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ABSTRACT 

The Eagle Ford play in south Texas is currently one of the hottest plays in the United 

States. In 2012, the average Eagle Ford rig count (269 rigs) was 15% of the total US rig 

count. Assessment of the oil and gas resources and their associated uncertainties in the 

early stages is critical for optimal development.  The objectives of my research were to 

develop a probabilistic methodology that can reliably quantify the reserves and resources 

uncertainties in unconventional oil and gas plays, and to assess Eagle Ford shale oil and 

gas reserves, contingent resources, and prospective resources. 

 

I first developed a Bayesian methodology to generate probabilistic decline curves using 

Markov Chain Monte Carlo (MCMC) that can quantify the reserves and resources 

uncertainties in unconventional oil and gas plays. I then divided the Eagle Ford play 

from the Sligo Shelf Margin to the San Macros Arch into 8 different production regions 

based on fluid type, performance and geology. I used a combination of the Duong model 

switching to the Arps model with b = 0.3 at the minimum decline rate to model the linear 

flow to boundary-dominated flow behavior often observed in shale plays. Cumulative 

production after 20 years predicted from Monte Carlo simulation combined with 

reservoir simulation was used as prior information in the Bayesian decline-curve 

methodology. Probabilistic type decline curves for oil and gas were then generated for 

all production regions. The wells were aggregated probabilistically within each 

production region and arithmetically between production regions.  
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The total oil reserves and resources range from a P90 of 5.3 to P10 of 28.7 billion barrels 

of oil (BBO), with a P50 of 11.7 BBO; the total gas reserves and resources range from a 

P90 of 53.4 to P10 of 313.5 trillion cubic feet (TCF), with a P50 of 121.7 TCF. These 

reserves and resources estimates are much higher than the U.S. Energy Information 

Administration’s 2011 recoverable resource estimates of 3.35 BBO and 21 TCF. The 

results of this study provide a critical update on the reserves and resources estimates and 

their associated uncertainties for the Eagle Ford shale formation of South Texas.  
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1. INTRODUCTION  

 

1.1. Introduction of Eagle Ford Shale Play 

U.S. oil production grew more in 2012 than any other year in the history of the domestic 

oil industry. Daily crude output averaged 6.474 million barrels of oil per day (BOPD) in 

2012, up a record 826,000 BOPD from 2011 (Bird 2013). Within the 826,000 BOPD, 

more than a quarter of it comes from the Eagle Ford shale oil production, increasing by 

252,698 BOPD, from 128,619 BOPD in 2011 to 381,317 BOPD in 2012 (Fig. 1.1). The 

drilling activities in the Eagle Ford shale were as exciting as the production increase. 

During 2012, the average rig count in the Eagle Ford was 269, compared with 1,809 in 

the United States and 3,461 in the world.  

 

Geographically, the Eagle Ford play is 50 miles wide and 400 miles long, and covers 23 

counties in South-Central Texas. The Eagle Ford play is bracketed among the U.S. – 

Mexico border, the Sligo Shelf Margin, and the San Macros Arch (Fig. 1.2). 

Geologically, the Eagle Ford shale consists of Cretaceous sediments that are the source 

rock for the Austin Chalk formation (Fig. 1.3). Depth of the Eagle Ford formation ranges 

from 2,500 to 14,000 ft, while the thickness ranges from 120 to 350 ft. The Eagle Ford 

shale has high carbonate content and low clay content, which makes it more brittle and 

easier to stimulate through hydraulically fracturing compared with other shale plays 

(Pope et al. 2012). The Eagle Ford shale has been developed play wide since 2008 using 

horizontal wells with multi-stage hydraulic-fracture treatments. The hydrocarbons being 
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produced from the Eagle Ford range from dry gas to gas condensate to volatile oil to 

black oil. 

 

It is critical to evaluate the reserves and resources early for optimal development. 

McKinney et al. (2002) stated that suboptimal development plans can result in potential 

losses of 50% in the asset value. However, the permeability in the Eagle Ford shale is 

normally tens or hundreds nanodarcies  and yields long transient-flow periods, which 

complicate production forecasting and reserves estimation. In addition to the extremely 

low matrix permeability, there are other challenges associated with forecasting 

production and estimating reserves from hydraulically fractured horizontal wells in shale 

gas reservoirs. First, multistage fracture treatments in shale reservoirs do not create 

conventional single bi-wing planar cracks; instead, they create a complex fracture 

network that exhibits long and wide fracture fairways. Second, there are also natural 

fractures in shale, which can play an important role in formation of hydraulic fracture 

geometry and depletion of the reservoirs. Third, adsorbed gas contributes a significant 

fraction of total original gas in place (Tian et al. 2013); however, the impact on EUR and 

production is not well understood. Fourth, the history of drilling horizontal wells in the 

Eagle Ford shale is relatively short, with first production from these wells in 

2008.Therefore, long-term production performance and decline characteristics are not 

clear for hydraulically fractured horizontal wells in this shale reservoir. As a result, there 

are significant uncertainties associated with the Eagle Ford shale reserve and resource 

estimation that need to be reliably quantified.  
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Fig. 1.1— Railroad Commission of Texas (2013) reported Eagle Ford shale average 

daily oil production increases significantly from 2008 to 2013 
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Fig. 1.2— The Eagle Ford play in the U.S. side is bracketed among the U.S. – 

Mexico border, the Sligo Shelf Margin, and the San Macros Arch 
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Fig. 1.3— Geologic Column of south Texas shows the Eagle Ford formation is in 

upper Cretaceous age 

 

1.2. Status of The Question 

EIA (2011) estimated the resources of the Eagle Ford shale to be 21 TCF of gas and 3.35 

BBO (billion barrels of oil). In Dong et al.’s (2013) estimation,  the technically 

recoverable resources in the dry-gas window range from P90 of 20 TCF to P10 of 182 

TCF, with a P50 of 82   TCF of gas. Although I cannot conclude which estimates are the 

most accurate, I can conclude that there is significant uncertainty associated with the 

estimation of Eagle Ford resources. McVay and Dossary (2012) stated that typical 

overconfidence (50%) and moderate amounts of optimism (50%) can result in an 

expected disappointment of 30-35%. As a result, it is critical to reliably quantify the 



 

6 

 

reserve and resource uncertainties in large unconventional plays like the Eagle Ford 

shale.   

 

Lee and Sidle (2011) listed the most common methods to estimate reserves in 

unconventional plays and their associated strengths and limitations. Reservoir-simulation, 

type-curve, and decline-curve analyses are considered the most useful methods in 

estimating reserves.  

 

Since 2008, several reservoir simulation studies of the Eagle Ford shale have been 

published (Bazan et al. 2010; Honarpour et al. 2012). Within these studies, sensitivity 

analyses have been performed to identify the most influential reservoir properties for oil 

and gas production. However, the production forecasts were only compared with 

production of a couple of individual wells but not with the production of all the wells, so 

the results cannot be used to evaluate field-level reserves. Fan et al. (2011) performed an 

extensive production data analysis that covers the oil, condensate, and gas windows. 

However, their production analysis only includes performance indicators, such as best 

month or best 3 consecutive months, and does not include long-term forecasts. Dong et 

al. (2013) performed Monte Carlo simulation with reservoir simulation to forecast 

production and also to quantify reserves uncertainty. However, their work was 

constrained within the dry gas window.     
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Arps’ (1945) decline curve is one of the most dominant methods for reserves and 

resources assessment in unconventional reservoirs such as Eagle Ford shale. However, 

because of the low permeability and long-term transient flow, production data from 

hydraulically fractured horizontal wells in shale oil and gas reservoirs often exhibit Arps 

decline model exponents, b, significantly greater than one, indicating transient flow, to 

which conventional decline curve analysis does not apply without modification. Due to 

the combination of long transient-flow periods and relatively short production histories, 

only a small fraction of the hydraulically fractured horizontal shale oil and gas wells 

have reached a boundary-dominated flow regime for which the Arps decline model is 

appropriate and from which a reliable production forecast can be obtained. 

 

Several new decline curve models have been developed to estimate reserves in 

unconventional reservoirs. Ilk et al. (2008) first introduced the power-law decline curve 

to model the decrease in the decline exponent b with time. However, the model has an 

extra parameter, and the solution is often non-unique. Valko and Lee (2010) introduced 

the stretched-exponential-production-decline (SEPD) model that changes from transient 

flow to boundary-dominated flow smoothly. This model has been adapted to estimate 

reserves and resources, but it can often underestimate the reserves with limited 

production data. Duong (2011) developed a model based on linear flow, which is widely 

observed in unconventional reservoirs. However, since the Duong model assumes linear 

flow for the entire production period, it can often overestimate reserves. No conclusion 
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has yet been reached on which decline curve method works best for shale oil and gas 

production.  

All these factors result in considerable uncertainty in production forecasts and reserves 

estimation in shale gas reservoirs.  

 

Unfortunately, industry applications of decline curve analysis in shale-gas reservoirs are 

predominately deterministic. Thus, there is a heated debate between those who believe 

high b values, relatively steep early declines and flat later declines better predict shale 

gas well performance and those who believe low b values, less steep early declines 

followed by less flat later declines better predict performance. Because the difference in 

reserves estimates can be quite large and the potential impacts on energy policy and 

capital investment (e.g., in power generation) profound, the debate has reached the 

mainstream financial press (Dizard 2010). 

 

Jochen and Spivey (1996) and Cheng et al. (2010) developed bootstrap methods that can 

generate probabilistic decline-curve forecasts and quantify reserves uncertainty for 

single wells based on existing production. Based on a data set including 100 

conventional oil and gas wells, the P90-P10 range for reserves from Jochen and Spivey’s 

method covered less than 40% of the ―true reserves.‖ Cheng et al.’s method (modified 

bootstrap) covered 80% of the true reserves, indicating the method is well calibrated 

probabilistically for that data set.  Both bootstrap methods modify the historical 

production in some way to generate different realizations for decline curves to match. 
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However, modifying the original data is not ideal if it can be avoided. While the 

modified bootstrap method is well calibrated, it takes 3–5 minutes to calculate the 

probabilistic reserves for each well. In addition, no commercial software package has 

incorporated these bootstrap methods to calculate probabilistic reserves. Because of 

these limitations, the bootstrap methods have not been used extensively in the industry 

despite the significant uncertainty associated with reserves estimation in shale plays.  

 

The recent published Guidelines for Application of the Petroleum Resources 

Management System (PRMS) (SPE/AAPG/WPC/SPEE/SEG 2011) and Modernization 

of Oil and Gas Reporting by the U.S. Securities and Exchange Commission (SEC 2009) 

have both allowed using probabilistic methodologies to estimate reserves and resources. 

However, the PRMS guidelines point out that probabilistic methods can be 

computationally intensive, non-reproducible, and subjective. As a result, deterministic 

methods are still the predominant methods in reserves estimation even though they lack 

the ability to quantify the significant uncertainty within the reserves estimation process.  

 

1.3. Research Objectives 

There are two research objectives for this study: 

 Develop a probabilistic methodology that can reliably quantify the reserves 

uncertainty in unconventional oil and gas plays 

 Evaluate U.S. Eagle Ford shale oil and gas reserves, contingent resources and 

prospective resources 
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1.4. Overview of Methodology 

I first developed  an integrated Bayesian probabilistic methodology using Markov Chain 

Monte Carlo (MCMC) combined with probabilistic decline curve analysis that can 

reliably quantify the oil and gas reserve and resource uncertainties in unconventional 

plays. Secondly, I integrated the available production data, engineering data, and 

geological data using this Bayesian methodology to estimate the oil and gas reserves, as 

well as contingent and prospective resources of Eagle Ford based on rigorous statistics 

and engineering principles. 
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2. BAYESIAN PROBABILISTIC DECLINE CURVE ANALYSIS 

 In this section, I developed a probabilistic decline curve analysis based on Bayesian 

framework that can reliably quantify the reserves uncertainty and is rapid, reproducible 

and objective. I will first give a brief introduction of the existing decline curve models 

and probabilistic decline curve methods. Then I will introduce the Bayes’ theorem and 

Markov Chain Monte Carlo (MCMC), following with the application of MCMC with 

Arps Model, a case study of Barnett shale gas wells, comparison between MCMC and 

MBM, applications and limitations, and conclusions.  

 

2.1. Decline Curve Models 

2.1.1. Arps Model 

Arps’ decline curve models (Eq. 2.3) have been used for reserves estimation for more 

than 60 years (Arps 1945). Arps (1945) developed exponential and hyperbolic decline 

curve models based on constant loss-ratio (D) and decline exponent (b), where D and b 

are defined in Eq. 2.1 and Eq. 2.2 respectively. 
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)                                      

 

____________ 

*Part of this chapter is reprinted with permission from Gong, X., Gonzalez, R., Mcvay, 

D. et al. 2011. Bayesian Probabilistic Decline Curve Analysis Quantifies Shale Gas 

Reserves Uncertainty. Paper presented at the Canadian Unconventional Resources 

Conference, Alberta, Canada.  SPE 147588. DOI: 10.2118/147588-ms. Copyright [2011] 

by Society of Petroleum Engineers 
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By integrating Eq. 2.1 and Eq. 2.2, the Arps model is shown in Eq. 2.3 

     ,          
 
 
              

                                
                        

Where qi is the initial production rate, Di is the initial loss-ratio, b is the decline 

component and t is time. 

 

Arps’ decline curve models assume the producing well is in boundary-dominated flow 

and the decline exponent b is between 0 and 1. In shale gas plays, the flow regime is 

usually transient flow, not boundary-dominated flow, and the b value is often greater 

than 1. It was demonstrated by Valko and Lee (2010) that b factors greater than 1 yield 

to infinite cumulative production as time goes to infinity. Even though the assumptions 

of Arps’ decline curves are usually violated in shale plays, it is still one of the most 

popular methods for estimating reserves. 

2.1.2. Power-Law Exponential 

The power-law exponential model (Ilk et al. 2008) was the first model designed to 

improve from Arps’ model to match production data from unconventional wells. The 

motivation is that the authors observed that neither the loss-ratio (D) nor the decline 

exponent (b) is constant for production data of unconventional wells. The power-law 

exponential model is defined in Eq. 2.4, 

                   
                              

Where qi is the initial production rate, D1 is the initial loss-ratio, D∞ is the loss-ratio at 

infinity, and n is the decline exponent.  
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Matter (2008) stated that there are no unique matches for D∞ when they analyzed gas 

production from Barnett shale. As a result, D∞ need to be predefined from other sources 

rather than the production data themselves.  

 

2.1.3. Stretched Exponential Production Decline Model (SEPD) 

Valko and Lee (2010) introduced the stretched exponential production decline model 

(SEPD). The two distinguish advantages of using SEPD are: First, the cumulative 

production for SEPD does not go to infinity while the Arps model with b greater than 

one does. Second, the SEPD model has an inflection point from concave up to concave 

down on log-log scale with only three parameters. The SEPD model is defined in Eq. 

2.5, 

          ( (
 

 
)
 

)                                 

Where qi is the initial production rate, τ is the characteristic time parameter, and n is the 

decline exponent.  

 

One interesting observation is that if I eliminate the D∞ from the power-law model and 

rearrange Eq. 2.5, the power-law model and the SEPD model are equivalent. 
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2.1.4. Rate-Decline Linear Flow (Duong) 

Duong (2011) developed a new model specifically for hydraulically fractured horizontal 

wells derived from linear flow (Eq. 2.6). Under linear flow, q/Gp vs. time is a straight 

line with slope m and intercept a. 

 

  
                                            

The rate time relationship can be integrated from Eq. 2.6 and listed as Eq. 2.7. 

