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ABSTRACT

This dissertation analyzes two unsolved problems to fulfill the gap in the litera-

ture: (1). What is the vehicle delay and intersection capacity considering left-turn

traffic at a pre-timed signal? (2). What are the mean and variance of delay to

vehicles at a vehicle-actuated signal?

The first part of this research evaluates the intersection performance in terms of

capacity and delay at an isolated pre-timed signal intersection. Despite of a large

body of literature on pre-timed signals, few work has examined the interactions be-

tween left-turn and through vehicles. Usually a protected left-turn signal phase,

before (leading) or after (lagging) through signal, is applied to a signalized inter-

section when the traffic demand is relatively high. A common problem for leading

left-turn operation is the blockage to left-turn vehicles by through traffic, particularly

at an intersection with a short left-turn bay. During the peak hour, some vehicles

on the through lane might not be able to depart at the end of a cycle, resulting in

an increased probability of left-turn blockage. In turn, the blocked left-turn vehicles

may also delay the through traffic to enter the intersection during the following cy-

cle. Those problems may not exist for a lagging left-turn operation, since left-turn

vehicles intend to spill out of the bay under heavy traffic. In this case, the through ca-

pacity is reduced, leading to an increase of total delay. All of these factors contribute

to the difficulties of estimating the delay and capacity for an isolated intersection.

In order to examine this missing part of study on the signalized intersection, two

probabilistic models are proposed to deal with the left-turn bay blockage and queue

spillback in a heuristic manner. Numerical case studies are also provided to test the

proposed models.
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The second part of this research studies an isolated intersection with vehicle-

actuated signal. Typically an advanced detector is located at a distance prior to

the intersection such that an arriving vehicle triggers a green time extension in or-

der to pass through without any stop. This extended time period actuated by the

vehicle is called unit extension in this study. If no vehicle actuation occurs during

a unit extension, the green phase would terminate in order to clear queues in other

approaches. In this way, the actuated system dynamically allocates the green time

among multiple approaches according to vehicle arrivals. And the unit extension is

the only control parameter in this case. We develop a model to study the vehicle

delay under a general arrival distribution with a given unit extension. Our model

allows to optimize the intersection performance over the unit extension.

The third part of this research applies graphical methods and diffusion approx-

imations to the traffic signal problems. We reinterpret a graphical method which

is originally proposed by Newell in order to directly measure the variance of the

time for the queue clearance at a signalized intersection, which remains yet to be

carefully examined in practice and would be rather challenging if only using the

conventional queuing techniques. Our results demonstrate that graphical method

explicitly presents both the deterministic and stochastic delay. We also illustrate

that the theoretical background for the graphical methods in this particular appli-

cation is inherently the diffusion approximation. Furthermore, we investigate the

problems of disruptions occurred during a pre-timed traffic signal cycle. By diffusion

approximation, we provide quantitative estimation on the duration that the effects

of disruptions would dissipate.
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1. INTRODUCTION

1.1 Background and Motivation

Transportation is both an art, providing practical solutions to fulfill the demand

of the public with various advanced modern technologies and a science, founded on

measurable experimental observations and rigorous reasoning. As a core in trans-

portation, road intersection traffic signal control serves as a perfect subject featuring

both art and science.

Traffic signal control remains a dominant approach to the urban mobility and a

vital treatment to ease never-ending traffic congestion. According to the 2011 Ur-

ban Mobility Report, operational treatment saved $330 million from congestion in

2010 for fifteen large urban areas in the United States [100]. Realizing the potential

utmost benefit, the goal of practice engineers is to design the most efficient opera-

tional strategy for traffic signals. The first challenge to achieve this goal is the well

understand the fundamental properties of traffic signal operations.

Although there is a tremendous amount of research about traffic signal operations,

there are still some important issues that demand answers. This study will analyze

the following two questions at an isolated intersection (see Figure 1.1 for a physical

illustration) to fulfill the gap in the literature: (1). What is the delay to vehicles

considering left-turn traffic at a pre-timed signal? (2). What is the mean delay to

vehicles and variance of cycle times at a vehicle-actuated signal?

1.2 Outline

The rest of this dissertation is organized as follows: Chapter 2 is the overview of

the models for queues and delay at traffic signals. It provides background for discrete-

time queueing model, fluid and diffusion approximations. Chapter 3 describes the

1



probabilistic models for left-turn bay blockage and spillback. The capacity and delay

are estimated from the proposed models. Then Chapter 4 provides the approaches to

characterize the delay, the mean and variance of green times at one-way intersection

with actuated signals. We first propose an analytical model based on queueing models

under the condition of heavy traffic. Then we present graphical methods in the next

Chapter, in many ways similar to the Newell’s original proposals, to illustrate the

stochastic effects of arrivals in the context of diffusion approximation.
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Figure 1.1: A signalized intersection.
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2. REVIEW OF CLASSIC MODELS FOR TRAFFIC SIGNAL

2.1 Introduction

There is an appreciable amount of research on the performance evaluation of

traffic signals, including the remarkable monograph by Newell [84]. Among those

studies, the vehicular queueing at signalized intersections is central, because almost

all the measures depend on the good understanding of this matter. In this section,

we will overview theoretical models with a focus on the conventional traffic signals.

Even though most of them were developed in 1960s, studies on traffic signal find

those research relevant.

2.2 Models for Pre-Timed Traffic Signals

Pre-timed traffic signal alternates between red and green phases with fixed time

periods in each cycle. Vehicles approach the intersection to either form a queue or

pass without delay. The basic models on residual queues (overflow queue at the end

of a green phase1) at pre-timed traffic signal can be classified as discrete-time and

continuous approximation models. We will present them respectively.

2.2.1 Discrete-Time Models: Darroch’s Approach

Darroch [33] presented a generalized discrete-time model, in line with Beckmann,

McGuire and Winsten [16] and Newell [74]. Kleinecke[50] also obtained some similar

results with Poisson arrivals. All the authors assumed that the departing vehicles

were separated by constant time intervals of unit length when they crossed the stop

line at the intersection. This assumption can be summarized as the following (see

also in van Leeuwaarden [106]; Van den Broek et al. [19]; Bruneel and Kim [20]):

1Throughout this dissertation, we refer to the overflow queue as the residual queue.
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Assumption 1 (DISCRETE-TIME ASSUMPTION). The time axis is comprised

of constant time slots of unit length, where each queued vehicle going straight or

turning right needs a slot to pass the stop line. A traffic signal cycle, denoted by c,

consists of r consecutive time slots designated as a red phase, and g consecutive slots

designated as a green phase, where c = r + g, and r and g are integers. Further, if

vehicles arrive in a slot and are delayed by a queue, then they join the queue at the

end of the same slot.

This assumption implies that the amber phase is equivalently comprised of ef-

fective green and red signals. Observations show that the first few vehicles in a

discharging queue usually have larger departing headways (See, for example, Jin et

al. [46] and Luttinen [61]). After the third vehicle departs the discharge headway

remains constant [88]. These small fluctuations in headways contribute little to the

vehicular delay. In addition, although the assumption that the signal phases are of

multiple time slots is slightly strict, it proves to be a good approximation. The last

statement in Assumption 1 allows the model to easily handle with the evolution of

queues.

Let random variable Yk,n denote the number of vehicles arriving at the intersection

during slot k in the nth cycle, where k = 0, 1, 2, ..., c − 1. Throughout this section,

by time t = k we mean the time at the beginning of the slot k. Additionally, the

time t = c represents the end of one cycle or the time t = 0 at the beginning of a

cycle. The following assumption is made for arrivals:

Assumption 2 (INDEPENDENT ARRIVAL ASSUMPTION [33, 106]). The ran-

dom variables Yk,n, for all k and n, are assumed to be independent and identically dis-

tributed (i.i.d.). Yk,n therefore have the same probability generating function (p.g.f.)

denoted by Y (z) = E(zYk,n), where z is a complex variable with |z| ≤ 1.

5



Clearly the above assumption for arrivals has limitations, the most obvious one

being that the arriving vehicles may not be independent. However, Assumption 2

allows to describe a broad family of arrival processes, including the Poisson process

and bulk arrivals, and it allows to derive the expected delay formula. Figure 2.1

represents a realization of discrete-time queues during a cycle according to both

Assumptions 1 and 2. Note that queue may grow up during the green time because

of bulk arrivals. In order to derive explicitly expression for delay of vehicles, we need

the following assumption:

N
u

m
b

e
r 

o
f 

Q
u

e
u

e
d

 V
e

h
ic

le
s

Time tr1 2    C   0

Cycle n

,r nX

0,nX
, 0, 1C n nX X 

Figure 2.1: Illustration of discrete-time queues during a signal cycle.

Assumption 3 (DELAY ASSUMPTION [64, 106]). There is no delay for vehicles

that arrive during the green phase after the queue is cleared.
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In van Leeuwaarden [106], Assumption 3 is called Fixed-Cycle Traffic-Light (FCTL)

assumption. This assumption is also described in McNeil [64]. Note that Assump-

tion 3 implies that vehicles cross the intersection without slowing down, even they

making right right, during the green phase without any queue. That is to say, if a

bunch of them arrive during one slot after the slot of queue clearance, according to

the assumption 3, they would not be delayed. In real-world situation, it might not

be the case if these vehicles have to be separated by any reasonable spacing for safety

reasons [106]. Nevertheless, the amount of delay shall be neglected when comparing

to the counterpart by vehicle queues.

Let Qk,n denote the length of queue at the time t = k in cycle n. Since we

assume that each cycle begins with a red phase, Q0,n can be thought of as the

residual queue (or overflow) at the end of green period of the cycle n − 1 or as the

initial queue during the cycle n. In green phase, Qk,n shall be equal to the number of

arrivals during slot k plus Qk−1,n from the preceding slot less one departure vehicle

if Qk−1,n > 0. We therefore have the following recursive relations in green phase, i.e.,

for k = r, r + 1, ..., c− 1:

Qk+1,n =

 Qk,n + Yk,n − 1 if Qk,n ≥ 0,

0, if Qk,n = 0,
(2.1)

and in red phase, i.e., k = 0, 1, 2, ..., r − 1,

Qk+1,n = Qk,n + Yk,n. (2.2)

In his original settings, Darroch [33] attempted to incorporate the left-turn vehi-

cles on the shared lane with through traffic. Hence, he inserted a binomial distributed

random variable Uk,n to the first recursive relation, i.e., Qk+1,n = Qk,n+Yk,n+Uk,n−1

7



if Qk,n > 0, by assuming it is complete random that whether or not a vehicle at the

front of the queue turns left so he/she may have to wait. This section restricts the

attention to the through and right-turn vehicles only.

According to Assumptions 1 to 3, the queue length Qk,n is a discrete-time Markov

chain. The first of our concern is whether or not this Markov chain is able to converge

to stationary distribution. Assuming that the mean and variance of the arrival Yk,n

to be µY and σ2
Y , respectively, independent of k and n, we have the following results.

Theorem 1 (Darroch [33]) The sufficient and necessary condition to guarantee the

convergence of Qk,n to the stationary distribution is

(g + r)µY < g. (2.3)

Recall that g and r are integers that represent the number of green and red time

slots, respectively. The proof of Theorem 1 can be found in Appendix B. In order to

analyze equilibrium of recursive relation (2.1), let χk,n(z) = E(zQk,n), and we have

for k = r, r + 1, ..., c− 1,

P(Qk+1,n = i) =
i∑

j=1

P(Yk,n = j)P(Qk,n = i+ 1− j), i ∈ Z+, (2.4)

and when the queue length is zero,

P(Qk+1,n = 0) = P(Qk,n = 0) + P(Yk,n = 0)P(Qk,n = 1). (2.5)

Hence, it yields in green phase

E(zQk+1,n) = P(Qk,n = 0) + z−1E(zYk,n)(E(zQk,n)− P(Qk,n = 0)). (2.6)

8



Note that we have χr,n(z) = χ0,n(z)(Y (z))r in red phase. Moreover, since the sta-

tionary distribution does not depend on any specific cycle, we shall have χc,n(z) =

χ0,n+1(z) in stationary state. If we use Qk instead of Qk,n in stationary state with

the p.g.f. χk(z), by recursively using Equation (2.6), we have

χc(z) =
Y (z)gζ(z)−r(ζ(z)− 1)

∑c−1
k=r qkζ(z)k

zg − Y (z)c
. (2.7)

where ζ(z) = z/Y (z) and qk = P(Qk = 0) for k = r, r + 1, ..., c− 1.

To obtain the explicit formulas for qk in Equation (2.7), one can investigate the

roots of zg − Y (z)c = 0 within and on the unit cycle in the complex plane (see,

for example, Takács [102], Newell [74] and van Leeuwaarden [106]). If there were g

distinct roots, there would be g − 1 equations for qk except the one associated with

root 1. This is because χc(z) shall be analytic within the unit cycle, the denominator

and the numerator should both vanish at each root. In addition, limz↑1 χc(z) = 1

gives another equation [106].

Hence, it is first of all to validate that zg = Y (z)c has g distinct roots. It is worth

noting that those roots are complex numbers and any theoretical attempt to obtain

the number of distinct roots has to resort to Rouché’s theorem in complex analysis

[22, 6]. Adan, van Leeuwaarden and Winands[4] proved the existence theorem for a

general class of distributions, which is discussed in Appendix B.

Then, by the normalization condition limz↑1 χc(z) = 1, one obtains

c−1∑
k=r

qk =
g − cµY
1− µY

, K. (2.8)

An intuitive interpretation of the above equation in the sense of probability is given by

van Leeuwaarden [106] and van den Broek et al. [19]: If we rewrite as g−
∑c−1

k=r qk =
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(c −
∑c−1

k=r qk)µY , it indicates that the mean number of green slots for discharging

queues is equal to the mean number of delayed vehicles per cycle.

With Equation (2.8), one is able to express
∑c−1

k=r qkζ(z)k−r by the roots z1, ..., zg−1,

i.e.,

c−1∑
k=r

qkζ(z)k−r = K

g−1∏
k=1

(
ζ(z)− ζ(zk)

1− ζ(zk)

)
. (2.9)

where ζ(z) = z/Y (z). Then Equation 2.7 becomes

χc(z) =
Y (z)g(ζ(z)− 1)

zg − Y (z)c
·K

g−1∏
k=1

(
ζ(z)− ζ(zk)

1− ζ(zk)

)
. (2.10)

Equation (2.10) features the basic properties of residual queues at the intersection.

For example, the mean delay of vehicles can be done by using this equation, and the

distribution of length of queue is calculated by taking inversion of this equation.

The above model depends on the root-finding of zg = Y (z)c. This problem is of

long historical interest. For example, Pollaczek [93, 94] and Crommelin [29] explored

the roots of the equation zs = exp(λ(z − 1)) (Poisson case) within the unit circle in

the complex plane. McNeil [64] applied a similar method to the case of compound

Poisson distribution. However, explicit formulas for the roots, which usually have

contour integration involved, are difficult to obtain. Under some conditions, the

expanded series expression for the roots may be found by the Lagrange inversion

theorem (see pp. 132–133 in [117]). But the series usually converges slowly and

thereby may not be readily applicable. In spite of analytic methods for special

cases, there are well-documented techniques in queueing theory to address this issue

numerically. One direct estimation is to solve a fixed-point equation. With the aid

of the roots for zg = 1 and an appropriate starting point, successive substitutions as

10



z
(n+1)
k = exp(2πik/g)Y (z

(n)
k )c/g, k = 1, ..., g − 1, can be applied to find roots, where

i =
√
−1 and n ∈ Z+ (see Janssen and van Leeuwaarden [44, 45], and Adan and

Zhao [5]). More general methods can be found in Chaudhry, Harris and Marchal

[23], Adan and van Leeuwaarden [4] and van Leeuwaarden [44], for example. Note

that the inversion of Equation (2.10) gives the distribution of residual queues, though

it demands numerical methods and relies on the Fourier transformation. We refer

readers to the work by Abate and Whitt [2, 3] and Abate, Choudhury and Whitt [1].

Next, we will discuss one of the important results directly derived from Equation

(2.10) and the bulk service queue model, respectively.

