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ABSTRACT 

 

For successful identification of structural defects in plates and pipes, it is 

essential to understand structural wave propagation characteristics such as dispersion 

relations.  Analytical approaches to identify the dispersion relations of homogeneous, 

simple plates and circular pipes have been investigated by many researchers.  However, 

for plates or pipes with irregular cross-sectional configurations or multi-layered 

composite structures, it is almost impossible to obtain the analytical dispersion relations 

and associated mode shapes.  In addition, full numerical modeling approaches such as 

finite element (FE) methods are not economically feasible for high (e.g., ultrasonic) 

frequency analyses where an extremely large number of discretized meshes are required, 

resulting in significantly expensive computation. 

In order to address these limitations, Hybrid Analytical/Finite Element Methods 

(HAFEMs) are developed to model composite plates and pipes in a computationally-

efficient manner.  When a pipe system is used to transport a fluid, the dispersion curves 

obtained from a “hollow” pipe model can mislead non-destructive evaluation (NDE) 

results of the pipe system.  In this study, the HAFEM procedure with solid elements is 

extended by developing fluid elements and solid-fluid boundary conditions, resulting in 

the dispersion curves of fluid-filled pipes.  In addition, a HAFEM-based acoustic 

transfer function approach is suggested to consider a long pipe system assembled with 

multiple pipe sections with different cross-sections.  For the validation of the proposed 
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methods, experimental and full FE modeling results are compared to the results obtained 

from the HAFEM models.   

In order to detect structural defect locations in shell structures from defect-

induced, subtle wave reflection signals and eliminate direct-excitation-induced and 

boundary-reflected, relatively-strong wave signals, a time-frequency MUSIC algorithm 

is applied to ultrasonic wave data measured by using an array of piezoelectric 

transducers.  A normalized, structurally-damped, cylindrical 2-D steering vector is 

proposed to increase the spatial resolution of time-frequency MUSIC power results.  A 

cross-shaped array is selected over a circular or linear array to further improve the 

spatial resolution and to avoid the mirrored virtual image effects of a linear array.  Here, 

it is experimentally demonstrated that the proposed time-frequency MUSIC 

beamforming procedure can be used to identify structural defect locations on an 

aluminum plate by distinguishing the defect-induced waves from both the excitation-

generated and boundary-reflected waves. 
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1. INTRODUCTION
*1

 

 

A guided ultrasonic Lamb wave in a shell structure can propagate a long distance 

with a small spatial dissipation rate so that it can be used to scan a large area of the 

structure for its structural defects with a relatively small number of sensors.  Thus, it can 

be applied for the non-destructive evaluations (NDEs) of a large number of structures 

such as composite panels, pipelines, and drill strings [1-3].  When there is a structural 

defect in a system, an excited wave is propagating and then reflected from this defect.  

By measuring the reflective wave, the structural defect location and shape can be 

identified.  In order to use the guided waves for the NDE applications, it is important to 

properly excite a plate or pipe system to generate a specific guided wave of which wave 

propagation characteristics are predetermined.   

1.1 Identification of Wave Propagation Characteristics Using HAFEM 

The dispersion curves of a shell structure contain information on frequency-

dependent wave propagation characteristics such as phase speed, wavelength, and 

wavenumber.  Therefore, various numerical and analytical methods have been developed 

to obtain the dispersion curves [3-7].  However, for plates or pipes with complicated 

cross-sectional configurations, such as multi-layered composite structures with irregular 

                                                 

*
 Parts of this section are reprinted from “Identification of Acoustic Characteristics of Honeycomb 

Sandwich Composite Panels Using Hybrid Analytical/Finite Element Method” by Y.-J. Kim and J.H. Han, 

2013, Journal of Vibration and Acoustics Transactions of American Society of Mechanical Engineers, 135, 

011006 (11 pages), Copyright [2013] with permission by Journal of Vibration and Acoustics Transactions 

of American Society of Mechanical Engineers.  
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cross-sections, it is almost impossible to obtain analytical dispersion relations and 

associated mode shapes.  In order to investigate wave propagation characteristics of 

these complex structures, numerical methods such as finite element methods (FEMs) 

have been also developed.  However, these approaches are not always applicable to 

relatively high frequency analyses that require a large number of FEM meshes, resulting 

in high computational costs. 

In order to address the aforementioned limitations with analytical and numerical 

approaches, a Hybrid Analytical/Finite Element Method (HAFEM) is proposed that uses 

a finite element approximation in the thickness direction (or cross-sectional directions) 

while an analytical solution is used in the plane directions (or axial direction).  Thus, it 

makes possible to use a small number of finite elements even for high frequency (e.g., 

ultrasonic) analyses in a computationally-efficient manner.  Here, when the thickness 

direction is discretized based on the finite element approximation for the case of plates, 

it is referred to as the Hybrid Analytical/1-D Finite Element Method (1-D HAFEM).  

Similarly, the 2-D finite element approximation combined with the 1-D analytical 

solution for the case of pipes is referred to as the Hybrid Analytical/2-D Finite Element 

Method (2-D HAFEM).  

Previous research using hybrid 1-D approaches has some limitations, for example, 

including only in-plane, 2-D nodal displacements [8-9] or using an assumption of no 

reflective waves in the plane directions [10].  In this research, a 1-D HAFEM 

formulation is described that uses no assumption for analytical solutions in the plane 
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directions, which results in a partial differential system equation that can be used to 

consider the boundary conditions at the edges of “finite-size” panels [11].   

Regarding 2-D HAFEM formulations, a hybrid finite strip element formulation was 

presented by Cheung in 1976 [12].  Taweel et al. [13] investigated wave propagation 

characteristics of rectangular bars and a circular cylinder by applying a hybrid approach.  

Kim and Bolton [14-15] investigated the vibration responses of a tire by modeling it 

using an analytical wave solution in the circumferential direction and 2-D shell finite 

elements in the cross-sectional directions.  Kim and Han [11,16-17] studied the acoustic 

characteristics of honeycomb sandwich panels by applying the 1-D HAFEM.  Hayashi et 

al. [18] obtained the dispersion curves of a railroad by using a hybrid method referred to 

as the Semi Analytical Finite Element Method (SAFEM) formulated with linear 

interpolation functions.  In this research, the dispersion curves of hollow cylindrical 

pipes are obtained by using the 2-D HAFEM that employs an analytical solution in the 

axial direction and a Finite Element (FE) approximation in the cross-sectional directions 

[19].  While the FE approximations in the previous hybrid approaches are based on the 

linear interpolation functions, the current FE approximation uses quadratic interpolation 

functions to improve computational efficiency and accuracy.  Additionally, a forced 

solution procedure for pipe systems with simply-supported boundary conditions is 

presented, while the forced dynamic responses of the finite-size pipe cannot be analyzed 

by using the previous hybrid approaches.  The proposed, forced solution approach is 

validated by comparing the HAFEM-predicted responses to the analytical solutions of a 

simply-supported, hollow, cylindrical pipe.  The proposed 2-D HAFEM procedure is 
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also validated by comparing the HAFEM-predicted and analytical dispersion curves of 

the cylindrical pipe. 

1.2 Wave Propagation Modeling of Fluid-filled Pipe System Assembled with 

Multiple, Different Cross-sections Using HAFEM 

When a pipe system is used to transport a fluid, the dispersion curves obtained from 

a “hollow” pipe model can mislead NDE results of the pipe system.  Therefore, 

dispersion curves including fluid loading effects are essential for obtaining accurate 

NDE results.  The aforementioned hybrid approaches cannot be used to analyze the fluid 

loading effects to the best knowledge of the authors.  In this study, the existing 2-D 

HAFEM procedure with the solid elements is extended by developing fluid elements and 

solid-fluid boundary conditions, resulting in dispersion curves of fluid-filled pipes.  

Similar to the hybrid solid elements in Ref. 19, the hybrid fluid element uses a 2-D finite 

element approximation in the cross-sectional area, while an analytical wave solution is 

assumed in the axial direction. The proposed method is validated by comparing the 

HAFEM-predict dispersion curves to “experimental” ones of an empty pipe and 

“analytical” ones of a fluid-filled pipe.  The analytical results of the fluid-filled pipe in 

Ref. 7 are reused for this comparison.   

Although the HAFEM is useful to understand wave propagation characteristics of 

fluid-filled, multi-layered composite pipes with arbitrary cross-sections, the cross-

sectional shapes should not be changed in the axial direction.  In order to consider a pipe 

system assembled with multiple pipe sections with different cross-sections, an acoustic 
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transfer function is derived from the HAFEM formation.  Although an “analytical” 

acoustic transfer function was derived from shell vibration equations [20] to model drill 

string systems, this analytical approach cannot be used to consider fluid loading effects 

and multi-layered composite pipes.  For the validation of the proposed, HAFEM-based, 

acoustic transfer function method, the frequency response functions (FRFs) obtained 

from the proposed method are compared to experimental results for both hollow and 

fluid-filled pipes. 

1.3 Time-frequency Beamforming for NDEs Using Ultrasonic Wave 

In order to detect structural defect locations in a plate based on the wave propagation 

characteristic identified by using the HAFEM, the plate is excited with a specific 

ultrasonic Lamb wave and wave signals are recorded by using an array of Piezoelectric 

Wafer Active Sensors (PWASs) [21,22].  When there is a structural defect in the system, 

the excited wave is then reflected from the defect.  By measuring the reflective wave and 

processing the measured wave signal, the structural defect location can be identified.  

The latter procedure can be implemented to scan a large structural area with a relatively 

small number of transducers due to the long propagation distance of the guided wave.   

The guided Lamb wave generation characteristics of piezoelectric actuators were 

studied by Crawley et al. [23-24] and Giurgiutiu [21].  Giurgiutiu et al. [21-22] 

suggested a mode tuning technique to dominantly excite a single mode Lamb wave by 

selecting an appropriate excitation frequency for the given dimensions and material 

properties of a piezoelectric actuator and a shell structure.   



 

6 

 

NDE algorithms for processing measured guided wave signals are listed in Refs. 

[2,25].  A pulse-echo method using a PWAS array referred to as the embedded 

ultrasonic structural radar was used for detecting cracks on a panel [26].  Wang et al. 

improved the conventional pulse-echo and pitch-catch method by applying a time 

reversal process to suppress boundary effects and thus increase the signal to noise ratio 

(SNR) although this method required undamaged baseline data [27-28].  In Ref. [29], 

Ikegami et al. introduced an aircraft health monitoring system by using embedded-

piezoelectric transducers and continuously comparing measured data with undamaged 

data.  Sohn et al. suggested a damage diagnostic procedure that does not require 

undamaged data by combining a consecutive outlier analysis and a time reversal 

procedure [30].  Giurgiutiu et al. [31] and Yan et al. [32] found structural defect 

locations in aluminum and composite plates from two-dimensional (2-D) beamforming 

power images constructed by using a Delay-And-Sum (DAS) beamforming algorithm.  

In addition, Li et al. applied a Multiple Signal Classification (MUSIC) beamforming 

algorithm to identify air-filled cylindrical target locations in a water-filled tank at a high 

spatial resolution [33].  Belanger et al. investigated the performance of a MUSIC 

algorithm by considering numerically-simulated, second-order scattering between 

defects with a high spatial resolution of 0.1λ where  is the wavelength [34].    

The aforementioned MUSIC beamforming algorithms can be applied to identify 

structural defects in “ideal” and “simple” shell structures such as infinite-size and 

uniform-thickness shells.  However, in a “real” shell structure, high-level waves are 

reflected from many discontinuous features such as boundaries and stiffeners.  In 
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general, the waves reflected from the structural defects have much weaker signal 

strength than direct excitation waves and reflective waves from the structural boundaries 

or stiffeners.  Then, it is almost impossible to identify the structural defects using the 

aforementioned, steady-state beamforming algorithms due to the strong direct excitation 

and reflective wave signals.  In order to overcome this problem, a time-gating approach 

removing reflection time data from boundaries is generally applied [35].  For an 

embedded structure health monitoring system installed in the middle of a structure, the 

latter method can be useful since the measured time signals of boundary-reflected waves 

are appeared at the end of the time data and can be thus easily distinguished from the 

defect-induced waves that are measured before the arrival of the boundary-reflected 

waves.  However, this approach is difficult to be applied when defect-induced reflective 

waves appears later than or at the same time with boundary-reflected waves.   

In this article, experimental results obtained with a 1.22 m  0.92 m  0.002 m 

aluminum plate placed on small foam blocks around its edges are presented.  For the 

purpose of simulating structural defects in this experiment, coins or washers are glued on 

the aluminum plate, which is similar to the cases in Refs. [27-28] where mass blocks are 

glued on an aluminum plate.  A cross-shaped array of 7 mm  7 mm piezoelectric 

transducers is also installed on the plate.  One of the transducers is excited with a Lamb 

burst signal and the transducer array is then used to measure direct and reflective wave 

signals.  In order to avoid multi-mode wave generation and spatial aliasing, the 

excitation frequency is set to 20 kHz.  Then, a single anti-symmetric A0 Lamb wave 
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mode whose wavelength is long enough to avoid the spatial aliasing is excited 

selectively at this excitation frequency.   

By applying conventional, steady-state MUSIC beamforming algorithms to the 

measured array signals, it is shown that these algorithms are unable to identify the 

locations of the simulated structural defects in the aluminum plate due to the multiple 

wave reflections.  Thus, it is proposed to improve the beamforming algorithms by 

exploiting the temporal information of the reflective wave signals from the defects and 

boundaries as well as the spatial information that the defect locations are not coincident 

with the boundaries.  In order to realize this idea, a “time-frequency” MUSIC algorithm 

is proposed in this article.    

Belouchrani et al. and Johnson et al. introduced the concept of a time-frequency 

beamforming procedure [36-37].  However, its applications are limited to estimate the 

“direction of arrival (DOA)” of active sources.  In this article, the proposed time-

frequency MUSIC algorithm is applied to identify the “locations” (i.e., directions and 

distances) of “structural defects” by measuring reflected waves from the defects on a 

plate, which does not require any specific time filtering or gating to distinguish defect- 

and boundary-induced reflective wave events.  The proposed algorithm is expected to be 

useful, in particular, when boundary-reflected waves are measured earlier than or at the 

same time with defect-reflected waves.  In the latter case, it is difficult to filter out the 

boundary-reflected signals unless the locations of the boundaries and defects are 

visualized on temporal beamforming power maps obtained by using the proposed time-

frequency algorithm.  For example, when the defect- and boundary-induced reflective 
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waves are measured at the same time, the proposed algorithms can separate these waves 

based on their reflection locations identified on the resulting MUSIC beamforming 

power map.   

Additionally, a normalized, structurally-damped, 2-D cylindrical steering vector is 

proposed to increase the spatial resolution of time-frequency MUSIC power results, 

accurately pinpointing structural defect locations.  A cross-shaped array is here selected 

over a circular or linear array to further improve the spatial resolution and to avoid the 

mirrored virtual image effects of the linear array.  

Through the experimental results obtained by applying the proposed time-frequency 

MUSIC beamforming algorithm to the measured array data, it is shown that the 

proposed algorithms can be used to successfully locate the simulated defects. 
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2. INVESTIGATION ON WAVE PROPAGATION CHARACTERISTICS USING 

HYBRID ANALYTICAL/NUMERICAL APPROACHES
*
  

 

In order to investigate wave propagation characteristics in structures such as panels 

and pipes for their NDEs, the HAFEM procedures are developed.  For the validation of 

these methods, analytical solutions or experimental results are compared to HAFEM 

results.  In order to obtain dispersion curves of fluid-filled pipes, the HAFEM procedure 

with solid elements is extended by developing fluid elements and solid-fluid boundary 

conditions.  In addition, for the purpose of considering a pipe system assembled with 

multiple pipe sections with different cross-sections, an acoustic transfer function is 

derived from the HAFEM formation. 

2.1 Hybrid Analytical/One-Dimensional Finite Element Method
2
 

For the Hybrid Analytical/One-Dimensional Finite Element Method (1-D HAFEM) 

formulation for analyzing structural wave propagation characteristics in composite 

panels, it is assumed that each composite layer is homogeneous: i.e., each layer is 

assumed to be represented well by a single set of material properties.  It is also assumed 

that each layer has a constant thickness.  For example, Fig. 1 illustrates the HAFEM 

model of a double-layered composite panel.  In this model, two elements are used to 

                                                 

*
 Parts of this section are reprinted with permission from “Identification of Acoustic Characteristics of 

Honeycomb Sandwich Composite Panels Using Hybrid Analytical/Finite Element Method” by Y.-J. Kim 

and J.H. Han, 2013, Journal of Vibration and Acoustics Transactions of American Society of Mechanical 

Engineers, 135, 011006 (11 pages), Copyright [2013] by Journal of Vibration and Acoustics Transactions 

of American Society of Mechanical Engineers.  
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represent layer 1 and one element for layer 2.  Since the displacements are approximated 

by the combination of nodal displacements and “linear” interpolation functions in the z-

direction, there are two nodes per one element.  In the following section, the HAFEM 

formulation is first derived for a single hybrid element.  The global equation of motion 

(EOM) for a multi-element system can then be obtained by assembling the local EOMs 

of all elements. 

