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ABSTRACT 

The pseudo-spectral time domain (PSTD) and discrete dipole approximation (DDA) 

are two of the most popular methods to model the single-scattering properties of ice crystals 

and aerosols.  Both methods solve for Maxwell’s equations.  The PSTD method uses a 

Fourier pseudo-spectral method and a finite-difference method to compute the spatial and 

temporal derivatives of electromagnetic fields.  The DDA method uses an electromagnetic 

integral equation in the frequency domain to calculate the single-scattering properties.  We 

used a spherical model for this study because the analytical solution was given by the 

Lorenz-Mie theory.  Previous studies have found that at refractive indices between 1.2 and 

1.5, PSTD computed the single-scattering properties of spherical particles faster for large size 

parameters, while DDA was more computationally efficient at small size parameters; 

however, these previous studies did not consider absorptive cases.  The purpose of this study 

was to expand the range of refractive indices to include absorptive cases and to determine 

which method was more efficient for computing the single-scattering properties of 

atmospheric particles within set criteria.  The PSTD and DDA methods were systematically 

assessed in this study for 31 different realistic complex refractive indices. Similar to the 

previous studies, it was found that PSTD was more efficient than DDA for particles with 

large size parameters.  The results in this study were consistent with the previous studies for 

non-absorptive to moderately absorptive particles.  However, for strongly absorptive cases, 

DDA was more efficient than PSTD at all size parameters for the absorptive particles.  It was 

also determined that the efficiencies of the two methods were dependent on both the real and 

imaginary parts of the complex refractive index.  The significance of this study was to 
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improve our understanding of the capabilities of the PSTD and DDA methods for computing 

single-scattering properties. 
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NOMENCLATURE 

 

PSTD:   Pseudo-spectral time domain  

(A)DDA:    (Amsterdam) discrete dipole approximation  

E:   Electric field vector 

H:   Magnetic field vector 

Qext:   Extinction efficiency 

  :    Single-scattering albedo 

g:   Asymmetry factor  

P:   Phase matrix 

RE:     Relative error 

RMSRE:  Root mean square relative error   
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

A variety of numerical methods have been used to compute single-scattering 

properties of different types of particles.  The two methods that are assessed for this study are 

the pseudo-spectral time domain (PSTD) method and the discrete dipole approximation 

(DDA) method.  Many studies have been done for the PSTD and DDA methods to assess 

their accuracies and computational efficiencies.  The objective of this study is to 

systematically assess the accuracy and computational efficiency of these two methods for a 

wide range of realistic refractive indices of atmospheric particles.  By considering realistic 

ice particle refractive indices, we can improve our understanding of the capabilities of the 

two numerical methods.  Before we go into detail about the PSTD and DDA methods used in 

this study, we must first provide a background for computing single-scattering properties. 

Light scattering models  

Calculations for single-scattering properties can be done for many different types and 

shapes of particles.  The simplest particle that single-scattering properties are computed for is 

the homogeneous sphere.  A homogeneous sphere was used as the test particle in this study, 

because the analytical solution chosen for this study was the Lorenz-Mie theory. 

Analytical solution:  Lorenz-Mie theory 

The Lorenz-Mie theory computes the single-scattering properties for spherical 

particles by using Maxwell’s equations for electromagnetic fields.  The electromagnetic wave 

equation for Lorenz-Mie theory is derived for a homogeneous particle where the permittivity 

and magnetic permeability are constant and the field has no charges or currents.  The analysis 
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of the incident wave equation used to determine the formal scattering solution is done in 

spherical coordinates.  The parallel and perpendicular components of the scattering electric 

field vectors are used to determine the phase matrix computed from Lorenz-Mie scattering 

(Mie 1908, Liou 2002).   

Single-scattering properties 

The phase matrix transforms the incident Stokes vector into the scattering Stokes 

vector.  The Stokes vector indicates the properties of light in a system and is defined by four 

quantities known as the Stokes parameters.  The 4 Stokes parameters are:  irradiance or 

intensity of light (I); the irradiance with respect to a reference frame for linearly 

perpendicular and parallel polarized light (Q); the irradiance with respect to a reference 

frame for linearly polarized light at 45
o
 (U); and, circularly or elliptically polarized light (V) 

(Van du Hulst 1981).  The Stokes parameters are determined from the equations below:  

         
      

        (1) 

         
      

         (2) 

         
      

         (3) 

            
      

  ,       (4) 

where   
  is the complex conjugate of the parallel electric field,   

  is the complex conjugate 

of the perpendicular electric field, and i =    (Liou 2002).  The incident Stokes vector 

multiplied by the phase matrix is proportional to the scattering Stokes vector, and is defined 

by the following setup: 

     

  
  

  

  

    

  
  

  

  

  ,     (5) 
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where P is the phase matrix and the i and s subscripts indicate the incident and scattering 

Stokes parameters.  The phase matrix for a single homogeneous sphere is given as: 

      

      

      

  
  

  
  

      

       

  ,     (6) 

where P11, P12, P33, and P34 represent the components or elements of the phase matrix.  For a 

phase matrix calculated by the Lorenz-Mie theory, eight of the sixteen components remain 

and the phase elements for P21, P22, P43, and P44 are equivalent to P12, P11, -P34, and P34, 

respectively.  The P11 component is also known as the phase function (Mie 1908, Liou 2002).   

In addition to the phase matrix, light scattering models also compute the extinction 

efficiency (Qext), the single-scattering albedo (  ), and the asymmetry factor (g). The 

extinction efficiency (Qext) represents how well a particle absorbs or scatters light (Liou 

2002).  The size parameter (x = (2π·r)/λ) of a particle is a unitless variable that represents the 

relationship between a particle’s radius and the wavelength inside the particle (Thomas and 

Stamnes 1999).  Physically, the imaginary part (mi) represents the amount of absorption of 

light that passes through the particle.  If mi = 0, there is no absorption, and if mi =1, the 

particle completely absorbs the light.  The single-scattering albedo is the ratio of the 

scattering efficiency to the extinction efficiency.  The ratio helps to assess how well a 

particle absorbs light.  The absorptivity of a particle affects the phase functions and the 

efficiencies of the particle to stop or scatter light passing through the particle.  The 

asymmetry factor (g) is a ratio from -1 to 1 which represents degree of the asymmetry of the 

angular scattering by a particle (Thomas and Stamnes 1999).  If g = -1, a particle completely 

backscatters light; if g = 1, a particle completely forward scatters light; and, if g = 0, a 
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particle scatters light equally in as directions.  The Qext,   , and g are values that can be used 

to validate light scattering models.  

The Lorenz-Mie theory was used to validate the accuracy of the two numerical 

methods, PSTD and DDA, analyzed for this study.  In order to verify the accuracy of PSTD 

and DDA, the errors between the numerical solutions and the analytical solution are 

calculated for Qext and the P11 phase function.  These error calculations will be addressed in 

the methods and data section of this paper.  

Numerical methods for computing single-scattering properties 

The two numerical methods used to calculate the single-scattering properties of the 

modeled spherical particles for this study are the pseudo-spectral time domain (PSTD) and 

discrete dipole approximation (DDA).  These two methods will be compared to and validated 

by the Lorenz-Mie theory.  

Pseudo-spectral time domain method 

The pseudo-spectral time domain method is a high-order approximation that uses a 

coarse grid resolution based on a spectral method to solve Maxwell’s equations.  PSTD uses 

a second-order finite difference to compute the time derivative and has similar conversion 

methods as the Finite Difference Time Domain (FDTD) method (Liu et al. 2012a, Yang and 

Liou 1996).  Figure 1 represents the grid-space environment that the spherical test particle is 

located in and describes the computational domain of PSTD.  PSTD calculates the 

components of electromagnetic field in the center of each grid-space.  The environment 

shown in Figure 1 includes the initial wave of light begins at a point within the computational 

domain and  region between orange and blue rectangle boundaries is known as the perfectly 
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Figure 1 A cross-section of a test particle placed in the grid-space environment (based on 

Figure 1a of Yang and Liou 2000). 