Average Length of Residual Queue

Equation (2.10) gives rise to many results. One of which is the mean length

of residual queue important to the mean vehicular delay. It follows that the mean

length of residual queue is dχc(z)
dz
|z=1, i.e.,

E(Q0) =
(1− µY )2

g − cµY

c−1∑
k=r

(k − r)qk −
σ2
Y

2(1− µY )
+

1− µY
2

+
cσ2

Y + (rµY )2 − g2(1− µY )2

2(g − cµY )
, (2.11)

where E(Q0) = E(Qc) is applied. Equation has been first derived in Darroach [33] (in

a more general setting) and quoted in McNeil and Weiss [65], van Leeuwaarden [106])

and van den Broek et al. [19]. However, one can further simplify this equation into

the following form by noting that (rµY )2 − g2(1− µY )2 = (rµY − g(1− µY ))(rµY +

g(1− µY )) and
σ2
Y

2(1−µY )
− cσ2

Y

2(g−cµY )
=

rσ2
Y

2(g−cµY )(1−µY )
:

E(Q0) =
(1− µY )2

g − cµY

g−1∑
k=0

kqk+r +
rσ2

Y

2(g − cµY )(1− µY )
− (g − 1)(1− µY ) + rµY

2
.

(2.12)

11



Taking a derivative with respect to ζ(z) in Equation (2.9) to get
∑g−1

k=0 kqk+r, Equa-

tion (2.12) then turns to

E(Q0) = (1− µY )

g−1∑
k=1

1

1− ζ(zk)
+

rσ2
Y

2(g − cµY )(1− µY )
− (g − 1)(1− µY ) + rµY

2
.

(2.13)

McNeil [64], in a slightly different setting from the discrete-time queueing model,

generalized the method used by Crommelin [29] to obtain the expression for E(Q0)

in power series and then he discusses some special cases. Kleinecke[50] also provided

a formula for E(Q0) in power series for Poisson arrivals.

Perhaps the complexity of the root formulas motivated Darroach [33] and van

den Broek et al. [19] to work directly with Equation (2.12) and to provide bounds

for E(Q0). By noting that qr ≤ qr+1 ≤ ... ≤ qc−1, it can be shown :

rσ2
Y

2(g − cµY )(1− µY )
− rµY

2
≤ E(Q0)

≤ rσ2
Y

2(g − cµY )(1− µY )
+
rµY

2

(
(g − 1)(1− µY )

(g − cµY )
− 1

)
.

(2.14)

where the bounds of
∑
kqk+r in van den Broek et al. [19] are applied. A new

approximation to E(Q0) is given by van den Broek et al. [19] based on heavy traffic

limit and scaling argument; that is (cµY )2

g2
rσ2
Y

2(g−cµY )(1−µY )
(by plugging Equation (4.13)

into (4.11) in [19]). It is very interesting to compare this approximation with the

lower bound in Equation (2.14): they are close to each other when cµY → g.
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Bulk Service Queue

There is an alternative way to avoid the complex analysis of iterated relationship

as in Equation (2.1). If one approximates Equation (2.1) by

Qg,n = max{Qg,n−1 +
c−1∑
k=0

Yk,n−1 − g, 0}, (2.15)

then one regards the signalized intersection as serving queues with bulk service of

g vehicles at a time. This actually is the classic bulk service queue, first studied by

Bailey [14] and Downton [35] with Poisson arrivals.

Newell [74] used this approach and made a more simpler assumption which leads

to a binomial arrival per slot, i.e., Y (z) = 1−µY +µY z with a mean µY . Under this

assumption, the solution for Q0 can be derived exactly in the equilibrium condition.

Newell further identified a key parameter µ = [g − µY (r + g)][rg/(r + g)]−
1
2 to

distinguish the traffic conditions between light and heavy. Interestingly, there is a

meaning of the factor [rg/(r + g)]−
1
2 in µ. If we consider the heavy traffic case, i.e.,

µY → g/(r + g), then r/(r + g) would be the approximation of variance-to-mean

ratio (denoted by I) of the total arrivals during a cycle, i.e., µY (1−µY )(r+g)
(r+g)µY

. Hence,

the factor can be approximately considered as Ig, the same scaling factor Newell

used in diffusion approximation to the queues [76]. In Appendix B, we will discuss

how this factor arises.

If µ > 1, then the traffic demand is light and the queue length can be calculated

directly under the assumption that there is no queue at the beginning of the cycle.

The parameter µ actually arises when analyzing this case. If µ < 1, the previous

methods of probability generating function can be employed. For binomial arrivals,

zg − Y (z)c is a polynomial with degree c. This fact allowed Newell to find the
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approximation to the roots of zg = Y (z)c under the heavy traffic limit as the nearly

critical arrival rate, one of the interesting results being [74]

E(Q0) =
rg

2(r + g)(g − µY c)
+O(1), for µY → g/(r + g). (2.16)

This expression yields almost the same magnitude of the lower bound in Equation

(2.14) for µY → g/(r + g).

When the number of arrivals is larger than one during one slot, the solution by the

bulk service queue would become an approximation. As noticed in McNeil [64], this is

simply due to the Assumption 3 that some of vehicles may pass intersection without

delay. Nevertheless, if we assume such effect on the residual queues is negligible, we

will obtain the upper bound of E(Q0)[106].

2.2.2 Diffusion Approximation: Newell’s Approach

Exact solutions to the average residual queues due to overflow are often cum-

bersome to be readily applicable. The difficulty of obtaining simple expressions for

residual queues has motivated many scholars to look for approximation methods.

The possibility of approximation was probably based on an observation that in most

applications the average delay appears insensitive to the detailed stochastic struc-

ture of arrival processes, more so when traffic becomes heavy. It indicates that there

might be a way that does not depend on the particular discrete distribution.

Newell [76] was the first to use the technique of diffusion approximation to obtain

the average residual queue length and the average delay. As remarked by Newell in

[75], if the number of arrivals is fairly large, it is convenient to consider the queue

length as a continuous random variable normally distributed about its mean. So we

can use Brownian motion, diffusion or central limit theorem type approximations.

The critical argument here is that the relative changes in the residual queue length
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from one cycle to the next are small. Although the residual queue length would drift

over a wide time in order to produce a certain value of variance, it only does so in

small displacement [80]. An illustration of such approximation is seen from Figure

2.2, where the cycle length and green time are considered large enough.
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 Queue length as drifted Brownian motion

Figure 2.2: Illustration of queue length as Brownian motion in one cycle assuming r
and g large enough. Brownian approximation allows the queue length occasionally
to decrease a little during the red signal.

We denote Qt as the queue length at time t, arrival rate as q and the departing

headway from the queue as 1/s. We also use g and r to denote the length of green and

red times (here they are continuous variables). Consider the traffic demand close to

saturation. Under equilibrium condition, the variance-to-mean ratio of arrivals and
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departures might be pretty stable, especially for the high demand. Hence, if we let

the cumulative number of arrivals be A(t) and number of departures be D(t) at time

t, it is reasonable to assume V ar(A(r + g) − D(g)) = Iq(r + g) for some proper

variance-to-mean ratio I. Note that the standard deviation of A(r + g) − D(g) is

also in the order of (sg)1/2.

The diffusion approximation can be made if E(Q0) is large compared with (sg)1/2

and Qr+g has a variation around Q0 at most in the order of (sg)1/2 (with probability

one). These conditions are expected to be met in heavy traffic situation. Then

Qt/E(Q0)− 1 will have the expectation almost 0 and the variance in the order O(1).

That is to say, Qt/E(Q0) − 1 behaves like a standard Brownian motion on a time

scale large compared with the cycle length. The above analysis mainly follows Newell

[76]. Miller [67] employed the similar idea when developing the delay and average

residual queue length formulas.

To make the above analysis mathematically tractable, let FQ(z) = P{Q0 ≤ z}

and FA−D(x) = P{A(r+g)−D(g) ≤ z}. Then Newell [76] deduced the Wiener-Hopf

type integral equation (see also pp. 118–119 in Cox and Smith [28] and Noble [89])

FQ(z) =

∫ ∞
0

FQ(x)dFA−D(z − x). (2.17)

By this equation, the implication is that we allow the case of A(r+ g)−D(g) < 0 to

occur and think of such case as an imaginary part. The integral between zero and

infinity guarantees that the queue length larger than or equal to zero. In the current

literature, this phenomenon can be captured by modeling the queue as a reflected

Brownian motion. Although using Fourier transform can solve Equation (2.17), we

can obtain the approximation based on the above recognition on Brownian motion.

By expanding FQ(x) in the righthand of the above equation to second order, we can
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obtain [76]

dFQ(z)

dz
· E(A(r + g)−D(g)) =

1

2

d2FQ(z)

dz2
· E(A(r + g)−D(g))2. (2.18)

This is the actually the forward equation for diffusion process. The average residual

queue length is then deduced from the solution of the Equation (2.18), yielding [76]

E(Q0) ≈ Iq

2s

[
g

r + g
− q

s

]−1

. (2.19)

This approximation is accurate near saturation since the original formula for the dis-

tribution of residual queue has zero probability for the residual queue of length zero.

When analyzing residual queue delay by this approximation, Newell [76] found that

the error between this formula and Webster’s might not be small when q decreases.

One can remedy the problem by finding another asymptotic solution that rapidly

decreases as q decreases. To obtain the second approximation, Newell [76] turned

back to Equation (2.17). By assuming the scaled variable [A(r+g)−D(g)]/(IsG)1/2

to be Gaussian distributed, the final average residual queue length is [76]

E(Q0) ≈ sg − q(r + g)

π

∫ π/2

0

tan2 θ

exp[(sg − q(r + g))2/(2Isg cos2 θ)]− 1
dθ. (2.20)

The virtue of the above methods developed in [76] is the systematic treatment of

approximation to the queueing problem at the pre-timed traffic signal, though some

steps rely on intuition. When applying this approximation to the delay, the formula

has much agreement with Webster’s. It demonstrated that the power and accuracy

of the asymptotic approximation. The above approximation techniques are further

emphasized and developed in the book by Newell [83].
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2.2.3 Vehicular Delay

In most applications, the average vehicular delay is the central concern and serves

as the important performance measure for traffic signal systems. In order to estimate

the delay, one may start with a simple situation, i.e., no overflow queue at the

commencement of red time. When vehicles arrived, the delay will be due to the

red times and the wait in the queue discharging process during green intervals. If

the traffic demand is moderately large and can be treated as continuous fluid, then

the so-called deterministic delay will be very easy to obtain. However, if the traffic

flow occasionally exceeds the capacity or if the demand becomes high, the delay is

directly related to the residual queues from the previous cycle. In this case, one

can hypothetically consider the residual queue to be postponed to discharge after

all arrivals during one cycle depart the cycle. Then it is relatively easy to get the

average delay by combining the previous two components. In fact, this approach

was essentially the same as that in the original work by Beckmann, McGuire and

Winsten [16].

Certainly there is an issue about the effective green or red times and loss time.

In real situations, it might be appropriate to consider the loss time as deterministic,

whose value could be statistically determined by real data. Hence, the effective signal

times are treated as deterministic ones. However, some observations in modern days

indicate that the loss time might be random and such effects may have adverse

consequences. Indeed, people are frequently observed to talk to their cell phones

during waiting for green time. It results in an unexpected longer loss time and

longer residual queues in the next consecutive cycles during peak hours. While this

phenomenon needs to be further studied in practice, it may not be a problem in most

situations where the phenomenon rarely takes place. Therefore, it is fairly reasonable
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to ignore the random effects of loss time.

For discrete-time models, the expected amount of total waiting time per cycle

in terms of time slot is given by simply summarizing up all expected queue length

in each time slot, as indicated in Darroach [33]. Then the average delay per vehicle

can be obtained easily. An alternative perspective of obtaining the average delay

per vehicle is to use Little’s law by calculating first the average queue length in an

arbitrary slot, as in van Leeuwaarden [106] (There is a typo in [106], i.e., ED shall be

given by EX/µY for Equation (18) in [106]). Nevertheless, the above two approaches

are essentially the same. Let w be the delay for an arbitrary vehicle, then E(w) is

expressible as [106]

E(w) =
r

2cµY (1− µY )

[
2E(Q0) +

σ2
Y

1− µY
+ rµY

]
. (2.21)

Miller [67] and McNeil [64] applied the same reasoning to derive the average delay

as that in Beckmann, McGuire and Winsten [16]. They generalized the distribution

of arrivals by considering the variance-to-mean ratio and made some approximations.

Their results are very useful in many practical cases, and we will discuss Miller’s work

in Appendix .

Perhaps the most appropriate model readily for applications is to regard the

arrivals as stochastic fluid. Newell [76] concluded that the average total wait per

cycle for all cars is given approximately by

E(w) =
1

q(r + g)

{
qr2

2(1− q/s)
+ (r + g)E(Q0) +

qrI

2s(1− q/s)2

}
. (2.22)

where I is the variance-to-mean ratio for the difference between arrivals and de-

partures as in the previous section. In the bracket, the first two terms account for
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deterministic and residual queue delay. While the third term is a very crude ap-

proximation as it is not accurate for extremely light flows, it is accurate for heavy

flows when central-limit theorem can be applied and it is fairly good for the Poisson

distributed arrivals. This formula along with the expression for E(Q0) is accurate

and is comparable with Webster’s formula [30].

Although most of efforts have been made to estimate the mean delay, under-

standing the distribution of delay plays an important role in practice as well. Newell

[71] proposed perhaps the first distribution model of the delay to the vehicle coming

to the signalized intersection. He explored some special cases and showed to a first

approximation one can obtain the mean delay disregarding the detailed statistical

assumptions. This method was considered too much elaborate by Newell himself if

one merely wishes to get the mean delay [76]. In view of the aforementioned meth-

ods used in the mean delay models, it seems that there is no essential difficulty to

obtain the description of distribution of delay. However, it seems impossible to get

the closed-form expression for delay distribution. Any attempts in this subject must

involve numerical techniques to solve the dynamical equations which characterizes

the process. See, for instance, Heidemann [42] and Van Zuylen and Viti [107, 109].

Among others, van Leeuwaarden [106] proposed a technique based on the property of

Fourier series to make the calculation of distribution possible in terms of probability

generating function, though more numerical efforts have involved.

The above delay analysis is largely concerned with the isolated intersection with

traffic signals. If the intersections on an arterial are the concern, one cannot treat

all of them as isolated due to some interdependency among them. However, the

critical intersection, where the crossing traffic is with the largest degree of saturation

among all intersections, is reasonably to be treated as isolated [85]. To analyze the

performance along the arterial, one can decompose the delay into deterministic and
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stochastic parts as that for isolated signals. Newell [85] provided some arguments

that whenever no turning traffic on the arterial the stochastic delay may be largely

influenced by critical intersections and should be small compared with deterministic

delay. Although the explicit expression for the total delay is very hard to obtain,

some qualitative descriptions are at least to be done based on the understanding of

the above two components of delay.

2.2.4 Effects of Left-Turn Vehicles

All the discussions so far have been made on the signalized intersections without

left-turn traffic. If there is enough space to accommodate the left-turn vehicles

along one approach, then one can consider through and turning traffic independently.

Otherwise, the situations can be complicated as there might be some interdependence

between through and turning traffic. Nevertheless, one may expect them to cause

the delay more or less proportional to the fraction of turning vehicles.

The influence of unprotected left-turn traffic on the shared lane is the first subject

to be investigated in the literature. If a lane shared by through and turning traffic, the

turning vehicles may block the traffic on the shared lane whenever they need to wait

for filtering through the opposing traffic [9]. Newell [72] considered an unsignalized

intersection with only one lane for each approach. He estimated the capacity through

a Markov chain model by assuming that either a left-turn vehicle at the intersection

must yield to the through vehicles from another approach or both left-turn vehicles

can depart simultaneously. Darroach [33] approached this problem by assigning each

vehicle a probability independent of other factors to determine whether or not it

could make turn. Although this approach is designated for the shared lane traffic

of the discrete model, the independence of probability for capability of turning may

result in the limited use for practice.
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It seems that the protected left-turn bay may relieve the pressure of reduction

in capacity. However, the effects of left-turn movements on the capacity and delay

would be severe if there is a protected left-turn bay not long enough. The entry

of left-turn bay may be blocked during the red phase or even on a portion of the

left-turn green phase [66], leading to a significant reduction in left-turn capacity.