        
     (

 

   
        )                          

 

2.2. Previous Probabilistic Methodologies 

Capen (1976) demonstrated that the oil industry has a tendency to underestimate 

uncertainty. Deterministic methods have been the predominant ways to estimate reserves 

in the past. Since the publication of Petroleum Resources Management System (SPE et 

al. 2007) and Modernization of Oil and Gas Reporting (SEC 2009) that allows 

probabilistic methods to report reserves, more and more companies start to book reserves 

through probabilistic methods. Anderson et al. (2010) and Abdulal et al. (2011) 

published type probabilistic decline curves for different field. However, their type 

probabilistic decline curves are based on predefined distributions of reservoir properties 

but the associated uncertainty is not quantified. Jochen and Spivey (1996) and Cheng et 

al. (2010) developed bootstrap methods that can generate probabilistic production 

forecasts and quantify reserves uncertainty for single wells based on decline curve 

analysis of existing production. Both bootstrap methods modify the historical production 
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in some way to generate different realizations to match; modifying the original data is 

not ideal if it can be avoided. For a data set including 100 conventional oil and gas wells, 

the P90-P10 range for the incremental production of second half from Jochen and 

Spivey’s method covered less than 40% of the true incremental production while Cheng 

et al.’s modified bootstrap method covered 80% of the true incremental production, 

which is expected if the method is well calibrated probabilistically. While the modified 

bootstrap method is better calibrated, it takes 3–5 minutes to calculate probabilistic 

production forecasts for each well. The excessive time is required because the modified 

bootstrap method requires 360 least-squares fits for each well, while each least-square fit 

involves multiple Newton iterations. In addition, I am not aware of any commercial 

software packages that have incorporated bootstrap methods to calculate probabilistic 

reserves. Probabilistic decline curve analysis has not been used extensively in the 

industry despite the significant uncertainty associated with reserves forecasting in shale 

plays. 

 

2.3. Introduction to Bayes’ Theorem 

The Bayes’ theorem used in statistical modeling is 

 (  | )   
 ( |  )     

∫    |        
                           

In this work, θj is a candidate for decline curve parameters, (ln(qi), ln(Di), and b)j, and y 

are the historical production data. 
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There are three important components in Bayes’ theorem: the prior distribution of 

parameters π(θ), the likelihood function f(y|θ), and the posterior distribution π(θ|y). The 

prior distribution π(θ) is the probability distribution of parameters before any data have 

been observed. For example, a uniform distribution of 0≤b≤2 is a possible prior 

distribution for b. The likelihood function f(y|θ) is the probability density function of y 

assuming θ is the true parameter. For example, if I assume the error between ln(actual 

production data) and ln(calculated production data from the decline curve model), ɛ, 

follows the normal distribution N(0,1), then    |   
 

√  
   ( 

  

 
). The posterior 

distribution π(θ|y) is the distribution of the unknown parameters after all the observed 

data have been considered. The posterior distribution can be calculated using Bayes’ 

theorem, Eq. 2. Once the posterior distribution is identified, the distribution of a function 

of the decline curve parameters (e.g., reserves) can be calculated, along with percentiles 

of the distribution, e.g., P90, P50, and P10. 

 

The objective of a Bayesian study is to obtain the posterior distribution. However, it can 

be difficult to directly calculate the posterior distribution because the integral 

∫   |         in the denominator often cannot be determined analytically. MCMC 

simulation is a method to deal with the problem. 

 

 

 

 



 

17 

 

2.4. Introduction to Markov Chain Monte Carlo (MCMC) 

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling 

from probability distributions (e.g., the posterior distribution of ln(qi), ln(Di), and b) 

based on constructing a Markov chain that has the desired posterior distribution. The 

stabilized state of the chain after a large number of steps is then used as an 

approximation of the desired distribution. 

 

A Markov chain is a stochastic process X1, X2, … with the property that,  

       |                                 |                    

In other words, the distribution of Xs given the whole history of the process is the same 

as the distribution of Xs given just the most recent value, Xs-1. 

 

In this work, I use the Metropolis algorithm for MCMC sampling. Since the posterior 

distribution is unknown, I need to draw samples from another distribution. This 

distribution is called the proposal distribution, with density function q(θ|θgiven), where θ 

is the random variable (like x in f(x)), and θgiven is the given parameter in the density 

function (e.g., n in f(x) =1/n for a uniform distribution). The samples drawn from the 

proposal distribution using the Metropolis algorithm form a Markov chain θ1, θ2, …, θn, 

and the Markov chain can be used as a sample of the desired distribution. For each step 

in the chain, a candidate θproposal is drawn from the proposal distribution. There is 

probability α that the candidate is accepted (θs = θproposal) and probability (1-α) that the 

candidate is rejected (θs = θs-1). It has been proved that a Markov chain generated using 
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the Metropolis algorithm will converge to the desired posterior distribution when the 

chain is long enough and when the acceptance ratio equals the ratio of the normalized 

posterior probability of θproposal to θt-1 (Eq. 2.10). The normalized posterior probability of 

θproposal equals the posterior probability π(θproposal|y) divided by the proposal probability 

of θproposal  given θs-1, while the normalized posterior probability of θs-1 equals the 

posterior probability π(θs-1|y) divided by the proposal probability of θs-1 given θproposal. 

The reason the posterior probability is normalized by the proposal probability is because 

the Markov chain should be independent of the proposal distribution, which means the 

Markov chains generated using different proposal distributions should converge to the 

same posterior distribution. If the calculated acceptance ratio is greater than 1, the 

acceptance ratio equals 1.  

     

[
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In the Metropolis algorithm, the proposal density function q needs to be symmetric (e.g., 

a normal distribution), such that q(x|y) = q(y|x). In this work, I chose the proposal 

distribution to be an independent truncated normal distribution, 
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In Eq. 2.11, ϑ is one of the three decline curve parameters and                      are 

the standard deviation, upper bound, and lower bound of the proposal distribution of ϑ, 

and   is the cdf of the standard normal. 

 

Substituting Eq. 2.11 in Eq. 2.10, the acceptance ratio equals, 
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2.5. Application of MCMC with Arps Model 

In this section, I will apply the MCMC methodology with the decline curve parameters 

ln(qi), ln(Di), and b of Arps equation. I emphasize that the probabilistic decline curve 

analysis is conducted independently for each well; however, the set of wells must be 

analyzed to determine if the method is probabilistically well calibrated. Following I 

illustrate and explain the methodology in detail.  

 

First, I assume the prior distributions of decline curve parameters ln(qi), ln(Di), and b are 

independent uniform distributions with constraints (non-informative prior). For the 

Barnett shale gas wells, I use 0.01<qi<1000000, 0.1<Di<50, and 0<b<2, where qi is in 
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Mcf/d and Di is in 1/year. The density of the prior distribution density of the decline 

curve parameters ln(qi), ln(Di), and b is: 

                   
 

            
                         

                                                   

 

The boundaries for qi are wide enough so any reasonable initial rate is included in the 

range. The lower boundary for Di was set to be 0.1 so that abnormal production data, 

especially with limited data, will not cause the decline curves to have unrealistically 

small initial decline rates. The upper boundary for Di was set to be 50 so that 

meaninglessly large Di will not influence statistical analysis. The boundaries for b (0 and 

2) are the b values for exponential (most pessimistic) and linear flow (most optimistic). 

Second, I calculate the likelihood function. The decline curve parameters ln(qi1), ln(Di1), 

and b1 of the least-squares best fit are used as the initial parameters θ1 in the Markov 

chain.  

 

The sample standard deviation of the logarithmic residual (σ) for the best fit is then 

calculated, 

  √∑
      ̂  
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In Eq. 2.14,    and   ̂ are observed and modeled production data at month i and t is the 

number of months of production data available. The sum of residuals squared was 

divided by t-3 because the nonlinear regression model includes 3 decline curve variables. 

For each set of decline curve parameters θproposal, I calculate the standard deviation of the 

residual between the true monthly production and modeled production,  

          √∑
(     ̂        

)
 

 

 

   

                           

 

In Eq. 2.15,    and   ̂ are observed and modeled production data using proposal variables 

θproposal at month i and t is the total number of months of production data available. The 

sum of residuals squared was divided by t because the proposal model is independent of 

the production data.  

 

For the likelihood function, I assume that the sample standard deviation of logarithm 

residuals (σproposal) between actual production (first half) and calculated production using 

the proposal decline curve parameters has a normal distribution N(0, σ), where σ is the 

sample standard deviation of logarithm residuals of the least-squares fit and σproposal  is 

the sample standard deviation of logarithm residuals of the proposal decline curve 

(Eq.2.16). 
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Third, the proposal distribution in Eq. 5 is used and the acceptance ratio is calculated for 

each proposed sample. In the Metropolis algorithm, the proposal distribution given step 

s-1 decline curve parameters ln(qi)s-1, ln(Di)s-1, and bs-1 is ln(qi)proposal ~ N(ln(qi)s-1,0.2), 

ln(Di)proposal ~ N(ln(Di)s-1,0.4), and bproposal ~ N(bs-1,0.2) with the same boundaries as in 

Eq. 2.13, where N(μ,σ) stands for normal distribution with mean μ and standard 

deviation σ. The standard deviations of the proposal distributions (0.2, 0.4, and 0.2) were 

chosen to obtain good mixing for the MCMC simulation (Fig. 2.1). Substituting the 

density of the prior distribution (Eq. 2.13), the likelihood function (Eq. 2.16), and the 

density of proposal distribution (Eq. 2.11) into the acceptance probability (Eq. 2.12), I 

have 
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………………………………………………………………………………………………………… (2.17) 

 

When the preset maximum iteration is reached, the obtained Markov chain of decline 

curve parameters can be used to calculate P90, P50, and P10 production forecasts and 

reserves. 

 

Mixing of the MCMC simulation, mentioned before, is the measure of how fast the 

Markov chain converges to the desired distribution (posterior distribution). Good mixing 
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means the Markov chain does not remain at one value for too many steps and stabilizes 

within a fixed interval after a short burn-in period. As an example, a Markov chain of 

1000 iterations of the decline curve parameters was constructed for one of the 197 wells 

in this case study. Fig. 2.1 shows the b values of these 1000 iterations. The Markov 

chain does not remain at any one value for too long and it moves around in the 1.3-to-2 

interval with no perceptible burn-in period (the initial b value is 2, given by least-square 

best fit of the well), indicating acceptable mixing. Several methods, e.g. Langevin 

MCMC, can be used to improve mixing and avoid random walk; however, trying to 

optimize the convergence of the MCMC algorithm is outside of scope of this work.  

 

 

Fig. 2.1— The 1000-iteration Markov chain of one of the horizontal gas wells. 

 

The overall workflow for MCMC using Arps equation is listed below,  

1. Set s =1 and ln(qi), ln(Di) and b equal to the least-square best fit. 
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2. Generate a sample θproposal (ln(qi), ln(Di) and b) from the proposal distribution.  

3. Calculate acceptance ratio based on Eq. 6. 

4. Generate a random number between 0 and 1. 

5. If the random number is less than acceptance ratio, accept θproposal, θs= θproposal, 

otherwise, θs = θs-1. 

6. s = s+1. If s < maximum chain length, go to step 1. 

 

2.6. Case Study: Barnett Shale Hydraulically Fractured Gas Wells 

I wanted to test the methodology in shale gas wells developed using modern drilling and 

completion technology, but I also wanted the production periods to be as long as 

possible so I could compare predictions to actual production to help validate the 

methodology. I selected the Barnett shale as the case study play because it is one of the 

oldest shale gas plays that has been developed using horizontal drilling and multistage 

hydraulic fracturing techniques. In the test, I performed ―hindcasts‖ in which I assumed 

a particular fraction of the actual historical production is known (e.g., 6 months) and the 

remainder of the actual production is unknown. I then matched the assumed known 

production and forecasted production to the end of the actual historical production 

period. The ―hindcast‖ cumulative production at the end of the actual historical 

production period is compared to the actual cumulative production at this time to test the 

validity of the methodology when using limited production data. I decided that the wells 

selected in the case study must meet the following criteria: 
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 Drilled horizontally and stimulated with single-stage or multi-stage hydraulically 

fractures.  

 Produced for more than 7 years, with first production after 1/1/2002. 

 Source of production data is DI Desktop (Drillinginfo, 1998-2011) 

 

Some wells had been restimulated. For those wells, I chose the longest time window 

without any restimulation, either the interval starting from the initial production date or 

the interval starting from the date of restimulation. I also deleted significant outliers, and 

in some cases, periods of sparse, erratic data to obtain more reasonable least-squares fits 

(Fig. 2.2). Based on these criteria, 197 gas wells with 59-119 months of production were 

selected for this case study from throughout the entire Barnett shale play.   

The objective of the methodology is to generate well-calibrated probabilistic decline 

curve forecasts; i.e., in 80% of the wells the actual future production falls between the 

hindcast P90 and P10 production and, even better, 90%, 50%, and 10% of the time the 

actual future production is greater than the P90, P50, and P10 estimates, respectively. 

While I would like the P90-P10 interval to be as small as possible, this is not the primary 

objective. The primary objective is to reliably quantify the uncertainty in reserves 

estimates.  
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Fig. 2.2— Example well. The longest time window (months 32 to 106) without any 

restimulation was chosen as the interval to be analyzed. 

 

I have introduced a step-by-step workflow on how to apply MCMC to generate 

probabilistic decline curve predictions. In this section, I examine hindcast test results and 

calibrate the MCMC model so that the calibrated model is reproducible, and quantifies 

uncertainty reliably with limited production data. 

One of the most important properties of probabilistic methods is reproducibility. Since 

the decline curves are generated probabilistically, every time a simulation is run, the 

resulting distribution will be different. However, good probabilistic methods require the 

difference between the resulting distributions for each run using the same data set to be 

relatively small. In order to find how many iterations are required to generate small 

errors, 10 sets of simulations were run with MCMC iteration numbers ranging from 100 
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to 100,000 for one well with 6 months, 18 months and 36 months of available 

production. The relative error (equal to sample standard deviation divided by sample 

average) for P90, P50, and P10 cumulative production at end of hindcast (CPEOH) are 

recorded in Table 2.1 and Fig. 2.3. For example, if the tolerance of error is 2%, it 

requires 20,000 iterations for 6 months of known production, 2,000 iterations for 18 

months available, and 1,000 iterations for 36 months available. 

 

Table 2.1— Relative Error as a Function of MCMC Iterations 
Available production 6 months 18 months 36 months 

Number of Iterations P90 P50 P10 Average P90 P50 P10 Average P90 P50 P10 Average 

100 27.8% 21.1% 19.9% 22.9% 11.2% 6.0% 5.6% 7.6% 5.8% 2.9% 4.2% 4.3% 

200 22.2% 9.7% 19.4% 17.1% 12.4% 3.1% 7.4% 7.6% 2.9% 1.9% 2.9% 2.5% 

500 21.6% 9.6% 13.5% 14.9% 5.0% 3.5% 5.6% 4.7% 3.1% 1.5% 2.0% 2.2% 

1,000 15.4% 7.4% 11.0% 11.2% 4.0% 1.7% 2.4% 2.7% 1.9% 1.5% 2.2% 1.9% 

2,000 9.3% 3.2% 4.1% 5.6% 2.0% 1.7% 1.3% 1.6% 1.5% 0.7% 0.7% 1.0% 

5,000 4.5% 2.8% 4.3% 3.9% 1.9% 1.3% 1.5% 1.6% 1.0% 0.2% 0.5% 0.6% 

10,000 5.3% 1.2% 2.6% 3.0% 0.6% 0.7% 1.2% 0.8% 0.8% 0.4% 0.4% 0.5% 

20,000 1.8% 1.7% 2.0% 1.8% 0.6% 0.5% 0.6% 0.6% 0.4% 0.2% 0.2% 0.3% 

50,000 3.0% 0.8% 1.0% 1.6% 0.5% 0.4% 0.5% 0.5% 0.3% 0.2% 0.3% 0.3% 

100,000 1.3% 0.7% 0.7% 0.9% 0.6% 0.2% 0.3% 0.4% 0.2% 0.1% 0.2% 0.2% 
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Fig. 2.3— Relative error decreases as the number of MCMC iterations increases 

 

I performed probabilistic hindcasts for all 197 wells, varying the production data 

available for matching from 6 months to 36 months. Probabilistic and true cumulative 

production at end of hindcast (CPEOH), averaged over all wells, were then plotted 

versus the amount of production data used to hindcast (Fig. 2.4). The frequencies with 

which the true values exceed the P90, P50, and P10 values are plotted in Fig. 2.5. The true 

average CPEOH values are within the P90 and P10 values for all cases of production data 

matched, and the P50 is close to the true average CPEOH when more than 18 months of 

production data are available for matching. However, when limited production data are 

available (e.g., 6 months), the probabilistic hindcast P50 is much lower than the true 

value. The reason is that when there is a sharp decline in production in the first 6 

months, the exponential decline fits the data well (because the production curve has not 
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had time to flatten yet) and the acceptance ratios for the exponential curve are much 

higher than they should be. I know that most hydraulically fractured horizontal wells do 

not follow exponential declines. However, I assumed that the prior distribution for b is a 

uniform distribution between 0 to 2 (Eq. 2.18), which results in relatively high 

acceptance ratios for exponential decline curves and underestimation of future 

production when limited production data are available for matching. To fix this problem, 

I introduce a new prior distribution that is consistent with our knowledge of shale gas 

wells. I fit the same 197 wells deterministically with Arps’ model, recorded the b value 

for each well and constructed a histogram, which I fit with a truncated triangular 

distribution from 0 to 2 (Fig. 2.6). Thus, the new prior distribution for b becomes 

     
 

 
   

 

 
                                       

I assumed that the prior density decreases with time in the form 

                                                 

 

In Eq. 2.19,         is the prior density,  (b) is the pdf in Eq. 2.18 and g(t) is a function 

that decreases with time. To obtain the function g(t), I found the best value of g for each 

t by comparing the P90, P50, and P10 values with true CPEOH values. The best 

relationship between g and t is linear on a semi-log plot (Fig. 2.7), with R
2
 = 0.92. The 

equation for g(t) is 
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Eqs. 2.19 and 2.20 were then plugged into Eq. 2.17 to calculate the acceptance ratio. The 

new model was run with 2000 iterations and the CPEOH and frequency of true greater 

than probabilistic hindcasts are plotted in Fig. 2.8 and Fig. 2.9. The P50 CPEOH using 

the prior density shown in Eq. 2.18 (Fig. 2.8) is much closer to the true CPEOH at 6 

months compared to the P50 CPEOH using a uniform prior (Fig. 2.4). In addition, the 

frequencies that the true CPEOH exceeds the P90, P50, and P10 CPEOH using the 

informative prior (Fig. 2.9) are closer to the desired 90%, 50%, and 10%, in contrast to 

the frequencies that the true CPEOH exceeds the P90, P50, and P10 CPEOH using the non-

informative prior (Fig. 2.8). 