 

 

matched layer (PML).  The PML condition employs an absorbing medium outside the 

computational domain of the theoretical particle in order to absorb outgoing waves scattered 

by the particle (Chen 2007).  The PSTD method differs from FDTD when computing the 

spatial derivative.   

PSTD’s spatial derivative is computed by taking the inverse fast Fourier 

transformation (IFFT) of the spectral coefficients which are computed by the FFT multiplied 

by coefficients (     ) and a filter (σ(η)).  The spatial derivative of PSTD is represented by 

the following equation (Liu et al. 2012a): 

          

  
 

 

 
             

 

 
  

      
                         

    

 
   

     , (7) 

where I, J, and K represent the components of the grid space shown in Figure 1b, N is the 

number of grid-spaces used to represent the particle shape, and n is the iteration number.  

Filters, represented by σ(η) in Equation 7, are introduced to the PSTD method in 

order to reduce Gibb’s phenomenon.  Gibb’s phenomenon is the occurrence of oscillations 

due to a numerical method’s attempt at approximating discontinuous points along a given 
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Scattering  
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function.  PSTD is capable of using different types of filters; however, most studies have 

used the truncation filter.  The filter used in this study was a truncation filter.  The 

relationship for the truncation filter is as follows:   

          
       

       

  .    (8)  

The truncation filter uses a constant ratio (ηc) as the criteria for truncating the data.  The |η| 

ratio is represented by taking the absolute value the iteration number (n) divided by one-half 

the number of grid-spaces (l).  The data points are removed for values of |η| greater than ηc 

and are kept for values of |η| less than or equal to ηc.  The truncation ratio represents the 

percentage of data that is filtered out to correct for PSTD’s approximation of phase functions 

(Hesthaven et al. 2007).   

For this study the pseudo-spectral time domain method used scheme 1 from Chen’s 

2007 PhD. dissertation to approximate single-scattering properties of spherical particles.  The 

following terms are computed and used for scheme 1:  E
s
 is the scattered electric field vector; 

H
s
 is the scattered magnetic field vector;    is the permittivity in a vacuum;     is the real part 

of the permittivity;     is the imaginary part of the permittivity; k is the wavenumber of 

incident radiation; c is the speed of light; and, n is the step number.  E
s
, H

s
,    , and     are 

dependent on I, J, and K for the iteration, but have been removed for clarity from the set of 

equations below (9-17) for the scheme of this method.  The equations below represent the x-

component of the electric field; the y and z components follow the same scheme.   

 Equation 9 represents the calculated iterations for computing the scattering electric 

field vector, and equation 9 is dependent on variables computed in Equations 10 through 17.  

In this study, the scheme used for PSTD is as follows:   
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 The pseudo-spectral time domain method used for this study uses the scheme 

presented above to approximate light scattering properties of the spherical ice particles.  

PSTD is the first of the two numerical methods used in this study for comparing 

computations of spherical ice particles to Lorenz-Mie theory.  The second numerical method 

assessed in this study was the discrete dipole approximation method.  

Discrete dipole approximation method 

The discrete dipole approximation (DDA) was developed to simulate single-

scattering properties of particles by calculating their ability to scatter and absorb 
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electromagnetic waves (Yurkin and Hoekstra 2011). DDA uses the solution of a linear 

system to determine unknown dipole polarizations:     

    
       

               ,    (18) 

where E
inc

  is the incident electric field, α is the dipole polarizability, G is a Green’s function 

known as the interaction term, and P is the polarization.  The interaction term and 

polarization values are dependent on the number of dipoles used to model a test particle. 

Once the polarizations and interaction terms are determined, the single-scattering properties 

can be computed (Yurkin and Hoekstra 2011).  

The code for DDA simulations have been modified and corrected by Hoekstra, 

Yurkin, and their teams at University of Amsterdam.  Their version of the code was named 

Amsterdam DDA or ADDA.  From this point forward the ADDA notation will be used when 

comparing this method numerically to PSTD and the Lorenz-Mie theory.  The ADDA 

method uses a grid-spacing method similar to PSTD to compute the values of the 

electromagnetic fields that determine the single-scattering properties of a spherical particle.  

The particle computed by ADDA is represented by point dipoles (Yurkin and Hoekstra 

2011).  A point dipole is a dipole that is located at a point inside a three dimensional grid-

space. The setup for the ADDA particle environment is similar to the environment shown in 

Figure 1, but it does not include the PML condition (Yurkin et al. 2007).  The number of 

dipoles present in the particle represents the spatial resolution for the ADDA simulations 

(Yurkin and Hoekstra 2009).  Now that we have introduced the PSTD and ADDA methods, 

we will discuss the procedure of this study in the next section. 
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CHAPTER II 

METHODOLOGY 

 

Methods and data 

This study assessed non-absorptive and absorptive cases of complex refractive indices 

for spherical particles.  The Lorenz-Mie theory computes the single-scattering properties of 

spherical particles.  Spherical particles were used for this study because the Lorenz-Mie was 

used as our analytical solution for comparing the computational accuracies and times of 

PSTD and DDA.  We modeled single-scattering properties of spheres using codes for PSTD 

and DDA methods and compare the values to the Lorenz-Mie theory solution for 31 different 

wavelengths between 0.2 µm and 100 µm and eight size parameters (x) from 5 to 100. 

Figures 2a and 2b represent the 31 wavelengths used to assess the comparison between the 

analytical solution and the two numerical methods used to approximate the solutions of the 

single-scattering properties of spherical particles.  Figure 2a displays the all the data from the 

Warren and Brandt 2008 dataset.  The blue points on this figure are the data points chosen for 

this study.  Figure 2b shows how the three cases are grouped together; the magenta data 

points represent case 1 data, the blue data points represent case 2 data, and the green data 

points represent case 3 data.  The dashed red lines on the mi versus wavelength graph in 

Figure 2b represent the boundaries of the case ranges mentioned previously.   

Table 1 displays the numerical values used in this for the wavelengths and their 

respective complex refractive indices separated into 4 cases.  Thirty of the wavelengths are 

split into 3 separate cases, where the real part of the refractive index (mr) varied between 

0.954 and 1.870.  The three cases divided the wavelengths into categories based on their 
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imaginary refractive indices.  The first case represented 10 wavelengths with non-absorptive 

refractive indices.  What constituted a non-absorptive or weakly absorptive case was that the 

imaginary refractive index (mi) was less than 10
-3

.   The second case represented 10 

moderately absorptive wavelengths where 10
-3

 < mi < 10
-1

.  The third case represented 10 

strongly absorptive wavelengths where mi is greater than 10
-1

.  The data in each case 

represented a wide range of wavelengths from visible to microwave wavelengths.  Most of 

the data in Case 1 represent wavelengths in the visible and near-infrared.  Cases 2 and 3 had 

a few overlapping wavelengths in the infrared and microwave wavelength ranges. The 31
st
 

data point had a wavelength larger than 100 µm, and was chosen to represent a microwave 

wavelength case with a large real refractive index and a weak to moderate absorption.  This 

extra wavelength demonstrated the difference between the other cases with similar large real 

refractive indices, but with decreasing imaginary refractive indices.   

As mentioned previously, the phase matrices of 8 different size parameters (x) at each 

of the 31 wavelengths were calculated by PSTD and ADDA simulations and then validated 

by the Lorenz-Mie theory.  The 8 size parameters chosen for this study were x = {5, 10, 20, 

30, 40, 60, 80, 100}.  This size parameter range was selected in order to show the accuracies 

and computational efficiencies of PSTD versus ADDA at both small and large values of x.  

