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ABSTRACT

Most spacecraft are designed to be maneuvered to achieve pointing goals.

This is generally accomplished by designing a three-axis control system. This work

explores new maneuver strategies when only two control inputs are available: (i)

sequential single-axis maneuvers and (ii) three-dimensional (3D) coupled maneuvers.

The sequential single-axis maneuver strategies are established for torque,

time, and fuel minimization applications. The resulting control laws are more compli-

cated than the equivalent results for three-axis control because of the highly nonlinear

control switch-times. Classical control approaches lead to optimal, but discontinuous

control profiles. This problem is overcome by introducing a torque-rate penalty for

the torque minimization case. Alternative approaches are also considered for achiev-

ing smooth continuous control profiles by introducing a cubic polynomial multiplica-

tive control switch smoother for the time and fuel minimization cases. Numerical

and analytical results are presented to compare optimal maneuver strategies for both

nominal and failed actuator cases.

The 3D maneuver strategy introduces a homotopy algorithm to achieve opti-

mal nonlinear maneuvers minimizing the torque. Two cases are considered: (i) one

of the three-axis control actuators fails and (ii) two control actuators fail among four

control actuators. The solution strategy first solves the case when all three actuators

are available. Then, the failed actuator case is recovered by introducing a homotopy

embedding parameter, ε, into the nonlinear dynamics equation. By sweeping ε, a

sequence of neighboring optimal control problems is solved that starts with the orig-

inal maneuver problem and arrives at the solution for the under-actuated case. As ε

approaches 1, the designated actuator no longer provides control inputs to the space-

ii



craft, effectively modeling the failed actuator condition. This problem is complex for

two reasons: (i) the governing equations are nonlinear and (ii) ε fundamentally alters

the spacecraft’s controllability. Davidenko’s method is introduced for developing an

ordinary differential equation for the costate variable as a function of ε. For each

value of ε, the costate initial conditions are iteratively adjusted so that the terminal

boundary conditions for the 3D maneuver are achieved. Optimal control applica-

tions are presented for both rest-to-rest and motion-to-rest cases that demonstrate

the effectiveness of the proposed algorithm.
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1. INTRODUCTION

This dissertation explores under-actuated spacecraft attitude maneuver prob-

lems. This class of spacecraft maneuver applications represents a special case of

general maneuver strategies. The problem, however, has great practical utility.

The early part of the dissertation deals with the classical case of single-axis rigid

body sub-optimal maneuvers. Subsequent developments are introduced that apply

to three-axis optimal rigid body maneuvers. In these developments, the Euler angle

transformation [1] is utilized to establish new insights into avoiding inputs for the

failed control axis. Fully coupled three-dimensional (3D) maneuvers are achieved

by introducing a homotopy approach to obtain optimal control solutions as well as

analyze the optimal rigid body behavior due to numerical challenges associated with

the degradation of controllability.

The dynamics and several kinematic equations are addressed in Section 2 for

developing under-actuated system control strategies. Several configuration coordi-

nates are investigated but Euler angles are mainly used in this work. In general,

it is known that each set of Euler angles has a geometric singularity. For exam-

ple, the standard aircraft orientation angles, the (3-2-1) set of Euler angles, yaw,

pitch, and roll, are singular when the aircraft pitches up or down 90 degrees [1].

Therefore, selecting Euler angles as the orientation parameters introduces singular-

ities for some maneuvers. However, certain analytical advantages still make Euler

angle representations useful in specific problems. There exist 12 sets of Euler angle

transformations based on the rotation sequences. Among the 12 sets, attention is

focused on the “symmetric” sets, which have the same index for the first and third

rotations as (1-3-1), (3-1-3), etc. Intuition suggests these special sets are useful for
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handling under-actuated system control problems that have only two control inputs

available. Alternatively, Tsiotras and Longuski introduced a new set of rigid body

attitude coordinates, which has only two parameters [2]. These attitude coordi-

nates are utilized to handle symmetric under-actuated system stabilization problems

[3, 4, 5, 6, 7, 8, 9]. This work extends Tsiotras’s work to handle the general (asymmet-

ric) under-actuated system control problems, which are more general and also more

challenging cases. Tsiotras’s work is further extended by introducing a quadratic

torque-rate penalty to the performance index to produce smooth continuous control

profiles.

Section 3 reviews classical single-axis rigid body optimal maneuver problems,

specifically minimum-energy, minimum-time, and minimum-fuel maneuvers. Many

of theses formulations and solutions already exist with some assumptions in Refs.

[10, 11], but all formulations and solutions are generalized for handling the spe-

cial need of under-actuated spacecraft control. Both rest-to-rest and motion-to-rest

cases are considered and simulation results are presented. Moreover, it is found that

an open-loop control for the torque minimization problem has a structure some-

what analogous to a feedback control. These existing formulations are discussed to

help readers understand the sequential maneuver strategy presented in Section 5 for

under-actuated control problems.

While Section 3 deals with general single-axis optimal maneuver formulations

and solutions, Section 4 studies two techniques for generating smooth continuous

control profiles. In Section 3, the control profiles for the several optimal maneuvers

are discussed. For example, the minimum-torque approach yields a smooth linear

control profile, whereas the minimum-time and minimum-fuel approaches yield bang-

bang and bang-off-bang control profiles, respectively. These jump discontinuities in

control profiles are unattractive for some applications: in particular, for flexible struc-
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tures, because their high frequency behavior can potentially excite an undesirable

flexible body response. Two techniques are investigated to avoid the jump discon-

tinuities in control profiles, specifically (i) a quadratic torque-rate penalty addition

to the performance index and (ii) a cubic polynomial weight function multiplication

for smoothing the control switches. The quadratic torque-rate penalty term is added

to the performance index for torque minimization problems, and the cubic polyno-

mial multiplication is applied for the control smoothing for both maneuver time and

fuel minimization problems. The analytical solution for the torque minimization

problem, subject to the quadratic torque-rate term in the performance index, is pre-

sented in Ref. [10]. The analytical solution is simplified by neglecting the quadratic

torque term in the performance index. The analytical solution for the maneuver

time minimization problem, including the cubic polynomial multiplication for the

control smoothing, is presented in Refs. [12, 13], but no derivations are presented.

Derivations for the analytical solution are presented in Appendix A.1 to make this

dissertation self-contained. Analogous to, and motivated by, the maneuver time min-

imization results, the analytical solutions and derivations for the fuel minimization

problem, including the cubic polynomial multiplication for the control smoothing,

are presented in Appendix A.2. For flexible body cases, the jump discontinuities in

control profiles cause an undesirable vibratory motion. Thus, both of these control

smoothing approaches are useful for flexible system applications. As is shown in Ref.

[13], smoothing of control profiles is extremely effective in reductions of vibration for

both theoretically and in hardware realizations.

Section 5 extends the single-axis rigid body minimum-torque problem to the

three-axis rigid body minimum-torque problem. For the nominal case, where three

control inputs are available along the body axes, optimal control and control-rate

formulations based on the Euler angles are derived. Again, the torque-rate mini-
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mization case is studied for generating smooth continuous control profiles; however,

this approach does not generate the minimum-torque solution. The optimal control

and control-rate formulations utilizing the quaternion and the modified Rodrigues

parameters are derived in Appendix B. For the failed actuator case, where only

two control inputs are available along any arbitrary two body axes, it’s extremely

difficult to find optimal control solutions unless accurate initial costate guesses are

given. Thus, a sequential sub-optimal maneuver strategy is suggested to avoid inputs

for the failed control axis. Since the sequential maneuver strategy is utilized for the

failed actuator case, one may expect longer “flight time” state trajectories than the

optimal solutions for the failed actuator case given accurate initial costate guesses.

Thus, this strategy provides sub-optimal solutions that are “good enough” for some

applications. The main advantage of this strategy is that this will efficiently lead us

to 3D maneuver solutions given two control inputs most of the time, even if accurate

initial costate guesses are not available.

When only two control inputs are available, the suggested strategy is as fol-

lows: (1) transform the given initial and final attitude representations to specific

attitude representations using the Euler angle transformations that avoid the input

for the failed control axis; (2) define three sequential sub-maneuvers; (3) define new

attitude commands at switch-times for each sub-maneuver; (4) solve for optimal

switch-times for starting and ending each sub-maneuver; and (5) perform the de-

fined single-axis sub-maneuvers. With three maneuver periods to be defined, two

unknown switch-times, t1 and t2, must be found as shown in Fig. 1.1.

The suggested strategy gives rise to three issues that make the calculation

of an optimal control solution challenging: (i) unknown switch-times must be deter-

mined to change from one sub-maneuver to the next sub-maneuver, (ii) the number

of constraints is high, and (iii) the switch-times introduce jump conditions on the
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Figure 1.1: Illustration for three sequential maneuvers with two switch-times

necessary conditions that must be iteratively refined to generate the desired solution.

The brute-force approach for solving the problem consists of handling the nonlinear

necessary conditions by introducing a multiple shooting method [14], which enforces

both the end and interior points that define the optimal solution. This method is

called the classical method in this work; it requires expensive computational efforts.

This expensive computational cost motivates a search for simpler strategies.

To this end, using the analytical solutions for the single-axis maneuvers, the unknown

initial costates are reformulated as functions of two unknown switch-times. This

variable transformation reduced 32 (or 47) nonlinear constraints to 2 constraints,

which greatly simplified the problem. By reducing the number of unknowns, this

problem becomes much less sensitive to initial guesses. For the remainder of this

work, this method is called the reduced method ; it requires less computational efforts

than the classical method.

In the reduced method formulation, the initial costate are functions of two

unknown switch-times. The necessary conditions defining the switch-times are de-

fined by two Hamiltonian constraints. These constraint conditions are handled by

introducing a classical algebraic resultant method [15]. The resultant method trans-

forms the two scalar constraint conditions into a matrix equation, where one variable
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is eliminated from all terms in the matrix. By evaluating the determinant of the ma-

trix and setting the result to zero, a polynomial equation is obtained that is only

a function of one of the switch-times. This equation is numerically solved for the

roots of the polynomial. Extraneous root solutions are eliminated to ensure that

the switch-time solutions are physically meaningful. By calculating the performance

index for each remaining meaningful solution, a set of switch-times is obtained. This

method is called the resultant method in this work; it requires post-processing but it

is much less expensive than the reduced method computationally.

This approach is further refined by observing that the Hamiltonian polyno-

mial equations can be manipulated analytically to provide closed-form solutions for

both switch-times. Until now, a set of Euler angle sequences is implicitly assumed.

However, two possible sets are available when one control axis has failed. For exam-

ple, when second control axis fails, both the (1-3-1) and (3-1-3) sets are available.

Using the closed-form solution for the switch-times, a closed-form solution for the

performance index is also obtained. By calculating the performance index, the best

Euler angle sequence for the sub-optimal maneuver solution is determined. Obvi-

ously, the closed-form solution approach provides the highest level of computational

performance and enables real-time calculations for on-board spacecraft applications.

Section 6 presents a homotopy algorithm to establish an optimal nonlinear

maneuver strategy minimizing torque for large-angle three-axis spacecraft. This

problem is very challenging and fundamental as a rigorous optimal control solution for

under-actuated control applications. As a generalization, the case when two control

actuators fail among four control actuators is presented in Appendix E. For the three

actuator case, the solution strategy first solves the three-axis control problem when all

three actuators are available. The failed actuator case is recovered by introducing a

homotopy embedding parameter, ε, into the nonlinear dynamics equation to suppress
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the input from the assumed failed actuator. By sweeping ε, a sequence of neighboring

optimal control problems is solved that starts with the nominal maneuver problem

and arrives at the solution for the failed actuator case. For example, the nominal

rotational dynamic equation is given by

ω̇ = p (ω, u1, u2, u3) (1.1)

and the Homotopy dynamic equation is given by

ω̇(ε) = p̃ (ω, u1, u2, (1− ε)u3) (1.2)

Clearly, setting ε = 0 defines the nominal case in Eq. (1.1). Setting ε = 1

defines the failed actuator case

ω̇(ε = 1) = p̃ (ω, u1, u2, 0) (1.3)

where u3 no longer contributes to the system dynamics, thereby emulating a failed

actuator situation.

The governing equation is nonlinear, and the term, 1−ε, fundamentally alters

controllability of the spacecraft. Davidenko’s method is introduced for developing

an ordinary differential equation for the costate variable as a function of ε. For each

value of ε, the costate initial condition is iteratively adjusted so that the terminal

boundary conditions for the 3D maneuver are achieved. Optimal control applications

are presented for both rest-to-rest and motion-to-rest cases that demonstrate the

effectiveness of the proposed algorithm. The resulting solutions are very general, but

expensive to obtain.
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2. DYNAMICS AND KINEMATICS FOR RIGID BODY

The rotational dynamics and several kinematics for an asymmetric rigid body

are discussed briefly. All details for the dynamics and kinematics are omitted. (see

Ref. [1])

2.1 Rigid Body Dynamics

The rotational dynamics equations of a rigid body is given by [10, 16, 17]

ω̇ , p(ω, u) = [J ]−1
(

−
[

ω×
]

[J ]ω + u
)

(2.1)

where [J ] ∈ R3×3 is the positive definite inertia tensor for the spacecraft, ω ∈ R3

is the angular velocity vector of the spacecraft, u ∈ R3 is the control torque vector,

and [ζ×] ∈ R3×3 is the cross product of the generic vector, ζ ∈ R3, which is defined

as

[

ζ×
]

,













0 −ζ3 ζ2

ζ3 0 −ζ1

−ζ2 ζ1 0













By choosing a body fixed coordinate system, which is aligned with the prin-

cipal body axes, the inertia tensor is diagonal and Eq. (2.1) is expressed as

ω̇1 = −
(J33 − J22)

J11
ω2ω3 +

u1

J11
(2.2a)

ω̇2 = −
(J11 − J33)

J22

ω3ω1 +
u2

J22

(2.2b)

ω̇3 = −
(J22 − J11)

J33
ω1ω2 +

u3

J33
(2.2c)
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2.2 Rigid Body Kinematics

Attitude parameters are sets of coordinates that completely describe the ori-

entation of a rigid body relative to some reference coordinate frame. There exist

infinite number of attitude coordinates [1]. Several common attitude parameters

are considered for the optimal control formulations: (i) the Euler angles, (ii) the

quaternion, and (iii) the modified Rodrigues parameters (MRPs).

2.2.1 Euler Angles

The Euler angles describe the attitude motion through three successive rota-

tion angles (θ1, θ2, θ3) about the body fixed axes. The governing kinematic differen-

tial equation for the Euler angles is given by

θ̇ , h(θ, ω) = [B(θ)]ω (2.3)

where [B(θ)] ∈ R3×3 is defined by the sequence of rotation. For aircraft and space-

craft orientations, the (3-2-1) set of Euler angles is commonly used. To define the

orientation of orbit planes of the planet relative to the Earth’s orbit plane, the (3-1-3)

set of Euler angles is commonly used [10]. The (3-1-3) set of mapping matrix, B[(θ)],

between the angular velocity vector of the spacecraft and the Euler angle rates, θ̇, is

given by

[B(θ)] ,
1

sθ2













sθ3 cθ3 0

sθ2 cθ3 −sθ2 sθ3 0

−cθ2 sθ3 −cθ2 cθ3 sθ2













where sθi and cθi denote sin θi and cos θi, respectively. The (3-1-3) set of Euler angle

kinematic differential equation encounters a singularity at θ2 = 0 or 180 radians. In

general, all possible 12 sets of B[(θ)] encounter singularity at specific value of the
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second rotation angle, θ2, only [1]. This drawback limits the use of the Euler angle

kinematic differential equations. Certain analytical advantages, however, still make

Euler angle representations useful in specific problems.

2.2.2 Quaternion

The quaternion vector is a popular set of coordinates; four elements of the

quaternion provide a redundant, nonsingular attitude description that is well suited

to describe arbitrary and large rotations [1]. The quaternion vector, q ∈ R4, is

defined in terms of the principal rotation elements as

q ,











ρ

q4











=















ê sin
Φ

2

cos
Φ

2















(2.4)

where ê ∈ R3 is the principal vector, Φ ∈ R1 is the principal angle, and the quater-

nion is constrained by the following relation

qTq = 1 (2.5)

The governing kinematic differential equation for the quaternion is given by

q̇ , f (q, ω) =
1

2
[Ω(ω)]q (2.6)

where [Ω(ω)] ∈ R4×4 is defined as

[Ω(ω)] ,







− [ω×] ω

−ωT 0






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The time derivative of Eq. (2.5) is written as

d

dt
(qTq) = q̇Tq + qTq̇ (2.7)

Substituting Eq. (2.6) into Eq. (2.7) yields

q̇Tq + qTq̇ =
1

2
qT [Ω(ω)]T q +

1

2
qT [Ω(ω)]q = −

1

2
qT [Ω(ω)] q +

1

2
qT [Ω(ω)]q = 0

(2.8)

which demonstrates that the quaternion norm constraint in Eq. (2.5) is satisfied

naturally from Eq. (2.6).

2.2.3 Modified Rodrigues Parameters

The MPRs are another set of coordinates; they provide any attitude descrip-

tion except for a complete revolution [1]. The MRPs are defined in terms of the

quaternion or the principal rotational elements as

σ =
ρ

1 + q4
= ê tan

Φ

4
(2.9)

where the MRPs have a geometric singularity at Φ = ±2π radians from Eq. (2.9).

The governing kinematic differential equation for the MRPs is given by

σ̇ , r(σ, ω) =
1

4
[B(σ)]ω (2.10)

where [B(σ)] ∈ R3×3 is defined as

[B(σ)] , (1− σTσ) I3×3 + 2
[

σ×
]

+ 2σσT
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3. SINGLE-AXIS MANEUVERS OF RIGID BODY

Single-axis special maneuver cases are presented for several minimization

problems: (i) torque, (ii) maneuver time, and (iii) fuel.

3.1 Dynamics and Kinematics for Single-Axis Maneuvers

For a single-axis maneuver special case, the kinematic and rotational dynamic

equations in Eqs. (2.1) and (2.3) are simply expressed as

θ̇ =ω (3.1a)

ω̇ =
u

J
(3.1b)

where {θ, ω}T ∈ R2 is the state vector and J ∈ R1 is the inertia for the rotating

axis. The scalar control input, u, is constrained by

|u(t)| ≤ umax (3.2)

where umax is the maximum control input.

The objective is to determine a control input to bring any given initial states

{θ (t0) , ω (t0)}
T to a desired final states {θ(T ), ω(T )}T. The initial and final states

are defined as

θ (t0) = θ0 (3.3a)

ω (t0) =ω0 (3.3b)

θ(T ) = θT (3.3c)

ω(T ) =ωT (3.3d)
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3.2 Minimum-Torque Maneuver

A minimum-torque control solution is developed by defining the Lagrange

form of a performance index given by

J =
1

2

∫ T

t0

u2 dt (3.4)

where t0 is the fixed initial time and T is the fixed final time.

∗ Note that the unbounded control input is assumed for the minimum-torque maneu-

ver.

3.2.1 Derivations of Optimality Conditions

Using standard calculus of variations techniques, the Hamiltonian for the

given problem is defined as

H =
1

2
u2 + λθθ̇ + λωω̇ =

1

2
u2 + λθω + λω

u

J
(3.5)

where {λθ, λω}T ∈ R2 is the costate vector, one obtains the costate equations

λ̇θ = −
∂H

∂θ
= 0 (3.6a)

λ̇ω = −
∂H

∂ω
= −λθ (3.6b)

For the case of smooth unbounded control, Pontryagin’s principle leads to the

following stationarity condition

0 =
∂H

∂u
= u+

λω

J
(3.7)
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and the optimal control is given by

u∗(t) = −
λ∗

ω(t)

J
(3.8)

∗ Note that the optimal control, u∗(t), is determined by the optimal costate, λ∗

ω(t).

3.2.2 Analytical Solutions for States and Control

Integrating Eq. (3.6) from t0 to t yields

λθ(t) = constant , λθ (3.9a)

λω(t) =λω (t0)− λθ (t− t0) (3.9b)

Substituting Eq. (3.8) into Eq. (3.1b) yields

ω̇(t) = −
λω(t)

J2
(3.10)

Using Eq. (3.9b) and integrating Eq. (3.10) from t0 to t yields

ω(t) = ω (t0)−
λω (t0)

J2
(t− t0) +

λθ

2J2
(t− t0)

2 (3.11)

Using Eq. (3.11) and integrating Eq. (3.1a) from t0 to t yields

θ(t) = θ (t0) + ω (t0) (t− t0)−
λω (t0)

2J2
(t− t0)

2 +
λθ

6J2
(t− t0)

3 (3.12)

which is expressed in the form of a cubic polynomial equation as follows:

θ(t) = θ (t0) + θ̇ (t0) (t− t0) +
θ̈ (t0)

2
(t− t0)

2 +
θ(3) (t0)

6
(t− t0)

3 (3.13)
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where the superscript (#) indicates the # order derivative.

Comparing Eq. (3.12) and Eq. (3.13) gives the initial costates as follows:

λω (t0) = − J2θ̈ (t0) (3.14a)

λθ = J2θ(3) (t0) (3.14b)

The cubic polynomial equation in Eq. (3.13) must satisfy the initial and final

boundary conditions in Eq. (3.3). Imposing these conditions upon Eq. (3.13) and

solving for θ̈ (t0) and θ(3) (t0), with some algebra, yields

θ̈ (t0) =
6 (θT − θ0)

(T − t0)
2 −

2 (ωT + 2ω0)

T − t0
(3.15a)

θ(3) (t0) = −
12 (θT − θ0)

(T − t0)
3 +

6 (ωT + ω0)

(T − t0)
2 (3.15b)

Substituting Eq. (3.15) into Eq. (3.14) determines the initial costate con-

stants in terms of the nontrivial initial and final boundary conditions.

Then, the solution for the open-loop control, uo(t), is given by

uo(t) = −ko
θ(t) (θ0 − θT )− ko

ω(t) (ω0 − ωT ) + ko
e(t)ω0 (3.16)

where the time-varying gains are defined by

ko
θ(t) ,

6J

(T − t0)
3 (t0 + T − 2t) , ko

ω(t) ,
2J

(T − t0)
2 (−2t0 − T + 3t) ,

ko
e(t) ,

6J

(T − t0)
2 (−t0 − T + 2t)

∗ Note that this open-loop control has the form of a closed-loop control when the

initial states are changed to current states.
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If the initial angular velocity, ω0, is set to zero, the open-loop control becomes

uo(t) = ko
θ(t) (θT − θ0) + ko

ω(t)ωT (3.17)

For rest-to-rest maneuvers, the open-loop control is further simply expressed

as

uo(t) = ko
θ(t) (θT − θ0) (3.18)

3.2.3 Numerical Examples

Two maneuver cases are considered: (i) rest-to-rest and (ii) motion-to-rest;

and the numerical simulation parameters are listed in Table 3.1.

