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ABSTRACT 

 

Global climate change threatens the survival of microtidal wetlands by altering 

fundamental hydrological aspects such as precipitation patterns and tidal exchange.  The 

combination of these stressors results in increased flooding period and soil salinity in 

coastal wetlands.  In this study, we combined the use of detailed hydrological 

measurements (wetland water level and salinity), LIDAR elevation models, and water 

stable isotopes tracers (δD, δ18O) to study the balance between freshwater and saltwater 

inputs on two microtidal wetlands: a saltmarsh in Matagorda, Texas and a freshwater-

forested wetland in Humacao, Puerto Rico.   

In Matagorda, Texas, we described the process of connectivity between different 

hydrologic units (isolated and connected ponds) within the saltmarsh.  Pond connectivity 

only occurred when water levels in major water bodies adjacent to our study site reached 

a threshold elevation of 0.39 m.  Connections events were correlated to rainfall and— to 

a lesser extent— wind speed and direction.  We conclude that connectivity within the 

saltmarsh is driven by the combined effect of tidal influence and rainfall inputs, factors 

that will be altered by sea level rise and climate change-related changes in long term 

weather patterns. 

In Humacao, Puerto Rico, we gathered a detailed dataset of changes in salinity 

and water level in a freshwater forested wetland dominated by the endangered salt 

intolerant species Pterocarpus officinalis.  In addition, we studied tree water use and 
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identified important water sources to the wetland using stable isotope tracers.  Firstly, we 

provide evidence that recent hydrological alterations have effectively transformed the 

system from mostly freshwater, to a saltwater wedge estuary.  Salinity inputs travel via a 

tidal creek channel that allows the progression of a saltwater wedge to the inland parts of 

the forest.  Our results suggest that inland progression of the saltwater wedge is 

influenced by amplitude of tidal exchange in the middle portions of the tidal creek and 

by extended dry periods in the headmost part of the tidal creek.  Isotope data showed that 

surface standing water was influenced by tidal water sources during the dry season, 

although the spatial extent of this influence was constrained to areas of the forest that 

had been previously deforested.  The isotopic content of groundwater samples taken at 

increasing distances from the tidal creek revealed that— although surface waters are 

dominated by freshwater inputs (rainfall and runoff) during the wet season— the 

influence of tidal water sources at soil depths greater than 60 cm persists throughout the 

year.  Nonetheless, isotopic content of Pterocapus officinalis stem water samples suggest 

that tree water uptake is constrained to very shallow, unsaturated parts of the soil.   

We conclude from both case studies that the long term vulnerability of microtidal 

wetlands to climate change is determined by the interaction of increased annual 

variability of freshwater inputs along with a steady increase in mean sea levels, and 

aggravated by extreme climatic events.   
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1.  INTRODUCTION 

Human-induced climate change is considered one of the most serious 

environmental threats today (FitzGerald et al. 2008).  The steady increase of the mean 

temperature of the planet causes the oceans to expand, provides more moisture to the 

atmosphere, and releases vast amounts of freshwater previously locked in polar ice caps 

(IPCC 2007).  The result is global sea level rise, increased interannual and seasonal 

variability of weather patterns, and increased frequency of extreme weather events 

(Tompkins and Adger 2004).  Although these climate changes occur worldwide, coastal 

areas are considered among the most vulnerable to climate change because of the 

convergence of threats in a single location (IPCC 2007).  Coastal ecosystems are well 

located to provide ecosystem services that can enhance the resilience of both natural and 

human systems to climate change  (Hopkinson et al. 2008, Craft et al. 2009).  However, 

this location also puts them in the way of human development (Bertness et al. 2002, 

Feagin et al. 2010).  Tidal wetlands, for example, occupy the narrow interface between 

the land and sea, and protect the coast from erosion and extreme weather events while 

providing habitat for wildlife as well as cultural and aesthetic services (Mitsch 2000, 

Mitsch and Gosselink 2007).  Tidal wetlands are also very productive systems (Simpson 

et al. 1983), and contribute to reducing the effects of climate change by sequestering 

CO2 from the atmosphere (Ross and Adam 2013).   

Sea level rise affects tidal wetlands by increasing the hydroperiod (duration of 

inundation in a year) and overall salinity of the system (Mcleod et al. 2010, Crase et al. 
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2013).  Tidal wetlands can respond to the change in sea level by migrating inland 

(Brinson et al. 1995), although their capacity to this is limited by human coastal 

developments (Feagin et al. 2010).  On the other hand, if sediment accumulation 

(accretion) occurs at a higher rate than sea level rise, tidal wetlands can survive by 

increasing the relative elevation to the sea (McKee 2011).  In this context, microtidal 

wetlands (tidal range <2m) are more vulnerable than macrotidal (>4 m) or mesotidal (2-4 

m) wetlands because of the limited contribution of sediment by the tide (Craft et al. 

2009).  Instead, microtidal wetlands rely more on the accumulation of organic matter to 

gain elevation (Simas et al. 2001) or prevent erosion by stabilizing the soil (Feagin et al. 

2009).  Freshwater microtidal wetlands, however, may be affected by sea level rise 

regardless of their capacity to accrete sediments; a consistent increase in salinity may 

shift the composition of the plant community towards salt-tolerant species (Sharpe and 

Baldwin 2012).  In both saltwater and freshwater microtidal wetlands, the dynamic 

between freshwater inputs and tidal exchange is the most important factor affecting the 

resilience of the system and the delivery of ecosystem services (Fig. 1-1).   

In this dissertation, we aimed to increase our understanding of this dynamic 

exchange between freshwater and saltwater inputs by studying two microtidal wetlands 
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with contrasting plant communities.  The first wetland is a saltmarsh dominated by 

Spartina alterniflora, located at Matagorda, Texas.  In this location, we studied how 

individual ponds connected to each other and the main factors driving the hydrological 

connectivity within the marsh itself.  The second location is a freshwater forested 

wetland dominated by the tree Pterocarpus officinalis in Humacao, Puerto Rico.  

Pterocarpus trees have a low tolerance of salinity, thus they depend on freshwater inputs 

to survive.  Hydrological modifications at this site have increased tidal exchange in the 

wetland but there was a lack of information about the extent and magnitude of saltwater 

intrusion into the Pterocarpus swamp.  In both Matagorda, Texas and Humacao, Puerto 

Rico we combined the use of detailed tidal measurements (water level and salinity) with 

water stable isotopes tracers as our main methodology.  By combining these methods, 

we aimed to provide new insights to our understanding of the hydrology of microtidal 

wetlands, and how it is affected by climate variability.  
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Figure 1 -  1.  Conceptual model of microtidal wetland resilience to climate change
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2.  SALT MARSH CONNECTIVITY AND FRESHWATER VERSUS 

SALTWATER INFLOW: MULTIPLE METHODS INCLUDING 

TIDAL GAUGES, WATER ISOTOPES, AND LIDAR ELEVATION 

MODELS  

2.1 Overview 

The hydrologic connectivity between different components of a coastal marsh is a 

key wetland structural element, and is essential in determining habitat value.  Salt 

marshes are often thought of as being hydrologically connected via tidal creeks, though 

water bodies within a salt marsh may also be semi-permanently disconnected.  At a salt 

marsh in Matagorda, Texas, USA, there are many ‘isolated’ ponds, located at varying 

elevations.  Our objective was to quantify the hydrologic connectivity of spatially 

isolated ponds at this site.  We sampled water for salinity and stable isotopes (2H, 18O) 

to determine the relative contribution of tidal water and rainfall within each pond.  We 

also quantified the water level at which each pond floods its banks and connects to other 

ponds, using a light detection and ranging (LIDAR)-based elevation model.  We found 

that pond connectivity was driven by multiple factors, of which wind and rainfall were 

the most important.  Salinity and isotopic values between any two sampled ponds were 

                                                 

 Reprinted with permission from Colón-Rivera R.J., Feagin R.A, West J.B., and Yeager K.M. 2012. Salt 
marsh connectivity and freshwater versus saltwater inflow: Multiple methods including tidal  
gauges, water isotopes, and LIDAR elevation models.  Canadian Journal of Fisheries  
and Aquatic Sciences 69:8, 1420-1432. Copyright 2012 Ricardo J. Colón-Rivera 
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correlated with the water level elevation at which the ponds connected.  We conclude 

that the connectivity of the network, and the similarity of water samples within it, 

profoundly changes when specific water level thresholds are exceeded by both 

freshwater and saltwater. 

2.2 Introduction  

The ability of a wetland to perform important ecological functions is directly 

related to its hydrology  (Odum et al. 1995, Mitsch and Gosselink 2007).  In the case of 

tidal wetlands, like salt marshes, the energy and materials transferred by a pulsating 

hydroperiod drives many aspects of wetland structure and function (Odum et al. 1995).  

Through these hydrological processes, salt marshes respond to and interact with the 

estuaries in which they reside (Montalto and Steenhuis 2004).  As for other wetlands, 

hydrological connectivity plays a significant role in determining the extent of these 

interactions (Gelwick et al. 2001).  Traditionally, wetlands have been classified as 

‘connected’ or ‘isolated’ depending on their geographical setting.  However, the 

interactions between surface flows and the consideration of temporal variation in the 

hydrological connections have proven that connectivity among wetlands is a complex 

event and that few, if any, wetlands can be considered truly isolated (Leibowitz and 

Vining 2003, Wilcox et al. 2011).  Wetlands may be connected by ecological, 

hydrological or geographical features, all of which have different effects on wetland 

structure and function.  
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Hydrological connectivity also occurs within the wetland ecosystem.  Salt 

marshes are often thought of as being hydrologically connected to the ocean via tidal 

creeks, though water bodies within the marsh may also be semi-permanently 

disconnected.  A salt marsh is comprised of areas with different hydrological interactions 

(e.g., tidal creeks, connected and isolated ponds, high marsh and low marsh vegetated 

areas).  The hydrologic connectivity within and between these different areas of the 

marsh is a key wetland structural element and is essential in determining species 

diversity and assemblage structure throughout the marsh (Gelwick et al. 2001).  Surface 

connectivity between ponds will determine the accessibility of safe foraging sites for 

fishes, their energetic  costs  to  access the  marsh  surface,  as  well  as  the  risk level of  

being stranded  at  low  tide (West and Zedler 2000).  Ponds that are regularly 

disconnected from surface water inflows can lose water to evaporation and concentrate 

fishes in a reduced habitat, increasing competition for resources and facilitating 

predation by wading birds (Kushlan 1976, Winemiller 1989).  The intermittent nature of 

connectivity events among the different hydrological units of the marsh can isolate areas 

of the marsh and create conditions where the extinction of populations is possible.  

These populations are dependent on connection events to recolonize areas and interact 

with other populations, creating excellent conditions for the study of metapopulation 

dynamics (groups of populations that interact with each other to support the regional 

persistence of the species (Sheaves and Johnston 2008)).  Given the importance of 

surface water connections for the structure and function of coastal wetlands like salt 
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marshes, the dynamics of hydrological connectivity need to be studied in order to create 

working knowledge of coastal systems.   

Traditionally, methods to study wetland hydrology include the deployment of a 

series of instruments in the field to gather basic information about the hydrodynamics 

(e.g., water level recorders, rain gauges, stream flow meters, and piezometers).  The use 

of water level recorders is perhaps the most basic and useful tool to study wetland 

hydrology.  Water level records can help quantify a number of hydrologic parameters, 

including hydroperiod, frequency of flooding, duration of flooding and water depth 

(Mitsch and Gosselink 2007).  For example, Negishi et al. (2010) successfully integrated 

water level data into quantitative models to study connectivity of river floodplains in 

Japan.  Tidal gauges can also be used to study long-term trends in sea level rise and 

subsidence in coastal ecosystems (Church and White 2006, González and Tornqvist 

2006, Prandi et al. 2009).  However, the data provided by these instruments alone does 

not provide enough information to study the complex connectivity of ponds in a salt 

marsh.   