 

I have demonstrated that with this probabilistic methodology the uncertainty in CPEOH, 

or the total amount that will ultimately be produced, deceases with time and more 

production, which is expected. Since our primary interest is usually in future production 

(e.g., reserves), I also calculated the uncertainty in the production during the second 

period, PDTSP (Fig. 2.10). The uncertainty in this ―future‖ production decreases (the 

P90-P10 ranges narrow) as the estimated future production decreases with time and more 

production. However, the relative uncertainty in future production (P90-P10 range divided 

by future production) remains relatively constant, decreasing only slightly with time and 

more production (Fig. 2.11).  
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Fig. 2.4— Probabilistic hindcasts averaged over all wells narrow with time in the 

Barnett well set generated using a non-informative prior distribution. 

 

 

Fig. 2.5— Probabilistic hindcasts underestimate CPEOH in the Barnett well set 

generated using a non-informative prior distribution. 
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Fig. 2.6— Histogram of b values for the 197 wells and triangular distribution fit to 

the histogram. 

 

 

Fig. 2.7— g(t) decreases with increasing t so the prior density has less effect when 

more production data are available for matching. 
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Fig. 2.8— Probabilistic hindcasts averaged over all wells generated using an 

informative prior distribution yield better P50 estimates than the non-informative 

estimation in the Barnett well set. 

 

 

Fig. 2.9— Probabilistic hindcasts generated using an informative prior distribution 

yield better calibrated P10, P50 and P90 estimates in the Barnett well set. 
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Fig. 2.10— Uncertainty in PDTSP (future production) decreases with time and 

more production. 

 

 

 

Fig. 2.11— Relative uncertainty in PDTSP (future production) decreases slightly 

with time and more production. 
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The likelihood function (Eq. 2.16) equals the exponential of the ratio of the sum of 

residuals squared between proposal curves and the best fit. When the model fits the 

production data almost perfectly, the sample standard deviation between the best fit and 

the production, σ in Eq. 2.14, is very small. As a result, the acceptance ratio calculated 

by Eq. 2.17 will be small when the model is only a little off the production data, and the 

uncertainty of the probabilistic hindcast is unrealistically small (Fig. 2.12). To solve this 

problem, I added an error term to σ
2
 in Eq. 2.15 to model the inherent error of production 

data. The new probabilistic hindcasts generate more realistic uncertainty ranges (Fig. 

2.13) with the variance of the inherent error = 0.01. After experiments, I found that 

inherent error = 0.001 gives the most satisfying results for 6 to 42 months available for 

matching (Fig. 2.14). 
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Fig. 2.12— Well matched production underestimate uncertainty when inherent 

error is not modeled. 

 

 

Fig. 2.13— The range of probabilistic decline curves increases by adding an 

inherent error with variance = 0.01. 
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Fig. 2.14— Probabilistic hindcasts generated using an informative prior 

distribution and inherent error = 0.001 yield further improved P10, P50 and P90 

estimates in the Barnett well set. 

 

After making the adjustments described above, the proposal density remains the same as 

Eq. 2.11, the prior density can be calculated from Eqs. 2.18 – 2.20, while the updated 

likelihood function and acceptance ratio are calculated using Eqs. 2.21 and 2.22, 

respectively. 
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2.7. Comparison Between MCMC and Modified Bootstrap Method (MBM) 

In this section, I compare the new Bayesian method with the modified bootstrap method 

developed by Cheng et al. (2008) using the same data set of 197 Barnett gas wells. Both 

methods use Arps’ decline curves and assume the production during the first period was 

known and the production during the second period (PDTSP) was unknown. Instead of 

cumulative production at the end of the hindcast (CPEOH), I will compare the 

hindcasted PDTSPs from the two methods with the true PDTSPs. Monthly gas 

production and probabilistic production hindcasts of an example well in the Barnett set 

are shown in Fig. 2.15. The Bayesian P90, P50, and P10 probabilistic production profiles 

are the representative curves of the 10
th

, 50
th

 and 90
th

 percentiles of the PDTSPs 

calculated from 2000 sets of decline curve parameters generated using MCMC with the 

Metropolis algorithm, while the MBM probabilistic P90, P50, and P10 production profiles 

are the 10
th

, 50
th

 and 90
th

 percentiles of each month’s predicted production. According to 

Fig. 2.15 and Table 2.2, both the Bayesian method and the MBM bracket the actual 

monthly production profile as well as true PDTSP inside their respective P90 to P10 

ranges. The Bayesian P90 - P10 PDTSP interval (126-269 MMcf) is narrower than the 
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MBM P90 - P10 interval (106-345 MMcf), which is more desirable if the two methods 

quantify the uncertainty equally well. 

 

Results of analysis of the 197 wells using the two methods are summarized in Table 2.3. 

The first quantity to look at is the coverage rate and fractions of wells in which the actual 

PDTSPs exceeded the P90, P50 and P10 PDTSPs. Both methods did a good job of 

bracketing the true PDTSPs between the P90 and P10 estimates; however, the MCMC 

method performed slightly better, at 79% (closer to 80%), compared to the MBM, at 

76%. The P90, P50, and P10 PDTSP estimates actually represent the probabilities P87, P55, 

and P9 for the Bayesian method and P89, P56, and P13 for the MBM, indicating both 

methods are relatively unbiased. The second quantity to look at is the average interval 

width, or ―Average ((P10-P90)/True),‖ which is the average over all the wells of the 

quantity ((P90 -P10)/True). Again, I would like this number to be as small as possible as 

long as the method adequately quantifies the uncertainty. The average interval width of 

the Bayesian method, 0.57, is significantly less than the interval width of the MBM, 

0.78. Another important measure in the table is the computation time; the MBM took 

more than 9 hours to finish 197 wells while the Bayesian method took 44 minutes. The 

two methods are comparable in accuracy; the MBM has relative error of 10%, 2% and 

1% for 6, 18 and 36 months, respectively (results not shown), compared to 6%, 2% and 

1% for 6, 18 and 36 months, respectively, for the Bayesian method using 2000 MCMC 

iterations (Table 2.1). 
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Fig. 2.15— Comparison between probabilistic hindcasts generated using Bayesian 

and MBM methods for an example well in the Barnett set.  
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Table 2.2— Calculated Decline Parameters and PDTSP 

Estimates for the Example Barnett Well 

 
qi (Mcf/D) Di (1/year) b 

PDTSP  

(second half), Mscf 

TRUE \ \ \ 189,589 

Best fit 1,502 7.56 2.00 219,357 

Bayesian P90 515 0.55 0.62 126,317 

Bayesian P50 2,148 17.72 1.93 190,284 

Bayesian P10 1,147 2.29 1.82 268,979 

MBM P90 \ \ \ 106,263 

MBM P50 \ \ \ 238,630 

MBM P10 \ \ \ 344,869 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 

 

Table 2.3— Results of Comparison Between MBM and 

Bayesian Methods for 197 Wells Using 50 Percent of 

Known History to Hindcast 

 
MBM Bayesian 

Coverage Rate 76% 79% 

Average Relative Error ((P50-True)/True) -2.4% 4.2% 

Average Absolute Error Abs((P50-

True)/True) 

21% 19.3% 

Sum of P90 PDTSPs, Mscf 51,644,543 61,511,625 

Sum of P50 PDTSPs, Mscf 76,168,202 79,148,239 

Sum of P10 PDTSPs, Mscf 96,325,407 98,076,848 

Sum of True PDTSPs, Mscf 77,318,176 77,318,176 

Error in True PDTSPs 1.48% 2.36% 

Average ((P10- P90)/True) 0.78 0.57 

Total Computation Time 9 hours 44 mins 

Percentage of True PDTSP > P90 PDTSP 89% 87% 

Percentage of True PDTSP> P50 PDTSP 56% 55% 

Percentage of True PDTSP> P10 PDTSP 13% 9% 

 

To test the two methods when limited data are available, I used the same data set of 197 

Barnett wells but assume only the first 6 months production is known and the rest is 

unknown (Table 2.4). The P90, P50, and P10 PDTSP estimates represent the P99, P69 and 

P11 for the MBM while they correspond to exactly P90, P50, and P10 for the Bayesian 

method, which shows that the MBM underestimates the PDTSPs with limited production 

data while the new Bayesian method is unbiased with limited production data. The 

ability to estimate reserves accurately in the early stage is critical when evaluating 
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unconventional plays because most of the unconventional plays are still in the early 

stage of development and new plays are being targeted.  

 

Table 2.4— Results of Comparison Between MBM and 

Bayesian Methods for 197 Wells Using 6 Months to 

Hindcast 

 
MBM Bayesian 

Coverage Rate 88% 80% 

Average Relative Error ((P50-True)/True) -9.93% 3.79% 

Average Absolute Error Abs((P50-True)/True) 32% 18.45% 

Sum of P90 PDTSPs, Mscf 55,010,808 155,774,373 

Sum of P50 PDTSPs, Mscf 183,201,899 208,967,608 

Sum of P10 PDTSPs, Mscf 328,693,374 271,453,197 

Sum of True PDTSPs, Mscf 203,840,586 203,840,586 

Error in True PDTSPs 10.1% 2.51% 

Average ((P10- P90)/True) 1.64 0.62 

Total Computation Time, hours 9 1.5 

Percentage of True PDTSP > P90 PDTSP 99% 90% 

Percentage of True PDTSP> P50 PDTSP 69% 50% 

Percentage of True PDTSP> P10 PDTSP 11% 10% 

 

In the case study of 197 horizontal Barnett shale gas wells, the proposed Bayesian 

methodology coupled with Arps’ decline model reliably quantified the uncertainty in 

hindcasted production with a narrower P90to P10 interval and significantly less 

computation time than the modified bootstrap method (MBM). The Bayesian 
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methodology reliably quantified the uncertainty in PDTSP with as little as 6 months of 

production data.  

 

2.8. Application and Limitations 

For the hindcast applications presented in this paper, I have demonstrated that the 

Bayesian methodology is reasonably well calibrated, i.e., that P90, P50, and P10 estimates 

correspond to realized frequencies of approximately 90%, 50% and 10%, as desired. 

This indicates the potential application of the methodology to production forecasting and 

reserves estimation, which is inherently a probabilistic assessment. The P90, P50, and P10 

production forecasts using all of the historical production can be used to calculate 

probabilistic reserves, where proved reserves = P90, probable reserves = P50 – P90, and 

possible reserves = P10 – P50. In our hindcast applications, I matched 6 to 36 months of 

production data and hindcasted to at most a total time of about 10 years. Being able to 

generate probabilistically well-calibrated hindcasts in these time frames does not 

guarantee, of course, that production forecasts of 20-30 years or more and reserves 

estimates will also be probabilistically well calibrated. But it does increase the likelihood 

significantly. I believe it is safe to say that if a method is not probabilistically well 

calibrated for hindcasts, it will almost certainly not be probabilistically well calibrated 

for forecasts and reserves estimates.  

 

This Bayesian methodology can be easily integrated with other decline curve models. To 

do this, I need to first replace the Arps model equations (Eq. 2.1) with the appropriate 
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equations for a new decline curve model. I then need to define the prior distribution of 

the parameters (Eq. 2.13) in the new decline curve model. The formulas for calculating 

the likelihood function, the posterior distribution, and the acceptance ratio will remain 

the same. The production hindcasts and forecasts can then be performed using the same 

procedures described in this paper.  

 

This Bayesian methodology can also be applied on other unconventional plays, as well 

as conventional plays. The primary challenge in applying the methodology is specifying 

an appropriate prior distribution for the Bayesian updating. The methodology appears to 

be moderately well calibrated if a non-informative prior is used. However, the 

calibration can be improved, particularly with short production history, if an informative 

prior can be used that is tuned to the particular play. An informative prior can be derived 

from deterministic matching of older wells in the play, if they exist. If the play is 

relatively new and wells with longer production history do not exist, then it may be 

possible to use a prior from an analogous play, weighted appropriately based on the 

similarity of the plays. 

 

I also developed a code called PDCA in excel VBA with Raul Gonzalez and Dr.McVay 

to perform all the tasks mentioned in this work. 
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2.9. Conclusions 

 For a test case of 197 horizontal, hydraulically fractured Barnett shale gas wells with 

at least 7 years of production, the proposed Bayesian methodology coupled with 

Arps’ decline curve model reliably quantified the uncertainty of hindcast cumulative 

production with as little as 6 months of production. The probabilistic estimates P90, 

P50, and P10 were all well calibrated.  

 The Bayesian method had narrower P90-P10 confidence intervals, had better 

calibrated P90, P50, and P10 estimates, and required less computational time for 

comparable stability than the modified bootstrap methodology presented in the 

literature.  
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3. ASSESSMENT OF EAGLE FORD SHALE OIL AND GAS RESOURCES 

3.1. Overview 

The objective of this section is to evaluate Eagle Ford shale oil and gas reserves, 

contingent resources and prospective resources.  

3.1.1. Workflow 

I started the process by obtaining data from various sources (black boxes in Fig. 3.1). 

Monthly allocated oil and gas production data until year end 2012 were downloaded 

from DI Desktop (Drillinginfo, 1998-2011). Oil production was analyzed for all fluid 

types except dry gas. Tian et al. (2013) analyzed more than 800 vertical wells and built 

geological maps, such as structure and isopach maps, for the Eagle Ford formation that 

were used to build simulation models. PVT reports were obtained from the Railroad 

Commission of Texas (RRC) and Drillinginfo.com (Drillinginfo 2013). 