 

z

x

y
Layer 2

Layer 1

Node 4

Node 3

Node 2

Node 1

Element 3

Element 2

Element 1

 

Figure 1: Illustration of HAFEM model of double-layered panel. 

 

 

 

2.1.1 One-Dimensional HAFEM Equation 

The displacements of a single hybrid element can be approximated in terms of its 

nodal displacements, that are the functions of x, y, and t, combined with the linear 

interpolation functions, N1 and N2 in the z-direction: i.e.,    
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  
1 2

T

1 2 1 1 1 2 2 2

1 2

( , , , ) ( ) 0 0 ( ) 0 0

( , , , ) 0 ( ) 0 0 ( ) 0 ,

( , , , ) 0 0 ( ) 0 0 ( )

u x y z t N z N z

v x y z t N z N z u v w u v w

w x y z t N z N z

   
   


   
      

 (2.1) 

where the superscript, T represents the transpose of a vector or matrix and N1 and N2 are 

the interpolation functions defined as 

 1( ) 1
z

N z
d

   and 2 ( )
z

N z
d

 . (2.2) 

When the deformation of the element is small enough, the strains can be linearly related 

to the displacements: i.e., 

 

T

( , , , )
u v w v u w v w u

x y z t
x y z x y y z x z

         
    

         
e , (2.3) 

where e represents the strain vector.  By using the stress-strain relation (i.e., constitutive 

relation) represented by a matrix, C, the stress vector can be related to the strain vector 

as 

 s Ce , (2.4) 

where the matrix C, for example, for an orthotropic material can be expressed as 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 
 
 
 

  
 
 
 
  

C . (2.5) 

The virtual work principle is expressed as 
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 ( ) 0U T W    , (2.6) 

where the potential energy U, the kinetic energy T, and the work W are represented, 

respectively, as   

  H1

2
t x y z

U dx dy dz dt     e Ce , (2.7) 

 
T1

,
2

t x y z

T dx dy dz dt     u u  (2.8) 

and 

 
T1

2
t x y

W dx dy dt   u f . (2.9) 

Then, the EOM of the single element can be derived by substituting Eqs. (2.7) – (2.9) 

into Eq. (2.6): i.e.,  

 

2 2 2 2
i e

2 2 2xx xy yy xz yz zz
x x y y x y t

     
       

      

u u u u u u
K K K K K K u M f f , (2.10) 

where u is the nodal displacement vector (i.e., u = [u1 v1 w1 u2 v2 w2]
T
), K is the element 

stiffness matrix, and M represents the element mass matrix.  In Eq. (2.10), f
i
 and f

e
 are 

the internal and external force vectors, respectively.  A set of orthotropic material 

properties can be considered in Eq. (2.10) when the stiffness matrices are calculated by 

using the constitutive equation of an orthotropic material in Eq. (2.4).  For a multi-

element system, all local element matrices can be assembled into a global matrix.  For a 

compact notation, the same symbols are used for both local and global quantities from 
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now on.  Furthermore, the left-hand-side terms associated with the stiffness matrices in 

Eq. (2.10) can be represented as the linear operator defined by 

 

2 2 2

2 2xx xy yy xz yz zz
x x y y x y

    
     

     
L K K K K K K . (2.11) 

When the system is excited at a single angular frequency of ω, the global EOM can be 

then expressed as 

   2( ) ( ) ( ) L u x Mu x f x , (2.12) 

where u is the nodal displacement vector and x represents the position vector in the x-y 

plane: i.e., x = (x, y).  The internal force vector in Eq. (2.10) is not shown in Eq. (2.12) 

since a pair of internal forces facing each other at a node is cancelled during the global 

matrix assembly process.   

2.1.2 Dispersion Relations of Lamb Wave 

For the analysis of the Lamb wave propagation in a composite panel, a plane strain 

case with no external external forces (i.e., f = 0 in Eq. (2.12)) is considered by neglecting 

the y-direction nodal displacements: i.e., vn = 0 where n = 1, 2, …, N.  The spatial 

derivative with respect to y can also be neglected in Eq. (2.11).  Then, the displacement 

vector can be assumed as 

 ( , , ) exp( )x y t ikx i t u U , (2.13) 

where the complex amplitude vector is defined as  

  
T

1 1 2 2 N NU W U W U WU . (2.14) 
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The resulting eigenvalue problem can be then written as 

  2 2

xx xz zzk i k     K K K M U 0 . (2.15) 

For a nontrivial displacement vector, the determinant of the coefficient matrix should be 

equal to zero: i.e., 

  2 2det 0xx xz zzk i k     K K K M . (2.16) 

From Eq. (2.16), the dispersion relations (i.e., k- relations) of the Lamb waves 

propagating in a composite panel can be calculated.  Then, the phase speed of the Lamb 

wave can be obtained from [38] 

  pc
k


 . (2.17) 

In order to validate the proposed 1-D HAFEM, the wave speeds in an aluminum plate 

with the thickness of 2 mm is calculated as a function of frequency by using both the 

analytical method (see Eqs. (C.24) and (C.25) in Appendix C.1) and the 1-D HAFEM 

with equally-spaced 51 nodes in the thickness direction.  Table 1 shows the material 

properties of the aluminum panel.  As shown in Fig. 2, the dispersion curves predicted 

by using the HAFEM are well matched with the analytical dispersion relations.   

 

Aluminum Panel 

Thickness (2h) 0.002 m 

Young’s Modulus (E) 7.110
10

 Pa  

Poisson’s Ratio () 0.2396 

Density () 2700 kg/m
3
  

Table 1: Material properties of aluminum panel. 
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Figure 2: Dispersion relations of waves propagating in 2 mm aluminum plate: (a) 

Symmetric modes and (b) Anti-symmetric modes. 

 

 

 

Figure 3 shows the wave shapes in the thickness direction for several Lamb modes 

(see the mode numbers, S0, S1, …, S6 and A0, A1, …, A6 associated with the 

dispersion curves in Fig. 2).  The analytical mode shapes in the thickness direction 

obtained from Eqs. (C.20) and (C.21) are well in line with the HAFEM results.  

Although the validation of the proposed HAFEM procedure is limited to the simple 

aluminum panel in this Section, the other validation cases with composite honeycomb 

sandwich panels can be found in the following Section.  Therefore, it can be concluded 

that the dispersion curves of multi-layered panels can be also obtained by using the 

proposed HAFEM procedure. 
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Figure 3: Cross-sectional wave shapes of 2 mm aluminum plate: (a) S0 mode at f2h = 

1.91 MHzmm, (b) S1 mode at f2h = 4.09 MHzmm, (c) A1 mode at f2h = 3.91 

MHzmm, and (d) A2 mode at f2h = 5.07 MHzmm. 

 

 

 

2.1.3 Wave Propagation Characteristics in Honeycomb Sandwich Panel 

In this Section, structural wave propagation characteristics of a honeycomb sandwich 

panel are investigated.  When a plane wave is incident on the bottom surface of the panel 

at a single frequency, the external force vector in Eq. (2.12) is represented as the 

combination of incident, reflected, and transmitted sound pressure waves: i.e., 

    2

1( ) ( ) ( ( ) ( )) ( )i r N tj p p p     L v x Mv x s x x s x , (2.18) 
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where v is the nodal velocity vector (v = u/t), pi, pr, and pt are the incident, reflected, 

and transmitted sound pressures, respectively, and s1 and sN represent the unit vectors 

normal to the bottom and top surfaces of the panel, respectively.  In order to identify the 

“structural” wave propagation characteristics of the panel, it is assumed that there is no 

fluid loading on the panel surfaces: e.g., the panel is placed in vacuum where there is no 

sound radiation.  When the panel is excited with a distributed, harmonic force with 

specific wave numbers, (kx, ky) and a frequency, f on the bottom surface of the panel, its 

normal vibration response can be found from Eq. (2.18) with the only pi term on the 

right hand side: i.e., 

   2

1( ) ( ) ( )ij p   L v x M v x s x . (2.19) 

After solving Eq. (2.19), the vibration response on the top surface is represented as 

 
T( , , ) ( , , ) Re[ ( , , )exp( 2 )]N x y x yv x y t x y t V k k f ik x ik y i ft   s v , (2.20) 

where V is the complex velocity amplitude.  The amplitude of vibration response at a 

specific radial wave number, kr = [kx
2 

+ ky
2
]

0.5
 can be then defined as an integral of |V(kx, 

ky, f)|  along the circle, C(kr) with the radius of kr in the (kx, ky) domain: i.e.,  

 
( )

( , ) ( , , )
r

r x y r
C k

v k f V k k f dk  . (2.21) 

The resulting vibration response, v can be plotted as a (kr, f) contour plot, where peak 

responses represent the dispersion relations of the structural waves propagating in the 

panel.  In addition, the analytical dispersion curves of the sound wave, flexural wave, 
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core shear waves, and skin flexural wave can be overlaid on the top of the (kr, f) contour 

plot.  The dispersion curve of the flexural wave is represented as 

 24 (2 ) /k f m D
, (2.22) 

where m is the mass per unit area and D is the equivalent flexural stiffness calculated 

based on the assumption of a “thin” composite plate [39].  The core shear wave speed 

can be calculated by using the following equation: i.e., 

 
m

G
c SC ..

, (2.23) 

where G is the core shear modulus.  For an orthotropic core that has two different core 

shear moduli (e.g., Gzx and Gyz in Table 2), the core shear wave can have two different 

wave speeds depending on its wave propagation direction.  The dispersion curve of the 

skin flexural wave is calculated as  

 24 (2 ) / (2 )Sk f m D , (2.24) 

where the mass per unit area is the half of the total mass per unit area, m of the panel 

[40].  In Eq. (2.24), the skin flexural stiffness, DS is defined as 

 

3

212(1 )

S S
S

S

E t
D





, (2.25) 

where ES, tS, and µS are the Young’s modulus, thickness, and Poisson’s ratio of the skin, 

respectively [40].   
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Face Sheet 

(Isotropic 

Material) 

Thickness (d) 5.84210
-4

 m 

Density () 1716 kg/m
3
 

Young’s Modulus (E) 6.128×10
10

 Pa 

Poisson’s Ratio () 0.143 

Loss Factor () 0.05 

Nomex Core 

(Orthotropic 

Material) 

Thickness (d) 0.901710
-2

 m 

Density () 128.1 kg/m
3
 

Young’s Modulus (Exx) 6.895×10
5
 Pa 

Young’s Modulus (Eyy) 6.895×10
5
 Pa 

Young’s Modulus (Ezz) 5.792×10
8
 Pa 

Shear Modulus (Gyz)  7.033×10
7
 Pa 

Shear Modulus (Gzx) 1.570×10
8
 Pa 

Shear Modulus (Gxy) 6.985×10
5
 Pa 

Poisson’s Ratio (vyz)  0.01 

Poisson’s Ratio (vzx) 0.01 

Poisson’s Ratio (vxy) 0.50 

Loss Factor () 0.05 

Table 2: Material properties of honeycomb sandwich panels. 

 

 

 

 

Figure 4: Dispersion relations of honeycomb sandwich panel: (a) Frequency range up to 

1MHz and (b) Frequency range from 500 kHz to 10 MHz. 
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The material properties of the honeycomb sandwich panel are listed in Table 2.  The 

resulting vibration response, v in Eq. (2.21) is plotted in Fig. 4 where the peak responses 

represent the dispersion relations of the structural waves propagating in the honeycomb 

sandwich panel.  The vibration levels are presented in the dB scale referenced at the 

maximum vibration level.  In Fig. 4, the dark red represents the highest vibration 

response while the dark blue indicates the lowest vibration response.  In addition, the 

analytical dispersion curves of the sound wave (i.e., the black line in Fig. 4(a)), the 

flexural wave (i.e., the blue dashed line), the core shear waves (i.e., the magenta dotted 

and red dash dot lines), and the skin flexural wave (i.e., the yellow solid line) are 

overlaid on the top of the contour plot in Fig. 4(a).  In Fig. 4(a), the flexural wave speed 

is slower than the sound wave speed at low frequencies (e.g., below 900 Hz) while it is 

faster than the sound wave speed at mid to high frequencies (e.g., above 900 Hz): note 

that the two wave speeds are coincident approximately at 900 Hz.  The sound wave and 

core shear waves have the constant wave speeds: i.e., they are non-dispersive.  The 

sound wave speed is 343m/s and the core shear wave speeds are 476m/s and 711m/s (see 

Eq. (2.23)).  The core shear wave in the x-direction is faster than the core shear wave in 

the y-direction since Gzx is larger than Gyz (see Table 2).  In Fig. 4(a), the peak response 

asymptotically converges to the analytical flexural wave at the low audible frequencies 

below 900 Hz.  At high frequencies (e.g., 5 kHz to 50 kHz), there are two vibration 

peaks at a single frequency, each peak converging to one of the core shear waves.  At 

low ultrasonic frequencies (e.g., from 100 kHz to 1 MHz), the vibration peak converges 

to the skin flexural wave.  At high ultrasonic frequencies above 1 MHz in Fig. 4(b), the 
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vibration peak asymptotically converges to the skin Lamb A0 wave as the frequency 

increases.  Therefore, at ultrasonic frequencies, it can be found that the face sheet is 

dominantly in control of the wave responses.  The higher modes cut on at the 

frequencies of 70 kHz, 108 kHz, and so on.   

2.2 Hybrid Analytical/Two-Dimensional Finite Element Method 

2.2.1 Two-Dimensional HAFEM Equation 

As shown in Fig. 5, a quadratic finite element with 9 nodes in the x-y coordinates can 

be mapped into the ξ-η coordinates in the domain of ξ = -1 to 1 and η = -1 to 1.   

 

ξ
1

3

2

4
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6

7

8 9
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η

1-1

-1

1

y

x

2

3

4

1
6

7
8

5

9

 

Figure 5: Coordinate transformation. 

 

 

 

This mapping is defined as [41]
 

 T( , ) ( , )x     N x ,  (2.26a) 

 T( , ) ( , )y    N y ,  (2.26b) 

where 
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T

1 2 3 4 5 6 7 8 9[ ]x x x x x x x x xx , (2.26c) 

 
T

1 2 3 4 5 6 7 8 9[ ]y y y y y y y y yy , (2.26d) 

 
T

1 2 3 4 5 6 7 8 9( , ) [ ]N N N N N N N N N  N ,  (2.26e) 

 1 2 3

1 1 1
( 1) ( 1), ( 1) ( 1), ( 1) ( 1)

4 4 4
N N N                    ,  (2.27a - c) 

 4 5 6

1 1 1
( 1) ( 1), (1 )( 1) ( 1), ( 1)(1 )( 1)

4 2 2
N N N                      , (2.27d - f) 

 7 8 9

1 1
(1 )( 1) ( 1), ( 1)(1 )( 1), (1 )( 1)(1 )( 1).

2 2
N N N                         (2.27g - i) 

This coordinate transformation simplifies a spatial integral in the x-y domain 

dramatically by mapping this integral to the ξ-η domain.  In order to implement this 

coordinate transformation, a chain rule is defined as  

 

f x y f f

x x

f ff x y

y y

  

  

          
           
        

          
                 

J ,  (2.28) 

where J is the Jacobian matrix.  By substituting Eqs. (2.26a) and (2.26b) into Eq. (2.28), 

the Jacobian matrix and its determinant can be represented, respectively, as 

 
11 12

21 22

( , ) ( , )

( , ) ( , )

T T

T T

x y

J J

x y J J

   

   

   

   

     
                    
        

N N
x y

J
N N

x y

, (2.29) 

and 
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( , ) ( , ) ( , ) ( , )

det( )
T T T T       

   

   
  

   

N N N N
J J x y y x .  (2.30) 

For an element, vibration displacements in the ξ-η coordinates are approximated by 

applying the quadratic interpolation functions to the nodal displacements.  In the z-

direction, an analytical solution is assumed: i.e., the nodal displacements are the 

functions of the time and z-location.   The displacement vector is then represented as 

 

1

1

11 9

1 9

1 9 9

9

9

( , , , ) 0 0 0 0

( , , , ) ( , , , ) ( , ) ( , ) 0 0 0 0 .