In order to appropriately compare PSTD and ADDA, we created a set of criteria for our 

study.   
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a.  

b.  

 

Figure 2 a. Data points used for study and their mr and mi correlations.  b. Real (top) and 

imaginary (bottom) parts of the refractive indices with respect to wavelength for the 3 cases 

of this study.  This data (in black) is from the Warren and Brandt 2008 data set for ice crystal 

refractive-indices.   
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Wavelengths and complex refractive indices used in study 

Case 1 

λ 

(µm) mr mi Case 2 

λ 

(µm) mr mi Case 3 

λ 

(µm) mr 

mi 

(-1) 

mi < 10
-3

 

0.20 1.39 6.41(-11) 

 

mi < 10
-1

  

& 

mi > 10
-3

 

 

2.00 1.27 1.64(-3) 

mi > 10
-1

 

2.92 0.95 2.21 

0.30 1.33 2.00(-11) 3.73 1.39 6.67(-3) 3.04 1.13 5.54 

0.60 1.31 5.73(-9) 4.51 1.34 3.18(-2) 3.12 1.49 5.39 

0.80 1.31 1.34(-7) 5.10 1.33 1.22(-2) 12.0 1.28 4.13 

1.00 1.30 1.62(-6) 5.81 1.29 4.27(-2) 14.3 1.58 2.46 

1.27 1.30 1.35(-5) 8.70 1.28 3.65(-2) 39.6 1.22 2.85 

1.49 1.29 5.53(-4) 10.0 1.19 5.01(-2) 46.7 1.35 8.25 

1.83 1.28 1.30(-4) 20.0 1.50 6.70(-2) 62.5 1.64 3.47 

2.25 1.26 2.03(-4) 23.1 1.44 2.70(-2) 69.0 1.75 4.17 

2.58 1.21 7.39(-4) 28.6 1.34 5.12(-2) 100 1.87 1.71 

  Case 4 500 1.79 1.41(-2)   

Table 1  Selected wavelengths and complex refractive indices used for study.  The above (#) 

notation represents the exponent in scientific notation (10
#
). 

 

Validating methods 

As previously mentioned in the introduction, we calculated the relative error (RE) of 

the extinction efficiency (Qext) and the root mean squared relative error (RMSRE) of the P11 

phase function.  The RE of Qext and RMSRE of P11 were used to assess the accuracy of PSTD 

and ADDA with respect to Lorenz-Mie theory (Yurkin et al. 2007).  Our first task was to 

compute the extinction efficiency and the P11 phase functions within a certain percentage 

accuracy when compared to Lorenz-Mie theory.  We wanted to have comparable accuracies 

between the PSTD and ADDA simulations, so that we could determine whether PSTD or 

ADDA was the better choice for specific computations using time as our deciding factor.  

The method with a faster computational efficiency at each size parameter and wavelength 

would be considered as the primary method that should be used when computing the single-

scattering properties of the particles. 
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Criteria used 

  Criteria were chosen for the PSTD and ADDA to obtain similar accuracies to 

validate the numerical methods. These criteria were RE ≤ 2% for the Qext and RMSRE ≤ 30% 

for the P11 phase function when comparing each of the numerical simulations separately to 

the Lorenz-Mie theory (Liu et al. 2012b, Yurkin et al. 2007).  Figure 3a shows the averages 

of the relative error of the extinction efficiency, and Figure 3b shows the averages of the root 

mean squared relative error of the P11 phase function for the 3 different cases.  The averages 

shown in Figure 3 were computed by using the weighted average mean which removed any 

error values greater than 2% for the RE and 30% for the RMSRE.  We modified the 

parameters related to the spatial resolution to refine the approximations and error calculations 

for the PSTD and ADDA methods. 

Spatial resolution and computational time 

PSTD and ADDA use different parameters to adjust their spatial resolutions.  The 

parameter used to modify the spatial resolution for PSTD is the wavelength over the change 

in distance the light in the particle travels (λ/Δx).  The λ/Δx term uses the number of grid 

points or cells per wavelength to compute the spatial resolution (Liu et al. 2012a, Liu et al. 

2012b).  The ADDA code uses the parameter dipole per lambda (dpl) to modify the spatial 

resolution.  The dpl is the number of dipoles per wavelength present within the particle and 

refines the shape of the approximated spherical particle.  In order to meet the set criteria, the 

spatial resolution was increased; however, by increasing the spatial resolution the 

computational time would increase.   Since computational time increased with increasing 

spatial resolution, time became a factor in deciding a numerical method’s efficiency.  The 

time limit chosen was 48 hours of total wall time.  If the numerical method did not complete  
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a.  

b.  

Figure 3 a. Average relative error of Qext computed by PSTD and ADDA for the 3 cases.  

 b. Average root mean squared relative error of the P11 phase function computed by PSTD 

and ADDA. 

 

the run and converge within 48 hours running on a parallelization of 8 processors, then 

spatial resolution was modified or reduced to meet this time constraint.  If a simulation 

continued to diverge upon reducing the spatial resolution parameters, we removed the size 
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parameter from our assessment.  In addition to the computational time assessments for the 31 

wavelengths, the phase matrices of these wavelengths were compared. 

Phase matrix computation  

Graphical analysis was used to compare the phase matrices computed by PSTD and 

ADDA to the phase matrix computed by the Lorenz-Mie theory.  For the analysis of this 

study, the phase matrix elements were compared with respect to the scattering angle of the 

light (Yurkin et al. 2007).  The graphs of the scattering phase matrix elements are the result 

of how light passing through a particle interacts with the structure of the particle.  The phase 

matrices for a few absorptive and non-absorptive refractive indices from the 4 cases will be 

shown and assessed in the subsequent sections.   
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CHAPTER III 

RESULTS 

 

 The single-scattering properties of atmospheric particles mathematically represent 

how light is affected by those particles when the light and atmospheric particles interact with 

each other.  The data for this project represented a wide range of the particle sizes, 

wavelength bands, and refractive indices.  PSTD and ADDA were the two numerical 

methods used to compute the single-scattering properties. The accuracies and computational 

times of these two methods were computed and compared through a series of steps. 

Approach 

The procedure to compare PSTD and ADDA to each other and to the Lorenz-Mie 

theory began with selecting the 31 wavelengths for the study which was done based on their 

complex refractive indices.  At each wavelength, PSTD and ADDA were assessed at 8 

different size parameters.  At each size parameter, a spatial resolution was chosen and the 

simulations were run.  If the criteria (RE ≤ 2%, RMSRE ≤ 30%) were met, the spatial 

resolution was kept and later refined depending on its computational time.  If the criteria 

were not met, then the spatial resolution was adjusted accordingly.  Once the spatial 

resolutions were finalized, the phase matrix analysis and computational time assessment were 

done for the 2 methods. 

 Phase matrix analysis  

As previously stated in the methods and data section, the analysis of the phase 

matrices was done for a few examples.  Only results for 3 of the 8 size parameters will be 

shown in order to keep the results concise.  The three size parameters were 20, 60, and 100; 
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these represented a small size parameter, a moderate size parameter, and a large size 

parameter.   Additionally, only one wavelength from each of the cases was chosen to 

represent the non-absorptive / weakly absorptive, moderately absorptive, and strongly 

absorptive cases that were assessed for this study.  The wavelengths and refractive indices for 

these cases are shown below: 

Wavelengths chosen to display and analyze phase matrices 

Case Wavelength (µm) mr mi 

1 0.60 1.31 5.73·10
-9

 

2 3.73 1.39 6.67·10
-3

 

3 12.0 1.28 4.13·10
-1

 

4 500 1.79 1.41·10
-2

 

Table 2  Four wavelengths used as examples for phase matrices results. 