 

In order to reliably estimate Eagle Ford oil and gas resources, I partitioned the Eagle 

Ford shale play into eight production regions based on geology, production indicators 

and fluid types. I compared different decline models by performing probabilistic 

hindcast studies; the Duong model and the Arps model have the best coverage rate 

among available models. I used a combination of the Duong and Arps models to model 

both the linear flow and boundary-dominated flow regimes. For wells with historical 

data of more than one and half years, I identified the wells that are already in boundary-

dominated flow if the slope of rate versus material-balance time is close to unity. The 

distribution of the minimum decline rate where the Duong model switches to the Arps 
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model was then estimated from material-balance plots. Gas production for those regions 

was calculated from the oil production and GOR models, since oil and gas production 

are highly correlated (Fig. 3.2). The average gas-oil ratio (GOR) of each production 

region was fitted with GOR models that increase slightly over time. The Duong model 

was re-parameterized by replacing the initial rate with the cumulative production of 

oil/gas at 20 years (N240/G240). I integrated geological data and engineering data into 

reservoir simulation models, and performed probabilistic production forecasts using 

Monte Carlo simulation with reservoir simulation for each production region. The 

distributions of N240/G240 from the reservoir simulation studies were used as the prior 

distributions of N240/G240 in the re-parameterized Duong Model (first and second level 

blue boxes in Fig. 3.1).  

 

Type oil and gas probabilistic decline curves for all production regions were then 

generated using MCMC integrated with distributions of N240/G240 from reservoir 

simulation forecasts, GOR models, and minimum-decline-rate distributions (first red box 

in Fig. 3.1).  

 

The Eagle Ford play was then categorized as discovered area or undiscovered area based 

on distance from existing wells. The highest established well density (HEWD) in each 

production was observed from Drillinginfo.com (Drillinginfo 2013), and the future well 

density was modeled with a distribution around the HEWD for each production region. 

The reserves well count includes only the production from the wells that can be drilled in 
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the following five years. The well counts of contingent and prospective resources were 

calculated based on the discovered area and undiscovered area and corresponding well 

spacing. The aggregations within each production region were calculated 

probabilistically while the aggregations between production regions were calculated 

arithmetically. The reserves, contingent resources, prospective resources and their 

associated uncertainties were estimated from aggregation of type probabilistic decline 

curves with probabilistic estimates of well count for each production region and the 

entire Eagle Ford (second red box in Fig. 3.1). 

 

 

Fig. 3.1— Workflow of assessment of Eagle Ford shale oil and gas resources, black 

boxes represent input data, blue boxes represent intermediate steps, and red boxes 

represent results  
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Fig. 3.2 – Peak month oil and peak month gas in black oil window is highly 

correlated, with R
2
 = 0.53 

 

3.1.2. Eagle Ford Geology 

The Eagle Ford shale in south Texas (Fig. 3.3) has been known as the source rock for the 

Austin Chalk and the East Texas Field. There are extensive outcrops of the Eagle Ford 

play. The spectacular vertical and lateral exposures of the Eagle Ford strata in west 

Texas are very useful to examine the properties, characteristics, and sequence-

stratigraphic settings (Donovan and Staerker 2010). The geological era of the Eagle Ford 

formation is upper Cretaceous. The Eagle Ford formation was divided into upper Eagle 

Ford and lower Eagle Ford (Fig. 3.4) by Edman and Pitman (2010). The upper Eagle 

Ford is in general high in carbonate content and the lower Eagle Ford is in general high 
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in organic content. The major kerogen type in the Eagle Ford is type 2 kerogen, which 

can be either oil-prone or gas-prone. Structurally, the top of the Eagle Ford deepens from 

northwest to southeast; the depth ranges from 2,500 ft to 14,000 ft (Fig. 3.5). 

 

Fig. 3.3— The Eagle Ford play located in south Texas covers petroleum fluid types 

from black oil to condensate to dry gas (EIA 2010) 
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(a)                                                                     (b) 

Fig. 3.4— Geology column and type log: (a) The Eagle Ford formation is in 

Turonian to Cenomian stage in Cretaceous (Edman and Pitman 2010). (b) Typical 

well log in Maverick County, Texas, USA shows different log characteristics for 

upper and lower Eagle Ford (Tian et al. 2013) 
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Fig. 3.5— Structural top of Eagle Ford deepens from northwest to southeast (Tian 

et al. 2013) 

 

3.1.3. Eagle Ford Drilling and Completion 

Most, if not all, of the wells drilled in the Eagle Ford are hydraulically-fractured 

horizontal wells. Lease lines are the dominating factor for lateral lengths. Drilling 

problems are fairly minimal, and the average spud-to-rig-release is about 20 days with 

perforated interval exceeding 5000 ft (Pope et al. 2012). The objective of completion in 

the Eagle Ford shale is to contact as much rock as possible with a fracture network of 

adequate conductivity. The number of stages ranges from 12 to 16, liquid treatment 

volume ranges from 2 to 7 million gallons, and proppant amounts range from 2 to 10 
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million pounds (Centurion et al. 2012). The cost of the stimulation can exceed US $5 

million, which represents 60% of the total well construction cost (Pope et al. 2012).  

 

3.1.4. Reserves, Contingent Resources, and Prospective Resources 

The U.S. Security and Exchange Commission (SEC) defined the term ―proved reserves‖ 

in Rule 4-10 under regulation S-X as such: ―proved oil and gas reserves are the 

estimated quantities of crude oil, natural gas, and natural gas liquids which geological 

and engineering data demonstrate with reasonable certainty to be recoverable in future 

years from known reservoirs under existing economic and operating condition.‖ In 2007, 

the Society of Petroleum Engineers (SPE), the American Association of Petroleum 

Geologists (AAPG), the World Petroleum Council (WPC), and the Society of Petroleum 

Evaluation Engineers (SPEE) jointly published the Petroleum Resources Management 

System (PRMS).  The definitions and guidelines in PRMS ―are designed to provide a 

common reference for the international petroleum industry, including national reporting 

and regulatory disclosure agencies, and to support petroleum project and portfolio 

management requirements.‖ (SPE et al. 2007) The basic principle in PRMS is that ―the 

estimation of petroleum resource quantities involves the interpretation of volumes and 

values that have an inherent degree of uncertainty.‖ (SPE et al. 2007) These quantities 

are associated with development projects at various stages of design and 

implementation. The SEC published the Modernization of Oil and Gas Reporting (2009), 

which  allowed using probabilistic methodologies to define reserves.  
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Definitions of reserves, contingent resources and prospective resources in PRMS are 

shown in Fig. 3.6 and following: 

 Reserves are those quantities of petroleum anticipated to be commercially 

recoverable by application of development projects to known accumulations 

from a given date forward under defined conditions. 

 Contingent Resources are those quantities of petroleum estimated, as of a given 

date, to be potentially recoverable from known accumulations, but the applied 

project(s) are not yet considered mature enough for commercial development due 

to one or more contingencies. 

 Prospective Resources are those quantities of petroleum estimated, as of a given 

date, to be potentially recoverable from undiscovered accumulations by 

application of future development projects. 

 

I followed the PRMS rules in this work to estimate reserves, contingent resources and 

prospective resources. 
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Fig. 3.6— Flow chart and generalized division of resource and reserve categories, 

from PRMS (SPE et al. 2007) 

 

3.2. Data Acquisition  

3.2.1. Production Data 

I gathered allocated production data from DI Desktop (Drillinginfo 1998-2011) up 

through December 2012. In Texas, the production data are originally reported at the 

lease level; the allocated production data are calculated from well tests by DI Desktop. I 

included in the study a total of 4402 wells (with last production of December 2012) that 

satisfy the following criteria: 
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 Initial production after 1/1/2008 

 Produced from the Eagle Ford formation 

 Counties: Atascosa, Bee, Dewitt, Dimmit, Fayette, Frio, Gonzalez, Karnes, La 

Salle, Lavaca, Live Oak, Maverick, McMullen, Webb, Wilson, Zavala 

 Horizontal wells or directional wells 

Quality checks of all the oil and gas production data for all wells were performed to 

generate meaningful results. Wells that include too few months of production data (<3 

months) and with irregular behavior (production too noisy or increasing) were excluded 

from the study (Fig. 3.7). For wells that are included in the study, if there is an obvious 

sudden production change, only the higher production part is analyzed (Fig. 3.8). 

Significant outliers from primary production trends were also deleted (Fig. 3.8).  

 

 

Fig. 3.7— An example well with increasing monthly production that was excluded 

from the study 
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Fig. 3.8— An example well in which only the higher production period was 

analyzed and an outlier was excluded 

 

3.2.2. Geological Data 

Tian et al. (2013) analyzed more than 800 vertical wells and built geological maps, such 

as structure (Fig. 3.5) and isopach maps, for the Eagle Ford formation that were used to 

build simulation models. The geological maps were then mapped into gridblocks of 1000 

ft by 1000 ft (Fig. 3.9) so that distributions of geological properties such as formation 

depth and thickness can be generated. A geological model consisting of 340,000 

gridblocks was created for the 7 million acres of the Eagle Ford play. The distribution of 

depth for the entire Eagle Ford is shown in Fig. 3.10. Yao Tian* also provided type logs 

for all production regions, which were used to model reservoir properties in reservoir 

simulation models.  

 

___________ 

* Personal communication with Yao Tian 2013. College Station: Texas A&M University. 



 

59 

 

 

Fig. 3.9— Gridblocks of 1000 ft by 1000 ft used to calculate distributions of 

reservoir properties. 

 

 

Fig. 3.10— Histogram of the top of the Eagle Ford formation 

 



 

60 

 

3.2.3. PVT Data 

PVT data were obtained from the Railroad Commission of Texas (RRC) and 

Drillinginfo.com (Drillinginfo 2013). From the RRC, I gathered a total of 106 partial 

PVT reports and 28 full reports with constant composition expansion tests and constant 

volume depletion tests. All partial PVT reports include composition to C7+ of the 

petroleum fluid, C7+ molecular weight, initial producing GOR, oil API gravity, and gas 

specific gravity. The full reports include all the information mentioned above, with 

additional information such as measured bubble point or dew point, initial reservoir 

pressure and temperature, constant composition expansion tests, and constant volume 

depletion tests. Most, if not all, of the PVT reports were for wells in the condensate 

windows for RRC reporting purposes. From Drillinginfo.com, I gathered gas specific 

gravity and oil density data that were used in the black-oil correlations to calculate the 

PVT models. 

 

3.3. Partition of Eagle Ford Shale Play into Eight Production Regions  

The Eagle Ford shale has complex geology, covers all fluid types from black oil to dry 

gas, and has variable production performance. In order to accurately evaluate the entire 

Eagle Ford shale resources, I partitioned the Eagle Ford play into eight production 

regions so that fluid type, performance indicators, and geology are similar within 

production regions but are different between production regions. The fluid type for each 

producing well is defined by the initial gas-oil ratio based on Dr. McCain’s criteria 

(2009) (Table 3.1). The fluid type varies from black oil to volatile oil to condensate to 
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dry gas from north to south (Fig. 3.11). The second-month oil production provided by 

Drillinginfo.com (Drillinginfo 2013) was used as the performance indicator and it 

generally decreases from east to west (Fig. 3.12). The upper Eagle Ford is present in the 

west and middle part but is not present in the east part (Fig. 3.13), while the lower Eagle 

Ford is present through the entire Eagle Ford. Based on these characteristics, I 

partitioned the Eagle Ford play into the eight production regions listed in Table 3.2 and 

shown in Fig. 3.11 to Fig. 3.13. The counts and production regions for the PVT reports 

are listed in Table 3.3. 

 

An interesting observation is that some of the area in Production Region 1 (PR1) is very 

shallow (less than 3,000 ft deep). The wells in these shallow areas are likely to be non-

productive because of the low initial reservoir pressure associated with shallow depth, so 

these areas were excluded from this study (Fig. 3.14 and Fig. 3.15). 

 

Table 3.1— Fluid Type Definition Based on Initial GOR 

Fluid Type Initial GOR, SCF/STB 
Black Oil 0-1,500 

Volatile Oil 3,200-10,000 
Condensate 10,000-100,000 

Dry Gas >100,000 
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Table 3.2— Characteristics of Eight Production Regions 

Production 
Region Fluid Type 

Initial Oil 
Rate Formation  

True 
Vertical 

Depth, ft 
Area, 
Acres 

PR1 Black Oil Low Upper and Lower 4,056 799,836 
PR2 Condensate/Volatile Oil Medium-Low Upper and Lower 6,505 942,734 
PR3 Black Oil Medium Upper and Lower 7,719 1,617,410 
PR4 Condensate Medium-Low Upper and Lower 10,874 584,070 
PR5 Black Oil Medium-High Lower 9,450 977,484 
PR6 Volatile Oil High Lower 12,286 338,000 
PR7 Condensate Medium Lower 13,470 478,888 
PR8 Dry Gas None Upper and Lower 10,532 1,201,185 

 

Table 3.3—Counts and Locations of PVT Reports 

Production Region PVT report Count Full Report Count 
PR2 39 2 
PR3 3 1 
PR4 17 2 
PR6 36 23 
PR7 11 0 

Total 106 28 
 

 

Fig. 3.11— Fluid type changes from black oil to dry gas from north to south 
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Fig. 3.12— Second-month oil production was used as the production indicator and 

it decreases from east to west 

 

 

Fig. 3.13— Upper Eagle Ford formation is only present in west and middle part of 

the Eagle Ford play 
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Fig. 3.14— Areas that have depth below 3000 ft were excluded from the study 

inside of Production Region 1 (PR1) 

 

 

Fig. 3.15— Areas in the northwest corner of PR1 is excluded from the study 

because the depth is below 3000 f 
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3.4. Decline Curve Model Selection 

3.4.1. Probabilistic Hindcast Studies  

The best way to determine which decline curve model to use is to perform hindcast 

studies. I selected 4 regions, PR2, PR3, PR6, and PR8, that cover all four fluid types: 

condensate, black oil, volatile oil, and dry gas, respectively. For condensate (PR2), black 

oil (PR3), and volatile oil (PR6) regions, oil production was analyzed. For the dry gas 

region (PR8), gas production was analyzed. Since the Eagle Ford shale is still early in 

development, only wells with more than a year of production were selected in the 

hindcast study. In the hindcast study, the first six months of production were assumed 

known and the actual production during the second period (PDTSP) was compared with 

the hindcasted PDTSP using different decline curve models with MCMC.  

 

The probabilistic results were shown in Fig. 3.16. The desired result is that proportion 

correct equals probability assigned for the entire distribution, i.e., a straight line with unit 

slope on a plot of proportion correct vs. probability assigned (―perfect‖ line in Fig. 3.16). 

According to Fig. 3.16, the Arps model and the Duong model are consistently close to 

the unit slope; the SEPD model underestimates the PDTSPs in all regions except PR3; 

and the Power-Law model significantly overestimates the PDTSPs in all regions except 

PR8. Table 3.4 shows that the average coverage rates for the Arps model and the Duong 

model are 0.74, the Power-Law model 0.62, and the SEPD model 0.68.  
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The Arps model and the Duong model were well calibrated in the hindcast studies. There 

was no significant difference between the coverage rates; however, the Arps model is 

designed to model boundary-dominated flow, while the Duong model is designed to 

model linear flow. I decided to use a combination of the Duong and Arps models to 

model both the linear flow and boundary-dominated flow regimes. The Arps tail is 

necessary because the probabilistic Duong model consistently overestimates PDTSPs 

since the PDTSP > P90, P50, and P10 are consistently smaller than 0.1, 0.5, and 0.9, 

respectively for all production regions (Table 3.4).  