( , , , ) 0 0 0 0

u

u

v

wu z t N N

z t v z t z t N N

w z t N N u

v

w

 

     

 

 
 
 
    
    

       
         
 
 
 

ψ N u  (2.31) 

Then, a strain vector can be expressed by the partial derivatives of the displacements: i.e., 

 

T

( , , , )
u v w v u w v w u

x y z t
x y z x y y z x z

         
    

         
e .  (2.32) 

The stress vector can be related to the strain vector by using a constitutive matrix C: i.e., 

 s = Ce . (2.33) 

For the case of orthotropic materials, the matrix C can be expressed as 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 
 
 
 

  
 
 
 
  

C .  (2.34) 



 

25 

 

In order to derive the 2-D HAFEM EOM for a single element, the virtual work principle 

is applied: i.e., 

 , (2.35) 

where the potential energy, the kinetic energy, and the work are represented, respectively, 

as 

  H1

2
t x y z

U dx dy dz dt     e Ce , (2.36) 

 

H
H1

2
u u

t x y z

T dx dy dz dt
t t


 


    
u u

N N , (2.37) 

 
H1

2
t z

W dz dt  u f . (2.38) 

Finally, the equation of motion for the element can be obtained by substituting Eqs. 

(2.29), (2.31), (2.32), and (2.36) – (2.38) into Eq. (2.35): i.e., 

 
2 2

i e

( )2 2zz z
z z t

    

  
    

  

u u u
K K K u M f f ,  (2.39) 

where 
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H

1 1
zz z z d d

 
 

 
  K B CB J ,  (2.40)  
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H H
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1 1

( )z z z d d     
 

   
 

  K B CB B CB J ,  (2.41) 

 
1 1

H

1 1
d d dzdt     

 
   

 
  K B CB J ,  (2.42) 

( ) 0U T W   
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1 1

H

1 1
u u d d

 
  

 
  M N N J , (2.43) 

 ( ),1 ( ),2 ( ),3 ( ),4 ( ),5 ( ),6 ( ),7 ( ),8 ( ),9 ,B B B B B B B B B                            
   B       (2.44a) 

 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9z z z z z z z z z zB B B B B B B B B   B ,  (2.44b)
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i

z i i

i

N

N

N

 
 


 
  

B .  (2.44d) 

In Eq. (2.39), the superscripts, “e” and “i” on the force vector f represent the “external” 

and “internal” forces, respectively.  The double integrals in Eqs. (2.40) – (2.43) can be 

calculated by using the Gauss-Legendre quadrature [41].  For a FE system with multiple 

elements, the global HAFEM EOM is obtained by assembling all of the individual 

stiffness and mass matrices and force vectors.  During this global assembly process, the 

internal forces are cancelled out.  For convenience, the same notation for both the local 

and global nodal displacement vectors is used although the upper bar in the local 
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stiffness and mass matrices in Eqs. (2.39) – (2.43) are dropped for the global matrices: 

i.e., 

 
2 2

( )2 2zz z
z z t

    

  
   

  

u u u
K K K u M f . (2.45) 

2.2.2 Forced Response of Two-Dimensional HAFEM System 

When a system is excited at a single angular frequency of ω, the global HAFEM 

EOM can be rewritten from Eq. (2.45) as 

 2(1 ) ( )i   L u Mu f x , (2.46) 

where  is the structural loss factor and L is the linear operator defined as 

 
2

( )2zz z
z z

    

 
  

 
L K K K .  (2.47) 

For finite-size structures, the modal displacement vector can be written as 

 ( , ) exp( )m m mz t i t u U , (2.48)

 ( , ) ( )m m m mz t zU Ψ φ , (2.49) 

where m is the modal amplitude vector.  In Eq. (2.49), the diagonal element of the 

diagonal matrix, m for a circular pipe with the simply-supported boundary condition is 

written as [39]
 

 

sin( / ),  for -direction nodal displacement

( ) sin( / ), for -direction nodal displacement

cos( / ), for -direction nodal displacement

m

m z L x

z m z L y

m z L z



 






 



, (2.50) 
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where L is the length of the pipe in the z-direction.  In Eq. (2.48), m is the mode 

normalization factor with respect to the mass matrix M: i.e., 

 2 H H

0
( ) ( ) 1

L

m m m m mz z dz  φ Ψ MΨ φ .  (2.51) 

Equation (2.48) satisfies Eq. (2.46) for an undamped, free-vibration case (i.e., f = 0 and η 

= 0).  In this case, by substituting Eq. (2.48) into Eq. (2.46), an eigenvalue problem for 

calculating the modal amplitude vector can be represented as  

 
2( ) ( ) 0m m m m mz z LΨ φ MΨ φ .  (2.52) 

The cosine and sine components of Eq. (2.52) are cancelled out since each row has only 

one cosine or sine function.  Therefore, Eq. (2.52) can be rewritten as 

 
2 0m m m m S φ Mφ . (2.53) 

For a harmonic excitation at an angular frequency of , the forced solution is then 

expressed as the superposition of the modes: i.e., 

 ( , ) ( ) exp( )m m m m

m

z t C z i t  u Ψ φ , (2.54) 

where Cm is the modal contribution coefficient for the m-th mode.  By substituting Eq. 

(2.54) into Eq. (2.46) and applying the orthogonality of Un
H
(z), the modal contribution 

coefficient can be obtained as 

 2 2(1 i )

m
m

m

f
C

  


 
, (2.55) 

where fm is the modal force represented as 
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 H H

0
( )

L

m m m mf z dz  φ Ψ f . (2.56) 

2.2.3 Dispersion Relation of Circular Pipe 

When it is assumed that there is no reflection wave (e.g., infinite length in the z-

direction), a wave solution can be set as 

 
( )expi kz t 0u u .  (2.57) 

By substituting Eq. (2.57) into Eq. (2.45) for the free vibration case [18], an eigenvalue 

problem is derived as 
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                

K M K M U

UK M K K
.  (2.58) 

The dispersion relation between the wavenumber k and the angular frequency  can be 

obtained by solving the eigenvalue problem in Eq. (2.58).  Although a large number of 

FE nodes in the z-direction are required for a full 3-D FE model, the proposed HAFEM 

procedure for calculating the dispersion relation makes it possible to use a small number 

of finite elements in a computationally efficient manner by considering an analytical 

wave solution in the z-direction as in Eq. (2.57). 

2.2.4 Validation Cases: Natural Frequencies and Forced Responses of Simply-Supported 

Pipes 

In this section, the forced, flexural vibration responses of simply-supported, hollow, 

circular pipes obtained from 2-D HAFEM models at low frequencies are compared to 

the analytical vibration responses calculated by using the Euler-Bernoulli beam theory 
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[38].  Figure 8 shows an example of a 2-D HAFEM model for analyzing the pipe system.  

As shown in Fig. 6, the cross-section of the pipe is modeled by using the finite elements 

while an analytical solution is assumed in the z-direction.   

 

 

Figure 6: Illustration of 2-D HAFEM model for analyzing hollow, cylindrical pipes: (a) 

FE approximation on cross-section and (b) Analytical solution in axial direction. 

 

 

 

An 1 mm thick aluminum pipe simply-supported at the both ends is used for 

validating the proposed 2-D HAFEM procedure.  The material properties and geometry 

information of this pipe are shown as Case I in Table 3.  Regarding the cross-sectional 

FE mesh, it consists of 9 nodes in the r-direction and 24 nodes in the -direction.  

Therefore, the cross-section is discretized by using 48 elements with 216 nodes (216 = 9 

 24).  For a harmonic, point excitation in the y-direction with the excitation frequencies 

of 100 Hz and 200 Hz at z = 0.3 m, the resulting natural frequencies and displacements 

obtained by using both of the 2-D HAFEM and analytical methods are shown in Table 4 

and Fig. 7, respectively.  From Table 4 and Fig. 7, it is shown that the natural 

frequencies and the vibration forced responses obtained by both of the approaches are 
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almost identical except the very low natural frequencies (i.e., from 0.106 Hz to 0.405 

Hz).  These low natural frequencies are associated with rigid body motions.  Since the 

HAFEM model contains the natural frequencies of the x- and y-direction rigid body 

motions and the cross-section of the pipe is symmetry with respect to the x- and y-axes, 

the duplicated natural frequencies are calculated from the HAFEM model as shown in 

Table 4.  

 

            Case I Case II 

Material Aluminum 

Young’s modulus [Pa] 7.1×E10 

Density [kg/m
3
] 2700 

Poisson’s Ratio 0.33 

Structural damping coefficient 0.01 

Outer diameter [mm] 6 40 

Thickness [mm] 1 3 

Length [m] 1 N/A 

Table 3: Material properties and geometry information of hollow, circular pipe. 

 

 

 

 

Figure 7: Displacement amplitudes in y-direction for Case I in Table 3 when excited by 

y-directional, harmonic, point force excitation at z = 0.3m: (a) 100 Hz and (b) 200 Hz.  
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Method            Natural frequencies [Hz] 

Analytical 
                                                14.52               58.07 

130.7               232.3    

HAFEM 
0.106   0.197   0.299   0.405   14.52   14.52   58.07   58.07  

130.6   130.6   232.0   232.0    

Table 4: Natural frequencies of simply-supported pipe (Case I in Table 3). 

 

 

 

2.2.5 Dispersion Relations in Ultrasonic Frequency Range 

Figure 8(a) shows the dispersion relations of axisymmetric longitudinal and torsional 

modes up to 1.5 MHz for Case II in Table 3.  In order to obtain the axisymmetric modes, 

it is assumed that ultrasonic wave responses have no spatial variation in the 

circumferential direction.  In order to realize this condition in the HAFEM model, all of 

the displacements in the -direction set to be equal and the dimension of the stiffness 

and mass matrices in Eq. (2.58) is then reduced from 648  648 (648 = 9243) to 27  

27 (27 = 93): the HAFEM model has 24 nodes in the circumferential direction.  The 

dispersion curves are then calculated from Eq. (2.58) with the reduced stiffness and mass 

matrices.  As shown in Fig. 8(a), the dispersion relations obtained by using the HAFEM 

agree well with the analytical dispersion relations obtained from Eq. (C.51). 
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Figure 8: Dispersion relations up to 1.5 MHz for Case II in Table 3: (a) Outer diameter 

of 40 mm and (b) Outer diameter of 1 km. 

 

 

 

As shown in Fig. 8(b), the HAFEM wave modes in the second validation case of the 

extremely large radius case (e.g., r = 1 km) become the Lamb wave or SH modes of the 

equivalent flat aluminum plate (i.e., r = ) with the same thickness of 3 mm.  The 

analytical dispersion relations for the Lamb wave modes are obtained from Eqs. (C.25) 

and (C.26).  For the SH modes, the analytical dispersion equation is represented as Eq. 

(C.33). 

2.3 Hybrid Analytical/Two-Dimensional Finite Element Method for Modeling 

Fluid-Filled Pipe 

When a pipe system is used to transport a fluid, the dispersion curves obtained from 

a “hollow” pipe model can mislead NDE results of the pipe system.  Therefore, 

dispersion curves including fluid loading effects is essential for obtaining accurate NDE 

results.  In this section, the existing 2-D HAFEM procedure with the solid elements is 
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extended by developing fluid elements and solid-fluid boundary conditions.  Since the 

detailed information on the solid element is presented in Section 2.2, the only fluid 

elements will be discussed in this section.  In this research, it is not considered for the 

case of existing bubbles in a fluid or a mean flow in a pipe. 

2.3.1 Governing Equation 

 The constitutive equation for a Newtonian fluid is [42] 

 ( )
j i

ij ij ij kk

i j

u u
p

x x
   

 
    

 
e .  (2.59) 

By approximating the volume change as V/V  exx + eyy + ezz and expressing the 

pressure in Eq. (2.59) as p =   V/V, Eq. (2.59) can be rewritten as  

 1 2s = C e C e .  (2.60) 

In a full matrix form, Eq. (2.60) can be represented as 
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 (2.61) 

where κ is the bulk modulus, μ is the dynamic viscosity coefficient, and λ is the bulk 

viscosity coefficient.  For a non-Newtonian fluid case, a linearization around an 

equilibrium point is required to build a constitutive matrix such as Eq. (2.61).  By 
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applying the variational principle in Eq. (2.35), 2-D HAFEM equation of motion for the 

single element can be obtained in Eq. (2.62). 

 
2 2

i e

( )2 2zz x y z x y
z z t

 

  
    
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u u u
K K K u M f f ,  (2.62) 

where  ̅ is the element stiffness matrix,  ̅ is the element mass matrix, u is the nodal 

displacement vector of the element, and f
i
 and f

e
 represent the internal and external 

forces.  For a harmonic excitation, the stiffness matrices and mass matrix of this fluid 

element can be expressed as 
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H H
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H

1 1
d d

 
  

 
  M N N J . (2.66) 

For a multi-element FE system, the global HAFEM equation is obtained by assembling 

the local element stiffness matrices, mass matrix, and force vectors in the global 

coordinate.  The internal forces are cancelled out during this global assembly process.  

For convenience, the same notations used in the local matrices is reused for the global 

matrices after dropping the upper bars in Eq. (2.62): i.e., 

 
2 2
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Structural waves in real structures decay out due to the structural damping.  In order 

to consider this damping effect when exp(ikx-it) is assumed as the positive-propagating 

wave exponential function, the complex Young’s modulus [43] is defined as  

 (1 )E E i  , (2.68) 

where E is the Young’s modulus and  is the structural damping coefficient.  The 

structural damping coefficient can be obtained by using the following relation [44,45]: 

i.e.,  

 2  , (2.69) 

where  is the viscous damping ratio which can be measured by using the half power 

method [46]. 

2.3.2 Dispersion Relation in Low Audible Frequencies  

From Eq. (2.58), the wavenumbers associated with longitudinal, torsional, and flexural 

waves at each frequency can be obtained (i.e., at a single frequency, two longitudinal 

wavenumbers kL+ and kL-, two torsional wavenumbers kT+ and kT-, and four flexural 

wavenumbers, kFR+, kFR-, kFI+ and kFI- can be obtained by solving Eq. (2.58)).  When 

there are N nodes in a 2-D HAFEM model, 3N wavenumbers satisfying Eq. (2.58) are 

obtained.  Except the wavenumbers associated with the longitudinal, torsional, flexural 

waves, other wavenumbers can be ignored due to their large imaginary parts.  As shown 

in Fig. 9, the dispersion relations for the longitudinal and torsional waves can be 

obtained for the given material properties of a hollow pipe in Table 5.  For the HAFEM 



 

37 

 

model, 5 nodes in the r-direction and 16 nodes in the -direction are used.  The HAFEM 

model is validated by comparing the analytical dispersion relations obtained by using  

= k(E/)
1/2

 for longitudinal waves and  = k(G/)
1/2

 for torsional waves where G and  

are the shear modulus and density, respectively.  The dispersion curves obtained from 

the HAFEM are well aligned to the analytical dispersion curves.  In Fig. 9, the positive 

wavenumbers represent positive-going waves and the negative wavenumbers, negative-

going waves. 

 

Young’s Modulus [GPa] 201 

Density [kg/m
3
] 7400 

Thickness [mm] 3.55 

Outer diameter [mm] 42.2 

Poisson’s ratio 0.285 

Table 5: Material properties of hollow pipe. 

 

 

 

Figure 9: Dispersion relations of longitudinal and torsional waves for hollow pipe in 

Table 5. 
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In Fig. 10, the dispersion relations for the flexural waves are plotted.  Bulk waves 

such as longitudinal and torsional waves in low frequencies are dependent on material 

properties. (i.e., cp= (E/)
0.5

 and cp= (G/)
0.5

)  However, flexural waves even in low 

frequencies and guided waves in ultrasonic frequencies depend on geometry information 

as well as material properties.  Both the real and imaginary wavenumbers are plotted in 

Fig. 10.  The imaginary wavenumbers are associated with exponentially-decaying 

evanescent waves.  Note that the two real and two imaginary wavenumbers are required 

to describe the flexural wave motions properly at a single frequency.  As the frequency 

increases, the discrepancy between the analytical and HAFEM results become larger 

since the analytical solution obtained from the Bernoulli–Euler beam theory (i.e., k = 

(2A/E/I)
1/4

) is supposed to be valid only for slander beams under the condition that the 

flexural waves are not coupled with other waves in low frequencies where the 

wavelength are much larger than the cross-sectional dimensions.  Therefore, the 

dispersion curves obtained from both the analytical and HAFEM analyses becomes 

identical at low frequencies.   

 

Water 

(at 15 °C) 

Density [kg/m
3
] 998.2 

Bulk viscosity [Pa·s] 3.1×10
-3

 

Dynamic viscosity [Pa·s] 1.155×10
-3

 

Bulk modulus [GPa] 2.2 

Table 6: Material properties of water filled inside of pipe in Table 5. 
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(a) (b)

 
Figure 10: Dispersion relations of flexural wave for water-filled pipe in Tables 5 and 6: 

(a) Real parts of wavenumbers and (b) Imaginary parts of wavenumbers.   