Stable isotopes (δ18O and δ2H) can act as tracers to study many aspects of an 

aquatic system’s hydrology.  This is because water can either be ‘enriched’ or ‘depleted’ 

in the heavy isotopes 18O and 2H, depending on how different factors affect isotopic 

fractionation during the phase changes of the water cycle.  Water undergoes two 

important processes of fractionation, equilibrium fractionation and transport isotope 

fractionation (kinetic fractionation).  During equilibrium fractionation there is no change 
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in the amount or concentration of the chemicals compounds, but the resulting products 

have different isotopic compositions due to differences in bond strength of the isotope 

species (Gat 2010).  This type of fractionation occurs when precipitation forms in the 

atmosphere and is responsible for the predictable patterns of δ18O and δ2H described by 

the Global Meteoric Water Line (GMWL) (Craig 1961).  Transport isotope fractionation 

occurs when water is evaporating from a surface and leads to the enrichment of the 

evaporating water body because lighter molecules react faster and become concentrated 

in the products.  Research using stable isotopes to address hydrological problems 

includes the study of groundwater inflows and outflows (Stadnyk et al. 2005) surface 

water studies (e.g., springs; Criss et al. 2001, oceans and rivers; Lachniet and Patterson 

2002, estuaries; Surge and Lohmann 2002 and water usage by plants (West et al. 2006, 

Greaver and Sternberg 2006) among many other applications.  In addition, stable isotope 

values can be mapped across the landscape to create spatially-explicit predictions of 

isotopic values at different scales (West et al. 2010).  However, there have been few 

studies that use water stable isotopes to study wetland hydrology, and those that did were 

primarily focused on the study of groundwater (Huddart et al. 1999, Wilcox et al. 2004, 

Clay et al. 2004).  To date, there have been no studies using water stable isotopes as a 

tool to study hydrological connectivity in a salt marsh.    

Digital Elevation Models (DEM), as derived from LIDAR (Light Detection and 

Ranging) data, are high resolution representations of landscape topography.  The 

increasing use of LIDAR DEMs in wetland hydrology studies (Martinez Romero et al. 
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2009, Negishi et al. 2010), as well as the recently developed method to use the intensity 

(amplitude) of the laser return to remotely monitor inundation in forested wetlands 

(Lang and McCarty 2009), are examples of the potential of LIDAR data to study wetland 

hydrology.  LIDAR-based connectivity models, in combination with in situ water level 

data, have been used to predict potential habitat distributions in a floodplain in Japan 

(Negishi et al. 2010), and a mangrove forest in Australia (Knight et al. 2009).  Terrestrial 

Laser Scanning (TLS) LIDAR models  (Guarnieri et al. 2009) provide even finer scaled 

products than those of aerial LIDAR models, though they typically do not make it 

possible to study coarser scale tidal networks at the landscape scale (Lohani and Mason 

2001).  Regardless of the specific method of data collection, LIDAR DEMs are an ideal 

tool to study pond connectivity in salt marshes due to their ability to map elevation and 

predict the presence of water in ponds, as well as their increasing availability of 

coverage for coastal ecosystems.   

The connectivity aspect of wetland hydrology, particularly in coastal systems, 

drives many ecological processes.  Basic science and applied coastal management can 

benefit from studies aimed at understanding connectivity at finer scales.  Each of the 

described methods provides valuable information regarding the hydrology of an 

ecosystem, however to study connectivity more fully, it is to necessary integrate 

traditional instrumentation (tidal and rain gauges) with new tools such as spatial 

modeling (LIDAR DEMs) and stable isotope analysis (δ18O and δ2H).  Here, we 

demonstrate the power of combining these methods at a back-barrier salt marsh in 
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Matagorda, Texas, USA.  At this location, there are many ‘isolated’ ponds and other 

more ‘connected’ ponds located at varying elevations.  We have visually noted that 

water levels often appear to be different from one portion of the study site to the other.  

In particular, two adjacent and large bodies of water appear to have different water levels 

at times.  We hypothesized that this water level difference was due to the hydrological 

isolation of an isolated pond from a more connected pond.  We hypothesized that water 

level in the connected pond would appear somewhat astronomical and similar to the 

open bay, while the isolated pond would be rainfall driven.  Our overall objective was to 

quantify the hydrologic connectivity of spatially isolated ponds at this site.  By 

definition, we consider ponds to be hydrologically connected when there is a continuous, 

surface water interaction between the pond and another water body in the marsh initiated 

either by recurrent events (tides, etc) or by pulse events (storms, rain etc).  Specific 

objectives included: 

1. Determine the predominant mechanism that caused ponds to flood and connect to 

each other.  Was it astronomical tides, wind driven tides, or rainfall? 

2. Determine the relative contributions of tidal water and rainfall to individual 

ponds. 

3. Determine the connectivity among individual ponds. 

The nature of these objectives required us to apply a combination of methods to 

address them.  Specifically, we will address the first objective by studying the relation 
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between water levels in the ponds and the likely drivers of connectivity (rainfall and 

tides).  The second objective will be addressed by analyzing stable isotope composition 

of water samples from the ponds, and finally, the third objective will be addressed by 

applying a connectivity model based on LIDAR derived elevation data. 

2.3 Methods  

2.3.1 Study site 

Our study area is a back-barrier wetland located at the Matagorda Bay Nature 

Park, on East Matagorda Peninsula, near Matagorda, Texas, USA (Fig. 2-1).  The East 

Matagorda Peninsula is a transgressive barrier island that was connected to the mainland 

in the early 1920’s as a result of human modification.  The wetland is composed of 

typical salt marsh plant cover for this region, with zonation strongly dependent upon 

elevation: open water with some Ruppia maritima and Halodule wrightii, low marsh 

dominated by Spartina alterniflora, mid marsh dominated by Salicornia virginica and 

Batis maritima, unvegetated salt flat with some Monanthocloe littoralis around the 

edges, and high marsh dominated by Spartina spartinae.   

As described by Mitsch et al. (2009), the ecological structure and function of salt 

marshes is similar around the world, with different plant associations occurring over 

different coastlines.  The salt marsh at Matagorda is representative of coastal plain salt 

marshes in Eastern North America where S. alteniflora, S. patens and Juncus 

roemerianus are dominant species and tidal range is small in relation to similar 
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ecosystems on the northern regions of North America and Europe.  In contrast, European 

salt marshes are distinguished by the lack of vegetation in the high intertidal zone, an 

area dominated by S. alterniflora in Eastern North America.  As with other salt marshes 

around the world, a complex hydrogeomorphology produces networks of tidal creeks 

and water-filled depressions (ponds) that are used extensively by waterfowl.  The 

particularly low inflows of freshwater to the coastal areas in the Texas Gulf Coast can 

allow these smaller water bodies in the marsh to concentrate extreme salinities in 

relation to seawater due to evapotranspiration.  Recently, the geographic coverage of S. 

alterniflora has changed because of invasive expansion to the west coast of the U.S. and 

coastal regions of China.  On the other hand, more than 100,000 ha of S. alterniflora salt 

marshes were lost in the Gulf Coast of the United States during major die-off events in 

2000-2004 (Silliman et al. 2005).     

Water levels within East Matagorda Bay can be irregular, and dependent upon 

spatial location (Kraus and Militello 1999).  The bay is connected to the Gulf of Mexico 

at Brown Cedar Cut, which is a small pass on the east flank of the bay (Fig. 2-1a).  

Astronomical tide levels in the open bay are approximately 0.1 m between daily high 

and low, and are semi-diurnal (as compared to approximately 0.4 m semi-diurnal tides in 

the open Gulf).  However, in the bay, wind driven tides may affect water levels up to 

approximately 0.6 m.  Water level differences between the east and west portions of the 

bay are pronounced at times, as water may be driven from one side of the bay to the 

other via wind set-up, particularly by northeasterly winds (Kraus and Militello 1999). 
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Figure 2 - 1.  Study area. (a) Location of back-barrier wetland site in Matagorda, Texas, USA.  Dashed circle 
marks the location of Brown Cedar Cut.  (b) Tides flow from East Matagorda Bay to the study area along the direction 
of black arrow.  Water sample points are denoted by small circles.  (c) Primary ponds are denoted by black stars.  
Tidal flow connects the connected pond, but not the isolated pond.  Water sample points are denoted by small circles.  
Black dashed line marks the location of a known growth fault.
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Our wetland study site lies in the southwestern corner of the bay (Fig. 2-1b).  In 

general, tidal flow is uninhibited through this low-lying wetland, and is facilitated by the 

existence of an active growth fault that has funneled flow to much of the wetland interior 

(Cline et al. 2011, Feagin et al. 2009). 

2.3.2 Tidal gauges 

Water levels were recorded hourly over a period of 6 months (February – August 

2010).  This period of time included two relatively dry months (March and April with 

64.5 and 66.8 mm respectively) and one relatively wet month (July, 315.9 mm) for 

Matagorda according to annual precipitation averages for the site (NCDC Station 

416750).  Water level measurements took place in two primary water bodies, an isolated 

pond and a connected pond.  Within each pond, a small hole was made in the sediment 

surface beneath open water.  A 2 m long, 0.10 m diameter PVC pipe that had been cut 

linearly along its length to facilitated water movement through the pipe was sunk into 

this hole.  A titanium pressure gauge (HOBO U20-Ti, Onset Corp.) was suspended in the 

water within the pipe with wire, and set at approximately 10 cm below the original 

sediment surface.  Gauges were suspended at this depth to avoid losing data if the ponds 

dried up.  The elevation of the pond sediment surface, water level at time of installation, 

and water level at the end of the experiment were recorded.  A survey grade Global 

Positioning System (GPS) point was recorded at the top of each PVC pipe to within 

0.002 m vertical and 0.001 m horizontal accuracy (Trimble R7, Trimble Corp.), and 

water levels were referenced to absolute elevation in NAVD88 units.  A third gauge was 
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installed several meters above water level, to enable atmospheric compensation of the 

water level data.  Hourly rainfall was recorded at this site (HOBO Rain Gauge RG3, 

Onset Corp.).   

We also acquired rainfall, wind direction, wind speed, atmospheric pressure, 

temperature, and relative humidity data sets over the same period from the Palacios 

weather station (NCDC Station 416750), located 27 km to the west at similar elevation 

and on the same bay complex, in this topographically flat portion of Texas.  Rainfall and 

atmospheric pressure data collected from the Palacios station closely matched that 

collected on site.  Therefore, it was assumed that data for the other parameters from the 

Palacios station could be extrapolated to the site.   

Hourly water level data were then plotted and linearly regressed against the other 

parameters using both on-site and Palacios station data.  In order to account for the effect 

of evapotranspiration (ET) on the change in water level in the ponds, we estimated ET 

using the Hargreaves Equation (Hargreaves and Samani 1985).  The Hargreaves 

equation is recommended as one of the few valid temperature-based estimates for ET.  It 

provides a simple calculation of ET estimates where there is lack of climatologic data 

necessary to calculate more complex equations (Shuttleworth 1993, Temesgen et al. 

2005).   

The Hargreaves equation is expressed as: 
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where T
c 
is daily mean air temperature (°C), T

max 
is daily maximum air temperature (°C), 

T
min 

is daily minimum air temperature (°C), and R
a 

is extraterrestrial radiation (MJ m
-2 

day
-1

).  Since the mean air temperature T
c
 is calculated as an average of T

max 
and T

min 
and 

R
a 

is computed from information on location of the site and time of the year, temperature 

is the only parameter needed to calculate this equation (Temesgen 2005).  

2.3.3 Stable isotopes and water salinity 

Water samples were collected from the isolated and the connected ponds, and 

from 45 smaller ponds arrayed across a hypothesized path of connection between them.  

Sampling took place on March 1, 2010 at the end of a wet period.  In the 7-day period 

before the experiment, there had been 3.05 mm of rainfall.  In a total of 28 days prior to 

the experiment, there had been 115.06 mm. Recorded rainfall for the two years prior to 

the study is shown in Fig. 2-2.  At each of 45 individual ponds, water samples were 

collected by filling and capping airtight, small bottles (20 mL, Nalgene) with pond water 

collected 5 cm below the surface.  Salinity was also measured in the field using a 

refractometer.  The spatial position of each water sample and pond location was 

recorded using a Global Positioning System (GPS) to at least 0.5 m horizontal accuracy 

per point (XRS Trimble, Trimble Corp.). 

Water samples were analyzed for stable isotopes ratios (2H, 18O).  Samples 

were refrigerated (3°C) between the date of initial sampling and the date of analysis.  



 

18 

 

Subsequently in the laboratory, all samples were analyzed using a continuous-flow 

pyrolysis isotope ratio mass spectrometry technique (TC/EA-IRMS; Delta V Isotope 

Ratio Mass Spectrometer; Thermo Scientific, Waltham, MA).  Each sample was 

analyzed for both hydrogen and oxygen isotope ratios.  Stable isotope ratios are 

expressed as follows:  

 

 

where Rsample represents the molar ratio of heavy to light isotope (here either 2H/1H or 

18O/16O) and Rstandard is the molar ratio of (in this case) Standard Mean Ocean Water 

(SMOW).  Laboratory reference waters that had been calibrated to SMOW were used in 

each run for normalization and quality control.  2H and 18O ratio values were then 

plotted, along with the GMWL.  Additionally, 18O ratios of the ponds were plotted 

against salinity.  Maps of 2H ratios across the landscape were also created within a 

Geographic Information System (ArcGIS 10, ESRI, USA).   