Obviously, such reduction may vary with the fraction of left-turn vehicles and the

green splits in a complex manner. Moreover, sometimes there are left-turn bay

overflow spills over onto the adjacent through lane. The spillback (or spillover) is

a difficult phenomenon to deal with in analytical model. Apart from a substantial

variation in the intersections between through and turning movements, the realistic

issue is how left-turn drivers behave in response to the overflow (See Chapter 31 in

HCM2010 [105]).

Messer and Fambro [66] conducted a simulation study to examine the capacity

in terms of left-turn bay length and signal phasing. They found that the lagging

green phase slightly better than leading green and provided empirical formula for

the length of left-turn bay. Zhang and Tong [122] proposed a probabilistic model for

protected left-turn capacity at a signalized intersection with a short left-turn bay.

They estimated the probability of the left-turn bay blockage and left-turn spillback

by considering the order of through and left-turn arrivals during one cycle. Yin,

Zhang and Wang [120, 121] performed some follow-up studies and used Newell’s

results on residual queue to investigate the capacity and delay. No matter what kind

of probability approaches have been made, the basic structure in the above studies

is simply to find a coefficient to smoothly combine two components of delay, i.e.,

the delay with the occurrence of blockage or spillback and the delay without. This

treatment is somewhat crude but perhaps practical. Another difficulty in [120, 121] is

the choice of probability of arrivals. With the increase of traffic intensity, the arrival
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pattern is not Poisson any more. On the other hand, the blockage and spillback

depend on some detail discrete structure around the short left-turn bay. In this

respect, perhaps the discrete time model is more appropriate to study this subject.

Recently, Haddad and Geroliminis [41] used the negative binomial distribution as

in Zhang and Tong [122] to quantify the uncertainty of queue spillback from the left

bay. However, this work still does not overcome the difficulties mentioned earlier.

Among others, Akçelik [9] provided a treatment of shared lane capacity from the

practice perspective. Wang and Benekohal [110] considered the effects of platoon

arrival rate to the left-turn operation. Qi et al. [95] considered the overflow of left-

turn traffic and applied discrete-time Markov chain model to analyze left-turn queue

lengths at signalized intersections. Liu and Chan [60] made an optimization model to

maximize the capacity by considering the queue spillback and left-turn bay blockage.

However, due to the excessive scenarios and the discrete nature of the problem, it is

unlikely to attain the original objective.

Having discussed various existing approaches, we have to conclude that so far no

overall mathematical model included all the identified variables has been developed

for the spillback and left-turn bay blockage. A clear understanding of the major

process during these phenomena taking place is needed the first. To do so one has to

identify which factors are more important than others and then one can apply some

mathematical methods. Perhaps a similar graphical method in Newell [86] is worth

an attempt to this subject.

2.3 Models for Vehicular-Actuated Signals

Vehicle-actuated signals, on the contrary to pre-timed signals, is capable to re-

spond to fluctuations of arrival patterns. For the basic full actuated control strategy,

the green time for each approach traffic consists of two components, i.e., queue clear-
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ance time and green extension. Queue clearance time refers to the interval that

takes for the vehicular queue to vanish. The green extension, immediately followed

the queue clearance time, is controlled by a vehicle detector which usually places

upstream of the intersection. Once a vehicle passes the detector, it extends the

green time to a fixed interval. Such fixed interval is usually called unit extension

(also called passage time or gap time in the literature). During the unit extension,

if there is any vehicle passing the detector, the green will be extended to another

unit extension further. Otherwise, the green will terminate and switch to red time.

Usually the signal controller has set a minimum and a maximum value for green

time. Needless to say, the green time is forced to be longer than the minimum and

no longer than the maximum no matter whether there is a triggered unit extension

or not. In the basic controller setting, once the unit extension is set, it cannot be

changed. On the contrary, modern controllers allow it to change according to the

traffic demand. Through this dissertation, we will not discuss the nonbasic settings.

Figure 2.3 shows a typical cycle for one approach.

The investigation of vehicle-actuated signals is much more complicated than pre-

timed signals. It seems impossible for a model to involve all the relevant parameters

in the real setting. This is due to not only the interdependence of signal times

for different approaches, but also the order of queue clearance times of opposing

approaches.

Apart from the efforts of exploring models to describe the behaviors of the signals,

the studies generally indicate that a unconstrained vehicle-actuated signal at the

intersection of two one-way streets behaves better than an optimal pre-timed signal.

However, it may not be so at an intersection of two-way streets [87].
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Figure 2.3: A typical cycle for vehicle-actuated signal (adapted from the Figure 4 in
[10]).

2.3.1 General Approaches

Research on vehicle-actuated control by the tools of probability starts in the

1940s. Garwood [39] directly used Poisson distribution to describe the arrivals and

find the probability that a vehicle has to wait for the whole maximum green time.

Clayton [24] studied the average delay at vehicle-actuated signals on a road with

light traffic. Tanner [103] estimated the delays of two opposing streams of vehicles

trying to cross a length of road wide enough for only one vehicle at a time. Based

on his assumption, he found explicit results of waiting times for some special cases.

Darroch, Newell and Morris [32] gave a comprehensive analysis based on assump-

tions of general distribution of departure vehicle headways and lost time, and of

exponentially distributed arrival headways. The authors used results of busy period

of M/G/1 queues to investigate the influence of green extension to signal cycle and
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average delay. This work might be the first to obtain some general results for a

one-way intersection with actuated signals. However, the limitation of this study lies

on the assumption of Poisson arrivals. As remarked in [84], since their model did not

assume minimum green time, in the extreme case with no traffic flows, it will allow

signal to switchback and forth many times during a short period.

Based on a binomial vehicle arrival, Dunne [36] presented a discrete model follow-

ing Darroch, Newell and Morris [32]. He gave an analytic expression of the probability

generating function for vehicle delay and showed a connection to the discrete cases of

[32]. Lehoczky [53] also considered the discrete type of signal times and compound

Poisson arrivals. However, the setting fell short of realistic meaning. In Lehoczky

[52], he regarded two one-way streets as a server with two input channels and the

control mechanism as alternating priorities queues. Little [59] did a similar study

and obtained probability distribution of queue length in the steady state.

Taking bunching arrivals into consideration, Cowan [26] considered vehicle-actuated

traffic control. The intersection under his consideration was also the one of two one-

way streets without maximum and minimum green times. He basically assumed

the compound Poisson arrivals, i.e., the bunch of arrivals, separated by inter-bunch

headway with shifted exponential distribution and the intra-bunch gap with a con-

stant one unit time. Since his model was essentially of the discrete time type, the

treatment was similar to that in Lehoczky [53, 52] to some extent.

There are also many other proposed models similar to the ones above. Exam-

ples include Morris and Pak-Poy [69]. Recently, Viti and Zuylen [108] developed

a computational model based on an assumption of the time dependent distribution

of arrivals. and attempted to incorporate many real parameters such as maximum

and minimum green times. The temporal evolution of queue length, traffic signal

sequence probabilities, delay, and waiting time could be computed based on their
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proposed equations. Their model served suitably as a probabilistic evaluation for

microscopic simulations. However, it seems that the computational model did not

give direct description of what would happen had some parameters changed.

On the practical front, Kruger, May and Newell [51] studied the real implemen-

tation of vehicle-actuated control at an intersection. They investigated the location

of detectors for a specific strategy: queue control. Queue control strategy aims to

detect the end of the queue and switches the signal at the same time that the end

of the queue is expected to reach the intersection. Based on numerical simulation,

they showed that, in general, queue control at an isolated intersection is better than

other control strategies.

The above discussed the attempts which have been made for finding exact meth-

ods of vehicle-actuated signals. One may wonder why we have to find the general

solution if there is only a little improvement for understanding the properties of ac-

tuated signals. In fact, any efforts looking for some models should aim at making

inference about the real world. The accurate solutions for the problem may be too

complicated to obtain the useful information. In this respect, perhaps some appro-

priate approximations made in the mathematical analysis can be greatly of help for

making predictions about the real applications. Newell [80, 87] made the progress

and applied diffusion approximation to the analysis of vehicle-actuated signals.

2.3.2 Diffusion Approximation

Deterministic fluid model and diffusion approximation are two useful and appro-

priate tools discovered by Newell to analyze the control strategies of traffic signals,

first applied to pre-timed signals [76]. They are also proper to analyze the perfor-

mance of vehicle-actuated signals. While the deterministic fluid model can reveal

the basic dependence relationship of phase time between different traffic approaches,
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the diffusion approximation easily captures the stochastic effects of traffic demand

on the phase time and vehicular queues.

Figure 2.4: Continuous representation for queue length v.s. time at one-way inter-
section (reproduced from Figure 1 in [80]).

Newell [80] was primarily concerned with vehicle-actuated control strategies under

the arrival probability invariant to time translations at the intersection of two one-

way streets. In his setting, the signal switches the green as soon as the queue vanishes.

As in Figure 2.4 for deterministic fluid model, the two lanes, indexed by 1 and 2,

have the arrival rate qi and the discharge rate si, i = 1, 2. Y1 and Y2 are loss times

on two approaches, respectively, and gj and rj are green and red times in jth cycle,
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respectively. Obviously Figure 2.4 illustrates a linear recursive relations of two signal

phases, whose condition of stability was α = 1− q1/s1 − q2/s2 > 0 shown by Newell

[80]. In fact, the relationship between rj and gj defines a Markov chain. If one

searches for two-step dependence, one will find a relationship between rj and rj+1

(or between two consecutive green times). As long as the traffic intensity is large, it

is appropriate to think of rj as some random value varying about the mean. One can

also justify such variants during two consecutive cycles should be small if one proceeds

to scale the time rj as αrj. It implies that one is able to apply the same trick of

diffusion approximation to the distribution of red times. Let fj(x) = d
dx
P{αrj < x},

then under certain conditions the processes of rj are approximately described by the

following Fokker-Planck type equation [80]

fj+1(x)− fj(x) ∼= −
d

dx
[fj(x)a(x)] +

1

2

d2

dx2
[fj(x)b(x)]. (2.23)

where a(x) = E(α(rj+1−rj)|αrj = x) and b(x) = E(α2(rj+1−rj)2|αrj = x). The val-

ues of a(x) and b(x) are given in [80], where it did not assume any specific probability

function for the arrivals but a linear relationship between the mean and variance of

arrivals within any given time period. The equilibrium solution of the above equation

is obtained by setting fj+1(x) = fj(x) and is shown to be a gamma-type distribution.

This conclusion has some practical meaning. First, it is rare to observe a heavy-tailed

distribution for cycle time. In fact, it actually decays exponentially, meaning that

under equilibrium condition the cycle times should fluctuate around the mean by a

small factor. Second, if the distribution of cycle time is not equilibrium, the actual

time to reach equilibrium is proportional to α−2 [80].

As for delay, the important feature is that the total delay on approach 1 is pro-

portional to the variance of red time V ar(rj) and (E(rj) + Y1 + Y2)2. Based on this
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fact, one can compare the performance of actuated control with that of pre-timed

counterpart. The conclusion is drawn for the symmetric two one-way streets that a

vehicle-actuated signal generates only one third the delay of an optimal pre-timed

signal.

Newell [87] further explored the two-way intersection with unconstrained vehicle-

actuated signals, i.e., no maximum and minimum green times. The investigated

control policy is to switch the green once all queues on opposing directions have

vanished. For unbalanced flows on the opposing approaches, Newell noted that the

approach with lower traffic intensity preferred a pre-timed control to an actuated

control as to eliminate the effect of V ar(rj) on delay, but it was not so to the

approach with higher traffic intensity. This tension may exert the influence on the

performance of signal. Nevertheless, the actuated signal gives less delay than the

pre-timed signal in a large range of arrival and saturation flow rates. For almost

balanced flows, the problem lies in the fact that the queue on either approach can

vanish first due to the stochastic effect. In the diffusion approximation, this leads to

the expectation of green time given red time E(gj|rj) that is proportional to rj and

(rj + Y1 + Y2)1/2, not a single linear relationship with red time any more. Moreover,

the uncertainty in the red time becomes small compared with the mean [87]. The

main consequence from the above facts is that the investigated actuated control is

inefficient for nearly saturated steady flows compared with pre-timed control [87].

Recently, Boon et al. [17] also used diffusion limit based on the studies about

the pooling system [18] and provided the results for both heavy and light traffic

demands. They interpolated the results for the moderate demand case. However,

their results might have limited practical meaning.

In sum, the deterministic fluid model and diffusion approximation can be regarded

as the basic tools to analyze most of queueing related traffic problems. Because the
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fluid model is the first order approximation and the diffusion is the second order

approximation, they are suitable to most static realistic applications. In order to

tackle with time-dependent arrivals, the diffusion approximation can be generalized

[82, 77, 78, 79]. The recent development involves the application of second order

approximation to traffic flow (See Jabari and Liu [43]).

2.4 Learning-Based Traffic Signal Control

In addition to the pre-timed and vehicle-actuated signals, there are emerging

technologies that enable other types of signal control based on the past information

and the prediction of traffic flow. The adaptive signal control systems, including Ur-

ban Traffic Control System (UTCS), Split, Cycle and Offset Optimization Technique

(SCOOT), and Sydney Coordinated Adaptive Traffic System (SCATS), have been

more or less employed advanced optimization or learning techniques to implement

various control strategies. More recently, the genetic approach [92], enforcement

learning [119] and scheduled based [118] signalized intersection control have been

investigated. However, the architectures and control policies in above systems are

too complex to be explicitly analyzed. The quality and the optimality of the control

performance are not guaranteed as well. Besides, these signal control systems heavily

rely on the advanced surveillance devices such as digital cameras, wireless communi-

cation devices, and associated computing systems, which may be too expensive for

public agencies to afford. Hence, they are not widely adopted in practice.
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3. PRE-TIMED SIGNAL: MODELING SPILLBACK AND BLOCKAGE

3.1 Introduction

One of the most important issues of signal timing plan relies on the left-turn treat-

ment. 1 Usually a protected left-turn signal phase, before (leading) or after (lagging)

through signal, is applied to a signalized intersection with high traffic demand. The

traffic delay, as a criterion, is used to evaluate the signal operations. For a light

traffic demand, the average delay can be easily determined by treating left-turn and

through traffic independently. However, when the demand is very heavy, say, close to

the capacity, the situations become much more complicated since not only residual

queues become a problem but also some interactions would exist between left turns

and through vehicles. Such interactions affect the delay to arriving vehicles and the

capacity of the signalized intersection as well.

A common problem for leading left-turn operation is the blockage to left-turning

vehicles by through traffic, particularly so at an intersection with a short left-turn

bay. During the peak hour, some vehicles in the through lane might not be able

to depart at the end of one cycle, resulting in an increased probability of left-turn

blockage. In turn, the blocked left-turning vehicles may also delay the through traffic

to enter the intersection. Those problems may not exist during a lagging left-turn

operation since left-turning vehicles intend to spill out of the bay under heavy traffic.

In this case, the through capacity is reduced, leading to an increase of total delay as

1Part of this chapter is reprinted with permission from K. Yin, Y. Zhang, and B. Wang, Modeling
Delay During Heavy Traffic for Signalized Intersections with Short Left-Turn Bay, Transportation
Research Record: Journal of the Transportation Research Board, No.2257, pp.103-110, 2011, and
K. Yin, Y. Zhang, and B. Wang, Analytical models for protected plus permitted left turn capacity
at signalized intersection with heavy traffic, Transportation Research Record: Journal of the Trans-
portation Research Board, No.2192, pp.177-184, 2010. Copyright, National Academy of Sciences,
Washington, D.C., 2011 and 2010, respectively.
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well. All of these factors contribute to the difficulties for estimating average delay and

the total capacity. Furthermore, these issues are not included in the considerations

of the current Highway Capacity Manual (HCM) [104] methods.

