Ā terminates if the KKT conditions for (4.19) are met within tolerance for a feasible

solution, or if maximum number of allowable iterations MBF is reached. In either

case, Ā is set to the final value of the beamforming matrix A obtained in this stage.

4.3.3 Stage III - Finding Robust Beamforming Solution for TWR System

In the final stage (Stage-III) of the algorithm we check for convergence of the

algorithm by computing

‖~̄A− ~A‖ ≤ τ (4.21)

where ~̄A is the latest updated value of the beamforming matrix and ~̄A is the “old”

(prior to the update) beamforming matrix and τ is an arbitrary chosen small toler-

ance value. If this condition is satisfied the algorithm terminates. If this condition is
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not satisfied we check if the maximum allowable number of iteration NoptBF has been

reached. If we have reached the maximum number of iteration and we have not found

a solution, we then lower the worst-case design requirement, i.e. set ε = ε/εstep and

iterate through the full algorithm (Stage -I,II and III) until (4.21) is met and a fea-

sible solution to (4.5) is found. If no feasible solution can be obtained at ε = ε/εstep,

the relaxation in ε will continue until we approximately reach the non-robust problem

(ε ≈ 0); which we have seen in the previous chapters, presents the highest chance

of providing a feasible solution. Note that when we relax the design requirements,

we are relying on best effort transmission. On the contrary, when (4.21) is satisfied,

the KKT condition for the TWR robust beamforming problem holds by the virtue

of the fact that the beamforming matrix that satisfied KKT condition in Stage-II

of the algorithm did not change and hence the condition remains valid in this final

stage as well, implying we have obtained a locally optimal solution.

4.4 Simulation Results

We now simulate a TWR system with channel estimation errors, and compare

the performance of the proposed beamforming method in this chapter with those

presented in Chapters II and III. We used the true channel in [5] to serve as the

upper bound for both the performance metric of outage and power. The setups are

M = 4, σR
2 = 1W , σi

2 = 1W ; i=1,2, pi = 10W ; i = 1, 2, γi = 10; i = 1, 2, and

εi = [0.05, 0.4] with increments of 0.05. The channel was generated as ĥi ∼ CN (0, I)

and the channel estimation error is set as ∆hi ∼ ai√
M
ejθ, i = 1, 2, with ai uniformly

distributed in [0, εi] and θ uniformly distributed over [0, 2π]M .

In this setup an outage is declared when any of the SINRs at the source nodes fall

below γi. In Fig. (4.1), and (4.2), we plot the outage probability and 95−th percentile

of the empirical cumulative density function (cdf) [40] of the transmit power required
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to achieve the corresponding outage performance. The performance of the iterative-
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Figure 4.1: Performance of TWR System with Iterative Robust Beamforming Under
Channel Estimation Error : Outage vs. Channel Estimation Error.

robust beamforming algorithm presented in this chapter is indicated as “Iterative

Robust” in Fig. (4.1) and Fig. (4.2). The performance of the algorithm in [5]

under perfect channel knowledge is indicated by “Perfect-channel” which serves as

performance bound. Also, the curve labeled “Non-Robust” indicates the performance

of the algorithm in [5] under estimated CSI and the curves labeled “Robust-Hybrid”

indicates the performance of the algorithm in [39]. In Fig. (4.1) and Fig. (4.2), curve

labeled “Linearizer Robust” refers to the performance of the algorithm presented in
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Figure 4.2: Performance of TWR System with Iterative Robust Beamforming Under
Channel Estimation Error : Relay Power vs. Channel Estimation Error.

62



chapter III. We observe in Fig. (4.1) that significantly smaller outage probabilities

are achieved with the “iterative robust” beamforming approach compared with the

ones presented in previous chapters. In particular, when the channel estimation error

increases, the outage probability for the iterative method outperforms all the other

methods. This can be attributed to the fact that, as the channel estimation error

increases, the SDP relaxation approach fails to find an optimal solution and has to

resort to the principal eigenvector based suboptimal solution [39]. Similarly for the

linearized-robust method the assumption of small CSI error for the linearization to

hold, starts to deviate further and this causes loss in performance. In the case of

“iterative-robust” method, since the worst-case CSI error is estimated, we do not

have to make any assumption about the magnitude of estimation error ε for the

linearization to hold. In terms of power, it is seen from Fig. (4.2) that the iterative-

robust method outperforms both the robust-hybrid method and the linearized-robust

method significantly.