 

 

 

In order to validate the HAFEM dispersion results, the dispersion curves based on 

the thick shell theory are introduced and compared with the HAFEM dispersion results 

in Fig. 10.  The five governing equations [39] to describe the motion of the empty pipe 

modeled by using the thick shell theory including the effects of shear deformation and 

rotary inertia are expressed as 
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where u is the displacement in the direction denoted by its subscript, Nij (i, j = r, , z) is 

the in-plane force,  is the rotating angle, and k is the shear coefficient.  The shear 

coefficient can be expressed for a circular pipe as [47]   
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where ri and ro are the inner and outer radii of the circular pipe, respectively and  is the 

Poisson’s rato.  Then, the assumed wave solutions of Eqs. (2.70) – (2.74) for a harmonic 

excitation can be written as  

 
in ikz i t

r ru U e e e  , (2.76) 

 
in ikz i tu U e e e 

 

 , (2.77) 

 
in ikz i t

z zu U e e e  , (2.78) 

 
in ikz i tB e e e 

   , (2.79) 

 
in ikz i t

z zB e e e   . (2.80) 

By substituting Eqs. (2.76) – (2.80) into Eqs. (2.70) – (2.74), an eigenvalue problem can 

be formulated as 

  
T

r z zU U U B B  Z 0 . (2.81) 
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For a non-trivial solution, the determinant of the matrix Z in Eq. (2.81) should be zero: 

i.e., 

 ( , ) 0k  Z . (2.82) 

By solving Eq. (2.82), the dispersion relations can be obtained and they are overlaid in 

Fig. 10.  The HAFEM dispersion curves are matched well with those obtained from the 

shell theory which includes the coupling effects between propagation waves.  Since there 

is no specific assumption for HAFEM, its results are expected to be more accurate than 

those of the Bernoulli-Euler theory which is valid only for the thin beams.   

In addition, the dispersion relations in the water-filled pipe are also presented in Fig. 

10 with the water properties in Table 6.  When water is filled inside the pipe, the 

wavenumber increases at each frequency as shown in Fig. 12 and, therefore, the 

associated phase speed decreases.    

2.3.3 Dispersion Relations in Ultrasonic Frequencies 

In order to validate the HAFEM procedure in an ultrasound frequency range, the 

dispersion curves for the axisymmetric, longitudinal modes obtained from a HAFEM 

model are compared with the results presented in Ref. [7].  The material properties and 

geometry information of the water-filled pipe in Ref. [7] are presented in Table 7.  For 

the HAFEM model, 9 nodes in the r-direction for the pipe structure, 11 nodes in the r-

direction for water, and 36 nodes in the -direction are used.  Thus, the total of 684 (= 

(9+11-1)36) nodes are used for this model.  The dispersion curves of both the empty 

and water-filled cases are presented in Fig. 11.  It is shown that the dispersion curves 
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obtained from the proposed HAFEM agree well with the dispersion curves presented in 

Ref. [7].   

 

Young’s Modulus [GPa] 113.6 

Density [kg/m
3
] 7100 

Thickness [mm] 16 

Outer radius [mm] 143 

Poisson’s ratio 0.28 

Table 7: Material properties of pipe in Fig. 11 and Ref. [7]. 

 

 

 
(a) (b)

7
7

 

Figure 11: Comparison of dispersion curves for axisymmetric, longitudinal wave modes: 

(a) Empty case and (b) Water-filled case. 

 

 

 

In addition to the dispersion curves of the axisymmetric, longitudinal modes in Fig. 

11, the dispersion curves of the longitudinal wave modes for the same material 

properties and geometries in Tables 5 and 6 are estimated from the HAFEM model up to 

200 kHz.  The dispersion curves for longitudinal modes are shown in Fig. 12.  When the 

pipe is filled with water, as shown in Fig. 12(b), the second mode of the hollow pipe is 
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separated to several modes and an additional mode, that is referred to as the α mode [7], 

can be observed.  In low frequencies (e.g., below 30 kHz), the phase speed of this α 

mode converges to the non-dispersive leak noise propagation velocity defined as [7].   

 

1/2
2

1L

a
V c

Ed




 
  

 
, (2.83) 

where κ is the bulk modulus of water, a is the radius of the inner pipe, d is the thickness 

of the pipe, and cL is the wave speed in water. 

 

(a) (b)

α mode

Second mode

First mode

 

Figure 12: Dispersion curves for longitudinal wave modes obtained by using HAFEM: 

(a) Empty case and (b) Water-filled case. 
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3.2 m1.4 m

Signal conditioner

1.8 m

8 transducers

for excitation

1 transducer

for measurement

A

A  

A─A  

 

Figure 13: Experimental setup for measuring ultrasonic wave speeds in hollow pipe. 

 

 

  

In order to validate the proposed HAFEM modeling procedure experimentally, as 

shown in Fig. 13, the eight piezoelectric transducers (APC-851 manufactured by APC 

International, Ltd.) are attached to the pipe in the circumferential direction to generate 

longitudinal modes.  The material properties and geometric information of this pipe are 

same as the previous simulation case in Table 5 and the size of each transducer is 7  7 

mm.  The excited waves are then propagating and measured by using a transducer placed 

40 cm apart from the excitation transducers.  A National Instruments (NI) system 

equipped with a PXIe-5122 ultrasonic data acquisition (DAQ) module, a PXI-5421 

signal generator, and an in-house LabView code is used to generate a burst sinusoidal 

wave.  A Brüel & Kjæ r Type 2693 Nexus conditioning amplifier is used to amplify the 

measured ultrasonic wave signals before the signals are fed to the NI DAQ system.  The 

measured ultrasonic wave signals are recorded for 0.05 seconds at the sampling 
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frequency of 20 MHz.  In order to compensate a time-lag from the signal conditioner, the 

excitation signals are also measured to the NI DAQ system through the signal 

conditioner as described in Fig. 13.  In order to determine the wave speeds of the 

longitudinal modes, the Hilbert transformation is applied to the measured signals as 

shown in Figs. 14(a) and 14(b) to extract the envelopes of the measured signals and then 

the peak envelope locations are used to calculate group velocities.  The group velocity 

can be obtained by using a finite difference approximation as [48] 

 
1 2 2 1

2 1

,
2

g

f f
f v

k k k

  

 

, (2.84) 

where the subscripts represent two adjacent data points.  The dispersion curves in terms 

of the group velocity in Fig. 14(c) are obtained by applying Eq. (2.84) with f = f2 – f1 = 

5 kHz to the HAFEM results in Fig. 12(a).  Figure 14(c) shows that the measured group 

velocities are well matched to the HAFEM-predicted group velocities. 

(a)

(b)

(c)

 

Figure 14: Measured wave signals and dispersion curves: (a) Excitation signals, (b) 

Measured signal, and (c) Comparison of experimental and HAFEM-predicted dispersion 

curves. 
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2.4 HAFEM-Based Acoustic Transfer Function Approach for Modeling Multi-

Cross-Sectional Pipe System 

Although the HAFEM modeling is useful to understand the wave propagation 

characteristics of fluid-filled, multi-layered composite pipes with arbitrary cross-sections, 

the cross-sectional shapes should not change in the axial direction.  In order to consider a 

pipe system assembled with multiple pipe sections with different cross-sections, an 

acoustic transfer matrix is derived from the HAFEM formation. 

 

 

Figure 15: Sign convention of acoustic variables: (a) Longitudinal and torsional waves 

and (b) Flexural waves. 

 

 

 

As presented in Sections 2.2 and 2.3, an analytical solution is assumed in the axial 

direction (i.e., z-direction) while FE approximations are applied to the cross-section of a 

pipe or joint (see Fig. 6).  Since the displacements are approximated by combining the 

nodal displacements and quadratic interpolation functions in the cross-sectional 

directions, there are nine nodes in one element.  By solving a characteristics equation at 
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each frequency, the wavenumbers for the longitudinal, torsional, flexural waves are 

obtained.  Then, an acoustic transfer matrix between two axial locations is derived by 

using three wave equations.  The sign convention for an acoustic transfer matrix is 

described in Fig. 15. 

2.4.1 Longitudinal Wave 

For the pipe system in Fig. 15, the longitudinal equation [38] is represented as 

 

2 2

2 2 2

1z z

L

u u

z c t

 


 
, (2.85) 

where  cL (=(E/)
1/2

) is the longitudinal wave speed and uz is the displacement in the z-

direction.  The assumed solution for Eq. (2.85) can be expressed as  

 1 2( e e )eL Lik z ik z i t

zu B B     , (2.86) 

where kL+ and kL- are obtained at each angular frequency  in Section 2.3.2.  The 

longitudinal wave solution in Eq. (2.86) is based on the assumption that only plane 

waves are propagating through the pipe section. That is, except for the longitudinal, 

torsional, flexural wave modes, other wavenumbers that have large imaginary parts in 

low frequencies are ignored.  By using the axial force and displacement relation, F = -

EAuz/z and Eq. (2.86) at z = 0 and L, the relations between the axial displacements and 

the axial forces at the two z-locations can be expressed in a matrix form as 
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, (2.87) 

where A is the cross-sectional area.  Since kL+ and kL- are calculated at each angular 

frequency  by solving Eq. (2.58), the resulting axial displacements and forces in Eq. 

(2.87) are also a function of .  

2.4.2 Torsional Wave 

The torsional wave equation [38] can be represented as  

 

2 2

2 2 2

1

T

u u

z c t

  


 
, (2.88) 

where cT = (G/)
1/2

 is the torsional wave speed and u is the torsional angular 

displacement as described in Fig. 15(a).  By using T = -Ju/z, similar to the procedure 

in Section 2.4.1, the relations between the angular displacements and the torsional 

moments at z = 0 and L can be obtained as  
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, (2.89) 

where kT+ and kT- are obtained at each angular frequency  as described in Section 2.3.2 

and J is the torsional rigidity of the system. 
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2.4.3 Flexural Wave 

The flexural wave equation [38] can be expressed as  

 

4 2

4 2
0

y y

FR

u u
EI A

z t


 
 

 
, (2.90) 

where uy is the transverse displacement as shown in Fig. 15(b) and IFR is the area 

moment of inertia.  Then, the flexural wave solution of Eq. (2.90) can be assumed as  

 1 2 3 4( e e e e )eFR FR FI FIik z ik z ik z ik z i t

yu C C C C         . (2.91) 

Then, the flexural wave variables at z = L is expressed as  
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where 
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The four coefficients C1 to C4 can be expressed by using the flexural wave variables at z 

= 0 and the relation between the flexural wave variables at z = 0 and L is then obtained 

as 
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T T T . (2.96) 

2.4.4 Acoustic Transfer Matrix 

By combining Eqs. (2.87), (2.89), and (2.96) into a single matrix form, the 88 

acoustic transfer matrix T can be obtained as   

 0 0

1

1 2 1

0 0

0 0

0 0
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, (2.97) 

where 

 
T

z yu F u T u M V    U . (2.98) 

In Eq. (2.97), the matrices TL, TT, TF1, and TF2 are defined in Eqs. (2.87), (2.89), and 

(2.96).  For a fluid-filled pipe system with multiple pipe sections and joints, the total 

acoustic transfer matrix can be determined by multiplying all individual acoustic transfer 

matrices, each is obtained from a single pipe or joint.  Therefore, once a measurement is 

done at one end of the combined system, the acoustic wave variables at the other end can 

be estimated from the total acoustic transfer matrix without a measurement at this end.  
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Furthermore, by controlling the length of a pipe virtually, with acoustic data measured at 

one end, the acoustic wave variables at arbitrary points can be also estimated. 

2.4.5 Validation Cases: Two Hollow Pipes Connected by Joint  

The experimental setup is shown in Fig. 16.  Two empty pipes with the same cross-

section are connected with a joint in the middle and the combined pipe system is hanged 

by using two steel cables at z = 2.94 m and 6.80 m.  Table 8 shows the geometric 

dimensions and the material properties of the pipe system.  The damping coefficient in 

Table 8 is obtained by using Eq. (2.69) and applying the half power method to the 

experimental data.   

By exciting the left end of the pipe using a Brüel & Kjæ r (B&K) Type 8206 impact 

hammer, longitudinal and flexural waves are generated.  For the purpose of generating 

the flexural waves, a vertical impact force is applied to the pipe end by using the impact 

hammer.  In order to generate the longitudinal waves, after attaching a circular cover to 

the left end of the pipe, the impact hammer then is used to excite the center of the glued 

circular cover. 

With a PCB Piezotronics “triaxial” accelerometer (Model: 356A24) attached on the 

pipe, the acceleration data is measured for 8 seconds at a sampling frequency of 1600 Hz 

by using a B&K PULSE system (Model: 3560-B-130).  Three-directional accelerations 

for the axial and transversal excitation cases are measured at 4 measurement points at z = 

0 m, 2.13 m, 4.84 m, and 9.75 m as shown in Fig. 16. 
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Figure 16: Experimental setup for two hollow pipes connected by joint case. 

 

 

 

 Pipe Joint 

Young’s Modulus [Pa] 2.08×10
11

 

Density [kg/m
3
] 7856 

Structural damping coefficient 0.0044 

Outer diameter [mm] 73.03 104.78 

Inner diameter [mm] 54.65 50.8 

Table 8: Material properties and diameters of drill pipe system for experimental setup in 

Fig. 16. 

 

 

 

In addition to validate the proposed method experimentally, finite element (FE) 

analyses are also performed by using a commercial FE software package, ANSYS.  

Since it is difficult to excite pure torsional waves experimentally, torsional wave cases 

are only validated by using the FE results.  The material properties and geometry 

information listed in Table 8 are used to build a FE model of the pipe system illustrated 

in Fig. 16.  The solid element of SOLID187 is used with 15443 nodes to build the FE 

model.  The maximum axial space between two neighboring nodes of the FE model is 
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about 0.09 m.  The maximum frequency of interest is 400 Hz and the flexural waves 

have the slowest axial-direction phase speed of 610 m/s in this frequency range.  

Therefore, the smallest wavelength at 400 Hz is 1.53 m and at least 16.9 nodes per one 

wavelength are guaranteed, which are enough number of nodes for an accurate FE result.  

A longitudinal force of 1 N, a torsional moment of 1 Nm, and a vertical force of 1 N are 

exerted to the left end surface for the longitudinal, torsional, and transversal excitation.  

By using a harmonic solver in ANSYS, the FRF results at four acceleration locations 

(i.e., z = 0 m, 2.13 m, 4.84 m, and 9.74 m) are calculated up to 400 Hz with the 

frequency resolution of 2 Hz. 

 

 
Figure 17: Experimental and HAFEM-predicted FRF results for “longitudinal” 

excitation case (L = 9.74 m): (a) z = 0, (b) z = 0.219L, (c) z = 0.5L, and (d) z =  L. 
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The HAFEM model is built with 160 nodes (i.e. 5 nodes in the r-direction  16 

nodes in the -direction  2 pipe/connector sections).  For the “longitudinal” excitation 

cases, the FRFs in Fig. 17 estimated by using the proposed HAFEM-based transfer 

matrix method agree well with the experimental FRF results except for some valley 

locations at approximately 140 Hz, 160 Hz, and 380 Hz in Fig. 17(a) and 17(b).  Due to 

the low signal to noise ratio (SNR) and the high sensitivity of accelerometer position 

error at these valley locations (i.e. anti-resonance locations), the measured amplitudes at 

the anti-resonance locations are expected to be imprecise.  For the FRFs at the 

accelerometer locations of z = 0 m, 2.19L, and L, there are the large longitudinal peaks at 

about 280 Hz while this peak becomes small at the joint (i.e., z = 0.5L) as shown in Fig. 

17.   

For the “torsional” excitation case in Fig. 18, the FRFs obtained from the proposed 

HAFEM-based method are also well in line with the ANSYS analysis results.   
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Figure 18: ANSYS and HAFEM-predicted FRF results for “torsional” excitation case (L 

= 9.74 m): (a) z = 0, (b) z = 0.219L, (c) z = 0.5L, and (d) z =  L. 

 

 

 

 

Figure 19: Experimental, HAFEM-predicted, and ANSYS FRF results at for “flexural” 

excitation case (L = 9.74 m): (a) z = 0, (b) z = 0.219L, (c) z = 0.5L, and (d) z =  L. 
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For the “flexural” excitation case in Fig. 19, there is the discrepancy between the 

predicted and measured results at low frequencies (e.g., below 100 Hz).  Since the pipe 

system is hanged by using two steel cables as described in Fig. 16, it cannot be assumed 

as a free-free boundary condition, in particular, in the low frequencies, while the 

predicted FRFs are based on the free-free boundary condition.  However, at the high 

frequencies above 100 Hz, the discrepancy becomes insignificant and the predicted FRF 

results agree well with the experimental results.  As shown in Fig. 10, the wavenumbers 

obtained from the HAFEM model and the analytical solution (i.e., k = (2A/E/I)
1/4

) are 

slightly different.  In order to investigate these differences in detail, the analytical FRF 

results are also plotted in Fig. 19.  At the high frequencies above 250 Hz, the HAFEM-

predicted FRFs are matched better to the measured results than the analytical FRF results 

since the HAFEM model can be used to predict the wavenumbers more accurately than 

the analytical solution based on the Bernoulli–Euler beam theory which is valid for thin 

structures.     