Therefore, it is necessary to investigate the traffic capacity and delay during heavy

traffic at pre-timed intersections with a short left-turn bay. Due to the complex

interactions between left-turn and through traffic, the objective of this chapter is to

propose heuristic models for practice purposes. The methods described below are

not rigorous in essence. They simply serve as a framework for the future study.

3.2 Basic Models for Signals with Protected Left-Turn Phase

3.2.1 Leading Protected Left-Turn Phase

Figure 3.1: Left-turn blockages and signal timing.

Blockage to a short left-turn bay often occurs when traffic signal is operating

with a leading left-turn phase during the peak hours. Although the spillback of

left-turn vehicles can take place occasionally, it is less severer than the blockage

for the traffic signal with leading phase in terms of total capacity and delay at the

intersection. Hence, we focus on the blockage to left-turn bay in this section. To

model the blockage to a left-turn bay from an adjacent through lane, illustrated in
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Figure 3.1, the influence of through residual queues should be taken into account.

During the period with high traffic demand, it suffices to consider the queue as a

random continuous flow. Denote by QTH(t) the length of queue for through traffic

at time t after the commencement of a red period and denote the distribution of

residual queue QTH(0) by F TH
Q (x), i.e., F TH

Q (x) = Pr{QTH(0) ≤ y}. The closed form

for F TH
Q (x) can be obtained by diffusion approximation discussed in Chapter 2.

We assume the length of the left-turn bay to be N normal vehicles and N + 2

queued through vehicles to block the left-turn bay. To count the influence by residual

queues, the probability of blockage takes place as long as there are N + 2−QTH(0)

through vehicles arriving in the adjacent lane and no spillback occurs. If the residual

queue length is greater than N + 2, the blockage will remain at least for the whole

red time. Considering that QTH(0) varies cycle by cycle, the blockage probability

can be estimated on average as:

Pblock =
N+2∑
n=0

Pr ({XTH ≥ N + 2− n} ∩ {XLT ≤ N + 2})Pr(QTH(0) = n),

(3.1)

where XT and XLT represent the number of vehicles on the adjacent trough lane

and in the bay, respectively. In general, the calculation of probability in Equation

(3.1) is not trivial. Although Poisson arrival assumption can help easily calculate

this probability, and has been used in several left-turn traffic studies [48, 95], it

is known that the heavy traffic does not follow Poisson distribution. Without any

knowledge of the construction of traffic, perhaps one reasonable approach is to use

negative binomial distribution for general cases, by considering the arrivals on the

adjacent through lane as failures and those in the left-turn bay as successes during

the through red interval. The blockage probability can be obtained accordingly by
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cumulating each discrete probability for the possible number of vehicles in the left-

turn bay. The errors that may arise in this method are due to the fluctuations in

the arrival number and the distribution of vehicles on the multiple through lanes. If,

however, the qualitative description is the only concern, the Poisson distribution can

be applied as an approximation.

Now we analyze the process of blockage and its effects. When blockage takes

place, no new vehicles can join the queue in the left-turn bay. However, the blocked

vehicles still wait at the intersection during the red interval. It is more convenient to

imagine a hypothetical queue which accumulates according to the left-turning arrivals

after blockage, as described as dashed curve around the shaded area in Figure 3.2.

We can avoid estimating the beginning time of blockage, which leads to extra tedious

calculation. Before the protected green time, the analysis of left-turn queue is the

same with the usual analysis. The blocked vehicles that lead to the shaded area

would contribute to the residual queue during this cycle. In order to obtain residual

queue length, one may want to calculate the probability of the number of vehicles in

the bay during blockage. Besides, if necessary, one has to take care of the starting

time of left-turn arrivals (denoted as tL in Figure 3.2), since the new left-turning can

enter the bay only after the N + 2 adjacent through arrivals departure. However, it

would be too tedious to do so.

The probability of x left-turning vehicles that arrive in the bay before blockage,

denoted by P (x), follows a negative binomial distribution with formula:

P (x) = C1

∑
n

 x+N + 1− n

N + 1− n

 (1− pt)xpN+2−n
t Pr(QTH(0) = n), (3.2)

where pt denotes the proportion of through traffic and C1 is a constant such that
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Figure 3.2: Illustration of left-turn queues during left-turn blockage.

∑N+2
x=0 P (x) = 1. One can see that we adopt a heuristic approach here since the

probability of blockage actually relates to the order of arrivals from left-turn and

through traffic streams and the intersection state (whether blockage occurs or not)

of the previous cycle.

The queues of through traffic contribute to the most complex part of analysis in

our proposed approach. As we mentioned in Chapter 2, the expression for residual

queues can be complicated, but it receives simplification if diffusion approximation

is employed. While diffusion approximation is accurate for heavy demand situation,

for light traffic demand, its errors should be of order of the reciprocal for the number

of arrivals during one cycle. Here we use Newell’s results for F TH
Q (y) and E(QTH)

[76]:

F TH
Q (y) = 1− eE(QTH)−1y, (3.3)

and

E(QTH) ' IvTH
2sTH

[
sTHC

sTHgTH − vTHC

]
, (3.4)

where

vTH = average through arrival rate during the entire cycle;
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C = signal cycle length;

I = an appropriate variance-to-mean ratio for arrivals and departures;

sTH = saturation flow rate;

gTH = green time for the through traffic.

rTH = red time for the through traffic.

Obviously, with the technique of diffusion approximation, F TH
Q (y) is a continuous

function of y. However, one of our interests is the discrete distribution of E(QTH),

the residual queue on the adjacent through lane of a left-turn bay. Since E(QTH) can

be obtained through dividing QTH by the number of through lanes, one can convert

F TH
Q (y) into discrete type as:

Pr(QTH = n) = F TH
Q ((n+ 1)l)− F TH

Q (nl), (3.5)

where l is the number of through lanes. Since our interests focus on the length of

queues with relative high probability in practice, one can use the truncated distri-

bution of the Equation (3.5).

Here, we see a tension between discrete models and continuous approximation.

On one hand, the short left-bay related problems require a discrete model. On the

other hand, the expression for distributions of residual queues has a simplified ex-

pression by continuous approximations. The approach used in this section is not

the best way to achieve the balance between the requirement of models and simpli-

fied expressions for related quantities. Moreover, the proposed model for left-turn

bay blockage is very crude since it overlooks many important aspects during the

interactions between through and left-turn traffic. It still needs more efforts in the
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future.

3.2.2 Lagging Protected Left-Turn Phase

One can observe that the effects of left-turn spillback are much severer than that

of left-turn bay blockage in terms of capacity and delay for traffic signals with lagging

protected left-turn phase. Hence, we concentrate on the left-turn spillback and its

probability in this section.

Denote the left-turn residual queue by QLT . The probability of left-turn spillback

from the bay is a joint of two events: at least N + 3−QLT left-turn vehicles arrive

at the intersection and the adjacent through vehicles are not able to block the bay.

Here, we assume the transitional area between left-turn bay and through lane can

contain 2 vehicles. Thus, the spillback probability is estimated as:

Pspill =
N+1∑
m,n=0

Pr ({XTH ≥ N + 3−m} ∩ {XLT ≤ N + 1− n})Pr(QTH(0) = n)Pr(QLT = m).

(3.6)

To estimate the probability in the Equation (3.6), one encounters the same problem

for the Equation (3.1). The method suggested in the discussion for the Equation

(3.1) can be applied to this equation.

3.3 Problems of Capacity with Protected Left-Turn Phase

3.3.1 Leading Protected Left-Turn Phase

Based on the modeling results, the protected left-turn capacity can then be calcu-

lated by combining the expected number of vehicles during blockage and the number

of left-turn vehicles in non-blockage condition:

Cprotected = nPblockE(XLT ) + (1− Pblock)
sLTgLT
C

, (3.7)

38



where n represents the number of cycles in a peak hour, sLT the saturation flow rate

for protected left-turn movement, gLT the effective green interval, C the cycle length

and E(XLT ) the expected number of vehicles in the left-turn bay when blockage

occurs. To estimate E(XLT ), one needs to consider the distribution of left-turn

residual queue FLT
Q (x).

Here one needs to be careful about the definition of capacity. The usual definition

of capacity should be independent of any arrival rates. However, Equation (3.7)

involves Pblock which depends on the left-turn and through traffic rates. From this

perspective, Equation (3.7) should be considered as a sort of ”conditional” capacity.

The capacity should be the maximum of value of Equation (3.7) by varying different

arrival rates.

3.4 Delay Problems with Protected Left-Turn Phase

3.4.1 Leading Protected Left-Turn Phase

The delay of through traffic contributes to the most part of total traffic delay at

a signalized intersection. During peak hours when there is a high demand of through

traffic, the leading protected left-turn signal operation would lead to a situation that

quickly queued adjacent through vehicles block the left-turn bay. Such phenomenon

would occur especially for some cycles during which the fluctuations in the number of

arrivals are large. When blockage to the left-turn bay takes place, only the vehicles

in the left-turn bay can depart during protected left-turn phase. And the blocked

left-turning vehicles are delayed to the next cycle. Obviously, those blocked vehicles

increase the total delay at a signalized intersection. In this section, we present the

delay estimation for both left-turn and through vehicles according to the results of

blockage probability discussed in the previous section.

The total uniform delay for all left-turn vehicles per cycle, denoted by dTLT , can
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be calculated:

dTLT = Pblockd
T
block + (1− Pblock)dTunblock, (3.8)

dTblock =
1

2
r2
LTvLT + rLTvLTgLT +

N+2∑
x=0

P (x)(
x2

2sLT
− gLTx) +

1

2
g2
LTvLT (3.9)

dTunblock =
1

2

vLT r
2
LT

(1− vLT/sLT )
, (3.10)

where

sLH = saturation flow rate for protected left-turn movement, in vehicle per second

unit,

x = the number of left-turning vehicles arrive in the bay before blockage,

rLT = red signal time for left-turning vehicles,

gLT = protected left-turn green time,

vLT = average left-turning arrival rate (veh/sec).

Equation (3.9) is derived from estimating the shaded area (the imaged queue)

and the area between the queue curve and time axis in Figure 3.2 from the previous

section. Equation (3.10) is essentially the same with the uniform delay in HCM meth-

ods when the traffic condition is not oversaturated. It is apparent that the proposed

average uniform delay model, Equation (3.8), is essentially a weighted combination

among the blocked left-turning vehicles and others. To obtain the average uniform

delay dLT for per vehicle, one can divide dTLT by the average number of arrivals per

cycle:

dLT =
dTLT
vLTC

, (3.11)
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where C is one signal cycle length. This equation can be used to replace the uniform

delay term in the HCM methods [104] to estimate the control delay for left-turn

traffic.

One may be concerned with the influence of blocked left-turning vehicles to the

residual queue and the through traffic delay. In fact, such influence cannot cause

any large errors since during heavy traffic the through delay caused by blocked left-

turning vehicles should be small compared to total delay. To see this, let us consider

the number of blocked vehicles as the fluctuations in the number of through traffic and

investigate its influence to delay. Note that during heavy traffic, at most cycles, the

processes of departures and arrivals are uncorrelated. By mimicking the arguments

in Newell [76], one can show the fraction of the average invoked errors dTε to the

average total through delay dTTH as follows.

dTε
dTTH

=
I

rTH(sTH − vTH)
= O

(
1

sTHgTH

)
, (3.12)

where rTH is red time for through traffic and O(·) is big-O notation meaning the

same order. In the situation of heavy traffic, this term is very small and therefore, we

can disregard the error terms contributed by blocked vehicles. Based on the above

analysis, the total uniform delay for through traffic per cycle can be estimated as

dTTH =
sTHvTHv

2
TH

2(sTH − vTH)
+ CE(QTH). (3.13)

To obtain the average uniform delay per vehicle per cycle for an entire intersection,

we have

d =
dTTH + dTLT

(vTH + vLT )C
. (3.14)

Again, this equation can be used to replace the uniform delay in the HCM methods
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to estimate the control delay.

3.4.2 Lagging Protected Left-Turn Phase

For the lagging protected left-turn signal during the period of high traffic demand,

the left-turn vehicles are most likely to spill out of the bay rather than be blocked by

through vehicles. Such phenomenon would occur particularly for some cycles when

left-turn flow is close to capacity. If the left-turning vehicles spill out of the bay,

there would be some vehicles leftover to next cycle and the left-turn spillover queue

would block adjacent through traffic. Hence, the through capacity is reduced and

total delay increases during through green phase.

When the adjacent through lane is blocked during the time that the spillback

of left-turn vehicles, the through vehicles should wait behind the spilled left turns

if they cannot seek a chance to move to another unblocked through lane. In this

study, we only consider the case that the through volume is less than the reduced

capacity and leave the other case to future work. In addition, we assume the blocked

through vehicles on the adjacent lane wait until the spillback dissipates. Therefore,

the delay for through vehicles in this situation can be estimated from two parts, one

accounting the queue departure delay due to the reduced capacity, and the other

accounting the waiting time for the blocked through vehicles during the left-turn red

time. Since the number of through lanes (denoted by l) reduces to l − 1 during the

condition of spillback, the total delay for through traffic can be calculated as follows:

dTTH = Pspilld
T
spill + (1− Pspill)dTnonspill, (3.15)

dTspill =
sTHvTHr

2
TH(l − 1)/l

2(sTH(l − 1)/l − vTH)
+
vTH
2l

r2
LT , (3.16)

where dnonspill can be calculated similarly to Equation (3.10). The total uniform
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delay dTspill can be also converted to the average delay per vehicle to replace the

uniform model in the HCM methods.

3.5 Simulation Results

3.5.1 Results for Capacity Models

A two-lane isolated signalized intersection was set up in CORSIM and generated

simulation data for evaluation of the developed probabilistic model. The intersection

operates with a leading left-turn strategy and has two 12-ft lanes with one left-turn

bay, all passenger cars, no parking and no pedestrians. In this simulation setup, the

left-turn signals run with a protected phase following by a permissive phase. The

length of the left-turn bay was selected as a variable in the capacity calculation. The

main input data for the capacity calculation are as follows:

• Number of through lanes: 2

• Protected Left-turn (LT) green: 13 s

• Through vehicle (TH) green: 50 s

• TH red: 63 s

• Total cycle length: 117 s

• Change interval for each phase: 4 s

• Through vehicle volume: 1,550 veh/h

• LT volume: 388 veh/h

• Mean discharge headway: 1.9 s

• Opposing TH volume: 850 veh/h
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• Opposing TH arrival type: 3

For each of the eight length scenarios, i.e., the left-turn bay length from 5 to 12

vehicles, 5 simulation runs of 15 minutes were done by changing the random number

seeds in CORSIM. During each run, we managed to obtain the left-turn results from

CORSIM by increasing the total demand until the output reached its maximum.

Figure 3.3: Influence of residual queue length on probability of blockage.

The proposed probabilistic model was used for protected left-turn capacity. In

regard to protected left-turn capacity, the first is to estimate the length of residual

queue. It is appropriate to set up 51 seconds for green time because drivers may use

the first second of yellow time to pass the intersection. Obviously the variance-to-

mean ratio for arrivals and departure is bounded by 1 because of under dispersed

distributed traffic flow rate. This value can be also estimated from the real-world or
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simulation data. Suppose the vehicles arrive at intersection with equal distribution

for each through lane. Accordingly the expected residual queue length was estimated

to be 1 vehicle for each lane and was bounded by 3 vehicles. It is worth noting that

the calculation of residual queue length would be sensitive to the arrival rate and the

effective green time. In the real-world the residual queue lengths may vary greatly

cycle by cycle, especially when the traffic is heavy. Thus knowing the bound of

residual queue length is also important for an application. Based on this residual

queue estimation, it is easy to calculate protected left-turn capacity after obtaining

the average number of left-turn vehicles blocked in the left-turn bay by the adjacent

through traffic and the probability of blockage. Figure 3.3 shows the relationship

between the length of left-turn bay and the probability of blockage with residual

queue lengths of 1, 2 and 3 vehicles in the adjacent through lane.