Table 3.1: Simulation parameters for a single-axis minimum-torque maneuver

Parameter Symbol (i) (ii) Unit

Inertia for the rotating axis J 14.2 14.2 kg-m2

Initial time t0 0 0 sec

Initial angle θ (t0) π/4 π/4 rad

Initial angular velocity ω (t0) 0 -0.05 rad/s

Final time T 10 10 sec

Final angle θ(T ) 0 0 rad

Final angular velocity ω(T ) 0 0 rad/s

The simulation results are shown in Figs. 3.1 and 3.2. The states satisfy

the prescribed boundary conditions and smooth linear control profiles are obtained.

This approach leads to jump discontinuities in control profiles, which are unattractive

because they are very sensitive to high frequency behaviors when applied to flexible

structures [13]. A methodology to avoid the jump discontinuity in control profile is
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discussed in Section 4.1.
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Figure 3.1: Minimum-torque time trajectories for the states, costates, and control;
and phase portrait (rest-to-rest)
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Figure 3.2: Minimum-torque time trajectories for the states, costates, and control;
and phase portrait (motion-to-rest)
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3.2.4 Concluding Remarks

This Section revisits the torque minimization problem for single-axis maneu-

vers. The existing formulations are revised and numerical results are demonstrated

for both rest-to-rest and motion-to-rest cases. These formulations are generalized and

extended for solving problems of higher dimensionality, especially for under-actuated

systems, in Section 5.

3.3 Minimum-Time Maneuver

A minimum-time control solution is developed by defining the Lagrange form

of a performance index given by

J =

∫ T

t0

1 dt (3.19)

where t0 is the fixed initial time and T is the free final time.

3.3.1 Derivations of Optimality Conditions

Using standard calculus of variations techniques, the Hamiltonian for the

given problem is defined as

H = 1 + λθθ̇ + λωω̇ = 1 + λθω + λω

u

J
(3.20)

where {λθ, λω}T ∈ R2 is the costate vector, one obtains the costate equations

λ̇θ = −
∂H

∂θ
= 0 (3.21a)

λ̇ω = −
∂H

∂ω
= −λθ (3.21b)

Because the final time is unspecified, the final time transversality condition
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is defined by

0 = H(T ) = 1 + λθ(T )ω(T ) + λω(T )
u(T )

J
(3.22)

Substituting the final boundary condition for the angular velocity in Eq.

(3.3d) with zero values (general case for the end of maneuvers) into Eq. (3.22)

yields

λω(T )u(T ) = −J (3.23)

According to the Pontryagin’s minimum principle, the optimal control, u∗(t),

must satisfy

λ∗

ω

J
u∗ ≤

λ∗

ω

J
u, ∀ admissible u(t) (3.24)

To describe the relationship between the optimal control and the costates, the

signum function of a real number, x, is defined as [11]

sgn(x) =























−1, if x < 0;

intermediate, if x = 0;

1, if x > 0

(3.25)

Then, the optimal control is written as

u∗(t) = −umax · sgn

(

λ∗

ω(t)

J

)

(3.26)

∗ Note that the optimal control, u∗(t), is determined by the optimal costate, λ∗

ω(t).

Integrating Eq. (3.21) from T to t yields

λθ(t) = constant , λθ (3.27a)

λω(t) =λω(T ) + (T − t)λθ (3.27b)
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Using Eq. (3.23) and the fact that u∗(T ) is limited to umax or −umax requires

either

u∗(T ) = umax and λ∗

ω(T ) = −
J

umax
(3.28)

or

u∗(T ) = −umax and λ∗

ω(T ) =
J

umax
(3.29)

3.3.2 Analytical Solutions for States and Control

Since λω(t) is a linear function of time as shown in Eq. (3.27b), it crosses time-

axis at most one time, so that there is at most one control switching [11]. Therefore,

the optimal control is one of the following choices:

u∗(t) =



































(a) − umax,

(b) switching from − umax to umax,

(c) switching from umax to − umax,

(d) umax

(3.30)

Now, the optimal control needs to be determined among the choices (a)

through (d). Also, the switch-time, ts, must be found when it crosses the time-

axis. Let us determine the state trajectories for the two possible control inputs, (a)

and (d). For the constant control input case, the solution of Eq. (3.1) is given by

ω(t) =ω (t0) +
u

J
(t− t0) (3.31a)

θ(t) = θ (t0) + ω (t0) (t− t0) +
u

2J
(t− t0)

2 (3.31b)
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or

ω(t) =ω(T ) +
u

J
(t− T ) (3.32a)

θ(t) = θ(T ) + ω(T ) (t− T ) +
u

2J
(t− T )2 (3.32b)

To eliminate time variables, substituting t− T = J [ω(t)− ω(T )]
/

u from Eq.

(3.32a) into Eq. (3.32b) yields

u [θ(t)− θ(T )] = Jω(T ) [ω(t)− ω(T )] +
J

2
[ω(t)− ω(T )]2 (3.33)

which defines a parabola based on the final states. As the final states vary, a family

of parabolas is defined.

Substituting the final boundary conditions in Eqs. (3.3c) and (3.3d) into Eq.

(3.33) yields

u [θ(t)− θT ] = JωT [ω(t)− ωT ] +
J

2
[ω(t)− ωT ]

2 (3.34)

Again, zero angular velocity at the final time, which is the general case, is

assumed. By setting ωT = 0 in Eq. (3.34), the equation of the switching curve is

given by

θ(t) = θT +
J

2u
ω2(t) (3.35)

Let’s assume that the initial states are on the switching curve. Then, the

following control will bring the states to desired states:

u(t) =











umax, if ω < 0;

−umax, if ω > 0
(3.36)
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Now, the equation of the switching curve in Eq. (3.35) is rewritten as

θ(t) = θT −
J

2umax
ω(t) |ω(t)| (3.37)

Finally, the feedback control law is given by

u(t) =















−umax, if θ(t) > θT −
J

2umax
ω(t) |ω(t)|;

umax, if θ(t) < θT −
J

2umax
ω(t) |ω(t)|

(3.38)

3.3.3 Analytical Solution for a Switch-Time

Using the boundary conditions in Eq. (3.3), let us assume the initial states

follow as

θ0 > θT −
J

2umax

ω0 |ω0| (3.39)

then the initial control input, u = −umax, is applied and the control input is switched

to u = umax at switch-time, t = ts.

The switch-time curve for ω < 0 is described by

θ(t) = θT +
J

2umax

ω2(t) (3.40)

At t = ts, Eq. (3.31) is expressed as

ω (ts) =ω0 −
umax

J
(ts − t0) (3.41a)

θ (ts) = θ0 + ω0 (ts − t0)−
umax

2J
(ts − t0)

2 (3.41b)

Comparing Eq. (3.40) at t = ts and Eq. (3.41b) yields the quadratic equation
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as follows:

a(ts − t0)
2 + b (ts − t0) + c = 0 (3.42)

where the coefficients are

a =
umax

J
, b = −2ω0, c = θT − θ0 +

Jω2
0

2umax

Solving the quadratic equation in Eq. (3.42) gives the positive switch-time,

ts, as follows:

ts = t0 +
J

umax

[

ω0 +

√

ω2
0

2
−

umax

J
(θT − θ0)

]

(3.43)

At t = ts, Eq. (3.32a) is expressed as

ωT = ω (ts) +
umax

J
(T − ts) (3.44)

Substituting Eq. (3.41a) into Eq. (3.44) yields

ωT = ω0 +
umax

J
(t0 − 2ts + T ) (3.45)

With zero angular velocity at the final time, the final time, T , is given by

T = −t0 + 2ts −
Jω0

umax
(3.46)

Substituting Eq. (3.43) into Eq. (3.46) yields the final time in terms of

initially given values as follows:

T = t0 +
J

umax

[

ω0 + 2

√

ω2
0

2
−

umax

J
(θT − θ0)

]

(3.47)
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3.3.4 Numerical Examples

Two maneuver cases are considered: (i) rest-to-rest and (ii) motion-to-rest;

and the numerical simulation parameters are listed in Table 3.2.

Table 3.2: Simulation parameters for a single-axis minimum-time maneuver

Parameter Symbol (i) (ii) Unit

Inertia for the rotating axis J 14.2 14.2 kg-m2

Maximum value of control torque umax 1 1 Nm

Initial time t0 0 0 sec

Initial angle θ (t0) π/4 π/4 rad

Initial angular velocity ω (t0) 0 -0.05 rad/s

Final angle θ(T ) 0 0 rad

Final angular velocity ω(T ) 0 0 rad/s

For the case (i), the switch-time, ts, and the final time, T , are obtained by

(ts, T ) = (3.3396, 6.6791) sec

For the case (ii), the switch-time, ts, and the final time, T , are obtained by

(ts, T ) = (2.6671, 6.0042) sec

The simulation results are shown in Figs. 3.3 and 3.4. The states satisfy the

prescribed boundary conditions and bang-bang control profiles are obtained. These

jump discontinuities in control profiles are unattractive because they induce high

frequency, which leads to excite a flexible body response [13]. A methodology to

avoid the jump discontinuity in control profile is discussed in Section 4.2.
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Figure 3.3: Minimum-time time trajectories for the states and control; and phase
portrait (rest-to-rest)
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Figure 3.4: Minimum-time time trajectories for the states and control; and phase
portrait (motion-to-rest)

3.3.5 Concluding Remarks

This Section revisits the maneuver time minimization problem for single-

axis maneuvers. The existing formulations are revised and numerical results are

demonstrated for both rest-to-rest and motion-to-rest cases. These formulations are

generalized and extended for solving problems of higher dimensionality, especially

for under-actuated systems, in Appendix C.1.
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3.4 Minimum-Fuel Maneuver

A minimum-fuel control solution is developed by defining the Lagrange form

of a performance index given by

J =

∫ T

t0

|u| dt (3.48)

where t0 is the fixed initial time and T is the free final time.

3.4.1 Derivations of Optimality Conditions

Using standard calculus of variations techniques, the Hamiltonian for the

given problem is defined as

H = |u|+ λθθ̇ + λωω̇ = |u|+ λθω + λω

u

J
(3.49)

where {λθ, λω}T ∈ R2 is the costate vector, one obtains the costate equations

λ̇θ = −
∂H

∂θ
= 0 (3.50a)

λ̇ω = −
∂H

∂ω
= −λθ (3.50b)

Because the final time is unspecified, the final time transversality condition

is defined by

0 = H(T ) = |u(T )|+ λθ(T )ω(T ) + λω(T )
u(T )

J
(3.51)

Substituting the final boundary condition for the angular velocity in Eq.

(3.3d) with zero values (general case for the end of maneuvers) into Eq. (3.51)

yields

λω(T )u(T ) = −J |u(T )| (3.52)
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According to the Pontryagin’s minimum principle, the optimal control, u∗(t),

must satisfy

|u∗|+
λ∗

ω

J
u∗ ≤ |u|+

λ∗

ω

J
u, ∀ admissible u(t) (3.53)

The quantity, which needs to be minimized by selection of u(t), is defined as

q(t) , |u|+
λω

J
u =



















(

1 +
λω

J

)

|u|, u ≥ 0;

(

1−
λω

J

)

|u|, u ≤ 0

(3.54)

To describe the relationship between the optimal control and the costate, the

dead-zone function of a real number, x, is defined as [11]

dez(x) =















































−1, x < −1;

between − 1 and 0, x = −1;

0, −1 < x < 1;

between 0 and 1, x = 1;

1, x > 1

(3.55)

Then, the optimal control is written as

u∗(t) = −umax · dez

(

λ∗

ω(t)

J

)

(3.56)

∗ Note that the optimal control, u∗(t), is determined by the optimal costate, λ∗

ω(t).

Integrating Eq. (3.50) from T to t yields

λθ(t) = constant , λθ (3.57a)

λω(t) =λω(T ) + (T − t)λθ (3.57b)
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Using Eq. (3.52) and the fact that u∗(T ) is limited to umax or −umax requires

either

u∗(T ) = umax and λ∗

ω(T ) = −J (3.58)

or

u∗(T ) = −umax and λ∗

ω(T ) = J (3.59)

3.4.2 Analytical Solutions for States and Control

Since λω(t) is a linear function of time as shown in Eq. (3.57b), it crosses

time-axis at most two times, so that there is at most two control switching [11].

Therefore, the optimal control expressed with costate is one of the following choices:

u∗(t) =















































(a) umax, λω < −J ;

(b) non-negative, λω = −J ;

(c) 0, −J < λω < J ;

(d) non-positive, λω = J ;

(e) − umax, λω > J

(3.60)

Now, the optimal control needs to be determined among the choices (a)

through (e). Also, the switch-times, t1 and t2, must be found when it crosses the

time-axis. Let us determine the state trajectories for the three possible control in-

puts, (a), (c), and (e) excluding singular intervals (b) and (d). For the constant

control input case, the solution of Eq. (3.1) is given by

ω(t) =ω (t0) +
u

J
(t− t0) (3.61a)

θ(t) = θ (t0) + ω (t0) (t− t0) +
u

2J
(t− t0)

2 (3.61b)
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or

ω(t) =ω(T ) +
u

J
(t− T ) (3.62a)

θ(t) = θ(T ) + ω(T ) (t− T ) +
u

2J
(t− T )2 (3.62b)

To eliminate time variables, substituting t−T = J [ω(t)− ω(T )]
/

u from Eq.

(3.62a) into Eq. (3.62b) yields

u [θ(t)− θ(T )] = Jω(T ) [ω(t)− ω(T )] +
J

2
[ω(t)− ω(T )]2 (3.63)

which defines a parabola based on the final states. As the final states vary, a family

of parabolas is defined.

Substituting the final boundary conditions in Eqs. (3.3c) and (3.3d) into Eq.

(3.63) yields

u [θ(t)− θT ] = JωT [ω(t)− ωT ] +
J

2
[ω(t)− ωT ]

2 (3.64)

Again, zero angular velocity at the final time, which is the general case, is

assumed. By setting ωT = 0 in Eq. (3.64), the equation of the switching curve is

given by

θ(t) = θT +
J

2u
ω2(t) (3.65)

Let’s assume that the initial states are on the switching curve. Then, the

following control will bring the states to desired states:

u(t) =











umax, if ω < 0;

−umax, if ω > 0
(3.66)
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Now, the equation of the switching curve in Eq. (3.65) is rewritten as

θ(t) = θT −
J

2umax
ω(t) |ω(t)| (3.67)

3.4.3 Analytical Solutions for Switch-Times

Using the boundary conditions in Eq. (3.3), let us assume the initial states

follow as

θ0 > θT −
J

2umax

ω0 |ω0| (3.68)

then the initial control input, u = −umax, is applied and the control input is switched

to u = 0 at switch-time, t = t1. Let the system drift until at switch-time, t = t2, and

the control input, u = umax, is applied until t = T . For free final time, it is shown

that minimum-fuel control laws do not generally exist [11]. Let’s suppose that the

final time is fixed.

For t0 < t < t1, u(t) = −umax and Eq. (3.61) is expressed as

ω (t1) =ω0 −
umax

J
(t1 − t0) (3.69a)

θ (t1) = θ0 + ω0 (t1 − t0)−
umax

2J
(t1 − t0)

2 (3.69b)

For t1 < t < t2, u(t) = 0 and Eq. (3.61) is expressed as

ω (t2) =ω (t1) (3.70a)

θ (t2) = θ (t1) + ω (t1) (t2 − t1) (3.70b)
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For t2 < t < T , u(t) = umax and Eq. (3.61) is expressed as

ω(T ) =ω (t2) +
umax

J
(T − t2) (3.71a)

θ(T ) = θ (t2) + ω (t2) (T − t2) +
umax

2J
(T − t2)

2 (3.71b)

Substituting Eqs. (3.69a) and (3.70a) into Eq. (3.71a) yields

ωT = ω0 −
umax

J
(t1 − t0) +

umax

J
(T − t2) (3.72)

With zero angular velocity at the final time, the switch-time, t2, is given by

t2 =
Jω0

umax

+ T − t1 + t0 (3.73)

Substituting Eqs. (3.69), (3.70), and (3.73) into Eq. (3.71b) yields

J2ω2
0 + 2umax [J (θ0 − θT ) + (t0 − t1)umax (T − t1)] + 2Jω0umax (T − t1) = 0 (3.74)

After some algebra, the switch-time, t1, is found by

t1 =
Jω0

2umax
+

t0 + T

2
∓

D

2umax
(3.75)

where

D ,

√

−Jω0 (Jω0 − 2t0umax + 2umaxT )− 4Jumax (θ0 − θT ) + u2
max(t0 − T )2
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Using Eq. (3.73) and the fact that t1 < t2, the switch-times are obtained by

t1 =
Jω0 −D

2umax
+

t0 + T

2
(3.76a)

t2 =
Jω0 +D

2umax
+

t0 + T

2
(3.76b)

Then, the minimum-fuel control in open-loop form is given by

u∗(t) =























−umax, t < t1;

0, t1 ≤ t < t2;

umax, t ≥ t2

(3.77)

3.4.4 Numerical Examples

Two maneuver cases are considered: (i) rest-to-rest and (ii) motion-to-rest;

and the numerical simulation parameters are listed in Table 3.3.

Table 3.3: Simulation parameters for a single-axis minimum-fuel maneuver

Parameter Symbol (i) (ii) Unit

Inertia for the rotating axis J 14.2 14.2 kg-m2

Maximum value of control torque umax 1 1 Nm

Initial time t0 0 0 sec

Initial angle θ (t0) π/4 π/4 rad

Initial angular velocity ω (t0) 0 -0.05 rad/s

Final time T 10 10 sec

Final angle θ(T ) 0 0 rad

Final angular velocity ω(T ) 0 0 rad/s
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For the case (i), the switch-times, t1 and t2, are obtained by

(t1, t2) = (1.2788, 8.7212) sec

For the case (ii), the switch-times, t1 and t2, are obtained by

(t1, t2) = (0.4891, 8.8009) sec
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Figure 3.5: Minimum-fuel time trajectories for the states and control; and phase
portrait (rest-to-rest)
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Figure 3.6: Minimum-fuel time trajectories for the states and control; and phase
portrait (motion-to-rest)

The simulation results are shown in Figs. 3.5 and 3.6. The states satisfy

the prescribed boundary conditions and bang-off-bang control profiles are obtained.

These jump discontinuities in control profiles are unattractive to control highly flex-

ible structures because they introduce high frequency distributions [13]. A method-

ology to avoid the jump discontinuity in control profile is discussed in Section 4.3.
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3.4.5 Concluding Remarks

This Section revisits the fuel minimization problem for single-axis maneuvers.

The existing formulations are revised and numerical results are demonstrated for

both rest-to-rest and motion-to-rest cases. These formulations are generalized and

extended for solving problems of higher dimensionality, especially for under-actuated

systems, in Appendix C.3.
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4. JUMP DISCONTINUITY AVOIDANCE FOR CONTROL PROFILES

Two methods to avoid jump discontinuities in control profiles are presented

for single-axis maneuvers. First, for the torque minimization problem, a quadratic

torque-rate is introduced into the performance index. Second, for the maneuver

time and fuel minimization problems, a cubic polynomial equation is multiplied to

the maximum control input.

4.1 Torque-Rate Performance Index Technique: Torque Minimization

The kinematic and rotational dynamic equations in Eq. (3.1) and time deriva-

tive of control are

θ̇ =ω (4.1a)

ω̇ =
u

J
(4.1b)

u̇ = ū (4.1c)

where {θ, ω, u}T ∈ R3 is the state vector and the control input is assumed to be

unbounded.

The objective is to determine a time derivative of control input to bring given

initial state {θ (t0) , ω (t0) , u (t0)}
T to a desired final state {θ(T ), ω(T ), u(T )}T.

Given the initial and final boundary conditions in Eq. (3.3), additional initial and

final control inputs are defined as

u (t0) =u0 (4.2a)

u(T ) =uT (4.2b)
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∗ Note that the control boundary conditions, u (t0) and u(T ), are free to choose.

A minimum-torque control solution is developed by defining the Lagrange

form of a performance index given by

J =
1

2

∫ T

t0

(

k2u2 + u̇2
)

dt (4.3)

where t0 is the fixed initial time, T is the fixed final time, k ≥ 0 is the weight for

trade-off between penalizing quadratic torque and smoothing control profiles, and u

is assumed to have two continuous time derivatives.

4.1.1 Derivations of Optimality Conditions

Using standard calculus of variations techniques, the Hamiltonian for the

given problem is defined as

H =
1

2

(

k2u2 + ū2
)

+ λθ θ̇ + λω ω̇ + λuū =
1

2

(

k2u2 + ū2
)

+ λθ ω + λω

u

J
+ λuū (4.4)

where {λθ, λω, λu}T ∈ R3 is the costate vector, one obtains the costate equations

λ̇θ = −
∂H

∂θ
= 0 (4.5a)

λ̇ω = −
∂H

∂ω
= −λθ (4.5b)

λ̇u = −
∂H

∂u
= −

λω

J
− k2u (4.5c)

Pontryagin’s principle leads to the following stationarity condition

0 =
∂H

∂ū
= ū+ λu (4.6)
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and the optimal control-rate is given by

ū∗(t) = −λ∗

u(t) (4.7)

∗ Note that the optimal control-rate, ū∗(t), is determined by the optimal costate,

λ∗

u(t).

4.1.2 Analytical Solutions for States and Control

Introducing Eq. (4.7) into Eq. (4.1) provides the necessary conditions for the

optimal control solution given by

θ̇ =ω (4.8a)

ω̇ =
u

J
(4.8b)

u̇ = − λu (4.8c)

The solution is obtained by defining the state-costate vector

z = {θ, ω, u, λθ, λω, λu}
T (4.9)

Collecting the state and costate equations in Eqs. (4.5) and (4.8), the linear

state space form is obtained as follows:

ż(t) = [A]z(t) (4.10)
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where the constant matrix, [A] ∈ R6×6, is defined by

[A] =

































0 1 0 0 0 0

0 0 1/J 0 0 0

0 0 0 0 0 −1

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 −k2 0 −1/J 0

































The standard approach for solving Eq. (4.10) is to determine the state-costate

transition matrix, [Φ (t, t0)] ∈ R6×6, which maps the initial state-costate vector into

the current state-costate as [18]

z(t) = [Φ (t, t0)] z (t0) (4.11)

where [Φ (t, t0)] is often written compactly as

[Φ (t, t0)] = e[A](t−t0) for [A] = constant matrix (4.12)

The boundary conditions for the maneuver are

z (t0) = {θ (t0) , ω (t0) , u (t0) , λθ (t0) , λω (t0) , λu (t0)}
T (4.13a)

z(T ) = {θ(T ), ω(T ), u(T ), λθ(T ), λω(T ), λu(T )}
T (4.13b)

where the boundary conditions for the costates are unknown.
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Substituting the boundary conditions in Eq. (4.13) into Eq. (4.11) gives

z(T ) = [Φ (T, t0)]z (t0) (4.14)

where the state-costate transition matrix at the final time, [Φ (T, t0)], is partitioned

as

[Φ (T, t0)] =







[Φ11] [Φ12]

[Φ21] [Φ22]






(4.15)

and the partitioned state-costate transition matrices are presented on page 43.