4.5 Conclusion

In this chapter we presented an iterative-robust beamforming scheme for a TWR

system that operates under realistic channel estimation error assumptions. Our

algorithm solves a series of optimization problems (relay power maximization and

two SINR minimization), each under a norm-bounded channel uncertainty constraint

in order to identify the worst-case CSI corresponding to a common fixed beamforming

matrix. In the next step of the algorithm, a new beamforming matrix is found that

minimizes the relay transmit power and achieve the desired outage performance

under these three worst-case CSI conditions. This process of estimating the worst-

case CSI and finding a beamforming matrix is alternated, until a final beamforming

matrix that satisfies the KKT condition of the robust TWR beamforming problem

63



under worst-case CSI is found. Simulations showed that the proposed approach

led to significant improvement in both outage probability and relay power. Since

the “iterative robust” method estimates the worst-case CSI at the relay node, that

information can be used to draw some conclusion about the probability of a meeting

a target SINR. In a practical system, the ability of estimating a priori (at the relay

node) the probability of meeting a target SINR can have very significant impact in

terms of the overall system performance. This is because, the relay can decide on

a transmission strategy (e.g higher transmission power, different modulation/coding

schemes, adding transmission redundancy such as HARQ (Hybrid Automatic Repeat

Request) etc.) without waiting for an ACK/NACK (acknowledgement) from the

receiver. This type of performance estimate at the transmitter side can also simplify

the amount of feedback information needed from the receiver side. We point out

that, the performance gain of the iterative-robust method over the linearized-robust

method of Chapter 3, comes at the expense of added computational complexity,

especially if we only consider the linearized solution and we do not consider the

computation of the non-robust beamforming solution. Therefore, combining the two

method can reduce the complexity of the over all algorithm further.
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5. CONCLUSION AND FUTURE WORK

In this dissertation, we studied the design of an optimal beamforming solution

for a TWR system equipped with multiple antennas at the relay node and a single

antenna at each source node under channel estimation errors. We followed the robust

optimization framework [16], where the channel estimation errors are assumed to

be norm bounded. We designed a beamforming solution for a TWR system that

minimizes the worst-case relay transmit power under the constraints of meeting pre-

defined SINR targets at the two source nodes. This optimization problem is a non-

convex QCQP with infinitely many constraints, making it extremely hard to obtain

a globally optimal solution. In Chapter 2, we presented a design method where we

used the S-procedure and converted the problem into a SDP with three LMIs. The

SDP problem with rank-one relaxation was solved using standard SDP solvers [43,44].

Finally, the beamforming solution was obtained using the principal eigenvector based

reconstruction. We observed that for some cases, the optimization problem was

infeasible and in some other cases the solution was not optimal due to failure of

rank-one condition. To overcome these difficulties, we proposed a hybrid-robust

approach based on the best effort principle that combined the robust and non-robust

beamforming solutions.

In Chapter 3, we proposed a linearized robust beamforming method. This method

used perturbation and worst-case analysis techniques to design a robust beamforming

solution. We designed an optimal perturbation matrix that was used to perturb

the optimal non-robust TWR beamforming solution of [5]. The sub-optimal robust

solution obtained by this method showed significant improvement for relay transmit

power and system outage probability compared to the SDP method at a considerably
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lower complexity. When compared with the optimal non-robust solutions with no

CSI errors, the linearized robust solution (under CSI error) showed only moderate

increase in relay transmit power requirements and outage probability.

In Chapter 4, we introduced an iterative technique for TWR robust beamforming

that is more suitable for practical hardware implementation. In the iterative method,

we solved a series of three optimization problems (relay power maximization, and two

SINR minimization), each under the norm-bounded channel uncertainty constraint

to identity the worst-case CSI corresponding to a beamforming matrix solution. In

the next step we found a beamforming matrix that achieved the desired performance

under these worst-case CSI condition. This process was alternated, until a final

beamforming matrix that solved the robust TWR beamforming problem is found.

This method showed the best performance amongst all the methods we considered.

In our current treatment of the robust beamforming, we started from a QCQP

with infinitely many constraints and using S-procedure we converted that to SDP.

An alternative way of treating these types of problems were proposed by Bertsimas

& Sim [45]. In their treatment, the robust counterpart of any problem exhibits the

same structure, i.e., the robust counterpart of a QCQP is also a QCQP with more

constraints and variables. It would be interesting to assess the performance of this

new treatment.

Another interesting extension from a practical standpoint would be to explore a

hybrid algorithm, that combines the linearized robust method and iterative robust

method to further reduce complexity. The practical view of robust beamforming for

systems with large numbers of antenna arrays can be very beneficial topic to study

for future wireless systems. Finally it will be very interesting to implement these

techniques on a wireless testbed and obtain more insight into the problem. This

experience can fuel new research topics.
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APPENDIX A

GRADIENT FUNCTIONS

In this section we will present the gradient functions explicitly and also show how

they are derived. Following is a list of all the gradient functions.