Figure 3.4: Results for the proposed left-turn capacity model.
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In regard to the permitted left-turn capacity, the HCM method was used due to

the light opposing through vehicles. The critical gap and the follow-up headway used

are 4.5 s and 2.5 s, respectively, which have been also used in the current version of

HCM. Finally combining the results of protected and permitted left-turn capacity

calculation, the total left-turn capacity can be estimated from 285 vehicles when the

length of left-turn bay is 5 vehicles to 376 vehicles when the length of left-turn bay is

12 vehicles. Figure 3.4 illustrates the left-turn capacity comparing to the simulated

results with respect to the length of the left-turn bay. To illustrate the range of

simulation results, the minimum and maximum values for each scenario are plotted

as error bars associated with mean value of simulated results. In this figure, the left-

turn capacity results that are obtained by the HCM methods only are also shown

and remain a constant 378 vph for different scenarios. Obviously, the HCM methods

overestimate the left-turn capacity, especially when the length of the left-turn bay

is not sufficiently long. Due to the uncertainty of left-turn spillback, the residual

queues may not be equally distributed in each through lanes and this phenomenon

occurs frequently at short length left-turn bays, i.e., the bays with 5 to 6 vehicles

length. The interaction between left-turn and through vehicles is thus complicated

at the very short length left-turn bays and the proposed model may under-estimate

the left-turn capacity. It is also worth noting that the proposed model overestimates

the left-turn capacity when the left-turn bay is long. This is because the residual

queue would occur when the left-turn bay gets longer. Considering the stochastic

nature of simulation, from the results, the proposed probabilistic model well reflects

the left-turn capacity due to the residual queue under heavy traffic.

46



3.5.2 Results for Delay Models

A two-lane isolated signalized intersection is set up in VISSIM and the simulation

data is generated with different scenarios for the evaluation of proposed model. The

intersection operates with protected left-turn strategy only (no permitted left-turn

phase) and has ideal conditions: two 12-ft through lanes with one left-turn bay, all

passenger cars, no parking and no pedestrians. The length of the left-turn bay was

selected as a variable in the capacity calculation. Since in VISSIM all passenger cars

have the length varying from 13.48 ft to 15.62 ft, the length of the bay was adjusted

by observing the number of vehicles during a simulation. The basic calibrated data

for the delay calculation follow:

• Protected Left-turn (LT) green: 13 s

• Through vehicle (TH) green: 50 s

• TH Red and change time: 56 s

• Total cycle length: 106 s

• TH saturation flow rate: 1,800 vph

• Protected LT saturation flow rate:1,700 vph

Different through volumes and left-turn volumes are set for the leading and lag-

ging left-turn operations, aiming to enhance the left-turn phenomena for different

strategies. In addition, since there is no choice to directly control the saturation

flow rate in VISSIM, we managed to change some environment setups to calibrate

these values. The saturation flow rate was obtained by averaging the outcome of lane

throughput from 15 multiple runs, each of which lasted 100 seconds for discharging

queued vehicles under a fully congested situation.
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In order to manage the stochastic nature of VISSIM, fifteen simulation runs

for each of seven length scenarios of left-turn bay, one hundred and five in total,

were conducted for each of the leading and lagging left-turn operations by changing

the random number seeds in VISSIM. Each run lasted one hour period with an

increment of 15 minutes and the highest 15 min delay was chosen to compute the

average control delay for each left-bay scenario. The reason of doing so is that the

control delay model in the HCM is developed based on the highest flow level among

different 15 min time periods. In the simulation for the leading left-turn operation,

Table 3.1: Standard deviation of left-turn delay in simulation.

Bay length Std of delay
5 3.83
6 5.04
7 3.46
8 7.45
9 6.09
10 4.58
11 3.98

the through volume is set to 1650 vph and the left-turn volume is set to 100 vph. In

this case, the through demand is very high and hence, the residual queue problem

becomes a concern, resulting in the high possibility of blockage to the left-turn bay.

The authors in the reference [122] observed the blockage in field, especially when the

left-turn bay is short under the heavy through traffic. For a longer left-turn bay, the

left-turn delay is expected to be smaller since the chance of blockage should become

lower. In simulation, the delay for left-turn traffic varies from 69 second per vehicle

for a left-turn bay of five vehicles length to 55 second per vehicle for a bay of eleven
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vehicles length, as shown in Figure 3.5. It is generally consistent with the expectation

as well. However, it is noticed that the left-turn delay for the bay of length eight is

a little larger than the ones for the bays of length seven and night. Table 3.1 shows

the standard deviation of delay in the sample simulation data. Within the fifteen

simulation runs, the standard deviation of left-turn delay for the eight length bay

is larger than the others. Nevertheless, it does not mean that the former delay is

actually longer. Such results are in fact due to the stochastic nature of arrivals. For

this case, a reasonable explanation is that there is no significant difference among

the delays for the bay of length seven to nine. Moreover, observations from the field

and the simulations show that not only blockage occurs when the bay is very short

but also the left-turn spillback can take place. The blocked adjacent through vehicles

increase the chance of the longer residual queues and in turn, the blockage to left-

turn bay would be most likely to occur. Such complex phenomena cause a larger

left-turn delay in the case of shorter bay. As shown in Figure 3.5, the simulation

result of a larger delay for the bay of length five than that of length six is due to this

reason.

The proposed models for left-turn delay, Equations (3.8) to (3.11), are used to

calculate the control delay by replacing the uniform delay term in the HCM delay

model (Chapter 16 in the HCM [104]). Regarding the increment term in HCM model,

the recommended values for isolated intersections are used to set the parameters

[104]. And the progression adjustment factor was set to 1 because of the isolated

intersection. No initial queue delay term in the HCM methods was added. As

Figure 3.6 shows, the comparison of all results demonstrates that the proposed left-

turn delay model well estimates the increase of left-turn delay due to the blockage

of through traffic. It is obvious that the HCM methods significantly underestimate

the left-turn control delay in this case. However, since the proposed model does not
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Figure 3.5: Comparison of left-turn delays under leading left-turn operation.

consider the complex phenomena discussed previously for very short left-turn bay, it

has a gap between the simulation result and proposed model for the bay of length

five. Such inaccuracy will be considered in the future work. Another case with a

left-turn volume 160 vph and a through volume 1500 vph was used to validate the

proposed left-turn delay model. Note that in this case the v/c ratio for left-turn

traffic is as high as 0.76. Again, as shown in Figure 3.6, the results demonstrate the

merits of the proposed model.

In the simulation for the lagging left-turn operation, the through volume is set

to 1300 vph and the left-turn volume is set to 205 vph under a leading left-turn

operation. It is important to note that the left-turn volume is quite close to the

saturation flow rate. Therefore, overflows of left-turn traffic are expected for some

cycles, resulting in the left-turn spillback from the bay with insufficient length. Such

phenomenon was observed from the field as well [122]. The delay for through traffic

50



Figure 3.6: Comparison of left-turn delays with left-turn volume 160 vph and through
1500 vph.

varies from 48 second per vehicle for a left-turn bay of length five to 34 second per

vehicle for a bay of length eleven, as shown in Figure 3.7. Generally speaking, it is

consistent with the intuition as well, saying that the delay decreases with respect to

the increase of bay length. However, it is noted that the through delay for a seven

length bay is a little larger than the one for a six length bay. This phenomenon

occurs similar to the situation of leading left-turn operation: the standard deviation

of through delay with the seven length bay is larger than the one with the six length

bay within the fifteen simulation runs. It does not mean that the former delay

is actually longer but attributes to the samples one could randomly obtain. It is

most likely to occur when one deals with the field data as well. For this case, it

indicates these two delays are almost same. The proposed models for through delay,

Equations (3.15) to (3.16), are used to calculate the control delay by replacing the
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Figure 3.7: Comparison of through delays under lagging left-turn operation.

uniform delay term in the HCM delay model. Figure 3.7 shows the results from the

proposed models and the HCM methods. The comparison of all results demonstrates

that the proposed through delay model well reflects the increase of delay due to the

left-turn spillback. Obviously, the HCM methods significantly underestimate the

through control delay in the case of left-turn spillback. However, there is still a

gap between VISSIM simulation and the proposed model when the left-turn bay is

not very long. It is partially due to the longer queue of left-turn spillback for a

shorter bay. Consequently, the drivers on the blocked through lane are much harder

to get out of the bottleneck even they get the chance to change to the right lane.

The proposed model does not count this issue. It is also noticed that the proposed

through delay with the bay of six vehicles length is slightly lower than that with

the bay of seven length. The reason is due to the methods of estimating spillback

probability. When the left-turn bay is relative short, the independent treatment of
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through and left-turn arrivals is not accurate. These issues will be studied in the

future.

3.6 Summary

This chapter proposes the models for left-turn bay blockage and left-turn spill-

back. The models are derived in a quite heuristic manner. They only serve as a

starting point for the future research. The difficulties in modeling arise when one

attempts to estimate the probability of blockage or spillback. As these phenomena

can take place during anytime within the cycle, the exact estimation involves the

investigation of the precise structures of arrivals of two traffic streams. The order

of arrivals from different traffic streams also plays an important role. Because of

the interactions between left-turn and through traffic, the probability of blockage or

spillback during one cycle heavily depends on the state of previous cycle. Further-

more, the residual queues for two traffic streams are not independent any more. All

of the above factors contribute to the difficulties. It seems that the similar tech-

niques illustrated in this chapter are not suitable for a rigorous study. Appropriate

approximations are needed to be developed in the future research.
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4. VEHICLE-ACTUATED SIGNAL: DELAY AND QUEUE ANALYSIS

In this chapter, we will study the delay problem at a vehicle-actuated signal

intersection under two scenarios, Poisson processes of vehicle arrivals and general

stationary arrivals, respectively, both of which trace back to their origins of literature

as early as in the 1950s. The first scenario addresses a similar problem as in Darroch

et al. [32], but with a different modeling methodology and extensive numerical tests.

A primary contribution of this section is made in the second scenario with stationary

and heavy traffic, which has rarely been studied before. The first scenario sets the

framework for the second to build on. In the second scenario, we develop models in

general traffic taking green extension as endogenous.

4.1 Problem Statement

Consider a fully actuated signal system at an isolated intersection between two

one-way streets without turning vehicles, denoted by major and minor approaches

respectively. We assume that there are only two green phases, each dedicated to

traffic in one approach. Vehicle arrivals from the two approaches follow two Poisson

processes with i.i.d. headways in each incoming direction. We consider a special yet

popular control scheme that first ensures queue clearance during a green phase. The

green extension is controled by a vehicle detector placed upstream of each incoming

approach to activate green phase extension. During a green phase, a vehicle passage

by the detector at time t triggers the green phase extension until time t + ∆ or

until queued vehicles are cleared, whichever is later. ∆ is called unit extension to

allow an arriving vehicle to pass through the intersection without stop. If no vehicle

arrival triggers further green extension, the green signal phases out and switches to

its conflict approach automatically, resulting in a loss of effective green time. The
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unit extensions are denoted by ∆s and ∆L for the minor and major approaches,

respectively. In each approach, there is a constant discharge rate to clear waiting

vehicles. Obviously, the unit extensions ∆s and ∆L are the only control variables.

The objective is to decide the values of ∆s and ∆L such that the average vehicle

delay at the intersection over a long period is minimized.

Figure 4.1 illustrates such an intersection and Figure 4.2 shows an example for

the green extension in one cycle. In the case of multi-lanes, an equivalent one lane

case is obtained by projecting vehicles onto one lane. Therefore, vehicle headway

can be any non-negative value, which justifies the point assumption of vehicles. This

is in line with the models of many early research such as Darroch et al. [33].

Figure 4.1: A major-minor intersection
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Figure 4.2: A typical process of green extension for one phase (adapted from the
Figure 4 in [10]).

In the next sub section, we develop models addressing traffic of Poisson processes.

Similar problem setups are also seen in Tanner [103], Darroch et al. [33], Newell [84],

Cowan [26], and Viti and van Zuylen [108] in which the unit extension is the only

control variable.

We assume that loop detectors are at a distance, vs∆s and vL∆L, before the

intersection for both incoming approaches respectively, where vs and vL are the av-

erage speeds for both roads. We do not consider minimum green time and maximum

green time, the same as in Darroch et al. [33]. This implies a reasonable assump-

tion that technologies are available to detect the vehicle queue presence. This setup

allows us to explore for the full potential of efficient signal control. Note again that

this paper does not concern practical implementations, but the maximum poten-

tial of intersection control. However, we believe the findings directly shed light on

practices.
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For simplicity, we assume a strategy in which the green phase always switches to

its conflict approach when there is no vehicle arrival during the period of the most

recently extended unit extension. This assumption is critical to modeling as argued

in Darroch et al. [33]. In contrary, Tanner [103] considers a strategy not switching

signal if no vehicle arrives in the conflict direction, meeting insurmountable technical

difficulties.

We refer to our strategy as the always-switch strategy. Although the always-

switch strategy could give rise to a ‘peculiar’ situation under light traffic in which

the green phase switches to the minor approach without any waiting vehicles, and

then switches back to the major approach, there is a high probability of vehicle

presence at the time of switch in heavy traffic. Therefore, Darroch et al. [33] argue

that models under this strategy make good approximation to the actual performance.

As will be seen, vehicle delay and green times are functions of the total switching

loss of green time in a cycle, irrespective of the loss time split between switches. For

simplicity, we denote with δ the total time loss for the two switches during one signal

cycle.

We present the notation next. Here, the subscripts s and L correspond to minor

and major approaches, respectively.

Notation

λs vehicle arrival rate along the minor approach

λL vehicle arrival rate along the major approach

∆s unit extension in the minor approach

∆L unit extension in the major approach

ts random green time in the minor approach

tL random green time in the major approach
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fs discharge rate of vehicular queue along the minor approach

fL discharge rate of vehicular queue along the major approach

δ total green time loss in a signal cycle due to phase switches

E[·] expected value function

V ar(·) variance function

X(·) random number of arrivals with the parameter being time period

Ds, DL constant discharge headway for the minor and major directions respectively

The parameters of the intersection, such as the green time loss and queue dis-

charge rates, are all deterministic here. We believe that assuming randomness for

them would only increase technical complexity slightly and that it would not change

the nature of the findings. In addition, the unit extensions, once set up, do not

change during a control process.

We first examine the expected duration of green phases at the intersection.

4.2 Expected Green Times

In each approach, the green time consists of two random components: queue

clearance time and free flow time. The queue clearance time represents the period

in which the discharge rate of vehicles equals the saturation rate, denoted by tsa and

tLa for both approaches, respectively. The free flow time, denoted by tsb and tLb for

both approaches respectively, corresponds to the period of time, the length of which

is a function of the unit extension and vehicle arrivals. In the free flow time, there is

no presence of vehicular queue. The unit extension is the endogenous variable to be

studied. As a special case, if the unit extension is set to be zero, which means the

signal switches immediately after queue clearance, the free flow time becomes zero.

As studied in Wang [111], tsb and tLb are determined by an information relay

process: E[tsb] = 1
λs
eλs∆s − 1

λs
−∆s, and E[tLb] = 1

λL
eλL∆L − 1

λL
−∆L. In addition,
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we have ts = tsa + tsb and tL = tLa + tLb. Due to the Markov property, tsa and tsb

are independent of each other. The same is true for tLa and tLb. Figure 4.3 is an

illustrative queuing process in the minor direction during a cycle.

Figure 4.3: An illustrative queuing process in the minor direction

Next, we show how to evaluate tsa. tsa satisfies the following relationship for

traffic flow conservation.

X(tL + δ −∆s) +X(tsa)− fstsa = 0, (4.1)

where X(·) represents the number of arrivals in a Poisson process along the minor

approach. Equation (4.1) states that the total number of vehicles discharged at the

saturation rate in time tsa equals to the total arrivals during tL + δ + tsa−∆s. Here

∆s is a proven time interval in which no vehicles arrive at the intersection owing to

the upstream vehicle detectors. Equation (4.1) ensures a full discharge rate during

tsa.
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Taking expectation at both sides of Equation (4.1) gives the following expected

queue clearance time.