Imposing the initial and final boundary conditions for the states and control

in Eqs. (3.3) and (4.2) into Eq. (4.14) gives the following initial costates























λθ (t0)

λω (t0)

λu (t0)























= [Φ12]
−1



































θT

ωT

uT























− [Φ11]























θ0

ω0

u0



































(4.16)

which completes the solution for the TPBVP for the torque-rate appended control

formulation.

By choosing large k, a near minimum-torque solution is obtained with smooth

continuous control profiles. Let’s assume that k = 0 for simply generating smooth

continuous control profiles. Then, this problem becomes a torque-rate minimization

problem. As shown in the partition matrices of the state-costate transition matrix,

however, a singular problem is caused when k = 0 is selected.
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For this special case, where k = 0, the same procedure is required to be

conducted for obtaining solutions of the torque-rate minimization problem.

From the linear state space form in Eq. (4.10), [A] ∈ R6×6 becomes

[A] =

































0 1 0 0 0 0

0 0 1/J 0 0 0

0 0 0 0 0 −1

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1/J 0

































At the final time, the partitioned state-costate transition matrices become

[Φ11] =













1 T − t0
(T−t0)2

2J

0 1 T−t0
J

0 0 1













, [Φ12] =













− (T−t0)5

120J2

(T−t0)4

24J2 − (T−t0)3

6J

− (T−t0)4

24J2

(T−t0)3

6J2 − (T−t0)2

2J

− (T−t0)3

6J
(T−t0)2

2J
t0 − T













[Φ21] =













0 0 0

0 0 0

0 0 0













, [Φ22] =













1 0 0

t0 − T 1 0

(T−t0)2

2J
t0−T
J

1













Imposing the initial and final boundary conditions for the states and control

in Eqs. (3.3) and (4.2) into Eq. (4.14) gives the following initial costates

λu (t0) ,λu0 = −
60J (θT − θ0)

(T − t0)
3 +

12J (2ωT + 3ω0)

(T − t0)
2 −

3 (uT − 3u0)

T − t0
(4.17a)

λω (t0) ,λω0 =
−360J2 (θT − θ0)

(T − t0)
4 +

24J2 (7ωT + 8ω0)

(T − t0)
3 −

12J (2uT − 3u0)

(T − t0)
2 (4.17b)

λθ (t0) ,λθ = −
720J2 (θT − θ0)

(T − t0)
5 +

360J2 (ωT + ω0)

(T − t0)
4 −

60J (uT − u0)

(T − t0)
3 (4.17c)
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Substituting the obtained initial costates in Eq. (4.17) into Eq. (4.11) pro-

vides the solutions of costates

λθ(t) = λθ = constant (4.18a)

λω(t) = λω0 − λθ (t− t0) (4.18b)

λu(t) = λu0 −
λω0

J
(t− t0) +

λθ

2J
(t− t0)

2 (4.18c)

and states

u(t) =u0 − λu0 (t− t0) +
λω0

2J
(t− t0)

2 −
λθ

6J
(t− t0)

3 (4.19a)

ω(t) =ω0 +
u0

J
(t− t0)−

λu0

2J
(t− t0)

2 +
λω0

6J2
(t− t0)

3 −
λθ

24J2
(t− t0)

4 (4.19b)

θ(t) = θ0 + ω0 (t− t0) +
u0

2J
(t− t0)

2 −
λu0

6J
(t− t0)

3 +
λω0

24J2
(t− t0)

4

−
λθ

120J2
(t− t0)

5 (4.19c)

4.1.3 Numerical Examples

Two maneuver cases are considered: (i) rest-to-rest and (ii) motion-to-rest;

and the numerical simulation is performed using the numerical simulation parameters

in Table 3.1. The initial and final control inputs are assumed to be zero.

The simulation results are shown in Figs. 4.1 and 4.2. Note that the “Linear”

indicates the results described in Figs. 3.1 and 3.2. The states satisfy the prescribed

boundary conditions and smooth continuous control profiles are obtained but more

torque is required. This is because k = 0 is assumed for simply generating smooth

continuous control profiles. By increasing the value of k, less torque is required but

this case is not discussed here. (See Ref. [10])
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Figure 4.1: Near minimum-torque time trajectories for the states, costates, and
control; and phase portrait (rest-to-rest)
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Figure 4.2: Near minimum-torque time trajectories for the states, costates, and
control; and phase portrait (motion-to-rest)
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Note that the 5th order polynomial is the lowest degree polynomial, which

satisfy the boundary conditions

@t = t0 @t = T

θ (t0) = θ0 θ(T ) = θT

θ̇ (t0) = θ̇0 , ω0 θ̇(T ) = θ̇T , ωT

θ̈ (t0) =
u0

J
θ̈(T ) =

uT

J

because u is assumed to have two continuous time derivatives.

For a “non-optimal” spline from the initial states to the final states must be

equivalent to this optimal trajectory.

4.1.4 Concluding Remarks

This Section reviews a classical methodology to generate smooth continuous

control profiles for the torque minimization problem for single-axis maneuvers. By

selecting k = 0, this problem actually is not a torque minimization problem but

rather a torque-rate minimization problem. However, by increasing the value of k,

the torque-rate minimization problem becomes to the torque minimization problem.

The existing formulations are revised and numerical results are demonstrated for

both rest-to-rest and motion-to-rest cases. These formulations are generalized and

extended for solving problems of higher dimensionality, especially for under-actuated

systems, in Section 5.

4.2 Cubic Polynomial Technique: Maneuver Time Minimization

For the minimum-time maneuver, a bang-bang control profile is shown in

Section 3.3. Given the kinematic and rotational dynamic equations in Eq. (3.1), a
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second order differential equation (or double integrator model) is given by

Jθ̈ = u = umax a(t) (4.20)

where a(t) is the cubic polynomial equation defined by

a(t) = b+ ct + dt2 + et3 (4.21)

where b, c, d, and e are the constant coefficients.

To provide a smooth transition between −umax and umax, a(t) needs to be

determined for each time interval. Assuming that the initial angular velocity and

time are zero, the cubic polynomial equation is found as [12, 13]

a(t) =



























































−
t2

δ2

(

3−
2t

δ

)

, if t0 ≤ t ≤ δ;

−1, if δ ≤ t ≤ t1;

−1 +
(t− t1)

2

2δ2

(

3−
t− t1
δ

)

, if t1 ≤ t ≤ t2;

1, if t2 ≤ t ≤ t3;

1−
(t− t3)

2

δ2

[

3−
2 (t− t3)

δ

]

, if t3 ≤ t ≤ T

(4.22)

where

δ , αT, t1 ,
T

2
− δ, t2 ,

T

2
+ δ, t3 , T − δ

∗ Note that the parameter, δ, should be less than or equal to T/4. However, an

unpleasing sharp control profile is given when δ = T/4.

The sharp control profile case is not considered as a smoothing solution. Thus,

the smoothing parameter, α, determining δ has to satisfy the condition 0 < α < 1/4.
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4.2.1 Analytical Solutions for States and Control

Given the initial and final angles; maximum control input; and arbitrarily

selected smoothing parameter, α; the final maneuver time, T , is given by [12, 13]

T =

√

J (θ0 − θT )

umax (1/4− α/2 + α2/10)
(4.23)

The angular acceleration is calculated as

θ̈(t) =
umax

J
a(t) (4.24)

The angular velocity is calculated as

ω(t) =
umax

J
v(t) (4.25)

where

v(t) =























































−
t3

δ2

(

1−
t

2δ

)

, if t0 ≤ t ≤ δ;

−(t− δ) + v(δ), if δ ≤ t ≤ t1;

− (t− t1)−
(t− t1)

4

8δ3
+

(t− t1)
3

2δ2
+ v (t1) , if t1 ≤ t ≤ t2;

(t− t2) + v (t2) , if t2 ≤ t ≤ t3;

(t− t3)−
(t− t3)

3

δ2
+

(t− t3)
4

2δ3
+ v (t3) , if t3 ≤ t ≤ T

The angle is calculated as

θ(t) =
umax

J
p(t) (4.26)

50



where

p(t) =












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









−
t4

δ2

(

1

4
−

t

10δ

)

, if t0 ≤ t ≤ δ;

−
1

2
(t− δ)2 + v(δ)(t− δ) + p(δ), if δ ≤ t ≤ t1;

−
(t− t1)

2

2
−

(t− t1)
5

40δ3
+

(t− t1)
4

8δ2
+ v (t1) (t− t1) + p (t1) , if t1 ≤ t ≤ t2;

(t− t2)
2

2
+ v (t2) (t− t2) + p (t2) , if t2 ≤ t ≤ t3;

(t− t3)
2

2
−

(t− t3)
4

4δ2
+

(t− t3)
5

10δ3
+ v (t3) (t− t3) + p (t3) , if t3 ≤ t ≤ T

Then, the smoothing control is calculated as

u(t) = umax a(t) (4.27)

Derivation for the smoothing function, a(t), is shown in Appendix A.1. Also,

v(t) and p(t) are calculated by integrating a(t) and v(t), respectively.

4.2.2 Numerical Example

A rest-to-rest case is considered and numerical simulation is performed using

the numerical simulation parameters in Table 3.2. The smoothing parameter, α, is

assumed as 1/7.

Using Eq. (4.23), the final time is calculated as

T = 7.8581 sec

Then, the switch-times are calculated as

(δ, t1, t2, t3) = (1.1226, 2.8065, 5.0516, 6.7355) sec
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Figure 4.3: Near minimum-time time trajectories for the states and control; and
phase portrait (rest-to-rest)

The simulation results are shown in Fig. 4.3. Note that the “Bang-bang”

indicates the results described in Fig. 3.3. The states satisfy the prescribed boundary

conditions and a smooth continuous control profile is obtained but a large final time

is required. By decreasing the value of α, the final time for the smooth continuous

control profile approaches to the final time for the bang-bang control profile.

4.2.3 Concluding Remarks

This Section shows a methodology to generate a smooth continuous control

profile for the maneuver time minimization problem for single-axis maneuvers. The
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existing formulations are revised and numerical results are demonstrated for a rest-

to-rest case. These formulations are generalized and extended for solving problems

of higher dimensionality, especially for under-actuated systems, in Appendix C.2.

4.3 Cubic Polynomial Technique: Fuel Minimization

For the minimum-fuel maneuver, a bang-off-bang control profile is shown in

Section 3.4. The second order differential equation is given by

Jθ̈ = u = umax a(t) (4.28)

where a(t) is the cubic polynomial equation defined by

a(t) = b+ ct + dt2 + et3 (4.29)

where b, c, d, and e are the constant coefficients.

To provide a smooth transition between −umax and umax, a(t) needs to be

determined for each time interval. Assuming that the initial angular velocity and

time are zeros, the cubic polynomial equation is found as

a(t) =


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





−
t2

δ2

(

3−
2t

δ

)

, if t0 ≤ t ≤ δ;

−1, if δ ≤ t ≤ t1;

−1 +
(t− t1)

2

δ2

[

3−
2 (t− t1)

δ

]

, if t1 ≤ t ≤ t2;

0, if t2 ≤ t ≤ t3;

(t− t3)
2

δ2

[

3−
2 (t− t3)

δ

]

, if t3 ≤ t ≤ t4;

1, if t4 ≤ t ≤ t5;

1−
(t− t5)

2

δ2

[

3−
2 (t− t5)

δ

]

, if t5 ≤ t ≤ T

(4.30)
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where

K , T −
√

T 2 − 8 (p0 − pT )

p0 ,
J

umax
θ0, pT ,

J

umax
θT

δ , βK

t1 ,
T

2
+

1

2

[

−δ −

√

(T − δ)2 − 4 (p0 − pT )

]

t2 ,
T

2
+

1

2

[

δ −

√

(T − δ)2 − 4 (p0 − pT )

]

t3 ,
T

2
+

1

2

[

−δ +

√

(T − δ)2 − 4 (p0 − pT )

]

t4 ,
T

2
+

1

2

[

δ +

√

(T − δ)2 − 4 (p0 − pT )

]

t5 , T − δ

∗ Note that the term, 8 (p0 − pT ), should be less than or equal to T 2 and the param-

eter, δ, should be less than or equal to K/4. However, an unpleasing sharp control

profile is given when δ = K/4.

The sharp control profile case is not considered as a smoothing solution. Thus,

the smoothing parameter, β, has to satisfy the condition 0 < β < 1/4.

4.3.1 Analytical Solutions for States and Control

The angular acceleration is calculated as

θ̈(t) =
umax

J
a(t) (4.31)

The angular velocity is calculated as

ω(t) =
umax

J
v(t) (4.32)
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where

v(t) =


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t

2δ

)

, if t0 ≤ t ≤ δ;

v(δ)− (t− δ), if δ ≤ t ≤ t1;

v (t1)− (t− t1) +
(t− t1)

3

δ2

(

1−
t− t1
2δ

)

, if t1 ≤ t ≤ t2;

v (t2) , if t2 ≤ t ≤ t3;

v (t3) +
(t− t3)

3

δ2

(

1−
t− t3
2δ

)

, if t3 ≤ t ≤ t4;

v (t4) + t− t4, if t4 ≤ t ≤ t5;

v (t5) + t− t5 −
(t− t5)

3

δ2

(

1−
t− t5
2δ

)

, if t5 ≤ t ≤ T

The angle is calculated as

θ(t) =
umax

J
p(t) (4.33)

where

p(t) =


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10δ

)

, if t0 ≤ t ≤ δ;

p(δ) + v(δ)(t− δ)−
1

2
(t− δ)2 , if δ ≤ t ≤ t1;

p (t1) + v (t1) (t− t1)−
(t− t1)

2

2
+

(t− t1)
4

δ2

(

1

4
−

t− t1
10δ
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, if t1 ≤ t ≤ t2;

p (t2) + v (t2) (t− t2) , if t2 ≤ t ≤ t3;

p (t3) + v (t3) (t− t3) +
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(
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4
−

t− t3
10δ
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1
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p (t5) + v (t5) (t− t5) +
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, if t5 ≤ t ≤ T
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Then, the smoothing control is calculated as

u(t) = umax a(t) (4.34)

Derivation for the smoothing function, a(t), is shown in Appendix A.2. Also,

v(t) and p(t) are calculated by integrating a(t) and v(t), respectively.

4.3.2 Numerical Example

A rest-to-rest case is considered and numerical simulation is performed using

the numerical simulation parameters in Table 3.3. The smoothing parameter, β, is

assumed as 1/9.

The switch-times are calculated as

(δ, t1, t2, t3, t4, t5) = (0.7463, 1.4245, 2.1708, 7.8292, 8.5755, 9.2537) sec

The simulation results are shown in Fig. 4.4. Note that the “Bang-off-bang”

indicates the results described in Fig. 3.5. The states satisfy the prescribed boundary

conditions and a smooth continuous control profile is obtained but a less singular

control time is required. By decreasing the value of β, the singular control time for

the smooth continuous control profile approaches to the singular control time for the

bang-off-bang control profile.
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Figure 4.4: Near minimum-fuel time trajectories for the states and control; and phase
portrait (rest-to-rest)

4.3.3 Concluding Remarks

This Section shows a methodology to generate a smooth continuous control

profiles for the fuel minimization problem for single-axis maneuvers. The formu-

lations are derived and numerical results are demonstrated for a rest-to-rest case.

These formulations are generalized and extended for solving problems of higher di-

mensionality, especially for under-actuated systems, in Appendix C.4.
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5. THREE-DIMENSIONAL MANEUVERS OF RIGID BODY

The single-axis maneuvers of a rigid body are extended to 3D general ma-

neuvers of an asymmetric rigid body. The torque minimization problem for under-

actuated systems is the focus of this Section and the maneuver time and fuel mini-

mization problems for under-actuated systems are additionally discussed in Appendix

C. ∗

5.1 Introduction

Extensive literature exists for controlling the attitude motion of rigid and

flexible spacecraft. For a fully functioning spacecraft, it is assumed that all actu-

ators required for completing the control task are available. Many different con-

trol strategies have been proposed for handling the nominal three-axis control case

[10, 16, 17, 19, 20, 21]. More specialized literature has considered off-nominal cases

where actuator failures have occurred. For example, Tsiotras and Longuski [22]

have considered the case designing control strategies for handling situations in which

sensor and actuator failures limit the control options available for carrying out the

original mission objectives. Keräı [23] has considered a more extreme case where

only a single control actuator is available, but this case is shown to be uncontrol-

lable, which is intuitively reasonable. Brockett [24] has shown that two controls can

be made asymptotically stable about the origin. Tsiotras et al. [2, 3, 4, 5, 6, 7, 8] and

Shen and Tsiotras [9] have further addressed the problem of stabilizing asymmetric

spacecraft including tracking control laws. Kim et al. [25, 26, 27] have introduced

sequential control concepts when the actuator failure is detected by monitoring resid-

∗Part of this section is reprinted with permission from “Suboptimal Asymmetric Spacecraft Ma-
neuvers Using Two Controls” by Donghoon Kim and James D. Turner, 2013. Journal of Guidance,

Control, and Dynamics, accepted for print, Copyright [2013] by Donghoon Kim.
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uals. Others [28, 29] have presented approximate strategies that switch between two

different control laws. Much of the later work has considered complex mathematical

approaches for overcoming the under-actuated spacecraft control problem.

First, formulations and solutions of a rigorous nonlinear optimal control prob-

lem are presented for spacecraft maneuvers. Then, the formulations and solutions are

addressed for the case when actuator failures limit the number of control inputs to

two-axes, which is solved by completing three sequential sub-maneuvers. An asym-

metric rigid spacecraft math model with only two available control inputs is assumed.

The control design objective is to avoid inputs for the axis where the actuator failure

has occurred. A spacecraft maneuver strategy is designed by formulating an optimal

control problem. When only two control inputs are available, the suggested strategy

is as follows: (1) transform the given initial and final attitude representations to spe-

cific attitude representations using the Euler angle transformation that is selected to

avoid inputs for the failed control axis; (2) define three sequential sub-maneuvers;

(3) define new attitude commands at switch-times for each sub-maneuver; (4) solve

for optimal switch-times for starting and ending each sub-maneuver; and (5) perform

the defined single-axis sub-maneuvers. With three maneuver periods to be defined,

two unknown switch-times must be found. This approach is successful but leads to

discontinuous control solutions because of jump conditions for Lagrange multipliers

at switch-times. These jump discontinuities in control profiles are handled by simply

changing the torque minimization problem to a torque-rate minimization problem.

As discussed in Section 4.1, this approach is studied for simply generating smooth

continuous control profiles and more general cases are already studied in Ref. [10].

The strategy addresses three issues that make the calculation of an optimal con-

trol solution challenging: (i) unknown switch-times must be determined to change

from one sub-maneuver to the next sub-maneuver; (ii) the number of constraints is
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high; and (iii) the switch-times introduce jump conditions on the necessary condi-

tions that must be iteratively refined to generate the desired solution. The nonlinear

necessary conditions are handled by introducing a multiple shooting method [14],

which enforces both the end and interior points that define the optimal solution.

Second, the initial unknown costates are reformulated as functions of two

unknown switch-times. By reducing the number of unknowns, this problem becomes

much less sensitive to the initial unknowns and helps to reduce the computational

burden.

Third, the Hamiltonian constraints are focused for obtaining analytical solu-

tions for the switch-times. The classical resultant method [15] is utilized and several

meaningful solutions for the switch-times are obtained. When more than one solu-

tion is obtained, optimality is established by calculating performance index for each

meaningful solution.

Finally, the equations for describing Hamiltonian constraints are sequentially

manipulated and the closed-form solution of optimal set of switch-times are obtained.

To determine the optimal sequence of maneuver, the closed-form solution of perfor-

mance index is also obtained.

For developing formulations, two quadratic performance indices are intro-

duced for defining the optimal control problem for the actuator failure maneuver

special case. Both the nominal and failed control maneuvers are designed to achieve

the 3D rigid body boundary conditions. When only two control inputs are avail-

able for the failed actuator case, one can introduce unknown switch-times into the

definition of the maneuver that must be recovered as part of the solution algorithm.

Two related control formulations are presented: (i) a quadratic penalty on

torque, leading to discontinuous control profiles, and (ii) a quadratic penalty on

torque-rate, leading to smooth continuous control profiles. Both performance indices
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are defined as follows:

J u ,
1

2

∫ tf

t0

uTu dt (5.1a)

J ū ,
1

2

∫ tf

t0

ūTūdt (5.1b)

where the initial time, t0, and the final time, tf , are fixed and the time derivative of

control is defined as

u̇ , g(ū) = ū (5.2)

This Section focuses on the Euler angle kinematics. Formulations for the

quaternion and MRPs are presented in Appendix B.

5.2 Problem Formulations for Nominal Case

For the nominal case, minimum-torque formulations are addressed.

5.2.1 Optimal Control Formulations Using the Euler Angles

A solution for Eqs. (2.1) and (2.3) is obtained by satisfying the prescribed

terminal conditions:

θ (t0) = θt0 , ω (t0) = ωt0, θ (tf ) = θtf , ω (tf ) = ωtf (5.3)

where the 12 members of Eq. (5.3) are prescribed constants characterizing the atti-

tude and angular velocity at the initial and final times.