 

 
                                    (a)                                                            (b) 

 
                                  (c)                                                              (d) 

Fig. 3.16— Production hindcasts show that the Arps model and the Duong model 

have the best coverage rate for oil production of condensate region PR2 (a), black 

oil region PR3 (b), and volatile oil region PR6(c), and gas production of dry gas 

region PR8 (d) 



 

67 

 

Table 3.4— Probabilistic Hindcast Studies Show that the 

Arps Model and the Duong Model Have the Best Coverage 

Rates 

Decline Curve Model Arps Duong Power-Law SEPD 
PR2 (Condensate) 

PDTSP>P90 0.84 0.85 0.72 0.97 
PDTSP>P50 0.43 0.45 0.34 0.80 
PDTSP>P10 0.13 0.07 0.07 0.38 

Coverage Rate 0.72 0.78 0.65 0.59 
PR3 (Black Oil) 

PDTSP> P90 0.85 0.85 0.76 0.87 
PDTSP> P50 0.50 0.50 0.34 0.47 

PDTSP> P10 0.08 0.09 0.09 0.07 

Coverage Rate 0.78 0.77 0.67 0.79 
PR6 (Volatile Oil) 

PDTSP> P90 0.75 0.74 0.57 0.96 
PDTSP> P50 0.24 0.24 0.18 0.67 
PDTSP> P10 0.02 0.05 0.04 0.22 

Coverage Rate 0.73 0.69 0.54 0.74 
PR8 (Dry Gas) 

PDTSP> P90 0.84 0.82 0.87 0.98 
PDTSP> P50 0.38 0.37 0.59 0.86 
PDTSP> P10 0.09 0.09 0.24 0.39 

Coverage Rate 0.75 0.73 0.63 0.59 

Average Coverage Rate for All 
4 PRs 

0.74 0.74 0.62 0.68 

 

3.4.2. Re-parameterize Duong Model 

Since geological and engineering data from the Eagle Ford play are available, I would 

like to utilize them as the prior information for the probabilistic decline-curve analysis.  I 

performed reservoir simulation with Monte Carlo simulation for each production region 

to provide additional information for probabilistic decline curve analysis so that the 

probabilistic decline curves calculated do not depend solely on production data but also 

on valuable geological and engineering data. In order to fully utilize the reservoir 
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simulation results, the oil and gas cumulative production was selected as the optimal 

parameter from the reservoir simulation runs to use instead of other parameters like 

initial production rate. I re-parameterized the Duong model so it includes as a decline 

curve parameter the cumulative oil production at 20 years (N240) for PR1 to PR7 or 

cumulative gas production at 20 years (G240) for PR8. I started with the original Duong 

model: 

 

  
                                            

        
     (

 

   
        )                          

 

The unit of t is months, instead of days in the original model (Duong 2011), since I am 

using monthly production from public data bases; changing the time unit does not 

change the form of Eq. 3.1 or Eq. 3.2.  

 

First, I calculate the rate at month 240 (end of 20 years), 

             
                                    

          
     

 

   
                                   

 

I then solve q1 from Eq. 3.3 and Eq. 3.4 as a function of G240, 
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I start with Eq. 3.2, and substitute q1 using Eq. 3.5, 

     
     

 

   
         

 
      

  

   
 

   
          

   
 

   
         

       
     

 

   
                                     

 

I then defined l = m-1 since I found that m-1 follows a lognormal distribution for the 

best-fitted m from the Eagle Ford wells,  

        
         

 

  
                                   

 

Eq. 3.7 is the re-parameterized Duong model with decline curve parameters G240 (N240), 

a, and l. This model was used in the following sections for production forecasts. 

 

3.5. Integration of Geological and Engineering Data Through Reservoir Simulation 

3.5.1. Overview 

Since empirical decline curve models depend purely on production data, the forecasted 

recovery factor can exceed one without any other information. Reservoir simulation 

studies were performed to provide valuable information to complement the decline curve 

analysis. The combination can generate more reasonable production forecasts that take 

account of the geological and engineering data as well as the production data.  
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In order to generate meaningful results, I build a base case model representative of each 

production region. The base case models have geological, reservoir, and fluid properties 

as well as oil and gas production typical of the respective production regions. In building 

these base case models, the well spacing and fracture spacing were the widest within the 

industry standard  so that the well is in linear flow longer. The cumulative production 

from the reservoir simulation studies are used as the prior information for the cumulative 

production parameter (N240 or G240) in the re-parameterized Duong model. Monte Carlos 

simulation with reservoir simulation was performed to generate the distributions of 20-

year cumulative production for oil or gas (N240 or G240).  

 

3.5.2. Initialization of Base Case Reservoir Simulation Models 

Reservoir Geometry 

Before defining the reservoir geometry, I surveyed through the public data bases for the 

typical drilling and completion standard in the Eagle Ford shale. The average perforated 

interval for all the horizontal wells in the Eagle Ford is 4694 ft, the number of stages 

ranges from 12 to 18, well spacing ranges from 60 acres/well to 160 acres/well in the 

Eagle Ford according to Drillinginfo.com (Drillinginfo 2013). I selected wider fracture 

spacings and wider well spacing from these ranges. The reservoir geometry for the base 

case models are: perforated interval = 4694 ft, number of stages = 12, average successful 

clusters per stage = 2, and well spacing = 160 acres/well. A single well base case model 

was created for each production region. The reservoir model size is 1/48 of the entire 

well based on symmetry to speed up reservoir simulation. Fig. 3.17 and Table 3.5 show 
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the reservoir geometry and key reservoir geometry parameters of the base case reservoir 

simulation models. The hydraulic fracture was explicitly modeled where the fracture 

conductivity decreases from the center to the tip in the fracture (Y-Z) plane (Honarpour 

et al. 2012) (Fig. 3.18). The fracture width was set as 2 ft for calculation purposes; 

Alkouh et al. (2012) shows that reservoir models with the same fracture conductivity but 

different fracture widths yield similar results.  

 

Fig. 3.17— Geometry for base case reservoir model for all production regions 
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Fig. 3.18— Fracture permeability decreases logarithmically from perforation to the 

boundary of reservoir in the fracture plane. 

 

Table 3.5— Geometry of Reservoir Simulation Base Case Models 

Entire Well Fractional Model 

Perforated Interval, ft 4694 X, ft 195.6 
Number of Stages 12 Y, ft 660 

Successful Cluster per Stage 2 Number of gridblocks in X direction 11 
Number of Hydraulically Fractures 24 Number of gridblocks in Y direction 17 

Distance Between Fractures , ft 150 Number of gridblocks in Z direction 11 
Well Spacing, acres/well 160 Fraction of Well 1/48 

Distance Between Wells, ft 1320 
   

Reservoir Properties 

Reservoir properties, such as thickness, porosity, and water saturation, were provided by 

Yao Tian* from type logs for all production regions. Fig. 3.19 shows a type log with a 

triple combo of gamma ray, resistivity and density logs for production region 3(PR3). 
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The original reservoir properties provided by Yao Tian* are shown in Table 3.6. The 

seven layers in Table 3.6 were further divided into eleven layers so that the thickness of 

each layer is similar (Table 3.7). To simplify the reservoir model, I assigned  the eleven 

layers to either upper Eagle Ford or lower Eagle Ford. The averaged reservoir properties 

within each formation are used in the base case reservoir models (Table 3.8). Fig. 3.20 

shows the type logs for all production regions. Table 3.9 shows the averaged reservoir 

properties for all production regions; the numbers in parentheses are the perforated 

layers, which are in the middle of the lower Eagle Ford formation to have the most 

surface contact of the organic-rich shale (Pope et al. 2012).  

 

 

Fig. 3.19— Type log of production region 3 (PR3) that was used to build the static 

base case reservoir model  

 

___________ 

* Personal communication with Yao Tian 2013. College Station: Texas A&M University. 
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Table 3.6— Original Layering and Reservoir Properties from Yao Tian (PR3) 

Layers Depth, ft Thickness, ft Porosity % Sw, % 
1 7435-7603 168 6 65 

2 to 4 7603-7659 56 6 35 
5 7659-7711 52 10 20 
6 7711-7740 29 9 20 
7 7740-7760 20 10 40 

 

Table 3.7— Layering and Reservoir Properties for 11 Layers (PR3) 

Layers Thickness, ft Porosity, % Sw, % 

1 33.6 6 65 
2 33.6 6 65 
3 33.6 6 65 
4 33.6 6 65 
5 33.6 6 65 
6 28 6 35 
7 28 6 35 
8 26 10 20 
9 26 10 20 

10 29 9 20 
11 20 10 40 

 

Table 3.8— Averaged Reservoir Properties for 

Upper and Lower Eagle Ford (PR3) 

Layers Thickness (ft) Porosity % Sw, % 
1 to 7 32 6 56 

8 to 11 25 10 25 
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              (a)                            (b)                               (c)                                (d)                          

 

              (e)                             (f)                                (g)                             (h) 

Fig. 3.20— Type logs for production regions 1 (a) to 8 (h) 
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Table 3.9— Layering, Perforation, and Reservoir Properties for Base Case 

Models 

Production Region Formation Layers Thickness (ft) Porosity % Sw, % 

PR1 
Upper 1 to 6 70 6 40 
Lower 7 to 11  (8) 32.8 10 20 

PR2 
Upper 1 to 6 52 7 50 
Lower 7 to 11 (8)  32.8 10.5 20 

PR3 
Upper 1 to 7 30 6 55 
Lower 8 to 11 (9) 30 10 20 

PR4 
Upper 1 to 6 52 7 50 
Lower 7 to 11 (8)  32.8 10.5 20 

PR5 Lower 1 to 11 (6) 10 8.5 20 
PR6 Lower 1 to 11 (6) 14 12 16 
PR7 Lower 1 to 11 (6) 15 12 15 

PR8 
Upper 1to 6 23 9 70 
Lower 7 to 11 (8)  23 12 35 

* Numbers in the parentheses represent the perforated layer 
 

Components 

I used the black-oil correlation in CMG (2013) to calculate the reservoir properties for 

black-oil regions and the dry-gas region. The black-oil correlation requires input data of 

reservoir temperature, initial producing GOR (to calculate bubble point or dew point), 

oil API gravity, and gas gravity (air =1).  

 

To calculate average temperature, I first calculated the average depth for each production 

region. The average temperature gradient, which equals 0.02 ºF/ft, was calculated from 

the initial reservoir temperature vs. the true vertical depth (TVD) in the 28 full PVT 

reports. The average temperature equals the surface temperature 60 ºF plus 0.02 times 

average depth of each production region. Oil API gravity and gas gravity were averaged 
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within each production region. Initial GOR equals the summation of first three month 

gas production divided by the summation of first three month oil production within each 

production region. The input parameters required to calculate the black-oil correlation 

are shown in Table 3.10. Only the black oil regions PR1, PR3, PR5, and the dry gas 

region PR8 used the black-oil correlation; the parameters for other production regions 

are shown for comparison purposes.  

 

Table 3.10— Summary of Fluid Properties Used to Calculate Black-oil Correlation 

for PVT Behavior 

 
Temperature, ºF Oil API Gravity 

Gas Gravity 
(Air =1) 

Initial GOR, 
SCF/STB 

PR1 (Black Oil) 158 35.7 0.76 873 
PR2 (Condensate) 189 54.5 0.75 9,269 

PR3 (Black Oil) 218 41.0 0.75 1,030 
PR4 (Condensate) 278 52.4 0.74 11,623 

PR5 (Black Oil) 244 42.1 0.78 1,007 
PR6 (Volatile Oil) 307 50.5 0.73 2,781 

PR7 (Condensate) 329 58.8 0.71 11,230 
PR8 (Dry Gas) 271 54.9 0.61 850,543 

 

For condensate regions PR2, PR4, and PR7, and volatile-oil region PR6, Peng-

Robinson’s correlation equation of state model was used. Three full reports from PR2, 

PR4, and PR6 (assuming PR7 has the same fluid as PR6 with different composition 

since there is no full PVT report available in PR7) with constant composition expansion 

(CCE) and constant volume depletion (CVD) data were imported into the Winprop 

module of CMG (2013). The compositions of the reservoir fluids as well as gas gravity 

and density of heptane plus (C7+) were also imported into Winprop. Quality checks  
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(a)                                                                 (b) 

 
                     (c)                                                                      (d) 

 
(e)                                                                (f) 

Fig. 3.21— Comparison between EOS generated PVT curves and lab 

measurements from a full PVT report in PR4 (green: oil properties, red: gas 

properties): (a) to (d) constant composition expansion experiment and (e) to (f) 

constant volume depletion. (a) relative volume, (b) condensed liquid volume, (c) gas 

z factor, (d) gas density, (e) gas compressibility factor, (f) liquid volume 
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Table 3.11— Summary of Composition and C7+ Properties for Base Case Models 

Component 
PR2 

(Condensate) 
PR4  

(Condensate) 
PR6              

(Volatile Oil) 
PR7 

(Condensate) 
H2S 0.00 0.00 0.00 0.00 
N2 0.07 0.13 0.14 0.11 

CO2 0.81 1.62 1.12 1.27 

C1 65.57 65.58 62.54 69.57 

C2 12.98 12.58 11.76 11.37 

C3 6.17 5.74 5.59 4.86 

IC4 1.50 1.37 1.36 1.42 
NC4 2.42 2.28 2.32 1.95 

IC5 1.08 0.98 1.17 1.05 

NC5 1.02 0.98 1.10 0.84 

C6 1.38 1.25 1.55 1.17 

C7+ 7.04 7.47 11.36 6.37 

C7+ Molecular 
Weight 

177.11 162.66 164.63 156.69 

C7+ Specific 
Gravity (water =1) 

0.80 0.79 0.80 0.79 

 

the equation of state matches of the 3 full PTV reports were performed using default 

parameter values in Winprop. Fig. 3.21 shows the comparison between measured 

laboratory data and fluid properties calculated from the equation of state using default 

values for PR4. The matches can be improved but are acceptable. The average 

compositions as well as C7+ properties for PR2, PR4, PR6, and PR7 are shown in Table 

3.11 and were used in the respective base case simulation models.   
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Rock Properties 

Three different rock property regions are present in the reservoir model, the organic-rich 

shale (lower Eagle Ford), the calcite-rich shale (upper Eagle Ford), and the hydraulic 

fractures. The calcite-rich shale normally has a lower porosity but higher matrix 

permeability compared with the organic-rich rock (Honarpour et al. 2012). I assumed a 

3-to-1 permeability ratio between calcite-rich rock and organic-rich rock. Honarpour et 

al.’s (2012) pressure-dependent permeability curves (Fig. 3.22) and Corey’s exponent 

correlations for relative permeability (Table 3.12) were used in the base case models. 

Since natural fractures are not modeled explicitly in my reservoir models, the matrix 

permeability in my models represents the effective permeability for both the matrix and 

natural fractures. 

 

 

Fig. 3.22— Pressure-dependent permeability for fracture, calcite-rich, and organic-

rich rocks, from Honarpour et al. (2012) 
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Table 3.12— Corey’s Exponent Correlations to Calculate Relative Permeability, 

from Honarpour et al. (2012) 

Organic-rich 

gas Phase oil phase water phase 
Sgc 0.2 Sorg 0.5 Swmin 0.25 

Corey Gas 3 Corey O/W 5 Swcr 0.25 
Krg at Swmin 0.5 Corey O/G 4.5 

  Krg at Sorg 0.01 Kro at Somax 0.4 
  Calcite-rich 

gas Phase oil phase water phase 
Sgc 0.15 Sorg 0.3 Swmin 0.5 

Corey Gas 2 Corey O/W 4 Swcr 0.55 
Krg at Swmin 0.7 Corey O/G 3.5 

  Krg at Sorg 0.01 Kro at Somax 0.6 
  Fracture 

gas Phase oil phase water phase 
Sgc 0.05 Sorg 0.1 Swmin 0.1 

Corey Gas 1.2 Corey O/W 2.5 Swcr 0.1 
Krg at Swmin 0.9 Corey O/G 1.5 

  Krg at Sorg 0.05-0.5 Kro at Somax 0.7 
   

Initial Conditions 

The initial pressure gradient was calculated from full PVT reports to be 0.66 psi/ft for 

west and middle regions (PR1, PR2, PR3, PR4, and PR8) and 0.82 psi/ft for east regions 

(PR5, PR6, and PR7). Initial reservoir pressure for the base case models (Table 3.13) 

were calculated by multiplying the average depth at the perforations and the respective 

pressure gradient for each production region plus surface pressure 14.7 psia.  

 

Table 3.13— Initial Reservoir Pressure at Perforations for Base Case Models, psia 

 
PR1 PR2 PR3 PR4 PR5 PR6 PR7 PR8 

Pressure, psia 3,246 4,259 5,216 7,210 7,593 10,155 11,071 6,985 
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Well Constraints 

Since no pressure data are available, constant bottom-hole pressure (BHP) was assumed 

to be the main well constraint. A Prosper (Petroleum Experts 2013) model shows BHP 

equals 1500 psi for a typical horizontal well with 5-1/2 inch outside diameter (OD), 4.67 

inch inside diameter (ID), 7881 ft TVD, 5000 ft lateral, and 300 psia well-head pressure, 

producing at 300 STB/D in PR3 (Fig. 3.23).  