 

The fourth case had an imaginary refractive index similar to the weak absorption of Case 2, 

but the real refractive index was larger than the rest of the cases (1.79).  As stated previously, 

we will examine 3 of the 8 size parameters for the 4 examples.  Table 3 shows the spatial 

resolutions used to initialize the two computations of the single-scattering properties for the 4 

examples.   

Spatial resolutions of the numerical methods for the 4 example cases 

 x = 20 x = 60 x = 100 

Case PSTD ADDA PSTD ADDA PSTD ADDA 

1 20 15 15 15 10 9 

2 15 15 12 12 8 10 

3 20 15 12 12 8 10 

4 20 25 15 13 12 6 

Table 3  Spatial resolutions of PSTD and ADDA that correspond to the 4 wavelengths in 

Table 2. 

 

 

Figures 4 through 7 (on the subsequent pages) are plots of the phase matrix elements 

and their respective relative and absolute errors of the examples from Table 2.  These phase 

matrix figures were plotted with respect to the scattering angle of light.  In Figure 4, PSTD 
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and ADDA simulations correlate similarly to the Lorenz-Mie theory phase matrix elements.  

Figure 4a shows the PSTD method (red), the ADDA method (blue), and the Lorenz-Mie 

(black) theory phase matrix elements plots which contain the P11 phase functions, the P12/P11 

phase ratios which are the degree of linear polarization, the P33/P11 phase ratios, and P34/P11 

phase ratios for Case 1 (λ = 0.60 µm,  m = 1.31+5.73·10-9i), Case 2 (λ = 3.73 µm,  

m = 1.39+6.67·10
-3

i), and Case 3 (λ = 12.0 µm, m = 1.28+4.13·10
-1

i) at size parameter  

x = 20.  Figure 4b shows the relative error of the P11 phase functions, and the absolute errors 

of the P12/P11, P33/P11, and the P34/P11 phase ratios for the 3 cases.    Figure 5a and Figure 6a 

show the phase matrix elements for the 3 different cases, but for size parameters of x = 60 

and x = 100, respectively.  Just as in Figure 4b, Figure 5b and Figure 6b show the relative 

error and absolute errors for the phase matrix elements. For size parameter x = 60 and x = 

100, in Figure 5, the PSTD and ADDA simulations become more variable with respect to the 

Lorenz-Mie theory than the simulations shown in Figure 4.  In Figure 6, the phase matrix 

elements of PSTD and ADDA at x = 100 become even more variable and ADDA has less of 

a correlation to the Lorenz-Mie theory for the Case 1 and Case 2 plots.  Figure 7a shows the 

phase matrix elements for Case 4 (λ = 500 µm, m = 1.79+1.41·10
-2

i) at x = 20 (left), x = 60 

(center), x = 100 (right).  Figure 7b shows the relative errors of the P11 phase functions and 

the absolute errors of P12/P11, P33/P11, and P34/P11 ratios for the 3 size parameters of case 4.  

Figure 7 has similar increases in variability of the three size parameters to Figures 4 through 

6.  Further analyses and details of these figures will be done in the next chapter following the 

explanation of the computational times found in this study. 
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a.  

 

b.  

Figure 4 a. Phase matrix elements of three different particles for a size parameter equal to 20.  

Each wavelength represents 1 example for each of the first 3 cases. b. Errors in the phase 

matrix elements computed by PSTD and ADDA of 3 wavelengths at x = 20. 
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PSTD 
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Phase matrix elements for cases at x = 20 

Lorenz-Mie PSTD 

PSTD 

 

ADDA 

Relative and absolute errors of the phase matrix elements for cases at x = 20 
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a.  

 

 

 

b.  

 

Figure 5 a. Phase matrix elements of three different particles for a size parameter equal to 60.  

Each wavelength represents 1 example for each of the first 3 cases. b. Errors in the phase 

matrix elements computed by PSTD and ADDA of 3 wavelengths at x = 60. 
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a.  

 

 

 

b  

 

Figure 6 a. Phase matrix elements of three different particles for a size parameter equal to 

100.  Each wavelength represents 1 example for each of the first 3 cases. b. Errors in the 

phase matrix elements computed by PSTD and ADDA of 3 wavelengths at x = 100. 
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a.  

 

 

 

b.  

 

Figure 7 a. Phase matrix elements for particles at 500 microns with 3 different size 

parameters (20, 60, 100) and a weak absorptive refractive index. b. Errors in the phase matrix 

elements computed by PSTD and ADDA for Case 4. 
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Computational time 

 The computational times of the PSTD and ADDA methods were compared with each 

for each wavelength and size parameter in order to determine which method was more 

efficient.  Figure 8 shows the computational efficiency results for the wavelengths in Cases 1 

through 3.  In the figure, there is a point at each of the 8 size parameters, x = {5, 10, 20, 30, 

40, 60, 80, 100}, for the 30 wavelengths.  Each dot represented whether PSTD or ADDA was 

more efficient and whether or not both methods met the accuracy criteria of the study.  The 

solid color dots meant that PSTD was more efficient than ADDA at computing the single-

scattering properties and the white filled dots meant that ADDA was more efficient that 

PSTD.  The green-colored dots signified that both numerical methods met the accuracy 

criteria.  The red-colored dots signified that PSTD met both accuracy criteria, but ADDA 

only met one or neither criterion.  The blue-colored dots shared the same conditions as the 

red dots, but ADDA was the method that met both accuracy criteria.  The results of the 

computational time displayed on Figure 8 indicated that both PSTD and ADDA met the 

accuracy criteria for most of the data.   

The computational time results for the fourth case were not displayed in Figure 8.  

Table 3 represents the raw data computational time results for this case.  Table 3 and Figure 8 

will be assessed in the discussion of this paper.  The relationship between the computational 

time and the phase matrix analysis will also be discussed in the next chapter. 
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Figure 8 Computational efficiency and criteria validation of numerical methods. 

 

Case 4, computational time (seconds) using 8 processors 

x  5  10  20  30  40  60  80  100  

PSTD  43  209  1340  8866  8831  21807  80646  63818  

ADDA  2  87  2130  6012 10641  87906  52817  53900  

Table 4  Computational time results of the 8 size parameters for Case 4. 

 

 

 

 

 

 

 

Solid fill circle:  PSTD is more efficient, white fill circle:  ADDA is more 

efficient  Only PSTD meets criteria 

   Only ADDA meets criteria 

   Both methods meet criteria 

  

Computational efficiency of PSTD and ADDA 

with respect to wavelength and size parameter 
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CHAPTER IV 

CONCLUSION 

Discussion 

The purpose of this research was to expand the range of refractive indices measured 

to include absorptive cases and to systematically assess the accuracy and computational 

efficiency of the pseudo-spectral time domain (PSTD) and the discrete dipole approximation 

(DDA) methods in comparison to the Lorenz-Mie theory for a wide range of realistic 

refractive indices of atmospheric particles.  The realistic refractive indices were applied to 

spherical particles because our analytical solution, Lorenz-Mie theory, is known for its 

capabilities in computing the single-scattering properties of spherical particles.   

Assessing error calculations 

We now refer back to Figure 3 to evaluate and compare the relative error (RE) and 

root mean squared relative error (RMSRE) for each method in the first 3 cases.  The relative 

error averages, in Figure 3a, fluctuated with increasing size parameter in Cases 1 through 3 

for PSTD and in Case 1 for ADDA.  This was due to the variability in the input parameters.  