Defining the Hamiltonian for the system

H =
1

2
uTu+ µTp+ γTh (5.4)

where the Lagrange multipliers associated with the Euler angles and angular velocity
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are γ ∈ R3 and µ ∈ R3, respectively. The first-order necessary conditions are

obtained as:

State Equations:

θ̇ =
∂H

∂γ
= h = [B(θ)]ω (5.5a)

ω̇ =
∂H

∂µ
= p = [J ]−1

(

−
[

ω×
]

[J ]ω + u
)

(5.5b)

Costate Equations:

γ̇ = −
∂H

∂θ
= −

[

∂h

∂θ

]T

γ = − [∆(θ,ω)]T γ (5.6a)

µ̇ = −
∂H

∂ω
= −

[

∂p

∂ω

]T

µ−

[

∂h

∂ω

]T

γ = − [Σ(ω, J)]T µ− [B(θ)]T γ (5.6b)

where

[∆(θ, ω)] ,















0 −
cθ2 (ω2cθ3 + ω1sθ3)

s2θ2

ω1cθ3 − ω2sθ3
sθ2

0 0 −ω2cθ3 − ω1sθ3

0
ω2cθ3 + ω1sθ3

s2θ2
−
cθ2 (ω1cθ3 − ω2sθ3)

sθ2















,

[Σ(ω, J)] ,















0
J2 − J3

J1

ω3
J2 − J3

J1

ω2

J3 − J1

J2
ω3 0

J3 − J1

J2
ω1

J1 − J2

J3
ω2

J1 − J2

J3
ω1 0















Stationarity Condition:

0 =
∂H

∂u
= u+

[

∂p

∂u

]T

µ = u+ [J ]−1µ (5.7)
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5.2.2 Optimal Control-Rate Formulations Using the Euler Angles

A solution of Eqs. (2.1), (2.3), and (5.2) is obtained by satisfying the pre-

scribed terminal conditions:

θ (t0) = θt0 , ω (t0) = ωt0 , u (t0) = ut0 (5.8a)

θ (tf ) = θtf , ω (tf ) = ωtf , u (tf) = utf (5.8b)

where the 18 members of Eq. (5.8) are prescribed constants characterizing the atti-

tude, angular velocity, and control torque at the initial and final times.

Defining the Hamiltonian for the system

H =
1

2
ūTū+ µTp+ γTh+ ηTg (5.9)

where the Lagrange multiplier associated with the control torque is η ∈ R3. The

first-order necessary conditions are obtained as:

State Equations:

θ̇ =
∂H

∂γ
= h = [B(θ)]ω (5.10a)

ω̇ =
∂H

∂µ
= p = [J ]−1

(

−
[

ω×
]

[J ]ω + u
)

(5.10b)

u̇ =
∂H

∂η
= g = ū (5.10c)
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Costate Equations:

γ̇ = −
∂H

∂θ
= −

[

∂h

∂θ

]T

γ = − [∆(θ,ω)]T γ (5.11a)

µ̇ = −
∂H

∂ω
= −

[

∂p

∂ω

]T

µ−

[

∂h

∂ω

]T

γ = − [Σ(ω, J)]T µ− [B(θ)]T γ (5.11b)

η̇ = −
∂H

∂u
= −

[

∂p

∂u

]T

µ = −J−1µ (5.11c)

Stationarity Condition:

0 =
∂H

∂ū
= ū+

[

∂g

∂ū

]T

η = ū+ η (5.12)

5.2.3 Numerical Example

A rest-to-rest maneuver case is considered and the numerical simulation pa-

rameters are listed in Table 5.1. Numerical simulations are performed for the nominal

control case (3-axis control). The full nonlinear set of necessary conditions is solved

by introducing a shooting method, which is a conventional Newton-Raphson method

[30], that is found to require ∼ 92 iterations for convergence. The initial unknown

costates are selected arbitrarily such as zero and the converged values are listed in

Tables 5.2 and 5.3.
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Table 5.1: Simulation parameters for a 3D minimum-torque maneuver at initial and
final times

Parameter Symbol Value Unit

Moment of inertia for the spacecraft J diag(14.2, 17.3, 20.3) kg·m2

Initial time t0 0 sec

Initial angular velocity ωt0 {0, 0, 0}T rad/s

Initial control torque ut0 {0, 0, 0}T Nm

Initial Euler angles (3-2-1 set) θt0 {24, −5, 17}T deg

Initial Euler angles (3-1-3 set) ϑt0 {8.09, 17.7, 16.66}T deg

Initial Euler angles (1-3-1 set) ϕt0 {12.14, 24.49, 5.92}T deg

Final time tf 30 sec

Final angular velocity ωtf {0, 0, 0}T deg/s

Final control torque utf {0, 0, 0}T Nm

Final Euler angles (3-2-1 set) θtf {4.98, −0.44, 9.98}T deg

Final Euler angles (3-1-3 set) ϑtf {5, 5, 5}T deg

Final Euler angles (1-3-1 set) ϕtf {2.51, 10, 2.51}T deg

Table 5.2: Nominal: found initial costates and required iterations (torque minimiza-
tion)

Symbol Guess Found Iteration

γ (t0) 03×1 {0.0459, 0.0196, 0.0468}T

13
µ (t0) 03×1 {0.2985, −0.0347, 0.7023}T
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Table 5.3: Nominal: found initial costates and required iterations (torque-rate min-
imization)

Symbol Guess Found Iteration

γ (t0) 03×1 {0.0031, 0.0013, 0.0031}T

92µ (t0) 03×1 {0.0199, −0.0024, 0.0468}T

η (t0) 03×1 {0.0070, −0.0008, 0.0115}T

For the Euler angles, 12 sets of B[(θ)] are available. The (3-1-3) set is se-

lected and studied for comparing under-actuated system control results later. The

simulation results for minimizing torque are shown in Figs. 5.1 and 5.2. Also, the

simulation results for minimizing torque-rate are shown in Figs. 5.3 and 5.4.
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Figure 5.1: Nominal: Time trajectories for the states and control based on the Euler
angles (torque minimization)
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Figure 5.2: Nominal: Time trajectories for the costates based on the Euler angles
(torque minimization)
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Figure 5.3: Nominal: Time trajectories for the states based on the Euler angles
(torque-rate minimization)
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Figure 5.4: Nominal: Time trajectories for the costates based on the Euler angles
(torque-rate minimization)

As shown in Figs. 5.1 and 5.2, the states satisfy the prescribed bound-

ary conditions and the smooth linear control profiles are obtained for minimizing

torque. Meanwhile, the smooth continuous control profiles are obtained for minimiz-

ing torque-rate as shown in Figs. 5.3 and 5.4. Again, the torque-rate minimization

is used to generate smooth continuous control profiles while satisfying the prescribed

control boundary conditions.

5.2.4 Concluding Remarks

This Section generalizes the torque minimization problem for three-axis ma-

neuvers using the Euler angle kinematics. The numerical results are demonstrated

for a rest-to-rest case using the shooting method. These formulations are contin-

uously used for solving under-actuated system control problems in the subsequent

Section.
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5.3 Problem Formulations for Failed Actuator Case: Classical Method

For under-actuated systems, a sequential sub-optimal control strategy is in-

troduced to avoid commanded inputs for the failed control axis and nonlinear space-

craft responses to the commanded control inputs. An Euler angle transformation

algorithm [1] is used to define boundary conditions for the Euler angles. Unlike

the nominal control, the Euler angles at switch-times also need to be determined

(see Table 5.4). The boundary conditions for the Euler angles are handled by us-

ing an Euler angle rotation sequence that avoids inputs for the failed control axis.

The boundary conditions for the angular velocity are set to zero at the end of each

sub-maneuver; this avoids cross-axis coupling in the equations of motion for the ma-

neuvers that follow. These control design assumptions guarantee that the constraints

for the states at interior switch-times are perfectly known. Because three sequen-

tial sub-maneuvers are designed, two switch-times are specified. Failure to solve for

the optimal switch-times produces large penalties in the performance index, which

indicates poor maneuver performance. In general, two switch-times exist but some

special cases require less than two switch-times. An example is provided to generate

a reference family of direction cosine matrix.

Given the (3-2-1) set of Euler angles (θ1, θ2, θ3), the direction cosine matrix,

[C], is expressed as

[C] =













cθ2cθ1 cθ2sθ1 −sθ2

sθ3sθ2cθ1 − cθ3sθ1 sθ3sθ2sθ1 + cθ3cθ1 sθ3cθ2

cθ3sθ2cθ1 + sθ3sθ1 cθ3sθ2sθ1 − sθ3cθ1 cθ3cθ2













(5.13)

Then, the (3-1-3) set of Euler angles (Ω, i, w) from the direction cosine matrix
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are obtained by

Ω = tan−1

(

C31

−C32

)

= tan−1

(

cθ3sθ2cθ1 + sθ3sθ1
−cθ3sθ2sθ1 + sθ3cθ1

)

(5.14a)

i = cos−1 (C33) = cos−1 (cθ3cθ2) (5.14b)

w = tan−1

(

C13

C23

)

= tan−1

(

−sθ2
sθ3cθ2

)

(5.14c)

When θ2 = 0, the (3-1-3) Euler angles are given by Ω = θ1, i = θ3, and

w = 0. It indicates that only one switch-time is required to regulate the attitude.

This simple case is not considered.

By introducing free interior switch-times, t1 and t2, for changing the control

actuator, the following unknown boundary conditions are introduced:

H (t1) =C1 (5.15a)

H (t2) =C2 (5.15b)

where C1 and C2 are the constants. Since the Hamiltonian is not an explicit function

of time, the Hamiltonian is constant over time, one concludes that C1 equals to C2.

Because the unknown switch-times are defined, a multiple shooting method

[14] is applied to find an optimal solution, where the interior point condition [31] is

given by

N [z (tinterior)] = 0 (5.16)

where z is the total states and tinterior denotes t1 and t2. The interior point condi-

tion yields the following two additional boundary conditions that define the optimal

70



solution

κT
(

t+interior
)

=κT
(

t−interior
)

−αT
∂N

∂z

∣

∣

∣

∣

∣

tinterior

(5.17a)

H
(

t+interior
)

=H
(

t−interior
)

(5.17b)

where κ is the total costates and α is the constant Lagrange multiplier for describing

jump conditions at switch-times. The dimension of α is determined by the dimension

of the Lagrange multipliers associated with the states at switch-times. The Hamil-

tonian constraint conditions in Eqs. (5.15) and (5.17b) are shown to be the key for

generating the closed-form solution for the optimal maneuver switch-times.

5.3.1 Optimal Control Formulations Using the Euler Angles

The switch-time boundary conditions, problem unknowns, and constraint con-

ditions are presented.

5.3.1.1 Switch-Time Boundary Conditions

The total states and costates are defined as z , {θT, ωT}T ∈ R6 and

κ , {γT, µT}T ∈ R6, respectively. Also, the constant Lagrange multiplier for de-

scribing jump conditions for γ (t1) and µ (t1) are α1 ∈ R3 and α2 ∈ R3, respectively.

Similarly, the constant Lagrange multiplier for describing jump conditions for γ (t2)

and µ (t2) are α3 ∈ R3 and α4 ∈ R3, respectively.
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5.3.1.2 Problem Unknowns and Constraint Conditions (32)

To formulate the mathematical structure for the problem, one now collects

all of the problem unknowns

@t0 :γ (t0) ∈ R3, µ (t0) ∈ R3 ⇒ 6 unknowns (5.18a)

@t1 :γ
(

t+1
)

∈ R3, µ
(

t+1
)

∈ R3, α1 ∈ R3, α2 ∈ R3, t1 ∈ R1

⇒ 13 unknowns (5.18b)

@t2 :α3 ∈ R3, α4 ∈ R3, t2 ∈ R1 ⇒ 7 unknowns (5.18c)

@tf :γ (tf ) ∈ R3, µ (tf ) ∈ R3 ⇒ 6 unknowns (5.18d)

and constraint conditions

@t1 :θ
(

t+1
)

= θt1 , ω
(

t+1
)

= ωt1 , γ
(

t−1
)

= γ
(

t+1
)

+α1,

µ
(

t−1
)

= µ
(

t+1
)

+α2, H
(

t−1
)

= H
(

t+1
)

⇒ 13 constraints (5.19a)

@t2 :θ
(

t−2
)

= θt2 , ω
(

t−2
)

= ωt2 , θ
(

t+2
)

= θt2 , ω
(

t+2
)

= ωt2,

γ
(

t−2
)

= γ
(

t+2
)

+α3, µ
(

t−2
)

= µ
(

t+2
)

+α4, H
(

t−2
)

= H
(

t+2
)

⇒ 19 constraints (5.19b)

The constraints of Eq. (5.19) are particularly challenging because jump con-

ditions govern the optimality of the resulting solutions. The problem is characterized

by both high-dimension and nonlinearity that makes it critically important to de-

velop useful approximate starting solutions. The unknowns of Eq. (5.18) and the

constraints of Eq. (5.19) are enforced by iteratively solving Eqs. (5.5)-(5.7).
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5.3.2 Optimal Control-Rate Formulations Using the Euler Angles

The switch-time boundary conditions, problem unknowns, and constraint con-

ditions are presented.

5.3.2.1 Switch-Time Boundary Conditions

The total states and costates are defined as z , {θT, ωT, uT}T ∈ R9 and

κ , {γT, µT, ηT}T ∈ R9, respectively. Also, the constant Lagrange multiplier for

describing jump conditions for γ (t1), µ (t1), and η (t1) are α1 ∈ R3, α2 ∈ R3, and

α3 ∈ R3, respectively. Similarly, the constant Lagrange multiplier for describing

jump conditions for γ (t2), µ (t2), and η (t2) are α4 ∈ R3, α5 ∈ R3, and α6 ∈ R3,

respectively.

5.3.2.2 Problem Unknowns and Constraint Conditions (47)

To formulate the mathematical structure for the problem, one now collects

all of the problem unknowns

@t0 :γ (t0) ∈ R3, µ (t0) ∈ R3, η (t0) ∈ R3 ⇒ 9 unknowns (5.20a)

@t1 :γ
(

t+1
)

∈ R3, µ
(

t+1
)

∈ R3, η
(

t+1
)

∈ R3,

α1 ∈ R3, α2 ∈ R3, α3 ∈ R3, t1 ∈ R1 ⇒ 19 unknowns (5.20b)

@t2 :α4 ∈ R3, α5 ∈ R3, α6 ∈ R3, t2 ∈ R1 ⇒ 10 unknowns (5.20c)

@tf :γ (tf ) ∈ R3, µ (tf) ∈ R3, η (tf ) ∈ R3 ⇒ 9 unknowns (5.20d)
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and constraint conditions

@t1 : θ
(

t+1
)

= θt1 , ω
(

t+1
)

= ωt1 , u
(

t+1
)

= ut1 ,

γ
(

t−1
)

= γ
(

t+1
)

+α1, µ
(

t−1
)

= µ
(

t+1
)

+α2, η
(

t−1
)

= η
(

t+1
)

+α3,

H
(

t−1
)

= H
(

t+1
)

⇒ 19 constraints (5.21a)

@t2 : θ
(

t−2
)

= θt2 , ω
(

t−2
)

= ωt2 , u
(

t−2
)

= ut2 ,

θ
(

t+2
)

= θt2 , ω
(

t+2
)

= ωt2 , u
(

t+2
)

= ut2 ,

γ
(

t−2
)

= γ
(

t+2
)

+α4, µ
(

t−2
)

= µ
(

t+2
)

+α5, η
(

t−2
)

= η
(

t+2
)

+α6,

H
(

t−2
)

= H
(

t+2
)

⇒ 28 constraints (5.21b)

The constraints of Eq. (5.21) are particularly challenging because jump con-

ditions govern the optimality of the resulting solutions. The problem is characterized

by both high-dimension and nonlinearity that makes it critically important to de-

velop useful approximate starting solutions. The unknowns of Eq. (5.20) and the

constraints of Eq. (5.21) are enforced by iteratively solving Eqs. (5.10)-(5.12).

5.3.3 Numerical Example

The numerical simulation parameters for interior switch-times are listed in

Table 5.4. Using the numerical simulation parameters in Tables 5.1 and 5.4, numer-

ical simulations are performed for the failed control case (2-axis control). The full

nonlinear set of necessary conditions is solved by introducing a multiple shooting

method [14] that is found to require ∼ 110 iterations for convergence. The initial

unknown costates are selected arbitrarily such as zero and the unknown switch-times

are initialized by assuming three equal parts of total simulation time; and converged

values are listed in Tables 5.5 and 5.6.

74



Table 5.4: Simulation parameters for a 3D minimum-torque maneuver at interior
times

Parameter Symbol Value Unit

Interior angular velocity ωt1 {0, 0, 0}T rad/s

Interior control torque ut1 {0, 0, 0}T Nm

Interior Euler angles (3-1-3 set) ϑt1 {8.09, 17.7, 5}T deg

Interior Euler angles (1-3-1 set) ϕt1 {12.14, 24.49, 2.51}T deg

Interior angular velocity ωt2 {0, 0, 0}T deg/s

Interior control torque ut2 {0, 0, 0}T Nm

Interior Euler angles (3-1-3 set) ϑt2 {8.09, 5, 5}T deg

Interior Euler angles (1-3-1 set) ϕt2 {12.14, 10, 2.51}T deg

Table 5.5: Failed: found initial costates and required iterations (torque minimization)

Symbol Guess Found Iteration

γ (t0) 03×1 {0, 0, 0.5072}T

110

µ (t0) 03×1 {0, 0, 3.1868}T

γ (t1) 03×1 {0, 0.4065, 0}T

µ (t1) 03×1 {0, 2.2292, 0}T

γ (tf ) 03×1 {0.9855, 0, 0}T

µ (tf) 03×1 {−3.1868, 0, 0}T

α1 03×1 {0, −0.4065, 0.5072}T

α2 03×1 {0, −2.2292, −3.1868}T

α3 03×1 {−0.9855, 0.4065, 0}T

α4 03×1 {−3.1868, −2.2292, 0}T

t1 10 12.5651

t2 20 23.5329
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Table 5.6: Failed: found initial costates and required iterations (torque-rate mini-
mization)

Symbol Guess Found Iteration

γ (t0) 03×1 {0, 0, 0.2708}T

63

µ (t0) 03×1 {0, 0, 1.5897}T

η (t0) 03×1 {0, 0, 0.1532}T

γ (t1) 03×1 {0, 0.2271, 0}T

µ (t1) 03×1 {0, 1.2175, 0}T

η (t1) 03×1 {0, 0.1532, 0}T

γ (tf ) 03×1 {0.6566, 0, 0}T

µ (tf) 03×1 {−2.4752, 0, 0}T

η (tf ) 03×1 {0.1532, 0, 0}T

α1 03×1 {0, −0.2271, 0.2708}T

α2 03×1 {0, −1.2175, −1.5897}T

α3 03×1 {0, −0.1532, 0.1532}T

α4 03×1 {−0.6566, 0.2271, 0}T

α5 03×1 {−2.4752, −1.2175, 0}T

α6 03×1 {−0.1532, 0.1532, 0}T

t1 10 11.7390

t2 20 22.4608

For the failure control simulation case, it is assumed that second axis torque

cannot be generated. Thus, two possible sets of Euler transformations are available

to avoid the input for the failed control axis [i.e., (3-1-3) and (1-3-1) sets]. The

(3-1-3) set is selected and studied. For now, the algorithm is not including methods

for selecting the optimal Euler angle rotation sequence and this indicates that the
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multiple shooting method is not suitable for on-board implementation.

The simulation results for minimizing torque are shown in Figs. 5.5-5.7. Also,

the simulation results for minimizing torque-rate are shown in Figs. 5.8-5.10.

As shown in Fig. 5.5, the control profiles are smooth linear functions of

time for minimizing torque. The control profiles for failure control maneuver are

discontinuous at the interior switch-times because the control turns off the initial

control actuator and then turns on the remaining control actuator. This control

design does not excite cross-axis coupling in the equations of motion. It is recognized,

however, that the on-off nature of the controls is an idealization that is addressed in

more complex control formulations.

Figure 5.6 presents the costate time trajectories for minimizing torque. Again,

the interior switch-times are seen to generate discontinuous costate time trajectories.
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Figure 5.5: Failed: Time trajectories for the states based on the Euler angles (torque
minimization)
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Figure 5.6: Failed: Time trajectories for the costates based on the Euler angles
(torque minimization)
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Figure 5.7: Failed: Time trajectories for the Hamiltonian and performance index
based on the Euler angles (torque minimization)
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Figure 5.8: Failed: Time trajectories for the states based on the Euler angles (torque-
rate minimization)
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Figure 5.9: Failed: Time trajectories for the costates based on the Euler angles
(torque-rate minimization)
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Figure 5.10: Failed: Time trajectories for the Hamiltonian and performance indices
based on the Euler angles (torque-rate minimization)
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(torque minimization)
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Figure 5.12: Time trajectories for the principal angles based on the Euler angles
(torque-rate minimization)

As shown in Fig. 5.7, the Hamiltonian is constant over time regardless of

existing control profile switches. Also, three sets of performance index time trajecto-

ries are shown and the sum of performance indices at time t1, t2, and tf , is the total

torque cost and it is shown that the nominal control requires less total torque cost

than the failed control.

As shown in Fig. 5.8, the control profiles are smooth continuous functions of

time for minimizing torque-rate. Introducing a quadratic torque-rate penalty into the

problem formulations significantly increases the number of unknowns to be solved for

developing the optimal control solution. Nevertheless, the overwhelming advantage

of introducing the quadratic torque-rate penalty is that interior jump discontinuities

are analytically eliminated from the problem, which is important for flexible body

applications that are very sensitive to high-frequency behaviors in the control profiles.

Figure 5.9 presents the costate time trajectories for minimizing torque-rate.

81



Again, the interior switch-times are seen to generate discontinuous costate time tra-

jectories even though the performance index minimizing torque-rate is applied.

As shown in Fig. 5.10, the Hamiltonian is constant over time regardless of

existing control profile switches. Three sets of performance index time trajectories

are presented and the sum of performance indices at time t1, t2, and tf , generates

the complete maneuver cost. A standard performance index, Gū ,
1

2

∫ tf
t0

uTu dt, is

calculated for comparing the optimality of different solutions, which are shown in

Table 5.7. Consequently, the torque consumption ratio is very similar regardless of

the performance indices.

Table 5.7: Torque consumption comparison: nominal vs failed actuator

Observation Nominal Failed Ratio (Failed /Nominal)

J u 0.0082 0.1232 15.0244

Gū 0.0117 0.1833 15.6410

Figures 5.11 and 5.12 present the principal angle time trajectories for the

nominal and failed actuator cases when both torque and torque-rate minimizing per-

formance indices are used, respectively. These results show that the failure controls

minimizing both torque and torque-rate are performed successfully.

5.3.4 Concluding Remarks

This Section generalizes the torque minimization problem for three-axis ma-

neuvers using the Euler angles. The numerical results are demonstrated for a rest-

to-rest case using the multiple shooting method, which is very expensive to compute.