 

 Resonance frequency [Hz] |Difference| 

Experiment 110 140  178  209 257 297 350 396 Baseline 

HAFEM  

Transfer matrix 
109 138 176 208 258 294 354 393 17 

ANSYS 112 139 181 214 264 303 365 409 52 

Table 9: Resonance peak frequencies and frequency differences of flexural wave case in 

Fig. 19. 

 

 

 



 

57 

 

In Table 9, the resonance frequencies obtained from the HAFEM-based transfer 

matrix approach, the ANSYS analysis, and the experiment and their frequency 

differences from the experimental resonance frequencies are presented.  The proposed, 

HAFEM-based acoustic transfer matrix approach generates the best results matched to 

the measured data with the total frequency difference of 17 Hz, while the ANSYS 

approach results in the frequency difference of 52 Hz.  For in-plane motions such as 

longitudinal and torsional waves, attenuations in a real pipe system are small.  In ref. 49, 

by performing field tests of a drill pipe system, the longitudinal signal attenuation of 4 

dB/1000 ft is calculated.  Therefore, the proposed approach can estimate vibration 

responses of a long pipe system. 

2.4.6 Validation Case: Fluid-Filled Single Pipe  

The experimental setup with a water-filled pipe is shown in Fig. 20.  The 1.83 m pipe 

is hanged by using two steel cables at z = 0.3 m and 1.53 m.  Table 5 shows the material 

properties of the pipe.  The density of the pipe is determined by measuring its weight and 

dimensions.  The Young’s modulus is decided by fitting predicted and measured natural 

frequencies for a longitudinal excitation with the empty pipe condition and the damping 

coefficient is obtained by applying Eq. (2.69) and the half power method to the 

experimental data.   
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x = 0 0.3 m

B&K PULSE system

1.53 m 1.83 m

0.15 m 0.9 m 1.68 m

 

Figure 20: Experimental setup with fluid-filled single pipe.  

 

 

 

Similarly as in Section 2.4.5, the longitudinal and flexural waves are generated by 

exciting the left end of the pipe using a Brüel & Kjæ r (B&K) Type 8206 impact hammer.  

For the purpose of generating the flexural waves, a vertical force is applied to the pipe 

end by using the impact hammer.  In order to generate the longitudinal waves, a circular 

cover is glued to the left end of the pipe and the impact hammer is then used to excite the 

center of the glued circular cover.  On the other side of the water-filled pipe, a thin 

plastic wrap is installed by using a thin steel cable and tape to hold water, minimizing 

additional mass effects.  

The acceleration data is measured by attaching a PCB Piezotronics “triaxial” 

accelerometer (Model: 356A24) on the pipe for 2 seconds at a sampling frequency of 

6400 Hz.  A B&K PULSE system (Model: 3560-B-130) is connected to the 

accelerometer for acquiring three-directional accelerations for the axial and transversal 

excitation cases at the three measurement points at z = 0.15 m, 0.9 m, and 1.68 m as 
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shown in Fig. 20.  Ten measurements are repeatedly made at each location and linearly 

averaged. 

 

(a) (b)

 

Figure 21: Experimental FRF results at z = 0.15 m: (a) “Longitudinal” excitation and (b) 

“Flexural” excitation. 

 

 

 

In order to see the effects of the water inside the pipe, the measured FRFs for both 

the empty and water-filled pipe cases are compared in Fig. 21.  The resonance 

frequencies, in particular, for the flexural wave excitation case decrease when the pipe is 

filled with water as shown in Fig. 21(b) although this frequency shift is insignificant for 

the longitudinal excitation case in Fig. 21(a).   
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(c)

(a) (b)

 

Figure 22: Experimental and predicted FRF results of empty pipe for “longitudianl” 

excitation case: (a) z = 0.15 m, (b) z = 0.9 m, and (c) z = 1.68 m. 

 

 

 

For the empty pipe case, the experimental results are compared with the HAFEM-

estimated results.  As shown in Fig. 22, these two results are well aligned with each 

other.     

In Fig. 23, the FRFs of the water-filled pipe are estimated by using the proposed 

HAFEM-based acoustic transfer function approach and compared with the experimental 

results.  Although the resonance frequencies are shift significantly, in particular, for the 

flexural excitation case as shown in Fig 21 (b) when the pipe is filled with water, the 



 

61 

 

HAFEM estimates the FRFs of the water filled pipe precisely.  Unlike the previous 

results for the flexural excitation case in Section 2.4.5, the FRF results match well at 

even low resonance frequencies.  The weight of the multi-sectional pipe system in 

Section 2.4.5 is about 150 kg while that of this single pipe is only about 5.84 kg.  

Therefore, the reaction forces at the cable hanging positions of the multi-sectional pipe 

system cannot be ignored when compared to the impact excitation force.  Thus, the 

multi-sectional pipe system cannot be assumed to have free-free boundary conditions, 

which results in the discrepancy in the low frequencies below 100 Hz.  On the other 

hand, since the reaction forces in the single pipe are much smaller than the former case, 

the assumption of the free-free boundary conditions is valid even at the lowest resonance 

frequency. 



 

62 

 

(c) (d)

(a) (b)

(e) (f)

 

Figure 23: Experimental and predicted FRF results at for “longitudianl” excitation of the 

water-filled pipe: (a) z = 0.15 m, (b) z = 0.9 m, (c) z = 1.68 m and for “flexural” 

excitation of the water-filled pipe: (d) z = 0.15 m, (e) z = 0.9 m, and (f) z = 1.68 m. 
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3. TIME-FREQUENCY MUSIC FOR DETECTING STRUCTURAL DEFFECTS 

OF PLATE USING ULTRASONIC LAMB WAVE  

 

3.1 Background 

3.1.1 Beamforming-Based Nondestructive Evaluation 

The basic idea of a beamforming procedure is to reconstruct a beamforming power 

map by comparing acoustic signals “measured” by using a transducer array with 

“assumed” acoustic signals radiated from a known free-field source placed at a scanning 

location.  Here, the assumed acoustic signals can be represented as a vector that is 

referred to as the “steering vector”.  When a scanning location is coincident with the 

location of a “real” source, the beamforming power at this scanning location becomes a 

local maximum.  By repeating the same procedure at all scanning points in a given space, 

the beamforming power map in the space can be reconstructed.  Then, the local 

maximum locations on the reconstructed beamforming power map can be identified as 

the locations of the “real” sources.  Therefore, the performance of the beamforming 

procedures is strongly dependent on how well the real acoustic field of interest can be 

represented by an assumed acoustic field.  In general, acoustic monopoles and their 

combinations with anechoic or semi-anechoic boundary conditions are used to generate 

the assumed acoustic field.   

The latter procedure can be used to detect both “active” and “passive” sources.  An 

“active” source can generate acoustic waves actively, while a “passive” source can only 
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reflect an incident wave.  In order to detect passive sources, an external source should be 

used to generate an acoustic wave and the waves reflected from the passive sources are 

measured by using a transducer array.  Since structural damages can be considered as 

passive sources, they can be also detected by exciting an acoustic wave and measuring 

its reflected waves from the structural damages by using a transducer array. 

3.1.2 Single Lamb Wave Mode Excitation  

When multiple Lamb wave modes that have different wave speeds are excited, it is 

difficult to identify structural defect locations from measured reflection signals.  Thus, it 

is required to generate a single Lamb wave mode whose wave speed is known prior to 

Non-Destructive Evaluations (NDEs).   

 

 

Figure 24: Normalized amplitudes of analytical and measured S0 and A0 Lamb wave 

modes. 

 

 

 

In order to excite a single Lamb wave mode, two strain equations of a rectangular 

PWAS installed on a plate are considered in this section (see Ref. [21] and Appendix.A).  
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From these strain equations (i.e., Eqs. (A.8) and (A.9)), analytical strain responses can 

be found for a 7 mm PWAS glued on a 2.03 mm thick aluminum plate and plotted as a 

function of frequency in Fig. 24.  The experimental results in Fig. 24 will be discussed in 

Section 3.6.  The A0 mode (i.e., the first anti-symmetric mode represented by the dotted 

line in Fig. 24) is dominant at low frequencies (e.g., below 50 kHz), while the S0 mode 

(i.e., the first symmetric mode) of the solid line in Fig. 24 is dominant around 280 kHz 

for the given PWAS dimension, plate dimension, and plate material properties. 

3.2 Theory 

3.2.1 Time-frequency MUSIC Beamforming 

Amongst various beamforming algorithms, the MUSIC beamforming algorithm [37] 

is widely used due to its high spatial resolution capability.  Here, the proposed time-

frequency MUSIC beamforming algorithm is applied to the time-averaged spectral (i.e., 

frequency) data obtained by applying the Discrete Fourier Transform (DFT) to a short 

period temporal (i.e., time) data at each specific time.  The temporal signals including 

the direct excitation wave signals generated from an excitation and the reflective wave 

signals from defects and boundaries are assumed to be measured using M array 

transducers with a sampling frequency of fs. 

Assume that xm(t) is the measured time data at the m-th transducer.  For a specific 

time at tn, xm(tn) is defined as an instantaneous time data vector containing the N time 

data points of xm(t) where tn is corresponding to the middle of the row vector.  Then, in 

order to perform time-averaging for minimizing noise effects, this time data vector is 
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separated to J partial time data vectors.  Each partial data vector has the length of D and 

is weighted with a time window such as the Hanning window.  Note that the length of 

overlapped data points between two adjacent partial time data sets is generally set to   

75 % (i.e., 0.75D) for the Hanning window.  Define the index of j to express the j-th 

partial time data vector among the total J partial time data vectors.  In order to improve 

the frequency resolution of this short partial time data, it is recommended to extend the 

length of each partial time data vector to Nfft by applying zero-padding to the windowed 

partial time data vector.  After applying the DFT to the j-th windowed and zero-padded 

partial data vector, a spectral vector Xj can be obtained as  

 
T

,1 ,2 ,3 ,( , ) [ ( , ) ( , ) ( , ) ( , )]j n l j n l j n l j n l j M n lt f X t f X t f X t f X t fX , (3.1) 

where the subscript l represents the frequency index.  Then, by applying an averaging 

procedure, the M  M cross-spectral matrix R at a specific time, tn, and a specific 

frequency, fl can be represented as 

 
H

1

1
( , ) ( , ) ( , )j

J

n l j n l n l

j

t f t f t f
J 

 R X X . (3.2) 

The Singular Value Decomposition (SVD) is applied to the cross-spectral matrix in Eq. 

(3.2): i.e., 

  
H( , ) ( , ) ( , ) ( , )n l n l n l n lt f t f t f t fR U Σ V . (3.3) 
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Figure 25: Illustration of arbitrary scanning location, (xs,ys) with respect to PWAS array 

(the black PWAS is used for excitation and the others, for measuring ultrasonic wave 

signals). 

 

 

 

The time-frequency MUSIC power is then calculated at each scanning point as 

 
MUSIC

2
H

1

1
( , , )

( ) ( , )
n l s N

s i n l

i p

P t f

t f
 




r

g r u
, (3.4) 

where g is the steering vector of the acoustic signals at the transducer locations 

calculated by placing a free-field source at the scanning location, rs is the scanning 

location vector (for example, see Fig. 25) represented as 

  
T

1 2( , ) ( , ) ( , ) ( , )s s s s s s s N s sx y r x y r x y r x yr , (3.5) 
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ui is the i-th column vector of the matrix U(tn,fl) in Eq. (3.3), and p is the dimension of 

the signal space.   Thus, up+1, up+2, … , and uN in the denominator of Eq. (3.4) are the 

noise subspace basis vectors.  When the scanning location is coincident to the source 

location, the inner product between the steering vector and the noise subspace spanned 

by the noise subspace basis vectors in the denominator of Eq. (3.4) becomes a small 

value since they are orthogonal to each other.  Then, the MUSIC power is locally 

maximized at this scanning location. 

3.2.2 Wave Propagation Models and Steering Vector  

Since the performance of the source localization by using a MUSIC beamforming 

algorithm strongly depends on how well a steering vector represents the spatial 

distribution of the acoustic field of interest, it is important to precisely model wave 

propagation characteristics of a plate structure in the steering vector.  In this article, 3-D, 

2-D, and 1-D analytical steering vectors are proposed to be investigated to identify the 

best steering vector among these three.  These steering vectors represent spherical, 

cylindrical, and planar wave propagation models, respectively, in a reflection-free space: 

i.e.,  

 
1 2 T

1 2

1 1 1
[ exp exp exp ]Nikrikr ikr

Nr r r

 
g , (3.6) 

 
1 2 T

1 2

1 1 1
[ exp exp exp ]Nikrikr ikr

Nr r r

 g , (3.7) 

 1 2 T[exp exp exp ]Nikrikr ikr  g . (3.8) 
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These steering vectors behave well when the measurement surface is apart from the 

scanning surface where the singularity at r = 0 can be avoided in Eqs. (3.6) and (3.7).  

However, since the measurement and scanning surface are coincident in the simulation 

and experiment setups as described below, the assumed acoustic field represented by the 

steering vectors in Eqs. (3.6) and (3.7) becomes infinity at r = 0.  Then, the MUSIC 

power in Eq. (3.4) becomes zero since the denominator containing the steering vector in 

Eq. (3.4) is infinity.  For this reason, when a defect locates very close to the array, the 

resulting MUSIC power has an extremely small value at this defect location.  In other 

words, the MUSIC power map shows the maximum value at a large r, which makes it 

impossible to have a local maximum MUSIC power at a defect location.  In order to 

avoid this abnormality, it is proposed that the steering vector is normalized as 

 normalized 
g

g
g

. (3.9) 

In addition to the geometrical wave decays associated with 1/r or 1/r
0.5

 in Eqs. (3.6) 

and (3.7), there is also a spatial decay induced by the structural damping.  In this paper, a 

complex wave number is used in Eqs. (3.6) to (3.8) to describe the structural-damping-

induced spatial decay: i.e., 

 (1 )k k i  . (3.10) 

The relation between the spatial decay rate  and the structural damping coefficient 

 can be obtained by assuming that the A0 Lamb wave at a low ultrasonic frequency 

such as 20 kHz can be regarded as a flexural wave [50]: i.e.,  = /4.  The detailed 
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derivation process of this relation is described in Appendix B.  In this article, an optimal 

structural damping coefficient at ultrasonic frequencies of interest is determined by 

having the spatial resolution of the MUSIC power results maximized. 

3.3 Simulation Result for Determining Array Shape  

For the purpose of determining an array shape, nine numerical simulation cases with 

linear, circular, and cross-shaped arrays are performed.  Table 10 shows the simulation 

conditions and Fig. 26 shows the simulation results.   

In the simulations, a point acoustic source is assumed to be placed at each of its 

source locations (listed in Table 10) to generate a transient cylindrical wave field.  The 

source locations are indicated by using the red “x” marks in Fig. 26.  A burst sinusoidal 

signal with a center frequency of 20 kHz and a SNR of 10 dB is used to drive the point 

source.   

 

Figure number 3(a) 3(b) 3(c) 3(d) 3(e) 3(f) 3(g) 3(h) 3(i) 

Array shape Line Cross Circle Line Cross Circle 

Source location, 

(x,y) [m] 
(0.21, 0.7) (0.21, 0.42) (0.21, 0.7) 

Array center 

location, (x,y) [m] 
(0.5, 0.42) (0.6, 0.42) 

Array spacing [cm] 1 0.1 1 

Number of array 

sensors 
20 

Structural damping 

in wave propagation 
0.01 

Structural damping 

in steering vectors 
0 0 0.01 0 0.01 

Table 10: Simulation conditions for MUSIC power result plots in Fig. 28. 
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The wave speed at this excitation frequency is assumed to be 615 m/s that is 

corresponding to the A0 Lamb wave speed in a 2 mm aluminum plate.  The structural 

damping coefficient for this cylindrical wave is set to 0.01.    

 

 

Figure 26: MUSIC power results of transient, cylindrical point source simulations with 

different array sizes and shapes. (refer to Table 10 for the detailed conditions) 
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A linear, circular, or cross-shaped array of 20 sensors is then used to measure the 

radiated cylindrical wave field.  The linear array has the sampling space of 1 cm between 

two adjacent sensors as shown in Table 10 except that for Fig. 26(b), it has 0.1 cm 

sampling space.  For the cross-shaped array, the sampling space is 1 cm except that its 

outer four sensors are placed 2 cm apart to increase its measurement aperture (see Fig. 