For Cases 2 and 3, the ADDA relative error averages decreased with increasing size 

parameter because the spatial resolution inputs for the two cases were similar at each of the 

size parameters.  Figure 3b showed that as the size parameter increased, the RMSRE 

increased.  The RMSRE increased at larger size parameters because the spatial resolution 

was decreased to compensate for the increase in computational time.  The accuracy of the 

computations at large size parameters improved because the moderate size parameters (40-

60) and larger size parameters used similar spatial resolutions. 
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Assessing phase matrices 

In the results section, Figures 4 through 7 displayed the phase matrix elements and 

their corresponding errors for the 4 wavelength examples.  Each example represented a 

different complex refractive index.  Figures 4 through 6 presented the examples’ results with 

respect to the size parameter, where Figure 4 was x = 20, Figure 5 was x = 60, and Figure 6 

was x = 100.  These three plots were formatted so that the left-side phase matrix elements 

were the results for a non-absorptive / weakly absorptive case (Case 1), the center phase 

matrix elements were the results for a moderately absorptive case (Case 2), and the right-side 

phase matrix elements were the results for a strongly absorptive case (Case 3).  Figure 7 

displayed the phase matrix elements and their errors for all 3 size parameters for the Case 4.  

Conclusions were drawn about the two methods’ effectiveness at computing single-scattering 

properties by looking at the relative and absolute errors of the phase matrix elements in these 

figures. 

For this study, x = 20 was considered a small size parameter.  Figure 4 represented 3 

sets of phase matrix elements for spherical particles with small size parameters.  The ADDA 

simulations of the phase matrix elements of the non-absorptive and weakly absorptive cases 

became more variable as the functions approached the direct back-scattering angle (180
o
).   

For the strongly absorptive case at x = 20, both the PSTD and ADDA simulations vary 

throughout the scattering angles.   

The size parameter of 60 was considered a moderate size parameter for this study.  

Figure 5 represented 3 sets of phase matrix elements for spherical particles with moderate 

size parameters.  The results showed that the relative errors of the PSTD and ADDA P11 

phase functions varied more as they approached the direct backscattering angle (180
o
) for the 
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non-absorptive case.  The REs of PSTD and ADDA P11 phase functions for the moderately 

absorptive case varied more than the non-absorptive throughout all scattering angles, but 

ADDA was more variable than PSTD when approaching 180
o
 for this Case 2 example.  The 

plot for the strongly absorptive case showed that the RE of the PSTD P11 phase function 

varied more than the ADDA P11 phase function in the forward scattering angles (0-90
o
), but 

ADDA had a smaller RE than PSTD at 180
o
 for the strongly absorptive case.   

Lastly, the phase matrix examples for a large size parameter were represented by the 

3 Cases at x = 100.  In Figure 6, the number of fluctuations of the phase matrix elements 

computed by the analytical solution and the 2 numerical methods were greater than the 

number of periodic fluctuations in the phase matrix elements of the examples at x = 20 and  

x = 60.  For the non-absorptive / weakly absorptive case, PSTD and ADDA fluctuated with 

increasing amplitude as their P11 phase functions and phase ratios approached 180
o
. For the 

weakly absorptive case, the errors in PSTD are smaller than ADDA and ADDA’s errors 

along the scattering angles are periodic. At 0
o
, the errors of the ADDA were minimal but 

increased as the scattering angles approached 45
o
.  The errors of ADDA also deflated 

between about 100
o
 and 135

o
 before they increased again closer to the direct back scattering 

angle.  The errors for the strongly absorptive case at x = 100 varied throughout the scattering 

angles, similarly to the errors for the strongly absorptive case at x = 20 and x = 60.   

Figure 7 brought together the analysis of the 3 size parameters for one specific case, 

Case 4.  Case 4 differed from the other 3 cases due to the real part of its refractive index.  

The refractive index of Case 4 was 1.79, where as Cases 1 to3 was around 1.3 to 1.4.   The 

variability of Case 4’s PSTD and ADDA results for x = 20 were similar to the other 3 Cases 

at x = 20, so it was not easily discernible which method approximated the single-scattering 
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properties more effectively.  For x = 60 and x = 100, the variability in the errors of the phase 

matrix elements decreased with increasing scattering angle toward direct back-scattering.   

In all four examples, both PSTD and ADDA did a good job of approximating the 

Lorenz-Mie theory phase matrix elements for the strongly absorptive cases in comparison to 

the moderately absorptive, weakly absorptive, and non-absorptive cases.  The oscillations in 

the phase functions increased with increasing size parameter and decreased with increasing 

imaginary refractive indices.  However, it was not clear which numerical method did a better 

job of computing the single-scattering properties of spherical particles.   

Assessing computational efficiencies of methods 

As stated previously, the computational time was used to assess whether PSTD or 

ADDA was more efficient for computing single-scattering properties of spherical particles.  

Figure 8 and Table 4 showed the computational time results for the 31 wavelengths at each of 

the 8 size parameters.  Figure 8 demonstrated whether PSTD or ADDA was efficient at 

computing the single-scattering properties.  Figure 8 also showed whether a method met the 

criteria stated in Methodology, where the relative error of the extinction efficiency was less 

than or equal to 2% and the root mean squared relative error of the P11  phase function was 

less than or equal to 30%.  Most of the data met both criteria, but for some of the data at 

larger size parameters, only one of the methods met the set criteria.  

The wavelengths in the visible to near infrared ranges had refractive indices that were 

non-absorptive to weakly absorptive.  For the non-absorptive / weakly absorptive cases, it 

was found that PSTD was more efficient at computing the single-scattering properties than 

ADDA at size parameters greater than about 50.  The infrared to microwave wavelength 

ranges contained both moderately and strongly absorptive cases.  For moderately absorptive 
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cases, it was found that ADDA was more efficient than PSTD for size parameters less than 

60.  The size parameter at which PSTD was more efficient varied from 60 to 80 in the 

infrared wavelength range.  For the strongly absorptive cases, ADDA was more efficient at 

all size parameters from 5 to 100.  

Summary 

The goals of this study were to further test and understand the capabilities of PSTD 

and ADDA numerical methods in computing single-scattering properties of atmospheric 

particles.  Most particles in the atmosphere are non-spherical.  In order to measure the 

accuracies of the two methods with respect to the Lorenz-Mie theory, spherical particles were 

used in the study.  Both the PSTD method and the ADDA method efficiently computed the 

single-scattering properties for spherical particles within the prescribed accuracy criteria 

when compared to the Lorenz-Mie theory.  From this study, it was found that the efficiencies 

of the two methods did not only depend on the real part of the refractive indices, but also 

depended on the imaginary part of the refractive indices.  Although the focus of this study 

was on atmospheric particles, the numerical analysis can be applied to biological particles.  

Further studies will need to be done to continue refining the accuracy criteria and the spatial 

resolutions for each method. 
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APPENDIX  

 

Time results (in seconds) of PSTD and ADDA simulations (8 parallel processors) 
Size Parameter (x) 5 10 20 30 40 60 80 100 

Case # WL PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA 

Case 1 1 37 2 226 3 1279 189 8401 1933 13393 3136 20486 153081 43347 29145 57725 30892 

2 40 2 271 3 2052 112 8019 1300 55223 42058 26105 27452 40035 98435 57783 0 

4 63 2 323 3 1038 83 5465 987 6667 4769 54793 73973 59559 57335 47594 154076 

5 38 3 322 2 4151 82 19790 1009 76068 62212 16364 21645 47396 113322 123256 0 

6 37 2 322 3 1715 77 10312 2043 6680 3861 16189 17986 124739 127791 22845 88713 

7 35 2 318 2 1028 68 22720 972 6551 3813 31750 49102 102019 153407 132001 83476 

8 36 1 189 3 1021 54 6705 722 6478 5839 16240 25379 34002 109147 46600 148650 

9 35 1 523 3 1023 50 22318 644 6485 3325 16022 17556 58718 69540 45970 128801 

11 35 2 157 3 1008 38 18863 492 6164 2622 24535 52582 9625 88280 46037 79669 

12 33 1 157 2 961 22 6033 205 5986 1101 8397 8671 12599 15279 43567 62936 

Case 2 10 35 2 163 7 1013 47 18990 486 2140 3117 4741 11439 10111 22724 46469 62883 