Under-actuated systems require more unknowns and constraints. By comparing the

number of unknowns and constraints between penalizing the quadratic torque and

penalizing the quadratic torque-rate, the latter one has larger dimension than the for-
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mer one. In Section 5.4, the problem is reformulated so that the number of necessary

conditions is reduced, which leads to a substantial computational benefit.

5.4 Problem Formulations for Failed Actuator Case: Reduced Method

The general maneuver problem is now recast as three uncoupled single-axis

maneuvers. The three special case solutions correspond to “pure spin” reorientations

that reduce to a pure rotation about any one of the spacecraft’s three principal axes

of inertia. In all three cases, the initial and final states are assumed as arbitrary

values except for the angular velocity about the failed control axis. To simplify the

problem, the initial angular velocity for the failed control axis is assumed to be zero.

5.4.1 Initial Costate Formulations Using the Euler Angles (Torque Minimization)

The differential equations for the three special cases are expressed as:

Arbitrary Maneuver about the 1-axis:

θ̇1 = ω1 θ̇2 = 0 θ̇3 = 0 (5.22a)

ω̇1 = −µ1

/

J2
1 ω̇2 = 0 ω̇3 = 0 (5.22b)

γ̇1 = 0 γ̇2 = 0 γ̇3 = 0 (5.22c)

µ̇1 = −γ1 µ̇2 = 0 µ̇3 = 0 (5.22d)

Arbitrary Maneuver about the 2-axis:

θ̇1 = 0 θ̇2 = ω2 θ̇3 = 0 (5.23a)

ω̇1 = 0 ω̇2 = −µ2

/

J2
2 ω̇3 = 0 (5.23b)

γ̇1 = 0 γ̇2 = 0 γ̇3 = 0 (5.23c)

µ̇1 = 0 µ̇2 = −γ2 µ̇3 = 0 (5.23d)
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Arbitrary Maneuver about the 3-axis:

θ̇1 = 0 θ̇2 = 0 θ̇3 = ω3 (5.24a)

ω̇1 = 0 ω̇2 = 0 ω̇3 = −µ3

/

J2
3 (5.24b)

γ̇1 = 0 γ̇2 = 0 γ̇3 = 0 (5.24c)

µ̇1 = 0 µ̇2 = 0 µ̇3 = −γ3 (5.24d)

As shown in Section 3.2.2, the analytical solutions for the states and costates

are found for single-axis maneuvers. In this Section, the costate variables λθ and λω

are changed to µ and γ, respectively.

Now, let’s consider the (3-1-3) sequential rest-to-rest maneuver. The proposed

methodology, however, is valid for generic maneuvers. Since three independent ma-

neuvers are utilized, these equations are specialized by adjusting the values for t0

and tf to account for the current starting and stopping times for the current sub-

maneuver. Of course, the initial and final angles and angular velocity as well as the

moment of inertia, appearing in these equations, are also adjusted to account for

the current sub-maneuver. For the (3-1-3) sequential maneuver case, the following

variables are defined:

J1 , J3, J2 , J1, J3 , J3 (5.25a)

ϑt1 − ϑt0 , Non-zero element of ϑt1 − ϑt0 (5.25b)

ϑt2 − ϑt1 , Non-zero element of ϑt2 − ϑt1 (5.25c)

ϑtf − ϑt2 , Non-zero element of ϑtf − ϑt2 (5.25d)

The analytic solutions for the maneuver necessary conditions are defined as

follows:
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Lagrange Multiplier Constants:

@t0 :γ (t0) =



























0

0

−12J21 (ϑt1 − ϑt0)

(t1 − t0)
3



























, µ (t0) =



























0

0

−6J21 (ϑt1 − ϑt0)

(t1 − t0)
2



























@t1 :γ
(

t−1
)

= γ (t0) , µ
(

t−1
)

= µ (t0)− γ (t0) (t1 − t0) = −µ (t0) ,

γ
(

t+1
)

=



























0

−12J22 (ϑt2 − ϑt1)

(t2 − t1)
3

0



























, µ
(

t+1
)

=



























0

−6J22 (ϑt2 − ϑt1)

(t2 − t1)
2

0



























,

α1 (t1) = γ
(

t−1
)

− γ
(

t+1
)

, α2 (t1) = µ
(

t−1
)

− µ
(

t+1
)

@t2 :γ
(

t−2
)

= γ
(

t+1
)

, µ
(

t−2
)

= µ
(

t+1
)

− γ
(

t+1
)

(t2 − t1) = −µ
(

t+1
)

,

γ
(

t+2
)

=



























−12J23
(

ϑtf − ϑt2

)

(tf − t2)
3

0

0



























, µ
(

t+2
)

=



























−6J23
(

ϑtf − ϑt2

)

(tf − t2)
2

0

0



























,

α3 (t2) = γ
(

t−2
)

− γ
(

t+2
)

, α4 (t2) = µ
(

t−2
)

− µ
(

t+2
)

@tf :γ (tf ) = γ
(

t+2
)

, µ (tf ) = µ
(

t+2
)

− γ
(

t+2
)

(tf − t2) = −µ
(

t+2
)

The key point is that the initial unknown costates are expressed as a function

of the unknown switch-times, t1 and t2, thereby reducing the number of unknowns

from 32 to 2. It is important to observe that this reduction in analytic complexity

yields ∼ 41-fold boost in the computational performance.
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5.4.2 Initial Costate Formulations Using the Euler Angles (Torque-Rate

Minimization)

The differential equations for the three special cases are expressed as:

Arbitrary Maneuver about the 1-axis:

θ̇1 = ω1 θ̇2 = 0 θ̇3 = 0 (5.26a)

ω̇1 = u1

/

J1 ω̇2 = 0 ω̇3 = 0 (5.26b)

u̇1 = −η1 u̇2 = 0 u̇3 = 0 (5.26c)

γ̇1 = 0 γ̇2 = 0 γ̇3 = 0 (5.26d)

µ̇1 = −γ1 µ̇2 = 0 µ̇3 = 0 (5.26e)

η̇1 = −µ1

/

J1 η̇2 = 0 η̇3 = 0 (5.26f)

Arbitrary Maneuver about the 2-axis:

θ̇1 = 0 θ̇2 = ω2 θ̇3 = 0 (5.27a)

ω̇1 = 0 ω̇2 = u2

/

J2 ω̇3 = 0 (5.27b)

u̇1 = 0 u̇2 = −η2 u̇3 = 0 (5.27c)

γ̇1 = 0 γ̇2 = 0 γ̇3 = 0 (5.27d)

µ̇1 = 0 µ̇2 = −γ2 µ̇3 = 0 (5.27e)

η̇1 = 0 η̇2 = −µ2

/

J2 η̇3 = 0 (5.27f)
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Arbitrary Maneuver about the 3-axis:

θ̇1 = 0 θ̇2 = 0 θ̇3 = ω3 (5.28a)

ω̇1 = 0 ω̇2 = 0 ω̇3 = u3

/

J3 (5.28b)

u̇1 = 0 u̇2 = 0 u̇3 = −η3 (5.28c)

γ̇1 = 0 γ̇2 = 0 γ̇3 = 0 (5.28d)

µ̇1 = 0 µ̇2 = 0 µ̇3 = −γ3 (5.28e)

η̇1 = 0 η̇2 = 0 η̇3 = −µ3

/

J3 (5.28f)

As shown in Section 4.1.2, the analytical solutions for the states and costates

are found for single-axis maneuvers. In this Section, the costate variables λθ, λω,

and λu are changed to µ, γ, and η, respectively.

Using the definitions in Eq. (5.25), the analytic solutions for the maneuver

necessary conditions are defined as follows:

Lagrange Multiplier Constants:

@t0 :γ (t0) =



























0

0

−720J21 (ϑt1 − ϑt0)

(t1 − t0)
5



























, µ (t0) =



























0

0

−360J21 (ϑt1 − ϑt0)

(t1 − t0)
4



























,

η (t0) =



























0

0

−60J1 (ϑt1 − ϑt0)

(t1 − t0)
3


























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@t1 :γ
(

t−1
)

= γ (t0) , µ
(

t−1
)

= µ (t0)− γ (t0) (t1 − t0) = −µ (t0) ,

η
(

t−1
)

= η (t0)−
µ (t0)

J1
(t1 − t0) +

γ (t0)

2J1
(t1 − t0)

2 = η (t0) ,

γ
(

t+1
)

=



























0

−720J22 (ϑt2 − ϑt1)

(t2 − t1)
5

0



























, µ
(

t+1
)

=



























0

−360J22 (ϑt2 − ϑt1)

(t2 − t1)
4

0



























,

η
(

t+1
)

=



























0

−60J2 (ϑt2 − ϑt1)

(t2 − t1)
3

0



























, α1 (t1) = γ
(

t−1
)

− γ
(

t+1
)

,

α2 (t1) = µ
(

t−1
)

− µ
(

t+1
)

, α3 (t1) = η
(

t−1
)

− η
(

t+1
)

@t2 :γ
(

t−2
)

= γ
(

t+1
)

, µ
(

t−2
)

= µ
(

t+1
)

− γ
(

t+1
)

(t2 − t1) = −µ
(

t+1
)

,

η
(

t−2
)

= η
(

t+1
)

−
µ
(

t+1
)

J2
(t2 − t1) +

γ
(

t+1
)

2J2
(t2 − t1)

2 = η
(

t+1
)

,

γ
(

t+2
)

=



























−720J23
(

ϑtf − ϑt2

)

(tf − t2)
5

0

0



























, µ
(

t+2
)

=



























−360J23
(

ϑtf − ϑt2

)

(tf − t2)
4

0

0



























,

η
(

t+2
)

=



























−60J3
(

ϑtf − ϑt2

)

(tf − t2)
3

0

0



























, α4 (t2) = γ
(

t−2
)

− γ
(

t+2
)

,

α5 (t2) = µ
(

t−2
)

− µ
(

t+2
)

, α6 (t2) = η
(

t−2
)

− η
(

t+2
)

@tf :γ (tf ) = γ
(

t+2
)

, µ (tf ) = µ
(

t+2
)

− γ
(

t+2
)

(tf − t2) = −µ
(

t+2
)

,

η (tf ) = η
(

t+2
)

−
µ
(

t+2
)

J3
(tf − t2) +

γ
(

t+2
)

2J3
(tf − t2)

2 = η
(

t+2
)

Now, the initial unknown costates are expressed as a function of the unknown
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switch-times, t1 and t2, thereby reducing the number of unknowns from 47 to 2. It is

important to observe that this reduction in analytic complexity yields ∼ 86-fold boost

in the computational performance.

5.4.3 Concluding Remarks

This Section reformulates the initial unknown costates as functions of two

unknown switch-times. By examining the necessary conditions between the initial

costates and the switch-times, the initial costates are reformulated as functions of

two unknown switch-times. The reduction in the number of variables, one has to

handle, makes real-time on-orbit applications possible.

5.5 Analytical Solutions for Failed Actuator Case: Resultant Method

To find the unknown switch-times, the Hamiltonian constraint in Eq. (5.17b)

are considered.

5.5.1 Hamiltonian Formulations Using the Euler Angles (Torque Minimization)

The Hamiltonian values at right before (-) and right after (+) the switch-times

are arranged as

u
(

t−1
)

= −
1

J1
µ
(

t−1
)

(5.29a)

p
(

t−1
)

=
1

J1
u
(

t−1
)

= −
1

J21
µ
(

t−1
)

(5.29b)

h
(

t−1
)

=ω
(

t−1
)

= 03×1 (5.29c)

H
(

t−1
)

=
1

2
uT

(

t−1
)

u
(

t−1
)

+ µT
(

t−1
)

p
(

t−1
)

+ γT
(

t−1
)

h
(

t−1
)

= −
18J21 (ϑt1 − ϑt0)

2

(t1 − t0)
4 (5.29d)

89



u
(

t+1
)

= −
1

J2
µ
(

t+1
)

(5.30a)

p
(

t+1
)

=
1

J2
u
(

t+1
)

= −
1

J22
µ
(

t+1
)

(5.30b)

h
(

t+1
)

=ω
(

t+1
)

= 03×1 (5.30c)

H
(

t+1
)

=
1

2
uT

(

t+1
)

u
(

t+1
)

+ µT
(

t+1
)

p
(

t+1
)

+ γT
(

t+1
)

h
(

t+1
)

= −
18J22 (ϑt2 − ϑt1)

2

(t2 − t1)
4 (5.30d)

u
(

t−2
)

= −
1

J2
µ
(

t−2
)

(5.31a)

p
(

t−2
)

=
1

J2
u
(

t−2
)

= −
1

J22
µ
(

t−2
)

(5.31b)

h
(

t−2
)

=ω
(

t−2
)

= 03×1 (5.31c)

H
(

t−2
)

=
1

2
uT

(

t−2
)

u
(

t−2
)

+ µT
(

t−2
)

p
(

t−2
)

+ γT
(

t−2
)

h
(

t−2
)

= −
18J22 (ϑt2 − ϑt1)

2

(t2 − t1)
4 (5.31d)

u
(

t+2
)

= −
1

J3
µ
(

t+2
)

(5.32a)

p
(

t+2
)

=
1

J3
u
(

t+2
)

= −
1

J23
µ
(

t+2
)

(5.32b)

h
(

t+2
)

=ω
(

t+2
)

= 03×1 (5.32c)

H
(

t+2
)

=
1

2
uT

(

t+2
)

u
(

t+2
)

+ µT
(

t+2
)

p
(

t+2
)

+ γT
(

t+2
)

h
(

t+2
)

= −
18J23

(

ϑtf − ϑt2

)2

(tf − t2)
4 (5.32d)

Equating the Hamiltonian constraints leads to the following two coupled quar-
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tic polynomial equations

J
2
1 (ϑt1 − ϑt0)

2 (t2 − t1)
4 = J

2
2 (ϑt2 − ϑt1)

2 (t1 − t0)
4 (5.33a)

J
2
3

(

ϑtf − ϑt2

)2
(t2 − t1)

4 = J
2
2 (ϑt2 − ϑt1)

2 (tf − t2)
4 (5.33b)

5.5.2 Hamiltonian Formulations Using the Euler Angles (Torque-Rate

Minimization)

The Hamiltonian values at right before (-) and right after (+) the switch-times

are arranged as

g
(

t−1
)

= − η
(

t−1
)

(5.34a)

p
(

t−1
)

=
1

J1
u
(

t−1
)

= 03×1 (5.34b)

h
(

t−1
)

=ω
(

t−1
)

= 03×1 (5.34c)

H
(

t−1
)

=
1

2
gT

(

t−1
)

g
(

t−1
)

+ µT
(

t−1
)

p
(

t−1
)

+ γT
(

t−1
)

h
(

t−1
)

+ ηT
(

t−1
)

g
(

t−1
)

= −
1800J21 (ϑt1 − ϑt0)

2

(t1 − t0)
6 (5.34d)

u
(

t+1
)

= − η
(

t+1
)

(5.35a)

p
(

t+1
)

=
1

J2
u
(

t+1
)

= 03×1 (5.35b)

h
(

t+1
)

=ω
(

t+1
)

= 03×1 (5.35c)

H
(

t+1
)

=
1

2
gT

(

t+1
)

g
(

t+1
)

+ µT
(

t+1
)

p
(

t+1
)

+ γT
(

t+1
)

h
(

t+1
)

+ ηT
(

t+1
)

g
(

t+1
)

= −
1800J22 (ϑt2 − ϑt1)

2

(t2 − t1)
6 (5.35d)
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u
(

t−2
)

= − η
(

t−2
)

(5.36a)

p
(

t−2
)

=
1

J2
u
(

t−2
)

= 03×1 (5.36b)

h
(

t−2
)

=ω
(

t−2
)

= 03×1 (5.36c)

H
(

t−2
)

=
1

2
gT

(

t−2
)

g
(

t−2
)

+ µT
(

t−2
)

p
(

t−2
)

+ γT
(

t−2
)

h
(

t−2
)

+ ηT
(

t−2
)

g
(

t−2
)

= −
1800J22 (ϑt2 − ϑt1)

2

(t2 − t1)
6 (5.36d)

u
(

t+2
)

= − η
(

t+2
)

(5.37a)

p
(

t+2
)

=
1

J3
u
(

t+2
)

= 03×1 (5.37b)

h
(

t+2
)

=ω
(

t+2
)

= 03×1 (5.37c)

H
(

t+2
)

=
1

2
gT

(

t+2
)

g
(

t+2
)

+ µT
(

t+2
)

p
(

t+2
)

+ γT
(

t+2
)

h
(

t+2
)

+ ηT
(

t+2
)

g
(

t+2
)

= −
1800J23

(

ϑtf − ϑt2

)2

(tf − t2)
6 (5.37d)

Equating the Hamiltonian constraints leads to the following two coupled hexic

polynomial equations

J
2
1 (ϑt1 − ϑt0)

2 (t2 − t1)
6 = J

2
2 (ϑt2 − ϑt1)

2 (t1 − t0)
6 (5.38a)

J
2
3

(

ϑtf − ϑt2

)2
(t2 − t1)

6 = J
2
2 (ϑt2 − ϑt1)

2 (tf − t2)
6 (5.38b)

5.5.3 Classical Resultant Method

According to the classical method of resultant, given two polynomial equations

can always be written as the system of linear equations, My = 0, where M = M (t2)

and y = y (t1) 6= 0 [15]. Since this system must have det(M) = 0, a polynomial

equation only in t2 may be determined.
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For the torque minimization problem, the matrix, M ∈ R8×8, is found by the

system of equations, which are multiplied by power of t1:

M =













































M11 M12 M13 M14 M15 0 0 0

0 M11 M12 M13 M14 M15 0 0

0 0 M11 M12 M13 M14 M15 0

0 0 0 M11 M12 M13 M14 M15

0 0 0 M81 M82 M83 M84 M85

0 0 M81 M82 M83 M84 M85 0

0 M81 M82 M83 M84 M85 0 0

M81 M82 M83 M84 M85 0 0 0













































(5.39)

where the non-zero elements of M are

M11 =A− B,

M12 =4Bt0 − 4At2,

M13 =6At22 − 6Bt20,

M14 =4Bt30 − 4At32,

M15 =At42 −Bt40,

M81 = − C,

M82 =4Ct2,

M83 = − 6Ct22,

M84 =4Ct32,

M85 =B (tf − t2)
4 − Ct42

and A , J21 (ϑt1 − ϑt0)
2, B , J22 (ϑt2 − ϑt1)

2, and C , J23

(

ϑtf − ϑt2

)2
. Since y 6= 0,
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the determinant of M must vanish. Taking the symbolic determinant of M , and

simplifying the resulting expression, it is found that t2 satisfies a 16th degree of

polynomial equation, of the form:

det(M) = m16t
16
2 +m15t

15
2 + · · ·+m1t2 +m0 (5.40)

where a partial list of the polynomial coefficients are

m16 = − B4
(

−A4 + 4A3B + 4A3C − 6A2B2 + 124A2BC − 6A2C2 + 4AB3 − C4

+124AB2C + 124ABC2 + 4AC3 −B4 + 4B3C − 6B2C2 + 4BC3
)

m15 =16B4
(

4AB3tf −B4tf − C4t0 − 6A2B2tf − 3A2C2t0 − 3A2C2tf − 3B2C2t0

− 3B2C2tf − A4tf + 4A3Btf + 3AC3t0 + A3Ct0 + AC3tf + 3A3Ctf

+ 3BC3t0 +B3Ct0 +BC3tf + 3B3Ctf + 62ABC2t0 + 31AB2Ct0

+31A2BCt0 + 62ABC2tf + 93AB2Ctf + 93A2BCtf
)

m1 =16B4
(

−A4t15f + 4A3Bt15f + 3A3Ct40t
11
f + A3Ct30t

12
f − 6A2B2t15f + 93A2BCt40t

11
f

+ 31A2BCt30t
12
f − 3A2C2t80t

7
f − 3A2C2t70t

8
f + 4AB3t15f + 93AB2Ct40t

11
f

+ 31AB2Ct30t
12
f + 62ABC2t80t

7
f + 62ABC2t70t

8
f + AC3t120 t3f + 3AC3t110 t4f

− B4t15f + 3B3Ct40t
11
f +B3Ct30t

12
f − 3B2C2t80t

7
f − 3B2C2t70t

8
f +BC3t120 t3f

+3BC3t110 t4f − C4t150
)

m0 = − B4
(

−A4t16f + 4A3Bt16f + 4A3Ct40t
12
f − 6A2B2t16f + 124A2BCt40t

12
f

− 6A2C2t80t
8
f + 4AB3t16f + 124AB2Ct40t

12
f + 124ABC2t80t

8
f + 4AC3t120 t4f

−B4t16f + 4B3Ct40t
12
f − 6B2C2t80t

8
f + 4BC3t120 t4f − C4t160

)

The symbolic polynomial equation of Eq. (5.40) is evaluated numerically by

first numerically evaluating the polynomial coefficients, and then calling a standard
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library polynomial root solving algorithm. Because sixteen solutions are generated,

one must impose constraints on the root solutions so that the switch-times are physi-

cally meaningful for the prescribed maneuver conditions. For example, the following

constraints are invoked to reduce the number of roots to realistic values: (i) all roots

must be real-valued; (ii) all roots must be > t0; (iii) all roots must be < tf ; and (iv)

t1 < t2.

Several solutions that are found satisfied these constraints. The optimal so-

lution is identified by computing the performance index and then comparing numer-

ical values. Numerical experiments with this approach yielded performance boosts of

∼ 143-fold when compared to the nonlinear optimization approach.

For the torque-rate minimization problem, the matrix, L ∈ R12×12, is found

by the system of equations, which are multiplied by power of t1:

L =









































































L11 L12 L13 L14 L15 L16 L17 0 0 0 0 0

0 L11 L12 L13 L14 L15 L16 L17 0 0 0 0

0 0 L11 L12 L13 L14 L15 L16 L17 0 0 0

0 0 0 L11 L12 L13 L14 L15 L16 L17 0 0

0 0 0 0 L11 L12 L13 L14 L15 L16 L17 0

0 0 0 0 0 L11 L12 L13 L14 L15 L16 L17

0 0 0 0 0 L81 L82 L83 L84 L85 L86 L87

0 0 0 0 L81 L82 L83 L84 L85 L86 L87 0

0 0 0 L81 L82 L83 L84 L85 L86 L87 0 0

0 0 L81 L82 L83 L84 L85 L86 L87 0 0 0

0 L81 L82 L83 L84 L85 L86 L87 0 0 0 0

L81 L82 L83 L84 L85 L86 L87 0 0 0 0 0









































































(5.41)
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where the non-zero elements of L are

L11 =A− B,

L12 =6 (Bt0 − At2) ,

L13 =15
(

At22 −Bt20
)

,

L14 =20
(

Bt30 −At32
)

,

L15 =15
(

At42 −Bt40
)

,

L16 =6
(

Bt50 − At52
)

,

L17 =At62 −Bt60,

L81 = − C,

L82 =6Ct2,

L83 = − 15Ct22,

L84 =20Ct32,

L85 = − 15Ct42,

L86 =6Ct52,

L87 =B (tf − t2)
6 − Ct62

Taking the determinant of L, it is found that t2 satisfies a 36th degree of

polynomial equation. This equation has the form as follows:

det(L) = l32t
32
2 + l31t

31
2 + · · ·+ l1t2 + l0 (5.42)

where li is the coefficient and i = 0, 1, · · · , 32. Analytic solutions for the coefficients

are not addressed because of space limitations.