25).  The radius of the circular array, 3.2 cm, is determined to have the sampling space 

of 1 cm between two neighboring sensors.  For all simulation cases, the sampling 

frequency is set to 10 MHz. 

The normalized, cylindrical, 2-D steering vectors for calculating the MUSIC powers 

in these simulations are given in Eqs. (3.7), (3.9), and (3.10).  For the cases of Figs. 

26(a), 26(b), and 26(d) to 26(f) in Table 10, the structural damping coefficient is set to 

zero in the steering vectors although a damping coefficient of 0.01 is applied to the 

cylindrical wave fields generated by the point sources.  The dynamic range of the 

MUSIC powers are fixed to be 10 dB so that the lowest MUSIC power is forced to be 10 

dB lower than the maximum MUSIC power for all of the result plots in Fig. 26.  

In order to investigate the effects of the linear array size, the MUSIC power results 

obtain by using two linear arrays with the two different sampling spaces of 1 cm and 0.1 

cm are presented in Figs. 26(a) and 26(b) (i.e., the measurement aperture sizes are 19 cm 

and 1.9cm, respectively).  As shown Figs. 26(a) and 26(b), the array size affects the 

maximum MUSIC location and the spatial resolution of the MUSIC power maps.  

Through the comparison between Figs. 26(a) and 26(b), it can be concluded that the 
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larger array results in the more accurate source location as well as the higher spatial 

resolution. 

For the case of Fig 26(c), the steering vectors are generated with the structural 

damping of 0.01 in Eq. (3.10) while the other simulation parameters are same as the case 

of Fig. 26 (a).  By comparing the MUSIC results in Figs. 26 (a) and 26 (c), the spatial 

resolution gets improved when the structural damping is considered in the steering 

vectors.  

In the cases of the linear arrays, there are mirrored virtual MUSIC power maxima, 

e.g., around (0.21, 0.14) in Figs. 26 (a) to 26 (c) since the linear arrays cannot be used to 

distinguish the cylindrical waves generated from both the original and mirrored source 

locations.  Thus, it is difficult to identify the source location accurately with a linear 

array.  Therefore, 2-D arrays such as the cross-shaped and circular arrays are 

investigated below.         

For the cases of Figs. 26 (d) to 26 (f), the source is placed at (0.21, 0.42) m on the 

left line extended through the linear array.  In this source placement, the mirrored local 

MUSIC power maximum disappears in Fig 26 (d).  However, due to the effects of the 

structural damping, the linear array cannot be used to find the source location precisely 

in Fig. 26 (d).  However, the cross-shaped array and the circular array can be used to 

identify the source location precisely even without the structural damping in the steering 

vectors as shown in Figs. 26 (e) and 26 (f), respectively.  When comparing Figs. 26 (e) 

and 26 (f), the spatial resolution of the cross-shaped array is higher than that of the 

circular array since the measurement aperture size of the cross-shaped array is larger 



 

74 

 

than the circular array: i.e., the x-direction aperture size of the cross-shaped array is 12 

cm, while that of the circular array is 6.4 cm.   

For the cases of Figs. 26 (g) to 26 (i), the structural damping coefficient of 0.01 is 

included in the steering vectors.  It is shown that all of the arrays can be used to 

successfully identify the source location with the high spatial resolution except that the 

mirrored local MUSIC power maximum of the linear array at (0.21, 0.14) m.  The 

performance of the cross-shaped array is slightly better than that of the circular array 

when the zoomed MUSIC power results in the upper right corners of Figs. 26 (h) and 26 

(i) are compared.  Therefore, it can be concluded that for a given number of sensors, the 

proposed cross-shaped array has the best performance amongst the linear, circular, and 

cross-shaped arrays, since the cross-shaped array can have larger measurement aperture 

than the circular array without mirrored virtual maxima.  In this paper, the cross-shaped 

array is thus chosen for the experiment. 

3.4 Experimental Setup  

A cross-shaped array of 21 PWASs (APC-851 manufactured by American Piezo 

Ceramics Inc.) is attached on the 2.03 mm thick aluminum panel using superglue (see 

Figs. 25, 27, 28).  The size of the PWAS is 7  7 mm and the sampling space between 

two adjacent PWASs is 10 mm.  In order to have a bigger array aperture, the outer four 

PWASs are placed 20 mm apart from the closest PWASs.  Then, coins or washers are 

glued on the aluminum panel to simulate structural defects.  The dimensions and weights 

of the simulated defects are shown in Table 11.   
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 Diameter [mm] Thickness [mm] Weight [g] 

Quarter coin 24.26 1.75 5.67 

Dime coin 17.91 1.35 2.268 

Washer 
11.11 (Outer Diameter) 

4.76 (Inner Diameter) 
1.19 0.775 

Table 11: Dimensions and weights of simulated defects. 

 

 

 

For the purpose of investigating the size and mass effect of the simulated defects in a 

simple way, instead of machining a real defect, coins and a washer which have a 

standard size and mass are attached on the panel.  This scheme, which is bonding a mass, 

is also used in ref. 27 and 28, resulting in wave scattering by changing the flexural 

stiffness and the inertia.  In addition, at low frequencies, adding a mass can represent the 

flexural wave scattering caused by a delamination by means of lowering a flexural 

stiffness [27].  Figures 27 and 28 show experimental setups to conduct the experiments 

listed in Table 12.   

 

Simulated 

defects

Preamplifier

NI Ultrasonic

DAQ system

500 mm

420 mm

650 mm570 mm

x

y

Aluminum 

panel

 

Figure 27: Sketch of experimental setup. 
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Figure 28: Photos of experimental setup: (a) Aluminum panel with PWAS array, (b) 

Brüel & Kjæ r signal conditioning amplifier, (c) Laptop with in-house LabVIEW data 

acquisition program, (d) National Instruments ultrasonic data acquisition system, and (e) 

Cross-shaped array (zoomed).  

 

 

 

In Table 12, each Experimental Configuration represents a single experiment: e.g., 

three coins are installed for Experimental Configuration I and a single coin, for 

Experimental Configuration II.  A National Instruments (NI) system equipped with a 

PXIe-5122 ultrasonic data acquisition (DAQ) module, a PXI-5421 signal generator, and 

an in-house LabView code is used to generate a burst sinusoidal wave and measure 

ultrasonic data.  Figure 29 shows the burst sinusoidal signal with the center frequency of 

20 kHz to excite the panel at the center PWAS.  The excitation frequency is determined 

by using the criterion described in Section 3.6 to generate a single mode Lamb wave.  

Then, the other PWASs are used to measure the direct and reflective waves.  A Brüel & 

Kjæ r Type 2693 Nexus conditioning amplifier is used to amplify the measured 

ultrasonic wave signals before the signals are fed to the NI DAQ system.  The measured 

ultrasonic wave signals are recorded for 0.1 seconds at the sampling frequency of 10 

MHz. 
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Figure 29: Burst sinusoidal signal with center frequency of 20 kHz for exciting 

aluminum panel. 

 

 

 

Configuration 

number 
Defect number 

Coin location, 

(x, y) [m] 

Type of  

simulated defect 

Distance from 

array center [m] 

I 

1 (0.63, 0.34) 

Quarter coins 

0.1 

2 (0.69, 0.58) 0.2 

3 (0.39, 0.66) 0.3 

II 4 

(0.63, 0.34) 

Quarter coin 

0.1 III 5 Dime coin 

IV 6 Washer 

V 

7 (0.64, 0.34) 

Quarter coins 

0.106 

8 (0.5, 0.5) 0.106 

9 (0.49, 0.35) 0.106 

VI 10 (0.84, 0.06) Quarter coin 0.45 

Table 12: Experimental configurations based on geometric information of simulated 

defects (i.e., coins and washer) with respect to PWAS array center. 
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3.5 Time-Frequency Analysis Procedure  

A time data block of 20  1024 data points is chosen from the measured ultrasonic 

data at each time step for calculating an instantaneous 20  20 cross-spectral matrix in 

Eq. (3.2): i.e., M = 20 and N = 1024.  For a smoothing time transition, 95% of each time 

data block (i.e., 973 time data points) is overlapped to the next time step.  In order to 

obtain MUSIC power maps, the SVD procedure is additionally applied to the calculated 

cross-spectral matrix (see Eq. (3.3)).  At each time step, an instantaneous MUSIC power 

map in a scanning area is calculated at the excitation center frequency.  Then, the entire 

procedure is repeated at the next time step.  Therefore, the resulting MUSIC 

beamforming power is presented as the function of time and scanning location. 

3.6 Determination of Excitation Frequency  

Figure 24 shows the analytical and experimental amplitudes of the symmetric (S0) 

and anti-symmetric (A0) Lamb wave modes as a function of frequency.  The analytical 

results are discussed in Appendix A.  In order to obtain the experimental results in Fig. 

24, a PWAS is used to excite the aluminum panel with a burst sinusoidal signal at a 

center frequency from 20 kHz to 440 kHz.  The frequency step (i.e., frequency 

resolution) is set to 20 kHz.  The resulting waves are then measured using the two 

PWASs placed 17.1 cm and 22 cm apart from the excitation point.  Here, the two S0 and 

A0 Lamb modes are differentiated by their arrival times to the two PWASs since these 

two modes have different wave speeds.  The measured amplitudes are then linearly 

averaged by repeating the same measurement ten times.  In Fig. 24, the measured 



 

79 

 

amplitudes of the two Lamb wave modes are overlaid with the analytical ones as a 

function of the excitation frequency.  At high frequencies above approximately 300 kHz, 

the experimental S0 and A0 results have large differences from the analytical results.  

The analytical strain equations in Eqs. (A.8) and (A.9) are derived under the ideal 

bonding condition that the bonding layer thickness is zero and the shear stress only 

exists at the ends of a PWAS.  However, in the real experimental case, the bonding layer 

thickness is not zero and may be also non-uniform.  Although the shear stress 

distribution in Eq. (A.1) can be applied at low frequencies where the wavelength of 

Lamb waves is much larger than the bonding layer thickness, it cannot be assumed at 

high frequencies where the bonding layer thickness cannot be ignored when compared to 

the wavelength.   Although no conclusion can be drawn at high frequencies due to the 

discrepancy between the analytical and experimental results, it can be concluded that the 

A0 mode is dominant at low frequencies approximately from 20 kHz to 80 kHz.   

 

 

Figure 30: Analytical properties of S0 and A0 Lamb wave modes: (a) Phase speeds and 

(b) Wave lengths. 
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In addition that an excitation frequency is selected where a single Lamb wave mode 

is dominant, the selected frequency should satisfy the Nyquist Sampling Theorem to 

avoid any spatial aliasing problems.  This Nyquist requirement is represented as 

 d <
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where cp is the phase speed of a Lamb wave.  Figure 30(a) is the analytical phase 

speeds of the S0 and A0 Lamb wave modes for the 2.03 mm aluminum panel that are 

obtained from the dispersion equations in Eqs. (C.24) and (C.25).  Then, the 

wavelengths of the two wave modes can be calculated as shown in Fig. 30(b).  Since the 

PWAS size is 7 mm × 7 mm and the minimal sampling space between adjacent two 

PWASs is approximately 10 mm, the wavelength should be larger than 20 mm to avoid 

the spatial aliasing as shown in Eq. (3.11).  The wavelength of the A0 mode is larger 

than 20 mm below 40 kHz where the A0 mode is dominant.  Since the amplitude of the 

S0 mode can be ignored at 20 kHz when compared to that of the A0 mode, 20 kHz is 

chosen as the excitation frequency where the wave speed and wavelength are 615 m/s 

and 30.75 mm, respectively.  For a case of detecting a small-sized defect, a PWAS array 

with a smaller sampling space between adjacent two PWASs can be used with higher 

ultrasonic frequency waves. 

3.7 Time-frequency Analysis Results  

Experimental Configurations are described in Table 12.  In Experimental 

Configuration I, three quarter coins with three different distances (i.e. 10 cm, 20 cm, and 
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30 cm) from the array center are glued on the aluminum panel to simulate three 

structural defects.  The normalized, cylindrical, 2-D steering vector obtained from 

Eqs.(3.7) and (3.9) is used as a default steering vector since the aluminum panel can be 

regarded as a 2-D surface.  Figure 31(a) shows the beamforming result calculated by 

applying the conventional, frequency-domain MUSIC algorithm to the entire time 

records (i.e., 0.1 second data) for Experimental Configuration I.  As shown in Fig. 31(a), 

the conventional MUSIC algorithm cannot be used to identify the simulated defect 

locations (represented by the circles) due to multiple wave reflections, in particular, from 

the panel edges (i.e., boundaries) as well as the direct excitation wave.   

The performance of the conventional MUSIC algorithm can be improved by 

removing the partial time data of the direct excitation wave and the boundary-reflected 

waves from the entire time data.  The performance of the time-frequency MUSIC 

algorithm is then compared to that of this time-gating beamforming approach.  By 

applying the time-frequency MUSIC algorithm to the measured array signals, the 

maximum beamforming power on the scanning area (i.e., the panel surface) can be 

identified from the calculated beamforming map at each time.  The resulting maximum 

MUSIC power is shown in Fig. 31(b) as a function of time for Experimental 

Configuration I in Table 12.  In this plot, the marked peaks (at t = 0.145 ms, 0.2521 ms, 

and so on) indicate the arrival of the direct-excitation or reflective waves to the array.  

The first peak at t = 0.145 ms represents the direct excitation wave, the next three peaks 

at t = 0.2521 ms, 0.4102 ms, and 0.5683 ms are induced by the reflected waves from the 
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three simulated defects, and the fifth peak at t = 0.7468 ms is from the bottom boundary 

that is the nearest boundary location from the array. 

 

 

Figure 31: MUSIC power results in dB scale for Experimental Configuration I (refer to 

Table 12 for the defect numbers): (a) Conventional frequency-domain MUSIC algorithm 

applied to entire time data (i.e., 0.1 second data), (b) Maximum instantaneous MUSIC 

power, (c) Conventional MUSIC algorithm applied to time data gated from t = 0.2 ms to 

0.62 ms, and (d) Time-frequency MUSIC algorithm at t = 0.4102 ms. 

 

 

 

  In order to compare the performance of the time-gating and time-frequency MUSIC 

algorithms, the measured time data is truncated before t = 0.2 ms and after 0.62 ms so 

that only the defect-reflected wave signals can be used for the conventional MUSIC 

beamforming processing.  As shown in Fig. 31(c), the conventional MUSIC result 
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obtained from the time-gated array signals can be used to identify the nearest coin 

location although the other two coins are hardly identified from this result due to its poor 

spatial resolution around these two coins.  On the other hand, the time-frequency 

MUSIC result, for example, at t = 0.4102 ms in Fig. 31(d) has much higher spatial 

resolution than the result in Fig. 31(c) to accurately detect the second coin.  Since the 

time-frequency MUSIC beamforming analysis at each time step is conducted with a 

short length of the time data, the resulting MUSIC result can be focused on a specific 

defect-induced reflection event that generally occurs in a short time period.  Therefore, it 

is possible to obtain the MUSIC power maps with much higher spatial resolution by 

using the time-frequency MUSIC algorithm than the conventional beamforming 

algorithm applied to the time-gated array signals.   

The time-frequency beamforming results in Figs. 32 – 37 are calculated by applying 

the time-frequency MUSIC algorithms to the measured array data.  They are represented 

as the function of time and space.  The time-frequency MUSIC powers at the last four 

peak locations in Fig. 31(b) are plotted in Fig. 32 as a function of scanning location.  In 

Figs. 32(a) – 32(c), the three coin locations can be identified at the maximum MUSIC 

power locations.  The minimum distance differences (i.e., errors) between the locations 

of the coins and the MUSIC power maxima range from 0 cm to 5.1 cm (see Fig. 39(a) 

for Defects 1 – 3).  The bottom boundary location can be also identified from the 

MUSIC power plot in Fig. 32(d) at t = 0.7468 ms.   
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Figure 32: Time-frequency MUSIC power results in dB scale for Experiment 

Configuration I (refer to Table 12 for the defect numbers): (a) Time = 0.2521 ms, (b) 

Time = 0.4102 ms, (c) Time = 0.5836 ms, and (d) Time = 0.7468 ms. 

 

 

 

The time-frequency MUSIC power results for Experimental Configuration I are 

summarized in Figs. 33(a) and 33(b) in terms of the maximum beamforming power 

locations, coin locations, and -0.5 dB contour lines (i.e., 0.5 dB lower than a local 

maximum MUISIC power level).  For example, Fig. 33(a) is obtained by combining Figs 

32(a) – 32(c).  Figure 33(a) show the MUSIC power result from the second to fourth 

peak times (in Fig. 31(b)) to identify the three coin locations, while Fig. 35(b) shows the 

MUSIC power result that can be used to identify all of the four boundary reflections.  By 

comparing the contoured areas at t = 0.2521 ms, 0.4102 ms, and 0.5836 ms in Fig. 33(a), 
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it is shown that the spatial resolution of the proposed algorithms is getting low as the 

defect distance increases. 