18 41 2 45 8 363 129 5325 779 1683 3861 3650 10986 4272 53112 5662 171796 

19 25 2 167 5 354 45 1701 264 1638 929 2084 2630 4002 4405 5574 11625 

20 25 2 82 5 244 67 1677 529 1629 1668 2089 5005 3986 11196 5532 37464 

21 25 2 51 4 351 28 1639 157 1600 508 2018 1593 4026 2910 5272 6144 

23 25 2 51 8 348 28 1633 162 1584 541 2001 1763 4009 2996 5257 6817 

24 25 2 49 5 510 13 1541 62 1490 187 1910 646 3815 1106 4929 2410 

29 26 2 54 14 783 57 1818 375 1764 1170 2241 3749 4545 4638 6021 8442 

30 44 2 176 15 254 94 1770 540 1716 1662 2144 4945 4337 37067 5775 57650 

31 43 3 52 8 245 35 3532 177 1633 662 2044 1913 3983 3363 5515 7867 

Case 3 13 20 2 38 3 156 8 898 33 840 90 1656 214 3108 324 4187 668 

14 24 2 39 6 165 15 972 62 915 175 1817 459 3513 745 4747 1626 

16 22 2 89 7 184 23 1141 98 1089 260 2248 815 4480 1109 5981 2845 

26 25 2 41 3 363 15 1044 63 996 177 2005 478 3995 748 5257 1631 

27 45 2 108 11 401 31 1177 132 1127 460 2348 1252 4731 1725 6326 3917 

32 43 2 40 9 169 12 1012 52 964 140 1939 385 3772 614 5111 1331 

34 43 2 41 14 176 21 1071 97 1021 291 2070 877 4014 1125 5489 3014 

37 46 2 47 18 404 29 1206 127 1162 440 2397 1077 4858 1721 6458 3868 

38 55 2 48 23 421 35 1260 169 1199 496 2481 1358 5085 2049 6753 4163 

40 48 6 32 42 436 87 1305 474 1260 1449 2649 2788 3084 4478 7303 9809 

Case 4 41 43 2 209 87 1340 2130 8866 6012 8831 10641 21807 87906 80646 52817 63818 53900 

Table A1 Computational time for PSTD and ADDA at x = {5, 10, 20, 30, 40, 60, 80, 100}. 
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Relative Errors of Extinction Efficiency results of PSTD and ADDA simulations 
 (x) 5 10 20 30 40 60 80 100 

# WL PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA 

1 1 3.4(-3) 5.3(-3) -6.3(-5) 5.5(-3) 1.6(-2) -8.4(-3) -1.6(-3) -1.0(-2) 6.9(-3) 1.4(-2) -2.2(-3) 2.0(-2) 9.9(-3) -4.6(-3) 1.1(-2) 4.7(-2) 

2 2.2(-3) 2.3(-3) 7.6(-3) 6.0(-3) 3.5(-3) 1.2(-3) 1.1(-3) 3.8(-3) -4.4(-2) -4.3(-2) -2.6(-3) 1.4(-2) -8.6(-3) 1.9(-2) -5.2(-3) - 

4 -1.5(-3) 1.1(-3) 6.7(-3) 4.3(-3) -2.8(-3) 6.9(-3) -5.7(-3) -1.3(-3) 4.8(-3) 1.0(-3) 1.2(-2) 7.2(-3) 1.6(-2) -1.1(-2) -3.4(-3) 3.4(-3) 

5 1.5(-3) 9.3(-4) 6.4(-3) 3.6(-3) -8.5(-3) -8.3(-3) -8.4(-3) 1.7(-3) -3.7(-2) -1.9(-2) 7.5(-3) -1.8(-5) -9.3(-3) -1.6(-3) 9.1(-3) - 

6 1.4(-3) 8.2(-4) 6.3(-3) 3.1(-3) -9.5(-3) -1.1(-2) 5.3(-3) 1.3(-2) 1.3(-3) 2.6(-3) -8.0(-4) -4.4(-3) -3.6(-3) 5.3(-3) 5.5(-3) 5.8(-3) 

7 1.3(-3) 6.7(-4) 6.5(-3) 2.7(-3) 4.1(-3) -4.8(-3) 1.2(-3) -5.3(-3) 3.7(-3) 1.3(-3) -1.6(-2) -2.6(-2) -4.3(-3) 5.4(-3) 1.7(-2) 2.3(-2) 

8 1.2(-3) 5.5(-4) 7.4(-3) 2.2(-3) 6.8(-3) 8.4(-5) 6.0(-4) 1.1(-3) -3.7(-3) 4.9(-3) 1.7(-3) 9.4(-3) 1.8(-2) -4.0(-3) -1.3(-2) 4.1(-3) 

9 8.4(-4) 2.0(-4) 6.8(-3) 6.6(-4) -4.0(-4) 9.8(-4) -3.5(-3) 3.2(-3) -5.7(-3) -2.0(-4) -3.3(-3) 3.3(-3) 1.2(-2) 9.1(-4) -6.5(-3) -1.1(-3) 

11 1.4(-4) -1.7(-4) 5.7(-3) -7.2(-5) 3.4(-3) 2.2(-3) -1.4(-2) 8.4(-4) -6.0(-3) -4.6(-4) 1.2(-2) 1.4(-3) 2.7(-3) -1.6(-3) -1.0(-2) 7.0(-3) 

12 -1.6(-3) -1.7(-4) 4.2(-3) -4.4(-4) -4.8(-4) 9.6(-4) -3.1(-3) -1.6(-3) -5.0(-3) -2.4(-3) 3.1(-3) -6.5(-3) 5.5(-3) 4.6(-3) -1.3(-2) 8.7(-4) 

2 10 6.6(-4) 1.0(-4) 6.7(-3) 9.4(-4) -2.4(-3) 2.8(-4) -5.5(-3) -2.3(-3) -6.8(-3) -3.8(-3) 2.2(-3) -1.7(-3) 1.2(-2) -3.5(-3) -1.4(-2) -3.1(-3) 

18 2.6(-3) 1.9(-3) 2.4(-3) -1.0(-4) 6.8(-4) -2.6(-3) 4.6(-3) -2.7(-3) 6.3(-3) 3.1(-3) 2.1(-3) 4.3(-3) 3.7(-3) 4.6(-4) 3.1(-3) 2.5(-3) 

19 1.6(-3) 1.5(-3) 5.8(-3) 2.4(-3) 4.7(-3) 1.1(-3) 3.3(-3) 7.7(-4) 8.8(-4) 4.7(-4) 5.0(-3) 3.6(-4) 5.3(-4) 2.5(-4) 3.1(-3) 2.1(-4) 

20 -6.0(-4) 8.3(-4) 8.6(-3) 2.9(-3) -1.2(-3) 2.1(-3) 2.7(-3) 8.6(-4) 1.7(-3) 3.1(-4) 3.8(-3) 6.5(-5) -6.1(-5) 4.6(-4) 4.1(-3) 1.9(-4) 

21 1.1(-3) 9.0(-4) 3.8(-3) 1.8(-3) 6.0(-3) 6.2(-4) 3.5(-3) 5.1(-4) 1.6(-3) 4.2(-4) 5.0(-3) 2.3(-4) 5.5(-5) 1.7(-4) 3.8(-3) 1.3(-4) 