~gA = ∇~AGp(A, 0)
∣∣
A=A0

;

~gh = ∇ ~h′Gp(A0,h
′)
∣∣
h′=0

;

~fA,i = ∇~Afi(A, 0)
∣∣
A=A0

;

~fh,i = ∇ ~h′fi(A0,h
′)
∣∣
h′=0

;

~g∆h = ∇ ~∆hGp(Ā,∆h);

~̂
f∆h(k),i = ∇∆hfi(A,∆h(k)), i = 1, 2;

~gm = ∇~AGp(A,∆ĥGp)
∣∣∣
A=A(m)

;

~f i,A(m) = ∇~Afi(A,∆ĥfi)
∣∣∣
A=A(m)

, i = 1, 2.

(A.1)

We use the following matrix identities extensively in our gradient computations

~A · ~B ≡ <Tr[AHB] = <Tr[BHA]

Tr[ABC] ≡ Tr[BCA]Tr[AT ] ≡ Tr[A]

(A.2)

The gradients are computed by perturbing the variable of interest by a perturbed

value, collecting the first order terms in the perturbation, and representing first order

terms in vector form ~B ·~δ, where δ is the perturbation. In this case ~B will represent

the gradient vector.
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A.1 Computation of ~gA

From the definition of Gp(A, 0) we have

Gp(A, 0) = ‖Ah1‖2p1 + ‖Ah2‖2p2 + Tr(AHA)σ2
R (A.3)

In order to compute ~gA, we replace A by A+δ and take only the first order terms in

δ. We will do this term-by-term for the three terms on the right-hand side of (A.3).

The first term on the right hand side of (A.3) under this replacement can be

written as

‖(A+ δ)h1‖2p1 = Tr
[
(h1)H(A+ δ)H(A+ δ)h1

]
p1, (A.4)

which when expanded gives first-order terms

Tr
[
hH1 δ

HAh1 + hH1 A
Hδh1

]
p1 = 2<Tr

[
δHAh1h

H
1

]
p1

= 2p1vec
(
Ah1h

H
1

)
· ~δ.

(A.5)

Similarly, the second term in the right hand side of (A.3) when expanded yields

first-order terms

2p2vec
(
Ah2h

H
2

)
· ~δ.

The last term in (A.3) similarly yields first-order terms.

2σ2
Rvec (A) · ~δ.

In summary, we obtain

~gA = vec
(
2p1Ah1h

H
1 + 2p2Ah2h

H
2 + 2σ2

RA
)
.
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A.2 Computation of ~gh

Gp(A,h
′) = ‖A(h1 + h′1)‖2p1 + ‖A(h2 + h′2)‖2p2 + tr(AHA)σ2

R (A.6)

In order to compute ~gh, we replace h′ by δ ≡ [δ1; δ2] and take only the first order

terms in δ. We will do this term-by-term for the three terms on the right-hand side

of (A.6).

The first term on the right hand side of (A.6) under this replacement can be

written as

‖A(h1 + δ1)‖2p1 = Tr
[
(A(h1 + δ1))HA(h1 + δ1)

]
p1, (A.7)

which when expanded gives first-order terms

[
Tr[δH1 A

HAh1] + Tr[(hH1 A
HAδ1]

]
p1 = 2<Tr[δH1 A

HAh1]p1

= 2p1vec
(
AHAh1

)
· ~δ1.

(A.8)

Similarly, the second term in the right hand side of (A.6) when expanded yields

first-order terms

2p2vec
(
AHAh2

)
· ~δ2.

The last term in (A.6) is independent of the variable of interest (∆h), hence its

gradient with respect to ∆h is zero.

In summary, by replacing A with A0 and combining vectors, we obtain

~gh = 2vec
[
p1(AH

0 A0h1) ; p2(AH
0 A0h2)

]
.
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A.3 Computation of ~fA,i

From the definition of fSINRi
(A, 0) we have

fSINRi
(A, 0) =

|ĥ
T

i Aĥj|2pj
‖ĥ

T

i A‖2σ2
R + σ2

i

, i = 1, 2, j = 3− i. (A.9)

(A.10)