To sample groundwater from several of the smaller ponds, 1 m long, 0.05 m 

diameter PVC pipes were sunk to 0.5 m depth below the sediment surface.  After 

insertion, water was pumped out of these pipes.  These pipes did not refill within a 24-

hour period, due to a hard clay layer at the bottom of each of the smaller ponds.  While 

much of the study area is composed of silty sands, the bottom of the smaller ponds 
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appeared to be well sealed by a clay layer.  Based upon this evidence, groundwater 

exchange was considered minimal between all ponds.  

2.3.4 LIDAR elevation model 

As stated above, we consider ponds to be hydrologically connected when there is 

a continuous, surface water interaction between the pond and another water body in the 

marsh.  A LIDAR-based technique was developed to assess the water levels at which 

individual ponds would flood their banks and connect to other ponds.  First, a 2006 

LIDAR dataset was converted into a standard Digital Elevation Model (DEM) at 1 m2 

horizontal and 1 cm vertical resolution.  Vertical bias in the DEM was up to 10 cm, 

though consistent across the study area, as is typical of LIDAR imagery.  In other 

research, this same DEM had been registered with ground survey 
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Figure 2 - 2.  On-site rainfall for the two years before the study.  
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data and the relative point-to-point DEM precision within the scene was found to be 

within a few centimeters (Cline et al. 2011).  We identified areas that would be above or 

below water at different water depths by producing vertical slices of the DEM at 1 cm 

intervals.  We then identified the minimum water level for which adjacent ponds would 

be connected by water.  All combinations of pond-to-pond connections, as dependent 

upon elevation, were then recorded into a matrix.  Next, the minimum elevation at which 

any two ponds connected to each other was graphed, producing a hierarchical lineage of 

connection events for all ponds.  For example, we first found the elevation at which a 

pond connects to another pond, and then found the elevation at which those two ponds 

then connected to a third, and so on, building a graphical representation.  Salinity and 

stable isotope values for each small pond were then linearly regressed against the 

minimum elevation at which the pond connected to the primary connected pond and the 

open bay. 
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2.4 Results 

2.4.1 Tidal gauges 

For the majority of the tidal gauge study period, the water level in the isolated 

pond decreased (Fig. 2-3).  During these same periods, the water level in the connected 

pond was much more variable.  There was an apparent, slight degree of semi-diurnal 

astronomical forcing within this variability, as evidenced by cyclic water level change at 

the daily time scale, but the wind-driven tidal influence of the open bay was 

predominant.  Water level records (Fig. 2-3) suggests that when water levels rose above 

0.39 m in elevation, the two ponds connected and began to follow the same tidal beat.  

The water level of the connected pond typically rose first, and when it exceeded the 0.39 

m threshold, water spilled over into the isolated pond, and the water levels in the two 

ponds then equilibrated.
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 Figure 2 - 3.  Water levels in the connected pond and the isolated pond, on-site rainfall, and wind strength at the site.  
Dashed line represents 0.39 m elevation (connection threshold).  All dates are in 2010. 
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Figure 2 - 4.  Scatter plot of change in water level in the isolated pond versus water level in the connected pond. 
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 Once the water level in the connected pond dropped below 0.39 m, the ponds became 

disconnected, and the water level in the isolated pond returned to a linear and decreasing 

trend.  The relation between change in water level in the isolated pond and water level in 

the connected pond is shown more clearly in Fig. 2-4.  Slightly negative values of water 

level change in the isolated pond are clustered for connected pond water levels < 0.39 m, 

while relatively larger positive or negative values exist for connected pond water levels 

> 0.39 m (Fig. 2-4), showing the threshold effect of water levels in the connected pond 

and the isolated pond. 

Rising water in the isolated pond was temporally related to rainfall events (Fig. 

2-3).  Still, peak water level in this pond often was attained before rainfall, regardless of 

whether rainfall data came from on-site or from the Palacios station.  Fig. 2-3 depicts 

rainfall from the on-site rainfall gauge.  If rainfall was summed for the 24 hours 

immediately preceding each instance when water level exceeded 0.39 m in the isolated 

pond, the sum was always > 15 mm during that period (Fig. 2-5a).  When water level 

readings at 24 hour intervals were regressed against rainfall totals at the same intervals, 

water level rise was linearly correlated with rainfall (R2 = 0.37).  Much of the residual 

error was due to water level values between 0.39 to 0.7 m, yet with 0 mm rainfall in the 

previous 24 hours.  When water level readings at 7 day intervals were regressed against 

rainfall totals at the same intervals, rainfall was even more correlated with water level 

rise (R2 = 0.64). 
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Figure 2 - 5. Water level in the isolated pond as a function of (a) rainfall at the site, and (b) hours of easterly winds > 13 
km per hour, and in the connected pond as a function of (c) rainfall, and (d) hours of easterly winds > 13 km per hour.  
Dashed line is representative of the critical connection elevation (0.39 m). 
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Rising water events in the isolated pond were also temporally related to sustained 

easterly winds (from 45 to 135 degrees) greater than 13 km per hour (Fig. 2-5).  The 

water level always exceeded 0.39 m in the isolated pond when sustained easterly winds 

blew for > 9 hours during the previous 24-hour period (Fig. 2-5b).  Still, when water 

level readings at 24 hour intervals were regressed against hours of previously sustained 

wind at the same intervals, wind was only weakly correlated with rising water (R2 = 

0.06).  Residual error was high because many periods had a water level well above this 

threshold, but no strong or sustained easterly wind.  All other wind direction and speed 

combinations were less correlated.  Interestingly, water level in the connected pond was 

less correlated with rainfall (R2 = 0.31) than the isolated pond (Fig. 2-5c), but more 

correlated with sustained easterly winds (Fig. 5d) than the isolated pond (R2 = 0.10).  

The connected pond appeared to be somewhat more subject to wind tidal forcing similar 

to that seen in the larger East Matagorda Bay, as expected (Kraus and Militello 1999).  

For the month of March, the total water loss in the isolated pond was 0.112 m 

(3.61 mm d-1) (Fig. 2-3).  Estimation of ET using the Hargreaves equation resulted in a 

potential ET water loss of 3.59 mm d-1 for our site during this month, closely matching 

the observed trend of 3.61 mm d-1.  Thus, we assume that ET drives water level in the 

isolated pond, during periods with an absence of both rainfall and connection events. 

2.4.2 Stable isotopes and water salinity 

Salinity and isotope sampling of individual ponds revealed an arcing, east-to-

west spatial gradient, stretching from the more saline connected pond to the fresher 
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isolated pond (Fig. 2-6).  All water samples fell below the GMWL, reflecting the 

importance of evaporation in determining the isotopic composition of water in these 

ponds (Fig. 2-7).  We then split all water samples into two clearly discernible categories: 

those located south and west of sample M20 (average group salinity = 16.8 ppt, Fig. 2-

1c) and those located to its north and east (average group salinity = 27.1 ppt, Fig. 2-1c.  

Sample point M20 fell near the geographic center of the arc of points in Fig. 2- 6.  We 

then graphed the two categories as separate isotopic enrichment lines (Fig. 2-7b).  The 

more saline set of samples was on the connected pond side (M21-M45), while the more 

fresh set was on the isolated pond side (M1-M20).  An analysis of the 18O versus 

salinity plots (Fig. 2-8) reveals different interactions for each group (isolated and 

connected).  On the M1-M20 side, the data shows a mixing trend between freshwater 

inputs for the site (rainfall, 18O =-3.6‰ and 2H =-27‰, (Bowen and Wilkinson 2002)) 

and oceanic water (35 ppt, 18O= 0), influenced by evaporation of both water sources 

(Fig. 2-8).
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Figure 2 - 6.  Map of water sample results. (a) Salinity and (b) 2H values from sampled ponds
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This relation is consistent with other 18O-salinity relations in open estuaries in 

the Gulf of Mexico (Surge and Lohmann 2002, Hyeong and Lawrence 2004) and gives 

validity to the connectivity patterns proposed by our LIDAR elevation model (see 

below).  However, it is evident that there is no relation between 18O and salinity on the 

M21-M45 side (Fig. 2-8b).   

2.4.3 LIDAR elevation model 

When water levels were low, ponds were isolated (Fig. 2-9a).  As water levels 

rose, ponds connected to each other first through a network of small tidal creeks and 

connections from one pond to the next, and then finally through overland flow as water 

continued to rise (Fig. 2-9b).  The two large, primary ponds connected across sample 

locations 20-23 (Fig. 2-9c).  Based on the LIDAR model analysis, this location appears 

to be the last section of the smaller pond network to be overtopped by rising water 

levels, allowing the isolated and connected ponds to connect.  
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Figure 2 - 7.  Isotopic enrichment lines for (a) the entire site, GMWL, and rainfall; and (b) sample ponds M1 
through M20 (more fresh, isolated side) and M21 through M45 (more salty, connected side). 
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Figure 2 - 8.  18O versus salinity scatter plot for ponds (a) M1-M20 and (b) M21-M45 
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The threshold water elevation at which this connection occurred was 0.39 m (Fig. 

2-9d) for all ponds except ponds M13 and M15, which remained disconnected after 

water level reached this elevation.  The salinity and 2H isotopic value of each individual 

pond was correlated with the threshold water elevation at which they connected to the 

rest of the hydrological network (R2 = 0.42 and 0.37 respectively, Fig. 2-10).  

2.5 Discussion 

Hydrological connectivity among wetlands is extremely important in the context 

of policy and management, where wetlands that do not show a significant nexus to 

navigable waters are not protected by federal law.  However, surface water flow across 

landscapes is not always uniform, and rainfall induced subsurface flows can ‘spill’ on 

different parts of a watershed depending on spatial patterns of transient saturation and 

geological features (Meerveld and McDonnell 2006).  Furthermore, by analyzing a four-

year data set of surface water runoff, Wilcox et al. (2011) demonstrated that wetland 

depressions in the Gulf Coast, previously thought to be isolated, have a measurable 

connectivity to adjacent waterways.  Their results demonstrate that wetlands in the Gulf 

Coast have a particularly complex relation with other water bodies.  Nonetheless, our 

rests seek to understand connectivity at a finer scale, within the salt marsh itself.  At this 

scale, knowledge about important ecological processes can benefit from studying 

hydrologic connectivity.
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Figure 2 - 9.  Connectivity of ponds at the study site at (a) 0.20 m, and (b) 0.45 m 
water elevation.  Gray is water; white is land.  Stars denote primary pond locations, 
water sample points are labeled alpha numerically.  (c) In the LIDAR elevation 
analysis, the path of connectivity from the connected pond to the isolated pond 
appears to flow in an arc-shaped pattern.  The connectivity elevation threshold 
occurs spatially at sample points M20-M23.  Arrow denotes hypothesized 
connection path.  Large ellipse denotes elevation threshold location.  (d) Elevation 
at which each pond connected to the rest of the hydrological network of the salt 
marsh, 0.39 m was the threshold water elevation at which all ponds were connected 
(except M15 and M13).  Large ellipse corresponds with pond sample points M20-
M23.  Dotted line highlights the 0.39 m water elevation threshold. 
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Figure 2 - 10.  Salinity and 2H isotopic value of each pond versus the threshold 
water elevation at which they connected to the rest of the hydrological network. 
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For example, it is known that tidal creeks in salt marshes serve as important 

nurseries for blue crabs (Callinectes sapidus).  Inundation of these tidal creeks varies 

across the landscape depending on its topographical and hydrological features.  

Therefore, surface water connectivity has the potential to affect the availability of tidal 

creeks for nursery and dispersal of blue crabs across the salt marsh landscape.  Likewise, 

the absence of blue crabs could translate in the loss of marsh vegetation cover due to the 

proliferation of the marsh periwinkle (Littoria irrorata), an herbivorous snail whose 

populations are controlled by blue crab predation (Silliman and Bertness 2002).  The 

presence of surface connectivity in salt marshes is also relevant for metapopulation 

dynamics studies.  Transport through surface water connections is considered a 

mechanism by which wetlands can support metapopulations at regional scales 

(Leibowitz and Vining 2003).  In addition, Kudoh and Whigham (2001) showed that 

plant populations adjacent to tidal streams in a salt marsh were part of a metapopulation 

that served as a reserve of genetic variation in the system.  Again, the ability of a salt 

marsh to maintain a functional ecosystem across its structural landscape may be 

determined by the intermittent nature of the hydrologic connections between ponds, tidal 

creeks and adjacent water bodies.  

The objectives in our study were aimed at understanding surface connectivity of 

ponds within a salt marsh by answering three basic questions regarding this issue: (1) 

What is the main driver of connection events between the two primary ponds?, (2) How 

much saltwater or freshwater influence can we expect in different areas of the marsh?, 
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and (3) How do smaller, individual ponds connect among themselves and the primary 

ponds?  Regarding the first question, water level data showed the behavior of the two 

primary ponds once they were connected, an event that could also be inferred from the 

spatial distribution of isotopic values of water among the network of ponds.  However, 

none of the variables analyzed as potential drivers of connection events (wind and 

rainfall), stand out as the likely unique driver.  It is likely that water level in the 

connected pond is also affected by additional drivers not considered in this study, an 

aspect of salt marsh connectivity that could benefit from further research (for example 

oceanic eddy-driven water level changes at a regional scale, water level set up or surge 

from offshore storms, growth fault movement of the landscape).   