 

 

Figure 33: Time-frequency MUSIC power results for Experiment Configuration I of 

Table 12: (a) MUSIC power at t = 0.2521 ms, 0.4102 ms, and 0.5836 ms, (b) MUSIC 

power at t = 0.7468 ms, 0.8794 ms, 1.027 ms, and 1.124 ms, and (c) MUSIC power, at t 

= 0.2521 ms, 0.4102 ms, and 0.5836 ms, obtained by removing outer 4 transducer data. 

 

 

 

In order to check the effects of the outer four sensors in the cross-shaped array, the 

data measured with outer 4 transducers is removed from the total array data and the 

MUSIC power result of this reduced data is shown in Fig. 33(c).  By comparing Fig. 
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33(c) to Fig. 33(a) where the total array data is applied, it can be found that the full 

cross-shaped array improve the spatial resolution of the MUSIC power result by 

increasing the measurement aperture size.   

 

 

Figure 34: Time-frequency MUSIC power results for Experiment Configuration I in 

Table 13 with undamped 1-D, 2-D, and 3-D steering vectors at t = 0.2521 ms, 0.4102 

ms, and 0.5836 ms: (a) 1-D steering vector in Eq. (4.8), (b) Normalized 2-D steering 

vector in Eqs. (4.7) and (4.9), and (c) Normalized 3-D steering vector in Eqs. (4.6) and 

(4.9). 

 

 

 

Figure 34 shows the MUSIC power results obtained by applying the planar, 1-D 

steering vector in Eq. (3.8), the normalized, cylindrical, 2-D steering vector in Eqs. (3.7) 
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and (3.9), and the normalized, spherical, 3-D steering vector in Eqs. (3.6) and (3.9).  

Here, the structural damping is not considered in all of the steering vectors.    One of 

interesting findings from this figure is that the 1-D steering vector can be used to identify 

the defect location in the nearfield of the array although this 1-D steering vector has the 

only phase information in the exponential function without a geometrical decaying factor 

such as the 1/r
0.5

 or 1/r term (see Eq. (3.8)).  From Fig. 34, it is shown that the time-

frequency MUSIC result with the 2-D steering vector has the highest spatial resolution 

since it has the smallest area surrounded by the -0.5 dB contour lines at t = 0.5836 ms.  It 

is also shown the farther a defect locates from the array center, the more accurate wave 

propagation model (i.e., the cylindrical wave propagation model) for the steering vector 

is required to identify the defect location accurately. 

Figure 35 shows the effects of the spatial decay induced by the structural damping 

(see Eq. (3.10)) in the cylindrical, 2-D steering vectors.  The highest spatial resolution of 

the time-frequency MUSIC results can be achieved at the structural damping coefficient 

of 0.03 as shown in Fig. 35 (in particular, see the -0.5 dB contour lines around Defect 3).  

Experimental Configurations II, III, and IV in Table 12 are designed to investigate 

the effect of the different defect sizes and weights in Table 11.  The MUSIC power 

maximum locations in Figs. 36(a) and 36(b) are exactly coincident with the locations of 

the quarter coin for Experimental Configuration II (see Fig. 36(a)) and the dime coin for 

Experimental Configuration III (see Fig. 36(b)).   
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Figure 35: Time-frequency MUSIC power results for Experiment Configuration I of 

Table 12 with cylindrical 2-D steering vectors including structural damping:  (a)  = 0, 

(b)  = 0.01, (c)  = 0.02, (d)  = 0.03, (e)  = 0.04, and (f)  = 0.05. 
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For the washer in Experimental Configuration IV, the washer location (i.e., the location 

of Defect 6) predicted by using the time-frequency MUSIC algorithm is a little off from 

the actual location due to the washer’s small size and weight (see the case of Defect 6 in 

Figs. 39(a)–39(b)) although the washer’s direction with respect to the array center is 

accurately identified by the proposed MUSIC algorithm (see the Defect 6 case in Fig. 

39(c)).   

 

 

Figure 36: Time-frequency beamforming powers in dB scale for Experiment 

Configurations II, III, and IV at t = 0.2521 ms for different defects (refer to Table 12 for 

the defect numbers): (a) Quarter coin, (b) Dime coin, and (c) Washer. 
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In order to validate the performance of the proposed methods with the simulated 

defects located at a same distance from the array center, the three quarter coins are 

placed at a 10.6 cm distance from the array center in Experimental Configuration V (see 

Table 12).  As shown in Fig. 37, the MUSIC power map at t = 0.2521 ms can be used to 

identify all of the three coin locations.  The maximum distance differences between the 

actual coin locations and the local maximum MUSIC power locations are 0 cm, 0.9 cm, 

and 0.5 cm as shown in the Defects 7 – 9 cases of Figs. 39(a) –39(b).  

 

 
Figure 37: Time-frequency beamforming powers in dB scale at t = 0.2521 ms for 

Experiment Configuration V (refer to Table 12 for the defect numbers). 

 

 

 

The proposed time-frequency MUSIC can be used to detect a structural defect that is 

farther away from the array than one of the boundary edges.  As shown in Experimental 

Configuration VI in Table 12, a quarter coin is attached on the aluminum plate at a 

distance of 45 cm from the array center (i.e., x = 0.84 m and y = 0.06 m).  This coin 

location is farther than the bottom boundary at a distance of 40 cm and closer than the 
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upper boundary at a 50 cm distance.  Figure 38(a) shows the conventional MUSIC 

power map obtained from the time data gated from t = 0.2 ms to t = 0.92 ms to exclude 

the direct excitation wave and the left- and right-boundary-reflected waves.  The time-

frequency beamforming result associated with the second eigenvector at t = 0.7937 ms is 

also presented in Fig. 38(b).  Due the strong reflected waves from the edges, the 

conventional MUSIC result cannot be used to identify the simulated defect even after 

gating the time data as shown in Fig. 38(a).  However, the time-frequency beamforming 

MUSIC power map shows a local maximum power around the defect.  Hence, it can be 

concluded that the time-frequency MUSIC algorithm can be used to identify the 

structural defect located beyond the shortest boundary distance from the array. 

As the summary of the above results, the distance and angle differences (i.e., errors) 

between the simulated defects and the local MUSIC power maxima are presented in Fig. 

41.  Here, the distance difference is defined as the smallest length between a point within 

a coin or washer and the corresponding local maximum MUSIC power location.  

Similarly, the angle difference is defined as the minimum absolute value of the angle 

difference between an angle of a point within a coin or washer and the angle of the 

corresponding local maximum MUSIC power location with respect to the array center.   
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Figure 38: MUSIC power results in dB scale for Experimental Configuration VI in Table 

12: (a) Conventional MUSIC algorithm applied to time data gated from t = 0.2 ms to 

0.92 ms and (b) Time-frequency MUSIC algorithm at t = 0.7937 ms. 

 

 

 

Figure 39(a) shows the distance errors for the cases of the undamped steering vector 

(i.e.,  = 0).  As shown in Fig. 39(a), the distance error increases as the distance between 

a simulated defect and the array center increases (e.g., see the cases of Defects 1 – 3) 

when the 1-D plane-wave-type steering vector in Eq. (3.8) is applied.  Since the 1-D 

steering vectors cannot accurately represent the real ultrasonic wave propagation in the 

aluminum plate, the distance error becomes large as the distance increases.  When the 2-

D steering vector is applied, the distance error decreases, in particular, for the farfield 

defect cases (e.g., the cases of Defects 2 and 3 in Fig. 38(a)).  When the defects locate 
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close to the array, the distance errors are insensitive to the wave propagation models of 

the steering vectors. 

Figure 39(b) shows the distance differences when the structural damping of  = 0.03 

is applied to the steering vectors.  By comparing Figs. 39(a) and 39(b), it can be found 

that there is no error reduction resulted in from the inclusion of the structural damping in 

the 2-D and 3-D steering vectors.  In the 2-D and 3-D steering vectors, the structural-

damping-induced spatial decay may be much less significant than the geometry-induced 

spatial decay (i.e., 1/r and 1/r
0.5

).  However, for the case of the 1-D steering vector in 

which the only phase information is considered without the geometry-induced spatial 

decay, the distance errors are reduced by including the structural-damping-induced 

spatial decay in the steering vector (e.g., see the cases of Defects 2 and 3 in Figs. 39(a) 

and 39(b)).  This distance error increases as the size and weight of a simulated defect 

decrease (see the Defects 4 – 6 cases in Figs. 39(a) and 39(b)).  However, for all of the 

simulated defects investigated in this article, the angle errors are zero (see Fig. 39(c)), 

which indicates that the proposed time-frequency beamforming procedures can be used 

to accurately identify the directions of structural defects. 
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Figure 39: Distance and angle differences (i.e., errors) between simulated defects and 

MUSIC power maxima (refer to Table 12 for the “Defect Number”): (a) Distance 

errors when  = 0, (b) Distance errors when  = 0.03, and (c) Angle errors ( = 0 

and  = 0.03). 
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4. CONCLUSION  

 

In order to conduct NDEs of plates and pipes, the wave propagation characteristics 

of these shell structures are investigated by developing the HAFEM procedures.  The 

proposed HAFEM approaches can be used to build computationally efficient models by 

combining a finite element approximation and an analytical wave solution.  For the 

validation of the proposed HAFEM procedures, the analytical solutions of the simple 

panel and a circular plate are compared to the HAFEM-predicted results.  The developed 

HAFEM procedures can be applied to model multi-layered composite panels and pipes, 

identifying the wave speeds and cross-sectional mode shapes.  The wave speeds and 

mode shapes predicted by using the HAFEM are well matched with the analytical ones.  

In particular, the HAFEM-predicted dispersion curves in low frequencies are compared 

to those obtained from the Bernoulli-Euler theory and the shell theory.  Since there is no 

specific assumption used for the HAFEM procedures, the HAFEM-predicted dispersion 

results match better with the experimental results than those obtained from the 

Bernoulli-Euler theory that is only valid with thin beams.  They match well with those 

obtained from the shell theory for the empty pipe case.   

In addition, the 2-D HAFEM procedure with the solid elements is extended by 

developing fluid elements and solid-fluid boundary conditions, resulting in the 

dispersion curves of fluid-filled pipes.  In ultrasonic frequencies, the latter HAFEM 

procedure is validated by comparing the HAFEM-predict dispersion curves to the 

“experimental” ones for an empty pipe and the “analytical” ones for a fluid-filled pipe.   
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Although the HAFEM procedures are useful to understand the wave propagation 

characteristics of fluid-filled, multi-layered composite pipes with arbitrary cross-sections, 

the cross-sectional shapes should not change in the axial direction.  In order to consider a 

pipe system assembled with multiple pipe sections with different cross-sections, the 

acoustic transfer function approach is derived from the HAFEM formation.  By 

comparing the measured and predicated results, it is shown that the proposed acoustic 

transfer matrix approach can be used to accurately estimate all of the longitudinal, 

torsional, and flexural wave modes in the multi-sectional pipe system.  The estimated 

FRFs by using both the HAFEM model with 160 nodes and the ANSYS model with 

15443 nodes agree well with the experimental FRF results. 

In order to non-destructively locate structural defects in plates by using a single-

mode ultrasonic Lamb wave, the time-frequency MUSIC beamforming procedure that 

can be used to distinguish the effects of the direct excitation and boundary-reflected 

waves are proposed in this research.  In the proposed procedure, a burst sinusoidal signal 

is used to excite a plate with a single-mode Lamb wave.  Then, the resulting ultrasonic 

wave signals are measured using a sensor array.  Then, the proposed time-frequency 

MUSIC beamforming algorithm is applied to the measured array data to obtain the 

beamforming maps, as the functions of time and scanning location, whose local maxima 

at specific time instants (between the arrival times of the direct excitation wave and the 

boundary-reflected waves) can be identified as structural defect locations.      

In this research, by properly choosing the excitation center frequency of the burst 

sinusoidal excitation signal, it is shown analytically and experimentally that the single 
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anti-symmetric A0 Lamb mode can be exclusively excited in the 2.03 mm aluminum 

plate. 

Due to the strong reflective waves generated from the boundaries of the aluminum 

panel, the conventional, steady-state MUSIC beamforming algorithm cannot be used to 

identify the simulated defect locations.  When the proposed time-frequency MUSIC 

beamforming algorithms are applied to process the measured array data, the simulated 

defect locations can be identified from the spatial beamforming power maps at the 

specific times, while the effects of the direct excitation and boundary-reflected waves 

appear at the different times.  In order to improve the spatial resolution of the time-

frequency MUSIC algorithm, the structural-damping-induced spatial decay model is 

proposed to be considered in the steering vectors.  In addition, a cross-shaped array is 

selected to further improve the spatial resolution and to avoid mirrored virtual image 

effects.  When the normalized, cylindrical 2-D steering vectors are applied, the distance 

error can be minimized since they represent the real wave propagation in the aluminum 

panel.  For the case of the multiple defects at the same distance (i.e. 10.6 cm), the 

proposed methods can be used to identify the multiple locations successfully within a 

distance error of 0.9 cm.  It is also shown that the time-frequency MUSIC algorithm can 

be used to identify the structural defect located beyond the shortest boundary distance 

from the array.  Finally, the proposed time-frequency MUSIC beamforming procedure 

does not require undamaged state data as a baseline.  
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APPENDIX  

 

A. Analytical Lamb Wave Generation Model  

For the ideal bonding case with zero bonding layer thickness, Giurgiutiu derived the 

strain equation of a rectangular PWAS installed on a plate as a function of excitation 

frequency [26].  The shear stress at this ideal bonding layer can be expressed [26] as 

 0/2
( ) [ ( ) ( )]

by t
x a x a x a   


    , (A.1) 

where 2a is the PWAS length, a0 is the shear stress amplitude at the PWAS ends, and  

is the Dirac Delta function.   For this shear stress condition, the x-direction strains 

resulted from symmetric and anti-symmetric Lamb wave modes can be represented [26] 

as 

 
( ) ( )0

/2

( ) ( )
( , ) [ sin( ) e sin( ) e ]

( ) ( )

S A

b
S A

S A
S i k x t A i k x tS A

x S Ay t
k kS A

a N k N k
x t i k a k a

G D k D k

 
    


  

 
  , (A.2) 

where tb is the plate thickness, G is the shear modulus of the plate,  is the angular 

frequency, k is the wave number, and the superscripts or subscripts of S and A represent 

the symmetric and anti-symmetric modes, respectively.  In Eqs. (A.1) and (A.2), the 

origins of the x- and y-axes are set to the center of the PWAS and the middle of the plate, 

respectively, and the PWAS is installed on the top plate surface.  Additionally, NS, DS, 

NA, and DA in Eqs. (A.2) and (A.3) are represented as 
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2 2( )cos( )cos( )

2 2

b b
S

t t
N kq k q p q  , (A.3) 

 
2 2( )sin( )sin( )

2 2

b b
A

t t
N kq k q p q  , (A.4) 

 
2 2 2 2( ) cos( )sin( ) 4 sin( )cos( )

2 2 2 2

b b b b
S

t t t t
D k q p q k pq p q   , (A.5) 

and  

 
2 2 2 2( ) sin( )cos( ) 4 cos( )sin( )

2 2 2 2

b b b b
A

t t t t
D k q p q k pq p q   . (A.6) 

In Eqs. (A.3) – (A.6), the p and q satisfy 

 
2 2 2 2 2 2( ) , ( )

L T

p k q k
c c

 
    , (A.7) 

where cL and cT are the longitudinal and shear wave speeds, respectively, in the plate.  In 

Eq. (A.2), k
S
 and k

A
 are the roots of DS = 0 and DA = 0 in Eqs. (A.5) and (A.6), 

respectively, and the prime symbol represents the derivative with respect to k.  For the x-

direction strains of the S0 and A0 modes, Eq. (A.2) can be simplified as 

 
0

00 0

0

( )0

/2

( )
( , ) sin( ) e

( )

S

b

S
S S i k x tS

x Sy t
S

a N k
x t i k a

G D k


  


 


, (A.8) 

and 

 
0

00 0

0

( )0

/2

( )
( , ) sin( ) e

( )

A

b

A
A A i k x tS

x Ay t
S

a N k
x t i k a

G D k


  


 


. (A.9) 
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B. Relation between Structural Damping Coefficient and Imaginary Part of 

Wavenumber  

Some wave types in this structural-damping-free system do not decay out, which is 

impossible in reality.  In order to include structural damping effects, the “complex” 

Young’s modulus [43] is here defined as 

 (1 )E E i  , (B.1) 

where  is the structural damping coefficient and E is the Young’s modulus.  For a low 

frequency component of A0 Lamb wave mode, it can be assumed as a flexural wave.  