In order to compute ~fA,i, we first replace A by A+ δ in (A.9) to obtain

fSINRi(A+ δ, 0) =
ĥ
H

j (A+ δ)H ĥ
∗
i ĥ

T

i (A+ δ)ĥjpj

‖ĥTi (A+ δ)‖2σ2
R + σ2

i

, i = 1, 2, j = 3− i. (A.11)

which when expanded gives first-order terms

2pj

‖ĥ
T

i A‖2σ2
R + σ2

i

<Tr
[
δHĥ

∗
i ĥ

T

i Aĥjĥ
H

j

]
− 2pjσ

2
R|ĥ

T

i Aĥj|2(
‖ĥ

T

i A‖2σ2
R + σ2

i

)2<Tr
[
δHĥ

∗
i ĥ

T

i A
]
, i = 1, 2, j = 3− i. (A.12)

This equation can be written in vector form as ~fA,i · δ, where

~fA,i = vec

 2pj

‖ĥTi A‖2σ2
R + σ2

i

ĥ
∗
i ĥ

T

i Aĥjĥ
H

j −
2pjσ

2
R|ĥ

T

i Aĥj |2(
‖ĥTi A‖2σ2

R + σ2
i

)2 ĥ
∗
i ĥ

T

i A

 , i = 1, 2, j = 3−i.

A.4 Computation of ~fh,i

From the definition of fSINRi
(A,h′) we have

fSINRi
(A,h′) =

|(ĥi + h′i)
TA(ĥj + h′j)|2pj

‖(ĥi + h′i)
TA‖2σ2

R + σ2
i

, i = 1, 2, j = 3− i. (A.13)
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In order to compute ~fh,i, we first replace h′ by δ in (A.13) to obtain

fi(A, δ) =
|(ĥi + δi)

TA(ĥj + δj)|2pj
‖(ĥi + δi)TA‖2σ2

R + σ2
i

, i = 1, 2, j = 3− i. (A.14)

which when expanded and rearranged gives first-order terms (i = 1, 2, j = 3− i)

2pj

‖ĥ
T

i A‖2σ2
R + σ2

i

<Tr
[
δTi Aĥjĥ

H

j A
Hĥ
∗
i + δ̂

H

j A
Hĥ
∗
i ĥ

T

i Aĥj

]
− 2pjσ

2
R|ĥ

T

i Aĥj|2(
‖ĥ

T

i A‖2σ2
R + σ2

i

)2<Tr
[
δTi AA

Hĥ
∗
i

]
. (A.15)

This equation can be written in vector form as ~fh,i · ~δ, where (i = 1, 2, j = 3− i)

~fh,i = vec[
2pj

‖ĥ
T

i A‖2σ2
R + σ2

i

A∗ĥ
∗
j ĥ

T

j A
T ĥi −

2pjσ
2
R|ĥ

T

i Aĥj|2(
‖ĥ

T

i A‖2σ2
R + σ2

i

)2A
∗AT ĥi ;

2pj

‖ĥ
T

i A‖2σ2
R + σ2

i

AHĥ
∗
i ĥ

T

i Aĥj]. (A.16)

A.5 Expression for ~g∆h

The computation of ~g∆h follows a similar procedure to the computations of ~gh

above. The result is

~g∆h =
[
2p1vec(AHA(h1 + ∆h1)) ; 2p2vec(AHA(h2 + ∆h2))

]
.
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A.6 Expression for ~fm,i

The results for ~fm,i is given by

~f i,A(m) = [wi;wj] i = 1, 2; j = 3− i; (A.17)

wi = 2pj(h
T
i Ahj + hTi A∆hj + hTj A

T∆hi)A
∗hj

∗

−2piγi(h
T
i (A+AT )∆hi)(A

H +A)∗hi
∗

−2γiσ
2
RA
∗AT (hi + ∆hi).

wj = 2pj(h
T
i Ahj + hTi A∆hj + hTj A

T∆hi)A
Hhi

∗.

A.7 Expression for ~gA(m)

~gA(m) = vec
[
A[(pi/σ

2
R)‖(hi + ∆hi)‖+ (pk/σ

2
R)‖(hk + ∆hk)‖+ IM×M ]

]
. (A.18)

A.8 Expression for
~̂
f∆h(k),i

~̂
f∆h(k),i =[wi; wj ] i = 1, 2; j = 3− i;

wi =pj [hi
TAhj + ε(hTi A)∆hj + ε(hTj A

T )∆hi](h
T
j A

T )
H

−(piγiε
2
i )[(h

T
j A

T )∆hi](h
T
i (A+AT ))H

−(σ2
Rγi)(A

∗)(AThi + εAT∆hi)

wj =pj [hi
TAhj + ε(hTi A)∆hj + ε(hTj A

T )∆hi](h
T
i A)

H
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