By imposing the previously mentioned maneuver conditions, several solutions
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that are found satisfied these constraints.

The optimal solution is identified by computing the performance index and

then comparing numerical values. Numerical experiments with this approach yielded

performance boosts of ∼ 320-fold when compared to the nonlinear optimization ap-

proach.

5.5.4 Numerical Example

From the determinant of M , 16 possible switch-times, t2, are found as

t2 = (5.9423, 23.5329, −9.8407, 41.3686) → real (5.43a)

t2 = (1.7250± 6.9839i, 37.5128± 13.5124i, 22.3474± 4.4100i,

22.6761± 5.2783i, 27.8934± 7.6654i, 34.9017± 13.6849i)

→ complex (5.43b)

By imposing two criteria into Eq. (5.43): (i) t0 < t2 < tf and (ii) t2 is real,

two possible switch-times, t2, are obtained as

t2 = (5.9423, 23.5329) sec (5.44)

Using the criteria, t1 < t2, and substituting Eq. (5.44) into Eq. (5.33a)

provides two possible switch-times, t1. As a result, two possible sets of switch-times

are found as

(t1, t2) = (3.1728, 5.9423) sec (5.45a)

(t1, t2) = (12.5651, 23.5329) sec (5.45b)

Correspondingly, one obtains the performance index values by using all sets
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of the switch-times:

J u =6.0041 using Eq. (5.45a) (5.46a)

J u =0.1232 using Eq. (5.45b) (5.46b)

Consequently, the optimal switch-times in Eq. (5.45b) provides the optimal

maneuver solution.

From the determinant of L, 32 possible switch-times, t2, are found. By im-

posing the same criteria mentioned previously, four possible sets of switch-times are

found as

(t1, t2) = (10.1376, 19.3966) sec (5.47a)

(t1, t2) = (6.0002, 11.4805) sec (5.47b)

(t1, t2) = (1.8641, 3.5667) sec (5.47c)

(t1, t2) = (11.7390, 22.4608) sec (5.47d)

Then, performance index values are evaluated by using all sets of the switch-

times as follows:

J ū =0.1130 using Eq. (5.47a) (5.48a)

J ū =1.5114 using Eq. (5.47b) (5.48b)

J ū =522.1901 using Eq. (5.47c) (5.48c)

J ū =0.0704 using Eq. (5.47d) (5.48d)

Consequently, the optimal switch-times in Eq. (5.47d) provides the optimal

maneuver solution.
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5.5.5 Concluding Remarks

This Section describes a methodology to find switch-times using the Hamilto-

nian constraints. A resultant method is introduced, which yields a high-order poly-

nomial equation. The optimal maneuver is verified by computing the performance

index for each physically meaningful set of switch-times and numerically ranking the

performance indices.

5.6 Closed-Form Solutions for Failed Actuator Case

Closed-form solutions for the failed actuator case are derived by sequentially

manipulating the Hamiltonian constraint equations.

5.6.1 Switch-Times and Performance Index (Torque Minimization)

A closed-form solution is obtained for the switch-times by sequentially ma-

nipulating Eq. (5.33). The final form for the switch-time solutions exploit the

observation that all of the terms appearing in Eq. (5.33) are positive. An analytic

solution is obtained for t1 by dividing Eqs. (5.33a) and (5.33b) as follows:

t1 = t0 +

√

J1 |ϑt1 − ϑt0 |

J3

∣

∣ϑtf − ϑt2

∣

∣

(tf − t2) (5.49)

which is still a function of t2. An analytic closed-form solution is obtained for t2 by

substituting Eq. (5.49) into Eq. (5.33b) as follows:

t2 =

√

J3

∣

∣ϑtf − ϑt2

∣

∣t0 +
(

√

J1 |ϑt1 − ϑt0 |+
√

J2 |ϑt2 − ϑt1 |
)

tf
√

J1 |ϑt1 − ϑt0 |+
√

J2 |ϑt2 − ϑt1 |+
√

J3

∣

∣ϑtf − ϑt2

∣

∣

(5.50)
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Substituting Eq. (5.50) into Eq. (5.49) yields

t1 =

(

√

J2 |ϑt2 − ϑt1 |+
√

J3

∣

∣ϑtf − ϑt2

∣

∣

)

t0 +
√

J1 |ϑt1 − ϑt0 |tf
√

J1 |ϑt1 − ϑt0 |+
√

J2 |ϑt2 − ϑt1 |+
√

J3

∣

∣ϑtf − ϑt2

∣

∣

(5.51)

Equations (5.50) and (5.51) are now simple analytic functions of the initial and

final times, rotational angles, and inertia of the spacecraft. These results have been

validated by solving necessary conditions defined by Eqs. (2.1) and (2.3) as a multiple

shooting optimization problem defined by 32 constraints. Numerical experiments

with using the closed-form solutions for the switch-times yielded performance boosts

of ∼ 2.2× 106-fold when compared to the nonlinear optimization approach.

Until now, the optimal sequence of rotation is not considered. To determine

the optimal sequence of rotation, the cost function values must be evaluated and

compared between two possible sets.

Let’s consider the cost function in Eq. (5.1a). The cost function is expressed

in terms of the switch-time solutions as follows:

J u =
1

2

[
∫ t1

t0

uTu dt+

∫ t2

t1

uTu dt+

∫ tf

t2

uTu dt

]

=
6J21 (ϑt1 − ϑt0)

2

(t1 − t0)
3 +

6J22 (ϑt2 − ϑt1)
2

(t2 − t1)
3 +

6J23
(

ϑtf − ϑt2

)2

(tf − t2)
3 (5.52)

5.6.2 Switch-Times and Performance Indices (Torque-Rate Minimization)

A closed-form solution is obtained for the switch-times by sequentially ma-

nipulating Eq. (5.38). The final form for the switch-time solutions exploit the

observation that all of the terms appearing in Eq. (5.38) are positive. An analytic
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solution is obtained for t1 by dividing Eqs. (5.38a) and (5.38b) as follows:

t1 = t0 + 3

√

J1 |ϑt1 − ϑt0 |

J3

∣

∣ϑtf − ϑt2

∣

∣

(tf − t2) (5.53)

which is still a function of t2. An analytic closed-form solution is obtained for t2 by

introducing Eq. (5.53) into Eq. (5.38b) as follows:

t2 =

3

√

J3

∣

∣ϑtf − ϑt2

∣

∣t0 +
(

3
√

J1 |ϑt1 − ϑt0 |+
3
√

J2 |ϑt2 − ϑt1 |
)

tf

3
√

J1 |ϑt1 − ϑt0 |+
3
√

J2 |ϑt2 − ϑt1 |+
3

√

J3

∣

∣ϑtf − ϑt2

∣

∣

(5.54)

Substituting Eq. (5.54) into Eq. (5.53) yields

t1 =

(

3
√

J2 |ϑt2 − ϑt1 |+
3

√

J3

∣

∣ϑtf − ϑt2

∣

∣

)

t0 +
3
√

J1 |ϑt1 − ϑt0 |tf

3
√

J1 |ϑt1 − ϑt0 |+
3
√

J2 |ϑt2 − ϑt1 |+
3

√

J3

∣

∣ϑtf − ϑt2

∣

∣

(5.55)

Equations (5.54) and (5.55) are now simple analytic functions of the initial

and final times, rotational angles, and inertia of the spacecraft. These results have

been validated by solving necessary conditions defined by Eqs. (2.1), (2.3), and (5.2)

as a multiple shooting optimization problem defined by 47 constraints. Numerical

experiments with using the closed-form solutions for the switch-times yielded per-

formance boosts of ∼ 6.5 × 106-fold when compared to the nonlinear optimization

approach.

To determine the optimal sequence of rotation, let’s consider the cost function

in Eq. (5.1b). The cost function is expressed in terms of the found switch-times as
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follows:

J ū =
1

2

[
∫ t1

t0

ūTū dt+

∫ t2

t1

ūTūdt +

∫ tf

t2

ūTūdt

]

=
360J21 (ϑt1 − ϑt0)

2

(t1 − t0)
5 +

360J22 (ϑt2 − ϑt1)
2

(t2 − t1)
5 +

360J23
(

ϑtf − ϑt2

)2

(tf − t2)
5 (5.56)

For the torque-rate minimization case, the torque minimizing performance

index is calculated as

Gū ,
1

2

∫ tf

t0

uTu dt =
60J21 (ϑt1 − ϑt0)

2

7 (t1 − t0)
3 +

60J22 (ϑt2 − ϑt1)
2

7 (t2 − t1)
3 +

60J23
(

ϑtf − ϑt2

)2

7 (tf − t2)
3

(5.57)

which is computed for comparison with the torque penalty approach.

5.6.3 Numerical Example

From Eqs. (5.50) and (5.51), the switch-times are found as

(t1, t2) = (12.5651, 23.5329) sec

The performance index value using the found switch-times are calculated as

J u = 0.1232

From Eqs. (5.54) and (5.55), the switch-times are found as

(t1, t2) = (11.7390, 22.4608) sec
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The performance index value using the found switch-times are calculated as

J ū = 0.0704

5.6.4 Concluding Remarks

This Section derives closed-form solutions of the switch-times, performance

index for selecting an optimal sequence, and new performance index for comparing

torque consumption. These closed-form solutions are particularly useful for real-time

applications and on-board spacecraft implementation.

5.7 Result Comparisons

Most of work is focused on the (3-1-3) set of Euler angle rotation sequence.

Numerical simulations are performed for the case of actuator failure about the second

axis. For the failure control simulation case, one assumes that second axis torque

cannot be generated. As a result, two possible sets of Euler transformations are

available [i.e., (3-1-3) and (1-3-1) sets]. By calculating the performance index and

comparing values, the optimal rotation sequence is determined.

Using the closed-form solutions, the torque consumptions are calculated and

listed in Table 5.8. As a result, the (1-3-1) set is the optimal set of sequence maneuver.

Comparing these results allows one to select to an optimal rotation sequence for the

3D maneuver.

Table 5.8: Torque consumption comparison: (3-1-3) set vs (1-3-1) set

Observation (3-1-3) set (1-3-1) set

J u 0.1232 0.1113

Gū 0.1833 0.1710
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The solutions are compared among the methods: (i) classical method; (ii)

reduced method; (iii) resultant method; and (iv) closed-form solution. The maximum

error between the closed-form solutions and the solutions from the classical method

is ∼ 10−9, which is assumed to be numerical machine error.

The computational burden results are compared and listed in Table 5.9.

Clearly, the closed-form solution has huge advantage in terms of computational ef-

forts. Comparing the classical and closed-form run-time costs, it is clear that the

closed-form solution outperforms the numerical optimization algorithm by factors of

greater than 2.2× 106-fold.

Table 5.9: Computational burden comparison: torque minimization vs torque-rate
minimization

Observation Torque minimization Torque-rate minimization

Classical (32/47 unknowns) 43.6238 84.0878

Reduced (2 unknowns) 1.0719 0.9811

Resultant 0.3043 0.2631

Closed-Form 0.000020 0.000013
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6. HOMOTOPY APPROACH FOR RIGID BODY MOTION ANALYSIS

A homotopy method is utilized to find minimum-torque solutions for under-

actuated systems using the general formulation (No ad hoc and sub-optimal se-

quential maneuver strategy). A full 3D maneuver is executed by using up to two

active controls. Unless given good initial guesses, a general formulation and the

use of a shooting method to solve the resulting two point boundary value problem

(TPBVP) fails to find the solutions. The homotopy method rigorously solves the

under-actuated system control problem. The algorithm also makes the trend of time

trajectories visible for the states as control torque capacity degrades.

6.1 Introduction

A minimum-torque solution for the failed actuator case is defined by min-

imizing an integral quadratic torque performance index. Motivated by historical

research, many approaches are proposed for modifying traditional approaches to ac-

commodate the failed actuator case. For example, when using an integral quadratic

torque performance index, the corresponding elements of the torque weight matrix

for the failed actuator can be made large, thereby penalizing the use of torque about

the failed actuator axes. Based on this study, this heuristic approach has evident

numerical difficulties.

The present work overcomes the local convergence nature of the iterative

process for solving the TPBVPs associated with an optimal control formulation to

address the failed actuator case by introducing a continuation method. The use

of continuation or embedding methods as theoretical tools for the study of opera-

tor equations goes back to the last century. Ficken provides an excellent historical

summary and many references [32]. The continuation method is introduced by trans-
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forming the original problem necessary conditions for the optimal control problem by

introducing a homotopy embedding parameter, ε. A one-parameter family of prob-

lems is defined, which contains an optimal control problem with an easily computed

solution and the problem of interest. The algorithm starts by obtaining a solution

when all actuators are available, then a continuation process is started by introducing

a partition of ε as

0 = ε0 < ε1 < · · · < εN = 1 (6.1)

The challenge is to choose the partition steps to ensure that the unknown

costate initial condition estimated for λ (εk) lies in the domain of convergence of the

algorithm used for updating the costate initial condition. Assuming such a parti-

tion can be found, one must obtain a feasible solution. While global convergence

is generally not guaranteed, adapting the ε steps has been found to usually yield

reliable results. Since the ε steps are chosen in the algorithm, the local steps are

modified adaptively to respond to local convergence challenges, staying arbitrarily

close to a neighboring converged solution to start the next “steppingstone” solution.

Mathematically, in the limit, the homotopy approach is designed to continuously

transform the equations of motion from the full control problem to the failed control

case. This is analytically accomplished by multiplying the control input, which is

assumed to fail, by a term, 1−ε. Setting ε = 0 models the full control actuator case.

Setting ε = 1 obviously corresponds to the failed actuator case. The continuous

limit, where ε is varied smoothly, is considered and a differential equation is derived

for the solution of the TPBVPs. Using the solution obtained for the three actuator

case as a starting guess, Davidenko’s method is introduced to develop costate differ-

ential equations that are a function of ε, which are integrated to provide estimates

for changes in the initial costate as ε changes during the homotopy process. The
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initial conditions are the optimal solution for the case of no actuator failures. A suc-

cessive approximation strategy is introduced to refine the initial costate boundary

conditions as ε is swept through the range values spanning ε = [0, 1]. The number of

required discrete ε states is very much problem dependent but somewhat analogous

to adaptive step-size control for differential equation solvers. Practical experience

suggests that it is usually easy to establish a workable ε step-size adaption scheme.

Provided numerical examples demonstrate that full 3D maneuvers are achieved for

the case of a failed actuator.

6.2 Overview of the Homotopy Method

It is well known that nonlinear “root solving” problems require “good” start-

ing guesses for differential correction strategies to successfully converge. The chal-

lenge, of course, is that one may not have adequate insight into the behavior of

the solution for providing useful starting guesses. Homotopy methods allow one to

overcome the local nature of correction strategies by structuring the problem to be

defined by a sequence of neighboring problems, where the effectiveness of local iter-

ation methods is maintained. While convergence is not mathematically guaranteed,

in general, certain difficulties can arise, such as

• Turning points occur

• Non-reachable terminal states are specified

Numerical studies indicate these challenges are not usually present for the

unbounded optimal control approach; however, in the presence of control saturation

constraints, it is anticipated that reachability is a key challenge. One approach to

that issue is to introduce another homotopic map to sweep the control saturation

limit downward from an unbounded solution and discover, for a given maneuver
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time, the control saturation bound that lies on the edge of the reachable control set.

Sweeping maneuver final time would then provide means to map out the reachable

set consistent with the actual actuator saturation bounds.

The solution of the nonlinear equation is found by introducing a homotopy

algorithm. Let f, g : X → Y be continuous functions, where X and Y are any space.

Let’s call H a homotopy from g to f if H : X × I → Y is a continuous map such

that

H(x, ε = 0) = g(x), H(x, ε = 1) = f(x), ∀x ∈ X (6.2)

where I = [0, 1]. Then the homotopy, H , maps from X to Y , varying continu-

ously with ε. The homotopy map permits an analytic continuation method to be

constructed that continuously transforms a starting guess into the desired solution.

To this end, given a nonlinear system root-solving problem, F (x) = 0, the goal

is to embed F (x) = 0 into a homotopy transformational mapping equation for ana-

lytically continuing the initial estimate, x0. Typical examples of useful homotopies

are given by [33]

G(x, t) = εG(x) + (1− ε) (x− x0) = 0 (6.3a)

G(x, t) =F (x) + (ε− 1)F (x0) = 0 (6.3b)

where x0 is the arbitrary reference value for a starting condition and ε ∈ [0, 1]. To

be useful, the design of the homotopic map must satisfy two assumptions: (i) G(x)

is sufficiently smooth and (ii) for each ε ∈ [0, 1], ∃ x(ε) 6= 0 such that G(x, ε) = 0

and the Jacobian matrix ∂G
∂x

∣

∣

x(ε)
is full rank. Assuming that both of these assump-

tions are satisfied, one can derive differential equations governing the evolution of the

zero curves. Two versions of the homotopy solution are generally available. In the
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developments below, F (x) is shown to be useful for any continuous differential map-

ping including the TPBVPs (in the form of state and costate differential equations

with split boundary conditions) arising in optimal control: (i) discrete intermediate

homotopy states (“steppingstone solutions”) and (ii) continuous homotopy states.

For the discrete homotopy state algorithm, Lahaye [34] suggested an iterative

continuation approach that uses a locally convergent iterative method for solving

H(x, ε) = 0, ε = [0, 1] with 0 = ε0 < ε1 < · · · < εN = 1. A starting guess for

each new discrete value of ε is obtained by setting the last iteration at εk is equal to

the initial approximation for the iteration at εk+1. The main delimiter of the step-

size of ε depends on the domain of convergence of the local method used to update

estimates for εk+1. For each application, a trade-off exists between balancing the

number of iterations required to maintain solution accuracy and rapidly traversing

the partitioned states of ε. The algorithm can fail if too large steps are attempted for

ε. Larger steps are possible when the convergent domains increase. What is required

is a self-adjusting algorithm, which adjusts incremental homotopy step-size to the

convergent behavior of local iterations.

6.3 Davidenko’s Method

For the continuous homotopy algorithm, Davidenko’s approach [35] is used.

This method is based on the observation that under suitable differentiability condi-

tions, the unknown continuation curve is a solution of the initial value problem given

x(0) = x0, where the differential necessary condition is given by

∂H (x(ε), ε)

∂x

dx

dε
+

∂H (x(ε), ε)

∂ε
= 0 (6.4)

where ε = [0, 1]. This equation is called Davidenko’s differential equation. The

solution of this ordinary differential equation numerically approximates the entire
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solution curve with an accuracy defined by the numerical integration error tolerance.

Obviously, the value of ∂H(x(ε), ε)
∂x

is a critical issue, and if this matrix loses full rank

at any 0 ≤ ε ≤ 1, then one has encountered a turning point. The Chow-Yorke

algorithm [36] provides one method for circumventing this difficulty.

For many applications, Davidenko’s method provides significant advantages

when compared with the iterative methods, such as Newton’s method. Specifically,

the advantages include: (i) it does not depend on a good initial guess, (ii) it pro-

duces solutions over large range of the independent variables, and (iii) it overcomes

the local convergence issues that often plague iterative processes. To be broadly use-

ful, however, one must control the integration step-size to ensure that an accurate

numerical solution is obtained.

6.4 Body-Axis Aligned Torque Distribution

In this Section, the open-loop optimal control solution of the rigid spacecraft

is derived when one of the three-axis control actuators fails. Next, the extensions

required for implementing the homotopy method are presented. Additionally, the

case when two actuators fail among four control actuators is considered in Appendix

E.

6.4.1 Problem Formulations and Solutions

The rotational dynamics equation of a rigid body is slightly modified as

ω̇ , p̃(ω, u, ε) = [J ]−1 (− [ω̃] [J ]ω + [P (ε)]u) (6.5)

where [P (ε)] ∈ R3×3 is the control torque mapping matrix, which is usually I3×3.

For describing a control torque degradation situation, a modified control

torque mapping matrix, [P (ε)] , diag(1, 1, 1−ε), is defined in terms of ε. Substitut-
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ing ε = 0 into the modified control torque mapping matrix yields [P (ε = 0)] = I3×3.

This is the full control actuator case description. On the other hand, substituting ε =

1 into the modified control torque mapping matrix yields [P (ε = 1)] = diag(1, 1, 0).

This is the failed actuator case description. By spanning ε from 0 to 1, a control

torque input degradation situation is fully described.

Here, the MRPs are selected as an attitude parameter and the governing

kinematic differential equation for the MRPs in Eq. (2.10) is selected.

The optimal control problem is defined by introducing the following perfor-

mance index, which is to be minimized for generating the optimal control torque

given fixed initial time, t0, and fixed final time, tf ,

J =
1

2

∫ tf

t0

uTu dt (6.6)

with terminal state boundary conditions

σ (t0) = σ0, ω (t0) = ω0, σ (tf ) = σf , ω (tf) = ωf (6.7)

Defining the Hamiltonian for the system

H =
1

2
uTu+ µTp̃+ ξTr (6.8)

The first-order necessary conditions are obtained as:

State Equations:

σ̇ =
∂H

∂ξ
= r =

1

4
[B(σ)]ω (6.9a)

ω̇ =
∂H

∂µ
= p̃ = [J ]−1

(

−
[

ω×
]

[J ]ω + [P (ε)]u
)

(6.9b)
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Costate Equations:

ξ̇ = −
∂H

∂σ
= −

[

∂r

∂σ

]T

ξ = −
1

2
[Λ(σ, ω)]T ξ (6.10a)

µ̇ = −
∂H

∂ω
= −

[

∂p̃

∂ω

]T

µ−

[

∂r

∂ω

]T

ξ = − [Σ(ω, J)]T µ−
1

4
[B(σ)]T ξ (6.10b)

where

[Λ(σ, ω)] ,













σ1ω1 + σ2ω2 + σ3ω3 ω3 − σ2ω1 + σ1ω2 σ1ω3 − σ3ω1 − ω2

σ2ω1 − ω3 − σ1ω2 σ1ω1 + σ2ω2 + σ3ω3 ω1 − σ3ω2 + σ2ω3

−σ1ω3 + σ3ω1 + ω2 σ3ω2 − ω1 − σ2ω3 σ1ω1 + σ2ω2 + σ3ω3













Stationarity Condition:

0 =
∂H

∂u
= u+

[

∂p̃

∂u

]T

µ = u+ [P (ε)][J ]−1µ (6.11)

Boundary Condition:

Given the fixed initial time, t0, and final time, tf ; the initial states, σ (t0) and

ω (t0); and the final states, σ (tf ) and ω (tf ), there are no extra boundary conditions

to be imposed. These fixed terminal boundary conditions define a classical TPBVP.