23 8.6(-4) 7.8(-4) 4.6(-3) 1.3(-3) 5.9(-3) 6.2(-4) 3.4(-3) 4.1(-4) 1.3(-3) 2.3(-4) 4.3(-3) 2.6(-4) -5.3(-4) 1.4(-4) 3.2(-3) 9.7(-5) 

24 4.0(-4) 2.1(-4) 3.5(-3) 2.4(-4) 3.1(-3) 2.0(-4) 4.3(-3) -6.5(-5) 2.3(-3) -7.1(-5) 6.4(-3) 4.5(-7) 1.7(-3) 7.2(-5) 3.6(-3) 2.4(-5) 

29 6.0(-3) 3.0(-3) 2.0(-3) 1.7(-3) 2.5(-3) 1.6(-3) 3.5(-3) 1.0(-3) 1.2(-3) 6.2(-4) 5.0(-3) 5.0(-4) 7.7(-5) 4.2(-4) 3.3(-3) 2.9(-4) 

30 7.6(-3) 1.7(-3) 5.3(-3) 2.7(-3) 3.4(-3) 9.9(-4) 3.4(-3) 3.2(-4) 3.5(-4) 5.0(-4) 4.5(-3) 5.8(-4) -2.5(-4) 3.0(-4) 3.5(-3) 2.8(-4) 

31 -3.0(-4) 1.5(-3) 5.9(-3) 1.9(-3) 5.2(-3) 6.7(-4) 3.4(-3) 7.7(-4) 1.3(-3) 3.8(-4) 4.8(-3) 2.3(-4) 9.3(-4) 2.2(-4) 3.2(-3) 1.6(-4) 

3 13 3.5(-3) -4.0(-4) 1.7(-3) 1.1(-4) 1.9(-5) -1.6(-4) 1.7(-4) -1.8(-4) -6.8(-4) -2.3(-4) 4.9(-3) -5.7(-5) -5.0(-4) -2.0(-4) 1.3(-3) -3.2(-4) 

14 3.4(-3) -2.2(-3) -4.9(-5) -1.4(-3) 3.7(-3) -1.2(-3) 4.1(-3) -8.9(-4) -1.2(-3) -8.4(-4) 1.4(-3) -5.0(-4) -1.6(-3) -4.7(-4) 2.3(-3) -4.5(-4) 

16 7.6(-3) 1.6(-3) 4.7(-3) 1.3(-4) 4.5(-3) -1.0(-4) 3.7(-3) -2.4(-4) 3.2(-4) -1.9(-4) 4.4(-3) -2.3(-4) 2.6(-4) -2.7(-4) 2.3(-3) -2.6(-4) 

26 5.6(-3) 7.8(-5) 3.8(-3) -1.1(-4) 1.8(-3) -4.6(-4) 2.0(-3) -1.6(-4) 1.4(-4) -4.6(-5) 2.6(-3) -2.4(-4) -7.3(-4) -2.5(-4) 3.1(-3) -2.0(-4) 

27 6.5(-3) 3.5(-3) 4.8(-3) 1.9(-3) 2.7(-3) 1.4(-3) 3.4(-3) 9.3(-4) 1.2(-3) 5.6(-4) 3.6(-3) 3.7(-4) -1.6(-4) 3.1(-4) 3.5(-3) 1.8(-4) 

32 2.4(-3) 4.8(-4) 4.2(-3) 9.2(-5) 2.4(-3) 3.8(-5) 4.9(-3) 1.7(-4) 3.5(-3) -6.5(-5) 2.9(-3) -9.8(-5) 1.2(-3) -5.2(-5) 2.6(-3) -1.2(-4) 

34 2.4(-3) -3.0(-3) 9.9(-4) -1.8(-3) 1.8(-3) -2.4(-3) 8.4(-4) -1.6(-3) -1.1(-3) -1.3(-3) 3.6(-3) -1.2(-3) -1.2(-3) -9.4(-4) 1.1(-3) -7.6(-4) 

37 7.1(-3) 4.2(-3) 4.4(-3) 1.9(-3) 2.7(-3) 1.3(-3) 3.9(-3) 8.1(-4) 1.0(-3) 4.9(-4) 4.3(-3) 2.9(-4) 4.5(-4) 1.9(-4) 3.4(-3) 1.1(-4) 

38 8.4(-3) 5.6(-3) 5.7(-3) 2.2(-3) 2.9(-3) 1.7(-3) 4.3(-3) 9.9(-4) 2.3(-3) 6.0(-4) 4.6(-3) 3.2(-4) 3.1(-4) 2.1(-4) 3.7(-3) 1.1(-4) 

40 3.8(-3) 5.4(-3) 6.3(-3) 3.6(-3) 3.6(-3) 3.1(-3) 4.5(-3) 2.0(-3) 2.0(-3) 1.4(-3) 4.7(-3) 1.0(-3) 2.7(-3) 8.2(-4) 4.3(-3) 5.9(-4) 

4 41 -1.5(-2) -1.9(-2) 4.8(-3) 1.5(-2) -8.0(-4) -3.5(-3) -4.5(-3) -2.0(-3) -7.1(-4) -2.0(-3) 3.1(-3) -5.5(-4) 1.2(-2) -6.4(-4) -1.1(-2) 8.3(-3) 

Table A2  Relative errors of the extinction efficiency for PSTD and ADDA. 
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Root Mean Squared relative error for size parameters of PSTD and ADDA simulations 

 (x) 5 10 20 30 40 60 80 100 

# WL PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA PSTD ADDA 

1 1 8.2(-3) 7.2(-2) 6.3(-2) 1.5(-1) 1.8(-1) 1.5(-1) 1.3(-1) 1.2(-1) 2.4(-1) 1.7(-1) 1.7(-1) 2.8(-1) 2.1(-1) 4.3(0) 2.4(-1) 5.9(0) 

2 9.4(-3) 5.8(-2) 1.7(-2) 4.2(-2) 1.2(-1) 6.3(-2) 1.3(-1) 6.5(-2) 3.9(-1) 3.8(-1) 1.9(-1) 2.8(-1) 1.7(-1) 3.1(-1) 2.9(-1) - 

4 1.6(-2) 4.7(-2) 2.7(-2) 5.0(-2) 1.5(-1) 9.3(-2) 1.2(-1) 6.7(-2) 7.2(-2) 6.5(-2) 2.6(-1) 2.8(-1) 2.1(-1) 4.8(-1) 2.4(-1) 4.0(-1) 

5 1.0(-2) 4.5(-2) 2.3(-2) 5.1(-2) 1.3(-1) 1.0(-1) 1.6(-1) 7.7(-2) 8.8(-1) 1.7(0) 1.7(-1) 1.8(-1) 3.5(-1) 4.2(-1) 2.2(-1) - 

6 1.1(-2) 4.4(-2) 2.1(-2) 5.3(-2) 1.2(-1) 1.0(-1) 2.2(-1) 1.8(-1) 1.0(-1) 8.9(-2) 1.7(-1) 1.9(-1) 8.9(-1) 7.9(-1) 2.7(-1) 3.7(0) 

7 1.1(-2) 4.3(-2) 1.9(-2) 5.5(-2) 1.6(-1) 1.0(-1) 1.9(-1) 1.2(-1) 8.7(-2) 7.7(-2) 2.6(-1) 3.5(-1) 3.3(-1) 1.2(0) 4.5(-1) 2.0(0) 

8 1.1(-2) 4.1(-2) 1.6(-2) 5.7(-2) 9.1(-2) 6.9(-2) 1.6(-1) 5.5(-2) 1.3(-1) 1.4(-1) 1.6(-1) 1.7(-1) 2.8(-1) 4.2(-1) 2.0(-1) 2.8(-1) 

9 1.1(-2) 3.9(-2) 1.8(-2) 6.3(-2) 7.9(-2) 5.2(-2) 1.0(-1) 9.3(-2) 2.0(-1) 7.3(-2) 2.0(-1) 1.5(-1) 2.3(-1) 2.9(-1) 2.7(-1) 4.7(-1) 