E[tsa] =
λsE[tL] + λsδ − λs∆s

fs − λs
.

Similarly,

E[tLa] =
λLE[ts] + λLδ − λL∆L

fL − λL
.

We have

E[ts] = E[tsa] + E[tsb]

=
λsE[tL] + λsδ

fs − λs
+

1

λs
eλs∆s − 1

λs
− fs
fs − λs

∆s. (4.2)

In the same way,

E[tL] =
λLE[ts] + λLδ

fL − λL
+

1

λL
eλL∆L − 1

λL
− fL
fL − λL

∆L. (4.3)

Solving (4.2) and (4.3) gives E[ts] and E[tL] as follows.
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Proposition 1 The expected lengths of green phases are given as follows.

E[ts] =
(fs − λs)(fL − λL)

fsfL − fsλL − fLλs

×
{

λsδ

fs − λs
+

1

λs
eλs∆s − 1

λs
− fs
fs − λs

∆s

+
λs

fs − λs

(
λLδ

fL − λL
+

1

λL
eλL∆L − 1

λL
− fL
fL − λL

∆L

)}
, (4.4)

and

E[tL] =
(fs − λs)(fL − λL)

fsfL − fsλL − fLλs

×
{

λLδ

fL − λL
+

1

λL
eλL∆L − 1

λL
− fL
fL − λL

∆L

+
λL

fL − λL

(
λsδ

fs − λs
+

1

λs
eλs∆s − 1

λs
− fs
fs − λs

∆s

)}
. (4.5)

From Proposition 1, it is clear that green duration in each approach is a function

of the unit extensions and all other characteristics (such as discharge rate, arrival

rate, and green loss) in both approaches. This demonstrates the dynamics between

both approaches. When λs
fs

+ λL
fL
→ 1, the expected green times in both approaches

become infinite. This is clear by making a change to the denominator of the first

term: fsfL − fsλL − fLλs = fsfL(1− λL
fL
− λs

fs
).

In the case of general renewal processes for vehicle arrivals, E[tsa] and E[tLa] can

be both obtained similarly.

The effect of the green loss δ becomes clearer when we set the unit extensions to

zero (e.g. a queue control policy). In this case, Equation (4.4) and (4.5) become the

following.

61



E[ts] =
λsfLδ

fsfL − fsλL − fLλs
=

λsδ

fs(1− λs
fs
− λL

fL
)
, (4.6)

and

E[tL] =
λLfsδ

fsfL − fsλL − fLλs
=

λLδ

fL(1− λL
fL
− λs

fs
)
. (4.7)

We can easily have the following result,

E[ts]

E[tL]
=
λs
λL
× fL
fs
.

Specially, the ratio of green times is proportionate to the ratio of vehicle arrival

intensities if the discharge rates are equal in both approaches.

Then in this case, the expected duration of a full signal cycle becomes as follows.

C = E[ts] + E[tL] + δ

=
δ

1− λL
fL
− λs

fs

.

Clearly, the above property mimics that from the fixed cycle system with uniform

continuum vehicle arrivals.

When the unit extension is set to zero, the control policy simply becomes a queue

control (Kruger et al. [51]) one ensuring queue clearance in each direction, which

implies the following relationship.
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Qs

QL

=
(1− λs

fs
)λs

(1− λL
fL

)λL
, (4.8)

where Qs and QL are the expected queue lengths at the beginning of the green

signal for the minor and major directions respectively.

When λs
fs

+ λL
fL
→ 1.0, Equation (4.8) becomes Qs

QL
→ fs

fL
.

When the discharge rates are equal in both directions at saturated intersection,

a queue clearance policy essentially ensures Qs = QL. The queue clearance policy,

i.e., the unit extensions are set to zero, is not optimal as will be seen at later tests

where the optimal unit extensions are not zero.

4.3 Variances of Green Times

Variances of green phases will be needed in the calculation of the average vehicle

delay.

Variances in both approaches are inter-related. If the duration of the green phase

in one approach becomes longer, expectedly the duration of the green phase in its

conflict approach becomes longer as well. As a result, if the variance of the green

duration in one approach becomes larger, expectedly the variance in its conflict

approach becomes larger as well. The derivation in this section exploits just this ob-

servation to establish recursive equations. Note that the following derivation implies

that there exist stationary variances, which is generally true at reasonable intersec-

tions.

In our problem setting, the saturation flow headway of departure at the intersec-

tion is assumed constant.

Consider one vehicle at the stop line to be immediately discharged in the minor

approach. Discharging this vehicle takes a constant time, Ds, where Ds = 1
fs

. During

this interval there might be several vehicles arriving to join the queue. We denote
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the time for discharging this vehicle and the newly arrived ones by χ1, and denote

its probability distribution function by P (x), where P (x) = P{χ1 ≤ x}. If there is

a queue containing i vehicles at the beginning of the green time, we denote the total

time for discharging this queue by χi and its related distribution by Pi(x) where

Pi(x) = P{χi ≤ x}. Here χi = χ1
1 + χ2

1 + ... + χi1, each χk1 is i.i.d with χ1. Clearly,

Pi(x) is an i-fold convolution of P (x), which is equivalent to completely cleaning i

queues of only one vehicle each at the beginning. By the theorem of total probability,

the following is obvious.

P{χ1 ≤ x} =
∞∑
i=0

(λsDs)
i

i!
e−λsDsP{χi ≤ x−Ds}.

If we let Γ(s) = E(e−sχ1), the Laplace-Stieltjes transform of distribution P (x), then

from the above analysis we have the following relationship:

Γ(s) =
∞∑
i=0

(λsDs)
i

i!
e−λsDsE(e−s(χi+Ds))

= exp{Ds(λsΓ(s)− λs − s)}. (4.9)

The second equation uses the fact that Laplace-Stieltjes transform of Pi(x) is i-th

product of Γ(s). Using the derivatives of Equation (4.9) at the point where s = 0,

we can get any moment of χ1.

Now we can evaluate the random variable tsa. Suppose that the red time tL

for the minor approach and the lost time δ, are known. During the time interval

tL + δ −∆s, the number of arrivals follows Poisson distribution. Therefore,

P{tsa ≤ x} =
∞∑
i=0

(λs(tL + δ −∆s))
i

i!
e−λs(tL+δ−∆s)P{χi ≤ x}.
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Forming the Laplace-Stieltjes transform of P{tsa ≤ x}, denoted by F (s), we have

the following equation:

F (s) =

∫ +∞

0

e−sxdP{tsa ≤ x}

= exp{λs(tL + δ −∆s)(Γ(s)− 1)}. (4.10)

From Equation (4.9) it is easy to evaluate the first and second derivatives of Γ(s)

at s = 0 :

Γ′(0) = − 1

fs − λs
, (4.11)

Γ′′(0) =
fs

(fs − λs)3
. (4.12)

Hence, the expected tsa conditional on tL + δ −∆s is:

E[tsa|tL + δ −∆s] = −F ′(0)

=
λs(tL + δ −∆s)

fs − λs
. (4.13)

Equation (4.13) agrees with Equation (4.1) in the previous section if we take

expectation of it conditional on tL + δ − ∆s. Equation (4.13) implies a necessary

condition for derivation: δ ≥ ∆s. A similar condition is implied later, δ ≥ ∆L.
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The variance of tsa conditional on tL + δ −∆s can be estimated as:

V ar(tsa|tL + δ −∆s) = F ′′(0)− (F ′(0))2

=
λsfs(tL + δ −∆s)

(fs − λs)3
. (4.14)

To obtain unconditional variances of tsa and tLa, we need to use the relation:

V ar(tsa) = E[V ar(tsa|tL + δ −∆s)] + V ar(E[tsa|tL + δ −∆s]).

By using Equations (4.13) and (4.14) we have:

V ar(tsa) =
λsfs(E[tL] + δ −∆s)

(fs − λs)3
+

λ2
s

(fs − λs)2
V ar(tL). (4.15)

In previous analyses, the green time contains two periods: queue clearance time and

free flow time. Because of the Markov property, these two periods are independent

of each other. As a result, we have:

V ar(ts) = V ar(tsa) + V ar(tsb). (4.16)

According to Wang [111], V ar(tsb) = − 1
λ2s
− 24seλs4s

λs
+ e2λs4s

λ2s
. Therefore, we have

the equations for variances:

V ar(ts) =
λsfs(E[tL] + δ −∆s)

(fs − λs)3
+

λ2
s

(fs − λs)2
V ar(tL) (4.17)

− 1

λ2
s

− 24se
λs4s

λs
+
e2λs4s

λ2
s

,
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and similarly,

V ar(tL) =
λLfL(E[ts] + δ −∆L)

(fL − λL)3
+

λ2
L

(fL − λL)2
V ar(ts) (4.18)

− 1

λ2
L

− 24Le
λL4L

λL
+
e2λL4L

λ2
L

.

It is clear now that V ar(ts) and V ar(tL) are linear functions of each other. Solving

Equations (4.17) and (4.18) gives values of V ar(ts) and V ar(tL) as follows.

Proposition 2 The equilibrium solutions for variances of green phases are given as

follows.

V ar(ts) =

(
1− λ2

sλ
2
L

(fL − λL)2(fs − λs)2

)−1(
λsfs(E[tL] + δ −∆s)

(fs − λs)3
+

λ2
s

(fs − λs)2

×
[
λLfL(E[ts] + δ −∆L)

(fL − λL)3
+ V ar(tLb)

]
+ V ar(tsb)

)
, (4.19)

V ar(tL) =

(
1− λ2

sλ
2
L

(fL − λL)2(fs − λs)2

)−1(
λLfL(E[ts] + δ −∆L)

(fL − λL)3
+

λ2
L

(fL − λL)2

×
[
λsfs(E[tL] + δ −∆s)

(fs − λs)3
+ V ar(tsb)

]
+ V ar(tLb)

)
, (4.20)

where V ar(tsb) = − 1
λ2s
− 24seλs4s

λs
+ e2λs4s

λ2s
and V ar(tLb) = − 1

λ2L
− 24LeλL4L

λL
+ e2λL4L

λ2L
.

E[ts] and E[tL] are given by Equation (4.4) and (4.5).

It is interesting to evaluate the green phases when the unit extension is set to

zero. In this case, both V ar(tsb) and V ar(tLb) become zero. Equations (4.19) and

(4.20) become:

V ar(ts) = C1

(
(fL − λL)2λsfs(E[tL] + δ)

(fs − λs)
+
λ2
sλLfL(E[ts] + δ)

(fL − λL)

)
, (4.21)
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and

V ar(tL) = C1

(
(fs − λs)2λLfL(E[ts] + δ)

(fL − λL)
+
λ2
Lλsfs(E[tL] + δ)

(fs − λs)

)
, (4.22)

where

C1 =
1

(1− λs
fs
− λL

fL
)
(
f 2
s f

2
L(1− λs

fs
− λL

fL
) + 2fsλsfLλL

) . (4.23)

With Equations (4.21) and (4.22), we can examine the impact of saturation rate

on variances and intersection stability. Now we take a look at the constant C1,

represented as Equation (4.23) at the right-hand sides of both Equations (4.21) and

(4.22).

It is easily seen by Equations (4.6), (4.7), (4.21) and (4.22) that the expected

green times and their variances increase at a rate of O

([
1− λL

fL
− λs

fs

]−1
)

and

O

([
1− λL

fL
− λs

fs

]−2
)

, respectively. These equations imply the following result which

indicates the critical role of green time loss in the performance of an intersection.

Proposition 3 Given an actuated intersection with zero unit extension, both the

expected values and variances of the green times increase in a linear manner with the

total green time loss δ.

As one can easily verify that with ∆s = ∆L = 0, symmetric intersections have

E[ts] = E[tL] = λδ
f−2λ

,V ar(ts) = V ar(tL) = λδ
(f−2λ)2

, and

√
V ar(ts)

E[ts]
=

√
V ar(tL)

E[tL]
= 1√

λδ
.

4.4 Vehicle Delay

4.4.1 Vehicle Delay During A Signal Cycle

We start with the minor approach, assuming that tL and δ are given. The waiting

time has two components. When the signal first turns green in the minor approach,
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there has been a queue with an expected waiting time W 0
s before the start of green

time. The other component of the waiting time is incurred during the period in

which the queue is being discharged. We denote this waiting time by Wsa. Be aware

that there is no new queue during the free flow period tsb and tLb, as explained before.

Accordingly, W 0
L and WLa are the corresponding notations for the major approach.

Proposition 4 At the time when the green light first turns on in the minor approach,

the total vehicle delay, denoted by W 0
s , of those arrivals Ns, during the red signal

period is given as follows.

E[W 0
s ] =

1

2
λs
(
V ar(tL) + E2[tL] + 2(δ −∆s)E[tL] + (δ −∆s)

2
)
, (4.24)

and similarly for the major approach,

E[W 0
L] =

1

2
λL
(
V ar(ts) + E2[ts] + 2(δ −∆L)E[ts] + (δ −∆L)2

)
. (4.25)

Proof.

With a given number of arrivals from a Poisson process during a time period, the

distribution of each arrival is uniform within the given time interval. Therefore, the

expected waiting time of the queue can be calculated by conditioning on the length

of queue as follows.
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E[W 0
s ] = E[E[E[E[W 0

s | X(tL + δ −∆s)]] | tL]]

= E[(tL + δ −∆s)× λs ×
1

2
× (tL + δ −∆s)]

=
1

2
λsE[(tL + δ −∆s)

2]

=
1

2
λs
(
E[t2L] + 2(δ −∆s)E[tL] + (δ −∆s)

2
)

=
1

2
λs
(
V ar(tL) + E2[tL] + 2(δ −∆s)E[tL] + (δ −∆s)

2
)
.

Similarly, we can show the result for E[W 0
L].

We further have the following results for Wsa and WLa, respectively.

Proposition 5 The waiting times during queue discharge are given as follows.

E[Wsa] =
1

2
(fs − λs)

(
V ar(tsa) + E2[tsa]

)
, (4.26)

and similarly,

E[WLa] =
1

2
(fL − λL)

(
V ar(tLa) + E2[tLa]

)
. (4.27)

Proof.

We only prove for the minor approach. The result for the major approach can be

obtained similarly.

We condition on queue discharge time tsa.
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E[Wsa|tsa] = E

[∫ tsa

0

[X(tL + δ −∆s) +X(t)− fst]dt
∣∣ tsa]

= E

[∫ tsa

0

X(tL + δ −∆s)dt
∣∣ tsa]+ E

[∫ tsa

0

(λst− fst)dt
∣∣ tsa]

= (fs − λs −∆s)t
2
sa +

1

2
(λs − fs)t2sa

=
1

2
(fs − λs)t2sa.

The third equality above uses the fact that E[X(tL + δ −∆s)|tsa] = (fs − λs)tsa

according to Equation (4.1).

We therefore have,

E[Wsa] = E [E[Wsa|tsa]]

=
1

2
(fs − λs)

(
V ar(tsa) + E2[tsa]

)
.

To summarize, the total expected vehicle delay during the period of a signal cycle

at the intersection can be expressed in a closed form by E[W 0
s ] +E[W 0

L] +E[Wsa] +

E[WLa] explicitly. We can calculate the expected waiting time by substituting the

equations for the expected values and variances.

4.4.2 Vehicle Delay Per Unit Time

The signal cycling can be considered as a renewal process, from the beginning

of a green time to the beginning of the green time again. According to the renewal

theory, the average vehicle delay per unit time over this renewal process is the ratio

between the total expected vehicle delay in a cycle and the expected cycle length.

This average vehicle delay can therefore be expressed in terms of ∆s and ∆L with
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given parameters λs, λL, fs and fL. We denote by F (∆L,∆s) the function of average

vehicle delay per unit time. The function F (∆L,∆s) can be expressed in the following

way.

F (∆L,∆s) =
E[W 0

s ] + E[W 0
L] + E[Wsa] + E[WLa]

E[ts] + E[tL] + δ
. (4.28)

Similarly, one can easily get directional average waiting time per vehicle or per

time unit, which we do not pursue in details here.