 

 

Fig. 3.23— Vertical lift curve from Prosper shows a typical PR3 well has a BHP of 

1500 psi when producing at 300 STB/Day 

 

Base Case Production Comparisons 

Matrix permeability of organic-rich rocks, fracture conductivity, and pressure-dependent 

permeability for hydraulic fractures were varied so that the simulated production of base 

case models is close to the average observed production of each production region. The 

average observed production of each region is by normalizing all wells to the same 
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starting month, and average production from all wells for each month’s production. 

After changing the permeabilities, the simulated oil production of the base case model is 

much close to the average production of PR3 (Fig. 3.24). The simulated GOR and 

average GOR in PR3 are shown in Fig. 3.25. The GOR match can be improved but is 

acceptable for the base case models since only the distributions of 20-year cumulative oil 

production for PR1 to PR7 are used as the prior distributions for probabilistic decline 

curve analysis. Table 3.14 shows the organic-rich matrix permeability, maximum 

fracture permeability (fracture width = 2 ft), and the pressure-dependent permeability of 

the hydraulic fracture for the base case models of all production regions. The oil and gas 

production comparison between the simulated production and the average production for 

all production regions are shown in Fig. 3.26.  

The matches are good at the initial rates and at the end of the production period, there is 

a 5% to 15% mismatch in the middle of the production periods for most production 

regions. 
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Fig. 3.24— After changing the permeability, the base case simulated production for 

PR3 is closer to the average observed oil production compared with the simulated 

oil production using default parameters 

 

 

Fig. 3.25— The GOR of the base case model is close to the average GOR of PR3 but 

not exact 
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                                 (a)                                                                     (b) 

 
                                 (c)                                                                     (d) 

  
                                  (e)                                                                      (f) 

 

                                   (g)                                                                    (h) 

Fig. 3.26— Comparison between base case simulated oil production and average oil 

production for PR1 to PR7 (a) to (g), and base case simulated gas production and 

average gas production for PR8 (h) 
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Table 3.14— Summary of Matrix and Fracture Permeability and Pressure-Dependent 

Permeability Curves for Hydraulic Fracture 

 

Organic Rich 
Matrix Perm, nd 

Maximum Fracture Permeability 
with 2-ft Fracture Width, md 

Pressure-Dependent 
Permeability Curve for Fracture 

Default 20 40 Fracture 
PR1 50 10 Calcite 
PR2 24 80 Calcite 
PR3 90 40 Calcite 
PR4 12 80 Fracture 
PR5 800 120 Calcite 
PR6 150 60 Fracture 

PR7 50 100 Calcite 
PR8 90 5 Calcite 

 

3.5.3. Monte Carlo Simulation with Reservoir Simulation 

To generate distributions of N240 for PR1 to PR7 and G240 for PR8, I performed Monte 

Carlo simulation with reservoir simulation. I first identified the parameters that are 

uncertain and defined the distributions for those parameters. The uncertain parameters I 

identified are: maximum fracture permeability, matrix permeability, thickness of upper 

and lower Eagle Ford, vertical permeability multiplier, volume modifier, initial pressure, 

bubble point (black-oil models), and composition of heptane plus (compositional 

models). The distribution types and the descriptions of the parameters are shown in 

Table 3.15. The P90, P50, and P10 of the common parameters for all production regions—

BHP, vertical permeability multiplier, and volume multiplier—are shown in Table 3.16. 

The P90, P50, and P10 of the other parameters for each production region are shown in 

Table 3.17 to Table 3.23. 
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Table 3.15— Distributions of Reservoir Properties For Monte Carlo Simulation 

with Reservoir Simulation 

Parameter Distribution Description 
Bottom hole pressure, psia Uniform 500 to 1500 

Maximum fracture permeability, md Lognormal Mean = base case, SD =1.25 
Organic-rich matrix permeability, nd Lognormal Mean = base case, SD =1.25 
Thickness of Upper and Lower Eagle 

Ford, ft Uniform Based on Isopach 
Vertical permeability multiplier Triangular Mean = 0.1, SD =1 

Volume modifier Triangular Mean = 1, SD =0.75 
Initial pressure, psi Discrete Based on structure and gradient 
Bubble point, psi Uniform Original-600 to original  

Composition for methane and C7+ Discrete Based on PVT reports 
 

Table 3.16— Percentiles of Global Parameters for All Production Regions 

Parameter P90 P50 P10 

Bottom hole pressure, psia 700 1500 2300 
Vertical permeability multiplier 0.028 0.1 0.36 

Volume modifier 0.38 1 2.62 
 

Table 3.17— Percentiles of Organic-Rich Matrix 

Permeability, nd 

Production Regions P90 P50 P10 

PR1 10 50 248 
PR2 5 24 119 
PR3 18 90 446 
PR4 2 12 59 
PR5 161 800 3966 
PR6 30 150 744 
PR7 10 50 248 
PR8 18 90 446 
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Table 3.18— Percentiles of Maximum Fracture 

Permeability, md 

Production Regions P90 P50 P10 

PR1 2 10 50 
PR2 16 80 397 
PR3 8 40 198 
PR4 16 80 397 
PR5 24 120 595 
PR6 12 60 297 
PR7 20 100 496 
PR8 1 5 25 

 

Table 3.19— Percentiles of Thickness of Upper 

Eagle Ford, ft 

Production Regions P90 P50 P10 

PR1 291 411 496 
PR2 86 314 515 
PR3 25 199 364 
PR4 103 167 351 
PR8 7 136 240 

 

Table 3.20— Percentiles of Thickness of Lower 

Eagle Ford, ft 

Production Regions P90 P50 P10 

PR1 141 181 200 
PR2 94 172 200 
PR3 75 111 130 
PR4 100 141 208 
PR5 60 107 153 
PR6 120 152 205 
PR7 104 166 220 
PR8 95 115 215 
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Table 3.21— Percentiles of the Initial Reservoir 

Pressure, psi 

Production Regions P90 P50 P10 

PR1 2,138 3,295 4,258 
PR2 2,442 4,309 5,997 
PR3 3,806 5,109 6,847 
PR4 5,483 7,192 8,943 
PR5 5,207 7,764 9,402 
PR6 9,553 10,089 10,813 
PR7 10,404 11,061 11,595 
PR8 7,460 8,651 10,111 

 

Table 3.22— Percentiles of Bubble Point Pressure for 

Black Oil Regions, psi 

Production Regions P90 P50 P10 

PR1 2900 3200 3500 
PR3 4000 4300 4600 
PR5 3200 3500 3800 

 

Table 3.23— Percentiles of Composition of C7+ for 

Condensate, Volatile-Oil Regions, % 

Production Regions P90 P50 P10 

PR2 4.19 6.64 10.56 
PR4 4.54 7.87 13.19 
PR6 8.32 11.36 13.46 
PR7 4.37 6.37 8.96 

 

A total of 210 iterations of Monte Carlo simulation with reservoir simulation were 

performed for each production region using Latin Hypercube sampling. The N240 of PR1 

to PR7 and G240 of PR8 all follow lognormal distributions (Fig. 3.27). The median of 

N240 and G240, as well as the standard deviation of ln(N240) and ln(G240), are shown in 
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Table 3.24. The P90, P50, and P10 of recovery factors for all production regions are shown 

in Table 3.25. 

 

 
       (a)                                                             (b) 

 
                           (c)                                                                (d)  

 
                           (e)                                                                 (f) 

 
                           (g)                                                                (h) 

Fig. 3.27— The simulated 20-year cumulative oil production of PR1 to PR7 (a) to 

(g) and cumulative gas production of PR8 (h) follow lognormal distributions 
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Table 3.24— Median and Standard 

Deviation of Lognormal Distributions 

of N240 and G240 

N240, STB 

 
Median SD of ln(N240) 

PR1 123,733 1.08 
PR2 115,943 1.24 
PR3 296,880 0.89 
PR4 186,188 0.90 
PR5 283,663 0.89 
PR6 458,351 0.88 
PR7 132,374 1.17 

G240, Bcf 

 
Median SD of ln(G240) 

PR8 2.19 1.15 
 

Table 3.25— Recovery Factors of Oil for 

PR1 to PR7, Gas for PR8, % 

Percentiles P90 P50 P10 
Oil PR1 0.03 0.56 2.75 

 
PR2 0.29 4.01 17.10 

 
PR3 1.05 3.61 12.44 

 
PR4 1.22 4.01 12.77 

 
PR5 1.19 4.53 10.86 

 
PR6 3.12 5.05 11.34 

 
PR7 0.90 4.18 13.76 

Gas PR8 2.69 13.44 36.26 
 

3.6. Generation of Type Probabilistic Decline Curves  

3.6.1. Estimation of Minimum Decline Rate 

A combination of the Duong model transitioning to the Arps model with b = 0.3 was 

used to model production with both linear flow and boundary-dominated flow regimes 

(Joshi and Lee 2013). In order to identify which wells have reached boundary-dominated 
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flow, I plotted the production rate vs. material-balance time (material-balance time = 

cumulative production divided by rate). I identified a well as being in boundary-

dominated flow if the slope of rate vs. material-balance time is greater than 0.95 (around 

1) for the last third of the log cycle (Fig. 3.28) per John Lee’s recommendation.* The 

time when the well reaches boundary-dominated flow was identified when the rate vs. 

material-balance time slope is closest to one. The minimum decline rate (Dmin) is set 

equal to the decline rate of the Duong model at that time. To ensure the calculated 

minimum decline rate from the Duong model is representative of the minimum decline 

rate from the production data, only the wells for which the Duong model fit the 

production data well were selected for this study.  

 

A total of 364 wells with oil production from PR1 to PR7 and 100 wells with gas 

production from PR8 were selected. Within these wells, 57 oil wells and 19 gas wells 

were identified as being in boundary-dominated flow. For oil production, the minimum 

decline rates of the wells that reached boundary-dominated flow were recorded and 

follow a lognormal distribution (Fig. 3.29 (a)). For the wells that have not reached 

boundary-dominated flow, the decline rate at the end of history was recorded (Fig. 3.29 

(b)). The minimum decline rate should be less than the decline rate at the end  

of the history of those wells that have not reached boundary-dominated flow. I assumed 

that the minimum decline rate of the wells that have not reached boundary-dominated 

 

 

___________ 

* Personal communication with John Lee 2013. College Station: Texas A&M University 
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flow should follow the same lognormal distribution as the minimum decline rate of the 

wells that reached boundary-dominated flow, but truncated at the decline rate at the end 

of the history. I combined the minimum decline rate for the wells that have reached 

boundary-dominated flow (Fig. 3.31 (a)) and the minimum decline rate drawn randomly 

from the truncated lognormal distribution for the wells that have not reached boundary-

dominated flow (Fig. 3.31 (b)). The combination is the distribution of the minimum 

decline rate of oil production for PR1 to PR7 (Fig. 3.29 (c)). The same process was done 

for gas production from PR8 (Fig. 3.30).  

 

I also calculated the correlation between minimum decline rate and decline curve 

parameters of the re-parameterized Duong model, and found a significant correlation 

between minimum decline rate and decline curve parameter l. The correlation between 

(a) the minimum decline rate and decline curve parameter l and (b) the standard 

deviation of ln(Dmin) with the decline curve parameter l are shown in Fig. 3.31. Eq. 3.8 

summarizes the models of the minimum decline rate for both oil and gas.        
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Fig. 3.28— An example well that has already reached dominated boundary flow 

because of the unit slope in the last 1/3 log cycle  

 

  
                         (a)                                                                      (b) 

 
(c) 

Fig. 3.29— Distribution of minimum decline rate (Dmin): (a) for boundary-

dominated flow (BDF) wells, (b) distribution of decline rate at end of history for 

non-BDF wells, and (c) the combined distribution for Dmin (oil) 
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                        (a)                                                                   (b) 

 
(c) 

Fig. 3.30— Distribution of minimum decline rate (Dmin) for: (a) boundary-

dominated flow (BDF) wells, (b) distribution of decline rate at end of history for 

non-BDF wells, and (c) the combined distribution for Dmin (gas) 
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                               (a)                                                                        (b) 

 

(c) 

Fig. 3.31— For oil production, both (a) minimum decline rate (Dmin) and (b) the 

standard deviation of minimum decline rate (Dmin) increase when decline curve 

parameter l increases. For (c) gas production, Dmin increases when l increases 

 

                                                               

    (       )                             (       )                 ) 
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The distribution of the time when the oil production reached boundary-dominated flow 

is shown in (Fig. 3. 36) 

 

Fig. 3.32— The time to reach boundary-dominated flow ranges from 17 months to 

50 months with an average of 24 months.  

 

3.6.2. Generation of GOR Model  

Since production forecasts were performed on oil production for PR1 to PR7, I built 

GOR models to calculate gas production for those production regions. I first normalized 

oil and gas production of all the wells in the production regions to the same starting 

month. I then divided the sum of gas production by the sum of oil production for each 

month to get the average GOR curves for all production regions (Fig. 3.33). I found that 
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the GOR curves for the same fluid type are very similar.  So I combined GOR curves 

within each fluid type and ended up with three average GOR curves for black oil, 

volatile oil, and condensate regions.  I then fit two straight lines to bracket the majority 

of the data; the last several data points were ignored because the well count of the later 

months is significantly lower than the well count of the earlier months (Fig. 3.34). The 

slopes for those two straight lines are shown in Table 3.26. However, since the 

production history is short, the GOR may increase faster or slower of the slightly 

increasing models. As a result, it is possible the slightly increasing models can 

underestimate the uncertainty.  

 

I collected the initial GOR for all the wells in black oil, volatile oil, and condensate 

regions. By comparing the initial GOR with the best-fit decline curve parameters, I 

found the only significant correlation was between the initial GOR and N240 for the 

condensate regions (Fig. 3.35). However, the standard deviation of ln(initial GOR) 

decreases when N240 increases for all three fluid types (Fig. 3.36). The median of the 

initial GOR and the standard deviation of the ln(initial GOR) for all three fluid types are 

shown in Eq. 3.9.    
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Fig. 3.33— Average GOR curves sharing the same fluid type have similar shapes 
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                                 (a)                                                                     (b) 

 

(c) 

Fig. 3.34— Average GOR and the straight line GOR models for (a) black oil, (b) 

volatile oil, and (c) condensate fluid types 

 

Table 3.26— GOR Slopes for Three Fluid Types 

Fluid Type Lower Slope, SCF/STB/month Higher Slope, SCF/STB/month 
Black Oil 16 46 

Volatile Oil 22 87 
Condensate 75 256 
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                               (a)                                                                 (b) 

 

(c) 

Fig. 3.35— Initial GOR is not correlated to N240 of (a) black oil and (b) volatile 

regions, but correlated to N240 of (c) condensate regions 
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                                  (a)                                                                 (b) 

 

(c) 

Fig. 3.36— Standard deviation of ln(initial GOR) decreases when N240 increases for 

all three fluid types: (a) black oil, (b) volatile oil, and (c) condensate 
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3.6.3. Generation of Type Probabilistic Decline Curves 

In order to calculate reserves or resources for new wells, probabilistic type curves need 

to be generated for each production region. The type curves for each production region 

represent the distributions of oil and gas production of a new well with similar drilling 

and completion technology in a pre-defined area. I generated the probabilistic type 

curves using the following steps: 

 Perform probabilistic decline curve forecast with MCMC for all existing wells 

within each production region, save all the decline curve parameters associated 

with each iteration of the Markov Chain of all the wells 

 Perform Monte Carlo simulation to randomly draw 100,000 parameter sets from 

all the iterations of all wells as the distribution of all decline curve parameters 

 Perform Monte Carlo simulation to draw initial GOR, GOR slope, and minimum 

decline rate based on Eq. 3.8 for minimum decline rate, Eq. 3.9 for initial GOR, 

and uniform distribution for GOR slope with boundaries in Table 3.26 for all 

100,000 draws. 
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 Calculate technical recoverable resources of 20 years (TRR20) of oil and gas for 

each set of decline curve parameters and other parameters; generate two ranked 

lists of parameters based on TRR20 oil and TRR20 gas. 