According to the isotope data, the influence of saltwater is stronger in the ponds 

near the connected pond, reflecting its marine source, whereas rainfall appeared to have 

a stronger influence in the ponds near the isolated side, where the less saline samples 

were also taken.  However, isotope data suggests that freshwater sources (rainfall) 

undergoes a mixing process with the waters already present in all the ponds (regardless 

of their location), possibly diluting the hypersaline ponds in the process.  Analysis of 

isotopic data proved particularly useful in the identification of freshwater sources in 

ponds where salinity data was at an intermediate scale and did not provide sufficient 

evidence to infer a direct influence of freshwater.  Water isotope analyses can benefit 

connectivity studies in coastal systems that usually rely on salinity measurements to 
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study the extent of freshwater influences by providing detailed information on 

freshwater sources and it interactions with saltwater.  

The DEM connectivity model provided valuable information on the connection 

process of the individual ponds.  The integration of the DEM model allowed us to 

determine that the elevation threshold at which all the individual ponds connected was 

0.39 m, a result that could only be inferred by the water level data gathered for the first 

objective, and that was unattainable by just obtaining water samples.  By analyzing the 

subtle elevation gradients across different areas of a wetland, connectivity studies in 

coastal systems can create detailed quantifications of hydrological connectivity across 

several scales.    

The interaction between the isolated pond and the connected pond, and their 

relation to the hydrological network connecting the smaller ponds between them, was 

quite complex.  A fine balance appears to exist between the freshwater influences across 

the landscape and the saltwater influences from the connected pond.  When the two 

primary ponds were disconnected, the isolated pond water level was primarily 

influenced by evaporation, and to a lesser degree, rainfall.  Though there was a 

correlation between water level and rainfall (R2 = 0.37 for the 24 hour interval), a 

detailed inspection of the dataset shows that this was not necessarily a causal 

relationship.  For example, considering the most intense daily rainfall event, during 

which water levels did not exceed the 0.39 m water elevation (on a single day in March), 
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the water level increase after rain was approximately 0.02 m for the isolated pond.  We 

interpret this as a response of the isolated pond to rainfall. 

The connected pond water levels were likely primarily driven by winds and 

astronomical tides.  Given a detailed inspection of the dataset, rainfall never caused 

water to rise in the connected pond.  Though the R2 values were relatively lower for the 

easterly wind as a driving factor of water rise, a detailed inspection showed that several 

of these wind events appeared causal for this pond.  Still, there were many instances 

when water rose in this pond, but there was no strong sustained easterly wind.  It is clear 

that when the connected pond water level exceeded the 0.39 m threshold value, water 

poured into the isolated pond.  This appeared to be a one-way relationship driven by the 

connected pond, as water level increases and decreases always preceded the isolated 

pond by a several hours.  It is likely that saltwater, and the species and materials 

associated with it, are introduced to the isolated pond exclusively from the connected 

pond. 

Still, there were some instances when the two ponds became connected, yet no 

rain fell and sustained, strong easterly winds were absent.  Astronomical tides, in 

combination with a weaker easterly wind tidal effect, may have increased or dampened 

the ability of the connected pond to overtop its banks and spill into the isolated pond.  

Yet, the astronomical influence appears to be small, around 0.05 m in amplitude.  A 

possible explanation for these events is that connection between the connected pond and 

the isolated pond is facilitated by the water level in the isolated pond.  Water level in the 
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isolated pond only starts to rise when the water level in the connected pond reaches the 

0.39 m threshold.  This is because when water level reaches this elevation, it starts filling 

the isolated pond until they are both at the same water level and start to behave as one 

single pond.  Hence, if the water level in the isolated pond is still relatively high (from 

previous connection events), it fills faster and the connection event occurs more quickly, 

even with less intense conditions of wind and rain.  In all of the connection events that 

could not be directly attributed to rainfall or easterly winds, water levels in the isolated 

pond were approximately 0.10 m higher than water levels preceding connection events 

directly attributed to the mentioned factors.  

Stable isotopes contributed to our understanding of connectivity by revealing the 

different relations between 18O and salinity of the two sets of ponds and the manner in 

which 2H is distributed across the landscape.  The different relation between 18O and 

salinity of the two sets of ponds is an indication of different interaction among its water 

sources.  Analysis of the 18O-salinity scatter plot of ponds M21-M45 reveal a more 

complicated scenario of freshwater and saltwater mixing that needs further research.  

The spatial distribution of 2H across the salt marsh suggests that individual ponds near 

the isolated pond were primarily influenced by rainfall at the time of sampling.  

Although water level data clearly demonstrates that water levels in the isolated pond are 

influenced either by evaporation or by spillage from the connected pond, it is important 

to view this data in the climatic context of the water sampling date (March 1, 2010).  

Measured rainfall for the site during the three months before the sampling date 
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(December 2009-February 2010) was almost double than their monthly averages.  This 

would explain the lower 2H values in individual ponds near the isolated pond and the 

absence of hypersaline conditions at the isolated pond during the sampling period.  It is 

likely that isotope and salinity values in the isolated pond and its associated individual 

ponds would have been higher if the sampling had taken place during the final days of 

June 2010, after a long period of evaporation and lack of rainfall that was preceded by a 

connection event near the end of May.  Longer-term studies in combination with 

frequent water samplings should be able to provide more information regarding this 

relation between rainfall, water level and salinity in the isolated pond.   

It is noteworthy, however, that stable isotope studies of saline surface waters 

cannot ignore the important role of salinity in isotope fractionation.  Salinity effects on 

isotope fractionation vary with temperature, salt concentration and salt composition of 

the mixture, affecting the process of isotopic enrichment during evaporation (Gat 2010).  

When salt concentration exceeds that of seawater appreciably, the enrichment process is 

reduced relative to a freshwater body evaporating under the same conditions.  This is 

primarily because atmospheric vapor pressure is reduced by an increase in salinity.  

However, given the spatial scale of our study, we can assume that salinity effects on 

fractionation were similar throughout our studied landscape and that they could account 

only for variability on samples that had considerable salinity (less than two samples had 

> 35 ppt).  Consequently, the arcing, east-to-west spatial gradient of the water isotope 

data was consistent with the connection path proposed by the LIDAR elevation model 
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and our conclusion that freshwater inputs are more influential on the west side of the 

pond network.  The fact that individual ponds M13 and M15 (the two ponds with the 

lowest salinity and the most depleted 2H values) sat above even the 0.39 m connectivity 

threshold according to the LIDAR elevation model, suggests that elevation is a 

determining factor for pond connectivity in a salt marsh.  In the case of ponds M13 and 

M15 we can infer that ponds that connect at higher elevations are less influenced by 

ocean water.   

It is important to note the possible influence of groundwater recharge as an 

explanation for the water loss in the isolated pond.  The influence of groundwater in a 

salt marsh can vary spatially or temporally, depending on the location and specific 

hydrologic conditions at the site (Wilson et al. 2011).  However, in addition to our 

observation of no apparent groundwater exchange through the use of PVC piping, the 

observed rate of water loss closely matched the estimated rates of ET for Matagorda, 

suggesting that no water was lost to groundwater recharge.  

2.6 Conclusion 

The findings presented in this paper demonstrate that the hydrology of coastal 

ecosystems can be better understood by applying integrated methods.  An integration of 

in situ hydrological data and spatial representation of water characteristics (salinity and 

isotopes ratios), along with the fact that each individual pond was analyzed through a 

hierarchical representation of the connectivity process, allowed us to inspect pond 

connectivity in detail.  For instance, the DEM model allowed us to obtain the 0.39 m 
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threshold value; however, it did not provide information about other hydrological 

aspects of the marsh, like the evaporative nature of the isolated pond or the intermittence 

of the connectivity events.  Salt marshes in dry subtropical areas represent excellent 

research models to study connectivity and its effects on ecosystem structure and function 

(Sheaves and Johnston 2008).  Our results suggest that the methods we integrated to 

study connectivity in a salt marsh can be applied to most ecosystems across different 

spatial scales.     
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3.  IMPLICATIONS OF SALTWATER INTRUSION FOR THE 

HYDROLOGIC MANAGEMENT OF PTEROCARPUS OFFICINALIS 

FORESTED WETLANDS  

3.1 Overview  

Freshwater forested wetlands in the Caribbean are often dominated by the 

leguminous tree Pterocarpus officinalis.  Deforestation and changes in land use have 

limited the extension of Pterocarpus officinalis forests to genetically isolated 

populations, primarily restricted to the coast.  Although it is well known that increased 

salinity affects important ecological functions of these wetlands, little is known about the 

hydrologic components that govern saltwater intrusion in coastal Pterocarpus officinalis 

forests.  We examined the extent of tidal forcing and saltwater influence in the 

Pterocarpus officinalis swamp of the Humacao Natural Reserve, Puerto Rico.  

Automated water level and conductivity recorders were installed across a tidal creek 

transect within the Pterocarpus officinalis forest at four different distances from the 

ocean from January 2011 to May 2012.  Across the transect, water level responded 

similarly to high rainfall events.  Still, for moderate rainfall events, water level increased 

at upstream locations only. The influence of a saltwater wedge was observed at all 

instrument locations.  However, salinity fluctuated on a 24-48 hour period in response to 

rainfall at the downstream locations, whereas it did not for the deeper parts of the forest 

further upstream.  Seasonal increases in salinity were evident at all locations, with high 
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salinity related to the dry season when both rainfall and mean sea level were low.  

During this season, a sand barrier formed at the mouth of the tidal creek, and though 

there was no overland connection to the ocean, salinity increased.  Subsequently, rainfall 

and increased outflows re-established the connection to the ocean and the saltwater 

wedge receded from the depths of the forest.  Our work demonstrates that for preventing 

saltwater intrusion into the Humacao Natural Reserve, the amount of rainfall is more 

important than the sea level or the existence of an overland hydrological connection to 

the ocean.  Our work suggests that preventing saltwater intrusion with barriers is 

unlikely to be successful for Pterocarpus officinalis forest conservation in the 

Caribbean.  Rather, upstream freshwater drainages will need to be restored to their 

former state and remnant canal networks will need to be re-graded to allow sheet flow to 

once again reach these forests. 

3.2 Introduction 

Forested wetlands are a regular feature of low-lying coastal areas in the 

Caribbean (Bacon 1990).  Mangroves dominate most of these wetlands except for 

forested areas influenced by freshwater, where the leguminous tree Pterocarpus 

officinalis (hereby Pterocarpus) is the main species.  Adapted to flooded ecosystems, 

Pterocarpus inhabits river floodplains, coastal basins and subtropical rain forests 

(Alvarez-López 1990).  Pterocarpus wetlands are now limited to small genetically 

isolated patches that are scattered throughout the Caribbean region, due to human 

disturbance and clearing (Rivera-Ocasio et al. 2006, Dulormne et al. 2009).  Although 
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the floristic composition of these wetlands has been well described by Alvarez-López 

(1990) and Migeot and Imbert (2011), these ecosystems have not received the same 

research attention as mangroves or upland rainforests (Migeot and Imbert 2011).  

In the last century, the island of Puerto Rico lost nearly all of its Pterocarpus 

forested wetland cover (Helmer 2004).  Today, the total area of Pterocarpus cover is 

only 261 hectares based on 2000 Landsat imagery classification (Gould 2007).  

Furthermore, remnant Pterocarpus wetlands in Puerto Rico are restricted to the coast, 

abutting mangrove ecosystems (Cintrón 1983).  In Puerto Rico, most of the Pterocarpus 

cover is classified as estuarine according the National Wetlands Inventory (NWI) (Table 

3-1).  The remaining stands now occur near their ecological limits in term of salinity 

(Rivera-Ocasio et al. 2007). Currently, sea level rise and associated saltwater intrusion 

are the most serious threats affecting the Pterocarpus ecosystem.  Elevated soil and 

water salinity is known to affect litter, flower and fruit production (Eusse and Aide 

1999).  Salinity also affects recruitment and growth in adults and seedlings, and even 

small changes in salinity (>1‰) reduced nodulation in the roots of seedlings (Saur et al. 

1998a, Fougnies et al. 2007, Rivera-Ocasio et al. 2007, Dulormne et al. 2009).  Still, 

Pterocarpus has some adaptations that allow the tree to tolerate and avoid lower level 

salinities (Eusse and Aide 1999).  Buttress roots create mounds of sediment that modify 

the micro-topography of the forest (Kaponen et al. 2004) and these trees accumulate Na 

in the rachis of the leaf, away from photosynthetic tissue (Medina et al. 2007).  
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Moreover, they have a shallow root system that is likely driven by a strategy to avoid 

saltwater intrusion into the lower depths of the water table (Medina et al. 2007).  