This can be check by that dispersion curve of flexural wave is aligned to that of Lamb 

A0 mode at a low frequency [50].   Flexural wave equation is 

 
4 2

2 4 2
(1 ) 0

1

EI u u
i h

v x t
 

 
  

  
. (B.2) 

By assuming solution as u(x,t) =  A exp(-ikx+it) and substituting into Eq. (B.2) 

 

1/4
2

2(1 )

(1 )

h v
k

EI i






 
  

 
. (B.3) 

By using Eq. (B.4) and substituting into (B.3), Eq. (B.6) can be obtained. 

 21 1 e ii      , (B.4) 

where  

 tan  , (B.5) 
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1/4
2 4

2

_1/8 1/8

cos( ) sin( )(1 ) e 4 4{ }
(1 ) (1 )

i

no decay

ih v
k k

EI i i

  



 

  
  

  
. (B.6) 

When  is small, finally, the relation,  = /4, can be obtained. 

 
_ _(1 ) (1 )

4no decay no decayk k i k i     . (B.7) 

C. Identification of Structural Wave Propagation Characteristics Using Analytical 

Approach  

C.1 Ultrasonic Lamb Wave Propagation on Panel 

Figure 40 shows the stresses acting on the six surfaces of a small rectangular element.  

By applying the Newton’s Second Law in the x-direction, Eq. (C.1) can be obtained as 

[38] 

 

2

2

yxx zx x
x

u
f

x y z t

 
 

  
   

   
, (C.1) 

where f is an external force and u is the displacement.  By repeating in the y- and z-

directions, the momentum equation can be represented in a tensor form as  

 
2

, 2

i
ij j i

u
f

t
  


 


. (C.2) 

Additionally, the strain-displacement and stress-strain relations [38] are expressed, 

respectively, as  

 , ,

1
( )

2
ij i j j iu u   , (C.3) 
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 2ij kk ij ij     , (C.4) 

where  and μ are the Lamé constants.  Eqs. (C.2) and (C.3) are valid for any continuous 

media, while Eq. (C.4) is applicable only to isotropic elastic materials.  Therefore, in 

order to investigate orthotropic materials or anisotropic materials, Eq. (C.4) is required 

to be modified.  By combining Eqs. (C.2), (C.3), and (C.4), the equation of motion can 

be obtained in terms of the displacements as 

 , ,( ) j ij i jj i iu u f u        . (C.5) 

By setting the external force f to zero in Eq. (C.5) and expressing it in a vector form, Eq. 

(C.5) can be rewritten as 

 
2

2

2
( )

t
   


    



u
u u . (C.6) 

 

 

Figure 40: Stresses acting on the six surfaces of a small rectangular element. 
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A plane strain case of a free panel is described in Fig. 41.  The Lamb wave is a 

guided wave that is described by the governing equation, Eq. (C.6) along with the stress-

free boundary conditions in Eq. (C.7). 

 0 atyy xy y h     . (C.7) 

 

 

Figure 41: Geometry of a panel for Lamb waves. 

 

 

 

The displacement vector, u can be expressed as a summation of both the gradient of a 

scalar potential  and the curl of a vector potential H (i.e. u =  +H).  By 

substituting this potential relation into Eq. (C.6),   

 
2 2

2 2

2 2
[( 2 ) ] [ ] 0

t t


     

 
       

 

H
H . (C.8) 

From Eq. (C.8), the uncoupled two wave equations (i.e. longitudinal and shear wave 

equations) in the case of the plane strain can be obtained [3] as

2 2 2

2 2 2 2

1

Lx y c t

    
 

  
,

 (C.9) 
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2 2 2

2 2 2 2

1

Tx y c t

    
 

  
, (C.10) 

where cL = [(2+)/]
0.5

 is the phase speed of longitudinal waves, cT = (/)
0.5

 is  the 

phase speed of shear waves, and  is a potential defined as  = Hy/x - Hy/x.  With 

an assumption of plane strain, the displacement vector u can be expressed in term of the 

potentials: i.e.,  

 

T
T

0x y zu u u
x y y x

       
           

u . (C.11) 

Then, the stresses on the surfaces in Eq. (C.2) can be related with the potentials [3] as 

 

2 2 2 2

2 2 2

2
( ) 2 ( ) 2 ( )

y yx
yy

u uu

x y y x y y x y

   
    

     
      

       
, (C.12) 

 

2 2 2

2 2
( ) ( )

y x
xy

u u

x y x y x y

  
  

    
    

     
. (C.13) 

Assume the solutions of Eqs. (C.9) and (C.10) as 

 ( )exp[ ( )]y i kx t   , (C.14) 

 ( )exp[ ( )]y i kx t   , (C.15) 

where k is wavenumber and  is angular velocity.  The wave amplitudes in Eqs. (C.14) 

and (C.15) can be also assumed as 

 1 2( ) sin( ) cos( )y A py A py   , (C.16) 



 

111 

 

 1 2( ) sin( ) cos( )y B qy B qy   , (C.17) 

 

2
2 2

2

L

p k
c


  , (C.18) 

 

2
2 2

2

T

q k
c


  . (C.19) 

Now, the symmetric waves can be defined when ux is symmetric with respect to the x-

axis in Fig. 41 and uy is anti-symmetric with respect to the x-axis: i.e. 

 2( ) cos( )y A py  , (C.20a) 

 1( ) sin( )y B qy  , (C.20b) 

 
( )

2 1( , , ) [ cos( ) cos( )]ei kx t

xu x y t ikA py qB qy   , (C.20c) 

 
( )

2 1( , , ) [ sin( ) sin( )]ei kx t

yu x y t pA py ikB qy    , (C.20d) 

 
2 2 2 ( )

2 2 1( , , ) { ( ) cos( ) 2 [ cos( ) cos( )]}ei kx t

yy x y t k p A py p A py ikqB qy         , (C.20e) 

 
2 2 ( )

2 1( , , ) [ 2 sin( ) ( ) sin( )]ei kx t

xy x y t ikpA py k q B qy       . (C.20f) 

Similarly, the anti-symmetric wave modes are  

 1( ) sin( )y A py  , (C.21a) 

 2( ) cos( )y B qy  , (C.21b) 

 
( )

1 2( , , ) [ sin( ) sin( )]ei kx t

xu x y t ikA py qB qy   , (C.21c) 
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( )

1 2( , , ) [ cos( ) cos( )]ei kx t

yu x y t pA py ikB qy   , (C.21d) 

 
2 2 2 ( )

1 1 2( , , ) { ( ) sin( ) 2 [ sin( ) sin( )]}ei kx t

yy x y t k p A py p A py ikqB qy         ,   (C.21e) 

 
2 2 ( )

1 2( , , ) [2 cos( ) ( ) cos( )]ei kx t

xy x y t ikpA py k q B qy      . (C.21f) 

By applying the boundary conditions in Eq. (C.7) to Eqs. (C.20) and (C.21), Eqs. (C.22) 

and (C.23) for the symmetric and anti-symmetric waves, respectively, can be derived as 

 

2 2

2

2 2 2
1

2 sin( ) ( )sin( )
0

( )cos( ) 2 cos( ) 2 cos( )

Aikp ph k q qh

Bk p ph p ph ikq qh  

    
   

    
, (C.22) 

 

2 2 2
1

2 2
2

( )sin( ) 2 sin( ) 2 sin( )
0

2 cos( ) ( )cos( )

Ak p ph p ph ikq qh

Bikp ph k q qh

       
   

   
. (C.23) 

For non-trivial solutions, the determinants of the coefficient matrices in Eqs. (C.22) and 

(C.23) should be zero.  Then, the dispersion (k-) relation of the symmetric wave modes 

can be obtained from 

 

2

2 2 2

tan( ) 4

tan( ) ( )

qh k qp

ph q k





. (C.24) 

Similarly, the dispersion relation of the anti-symmetric modes is obtained by solving the 

following equation: 

 

2 2 2

2

tan( ) ( )

tan( ) 4

qh q k

ph k qp

 
 . (C.25) 
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The mode shapes of the symmetric waves can be obtained by substituting the 

wavenumbers and frequencies obtained from Eq. (C.24) into Eqs. (C.22), (C.20b), and 

(C.20c).  The mode shapes of the anti-symmetric waves are also calculated in the same 

way. 

C.2 Shear Horizontal Plate Wave: Love Wave 

The Shear Horizontal (SH) waves are governed by Eq. (C.6), propagating in the x-

direction with the particle motions limited only in the z-direction (i.e. ux = uy = 0).  The 

SH waves also satisfy the boundary conditions in Eq. (C.26) [3]: 

 0 atyz y h    . (C.26) 

The equation of motion in this case is represented from Eq. (C.6) as  

 

2 2 2

2 2 2

1z z z

T

u u u

x y c t

  
 

  
. (C.27) 

The solution of Eq. (C.27) can be assumed as 

 
( )( , , ) ( ) i kx t

zu x y t f y e  . (C.28) 

By substituting Eq. (C.28) to Eq. (C.27) and defining  = 
2
/cT

2
 - k

2
,  

 
'' 2( ) ( ) 0f y f y  . (C.29) 

Then, the assumed solution of Eq. (C.28) can be written as 

 
( )

1 2( , , ) ( sin cos ) i kx t

zu x y t C y C y e     . (C.30) 
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By using stress-strain relation (i.e. yz =  uz/y) and applying the boundary conditions 

in Eq. (C.26) to Eq. (C.30), the following eigenvalue problem is obtained: 

 
1

2

cos sin
0

cos sin

Ch h

h h C

 

 

   
  

   
. (C.31) 

The determinant of the coefficient matrix in Eq. (C.31) should be zero for a non-trivial 

solution: i.e.,   

 cos sin 0h h   . (C.32) 

For the symmetric SH wave, sinh = 0 is satisfied: i.e.  

 
( )

2, ( , , ) coss i kx t

s zh n u x y t C y e      . (C.33) 

Similarly, the anti-symmetric SH wave is represented as 

 
( )

A 1

(2 1)
, ( , , ) sin

2

A i kx t

z

n
h u x y z C y e    
  . (C.34) 

From the definition of  (i.e. = 
2
/cT

2
 - k

2
), the SH wave speed is obtained for both s 

and A as 

 2 2

( )

1 ( )

T

T

c
c

c








. (C.35) 

C.3 Ultrasonic Wave Propagation in Circular Pipe 

For the purpose of understanding acoustic characteristics of ultrasonic waves 

propagating in a pipe, analytical solutions are presented in this section [3, 5].  Figure 42 
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illustrates a circular pipe in the cylindrical coordinates.  As described in Section C.1, Eq. 

(C.6) is valid for any isotropic media (i.e., the displacement vector u in the cylindrical 

coordinate satisfies the Navier’s governing equations Eq. (C.6)).   

 

 

Figure 42: Cylindrical coordinates. 

 

 

 

From Eq. (C.8), the two wave equations in the cylindrical coordinates can be 

obtained as 

 

2
2

2 2

1

Lc t

 
  


, (C.36a) 

 

2
2

2 2

1

Tc t


 



H
H . (C.36b) 

Assume the solutions of these wave equations in cylindrical coordinate as [5] 

 ( )cos( )cos( )f r n t kz    , (C.37a) 
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 ( )sin( )sin( )r rH g r n t kz   , (C.37b) 

 ( )cos( )sin( )H g r n t kz     , (C.37c) 

 3( )sin( )cos( )zH g r n t kz   . (C.37d) 

By substituting Eq. (C.37) into Eq. (C.36), Eq. (C.36) can be represented as 

 

2
2

2
( ) 0

Lc


    , (C.38a) 

 

2
2

2
( ) 0z

T

H
c


   , (C.38b) 

 

2
2

2 2 2

1 2
( ) 0r

T

H
H

r c r






    


, (C.38c) 

 

2
2

2 2 2

1 2
( ) 0r

T

H
H

r c r







    


. (C.38d) 

From u =  +H,  

 

1 1 1 1ˆˆ ˆ( ) ( ) ( )

ˆˆ ˆ

z r z r

r z

H HH H H H
r H z

r r z r z r z r z r

u r u u z

 





  



      
         

        

  

u
. (C.39) 

By substituting Eq. (C.37) into (C.39), the displacements can be written as 

 ( )cos cos( )ru U r n t kz   , (C.40a) 

 ( )sin cos( )u V r n t kz    , (C.40b) 
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 ( )cos sin( )zu w r n t kz   . (C.40c) 

The strain-displacement relations in the cylindrical coordinates are 

 r
rr

u

r






, (C.41a) 

 
1

( )
2

r z
rz

u u

z r


 
 

 
, (C.41b) 

 
1 1

[ ( ) ]
2

r
r

u u
r

r r r







 

 
. (C.41c) 

The stress-strain relations are represented as  

 
2 2rr rr     , (C.42a) 

 2rz rz  , (C.42b) 

 2r r   . (C.42c) 

The stress-free boundary conditions are 

 0 ,rr rz r at r a r b       . (C.43) 

By combining Eqs. (C.40)-(C.42) and applying the boundary conditions in Eq. (C.43), 

dispersion relation for a circular pipe can be obtained as [3,5] 
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11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

0

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

c c c c c c

 , (C.44) 

where 

 
2 2 2

11 1 1 1 1 1[2 ( 1) ( ) ] ( ) 2 ( )n nc n n k a Z a aZ a        , (C.45a) 

 
2

12 1 1 1 12 ( ) 2 ( 1) ( )n nc k a Z a ka n Z a     , (C.45b) 

 13 1 2 1 1 12 ( 1) ( ) 2 ( )n nc n n Z a n aZ a       , (C.45c) 

 
2 2 2

14 1 1 1 1[2 ( 1) ( ) ] ( ) 2 ( )n nc n n k a W a aW a        , (C.45d) 

 
2

15 2 1 1 1 12 ( ) 2 ( 1) ( )n nc k a W a ka n W a      , (C.45e) 

 16 1 1 1 12 ( 1) ( ) 2 ( )n nc n n W a n aW a      , (C.45f) 

 21 1 1 1 1 12 ( 1) ( ) 2 ( )n nc n n Z a n aZ a      , (C.45g) 

 
2

22 1 1 1 1( ) 2 ( 1) ( )n nc k a Z a ka n Z a      , (C.45h) 

 
2 2

23 1 2 1 1 1[2 ( 1) ] ( ) 2 ( )n nc n n a Z a aZ a        , (C.45i) 

 24 1 1 1 12 ( 1) ( ) 2 ( )n nc n n W a n aW a     , (C.45j) 

 
2

25 2 1 1 1 1( ) 2 ( 1) ( )n nc k a W a ka n W a       , (C.45k) 
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2 2

26 1 1 1 1[2 ( 1) ] ( ) 2 ( )n nc n n a W a aW a       , (C.45l) 

 
2

31 1 1 1 1 12 ( ) 2 ( )n nc nkaZ a k a Z a     , (C.45m) 

 
2 2 2

32 1 1 1 1( ) ( ) ( )n nc n aZ a k a Z a       , (C.45n) 

 33 1( )nc nkaZ a , (C.45o) 

 
2

34 1 1 1 12 ( ) 2 ( )n nc nkaW a k a W a     , (C.45p) 

 
2 2 2

35 2 1 1 1 1( ) ( ) ( )n nc n aW a k a W a        , (C.45q) 

 36 1( )nc nkaW a . (C.45r)  

where 2 
= 

2
/cL

2 
- k

2
, 2 

= 
2
/cT

2 
- k

2
, Zn and Wn are the Bessel function or the modified 

Bessel function (see Table 13), and 1 and 2 are 1 or -1 as shown in Table 13.  From c41 

to c66, their values are same as c11 to c36 except for changing a in Eq. (C.45) to b.  For n 

= 0, Eq (C.44) is decomposed as 

 1 2 0D D D  , (C.46) 

where 

 

11 12 14 15

31 32 34 35 23 26

1 2

41 42 44 45 53 56

61 62 64 65

c c c c

c c c c c c
D and D

c c c c c c

c c c c

  . (C.47) 
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The dispersion relations for the longitudinal modes are obtained from D1 = 0 and for the 

torsional modes, D2 = 0. 

 

Interval Functions ( Zn :J or I) and (Wn : Y or K)  

cL < cp or α
2
, β

2
 > 0 Jn (αr) and Yn (αr), Jn (βr) and Yn (βr) 

cL > cp > cT or α
2
 
 
< 0 β

2
 > 0 In (α1r) and Kn (α1r), Jn (βr) and Yn (βr) 

cp < cT or α
2 

<0 β
2
 < 0 In (α1r) and Kn (α1r), In (β1r) and Kn (β1r) 

 

Condition 1(related to Zn ) and 2 (related to Wn ) 

J and Y are used 1 

I and K are used -1 

Table 13: Bessel functions in Eq. (C.45) and 1 and 2 values.  