The closed form (4.28) of F (∆L,∆s) consists of a large number of terms, making

it very inconvenient to analytically examine its properties such as concavity or con-

vexity. However, our observation is that the delay function appears to be a coercive

function in the unit extension. This means that as the unit extension increases, the

delay increases and tends to infinity. We can easily study this function numerically

with latest computing technologies. Figure 4.4 graphically demonstrates an example

delay function when δ = 6.0, λs = 0.20, λL = 0.25, fs = 0.6 and fL = 0.6.

In addition, we examined a case as illustrated in Figure 4.5, in which the discharge

rates in both approaches are 0.6 and 0.4 vehicle per second, respectively. The arrival

rates are 0.05 and 0.25 vehicles per second, respectively. The green loss during a

cycle is 6 seconds. The average vehicle delay reaches its minimum when ∆s = 5.2

and ∆L = 5.2 seconds. Intuitively, the close proximity of the unit extensions is

surprising as one would intuitively think the unit extension for the minor direction

should be much smaller than that for the major direction. Now we are able to

evaluate intersection performance in various settings. Table 4.1 is a sample test

results where fs = fL = 0.6 vehicle per second and Table 4.2 is with fs = 0.4 and

fL = 0.6 vehicle per second.
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Figure 4.4: Example average delay per unit time with δ = 6.0, λs = 0.20 and
λL = 0.25

From Table 4.1, we have the following observations.

Observation 1 When roadway capacities are comparable between the two approaches,

the optimal green extensions in both directions are almost equivalent regardless of traf-

fic intensities, although the major direction has a slightly larger extension than the

minor direction.

4.5 The Case of General Traffic

Our primary concern is intersection performance with general stationary arriving

traffic under an actuated signal system. In this case, we assume that vehicle arrivals

follow a general renewal process. In this renewal process, vehicle headways are inde-

pendent and identically distributed (i.i.d.) random variables whose density function
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Figure 4.5: Example average delay per unit time δ = 6.0, λs = 0.05 and λL = 0.25

Table 4.1: Optimal unit extension and intersection performance with fs = fL =
0.6, δ = 4.0.

λs/λL ∆s/∆L V ar(ts) V ar(tL) F (·, ·)
0.05/0.25 3.8/4.4 2.1 24.9 0.234
0.08/0.25 3.6/4.2 3.7 24.2 0.441
0.10/0.25 3.6/4.0 5.3 23.6 0.603
0.15/0.25 3.4/3.6 11.3 26.7 1.142
0.20/0.25 3.2/3.4 25.9 38.9 2.029

is denoted by f(·). The arrival intensity is λ, and we use H for the stochastic arrival

headway. Clearly, we have λE[H] = 1. We use σ2 for the variance of H, and the sub-

scripts L and s denote the major and minor directions, respectively. In the following,

notations without subscriptions indicate results applicable to both directions. We

will develop analytical results following the framework earlier.

First, we characterize the free flow green time with general vehicle headway. The
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Table 4.2: Optimal unit extension and intersection performance with fs = 0.4, fL =
0.6, δ = 6.0.

λs/λL ∆s/∆L V ar(ts) V ar(tL) F (·, ·)
0.05/0.25 5.2/5.2 8.1 60.4 0.607
0.08/0.25 4.8/4.6 15.9 51.5 1.105
0.10/0.25 4.6/4.4 25.1 56.2 1.543
0.15/0.25 4.4/3.6 88.8 95.3 3.481
0.20/0.25 4.2/2.8 751.0 492.7 11.095

notation has the same meaning as in the previous sections. Derivation of the results

is seen in Wang et al. (2010).

E[tsb] =

∫ ∆s

0
tf(t)dt

1− F (∆s)
, (4.29)

E[tLb] =

∫ ∆L

0
tf(t)dt

1− F (∆L)
, (4.30)

V ar(tsb) =

∫ ∆s

0
t2f(t)dt

1− F (∆s)
+ E2[tsb], (4.31)

V ar(tLb) =

∫ ∆L

0
t2f(t)dt

1− F (∆L)
+ E2[tLb]. (4.32)

4.5.1 Expectations

Following similar steps as in the Poisson process using the results (4.29) to (4.32),

we have the following accordingly.

Proposition 6 For general traffic, the expected lengths of green phases are given as
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follows.

E[ts] =
(fs − λs)(fL − λL)

fsfL − fsλL − fLλs

×

{
λsδ

fs − λs
+

∫ ∆s

0
tf(t)dt

1− F (∆s)
− λs
fs − λs

∆s

+
λs

fs − λs

(
λLδ

fL − λL
+

∫ ∆L

0
tf(t)dt

1− F (∆L)
− λL
λL − λL

∆L

)}
, (4.33)

E[tL] =
(fs − λs)(fL − λL)

fsfL − fsλL − fLλs

×

{
λLδ

fL − λL
+

∫ ∆L

0
tf(t)dt

1− F (∆L)
− λL
fL − λL

∆L

+
λL

fL − λL

(
λsδ

fs − λs
+

∫ ∆s

0
tf(t)dt

1− F (∆s)
− λs
fs − λs

∆s

)}
. (4.34)

Discretization of the integral easily gives rise to its numerical solution for any

known probability density function f(·) above.

4.5.2 Some Prerequisite Results

The following results are needed for the subsequent derivations of variances and

waiting time.

Theorem 2 Given a constant t, the following holds for both directions under heavy

traffic:

E[X(t)] ≈ λt, (4.35)

V ar(X(t)) ≈ kt, (4.36)

where k =
σ2

E3[H]
.
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In the special case of Poisson arrivals (e.g., headway with exponential distri-

bution), we can easily verify that k = λ, in which case values in Theorem 2 are

accurate. In general cases of heavy traffic where vehicle headway is small compared

to the green time in each direction, Theorem 2 provides good approximations. One

way of its proof is indicated in Grimmett and Stirzaker (2001), which states that for

a renewal process, the mean and variance of number of arrivals follow the Central

Limit Theorem during a large time period.

The following result about waiting time corresponds to Proposition 4.

Proposition 7 Under heavy traffic, the expected vehicle waiting time w(t) is ap-

proximately λt2

2
, i.e., w(t) ≈ λt2

2
, where t is the time that the signal has been red in

the direction of interest, assuming no queue present at the beginning of the red time.

Proof.

We have

w(t) =

∫ t

0

(t− l + w(t− l)) f(l)dl.

The above equation conditions on the first vehicle arrival at time l from the

beginning of the red time. We only need to see if the assumption can approximately

satisfy the above equation.
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Left handside =
1

2
λt2.

Right handside = t− E[H] +

∫ t

0

1

2
λ(t− l)2f(l)dl

= t− E[H] +
1

2
λ
(
t2 − 2tE[H] + σ2 + E2[H]

)
≈ 1

2
λt2 +

1

2
λσ2 − 1

2
E[H].

Note that
∫ t

0
(t− l)f(l)dl ≈ t− E[H] when there are a few cars during the red time

t each time, implying a big enough t relative to the average headway. We call the

remnant in the right hand side 1
2
λσ2− 1

2
E[H] error term. The assumption can make

both sides of the equation approximately equal, considering t outweighs E[H] and t2

outweighs σ2. In the following, we show how t2 outweighs σ2.

1

2
λσ2 =

1

2
λvE[H]σ

=
1

2
vσ

=
1

2
v2E[H],

where v is the coefficient of variation (CV) between the standard deviation σ and

the expected headway E[H]. If CV is a finite value, then the error compared with

the major term 1
2
λt2 tends to zero in heavy traffic. In Poisson arrivals as a special

case, the error term is zero, which can be verified by interested readers.

4.5.3 Variances

In previous analysis, we use χ1 to denote the time needed for reducing the vehicle

queue length by one vehicle. Because the vehicles having arrived during the red time
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are X(tL + δ) for the minor approach, the total time for discharging these vehicles

is equal to
∑X(tL+δ)

i=1 χi1, where χi1 is i.i.d. with χ1. Therefore, using V ar(tsa) =

E[V ar(tsa|X(tL + δ −∆s))] + V ar(E[(tsa|X(tL + δ −∆s)]), we have:

V ar(tsa) = E
[X(tL+δ−∆s)∑

i=1

V ar(χi1)|X(tL + δ −∆s)
]

+ V ar
(X(tL+δ−∆s)∑

i=1

E[χi1]|X(tL + δ −∆s)
)

= V ar(χ1)E[X(tL + δ −∆s)] + (E[χ1])2V ar(X(tL + δ −∆s))

= λsV ar(χ1)(E[tL] + δ −∆s) + (E[χ1])2
(
k(E[tL] + δ −∆s) + λ2

sV ar(tL)
)
.

Similarly, we can evaluate V ar(tLa) as follows

V ar(tL) = λLV ar(µ1)(E[ts] + δ −∆L) + (E[µ1])2
(
k(E[ts] + δ −∆L) + λ2

LV ar(ts)
)
.

where µ1 is the counterpart definition of χ1 for the major road, which is the time for

reducing the queue length by one vehicle. When the arrivals follow Poisson distri-

bution, the equation for V ar(tsa) becomes Equation (4.14). Recall that V ar(ts) =

V ar(tsa) + V ar(tsb). The following results become obvious.

Proposition 8 The variances of green phases are given as follows for the minor and

major roads respectively.

V ar(ts) = λsV ar(χ1)(E[tL] + δ −∆s) + (E[χ1])2
(
k(E[tL] + δ −∆s) + λ2

sV ar(tL)
)

+ V ar(tsb), (4.37)

V ar(tL) = λLV ar(µ1)(E[ts] + δ −∆L) + (E[µ1])2
(
k(E[ts] + δ −∆L) + λ2

LV ar(ts)
)

+ V ar(tLb), (4.38)
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where E[χ1] and V ar(χ1) are given by the following equations as from the earlier

results.

E[χ1] =
1

(fs − λs)2
,

V ar[χ1] =
fs

(fs − λs)3
− 1

(fs − λs)2
,

E[µ1] =
1

(fL − λL)2
,

V ar[µ1] =
fL

(fL − λL)3
− 1

(fL − λL)2
.

The last four formulas in Proposition 8 are borrowed from those on Poisson assump-

tions. Note that Proposition 4 about waiting time provides asymptotic approxima-

tions in heavy traffic according to Proposition 7 and Theorem 2. Proposition 5 also

holds in heavy traffic due to Theorem 2. For the according values in general traffic,

we only need to update the variances and expected values of green times in Propo-

sition 4 and 5 with their according values from Proposition 6 and 8. Using equation

(4.28), we can estimate the average vehicle delay under heavy traffic.

Note that the results here about green time variance, waiting time and average

vehicle waiting time are all asymptotically accurate under heavy traffic. The nu-

merical tests next show that the formulas perform well in evaluating the intersection

performance.
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Figure 4.6: fs = 0.6, λs = 0.2, fL = 0.5, CV = 0.5774

4.5.4 Numerical Results in Heavy Traffic

In generating arriving traffic for the numerical tests, we assume the headway

follows Gamma distribution.

f(x) =
exp(−x/θ)

Γ(k)θk
xk−1,

where the mean is θk = λs (for minor direction) or λL (for major direction). The

parameter k is given by the coefficient of variation (CV ) in the following tests. The

same CV value applies to both directions each time in the following tests. For each

case, we simulate 120 times Monte Carlo simulation. In each time, we guarantee

no less than 4000 arriving vehicles in each direction, which turns out to be at least

120 signal cycles. All other parameters in the simulation are set as in the analytical

formulas such as discharge rates.

In Figure 4.6 and 4.7, λs = 0.2, fs = 0.6, fL = 0.5, δ = 6.0,∆s = 3.5,∆L = 3.2.

We vary λL from 0.14 to 0.31, i.e., λL
fL

+ λs
fs
∈ [0.6133, 0.9533]. The only difference
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Figure 4.7: fs = 0.6, λs = 0.2, fL = 0.5, CV = 1.4142

Figure 4.8: fs = 0.5, λs = 0.2, fL = 0.6,∆s = 3.5,∆L = 3.5, CV = 0.5774

between Figure 4.6 and 4.7 is the value of CV . In Figure 4.6, the CV is 0.5774 while

in Figure 4.7, the CV is 1.4142. In these two figures, the blue error bar represents

the standard deviation of simulated results.

We change the setting for fs and fL in Figure 4.8 and Figure 4.9, where λs =

0.20, fs = 0.5, fL = 0.6, δ = 6.0,∆s = 3.5,∆L = 3.5. We vary λL from 0.15 to 0.32,

which yields λL
fL

+ λs
fs
∈ [0.6500, 0.9333]. In Figure 4.8, the CV is 0.5744. In Figure

4.9, the CV is 1.4142. When the traffic intensity becomes heavy in the latter case,

the green times changed cycle-by-cycle sometimes significantly. For example, when
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Figure 4.9: fs = 0.5, λs = 0.2, fL = 0.6,∆s = 3.5,∆L = 3.5, CV = 1.4142

Figure 4.10: fs = 0.5, λs = 0.2, fL = 0.6,∆s = 3.5,∆L = 3.5, Poisson headway

λL increases to 0.31, the average green time is 30 and the standard deviation becomes

32.

The analytical results for heavy traffic are exact in the case of Poisson distributed

headway. Figure 4.10 shows analytical results with Poisson arrivals compared with

those from simulation, other parameters identical to those in Figure 4.8 and Figure

4.9. The slight disagreement between the analytical and simulation due to variations

in simulation explains the quality of the performances in Figure 4.6 through 4.9.

Overall, the analytical estimate of waiting time appears better compared with the
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simulation when the CV of the arrival headway is larger. By information, we have

examined the arriving headway using loop detector information at an intersection in

Minneapolis. We found the CV ranged from 1.2 to 1.9 with time of day. It appears

that our models for general traffic should work well practically.

Note that the figures also indicate very large variances of green times under very

heavy traffic.

4.6 Summary

This chapter studies a vehicle-actuated signal control scheme in which the unit

extension is the only control variable. We analytically model the intersection per-

formance in two cases respectively: Poisson arrivals and general traffic. Equations

for expected green times in both directions, variances, and the average waiting time

are presented. The models in the case of Poisson processes are exact. The models in

the case of heavy traffic are generally accurate, but appear sensitive to the variance

of headway. The models can be used for studying setup of unit extensions and for

example performance evaluation.

Our models illustrate some similarities between the actuated signal system and

the pre-timed one. The latter usually assumes a uniform vehicle arrival. It has

the same green time allocation as the expected green time allocation in an actuated

signal system when the unit extension is set to zero.

One insight from our modeling is that the optimal unit extensions are generally

not zero. This indicates that the queue clearance policy even in heavy traffic is not

optimal. However, the findings here could change if the number of queuing vehicles is

used as a condition for signal switching. In other words, the actuated signal control

based solely on unit extensions is an adaptive but limited scheme.

Results in this chapter rely on an assumption of a stationary renewal arrival
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process of vehicles, which does not agree well with the phenomenon of platoon ar-

rivals. In addition, the assumption of no maximum/minimum green times ignores

the overflow queues when there is a surge of arrival traffic.
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5. GRAPHICAL METHODS AND DIFFUSION APPROXIMATIONS

This chapter will illustrate graphical methods and diffusion approximations to the

traffic signal timing and delay problems. The practical importance and usefulness of

graphical methods are advocated by Newell [81, 82]. What we will present next can

be seen as an alternative interpretation of the graphical methods used in Newell [76].

From this interpretation, one can directly measure the variance of green time for the

queue clearance, which remains yet to be carefully examined in practice and would be

rather challenging if using conventional queueing techniques. Moreover, the graphical

method explicitly presents both the deterministic and stochastic delay. We will also

illustrate that the theoretical background for the graphical methods in this particular

application is inherently diffusion approximation. Furthermore, we investigate the

problems of disruptions occurred during a pre-timed traffic signal cycle. By diffusion

approximation, we provide quantitative estimation on the duration that the effects

of disruptions would dissipate.