At the current rate of eustatic sea level rise and the current frequency of 

hurricanes, losses of tropical forested wetlands (Bacon 1990, Ross et al. 2009) and 

resultant impacts to the built environment (Lewsey et al. 2004) are already a major 

problem in Puerto Rico and island nations in the Caribbean.  It has been projected that 

the rate of eustatic sea level rise may further  

 

Table 3 - 1.  NWI classification of Pterocarpus cover in Puerto Rico. 

NWI wetland classification Area (ha) Pterocarpus cover (%) 

Estuarine deep water 0.00537         0.002097 
 

Estuarine and Marine wetland 255.4027         99.71783 
 

Freshwater emergent wetland 0.510524         0.199326 
 

Freshwater forested/shrub 0.206803         0.080743 

 

 

accelerate under continued global warming, due primarily to the thermal expansion of 

the ocean (IPCC 2007, Church et al. 2011). 

We do know that sea level rise will bring more salt water into Pterocarpus 

dominated ecosystems, yet we have a poor understanding of how these important 

wetlands will respond other than the prediction that they will either migrate landward or 

be lost (Brinson et al. 1995). Seasonal precipitation and freshwater inflow sources have 



 

49 

 

not yet been discussed as a potential mediator of saltwater intrusion in Pterocarpus 

forests, though they have for coastal dune plants (Greaver and Sternberg 2006, 2007, 

2010) and hardwood hammock tree species (Sternberg and Swart 1987, Ish-Shalom et al. 

1992).  An understanding of the primary forces that control the sustainability of these 

environments is critically needed.   

The primary objective of this study was to quantify the spatial and temporal 

variations of saltwater intrusion into the Pterocarpus forest of the Humacao Natural 

Reserve (HNR).  Specific research questions included: What is the seasonal nature of 

saltwater intrusion into the HNR?  What is the relation between observed patterns of 

salinity and other hydrological factors? Are there potential management strategies that 

can be used to ameliorate an increasing likelihood of saltwater intrusion due to sea level 

rise? 

3.3 Methods 

3.3.1 Study site 

The Humacao Natural Reserve (HNR) in Puerto Rico contains the largest and 

best preserved Pterocarpus forest in the United States, yet the forested stand is only 150 

ha in size (this is still over half of all its coverage in Puerto Rico, (Alvarez-López 1990, 

Gould 2007)).  Historical images of the Pterocarpus forest reveal land use changes in 

this portion of the HNR area since 1956 (Fig. 3-1).  During the first decades of the 

1900’s, most of the Pterocarpus forest in the present location of the HNR was cleared. 
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The only remaining stand is visible as dark canopy cover in the historical images.  Also, 

during this period a series of ditches and channels were constructed to drain the valley 

and plant sugar cane crops.  The forest was cut in the area immediately surrounding the 

main river meander (Fig. 3-1, 1951).  Subsequently, the crops were abandoned following 

the industrialization of Puerto Rico in the 1950’s and 1960’s.  The abandoned terrain 

was flooded periodically following intense rainfall events and some Pterocarpus re-

colonization can be observed in the exposed meanders of the river in the subsequent 

image of 1978 (Fig. 3-1).  In 1979, after Hurricane David and Tropical Storm Frederick 

flooded the abandoned fields, a series of permanent coastal lagoons formed (Fig. 3-1, 

1997).   

The HNR received its official reserve designation in 1986 after the development 

of these lagoons.  However, the community of Punta Santiago was located immediately 

between these lagoons and the ocean.  This residential area flooded repeatedly, every 

time enough runoff was accumulated in the lagoons.  Subsequently in 2000, the US 

Army Corps of Engineers (USACE) modified the Antón Ruiz River and several other 

drainages, opening up a connection between the lagoons and the ocean (Fig. 3-1, 2010), 

and allowed flood waters to flow into the ocean (Schwartz 2004).  Unfortunately, this 

has also increased salt water intrusion into the lagoons and the adjacent Pterocarpus 

forest (Ferrer 2007).  The remnant Pterocarpus area is now threatened by salt water 

intrusion due to rising global sea levels, a problem that will be exacerbated by climate 

change over the next 100 years (Rivera-Ocasio et al. 2007).   
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3.3.2 Tidal gauge sampling 

To investigate the seasonal extent of saline water intrusion into the forest we 

established a primary transect from the freshwater ‘upstream’ direction to the saltwater 

‘downstream’ direction, that ranged from an area of 100% Pterocarpus coverage to an 

area of 100% mangrove coverage across the tidal creek of the Antón Ruiz River estuary 

(Fig. 3-2).  We selected this area because it is where the freshwater outflows of the forest 

interact with the saltwater inflows from the ocean.  Four permanent stations (TG1, TG2, 

TG3, TG4) were established along this transect at different distances from the entrance 

of the estuary.  At each station, specific conductivity (µS/cm), water depth (cm), and 

temperature (0C) were recorded hourly over the course of the study period at monitoring 

wells. The study period spanned from January 1st 2011 to May 22nd 2012 on all stations 

except for TG3, which started recording date on April 20th 2011 due to instrument 

malfunction and replacement.  Monitoring wells consisted of a Schlumberger CDT-

Diver sensor (Schlumberger 2012) suspended inside a 2” diameter PVC pipe with 

horizontal slits to allow adequate flow of water through the sensor. An atmospheric 

pressure gauge was installed above water level to compensate for barometric pressure 

and convert pressure data into water-column depth above the instrument.  Specific 

conductivity readings were converted to practical salinity units (psu) according to 

Fofonoff and Millard (1983).  
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Figure 3 - 1.  Historical development of the Pterocarpus forest in the HNR (1956, 1978, 1997 and 2010).  
Additional features identified are: sugar cane crops and Pterocarpus deforestation location (1951); abandoned fields 
and Pterocarpus recovery area (1978); Las Mulas creek, coastal lagoons, Antón Ruiz River estuary and Punta Santiago 
Community location (1997); mangrove encroachment, US CoE drainage channel and study area location (2010).    
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Figure 3 -  2.  Tidal gauges location along the estuary of the Antón Ruiz River in the HNR
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Hydrographs of the time series were constructed using Sigmaplot 12.0 analysis 

software.  In order to complement our analysis we obtained daily precipitation data from 

the Juncos 1 SE National Weather Service station (NWS, station JNCP4).  Monthly 

mean sea levels were obtained from a sea level monitoring buoy in Fajardo, PR (NOAA 

station FRDP4 – 9753216).  Both of these stations are located within 30 miles of the 

HNR on the east coast of Puerto Rico. Daily rainfall and salinity data was analyzed by a 

Pearson correlation analysis for each instrument location (Minitab, Inc. 2013). 

3.4 Results 

Monthly averages of rainfall computed from the nearby Juncos station reveal the 

occurrence of the dry season during the late winter and early spring months (February-

March-April, Fig. 3-8).  Similarly, monthly averages of the Mean Sea Level (MSL) 

variations of nearby tidal stations suggest that during this time of the year MSL is at its 

lowest (Fig. 3-9).  Also of note, the rainy season in 2011 had exceptionally high amounts 

of rainfall at the Juncos station, in particular during the summer months, and August 

being recorded as the wettest month on record (National Weather Service 2011).  Sea 

levels generally increase during these months as well. 

Wetland water level response to rainfall events was consistent for all instrument 

locations, showing peaks and valleys that often corresponded to rainfall events (Figs. 3-3 

to 3-6).  However, response to particular rainfall events varied between TG1 and the 

remaining three instruments during the study period.  While TG1 showed peaks in water 

level corresponding only to rainfall events larger than 80 mm, TG2, TG3, and TG4 
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showed water level peaks corresponding to all rainfall events larger than 40 mm (Figs. 3-

3 to 3-6).  Overall, water level response to rainfall appeared highest in downstream 

instruments (TG1 and TG2).   

The overall tidal amplitude decreased with instrument distance to the mouth of 

the estuary (~30 cm (TG1) to ~5 cm (TG4)), and varied in a biweekly pattern that 

corresponds to extreme tides events (spring and ebb).  Nevertheless, there is a loss of the 

tidal signal during the dry periods of the study (Feb-Mar-April for both 2011 and 2012).  

This loss in the tidal signal is an indication of the closure of the tidal creek’s connection 

to the ocean due to the formation of a sand barrier at the outlet to the ocean.  This barrier 

is fed by sand coming from the littoral drift along the adjacent beach, and accumulates 

initially in a bar.  In the absence of sufficient estuarine outflow, this bar forms into a 

subaerial barrier (Fig. 3-7). Accordingly, periods of tidal signal loss are concluded by the 

onset of rainfall events that exceed 20 mm, for example on May 21st 2011 or March 26th 

2012 (Fig 3-3 to 3-6).  This occurs because the runoff provides the necessary force to 

remove the sandbar and re-establish the connection to the ocean.  

Salinity fluctuations varied with distance to the ocean as well.  TG1 and TG2 

showed an average salinity near 25 psu throughout most of the study period.  The pulsed 

decreases in salinity corresponded to peaks in water levels caused by rainfall events (P = 

0.012 and P = 0.039, respectively).  Once the water level peak of the corresponding 

rainfall event had passed, salinity of TG1 returned to near 25 psu within 24-48 hours 
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(Figure 3-3).  Furthermore, the TG1 hydrograph shows no evident increase in salinity 

during the drier periods typical of the dry season (February-March-April for example).   

In contrast, TG2 showed a similar decrease in salinity following rainfall events, but 

with a longer period of reestablishment to higher salinities (~ 7 days, Fig. 3- 4).  In 

addition, the most evident increases in salinity in this location occurred during periods of 

low tidal influence and the drier times of the study period (rainfall < 20 mm, dry season).  

Salinity fluctuations of TG3 were influenced by bi-weekly occurrences of extreme tides 

and seasonality of tidal amplitude.  In addition, rainfall events had minimal influence on 

changes in salinity (P = 0.295).  Although some rainfall events were linked with a 

decrease in salinity, other events were followed by short periods of increased salinity.  
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Figure 3 - 3.  Rainfall, water level, and salinity hydrograph for instrument location TG1. 
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Figure 3 -  4.  Rainfall, water level and salinity hydrograph for instrument location TG2. 
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Figure 3 -  5.  Rainfall, water level and salinity hydrograph for instrument location TG3. 
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Figure 3 -  6.  Rainfall, water level and salinity hydrograph for instrument location TG4
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Figure 3 -  7.  Subaerial sandbar forming at the mouth of the Antón Ruiz River.  Image shows incomplete 
progress, as the bar begins to form and the connection is relatively shallow.  Photo by R.J. Colón-Rivera. 
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Figure 3 -  8.  Mean monthly rainfall for the Juncos NOAA station (1931-
2011) and 2011, 2012 monthly averages. 
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Monthly Mean Sea Level East Coast of Puerto Rico
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Figure 3 -  9.  Monthly variations of Mean Sea Level on the Fajardo NOAA 
station.  
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 The most conspicuous change in TG3 salinity began after the removal of the sand 

barrier at the conclusion of the dry season 2011 was followed by a month (July 2011) of 

reduced tidal amplitude.  At this time salinity began a seasonal decrease that lasted until 

the large rainfall event in August 2011 (Fig. 3-5).  Salinity of TG4 showed no relation to 

rainfall as well (P = 0.921).  It did, however exhibit a sudden increase in salinity in the 

dry season of 2011along with a longer-term trend decrease in salinity over the study 

period (Fig. 3-6).   

3.5  Discussion 

Prior to the construction of the USACE channel, the HNR estuarine system only 

connected to the ocean on occasions of substantial rainfall and the lagoon system was 

considered oligohaline (psu >5; Schwartz 2004).  Our data reveals that the construction 

of the channel in the HNR not only caused recurrent saltwater intrusion events (Ferrer 

2007); it permanently altered the hydrology of the estuary, which now shows the 

seasonal behavior  of a saltwater wedge or “blind” estuary (Savenije 2012).  

Nonetheless, this type of estuary is commonly found in Puerto Rico and other tropical 

regions (Ewel 2010) with limited tidal range, particularly on low order stream outlets 

that drain small watersheds.  In fact, because of the estuarine location of many of the 

remaining Pterocarpus stands in Puerto Rico, our study is concerned with the inland 

propagation of the saltwater wedge on micro-tidal estuaries.   
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Pulses of freshwater inputs to these estuaries usually promote the vertical 

stratification of the water column and ease the inland progression of a saltwater wedge 

(Van der Tuin 1993).  Current understanding of this topic states that this progression is 

further enhanced by the seasonal limitation of freshwater inputs to the estuary (Van der 

Tuin 1993, Haralambidou et al. 2010).  However, the extent of this propagation is 

determined by the geomorphology of the tidal channel and can vary from site to site.    