 Average all the parameters within a predefined band (1000 sets in this case) 

around the P90, P50, and P10 of oil and gas TRR20 from the ranked lists.  

 Correct the N240 or G240 parameter so that the TRR20 calculated from the 

average parameters equal to the P90, P50, and P10 of oil and gas TRR20 

 

Fig. 3.37 shows the relationship between prior distribution (from reservoir simulation 

studies), likelihood function (from production data), and posterior distribution for a 

single well in PR5 and for the type well for PR5. For the single well, the likelihood 

function dominates the prior density. For the type well, both prior density and likelihood 

function contribute to the posterior distribution. The posterior distributions of oil and 

gas TRR20 of PR5 follow lognormal distributions (Fig. 3.38). Both prior and posterior 

probabilistic type curves bracket the majority of the production data, while the posterior 

probabilistic type curves capture the curvature of the production data much better than 

the prior type curves generated from simulation studies for oil production in PR5 (Fig. 

3.39). Fig. 3.40 and Fig. 3.41 show the oil and gas type probabilistic decline curves for 

all the production regions, respectively. Table 3.27 and Table 3.28 show all the 

parameters for the oil and gas type decline curves, respectively. Table 3.29 shows the 

P90, P50, P10, mean, and standard deviation of TRR20 for all eight production regions. 
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                              (a)                                                                      (b) 

Fig. 3.37— Likelihood (production data) dominated the posterior distribution of a 

particular well in PR5 (a), while both prior and likelihood contribute to the 

posterior distribution of the type well of PR5 

 

   

                             (a)                                                                 (b) 

Fig. 3.38— Both oil (a) and gas (b) TRR20 follow lognormal distribution of PR5 
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                              (a)                                                                      (b) 

Fig. 3.39— Both (a) prior type curves (generated from reservoir simulation) and (b) 

posterior type curves bracket the real oil production of PR5. The posterior type 

curves follow the curvature of the production data much better than the prior type 

curves 
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                        (a)                                               (b)                                                 (c)                                             (d) 

     

                       (e)                                             (f)                                               (g) 

Fig. 3.40— Probabilistic type curves for oil production of (a) PR1 to (g) PR7  
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                         (a)                                              (b)                                             (c)                                              (d)  

    

                       (e)                                                  (f)                                             (g)                                               (h) 

Fig. 3.41— Probabilistic type curves for gas production of (a) PR1 to (h) PR8  
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Table 3.27— Parameters of Type Probabilistic Decline Curves (Oil) 

Production Regions Percentiles N240, STB a l Dmin, 1/year TRR20, STB 

PR1 
P90  26,038 0.91 0.30 0.37 23,059 

P50 83,163 0.89 0.24 0.30 72,345 

P10 250,220 0.85 0.10 0.18 199,612 

PR2 
P90 29,819 0.91 0.31 0.37 26,699 

P50 147,652 0.87 0.20 0.29 124,438 

P10 488,856 0.85 0.10 0.19 382,868 

PR3 
P90 84,165 0.89 0.24 0.32 71,994 

P50 244,998 0.86 0.16 0.25 199,662 

P10 647,920 0.86 0.07 0.17 488,506 

PR4 
P90 32,078 0.83 0.25 0.33 27,941 

P50 111,213 0.84 0.19 0.27 93,645 

P10 345,766 0.84 0.13 0.22 282,178 

PR5 
P90 96,287 0.88 0.29 0.37 84,686 

P50 243,618 0.83 0.18 0.27 204,650 

P10 569,238 0.79 0.09 0.18 457,435 

PR6 
P90 152,147 0.90 0.35 0.42 136,613 

P50 370,024 0.88 0.24 0.32 318,489 

P10 1,195,584 0.88 0.09 0.19 925,599 

PR7 
P90 32,570 0.86 0.24 0.31 28,227 

P50 175,393 0.92 0.25 0.32 151,288 

P10 835,202 0.92 0.13 0.22 653,800 
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Table 3.28— Parameters of Type Probabilistic Decline Curves (Gas) 

Production Regions Percentiles N240 (STB) a l Dmin, 1/year GORI, SCF/STB GORS, SCF/STB/Month TRR20 (Bcf) 

PR1 
P90 30,493 0.97 0.38 0.42 843 30 0.04 

P50 82,908 0.85 0.19 0.27 1,421 31 0.19 

P10 217,407 0.83 0.08 0.17 2,017 33 0.71 

PR2 
P90 21,174 0.95 0.35 0.42 21,248 157 0.48 

P50 74,178 0.84 0.18 0.26 31,950 164 2.43 

P10 283,074 0.84 0.09 0.18 24,768 178 8.16 

PR3 
P90 90,361 0.92 0.30 0.37 914 29 0.14 

P50 230,246 0.85 0.14 0.23 1,368 30 0.55 

P10 569,436 0.84 0.06 0.16 1,645 33 1.73 

PR4 
P90 38,246 0.88 0.28 0.35 9,377 156 0.48 

P50 97,289 0.84 0.18 0.26 16,656 164 1.97 

P10 192,352 0.84 0.12 0.20 31,730 175 6.54 

PR5 
P90 104,379 0.92 0.32 0.40 878 29 0.16 

P50 241,936 0.83 0.16 0.25 1,281 30 0.54 

P10 501,826 0.80 0.07 0.17 1,770 33 1.57 

PR6 
P90 165,476 0.97 0.39 0.45 2,205 51 0.51 

P50 357,999 0.85 0.22 0.29 3,282 54 1.66 

P10 1,081,779 0.86 0.08 0.18 3,761 58 6.35 

PR7 
P90 33,071 0.90 0.28 0.36 13,563 157 0.54 

P50 124,575 0.91 0.24 0.31 18,929 164 2.70 

P10 394,432 0.90 0.14 0.22 26,192 173 11.35 

 
Percentiles G240 (BCF) a l Dmin, 1/year GORI, SCF/STB GORS, SCF/STB/Month TRR20 (Bcf) 

PR8 
P90 0.97 0.86 0.28 0.41 NA NA 0.84 

P50 3.01 0.87 0.18 0.30 NA NA 2.42 

P10 7.91 0.81 0.07 0.15 NA NA 6.39 
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Table 3.29— Summary of TRR20 Oil and Gas for All Production Regions 

 
Oil TRR20, STB Gas TRR20, BCF 

Production Regions P90 P50 P10 Mean SD P90 P50 P10 Mean SD 
PR1 23,059 72,345 199,612 100,688 96,760 0.04 0.19 0.71 0.32 0.38 
PR2 26,699 124,438 382,868 173,595 169,270 0.48 2.43 8.16 3.62 3.89 
PR3 71,994 199,662 488,506 254,858 226,309 0.14 0.55 1.73 0.81 0.94 

PR4 27,941 93,645 282,178 133,376 129,414 0.48 1.97 6.54 2.97 3.27 
PR5 84,686 204,650 457,435 247,402 172,769 0.16 0.54 1.57 0.75 0.70 
PR6 136,613 318,489 925,599 453,708 412,886 0.51 1.66 6.35 2.79 3.35 
PR7 28,227 151,288 653,800 269,239 318,648 0.54 2.70 11.35 4.75 5.89 
PR8 

     
0.84 2.42 6.39 3.25 3.11 
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The average ratio of P10 : P50 : P90 of TRR20 for all production regions, based on Table 

3.27 and Table 3.28, are 10.8 : 3.4 : 1 and 13.8 : 4 : 1 for oil and gas respectively. 

According to Table 3.29, the best region for oil TRR20 is PR6, with a mean of 453,708 

STB, while the best region for gas TRR20 is PR7, with a mean of 4.75 BCF. 

 

3.7. Reservoir Area, Well Density and Well Count 

3.7.1. Reservoir Area 

According to PRMS (SPE et al. 2007), the criteria between reserves and contingent 

resources is commerciality; the criteria between contingent resources and prospective 

resources is discovery. Based on Table 3.29, a simple calculation, assuming oil price of 

$100/STB and gas price of $4/MSCF, shows the lowest mean monetary values among 

all the production regions are PR1 with $11.2 million and PR8 with $13 million. 

Compared with the typical drilling and completion cost of $8 million (Pope et al. 2012), 

the mean monetary value is greater than typical well cost for all production regions. The 

discovery criteria is more challenging, Dobson et al. (2012) introduced a methodology to 

define which part of the field is discovered and which part of the field is not discovered. 

I adopted their idea that the area within a certain radius of the existing wells could be 

considered the discovered area, and the area outside of the radius of the existing wells 

could be considered the undiscovered area. To identify the radius, I calculated the 

variogram of the peak month oil production ( Fig.3.42(a)). Based on the variogram, 

when the distance between the two wells is below 1.5 miles, there is significant 

correlation between the peak month oil productions ( Fig.3.42(b)). I used 1.5 miles as the 
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radius and drew blue circles around all existing wells. In Fig. 3.43, the blue colored area 

is considered discovered area for reserves and contingent resources, and the blank area is 

considered as the undiscovered area for prospective resources. 

 

  
(a)                                                                      (b) 

Fig. 3.42— Variogram analysis: (a) the distribution of peak month oil, and (b) the 

variogram of the peak month oil show that the peak oil productions of two wells are 

correlated when the distance between the two wells is less than 1.5 miles 
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Fig. 3.43— Blue circles were drawn around the producing wells with a radius of 1.5 

miles; the blue colored area is considered as discovered area while the blank area is 

considered undiscovered area 

 

3.7.2. Well Density 

The well spacing varies significantly among different production regions. So a single 

well spacing for all the regions is not an appropriate assumption. I identified the highest 

established well densities (HEWD) for each production region. The HEWD of a 

production region is the highest well density that has been drilled in patterns within that 

production region. The well patterns for all the production regions are shown in Fig. 

3.44, while the HEWD for all production regions are shown in Table 3.30. Another 

observation is that there was a weak correlation between the minimum decline rate and 
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HEWD; although the correlation is not strong, it is significant enough to include it in the 

reserves/resources calculation (Fig. 3.45).  

 

Fig. 3.44— The highest established well density (HEWD) for all 8 production 

regions 

 

Table 3.30— HEWD for All Eight Production Regions 

Production Regions Number of wells/Section Well spacing, Acres/Well 
PR1 3.1 206 
PR2 11.2 57 
PR3 4.0 160 
PR4 6.7 96 
PR5 11.2 57 
PR6 10.5 61 
PR7 6.0 106 
PR8 2.0 320 
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Fig. 3.45— Average minimum decline rate increases when number of wells per 

section increases with a weak correlation 

 

3.7.3. Well Count 

PRMS (SPE et al. 2007) recommended that only the production of the wells that will be 

drilled in the next five years can be considered as reserves. This contingency is the 

primary constraint for the Eagle Ford play. I assumed the drilling rate in the next five 

years will be similar to the drilling rate in 2012 for each production region. However, not 

all the areas can be drilled because of two major reasons: geology/politics, and 

geometry. Geology is not a big issue in the Eagle Ford play because the formation is 

fairly uniform, and there are not a lot faults. Politics is not a big issue either because 

there are very few cities in this area. I defined the average drilling efficiency factor for 

the geology/politics to be 0.9. The geometry is a bigger issue because there are a lot of 
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operators in the Eagle Ford shale, and their leases may not be continuous. If the lease 

line is irregular or there is a significant angle between the lease line and the direction of 

the horizontal wells (Fig. 3.46), as much as 25% of the area will not be utilized. I defined 

the average geometry drilling efficiency to be 0.875 (average of 0.75 and 1).  

 

The well count of existing reserves is constant because the wells are already drilled. The 

well count for undeveloped reserves equals the minimum of the well count of the next 

five years and the maximum well capacity of each production region given the well 

density. The well count for contingent resources equals the discovered area times the 

well density, subtracted by the existing well count and the undeveloped reserves well 

count. The well count for prospective resources equals the undiscovered area times the 

well density. Table 3.31 shows the well count calculation assuming the P50 drilling 

efficiency, 2012 drilling rate, and well density equals HEWD. 

 

 

Fig. 3.46— Geometry drilling efficiency equals 0.75 when the lease line and well has 

a 45 degree angle
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Table 3.31— Summary of P50 Well Count for Reserves and Resources 

Production Region PR1 PR2 PR3 PR4 PR5 PR6 PR7 PR8 Total 
Area (Acres) 799,836 942,734 1,617,410 584,070 977,484 338,000 478,888 1,201,185 6,939,607 

Reserves/Contingent Area (Acres) 173,590 550,944 1,017,488 414,105 675,539 318,336 370,863 565,281 4,086,146 
Prospective Area (Acres) 626,246 391,790 599,922 169,965 301,945 19,664 108,025 635,904 2,853,461 

Current Well spacing (Acres/Well) 206 57 160 96 57 61 106 320 
 Drilling Efficiency Factor 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 0.7875 
 Existing Well Count 102 839 913 428 1020 561 310 229 4,402 

Reserves Well Count 235 2,035 2,710 965 2,710 1,545 730 365 11,295 
Contingent Well Count 327 4,738 1,385 2,004 5,603 2,004 1,715 797 18,572 
Prospective Well Count 2,394 5,413 2,953 1,394 4,172 254 803 1,565 18,947 

Total Well Count 3,058 13,025 7,961 4,813 13,505 4,364 3,558 2,956 53,216 
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3.8. Reserves and Resources Evaluation 

3.8.1. Aggregation within Production Regions 

There are two very different ways that are widely used to aggregate production between 

wells. Some authors (Dong et al. 2012) aggregate the P90, P50, P10 production 

arithmetically; other authors (Dobson et al. 2011) perform Monte Carlo simulations 

assuming independence between the wells. There is a big difference between those two 

aggregation methods; adding wells arithmetically assume 100% dependence, while 

adding wells independently assume 100% independence. To illustrate the difference 

between the two methods, I give the following a simple example. Assuming a production 

region has 10,000 wells where the cumulative oil production for each well has a normal 

distribution with mean = 200,000 STB and standard deviation = 150,000 STB. The 

arithmetic method will generate P90 reserves =0.08 billion barrels of oil (BBO), P50 

reserves = 2 BBO, and P10 reserves = 3.92 BBO; the independence assumption will 

generate P90 reserves = 1.98 BBO, P50 reserves = 2 BBO, and P10 reserves = 2.02 BBO.  

While the P50 reserves of the two methods are the same, the P10 vs. P90 ratios are 49 and 

1 using the two methods, respectively. 

 

On one hand, the wells in each production region share the same reservoir, similar fluid, 

similar completion and drilling technology. If one of the above parameters changes, the 

production of all the wells in that production region will increase or decrease together, so 

the production between the wells are correlated to each other. On the other hand, 

unconventional reservoirs are well known as statistical plays. Two wells 1000 ft apart 
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can have very different reserves. The truth is I do not know the true correlation between 

the wells, but the correlation should neither be 100% dependence nor 100% 

independence. The variance of summation of n wells’ reserves/resources, assuming 

100% dependence, is n
2
s

2
 where the variance of summation of n wells’ 

reserves/resources, assuming 100% independence, is ns
2
. I defined a triangular 

distribution for the variance of sum of reserves/resources with ns
2
 as the minimum and 

n
2
s

2
 as the maximum with most likely at n

1.5
s

2
 (Fig. 3.47). 

 

PRMS pointed out that the probabilistic aggregation can only be done within the field, 

reservoir, or project. The aggregation within production regions was calculated 

probabilistically; while the aggregation between production regions was calculated 

arithmetically.  

 

 

Fig. 3.47— Triangular distribution for variance of summation of 

reserves/resources.  
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3.8.2. Reserves and Resources Estimation 

To calculate reserves and resources, I need to define the distributions for some key 

parameters. I defined the drilling rate for the next five years to follow a triangular 

distribution, with the minimum as half the 2012 drilling rate, the maximum as twice of 

the 2012 drilling rate, and most likely as the 2012 drilling rate (Fig. 3.48). For the 

drilling efficiency factor, I assumed a uniform distribution with minimum and maximum 

equal to 0.8 and 1, 0.75 and 1 for geology/politics drilling efficiency factor and geometry 

drilling efficiency factor respectively. The well density distribution is a combination of 

two uniform distributions, with maximum equal to 22, minimum equal to HEWD/2, and 

P50 equal to HEWD (Fig. 3.49). The philosophy behind the well density distribution is 

that all the production regions have the same potential to be drilled densely no matter the 

current HEWD, but the production regions that have already been drilled densely will 

not end up with a very low well density in the end.  