11 1.1(-2) 3.5(-2) 2.3(-2) 7.5(-2) 5.5(-2) 4.5(-2) 1.5(-1) 1.4(-1) 1.3(-1) 6.6(-2) 2.8(-1) 2.0(-1) 2.9(-1) 2.5(-1) 3.0(-1) 3.2(-1) 

12 1.2(-2) 3.5(-2) 1.9(-2) 5.0(-2) 2.7(-2) 4.0(-2) 5.7(-2) 4.3(-2) 1.3(-1) 6.2(-2) 1.8(-1) 1.4(-1) 3.0(-1) 1.0(-1) 1.5(-1) 1.5(-1) 

2 10 1.1(-2) 1.4(-2) 1.9(-2) 2.2(-2) 6.6(-2) 4.4(-2) 6.5(-2) 7.5(-2) 2.0(-1) 1.3(-1) 2.0(-1) 2.0(-1) 2.1(-1) 2.6(-1) 1.8(-1) 3.7(-1) 

18 3.1(-2) 2.1(-2) 1.8(-1) 3.4(-2) 9.2(-2) 1.1(-1) 2.4(-1) 1.0(-1) 2.1(-1) 1.6(-1) 1.2(-1) 2.6(-1) 2.5(-1) 3.0(-1) 2.1(-1) 3.6(-1) 

19 1.6(-2) 2.3(-2) 1.6(-2) 2.1(-2) 5.6(-2) 6.4(-2) 3.2(-2) 7.1(-2) 4.0(-2) 5.4(-2) 5.5(-2) 6.6(-2) 6.7(-2) 9.1(-2) 1.0(-1) 1.3(-1) 

20 1.4(-2) 1.8(-2) 1.7(-2) 2.6(-2) 1.5(-1) 6.0(-2) 1.6(-1) 8.4(-2) 1.2(-1) 8.4(-2) 1.9(-1) 1.5(-1) 1.2(-1) 1.7(-1) 1.2(-1) 1.8(-1) 

21 1.0(-2) 1.5(-2) 2.9(-2) 3.3(-2) 4.6(-2) 6.3(-2) 2.4(-2) 7.2(-2) 3.6(-2) 5.1(-2) 5.6(-2) 6.4(-2) 7.1(-2) 9.3(-2) 1.2(-1) 1.3(-1) 

23 1.0(-2) 1.5(-2) 3.1(-2) 2.3(-2) 4.5(-2) 6.0(-2) 3.3(-2) 6.9(-2) 3.8(-2) 4.9(-2) 6.5(-2) 6.6(-2) 7.6(-2) 9.3(-2) 1.0(-1) 1.3(-1) 

24 2.3(-2) 1.7(-2) 7.8(-2) 3.5(-2) 3.5(-2) 6.0(-2) 3.3(-2) 7.4(-2) 3.8(-2) 5.9(-2) 5.4(-2) 6.7(-2) 7.0(-2) 9.7(-2) 1.0(-1) 1.4(-1) 

29 3.8(-2) 3.2(-2) 3.5(-2) 3.4(-2) 2.2(-2) 8.6(-2) 2.2(-2) 7.3(-2) 3.5(-2) 4.7(-2) 5.6(-2) 6.3(-2) 6.8(-2) 8.6(-2) 1.1(-1) 1.3(-1) 

30 3.4(-2) 1.0(-2) 2.7(-2) 2.6(-2) 7.7(-2) 8.8(-2) 4.3(-2) 9.2(-2) 4.2(-2) 1.2(-1) 6.8(-2) 7.0(-2) 6.9(-2) 9.1(-2) 1.1(-1) 1.3(-1) 

31 4.6(-2) 2.2(-2) 2.2(-2) 2.3(-2) 6.1(-2) 8.8(-2) 2.2(-2) 7.2(-2) 3.5(-2) 4.8(-2) 5.4(-2) 6.4(-2) 6.4(-2) 9.1(-2) 9.5(-2) 1.3(-1) 

3 13 5.4(-2) 1.9(-2) 9.3(-2) 3.6(-2) 5.7(-2) 5.8(-2) 3.9(-2) 6.9(-2) 4.3(-2) 4.3(-2) 6.5(-2) 5.9(-2) 6.5(-2) 8.8(-2) 1.0(-1) 1.2(-1) 

14 3.3(-2) 2.2(-2) 6.1(-2) 3.1(-2) 5.8(-2) 5.3(-2) 4.0(-2) 6.0(-2) 4.7(-2) 4.3(-2) 8.1(-2) 5.6(-2) 7.4(-2) 7.7(-2) 1.1(-1) 1.2(-1) 

16 4.6(-2) 3.4(-2) 4.4(-2) 3.4(-2) 5.9(-2) 5.9(-2) 2.9(-2) 6.4(-2) 5.0(-2) 4.6(-2) 6.2(-2) 6.1(-2) 6.7(-2) 8.3(-2) 1.1(-1) 1.3(-1) 

26 3.4(-2) 2.7(-2) 2.7(-2) 3.8(-2) 2.7(-2) 5.9(-2) 4.2(-2) 6.4(-2) 5.5(-2) 4.5(-2) 8.8(-2) 5.8(-2) 6.6(-2) 8.2(-2) 9.8(-2) 1.3(-1) 

27 2.0(-2) 3.6(-2) 3.1(-2) 3.3(-2) 2.5(-2) 6.4(-2) 2.3(-2) 6.7(-2) 4.3(-2) 4.6(-2) 7.7(-2) 6.1(-2) 6.7(-2) 8.3(-2) 1.0(-1) 1.3(-1) 

32 2.5(-2) 2.4(-2) 3.6(-2) 1.2(-2) 3.8(-2) 6.3(-2) 4.5(-2) 6.7(-2) 4.1(-2) 4.5(-2) 8.9(-2) 5.9(-2) 6.4(-2) 8.5(-2) 1.0(-1) 1.3(-1) 

34 2.3(-2) 2.9(-2) 4.0(-2) 1.7(-2) 5.9(-2) 5.5(-2) 3.8(-2) 6.2(-2) 5.0(-2) 4.8(-2) 6.7(-2) 6.2(-2) 7.3(-2) 8.0(-2) 1.2(-1) 1.3(-1) 

37 2.3(-2) 4.0(-2) 4.1(-2) 1.3(-2) 3.0(-2) 6.3(-2) 3.0(-2) 6.6(-2) 4.5(-2) 4.7(-2) 6.5(-2) 6.2(-2) 6.4(-2) 8.3(-2) 1.0(-1) 1.3(-1) 

38 2.5(-2) 4.4(-2) 4.4(-2) 1.8(-2) 2.4(-2) 6.3(-2) 2.9(-2) 6.6(-2) 4.3(-2) 4.8(-2) 6.1(-2) 6.3(-2) 6.4(-2) 8.4(-2) 1.2(-1) 1.4(-1) 

40 3.5(-2) 3.2(-2) 4.5(-2) 2.3(-2) 2.5(-2) 6.9(-2) 2.3(-2) 6.9(-2) 3.9(-2) 5.1(-2) 6.8(-2) 6.5(-2) 1.0(-1) 8.2(-2) 1.2(-1) 1.4(-1) 

4 41 5.4(-2) 1.9(-1) 2.9(-2) 1.5(-1) 8.2(-2) 2.0(-1) 7.0(-2) 2.4(-1) 9.4(-2) 4.2(-1) 2.4(-1) 6.8(-1) 2.4(-1) 4.6(-1) 1.3(-1) 7.0(-1) 

Table A3  Root mean squared relative errors of the P11 phase functions for PSTD and ADDA. 