The inland and seaward movements of the saltwater wedge in the Pterocarpus 

forest can be traced across the tidal creek transect (Fig. 3-10).  TG1 shows the constant 

presence of the wedge with an average salinity near 25 psu.  Rain or freshwater inputs, 

as observed in the water level peaks, force the wedge back towards the ocean and briefly 

decrease the salinity until it is reestablished around 25 psu.  The wedge at TG2 shows a 

similar pattern except the time to reestablish the average salinity value is of longer 

duration.  Moreover, TG2 also displays a reduction in salinity during the ebb tides, when 

tidal influence is at its lowest.  Abrupt spikes in salinity during the dry season in both 

2011 and 2012 indicate that the saltwater wedge moves well inland of this location, as 

expected.  The wedge at TG3 seems to respond to the biweekly patterns of extreme tides, 

with spikes of increased salinity related to spring tides, where tidal influence is at its 

highest.  Contrary to TG1 and TG2, salinity measurements at TG3 show longer-term 

variation unrelated to rainfall events.  At TG4, the saltwater wedge appears during the 

2011 dry season and stays relatively undiluted for the remaining of the study period.    
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In general, these results indicate that saltwater intrusion along the transect is 

dependent on the amount of freshwater input to the forest and is enhanced by tidal 

influence.  At the HNR, the dry season is the most important time of the hydrological 

cycle due to the increased chance of saltwater intrusion into the adjacent subsurface of 

the Pterocarpus forest.  Both the lowest average rainfall and lowest average sea levels 

occur during this time.  As a result, the mouth of the estuary closes due to lack of 

freshwater runoff in combination with low ocean water level, causing the saltwater 

wedge to become trapped in the tidal creek channel.  The higher density of the saltwater 

allows the wedge to penetrate inland when the pressure from the freshwater lens above 

the wedge decreases.  Consequently, as freshwater inputs decrease in the dry season, the 

water level in the tidal creek also decreases and the trapped saltwater wedge travels 

further into the tidal creek channel.  This is why the inland movement of the saltwater 

wedge appears to be at its maximum during the dry season.  During the particularly low-

rainfall dry season of 2011, the saltwater wedge was able to reach the deepest parts of 

the forest as observed by the increase in salinity recorded by TG4 during that period.  

Once it reached this location, it remained there, undiluted by the lack of rainfall or wind-

driven turbulence in the tidal creek.  This observation suggests that drought-induced 

saltwater intrusion can be expected in the inner parts of the forest.  
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Figure 3 -  10.  Conceptual representation of saltwater wedge inland 
movement as measured at different locations of the tidal creek.  Presence of the 
saltwater wedge is constant at instrument location TG1 and diminishes towards 
TG4.  Main drivers of changes in salinity also vary across the transect, with daily 
rainfall dominating salinity of TG1 and to a lesser extent TG2, which is also 
influenced by tidal exchange.  Salinity changes in TG3 respond to weekly and 
seasonal patterns of tidal influence while saltwater intrusion to TG4 appears to be 
drought induced. 
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3.5.1 Restoration and hydrological modification in the HNR 

In the case of Pterocarpus forests of the HNR, the USACE and local managers 

have tried reducing the inland migration of the salt wedge by emplacing a submerged 

barrier in the main channel.  This barrier is constructed of sand bags, and the idea is to 

block the denser saltwater from penetrating upstream.  However, the initial success of 

this approach has been limited by the destruction of these barriers by recreational boat 

transit and the direct disturbance of local anglers.  In the case of the disturbance by local 

anglers it appears that the conversion of the estuary from freshwater to mixed 

freshwater-saltwater improved the diversity of commercial species like the blue crab 

(Callinectes sapidus) and the common snook (Centropomus undecimalis), which in turn 

increased the fishing pressure at the site.   

The best and most ideal solution to prevent loss of more Pterocarpus trees would 

be to restore the historical flow of the Antón Ruiz River to the upper reaches of the 

forest, thereby increasing the freshwater discharge into the forest.  Construction 

equipment could be used to re-trench the drainage connection from its current terminus 

over to the forest, a distance of ~1.5 km (Fig. 3-11a).  This hydrological modification 

would be relatively expensive and could alter the private property of adjacent 

landowners such that it no longer floods.  However, this outcome would likely be of 

interest to the property owners considering that sugar cane is no longer the preferred 

land use. 
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A second solution would be to remove the remnant network of small canals that 

still exists in the freshwater marshes and grazing fields immediately adjacent to the 

forest (Fig. 3-11b).  These canals continue to drain these lands, interrupting the natural 

sheet flow of water moving towards the upper reaches of the forest.  A more limited, yet 

complementary approach would be to manage upstream inputs of Las Mulas, a small 

freshwater drainage that currently enters the forest.  This drainage runs down from the 

mountains and through an agricultural farm before arriving at the upper reaches of the 

forest.  As the farm uses much water for the growth of grass and ornamental plants, 

accommodations could be made for runoff to more directly enter into this drainage. 

In Puerto Rico in general, the re-establishment of Pterocarpus forests has been 

observed along limited stretches of riverine habitat that drain into estuaries, following 

the natural restoration of hydrological patterns after the abandonment of sugar cane 

plantations on the coastal zone (Lugo 2006).  In certain locations, complex watersheds 

with urban components could also provide the constant flow necessary to avoid saltwater 

intrusion during extended dry periods (Brantley et al. 2008), although probably at the 

cost of reduced water quality (Ewel 2010).   

 

 

 



 

70 

 

3.5.2 Pterocarpus forests and climate change in the Caribbean 

The main climate change-related stressors for Caribbean island nations will be 

altered rainfall patterns, increased frequency of storm events and sea level rise (IPCC 

2007).  These factors control the inputs and outputs of seawater into coastal wetlands.  

Since Pterocarpus forests are primarily established on coastal margins in Puerto Rico, 

their ability to persist in the future will be tied to the extent that freshwater inputs can 

counter-balance seawater inputs.  The general notion is that as sea level continues to rise, 

it will bring more saltwater to coastal wetlands, particularly during the dry season.  On 

coastal Pterocarpus forests that are non-riverine (e.g. coastal basin forests), sea level rise 

will first affect the wetland by increasing the water table elevation and the extent of 

storm surge events. 
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Figure 3 -  11.  Potential hydrological modification and restoration sites. 
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Sea level rise is already accelerating in the Caribbean basin (IPCC 2007), though 

the increase of sea level will not occur in a uniform manner.  Physical factors like ocean 

density (determined by temperature and salinity), gravitational forces, and 

geomorphological features of the coast influence the way sea level rise is felt on 

different locations.  Temporal variations reveal there are several annual and semiannual 

cycles, and spatial patterns show that these cycles vary through the Caribbean basin 

(Torres and Tsimplis 2012).  Similarly, it is not clear exactly how the rainfall patterns 

will be altered in the Humacao area.  Rainfall is locally variable and primarily 

orographic in nature for this basin (Scholl et al. 2009), but it can be affected by broad 

scale interactions with continental-scale climate conditions (Hopkinson et al. 2008).  

Recently, numerical models that study estuarine hydrology have evolved to incorporate 

freshwater-saltwater interactions (Langevin et al. 2005, Michot et al. 2011). However, 

direct hydrological observations of the saltwater wedge is a vital complement to the 

numerical model approach, necessary to account for local variability (Duarte et al. 

2003).    

The general assumption is that relative sea level rise will gradually increase salinity 

inputs, particularly in the area where tidal influence ends.  Although this place in the 

estuary (the upper limit of tidal influence) is already dynamic, higher sea levels will 

mean a higher extent of the highest high tide.  The case of the HNR that we present here 

suggests that the important feature is not whether tide elevation rises and directly flows 

deeper into the estuary on a particular day, but rather that it is the interaction between 
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monthly-to-yearly variations in average sea level and rainfall amount/seasonality that 

will determine the salt wedge migration, in particular for the uppermost limits of tidal 

influence.  Thus, an increasing freshwater input, whether by rainfall or human 

modification of the hydrological regime, may counter-balance the saltwater intrusion 

into Pterocarpus forests by relative sea level rise.  
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4.  SALTWATER INPUTS AND PTEROCARPUS OFFICINALIS WATER 

USE IN THE HUMACAO NATURAL RESERVE, PUERTO RICO 

4.1 Overview 

In the Caribbean, freshwater-forested wetlands dominated by Pterocarpus 

officinalis are now mostly restricted to coastal environments.  In this setting, the seasonal 

interactions of saltwater and freshwater inputs create less than ideal conditions for these 

forests to survive.  Hence, it is crucial to have a better understanding of the hydrologic 

context of these wetlands.  We used water stable isotopes (δ2H, δ18O) as natural tracers 

to determine the most important freshwater sources, and the extent of saltwater presence 

in the Pterocarpus officinalis forest of the Humacao Natural Reserve in Puerto Rico, the 

largest and best preserved of these forests in the US.  We sampled freshwater sources 

(rainfall, runoff) into the forest during a 15-month period, as well as surface water and 

woody stems from trees adjacent to the surface sample location to determine the source 

of water uptake by the trees.  In addition, we collected groundwater samples in a transect 

perpendicular to the primary tidal creek that provides a pathway for saltwater into the 

forest.  Isotopic content (δ2H, δ18O) of the surface water samples revealed that most of 

the water in the forest was derived from freshwater runoff from the Las Mulas Creek, 

but there was a seasonal change in its relative contribution to the forest hydrology.  

During the dry season, high δ values suggested the presence of runoff-derived water that 

had evaporated, as well as brackish water influences that were found east of the tidal 

creek where past deforestation created preferential pathways for this brackish water to 
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flow.  During the wet season, low δ values revealed the presence of water derived from 

recent rainfall events, although δ18O values lower that -2.0 ‰ in areas close to the tidal 

creek suggested that tidal influence was still noticeable in the area.  Groundwater data 

revealed the presence of a saltwater wedge expanding into the forest from the tidal creek.  

Nonetheless, 18O-enriched stem water suggested that Pterocarpus officinalis relies 

primarily on water accessed from unsaturated soil mounds that surround the tree and are 

subject to evaporation, as opposed to groundwater at depth.  This observation provides 

further insight to the adaptation mechanisms of Pterocarpus officinalis to survive in 

flooded ecosystems. 

4.2 Introduction 

Global climate change threatens the survival of coastal freshwater-forested 

wetlands by altering precipitation patterns and accelerating sea level rise (Day et al. 

2008).  The combination of these stressors results in increased flooding period and soil 

salinity in coastal wetlands (Snedaker 1995).  In the Caribbean, sea level rise likely will 

combine with longer dry periods to increase the overall salinity of estuarine wetlands 

(Larsen 2000, IPCC 2007).  In this region, Pterocarpus officinalis (hereby 

Pterocarpus)— the dominant species of freshwater forested wetlands (Alvarez-López 

1990, Imbert et al. 2013)— is particularly vulnerable to the long-term effects of global 

climate change (Rivera-Ocasio et al. 2007).  Physiological adaptations like a very 

shallow root system that spreads laterally (Cintrón 1983), the presence of hypertrophic 

lenticels and aerenchyma tissue (Saur et al. 1998b, Fougnies et al. 2007) and the 
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concentration of Na away from photosynthetic leaf tissue (Medina et al. 2007) allow 

Pterocarpus to withstand prolonged flooding and moderate increases in soil salinity. In 

addition, tree buttresses accumulate organic matter that create elevated microsites that 

support seedling establishment and soil aeration (Lopez and Kursar 2003).  However, 

increased soil salinity increases adult mortality rates while reducing growth, recruitment, 

and root nodulation (Rivera-ocasio et al. 2007).  Salinity also affects flower and litter 

production (Eusse and Aide 1999) and reduces colonization of beneficial arbuscular 

mycorrhizal fungi (Saint-Etienne et al. 2006, Fougnies et al. 2007).   

   For hundreds of years many of the coastal valleys in Puerto Rico were cleared 

and constantly drained to allow the cultivation of sugarcane crops.  This land use 

pressure reduced the cover of the once abundant Pterocarpus forests to small patches 

restricted to the coast (Martinuzzi et al. 2007), near the limits of their physiological 

tolerance of salinity (Rivera-Ocasio et al. 2007).  As sugar cane agriculture was 

abandoned during the industrialization of Puerto Rico in the 1950’s, there was no further 

need to maintain the pumps and channels that drained the coastal valleys.  Over time, the 

natural reestablishment of hydrologic conditions allowed for new Pterocarpus stands to 

colonize the freshwater zones of river estuaries in the island (Lugo 2006, Martínez and 

Lugo 2008). Nonetheless, this recovery is constrained by the vulnerability of 

Pterocarpus forests to saltwater intrusion in their environment.  Furthermore, 

deforestation can influence future recovery by altering the geomorphology of the 

ecosystem.  When mangrove trees are removed from an area— either by landscape-scale 
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or localized disturbances— there can be a reduction of soil elevation by the combination 

of increased peat decomposition and lack of organic matter input.  The reduction of soil 

elevation increases flooding period in the disturbed area, which subsequently reduces 

recruitment success by mangrove seedlings and the area converts from forest to open 

water (Snedaker 1995).  In undisturbed Pterocarpus forests, variations in the elevation 

of the soil and the thickness of the peat layer also influence flooding regimes and plant 

community structure (Migeot and Imbert 2011).     