The goal is to generate an open-loop control trajectory that defines the optimal

maneuver, which satisfies the fixed terminal boundary conditions.

6.4.2 Homotopy Method Differential Equation

The state and costate vectors are combined as an augmented vector, z =

{yT, λT}T, where y = {σT, ωT}T and λ = {ξT, µT}T. Collecting these terms yields
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the augmented differential equation for the TPBVP:

ż = F (z, ε, t) =







































1

4
[B(σ)]ω

[J ]−1 (− [ω×] [J ]ω − [P 2(ε)] [J ]−1µ)

−
1

2
[Λ(σ, ω)]Tξ

−[Σ(ω, J)]Tµ−
1

4
[B(σ)]Tξ







































(6.12)

where [P 2(ε)] = diag
(

1, 1, (1− ε)2
)

. To derive the governing equations that de-

termine the evolution of λ (t0, ε), from λ (t0, ε = 0) through λ (t0, ε = 1), one must

exploit the constraint equations that define the terminal boundary conditions for the

maneuver. To this end, the terminal state boundary condition for an arbitrary value

of ε is given by

y (tf , λ (t0, ε))− yf = 0 (6.13)

Computing the total derivative of Eq. (6.13) leads to

dy (tf , λ (t0, ε))

dε
=

∂y (tf , λ (t0, ε))

∂ε
+

[

∂y (tf , λ (t0, ε))

∂λ (t0, ε)

]

dλ (t0, ε)

dε
= 0 (6.14)

which displays the implicit dependence of the costate on ε. Solving for the costate

rate term leads to the following ordinary differential equation:

dλ (t0, ε)

dε
= −

[

∂y (tf , λ (t0, ε))

∂λ (t0, ε)

]

−1
∂y (tf , λ (t0, ε))

∂ε
(6.15)

Equation (6.15) is identified as a partition of the state-costate transition ma-

trix [18]

d

dt

[

∂z(t)

∂z (t0)

]

=

[

∂F (z, ε, t)

∂z(t)

] [

∂z(t)

∂z (t0)

]

(6.16)
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with the initial condition
[

∂z(t)
∂z(t0)

]∣

∣

∣

t0

= I2n×2n and the parameter influence vector

d

dt

{

∂z(t)

∂ε

}

=

[

∂F (z(t), ε, t)

∂z

]

∂z(t)

∂ε
+

∂F (z, ε, t)

∂ε
(6.17)

with the initial condition ∂z(t)
∂ε

∣

∣

∣

t0

= 02n. For the augmented system, the state-costate

transition matrix and parameter influence vector at t = tf are defined by

[

∂z (tf )

∂z (t0)

]

=









∂y (tf )

∂y (t0)

∂y (tf )

∂λ (t0)

∂λ (tf)

∂y (t0)

∂λ (tf )

∂λ (t0)









(6.18)

∂z (tf)

∂ε
=















∂y (tf)

∂ε
∂λ (tf)

∂ε















(6.19)

where the upper right partition of Eq. (6.18) provides the required partial derivative

that is needed in Davidenko’s equation. Also, the upper partition of Eq. (6.19)

acts as the forcing function for Davidenko’s method. Using the definitions of Eqs.

(6.16)-(6.19), the homotopy embedded parameter differential equation is written as

dλ (t0, ε)

dε
= −

[

∂y (tf)

∂λ (t0)

]

−1
∂y (tf )

∂ε
(6.20)

Initial conditions for this set of ordinary differential equations for the costate

vector are obtained from the solution for the nominal maneuver case, where all

actuators are available, leading to λ (t0, ε = 0) = λ0. Equation (6.20) provides an

elegant set of ordinary differential equations for numerically generating the failed

actuator 3D maneuver initial conditions for the costate. Numerically integrating Eq.

114



(6.20) with respect to ε, one obtains

λ (t0, ε = 1) = λ (t0, ε = 0) +

∫ 1

0

dλ

dε
dε (6.21)

Clearly, this process requires many TPBVP solutions for the partitioned val-

ues of ε. This process is presented in the flowchart appearing in Fig. 6.1. The

algorithm consists of two parts: (i) an outer loop that integrates Eq. (6.21) and

(ii) an inner loop that generates the state-costate transition matrix and parameter

influence vector partitions for each value of ε required in the outer loop integration

algorithm.
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Figure 6.1: Flowchart for obtaining TPBVP solutions
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6.4.3 Numerical Examples

Numerical simulation is performed for two maneuver cases: (i) rest-to-rest

and (ii) motion-to-rest. Simulation parameters are listed in Tables 6.1 and 6.2.

Table 6.1: Simulation parameters for a 3D minimum-torque maneuver (rest-to-rest)

Parameter Symbol Value Unit

Moment of inertia for the spacecraft J diag(14.2, 17.3, 20.3) kg-m2

Initial time t0 0 sec

Initial MRPs σt0 {0.1, −0.1, 0.1}T -

Initial angular velocity ωt0 {0, 0, 0}T rad/s

Final time tf 30 sec

Final MRPs σtf {0, 0, 0}T -

Final angular velocity ωtf {0, 0, 0}T rad/s

Table 6.2: Simulation parameters for a 3D minimum-torque maneuver (motion-to-
rest)

Parameter Symbol Value Unit

Moment of inertia for the spacecraft J diag(14.2, 17.3, 20.3) kg-m2

Initial time t0 0 sec

Initial MRPs σt0 {0.1, −0.1, 0.1}T -

Initial angular velocity ωt0 {0.01, 0.01, 0.01}T rad/s

Final time tf 30 sec

Final MRPs σtf {0, 0, 0}T -

Final angular velocity ωtf {0, 0, 0}T rad/s
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Rest-to-Rest Maneuver Case:

For the case of the rest-to-rest maneuver, simulation results are presented in

Figs. 6.2-6.8. Each line indicates the following cases: the dashed blue line represents

the state and costate trajectories when three actuators are available; the bold red line

represents the state and costate trajectories when only two actuators are available;

and the dotted green line represents the state and costate trajectories according to

the capability of the actuator by varying ε from 0 to 1.

Figure 6.2 presents the MRPs time trajectories as the optimal control problem

is transformed from the original full actuator case to the failed actuator case. The

dashed blue line represents the starting solution, the bold red line represents the

failed actuator special case solution, and the dotted green lines represent intermediate

solutions as ε is swept through its entire range from 0 to 1. As seen in the plot for

σ2(t), the time trajectories for the intermediate trajectory solution overshoot (for

0 < ε < 1) the final state defined by the bold red line and then return and settle

(as ε → 1) on the bold red line solution. This behavior results from the loss in

controllability for the failed actuator case.

The angular velocity solution time trajectories presented in Fig. 6.3 display

similar behavior. The solution for ω3(t) is seen to be much smaller than the corre-

sponding angular velocity for the two controlled axes. This behavior results from the

nonlinear cross-coupling terms in Euler’s equation of motion, and cannot be avoided.

The Lagrange multiplier solution time trajectories for the MRPs and angular

velocities are presented in Figs. 6.4 and 6.5, respectively.

The optimal control torque time trajectories are presented in Fig. 6.6. Since

the assumed failed actuator is about the 3-axis, the u3(t) solution is non-zero for the

initial case, where all actuators are assumed to function, and identically zero for the

final case of a failed actuator, as required by the problem definition.
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Figure 6.7 presents the 3D results for tracking the MRPs solution, where it is

obvious that the failed actuator case requires the longest trajectory path to achieve

the 3D maneuver boundary conditions.

Figure 6.8 presents the 3D results for tracking the angular velocity solution.

Like the results for the MRPs solution, the path trajectory for the angular velocity

for the failed actuator case is the longest. Moreover, for both the MRPs and angular

velocity, the intermediate solutions are seen to evolve over a complicated 3D surface

whose shape is very difficult to predict in advance. This example clearly demonstrates

the effectiveness of Davidenko’s method for generating such a complicated solution

for a nonlinear problem; given a starting guess that very weakly resembles the desired

final solution.
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Figure 6.2: Aligned: Time trajectories for the MRPs (rest-to-rest)
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Motion-to-Rest Maneuver Case:

For the case of the motion-to-rest maneuver, simulation results are presented

in Figs. 6.9-6.14. Like the case of the rest-to-rest, quite similar state, costate, and

control time trajectories are obtained. These results confirm that 3D maneuvers are

successfully performed, even when only two actuators are available for maneuvering

the spacecraft.

Figures 6.14 and 6.15 present the 3D results for tracking the MRPs and an-

gular velocity solutions, where it is obvious that the failed actuator case requires the

longest trajectory path to achieve the 3D maneuver boundary conditions.
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Figure 6.9: Aligned: Time trajectories for the MRPs (motion-to-rest)
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Figure 6.10: Aligned: Time trajectories for the angular velocity (motion-to-rest)
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Figure 6.12: Aligned: Time trajectories for the costates associated with the angular
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Figure 6.13: Aligned: Time trajectories for the control torque (motion-to-rest)
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6.4.4 Concluding Remarks

This work presents a rigorous integral-variational method for generating an

optimal open-loop large-angle 3D maneuver for an asymmetric spacecraft for the

case when one of the nominal maneuver actuators fails. A generalized Davidenko’s

classical homotopy method is introduced to develop an ordinary differential equation

for the initial costate vector that permits the equation of motion to be continuously

transformed from a full control problem to the failed control case. Davidenko’s

differential equation is assembled from partitions of the state-costate transition ma-

trix and parameter influence vector. The homotopy transformation is introduced

by multiplying the control input that is assumed to fail by a homotopy embedding

parameter, ε. The starting value for the 3D maneuvers is obtained from the 3D

maneuver optimal costate initial conditions, which is found for the case of no actu-

ator failures. These initial costate variables provide the required control conditions

for Davidenko’s method. The differential equations for the costate, as a function

of the homotopy embedding parameter, are numerically integrated to provide sen-

sitivity data for updating estimates for the initial costate variable as the homotopy

embedding parameter is swept through its entire range of values. The trajectories

for the MRPs and angular velocity are seen to be very different when compared to

the starting guess solutions with the failed actuator cases. The state variables are

observed to experience reversal in direction as the homotopy embedding parameter

changes. This is a complex behavior that is intimately tied to the loss of control input

from the assumed failed actuator. The observed differences are so large that, given

the nonlinear nature of the governing equations of motion and attitude kinematics,

conventional solution solvers may experience difficulties in obtaining the desired solu-

tions. Future research will investigate the observed behavior, where the intermediate
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solutions overshoot the desired solution before finally returning to the failed actuator

case solution. Also, the research will investigate sub-optimal solution strategies to

achieve the desired 3D maneuver goals.
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7. SUMMARY AND CONCLUSION

The results present two key advances for the state-of-practice in spacecraft

attitude control commands, in relation to handling on-orbit hardware failure in the

attitude control system. The first contribution presents a sub-optimal control strat-

egy to avoid rotation about failed control axis. The second contribution demonstrates

that optimal control solutions exist when only two controls are available.

The classic spacecraft maneuver problem is generalized to handle the spe-

cial case in which an actuator failure alters the hardware capabilities available for

repointing the vehicle. A key objective is to maintain an optimal solution strat-

egy even when confronted with a degraded hardware environment. Two solution

strategies are presented that enable two control inputs to complete the originally

defined 3D rigid body maneuver: (i) a sequential maneuver strategy and (ii) a 3D

homotopy-based strategy.

For the sequential maneuver strategy, nonlinear necessary conditions are de-

fined for carrying out a sequence of maneuvers. In general, three single-axis sub-

maneuvers must be introduced, where two unknown switch-times are recovered for

switching between the remaining control actuators. The problem is defined by a

high-dimensioned set of necessary conditions that are solved by introducing a multi-

ple shooting method. However, this approach has been shown to be very expensive.

To reduce the number of unknowns, the initial costates are transformed to be func-

tions of the two unknown switch-times using the single-axis maneuver solutions. This

step reduces the computational effort of ∼ 85.7-fold but it’s still expensive. Signif-

icant progress is made by working with the Hamiltonian constraints, yielding two

coupled polynomial equations for solving for the two switch-times. The classical
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resultant method provides a solution by uncoupling the polynomial equations, but

it requires post-processing since more than one solution exists. Further significant

analytic progress is made by manipulating the equations describing the Hamilto-

nian constraints, yielding closed-form solutions for the two switch-times. Moreover,

closed-form solutions are also obtained for the performance index, which permits

multiple solutions to be compared on a quantitative basis. One problem encountered

with the sub-optimal sequential maneuver strategy is that it leads to discontinuous

control profiles. This problem is solved by adding a quadratic torque-rate term to

the performance index, which allows special boundary conditions to be specified that

eliminate the discontinuities that appear in the control profiles. Simulation results

indicate that the quadratic torque-rate penalty approach requires more torque con-

sumption when compared to the quadratic torque penalty approach, but one needs to

assess the impact on the performance of flexible body systems with controls designed

by both approaches.

Extended studies are performed for maneuver time and fuel minimization

problems. The solutions for the minimum-time 3Dmaneuver problem is very straight-

forward once the solutions for single-axis maneuvers are obtained. Unlike the minimum-

time 3D maneuver problem, the minimum-fuel 3D maneuver problem is complicated

because it involves many switch-times during maneuvers. Assuming that each single-

axis maneuver time is given, a solution is obtained. Given that several different

approaches are presented, it is natural to ask the question; which one is best? Nu-

merical comparisons with performance index costs are easy. Other criteria associated

with risk may push selected options in different directions.

The sequential maneuver case leads to a very efficient closed-form solution

algorithm that outperforms the numerical optimization approach by a factor greater

than 2.2×106-fold, which suggests that it may be useful for on-orbit real-time appli-
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cations. This method is expected to be broadly useful for spacecraft applications that

must deal with actuator failures on-orbit in real-time, where optimized approaches

are required for maintain vehicle pointing objectives.

The homotopy approach presents a rigorous integral-variational method for

generating an optimal open-loop large-angle 3D maneuvers for an asymmetric space-

craft for the cases: (i) one of three control actuators fails and (ii) two actuators

fail among four actuators. The second case is more general and realistic because

one more actuator is usually installed for redundancy. Greater attention is given

to the first case; however, proof-of-concept maneuvers and results are demonstrated

for the second case. The 3D maneuver problem is handled by introducing a gen-

eralized Davidenko’s classical homotopy method, leading to an ordinary differential

equation for the initial costate vector. A homotopy algorithm permits the equation

of motion to be continuously transformed from a full control problem to the failed

control case. This is analytically accomplished by multiplying the control input that

is assumed to fail by a homotopy embedding parameter, ε. The starting value for the

3D maneuver is obtained from the 3D maneuver optimal costate initial conditions,

which is found for the case of no actuator failures. Davidenko’s method is used to

assemble and compute the differential equations for the costate as a function of the

homotopy embedding parameter, which is numerically integrated to provide sensi-

tivity data for updating estimates for the initial costate variable as the homotopy

embedding parameter is swept through its entire range of values. The trajectories

for the MRPs and angular velocity are seen to be very different when comparing

the starting guess solutions with the failed actuator cases. The observed differences

are so large that, given the nonlinear nature of the governing equations of motion

and attitude kinematics, conventional solution solvers may experience difficulties in

obtaining the desired solutions. These results provide additional information for the
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case when control torque capability degrades. The proposed method is expected to

be useful for analyzing spacecraft behavior where the vehicle looses controllability.
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APPENDIX A

DERIVATIONS FOR SMOOTHING FUNCTIONS

Discontinuous control profiles present real-world problems for realistic space-

craft applications. This problem is addressed by introducing a smoothing function

for the maneuver time and fuel minimization problems.

A.1 Smoothing Function for Maneuver Time Minimization Problem

Given the following cubic polynomial equation

a(t) = b+ ct + dt2 + et3 (A.1)

where b, c, d, and e are the unknown constant coefficients. The time derivative of

the cubic polynomial equation is given by

a′(t) = c+ 2dt+ 3et2 (A.2)

Four boundary conditions are required for recovering the four coefficients in

Eq. (A.1).

For t ∈ [0, δ], the boundary conditions are

a(0) = 0, a′(0) = 0 (A.3a)

a(δ) = −1, a′(δ) = 0 (A.3b)
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For t ∈ [δ, t1], the boundary conditions are

a(δ) = −1, a′(δ) = 0 (A.4a)

a (t1) = −1, a′ (t1) = 0 (A.4b)

For t ∈ [t1, t2], the boundary conditions are

a (t1) = −1, a′ (t1) = 0 (A.5a)

a (t2) = 1, a′ (t2) = 0 (A.5b)

For t ∈ [t2, t3], the boundary conditions are

a (t2) = 1, a′ (t2) = 0 (A.6a)

a (t3) = 1, a′ (t3) = 0 (A.6b)

For t ∈ [t3, T ], the boundary conditions are

a (t3) = 1, a′ (t3) = 0 (A.7a)

a(T ) = 0, a′(T ) = 0 (A.7b)

A.2 Smoothing Function for Fuel Minimization Problem

Given the cubic polynomial equation and the time derivative of the cubic

polynomial equation in Eqs. (A.1) and (A.2), the coefficients are found for each time

interval by imposing four boundary conditions.
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For t ∈ [0, δ], the boundary conditions are

a(0) = 0, a′(0) = 0 (A.8a)

a(δ) = −1, a′(δ) = 0 (A.8b)

For t ∈ [δ, t1], the boundary conditions are

a(δ) = −1, a′(δ) = 0 (A.9a)

a (t1) = −1, a′ (t1) = 0 (A.9b)

For t ∈ [t1, t2], the boundary conditions are

a (t1) = −1, a′ (t1) = 0 (A.10a)

a (t2) = 0, a′ (t2) = 0 (A.10b)

For t ∈ [t2, t3], the boundary conditions are

a (t2) = 0, a′ (t2) = 0 (A.11a)

a (t3) = 0, a′ (t3) = 0 (A.11b)

For t ∈ [t3, t4], the boundary conditions are

a (t3) = 0, a′ (t3) = 0 (A.12a)

a (t4) = 1, a′ (t4) = 0 (A.12b)
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For t ∈ [t4, t5], the boundary conditions are

a (t4) = 1, a′ (t4) = 0 (A.13a)

a (t5) = 1, a′ (t5) = 0 (A.13b)

For t ∈ [t5, T ], the boundary conditions are

a (t5) = 1, a′ (t5) = 0 (A.14a)

a(T ) = 0, a′(T ) = 0 (A.14b)
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APPENDIX B

OPTIMAL CONTROL AND CONTROL-RATE FORMULATIONS AND

RESULTS

Classical optimal control formulations lead to discontinuous control profiles

when the quadratic torque penalty is included in the performance index. This prob-

lem is addressed by penalizing the quadratic torque-rate penalty in the performance

index, which permits the analyst to specify control boundary conditions freely. Both

approaches are compared and contrasted for the nominal and failed actuator cases.

B.1 Formulations for Nominal Case

B.1.1 Optimal Control Formulation Using the Quaternion

A solution for Eqs. (2.1) and (2.6) is obtained satisfying the prescribed ter-

minal conditions:

q (t0) = qt0 , ω (t0) = ωt0, q (tf) = qtf , ω (tf ) = ωtf (B.1)

where the 14 members of Eq. (B.1) are prescribed constants characterizing the atti-

tude and angular velocity at the initial and final times. Observe that the prescription

of the boundary conditions for the quaternion must be consistent with the constraint

in Eq. (2.5), so that only 12 degrees-of-freedom exist, as expected.

Defining the Hamiltonian for the system

H =
1

2
uTu+ µTp+ νTf (B.2)

where the Lagrange multiplier associated with the quaternion is ν ∈ R4. The first-
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order necessary conditions are obtained as:

State Equations:

q̇ =
∂H

∂ν
= f =

1

2
[Ω(ω)]q (B.3a)

ω̇ =
∂H

∂µ
= p = [J ]−1

(

−
[

ω×
]

[J ]ω + u
)

(B.3b)

Costate Equations:

ν̇ = −
∂H

∂q
= −

[

∂f

∂q

]T

ν = −
1

2
[Ω(ω)]T ν (B.4a)

µ̇ = −
∂H

∂ω
= −

[

∂p

∂ω

]T

µ−

[

∂f

∂ω

]T

ν = − [Σ(ω, J)]T µ−
1

2
[Ξ(q)]T ν (B.4b)

where

[Ξ(q)] ,



















q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3



















Stationarity Condition:

0 =
∂H

∂u
= u+

[

∂p

∂u

]T

µ = u+ [J ]−1µ (B.5)

B.1.2 Optimal Control Formulation Using the MRPs

A solution of Eqs. (2.1) and (2.10) is obtained satisfying the prescribed ter-

minal conditions:

σ (t0) = σt0 , ω (t0) = ωt0, σ (tf ) = σtf , ω (tf) = ωtf (B.6)
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where the 12 members of Eq. (B.6) are prescribed constants characterizing the

attitude and angular velocity at the initial and final times.