 

Based on the distributions and the aggregation methodology mentioned above, the P90, 

P50, and P10 of existing reserves, undeveloped reserves, contingent resources, and 

prospective resources for each production region are shown in Table 3.32 to Table 3.35. 

The distributions of existing reserves and the undeveloped reserves are close to 

symmetrical. The best common distributions that fitted the existing reserves and the 

undeveloped reserves were Laplace distribution and Log-logistic distribution, 

respectively, which ware closer to normal distribution when compared with lognormal 

distribution (Fig. 3.50 to Fig. 3.53). The contingent resources and the prospective 
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resources were skewed to the right.  The best common distributions that fitted the 

contingent resources and the prospective resources are Weibull distribution and Inverse 

Gaussian distribution, respectively, which are closer to lognormal distribution when 

compared with normal distribution (Fig. 3.50 to Fig. 3.53). 

 

 

Fig. 3.48— The distribution of the future drilling rate varies from half of the 2012 

drilling rate to twice of the 2012 drilling rate 
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Fig. 3.49— Distribution of well density, which has HEWD as P50, HEWD/2 as the 

minimum and 22 (twice as the highest HEWD 11 in PR2 and PR5) as  the 

maximum 

 

Table 3.32— Summary of Existing Reserves by PR 

 
TRR20 of Oil, BBO TRR20 of Gas, TCF 

Production Regions P90 P50 P10 P90 P50 P10 
PR1 0.01 0.01 0.02 0.03 0.05 0.07 
PR2 0.08 0.10 0.13 1.70 2.50 3.29 
PR3 0.13 0.17 0.20 0.44 0.61 0.77 
PR4 0.03 0.04 0.05 0.65 1.05 1.45 
PR5 0.15 0.18 0.21 0.48 0.64 0.80 
PR6 0.14 0.18 0.21 0.89 1.27 1.64 
PR7 0.04 0.06 0.07 0.75 1.15 1.55 
PR8 

   
0.55 0.63 0.72 

Total 0.59 0.74 0.89 5.50 7.89 10.28 
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Table 3.33— Summary of Undeveloped Reserves by PR 

 
TRR20 of Oil, BBO TRR20 of Gas, TCF 

Production Regions P90 P50 P10 P90 P50 P10 
PR1 0.01 0.02 0.04 0.04 0.07 0.12 
PR2 0.22 0.35 0.55 4.41 7.33 11.50 
PR3 0.43 0.69 1.03 1.30 2.18 3.36 
PR4 0.08 0.13 0.20 1.64 2.84 4.54 
PR5 0.43 0.67 1.01 1.25 2.00 3.10 
PR6 0.43 0.69 1.09 2.47 4.27 6.86 
PR7 0.11 0.20 0.32 1.86 3.45 5.63 
PR8 0.00 0.00 0.00 0.66 1.17 1.89 

Total 1.71 2.75 4.25 13.64 23.32 37.01 
 

Table 3.34— Summary of Contingent Resources by PR 

 
TRR20 of Oil, BBO TRR20 of Gas, TCF 

Production Regions P90 P50 P10 P90 P50 P10 
PR1 0.00 0.04 0.32 0.01 0.13 0.91 
PR2 0.25 0.84 1.76 5.33 17.21 34.46 
PR3 0.00 0.50 4.33 0.00 1.67 12.76 
PR4 0.07 0.29 0.99 1.44 6.52 20.46 
PR5 0.40 1.41 2.97 1.21 4.21 8.51 

PR6 0.07 0.93 2.39 0.41 5.71 14.01 
PR7 0.13 0.51 1.83 2.27 9.09 29.99 
PR8 

   
0.59 3.40 34.08 

Total 0.92 4.52 14.59 11.25 47.93 155.19 
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Table 3.35— Summary of Prospective Resources by PR 

 
TRR20 of Oil, BBO TRR20 of Gas, TCF 

Production Regions P90 P50 P10 P90 P50 P10 
PR1 0.14 0.28 1.25 0.41 0.90 3.54 
PR2 0.56 0.96 1.59 11.89 20.06 31.67 
PR3 0.43 0.86 3.05 1.35 2.75 8.99 
PR4 0.10 0.20 0.48 2.31 4.49 9.97 
PR5 0.62 1.06 1.73 1.90 3.16 4.97 
PR6 0.06 0.12 0.21 0.34 0.73 1.28 
PR7 0.11 0.24 0.62 2.01 4.24 10.11 
PR8 

   
2.84 6.30 40.44 

Total 2.03 3.72 8.93 23.05 42.63 110.98 
 

 

Fig. 3.50— Existing oil reserves follow a Laplace distribution, which is closer to 

normal distribution compared with lognormal distribution 
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Fig. 3.51— Existing gas reserves follow a Laplace distribution, which is closer to 

normal distribution compared with lognormal distribution 

 

 

Fig. 3.52— Undeveloped oil reserves follow a Logistic distribution, which is closer 

to normal distribution compared with lognormal distribution 
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Fig. 3.53— Undeveloped gas reserves follow a Logistic distribution, which is closer 

to normal distribution compared with lognormal distribution 

 

 
Fig. 3.54— The best well known distribution fit for contingent oil resources is 

Weibull distribution, which is closer to lognormal distribution compared with 

normal distribution 
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Fig. 3.55— The best well known distribution fit for contingent gas resources is 

Weibull distribution, which is closer to lognormal distribution compared with 

normal distribution 

 

 
Fig. 3.56— The best well known distribution fit for prospective oil resources is 

Inverse Gauss distribution, which is closer to lognormal distribution compared 

with normal distribution 
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Fig. 3.57— The best well known distribution fit for prospective gas resources is 

Inverse Gauss distribution, which is closer to lognormal distribution compared 

with normal distribution 

 

Table 3.36— Reserves and Resources of the Eagle Ford Play 

 
Oil, BBO Gas, TCF 

 
P90 P50 P10 P90 P50 P10 

Cumulative 0.264 0.264 0.264 1.37 1.37 1.37 
Existing Reserves 0.59 0.74 0.89 5.50 7.89 10.28 

Undeveloped Reserves 1.71 2.75 4.25 13.64 23.32 37.01 
Total Reserves 2.30 3.49 5.14 19.13 31.21 47.28 

Contingent Resources 0.92 4.52 14.59 11.25 47.93 155.19 
Prospective Resources 2.03 3.72 8.93 23.05 42.63 110.98 

Total Resources 2.95 8.25 23.53 34.30 90.57 266.17 
 

According to Table 3.32 and Table 3.33, the PR3, PR5, and PR6 have the highest oil P90, 

P50, and P10 reserves, while the PR2 has the highest gas P90, P50, and P10 reserves. The 
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reason is those four production regions have more existing wells, higher drilling rate in 

2012, and higher oil and gas TRR20 values.  

 

According to Table 3.34 and Table 3.35, PR5 has the highest P90 and P50 contingent and 

prospective oil resources, while PR3 has the highest P10 contingent and prospective oil 

resources. PR2 has the highest P90 and P50 gas contingent and prospective resources, 

while PR8 has the highest P10 prospective gas resources. The reason is that all four 

production regions have bigger area, higher oil and gas TRR20 values. PR5 and PR2 

have the highest HEWD = 11 wells/section for higher P90 and P50 oil and gas resources, 

while PR3 and PR8 have the lower HEWD = 4 and 2 wells/section for the higher P10 oil 

and gas resources. 

  

Under PRMS (SPE et al. 2007), the 1P, 2P, and 3P reserves are corresponding to the P90, 

P50, and P10 reserve estimates using the probabilistic methodology. 

 

The reserves and resources calculation are highly dependent on HEWD. The HEWD can 

change because of different reasons, for example, an increase in gas price can result in 

an increase of the HEWD of dry gas region PR8. I ran a sensitivity analysis on 

prospective resources of gas in PR8 assuming two different HEWD = 2 and 8 wells per 

section. Table 3.37 shows that the P90 and P50 resource estimates increase significantly 

because HEWD increases. However, the original P90 to P10 range still bracket most of 

the new P90 to P10 range given the higher HEWD. 
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Table 3.37— Sensitivity of HEWD on 

Prospective Gas Resources (TCF) 

 
P90 P50 P10 

HEWD = 2 2.84 6.30 40.44 
HEWD = 8 12.26 21.48 44.97 

 

3.8.3. Comparison with 2011 EIA Estimates 

I compared the EIA 2011 estimates (Table 3.38) with my estimates. Since the EIA 

estimates are deterministic and exclusive, I compared the mean/P50 of my estimates, the 

sum of reserves and resources with the EIA 2011 estimates (Table 3.39). Based on the 

comparison, I concluded the following: 

 The EIA estimate oil, condensate, and dry gas areas are 1.43, 0.56, and 0.13 

million acres, which are much less than my black oil, volatile oil, condensate and 

dry gas areas of 3.39, 0.34, 2.00, and 1.20 million acres.  

 EIA estimates did not include oil production for condensate or gas regions, or gas 

production for oil regions. 

 The EIA estimated ultimate recovery (EUR) for oil wells is 300,000 STB, which 

is close to the mean of black oil regions PR3 and PR5 with 254,000 and 247,000 

STB, respectively, the volatile oil region PR6 with 454,000 STB, and the 

condensate region PR7 with 269,000 STB. The EIA estimates of gas production 

for dry gas and condensate are 5.5 and 4.5 BCF, which are a little higher than the 

mean of condensate regions PR2, PR4, and PR7 of 3.62, 2.97 and 4.75 BCF, and 

dry gas region PR8 of 3.25 BCF.  
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 The EIA well density for black-oil, condensate, and dry gas window are 5, 8, 4 

wells per section, which is close to the HEWD of PR1, PR3, PR4, PR7 and PR8 

with 3.1, 4.0, 6.7, 6.0 and 2.0, respectively, but much lower than the HEWD of 

PR2, PR5 and PR6 with 11.2, 11.2, and 10.5.  

 The EIA estimate resources for oil and gas were 3.35 BBO and 21 TCF, which 

are much lower to my P50 total reserve and resource estimates of 11.74 BBO and 

122 TCF  

 

Table 3.38— Average EUR and Areas of the Eagle Ford Play (EIA 2011) 

 

 

Table 3.39— Comparison between EIA Estimates (2011) and My Estimates 

 
Oil Region Condensate Region Gas Region 

 
EIA Gong EIA Gong EIA Gong 

Area (Million Acres) 1.43 3.73 0.57 2.01 0.13 1.20 
No. of wells / section 5 8.6 8 8 4 2 
Mean EUR (MSTB, BCF) 300 319 & 1.45 4.5 192 & 3.78 5.5 3.25 

P50 Total (BBO, TCF) 3.35 7.81 & 30.34 16.43 3.93 & 79.93 4.38 11.51 

 
EIA Gong 

P50 Total (BBO, TCF) 3.35 & 21 11.74 & 122 
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4. CONCLUSIONS 

Based on hindcasts of 197 hydraulically fractured horizontal Barnett-shale gas wells 

with 59-119 months of production data available, I conclude the following: 

 The proposed Bayesian methodology coupled with Arps’ decline curve model 

reliably quantified the uncertainty of hindcasted cumulative production with as 

little as 6 months of production. The probabilistic estimates P90, P50, and P10 were 

all well calibrated.  

 The Bayesian method had narrower P90-P10 confidence intervals, had better 

calibrated P90, P50, and P10 estimates, and required less computational time for 

comparable stability than the modified bootstrap methodology presented in the 

literature.  

 

Based on hindcasts and forecasts of 20 years of 4402 hydraulically fractured horizontal 

Eagle Ford oil and gas wells with 1-44 months of production data available, reservoir 

simulation studies, geological studies, and production analysis, I conclude the following: 

 The estimated 1P, 2P, and 3P reserves for the Eagle Ford are 2.3, 3.5, and 5.1 

BBO and 13.6, 23.3, and 37 TCF for oil and gas, respectively.  

 The contingent oil resources range from a P90 of 0.9 to P10 of 14.6 MMSTB, with 

a P50 of 4.5 MMSTB; the contingent gas resources range from a P90 of 11.2 to P10 

of 155 TCF, with a P50 of 47.9 TCF. The prospective oil resources range from a 

P90 of 2.0 to P10 of 8.9 MMSTB, with a P50 of 3.7 MMSTB; the prospective gas 

resources range from a P90 of 23 to P10 of 111 TCF, with a P50 of 42.6 TCF. 
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 In the probabilistic hindcast studies assuming 6 months of production known and 

the rest unknown for all four fluid types, the Duong model and the Arps model 

yielded the highest average coverage rate at 74%; the SEPD model yielded 68%, 

and the Power-Law model yielded 62%. The combination of the Duong and Arps 

models was used to model linear flow to boundary-dominated flow. 

 The volatile-oil region in the east (PR6) has the highest P50 and mean of oil 

TRR20 with 318,000 and 454,000 STB, respectively; the condensate region in 

the east (PR7) has the highest P50 and mean of gas TRR20 with 2.7 and 4.7 BCF, 

respectively. The distributions of TRR20 of oil and gas for all production regions 

follow lognormal distributions. 

 According to this study, the P50 total reserve and resource estimates for oil and 

gas are 11.74 BBO and 122 TCF, which are much higher than the EIA (2011) 

resource estimates of 3.35 BBO and 21 TCF.  
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NOMENCLATURE 

a Duong intercept constant, 1/month 

AAPG American association of petroleum geologists 

b Decline exponent for Arps model, dimensionless 

BBO Billion barrels of oil 

BCF Billion cubic feet 

BOPD Barrels of oil per day 

CPEOH  Cumulative production at end of hindcasts, Mcf or STB 

Di  Initial decline rate, 1/year 

Dmin  Minimum decline rate, 1/year 

D∞ Power Law decline at ―infinite time‖ constant, 1/year 

EIA The U.S. Energy Information Administration 

f Likelihood function 

g  Power exponent of probability density function of prior distribution 

GOR Gas oil ratio, scf/STB 

G240 Re-parameterized Duong model parameter, cumulative gas production of                    

 20 years, Mcf 

HEWD Highest established well densities 

ID Wellbore inside diameter, inches 

IGOR Initial GOR of first month, scf/STB 

l Decline curve parameter in re-parameterized Duong model, l = m-1 

m Duong slope constant 
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MBM Modified bootstrap method 

Mcf Thousand cubic feet 

MCMC Markov Chain Monte Carlo 

n Decline exponent in power-law and SEPD model 

N240 Re-parameterized Duong model parameter, cumulative oil production of 

20 years 

OD Wellbore outside diameter, inches 

PDCA Probabilistic decline curve analysis 

PDTSP Production during the second period, Mcf or STB 

PR Production region 

PRMS Petroleum resources management system 

P10 Value at confidence level 10% 

P50 Value at confidence level 50% 

P90 Value at confidence level 90% 

RRC Railroad Commission of Texas 

SEC The U.S. Security and Exchange Commission 

SEPD Stretched exponential decline model 

SPE Society of petroleum engineers 

SPEE Society of petroleum evaluation engineers 

STB Standard cubic feet 

TRR20 Technical recoverable resources of 20 years, STB or BCF 

TCF Trillion cubic feet 
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TVD True vertical depth, ft 

WPC World petroleum council 

α  Acceptance probability in MCMC, dimensionless 

θ  Decline curve parameters 

ϑ  One of the decline curve parameters 

θj  Parameters of step j in MCMC 

θlower  Lower boundary of proposal distribution 

θupper  Upper boundary of proposal distribution 

θproposal  Parameters drawn from proposal distribution 

σ  Sample variance from best fit 

σproposal  Sample variance from proposal parameters 

σj  Sample variance from step j in MCMC 

σϑ Standard deviation of proposal distribution of parameter ϑ 

Φ Cumulative density function of standard normal distribution 

τ Characteristic time parameter for SEPD model, month 

ɛ  Logarithm residual between actual production and decline curve

 production 

π  Prior or posterior probability 
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