The vulnerability of coastal Pterocarpus forests is predicated on the balance 

between freshwater and saltwater inputs to the wetland.  However, few studies have 

focused on the hydrology of saltwater-freshwater interactions in these ecosystems.  

Furthermore, there is no available data on Pterocarpus use of different water sources, 

although this question has been addressed for other types of vegetation from several 

coastal environments (Greaver and Sternberg 2006, Saha et al. 2010, Wei et al. 2012).  

As in these studies, we used water stable isotopes ratios (2H/1H, 18O/16O) as natural 

tracers to study the hydrologic setting of the largest Pterocarpus forest in Puerto Rico.  

In this study we aimed to answer the following questions: 1) What is the temporal 

variation and spatial extent of saltwater inputs to coastal Pterocarpus forests? 2) Is the 

seasonal influence of freshwater inputs (rainfall, runoff) able to ameliorate the presence 

of saltwater in the system? 3) What is the primary source of water used by Pterocarpus 

for transpiration, and is there any temporal or spatial variation in the use of different 

water sources?   
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4.3 Methods 

4.3.1 Study site 

Our study site is located in the Pterocarpus forest of the Humacao Natural 

Reserve (HNR), Puerto Rico.  This Pterocarpus forest is the largest in Puerto Rico (150 

ha) and its estuarine location is representative of the hydrologic conditions of the 

riverine stands on the island (Section 3).  The HNR is located in a coastal plain estuary 

formed by three interconnected valleys and drainages (Ferrer Montaño et al. 2005).  One 

of these three drainages— the Antón Ruiz River— meandered through the Pterocarpus 

forest on its way to the ocean but hydrological modifications have altered its course such 

that it now leads directly into nearby coastal lagoons (Fig. 4-1).  The lower portions of 

the river that had meandered through the forest are now composed of a primary tidal 

creek and its distributaries.  This tidal creek drains the freshwater outflow of the forest to 

the mouth of the estuary, saltwater penetrates inland via this tidal creek on periods of 

low rainfall or high tidal influence (Section 3).   

For over a century, the forest cover of the HNR valley was subsequently cleared 

for several purposes including, sugarcane cultivation, charcoal production, and pasturage 

(Schwartz 2004).  The existing Pterocarpus forest is a stand that was left untouched 

during this
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Figure 4-1.  Study area.  (A) Location of the Humacao Natural Reserve, east coast of Puerto Rico. (B) Tidal 
creek, Antón Ruiz River and Las Mulas Creek are highlighted by a blue line.  The Antón Ruiz River drains directly 
into the coastal lagoons.  Las Mulas Creek drains directly into the Pterocarpus offinicalis forest that is located 
northeast of the coastal lagoons.  Freshwater outflow is directed to the ocean through a tidal creek that also allows 
seasonal incursion of saltwater into the Pterocarpus forest.  Groundwater transect area is enclosed in white rectangle. 
(C) Close-up of groundwater transect perpendicular to the tidal creek.   
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development except for the area surrounding the tidal creek, which remained deforested 

until the 1950’s (Fig. 4-2).  This area has recovered since, forming a secondary forest 

where Pterocarpus remains the most abundant species but unlike the old-growth 

portions of the stand, understory vegetation includes salt-tolerant species like 

Acrostichum aureum and Rhizophora mangle (Alvarez-López 1990, Toledo-Rodríguez 

2013).          

Vegetation in the portions of the forest further downstream is dominated by 

Rhizophora mangle and Laguncularia racemosa on the northeast across the tidal creek, 

the palm tree Cocos nucifera (grown commercially in the past) directly to the east 

towards the coast, and herbaceous marsh to the north.  Runoff to the forest is provided 

by sheet flow from the marsh and by a perennial stream (Las Mulas Creek) that drains 

directly to the northern part of the forest (Fig. 4-1).  

As in much of the Caribbean, contrasting rainfall amounts during the dry (DS) 

and wet season (WS) mediate this interaction between upstream freshwater sources and 

the ocean.  Recorded rainfalls during the study period (National Weather Service, station 

JNCP4) show the DS occurring between January and April, and the WS from May to 

December (Fig. 4-3).   

The HNR sits in an alluvial valley with unconfined aquifer conditions (Graves 

1989).  Deep groundwater is recharged locally by rainfall at different locations in the 

valley and travels east towards the coast and is ultimately discharged into the ocean as 

subsurface flow (Veve and Taggar 1996).  At the location of the forest, the freshwater-
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saltwater interface in deep groundwater is estimated to be 120 feet below the soil. 

 During an extremely dry period (March 1984), groundwater salinity at deep wells near 

the coast was measured at 1-1.5 ppt (Graves 1989).  Although this is considered 

saltwater intrusion into the freshwater supply when accessing this supply through wells, 

its contribution to the shallow groundwater considered in this study (defined as less than 

one meter of depth) is minimal.  In addition, the Ghyben-Herzberg principle— which 

states that for every foot the water table is located above sea level there are forty feet of 

fresh groundwater — is often used to estimate the location of the freshwater-saltwater 

interface in alluvial estuaries.  Following this principle we do not expect a measurable 

contribution of the freshwater-saltwater interface to influence the salinity of the forest 

(Savenije 2012).   

In the specific locality of the Pterocarpus forest, the soils are characterized as 

swamp-marsh deposits with a shallow water table (1-2 feet).  At the scale of our study 

forest (< 2 km2 ) and at shallow groundwater depths (< 1 m of depth), salinity in the 

Pterocarpus forest soil is ultimately supplied by the nearby tidal creek, as this water 

penetrates horizontally into the soil or overland through flooding of the tidal creek.  
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4.3.2 Sampling protocol 

Possible sources of water (end-members) were collected monthly during a 15-

month period to develop a local database of isotopic data for comparison purposes.  End-

members sampled included rainfall, runoff (Las Mulas Creek), and ocean.  All water 

samples were collected in 250 ml Nalgene laboratory plastic bottles, capped tightly, 

wrapped with parafilm to prevent cap loosening, and refrigerated until analysis.   

Groundwater samples were collected along three locations on a 100 m transect 

perpendicular to the tidal creek at 10m, 30m and 100m distance from the creek (Figure 

4-1, tidal gauge transect).  At each location three groundwater sampling wells were 

established at three different depths: 30cm, 60cm and 90cm.  Sampling wells consisted 

of a 2” diameter PVC pipe with horizontal slits to allow adequate flow of water through 

the pipe at the respective sample depth.  During sampling, the wells were drained two 

times and water was allowed to flow back in.  The sample was taken on the third time 

and salinity was measured in the field using a handheld refractometer (LW Scientific, 

Inc.).  Groundwater samples were taken on April 20, June 16 and June 20 of 2011, and 

February 18 and May 21 of 2012.   
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Figure 4-2.  (A) Historical image showing deforested area in the HNR 
Pterocarpus forest in 1951. (B) Close-up of deforested area around the tidal creek.  
(C) Small channels where the tidal creek drains east (black arrows), not visible in 
recent imagery due to increased canopy cover. 

 

 

 

 

 

 

 



 

84 

 

Figure 4-3.  2011-12 Rainfall (National Weather Service, station JNCP4).  Surface and tissue water sampling 
dates are highlighted by red arrows.
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To determine if there was seasonal variation in water utilization by Pterocarpus 

trees, two sampling trips were conducted during February (DS) and May (WS) of 2012.  

During these sampling trips, surface water and tree stem samples were collected at 

random locations along the Pterocarpus forest, in the general vicinity of the groundwater 

transect (Figure 4-1) and in the previously deforested portions of the forest (Figure 4- 2) 

and is subject to both saline to freshwater conditions.  Caution was taken to sample tree 

stems from suberized, non-green tissue far from the compound leaf tip to avoid isotopic 

enrichment due to transpiration (Sternberg and Swart 1987).  Stem samples were 

collected in airtight Pyrex tubes and frozen until time of analysis.  Subsequently, water 

was extracted from the stems using cryogenic vacuum distillation (Sternberg et al. 

1991).  All water samples were analyzed using a continuous-flow pyrolysis isotope ratio 

mass spectrometry technique (TC/EA-IRMS; Delta V Isotope Ratio Mass Spectrometer; 

Thermo Scientific, Waltham, MA).  Each sample was analyzed for both hydrogen and 

oxygen isotope ratios.  Stable isotope ratios are expressed as follows:  

     

 

where Rsample represents the ratio of heavy to light isotope (here either 2H/1H or 18O/16O) 

and Rstandard is the isotope ratio of (in this case) Standard Mean Ocean Water (SMOW).  

Laboratory reference waters that have been calibrated to SMOW are used in each run for 

normalization and quality control.   
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The ratio of the heavy (less naturally abundant) to light (abundant) stable 

isotopes in the molecules of water is affected by the different phase changes of the 

hydrologic cycle (Gat 2010).  Water that undergoes evaporation becomes 

disproportionally enriched in the heavy isotopes 18O and 2H (hereby deuterium, D).  This 

process— called fractionation— creates isotopic “signatures” that can be used to trace 

the source of water samples and detect processes like evaporation by observing the 

deviation of the samples from the linear relation between δD and δ18O of meteoric 

waters described by the Global Meteoric Water Line (GMWL, Craig 1961).  Water 

uptake by the tree roots does not fractionate water, thus there is a strong correlation 

between plant stem water and water sources, creating a useful method to study changes 

in plant water use (Saha et al. 2010).  

4.4 Results 

Isotopic content of end-members resembled δD and δ18O values reported for the 

east coast of Puerto Rico (Scholl et al. 2009).  Rainfall samples varied from -6.4 to +0.6 

‰ for δ18O, and -41.9 to +13.3 ‰ for δD.  Meanwhile, runoff water collected from Las 

Mulas creek remained stable, varying from -1.9 ‰ to -2.9 ‰ for δ18O, and -15.5 to -5.1 

‰ for δD.  Average δD and δ18O ocean water was +4.79 and +0.84 ‰ respectively (Fig. 

4-4).  Overall, the average isotopic content of the end-members in the Pterocarpus forest 

hydrologic cycle are presented in Fig. 4-5.   

δ18O values of groundwater samples varied with distance from the tidal creek and 

sampling depth, although all samples remained between -2.0 and -0.8 ‰ during both the 
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DS and the WS at all sampled depths (Figs. 4-6 and 4-7).  At shallow depths, the 

influence of brackish waters on the isotopic composition of the samples decreased with 

distance from the tidal creek.  For example, at 30 cm depth the dry season samples show 

a trend towards more depleted sources of water as distance to the tidal creek increases 

(Figure 4-6).  Increased rainfall during the 2011 wet season (Fig. 4-3) made this trend 

more noticeable at depths of 30 and 60 cm (Fig. 4-7).  At 90 cm depth, δ18O values 

showed a different variation with distance, with slightly more enriched values at TG7 

than at TG8, as expected.  

Standing surface waters during the DS ranged between -2.02 and +0.42 ‰ for 

δ18O, and -7.75 to +10.25 for δD; during the WS the surface water ranged from -2.87 to -

1.52 ‰ for δ18O, and -15.36 to -3.38 ‰ for δD (Fig. 4-8).  The seasonal difference in 

these signatures corresponds to the amount of rainfall and its control on saltwater 

influence in the forest.  During both seasons, the relatively less negative δ values of 

surface water were spatially constrained to the east of the tidal creek (Fig. 4-8),  an area 

that receives most of the overflow of the tidal creek due to water pathways created by 

the deforestation of the area prior to the 1950’s (Fig. 4-2).  Likewise, surface samples 

with relatively depleted δ values are usually found outside of this area. 
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Figure 4-4.  δD vs. δ18O scatter plot of meteoric (rainfall) and runoff (Las 
Mulas Creek).  Local Meteoric Water Line (LMWL, dashed line) is calculated from 
rainfall samples.  Global Meteoric Water Line (GMWL, solid line) is shown for 
reference (Craig 1961). 
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Figure 4-5.  Hydrologic cycle of the Pterocarpus forest with isotopic content of different phases.  δD and δ18O 
values (‰) taken from Scholl et al. 2009 (vapor) and data from this study (rainfall and runoff). 
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Figure 4-6.  δ18O (‰) of dry season groundwater sampled on April 20, 2011 
(a) and February 18, 2012 (b). 
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Figure 4-7.  δ18O (‰) of wet season groundwater sampled on June 16 
(circles) & June 20, 2011(squares) (a) and May 21, 2012 (b).    
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Isotopic content of stem water showed seasonal variation similar to the surface 

water.  During the dry season, stem water ranged from -1.3 to +0.6 ‰ for δ18O, and -6.9 

to +2.5 ‰ for δD; during the wet season, stem water ranged from -3.1 to -0.8 ‰ for 

δ18O, and -29.7 to -6.9 ‰ for δD (Fig. 4-9).  These ranges of values suggest that surface 

water (derived from rainfall and runoff) is an important source in tree water uptake.  In 

addition, stem water δ values point to a water source that has undergone evaporation, as 

evidenced by the slope of the δD vs. δ18O scatterplots (Fig. 4-9).   