Defining the Hamiltonian for the system

H =
1

2
uTu+ µTp+ ξTr (B.7)

where the Lagrange multiplier associated with the MRPs is ξ ∈ R3. The first-order

necessary conditions are obtained as:

State Equations:

σ̇ =
∂H

∂ξ
= r =

1

4
[B(σ)]ω (B.8a)

ω̇ =
∂H

∂µ
= p = [J ]−1

(

−
[

ω×
]

[J ]ω + u
)

(B.8b)

Costate Equations:

ξ̇ = −
∂H

∂σ
= −

[

∂r

∂σ

]T

ξ = −
1

2
[Λ(σ, ω)]T ξ (B.9a)

µ̇ = −
∂H

∂ω
= −

[

∂p

∂ω

]T

µ−

[

∂r

∂ω

]T

ξ = − [Σ(ω, J)]T µ−
1

4
[B(σ)]T ξ (B.9b)

where

[Λ(σ, ω)] ,













σ1ω1 + σ2ω2 + σ3ω3 ω3 − σ2ω1 + σ1ω2 σ1ω3 − σ3ω1 − ω2

σ2ω1 − ω3 − σ1ω2 σ1ω1 + σ2ω2 + σ3ω3 ω1 − σ3ω2 + σ2ω3

−σ1ω3 + σ3ω1 + ω2 σ3ω2 − ω1 − σ2ω3 σ1ω1 + σ2ω2 + σ3ω3













Stationarity Condition:

0 =
∂H

∂u
= u+

[

∂p

∂u

]T

µ = u+ [J ]−1µ (B.10)

143



B.1.3 Optimal Control-Rate Formulation Using the Quaternion

A solution of Eqs. (2.1), (2.6), and (5.2) satisfying the prescribed terminal

conditions:

q (t0) = qt0 , ω (t0) = ωt0, u (t0) = ut0 (B.11a)

q (tf) = qtf , ω (tf ) = ωtf , u (tf ) = utf (B.11b)

where the 20 members of Eq. (B.11a) are prescribed constants characterizing the

attitude, angular velocity, and control torque at the initial and final times. Observe

that the prescription of the boundary conditions for the quaternion must be consis-

tent with the constraint in Eq. (2.5), so that only 18 degrees-of-freedom exist, as

expected.

Defining the Hamiltonian for the system

H =
1

2
ūTū+ µTp+ νTf + ηTg (B.12)

The first-order necessary conditions are obtained as:

State Equations:

q̇ =
∂H

∂ν
= f =

1

2
[Ω(ω)]q (B.13a)

ω̇ =
∂H

∂µ
= p = [J ]−1

(

−
[

ω×
]

[J ]ω + u
)

(B.13b)

u̇ =
∂H

∂η
= g = ū (B.13c)
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Costate Equations:

ν̇ = −
∂H

∂q
= −

[

∂f

∂q

]T

ν = −
1

2
[Ω(ω)]T ν (B.14a)

µ̇ = −
∂H

∂ω
= −

[

∂p

∂ω

]T

µ−

[

∂f

∂ω

]T

ν = − [Σ(ω, J)]T µ−
1

2
[Ξ(q)]T ν (B.14b)

η̇ = −
∂H

∂u
= −

[

∂p

∂u

]T

µ = −[J ]−1µ (B.14c)

Stationarity Condition:

0 =
∂H

∂ū
= ū+

[

∂g

∂ū

]T

η = ū+ η (B.15)

B.1.4 Optimal Control-Rate Formulation Using the MRPs

A solution of Eqs. (2.1), (2.10), and (5.2) is obtained satisfying the prescribed

terminal conditions:

σ (t0) =σt0 , ω (t0) = ωt0 , u (t0) = ut0 (B.16a)

σ (tf) =σtf , ω (tf ) = ωtf , u (tf) = utf (B.16b)

where the 18 members of Eq. (B.16a) are prescribed constants characterizing the

attitude, angular velocity, and control torque at the initial and final times.

Defining the Hamiltonian for the system

H =
1

2
ūTū+ µTp+ ξTr + ηTg (B.17)

The first-order necessary conditions are obtained as:
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State Equations:

σ̇ =
∂H

∂ξ
= r =

1

4
[B(σ)]ω (B.18a)

ω̇ =
∂H

∂µ
= p = [J ]−1

(

−
[

ω×
]

[J ]ω + u
)

(B.18b)

u̇ =
∂H

∂η
= g = ū (B.18c)

Costate Equations:

ξ̇ = −
∂H

∂σ
= −

[

∂r

∂σ

]T

ξ = −
1

2
[Λ(σ, ω)]T ξ (B.19a)

µ̇ = −
∂H

∂ω
= −

[

∂p

∂ω

]T

µ−

[

∂r

∂ω

]T

ξ = − [Σ(ω, J)]T µ−
1

4
[B(σ)]T ξ (B.19b)

η̇ = −
∂H

∂u
= −

[

∂p

∂u

]T

µ = −[J ]−1µ (B.19c)

Stationarity Condition:

0 =
∂H

∂ū
= ū+

[

∂g

∂ū

]T

η = ū+ η (B.20)

B.2 Numerical Examples

A rest-to-rest maneuver case is considered and the numerical simulation pa-

rameters are listed in Table B.1.

For the quaternion and MRPs, smooth linear control profiles are obtained

for minimizing torque, whereas smooth continuous control profiles are obtained for

minimizing torque-rate. The principal angle time trajectories show that the sequen-

tial maneuver strategy for the quaternion and MRPs also provides 3D maneuver

solutions using only two control inputs.
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Table B.1: Simulation parameters for a 3D minimum-torque maneuver

Parameter Symbol Value Unit

Moment of inertia for the spacecraft J diag(14.2, 17.3, 20.3) kg·m2

Initial angular velocity ωt0 {0, 0, 0}T rad/s

Initial control torque ut0 {0, 0, 0}T Nm

Initial Euler angles (3-2-1 set) θt0 {24, −5, 17}T deg

Initial Euler angles (3-1-3 set) ϑt0 {8.09, 17.7, 16.66}T deg

Initial quaternion qt0 {0.153, −0.012, 0.212, 0.965}T -

Initial MRPs σt0 {0.078, −0.006, 0.108}T -

Interior angular velocity ωt1 {0, 0, 0}T rad/s

Interior control torque ut1 {0, 0, 0}T Nm

Interior Euler angles (3-1-3 set) ϑt1 {8.09, 17.7, 0}T deg

Interior quaternion qt1 {0.154, 0.011, 0.07, 0.986}T -

Interior MRPs σt1 {0.077, −0.006, 0.035}T -

Interior angular velocity ωt2 {0, 0, 0}T rad/s

Interior control torque ut2 {0, 0, 0}T Nm

Interior Euler angles (3-1-3 set) ϑt2 {8.09, 0, 0}T deg

Interior quaternion qt2 {0, 0, 0.071, 0.998}T -

Interior MRPs σt2 {0, 0, 0.035}T -

Final angular velocity ωtf {0, 0, 0}T rad/s

Final control torque utf {0, 0, 0}T Nm

Final Euler angles (3-2-1 set) θtf {0, 0, 0}T deg

Final Euler angles (3-1-3 set) ϑtf {0, 0, 0}T deg

Final quaternion qtf {0, 0, 0, 1}T -

Final MRPs σtf {0, 0, 0}T -
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Figure B.1: Nominal: Time trajectories for the states and control based on the
quaternion (torque minimization)
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Figure B.2: Nominal: Time trajectories for the costates based on the quaternion
(torque minimization)

148



0 11.7239 21.8308 30
−0.1

0
0.1
0.2
0.3

ρ

 

 
ρ

1

ρ
2

ρ
3

0 11.7239 21.8308 30
−0.06
−0.04
−0.02

0
0.02

ω
 (

ra
d/

s)

 

 
ω

1

ω
2

ω
3

0 11.7239 21.8308 30
−0.4

0

0.4

Time (sec)

u 
(N

m
)

 

 
u

1

u
2

u
3

Figure B.3: Failed: Time trajectories for the states and control based on the quater-
nion (torque minimization)
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Figure B.4: Failed: Time trajectories for the costates based on the quaternion (torque
minimization)
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Figure B.5: Failed: Time trajectories for the Hamiltonian and performance index
based on the quaternion (torque minimization)
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Figure B.6: Failed: Time trajectories for the (3-1-3) set of Euler angles based on the
quaternion (torque minimization)
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Figure B.7: Time trajectories for the principal angles based on the quaternion (torque
minimization)
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Figure B.8: Nominal: Time trajectories for the states based on the quaternion
(torque-rate minimization)
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Figure B.9: Nominal: Time trajectories for the costates based on the quaternion
(torque-rate minimization)
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Figure B.10: Failed: Time trajectories for the states based on the quaternion (torque-
rate minimization)
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Figure B.11: Failed: Time trajectories for the costates based on the quaternion
(torque-rate minimization)
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Figure B.12: Failed: Time trajectories for the Hamiltonian and performance indices
based on the quaternion (torque-rate minimization)
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Figure B.13: Failed: Time trajectories for the (3-1-3) set of Euler angles based on
the quaternion (torque-rate minimization)
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Figure B.14: Time trajectories for the principal angles based on the quaternion
(torque-rate minimization)
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Figure B.15: Nominal: Time trajectories for the states and control based on the
MRPs (torque minimization)
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Figure B.16: Nominal: Time trajectories for the costates based on the MRPs (torque
minimization)
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Figure B.17: Failed: Time trajectories for the states and control based on the MRPs
(torque minimization)
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Figure B.18: Failed: Time trajectories for the costates based on the MRPs (torque
minimization)
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Figure B.19: Failed: Time trajectories for the Hamiltonian and performance index
based on the MRPs (torque minimization)
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Figure B.20: Failed: Time trajectories for the (3-1-3) set of Euler angles based on
the MRPs (torque minimization)
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Figure B.21: Time trajectories for the principal angles based on the MRPs (torque
minimization)
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Figure B.22: Nominal: Time trajectories for the states based on the MRPs (torque-
rate minimization)
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Figure B.23: Nominal: Time trajectories for the costates based on the MRPs (torque-
rate minimization)
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Figure B.24: Failed: Time trajectories for the states based on the MRPs (torque-rate
minimization)
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Figure B.25: Failed: Time trajectories for the costates based on the MRPs (torque-
rate minimization)
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Figure B.26: Failed: Time trajectories for the Hamiltonian and performance indices
based on the MRPs (torque-rate minimization)
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Figure B.27: Failed: Time trajectories for the (3-1-3) set of Euler angles based on
the MRPs (torque-rate minimization)
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Figure B.28: Time trajectories for the principal angles based on the MRPs (torque-
rate minimization)
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APPENDIX C

THREE-DIMENSIONAL MANEUVERS OF RIGID BODY

Formulations for the single-axis maneuvers are presented for generalized prob-

lems with emphasis on under-actuated systems. Analytical solutions for the single-

axis maneuvers are found in Sections 3.3, 3.4, 4.2, and 4.3. For 3D maneuvers for

under-actuated systems, three sequential sub-maneuvers need to be performed. As

a specific example for a failed actuator case, the control input along the second axis

is assumed to be unavailable because of an actuator failure. Thus, two possible sets

of Euler transformations are available to avoid rotation about the failed axis [i.e., (1-

3-1) and (3-1-3)]. For optimally selecting the Euler angle rotation sequence between

the (1-3-1) and (3-1-3) sets, the closed-form solutions for the cost function in Eqs.

(5.52) and (5.56), leads to the following simple optimal selection criteria:

Jopt = min [J1−3−1, J3−1−3] (C.1)

C.1 Minimum-Time Maneuver

Using the numerical simulation parameters in Tables 5.1 and 5.4, numerical

simulations are performed for the failed control case (2-axis control). The maximum

control torque, umax, is assumed to be 1.

Both (1-3-1) and (3-1-3) sets of successive maneuvers are considered with Eqs.

(3.43) and (3.46). For each sub-maneuver, the switch-time, ts, and the final time,

T , are slightly changed to tsi and Ti, respectively. The subscript, i, indicates the

maneuver sequence and tf , T3.

For the (1-3-1) set of successive maneuver, the following set of switch-times
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and the final time is computed to be

(ts1 , T1, ts2 , T2, ts3 , tf ) = (0.9199, 1.8398, 4.1060, 6.3722, 7.9170, 9.4619) sec

For the (3-1-3) set of successive maneuver, the following set of switch-times

and the final time is computed to be

(ts1 , T1, ts2 , T2, ts3 , tf ) = (2.0325, 4.0649, 5.8390, 7.6130, 8.6591, 9.7052) sec

Comparing the obtained final time solutions, the (1-3-1) set of successive

maneuver provides the minimum-time solution. The time trajectories for the (1-3-1)

set, which is an optimal sequence set, of Euler angles and angular velocity are shown

in Figs. C.1 and C.2, respectively. The Euler angles and angular velocity meet the

prescribed boundary conditions. The bang-bang type of control profiles are shown

in Fig. C.3. Three control switch-times, two maneuver switch-times, and the final

time are clearly described. The principal angle time trajectories are shown in Fig.

C.4. As a result, the given initial asymmetric rigid spacecraft is reoriented to the

defined final state with only two control inputs.

Additionally, the principal angle time trajectories for the (3-1-3) set are shown

in Fig. C.5. One can observe how the principal angles change over times for both

(1-3-1) and (3-1-3) sets.
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Figure C.1: Minimum-time time trajectories for the (1-3-1) set of Euler angles
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Figure C.2: Minimum-time time trajectories for the angular velocity (1-3-1)
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Figure C.3: Minimum-time time trajectories for the control torque (1-3-1)
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Figure C.4: Minimum-time time trajectories for the principal angle (1-3-1)
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Figure C.5: Minimum-time time trajectories for the principal angle (3-1-3)

C.2 Cubic Polynomial Technique: Maneuver Time Minimization

Using the numerical simulation parameters in Tables 5.1 and 5.4, numerical

simulations are performed for the failed control case (2-axis control). The maximum

control torque, umax, is assumed to be 1 and the smoothing parameter, α, is assumed

as 1/7.

The (1-3-1) set of successive maneuvers is considered with Eq. (4.23). For

each sub-maneuver, the final time, T , is slightly changed to Ti. The subscript, i,

indicates the maneuver sequence and tf , T3.

For the (1-3-1) set of successive maneuvers, the following set of maneuver

switch-times and the final time is computed to be

(T1, T2, tf ) = (2.1646, 7.4969, 11.1320) sec
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For the (3-1-3) set of successive maneuvers, the following set of maneuver

switch-times and the final time is computed to be

(T1, T2, tf ) = (4.7824, 8.9568, 11.4183) sec

Again, it is shown that the (1-3-1) set of successive maneuver provides the

minimum-time solution. The time trajectories for the (1-3-1) set, which is an optimal

sequence set, of Euler angles and angular velocity are shown in Figs. C.6 and C.7,

respectively. The Euler angles and angular velocity meet the prescribed boundary

conditions. The smooth continuous bang-bang type of control profiles are shown in

Fig. C.8. Two maneuver switch-times and the final time are clearly described. The

principal angle time trajectories for the (1-3-1) and (3-1-3) sets are shown in Figs.

C.9 and C.10, respectively.
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Figure C.6: Near minimum-time time trajectories for the (1-3-1) set of Euler angles
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Figure C.7: Near minimum-time time trajectories for the angular velocity (1-3-1)
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Figure C.8: Near minimum-time time trajectories for the control torque (1-3-1)
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Figure C.9: Near minimum-time time trajectories for the principal angle (1-3-1)
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Figure C.10: Near minimum-time time trajectories for the principal angle (3-1-3)
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C.3 Minimum-Fuel Maneuver

Using the numerical simulation parameters in Tables 5.1 and 5.4, numerical

simulations are performed for the failed control case (2-axis control). The maximum

control torque, umax, is assumed to be 1.

Both (1-3-1) and (3-1-3) sets of successive maneuvers are considered with Eq.

(3.76). For each sub-maneuver, the switch-times, t1 and t2, are slightly changed to

tisj . The superscript, i, indicates that i
th maneuver and the subscripts, j, indicate the

jth switch-times. Also, the final time, T , is slightly changed to Ti and tf , T3. To

find a minimum-fuel solution, optimal times, T1 and T2, needs to be found. Here, T1,

T2, and tf are assumed to be 1.5 times larger than the results from the minimum-time

solutions.

For the (1-3-1) set of successive maneuver, the following set of switch-times

is computed to be

(

t1s1 , t
1
s2
, t2s1 , t

2
s2
, t3s1, t

3
s2

)

= (0.3513, 2.4087, 3.6262, 8.6888, 10.145, 13.6) sec

For the (3-1-3) set of successive maneuver, the following set of switch-times

is computed to be

(

t1s1 , t
1
s2
, t2s1 , t

2
s2
, t3s1, t

3
s2

)

= (0.7776, 5.3124, 6.7672, 10.7378, 11.8126, 14.1674) sec

By comparing the performance index values, one concludes that the (1-3-1)

set of successive maneuver provides the minimum-fuel solution given assumptions.

The time trajectories for the (1-3-1) set, which is an optimal sequence set, of Euler

angles and angular velocity are shown Figs. C.11 and C.12, respectively. The Euler

angles and angular velocity meet the prescribed boundary conditions. The bang-off-
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bang type of control profiles are shown in Fig. C.13. A set of switch-times is clearly

described. The principal angle time trajectories are shown in Fig. C.14. As a result,

the given initial asymmetric rigid spacecraft is reoriented to the defined final state

with only two control inputs.

Additionally, the principal angle time trajectories for the (3-1-3) set are shown

in Fig. C.15. One can observe how the principal angles change over times for both

(1-3-1) and (3-1-3) sets.
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Figure C.11: Minimum-fuel time trajectories for the (1-3-1) set of Euler angles
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Figure C.12: Minimum-fuel time trajectories for the angular velocity (1-3-1)
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Figure C.13: Minimum-fuel time trajectories for the control torque (1-3-1)
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Figure C.14: Minimum-fuel time trajectories for the principal angle (1-3-1)
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Figure C.15: Minimum-fuel time trajectories for the principal angle (3-1-3)
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C.4 Cubic Polynomial Technique: Fuel Minimization

Using the numerical simulation parameters in Tables 5.1 and 5.4, numerical

simulations are performed for the failed control case (2-axis control). The maximum

control torque, umax, is assumed to be 1 and the smoothing parameter, β, is assumed

as 1/5.

The (1-3-1) set of successive maneuvers is considered with the 1.5 times larger

than the results from the minimum-time solutions such as T1, T2, and tf .

For the (1-3-1) set of successive maneuvers, the following set of maneuver

switch-times and the final time is computed to be

(T1, T2, tf ) = (2.76, 9.555, 14.19) sec

For the (3-1-3) set of successive maneuvers, the following set of maneuver

switch-times and the final time is computed to be

(T1, T2, tf ) = (6.09, 11.415, 14.565) sec

Again, it is shown that the (1-3-1) set of successive maneuvers provides the

minimum-fuel solution. The time trajectories for the (1-3-1) set, which is an optimal

sequence set, of Euler angles and angular velocity are shown Figs. C.16 and C.17,

respectively. The Euler angles and angular velocity meet the prescribed boundary

conditions. The smooth continuous bang-off-bang type of control profiles are shown

in Fig. C.18. Two maneuver switch-times and the final time are clearly described.

The principal angle time trajectories for the (1-3-1) and (3-1-3) sets are shown in

Figs. C.19 and C.20, respectively.
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Figure C.16: Near minimum-fuel time trajectories for the (1-3-1) set of Euler angles
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Figure C.17: Near minimum-fuel time trajectories for the angular velocity (1-3-1)
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Figure C.18: Near minimum-fuel time trajectories for the control torque (1-3-1)
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Figure C.19: Near minimum-fuel time trajectories for the principal angle (1-3-1)
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Figure C.20: Near minimum-fuel time trajectories for the principal angle (3-1-3)
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APPENDIX D

STATE TRANSITION MATRIX AND PARAMETER INFLUENCE VECTOR

The state transition matrix and parameter influence vector are arranged. To

find partitions of the state-costate transition matrix and parameter influence vector,

the first order partials are given by
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The partitions of the state-costate transition matrix and parameter influence

vector are shown to be
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Finally, the state-costate transition matrix and parameter influence vector are

expressed as
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APPENDIX E

BODY-AXIS SKEWED TORQUE DISTRIBUTION

The open-loop optimal control solution of the rigid spacecraft is considered

when two control actuators fail among four control actuators. Formulations are not

shown here because only slight changes are required when compared to Section 6.4.

The rotational dynamics equation of a rigid body is slightly modified as

ω̇ , p̃(ω, u, ε) = [J ]−1 (− [ω̃] [J ]ω + [C(α, β)][P (ε)]ũ) (E.1)

where ũ ∈ R4 is the control torque vector, [P (ε)] ∈ R4×4 is the control torque

mapping matrix, and [C(α, β)] ∈ R3×4 is the control torque distribution matrix

from the actuator frame to the body frame. To describe the torque distribution

matrix, a pyramid type of reaction wheel allocation is illustrated in Fig. E.1 and the

associated torque distribution matrix is shown in Eq. (E.2).

[C(α, β)] ,













−cβcα cβcα cβcα −cβcα

−cβsα −cβsα cβsα cβsα

sβ sβ sβ sβ













(E.2)

For describing a control torque degradation situation, a modified control

torque mapping matrix, [P (ε)] , diag(1, 0, 1, 1 − ε), is defined in terms of the

homotopy embedding parameter, ε. Let’s assume that one of the actuator is failed

at the beginning. By spanning ε from 0 to 1, a control torque input degradation

situation but two control torque inputs are unavailable at the end is fully described.
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Figure E.1: Pyramid type of reaction wheel allocation description

With similar procedure in Section 6.4, the numerical simulation is performed

for two maneuver cases: (i) rest-to-rest and (ii) motion-to-rest. The simulation

parameters listed in Tables 6.1 and 6.2 are used and α = β = 45 degrees are assumed.
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Figure E.2: Skewed: Time trajectories for the MRPs (rest-to-rest)
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Figure E.3: Skewed: Time trajectories for the angular velocity (rest-to-rest)
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Figure E.4: Skewed: Time trajectories for the costates associated with the MRPs
(rest-to-rest)

182



0 5 10 15 20 25 30
−30

0

20

µ 1

0 5 10 15 20 25 30
−40

0

25
µ 2

 

 ε = 0

ε ∈  [0,1]

ε = 1

0 5 10 15 20 25 30
−6

0

5

Time (sec)

µ 3

Figure E.5: Skewed: Time trajectories for the costates associated with the angular
velocity (rest-to-rest)
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Figure E.6: Skewed: Time trajectories for the control torque (rest-to-rest)
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Figure E.7: Skewed: 3D trajectory for the MRPs (rest-to-rest)
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Figure E.8: Skewed: 3D trajectory for the angular velocity (rest-to-rest)
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Figure E.9: Skewed: Time trajectories for the MRPs (motion-to-rest)
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Figure E.10: Skewed: Time trajectories for the angular velocity (motion-to-rest)
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Figure E.11: Skewed: Time trajectories for the costates associated with the MRPs
(motion-to-rest)
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Figure E.12: Skewed: Time trajectories for the costates associated with the angular
velocity (motion-to-rest)
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Figure E.13: Skewed: Time trajectories for the control torque (motion-to-rest)
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Figure E.14: Skewed: 3D trajectory for the MRPs (motion-to-rest)
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Figure E.15: Skewed: 3D trajectory for the angular velocity (motion-to-rest)
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