4.5 Discussion 

4.5.1 Saltwater inputs in the Humacao Natural Reserve, Puerto Rico 

During our field sampling efforts there was no indication of dead or dying trees 

in the areas adjacent to the tidal creek near our sample locations, except for downed trees 

after strong rainfall or wind events.  Adult trees can grow and even reproduce on areas of 

high salinity— 15 to 20 ppt— (Eusse and Aide 1999).  However, trees in these areas are 

unlikely to be replaced by their offspring because salinity reduces recruitment success 

(Rivera-Ocasio et al. 2007).  As the sea level rises, the saltwater wedge will migrate 

further inland in the channel and sideways through the forest soil, increasing the spatial 

extent of salinity-related stress (Section 3).  In addition to increased salinity, sea level 

rise can alter the flooding regime of coastal wetlands, creating an additional stress on 

estuarine vegetation.  An increase in flooding periods reduced root depth and stomatal 

conductance, and increased the root:shoot ratio on Pterocarpus seedlings in a 

greenhouse experiment (Lopez and Kursar 2003).  These physiological responses are 
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common in plants that are not tolerant to flooding; an indication that prolonged flooding 

can also stress trees that are in areas of low salinities.   

4.5.2 Pterocarpus officinalis water use 

 As an estuarine wetland, salinity in the HNR Pterocarpus forest varies by season 

and is mediated by freshwater inputs.  The important contribution of rainfall for 

Pterocarpus water use resembles ecohydrological processes in other coastal ecosystems.  

In Australia, riparian species occurring along an estuarine ecotone were shown to rely 

mostly on shallow water derived from rainfall, even during the dry season when plant 

water use was expected to shift to groundwater (Wei et al. 2012).  The contribution of 

rainwater for coastal vegetation has also been reported for  
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Figure 4-8.  Map of δ18O (‰) of surface waters sampled in the dry season (left panel) and wet season (right 
panel).    
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Figure 4-9.  δD vs. δ18O scatter plots of pool surface and tissue water for 
February 2012 (dry season) and May 2012 (wet season). 
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coastal dune plants and sea-side mangroves (Sternberg and Swart 1987, Greaver and 

Sternberg 2006).  Moreover, patterns of coastal plant water use can vary seasonally, as 

observed in the Everglades (Ewe et al. 2007).  Our results provide evidence that the high 

dependence on rainwater observed in estuarine vegetation (Wei et al. 2012) also extends 

to non-halophyte species in the Caribbean such as Pterocarpus.   

Despite evident stress related to increase flooding and salinity, Pterocarpus 

remains the most successful colonizer of flooded landscapes in the Caribbean (López 

and Kursar 2007, Migeot and Imbert 2011).  Analysis of stem water δ values can provide 

additional insights to this success.  The shallow root system of Pterocarpus trees 

concentrates most of its root biomass within 1 m of soil (Alvarez-López 1990). 

Interestingly, the range of stem δD and δ18O values is different from the range of 

groundwater measured at this depth (Fig. 4-6 and 4-7).  Instead, it appears that surface 

soil moisture is the most important water source for Pterocarpus trees, as observed by 

the similar ranges of stem and surface standing water δ values during both seasons 

(Figure 4-8).  The stem water scatter plots reveal a surface water source that is 

evaporatively enriched in the heavy isotopes, as evidenced by the regression slopes 

(Figure 4-8).  Evaporative enrichment of soil water is more likely to occur in the vadose 

(unsaturated) zone of the soil.  In the case of Pterocarpus forests with a long 

hydroperiod, these unsaturated zones are restricted to elevated microsites created by 

hummocks of organic matter with improved aeration (Lugo 1997, Koponen et al. 2004).  

Toledo-Rodríguez et al. (2013) found that Pterocarpus trees exposed to short periods of 
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flooding grew long roots that reached far from the tree.  Likewise, trees in the HNR 

Pterocarpus forest had shorter roots (Toledo-Rodríguez et al. 2013).  Downed trees in 

the HNR forest showed a high concentration of fine roots near the buttress roots (Pers. 

Obs.).  Additionally, in elevated peats soils where waterlogging is prolonged, the finer 

roots occupy the uppermost centimeters of the soil (Migeot and Imbert 2011).  

Therefore, we interpret these results as additional evidence that the shallow root system 

and the formation of mounds is an adaptation to flooded environments, and furthermore, 

that water uptake by Pterocarpus trees occurs at depths even shallower than expected 

(Fig. 4-10).  Furthermore, Eusse and Aide (1999) found Pterocarpus with high litter 

production on areas with salinity between 9 and 24 ppt, although they point out that 

salinity was measured at 60 cm.  In this case, the hypothesis that Pterocarpus water 

uptake is concentrated to very shallow depths or unsaturated portions of soil mounds can 

help explain apparent resilience of Pterocarpus to high groundwater salinity.   

4.5.3 Disturbance and climate change 

Historical landscape features of the study location seem to constrain tidal 

influence to the east of the tidal creek, where the water flow follows a preferential 

pathway only visible on historical images that show that section of the forest cleared by 

deforestation (Fig. 4-2).  The influence of these pathways is particularly noticeable in the 

DS, when freshwater inflow is close to zero and the influence of brackish water in the 

area increases (Fig. 4-7).  West of the tidal creek, freshwater dominates regardless of the 

season.  In addition to the small channels that drain the tidal creek to the deforested area 



 

98 

 

(Fig. 4-2), the flow of brackish water to the east of the tidal creek may be enabled by 

lower soil elevation at the site.  When estuarine wetlands suffer mass mortality of 

vegetation, the upper layer of peat substrate starts to decompose and collapses, reducing 

the elevation of the soil.  In basin mangrove forests impacted by hurricanes, mass 

mortality of trees caused peat collapse of about 11mm year-1 due to decomposition of 

dead root material and sediment compaction (Cahoon et al. 2003).  Peat collapse was 

also observed in lighting-created gaps in a mangrove forest (Sherman et al. 2000) and 

following mass mortality of freshwater marshes in Lousiana (DeLaune et al. 1994).  

When the elevation of the soil is reduced, the increase in water depth prevents the 

reestablishment of typical wetland vegetation (Lugo 1997).  The disturbed areas then 

converts into open water ponds (DeLaune et al. 1994) or is colonized by faster growing 

or species more tolerant to flooding (Sherman et al. 2000).  



 

99 

 

Figure 4-10.  Schematic representation of Pterocarpus forest microtopography and hypothesized water uptake 
of Pterocarpus trees during the dry season (top panel) and the wet season (bottom panel).  Tree buttress roots form 
mounds of organic matter that create the hummocks and hollows microtopography. Seasonal changes in freshwater 
inflows to the forest determine the location of the water table and the area of unsaturated soil where water is accessed 
by the trees. 
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The recovery of the deforested area of the HNR Pterocarpus forest (Fig. 4-2) 

was also influenced by salinity.  In this area, tree diameter at breast height (DBH) and 

canopy cover was lower than in other areas of the forest, while understory vegetation 

cover of salt tolerant species like the mangrove fern (Acrosticum aureum) was higher 

(Toledo-Rodríguez et al. 2013).  In this case, the soil disturbance caused by deforestation 

allowed brackish water to flood the area, altering the species composition as expected by 

the general zonation pattern for Pterocarpus forests proposed by Migeot and Imbert 

(2011).   

As global climate change advances through the remainder of the century, sea 

level will continue to rise (Nicholls and Cazenave 2010) and the weather in the 

Caribbean is expected to continue on a drying trend (Larsen 2000, IPCC 2007).  As the 

long term weather becomes drier, strong rainfall events will become more frequent 

(IPCC 2007) while hurricanes are projected to become more intense due to increased 

moisture in the atmosphere (Mousavi et al. 2010).  For riverine coastal wetlands, this 

means that annual freshwater inputs will be concentrated on single, intense-events while 

the saltwater inputs from the ocean become progressively higher.  As we have observed 

in the HNR Pterocarpus forest, human-induced disturbances aggravate the natural 

threats of global climate change.  Inland migration of coastal wetlands is limited by 

coastal development (Hopkinson et al. 2008).  In the Caribbean, rapid population growth 

and associated developments is increasing human pressure on the coast (Simpson et al. 

2012).  Anthropogenic disturbances, by themselves or in combination with natural 
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disturbances, can alter hydrological and geomorphological features of the coastal 

landscape to such extent that a shift in the state of the system is created (Lugo 2006).  

Accounting for variability of natural occurrences in coastal management can be 

challenging, but the resilience of freshwater wetlands in the Caribbean can be enhanced 

by allowing natural hydrological conditions to persist and reducing human disturbances 

that accelerate undesirable shifts in vulnerable ecosystems.              
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5.  CONCLUSION 

In the Matagorda study (Section 2), we observed that pond connectivity— a 

feature that enhances energy flow in salt marshes— is determined by an elevation 

threshold in the water level of separate water bodies within the marsh.  However, we 

were unable to clearly identify the factors that drive water levels towards the threshold 

elevation.  Instead, we conclude that a combination of factors drive the surface 

hydrology of the marsh, as suggested for other microtidal wetlands (Crase et al. 2013).  

By analyzing the results from Sections 3 and 4, along with the results of the Section 2, 

we conclude that the vulnerability of microtidal wetlands to climate change is not only 

based on the limited amount of sediments supplied by the tides, but also on the variable 

combinations between freshwater inputs and tidal exchange which in turn are influenced 

by anthropogenic disturbances.    

The results from the HNR studies (Sections 3 and 4) show that the recent 

hydrologic alterations have altered the conditions of the estuary, which now behaves as a 

saltwater wedge or “blind” estuary (Savenije 2012).  This type of estuary is commonly 

found in river outlets with microtidal conditions, like the ones found in the Caribbean 

(Miller and Lugo 2009) and the Mediterranean regions (Haralambidou et al. 2010). 

Furthermore, the results indicate that the dynamics between freshwater and saltwater 

inputs are still influenced by past disturbances to the site’s hydrology.  For example, the 

lack of channelized flow in TG4 is the result of the disconnection between the tidal creek 

and the Antón Ruiz River several decades ago.  Similarly, the concentration of tidal 
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influence in standing water east of the tidal creek is the result of past deforestation and 

eventual recovery of the area.    

A report published in 2009 by US Corp of Engineers scientists stated that “there 

is a level of uncertainty associated with the data gathered to date because it does not 

describe the conditions of the Rio Anton Ruiz outlet at the Caribbean Sea” (Weston and 

Velez 2009).  Indeed, by gathering a detailed dataset of the water level and salinity at the 

tidal creek of the Pterocarpus forest we have found that the conditions at the river outlet 

have changed dramatically since the construction of the drainage channel.  An important 

contribution of this dataset includes the observation of the seasonal movement of the 

saltwater-wedge through the Pterocarpus forest as the mouth of the river opens and 

closes.  Furthermore, we observed that excess outflows during the wet season actually 

increased the overall salinity of the system by the establishment of a well-developed 

saltwater wedge that moves inland during the dry season.  In addition, results from 

Section 4 reveal that Pterocarpus trees rely mostly on very shallow soil water for their 

metabolic processes, providing further evidence to the hypothesis that Pterocarpus 

shallow root system functions as a mechanism to cope with increased salinity in the 

system.   

Although our results are of particular interest to federal and state agencies in 

charge of the management and conservation of the HNR Pterocarpus forest, they 

contribute to our general understanding of microtidal wetland respond to climate change.  

At this site, we observed that— at any given magnitude of tidal influence— saltwater 
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intrusion into the inner parts of the forest is facilitated by lack of freshwater inputs into 

the system.  This observation is in close agreement with the hypothesis of mangrove 

forest response to climate change proposed by Snedaker (1995), which states that 

regardless of the relative elevation of the sea, reduced rainfall and runoff inputs act as 

the most important stressor.  This is particularly important for coastal wetlands in the 

Caribbean where long-term weather predictions project drier conditions.  In terms of 

current management approaches this can be interpreted in a positive context, as 

freshwater input is a variable that can be more effectively managed than sea level rise.   
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