5.1 Graphical Methods: Variance of Green Time, Deterministic and Stochastic

Delay

We consider a two-phase traffic signal cycle where the green time Gc follows

the red time R. Suppose the traffic demand is high and no residual queues at the

beginning of the cycle. Without loss of generality, we assume the red time is known

and the queue cumulated in red time can be cleared during the green time. Assume

the arrival rate is λ and departure rate is f . We are interested in the variance of

the portion of green time for the queue clearance and the delay to the vehicles in

the queue. The above description is suitable for the queue problem at actuated

signals without maximum green time. It is also convenient to the pre-timed signals.
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If, however, there is residual queue for pre-timed signal, the average queue delay is

simply equal to the delay due to the above process and the average residual queue

delay.
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Figure 5.1: Illustration of the variance of green time for queue clearance by consid-
ering BD and EB as standard deviation. The value is directly estimated by the
appropriate interpretation of the relationship between BD and AB. It also shows
the deterministic delay (area OFB) and stochastic delay (area ABD).

To assess the variance of green time for queue clearance, it is suitable to adopt the

cumulative queue curves as illustrated in Figure 5.1. The x-axis represents time from

the beginning of red time, and the y-axis represents the length of cumulative queue.

In Figure 5.1, the solid curve represents the expected cumulative queue length, which

increases during the red and becomes zero at point B, the time E{Gc|R} (note we

assume that the red time R is given). Two dashed lines represent two possible

realizations due to the stochastic arrival and departure. For convenient analysis,
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we can imagine that the lower curve is extended to the point C with x-coordinate

E{Gc|R}. Thus, at point B, the fluctuation of queue length is between point A and

point C. Given red time R, such amplitude of queue fluctuation can be treated as

the standard deviation of total arrivals and departures during the time E{Gc|R}. In

the same way, the deviation of queue clearance time from point B can be treated

as the standard deviation. That is to say, we can approximately regard the length

of BD and EB as the standard deviation of the green time for queue clearance. If

traffic demand is high, the slope of any cumulative curve for queues near the time

point can be approximated by f − λ. From the geometric illustration in Figure 5.1,

we can use f − λ to approximate the ratio of the following two standard deviations:

(1) total arrivals and departures during one cycle and (2) the length of green time

for queue clearance.

Therefore, if we denote the number of arrivals and departures by A(t) and D(t),

respectively, we have the following approximate relation

(f − λ)2V ar(Gc|R) = V ar((A−D)(R + E{Gc|R})|R). (5.1)

In Equation (5.1), we square the standard deviation to become the variance. The

above expression also implies that we regard the arrival and departure processes as

independent. This is definitely an approximation when the traffic demand becomes

high. Note that if in some cases we can assume the departure headway is constant,

the righthand of Equation (5.1) reduces to V ar(A(R + E{Gc|R})|R). If we further

assume the variance to mean ratio for arrivals and departures as Ia and Id, we will

have V ar((A−D)(R+E{Gc|R})|R) = (Ia+Id)(R+E{Gc|R}). In fact, E{R+Gc|R}

can be easily calculated as (Ia+ Id)fR/(f −λ). Accordingly, we have from Equation
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(5.1)

V ar(Gc|R) =
(Ia + Id)fR

(f − λ)3
. (5.2)

This is an exact formula in Newell [80], but here we use a different interpretation: We

directly consider the fluctuations of certain quantity as the standard deviations. If

one intends to obtain the variance of Gc, one needs to obtain V ar(E{Gc|R}) as well.

In general, the term V ar(E{Gc|R}) is easy to calculate. The difficulty is actually to

get Equation (5.2). When one obtains these two estimations, the variance of Gc can

be calculated as V ar(Gc) = E{V ar(Gc|R)}+ V ar(E{Gc|R}).

It is interesting to explore the theoretical background of the above the treatment.

In fact, the above treatment is to think of the queue as a Brownian motion (diffusion

process) so that we can imagine a hypothetical queue fluctuates (AB and BC in

Figure 5.1) according to the Gaussian distribution at the expected queue clearance

time. Such approximation leads to the Gaussian distribution of the green time for

the queue clearance. This is why we can reasonably consider the deviations in Figure

5.1 as standard deviations.

The above graphical method is useful particularly for the practical purpose since

it avoids some formal calculations. If one wants a formal procedure, one may treat

arrival and departure processes as independent during peak hours. Then one may

model both the arrival and departure as drifted Brownian motions

A(R +Gc) =
√
IaλB(R +Gc) + λ(R +Gc), conditional on R, (5.3)

D(Gc) =
√
Id · fB(Gc) + f ·Gc, conditional on R, (5.4)

where B(·) denotes the standard Brownian Motion. Since at the time Gc, we should
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have A(R+Gc) = D(Gc)
1. After plugging this expression into the expressions (5.3)

and (5.4), rearranging the terms and taking variance, we find

(λ− f)2V ar{Gc|R} = V ar{
√
IaλB(R +Gc)−

√
Id · fB(Gc)|R}. (5.5)

If we consider the arrivals and departures as independent, and note that B2(t)− t is

a Martingale, it is easy to obtain

V ar{
√
IaλB(R +Gc)|R} = IaλE{(R +Gc)} (5.6)

V ar{
√
IdfB(Gc)|R} = IdfE{Gc|R} (5.7)

Since the expected departures are equal to the expected arrivals, λE{(R + Gc)} =

fE{Gc|R}. Hence, we have the righthand of Equation (5.5) as

V ar{
√
IaλB(R +Gc)−

√
Id · fB(Gc)|R} = (Ia + Id)λE{R +Gc|R}. (5.8)

We obtain the same Equation (5.1) again. This result indicates that the above

graphical methods has a background of diffusion approximation.

Furthermore, Figure 5.1 is of importance to understand the delay to the vehicles

in the queue. From the description above, the area OFB under the solid curve, i.e.,

the delay due to the average queue length through the cycle, can be considered as the

deterministic delay, as this part of delay can be calculated by considering the queue as

deterministic. The shaded area, i.e., ABD in Figure 5.1, which represents the delay

due to the random fluctuations of arrivals and departures, should be considered as

the stochastic delay. This illustration leads to some useful application considerations.

For example, if the ratio of area ABD over area OFB is small, we can discard the

1Rigorously speaking, Gc = arg infT {A(R + T )−D(T )|A−D ≥ 0}.
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random effects in practice. As indicated by Newell [83], usually the deterministic

delay is the primary effect while the stochastic delay is the second.

5.2 Diffusion Approximation: Queues due to Disruptions

Disruptions are usually observed to affect the performance of the traffic signals.

For example, a heavy truck arriving at the intersection during the red time may

impose additional delay to the vehicles after its arrival due to its unusual long start-

up time. Some individual drivers who are talking on cell phone and waiting during

the red time are also observed to have a long response time to the green signal. If

their response time is too long, there would be a longer residual queue at the end

of this traffic signal cycle, particularly so during the rush hour. If at the beginning

the traffic signal system is under equilibrium condition, the disruptions might take

several cycles to get the system back to the equilibrium. We are interested here in

how long the effects of disruption may dissipate.

In order to explore this problem, we will apply diffusion approximation techniques

to the residual queues at a pre-timed traffic signal. To keep the presentation short, we

use the same notions in Chapter 2 section 2.2.2 except that we add some superscripts

to the notations to differentiate the cycles. We denote by F j
A−D(z) the distribution

of {A(r + g) − D(g) ≤ z} during the j-th cycle, and by F j
Q(z) the distribution of

{Q0 ≤ z} during the j-th cycle. According to the Chapter 2 section 2.2.2, we have

F j+1
Q (z) =

∫ ∞
0

F j
Q(x)dF j

A−D(z − x). (5.9)

By diffusion approximation, we have

F j+1
Q (z)− F j

Q(z) = −E(A−D) ·
∂F j

Q(z)

∂z
+

1

2
E(A−D)2 ·

∂2F j
Q(z)

∂z2
. (5.10)
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If we observe the traffic signal performance at a large scale of time compared with

a cycle time, we may approximate the discrete index j by a continuous variable t.

Then the left hand of the above equation turns to
∂F tQ(z)

∂t
. If we denote E(A−D) by

α and E(A−D)2 by β, we then have the following

∂F t
Q(z)

∂t
= −α ·

∂F t
Q(z)

∂z
+
β

2
·
∂2F t

Q(z)

∂z2
. (5.11)

The Equation (5.11) is under the boundary condition that F t
Q(z) should be a dis-

tribution as of z and vanish at z = 0. The disruptions to the traffic signal per-

formance can be translated into the initial condition, since it is easy in practice to

observe the effects on residual queue length during the same cycle. We denote the

after the disruptions, the residual queue length is z0. Thus the initial condition is

F 0
Q(z) = δ(z − z0) where δ(z − z0) is the Direct function, i.e., δ(z − z0) = 1 if z = z0

otherwise δ(z − z0) = 0.

The solution to the Equation (5.11) under the above initial condition and bound-

ary condition is

F t
Q(z) = Φ

(
z − z0 + αt

(βt)1/2

)
− e−2zα/βΦ

(
−z − z0 + αt

(βt)1/2

)
, (5.12)

where Φ(x) is the cumulative distribution function of standard Gaussian distribution.

From this result, we see that the decay of the effects or the convergence to the

equilibrium has the same rate as the function φ(t) = Φ
(

z
t1/2

)
goes to the infinity.

5.3 Summary

This chapter briefly presents the graphical methods with an application to the

variance of time for queue clearance and the diffusion techniques to the effects of dis-

ruptions at the signalized intersections. We intend to emphasize here the importance
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of graphical method because it can not only present the deterministic approximation

but also reflect some results of the diffusion approximation. We also emphasize that

the diffusion approximation is a suitable tool which can be applied to most queue

related problems at traffic signals. What we have discussed is still one dimensional

diffusion. For higher dimensional diffusion approximations, one can resort to the

literature such as Newell’s book on tandem queue [82].

93



6. CONCLUSION

In this research, the probabilistic models for left-turn bay blockage and spillback

are presented to study the capacity and delay at the intersection with pre-timed

signals. Then we provide the approaches to characterize the delay, the mean and

variance of green times at one-way intersection with actuated signals. In all of the

approaches, we choose to assume that only the mean and variance of arrivals are

available. We also present graphical methods, in many ways similar to the Newell’s

original proposals, to illustrate the stochastic effects of arrivals in the context of

diffusion approximation.

We do not intend to develop new techniques merely for their own sake. We

attempt to choose appropriate techniques to solve the problems that arise in the

practical applications. Although some methods we present here might be complicated

to be readily used in practice, we provide heuristic or some rule-of-thumb methods

to illustrate the results based on the obtained results.

In retrospect, the fluid and diffusion approximations are demonstrated their

power in dealing with practical problems. In most cases, they allow us to describe

some complicate phenomena in a fairly accurate way and to provide qualitative anal-

ysis for practical considerations. Sometimes the graphical method [81] is also useful

in practice, and this approach should be illustrated more in the practical problems.

in the future, we will consider the coordination between traffic signals [73, 15], and

time-dependent diffusion methods [77, 78, 79].
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[93] F. Pollaczek. Über eine Aufgabe der Wahrscheinlichkeitstheorie. I. Mathema-

tische Zeitschrift, 32:64–100, 1930.
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APPENDIX A

LITERATURE REVIEW ON PRACTICAL RESEARCH OF TRAFFIC SIGNALS

The mathematical approach, aimed at deeper understanding of traffic

phenomena, has resulted in a seemingly unending number of theoretical

solutions to traffic problems. Admittedly, this mathematical approach

...... is not always of immediate help to the practicing traffic and highway

operations engineer. Yet, familiarity with the concepts brought out by

traffic flow theorists is vitally needed in order to arrive at the practical

solutions that must be found.

—- from the Foreword in Highway Research Record No. 89 (1965).

A.1 Introduction

There is always a tension in modern days between traffic engineers, who are

looking for the methods directly applicable to real-world situations, and those aca-

demic theorists who are seeking mathematical models on a solid ground. While the

methods in practice may sacrifice rigorous reasoning to some degree, most of the

theoretical models may lead theorists to focus on too much detail in precise math-

ematical structures and may be too complicated to be readily applicable. It seems

that the gap between them results in the ever-lasting incompatibility. However, in

retrospect, there are numerous noted researchers and engineers who made extensive

contributions to bridge this gap. As Wardrop commented and warned, a theoreti-

cal background is required in the practical traffic engineering study, but the theory

should not be divorced from experiment [113]. In addition to the discussion in Chap-

ter 2, we will review the development on the practical side here, with a focus on how
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the theoretical and practical work interact.

A.2 Isolated Pre-Timed Signal

A.2.1 Steady-State Condition

One of the main focuses of traffic signal studies is to obtain average delay under

stationary conditions for both arrivals and departures. Systematic treatment of this

subject from both theoretical and practical point of view can be traced back to as

earlier as the work by Wardrop [113] and the references therein [24]. Except the state-

ment of his two well-known equilibriums for network, Wardrop discussed the effects

of random delay and its difference from uniform delay at a signalized intersection

[113]. Some preliminary results of delay for pre-timed and vehicle-actuated signals

were also provided. This work then inspired Newell to perform the first theoretical

study on traffic delay in terms of distribution [70]. However, as the above scholars

noticed, the average delay formula for pre-timed signals is in fact rather difficult to

obtain.

Webster [114] conducted an extensively systematic study on the performance and

control of pre-timed signals. He also commented that the developed methods might

be applicable to the vehicle-actuated signals where the green times run to maximum

due to heavy traffic demands, indicating a general use of his formula. The Webster’s

formula has the following expression:

d =
c(1− λ)2

2(1− λx)
+

x2

2q(1− x)
− 0.65

(
c

q2

)(1/3)

x(2+5λ), (A.1)

where d is the average delay per vehicle for a particular direction; c is the cycle time;

s is the saturation flow; q is the flow; λ is the ratio of green time and cycle time,

i.e., g/c; x is the degree of saturation, i.e., q/λs. The first term accounts for uniform
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delay, which according to Webster [114] is much agreement under light traffic flow

condition. The expression of the second term is derived from the M/D/1 queues

(Poisson arrival/constant service rate/one server) based on the pioneered theoretical

work by Kendall [47]. The third term, on the other hand, is purely empirical with an

aim of fitting the simulation results. By comparing with extensive simulation results,

Webster noticed that the third term was generally below 15 percentage of average

delay [114]. According to this fact, the third term was neglected when deriving the

optimum green times and cycle time. Although these results were obtained in a more

complicated formula, the expression for the optimal cycle time was approximated for

practical purposes [114], yielding

c =
1.5L+ 5

1− Y
, (A.2)

where L is the total lost time per cycle (sec) and Y is the sum of the highest flow

to saturation ratio for one approach in each phase. Due to the simplicity of this

expression and its root in theoretical reasoning, it has been widely used in engineering

practice. Later, Webster and Cobbe [115] provided a more comprehensive treatment

of the traffic signals.

In most of studies, the delay formulas depend on a particular arrival distribution.

In order to derive the results insensitive to the detailed stochastic structures of ar-

rivals, Miller [67] employed the variance-to-mean ratio, I, to capture the relationship

between the first two moments of arrivals. He gave the expression of the average

delay as

d =
1− λ

2(1− λx)

{
2E(Q)

q
+ (c− g) +

I − 1

s
+
λx

s

}
, (A.3)

where E(Q) is the average length of residual queue (overflow) and the meaning of
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other notations is kept the same with Equation (A.1). When dealing with the esti-

mation of E(Q), Miller implicitly used the properties of Brownian motion (diffusion

processes in general) to obtain an approximation when traffic intensity becomes

heavy. He finally produced the following approximation [67]:

d =
1− λ

2(1− λx)

{
I(2x− 1)

q(1− x)
+ (c− g) +

I − 1

s
+
λx

s

}
. (A.4)

This expression can be comparable to the Webster’s for Poisson arrivals, and is useful

in many practical cases. Perhaps this Miller’s work, along with the Brownian motion

theory in physics and the development of heavy traffic limits in queueing theory,

motivated Newell to pursue much further along this line. Consequently, Newell [76]

had established the powerful techniques of diffusion approximation and obtained the

formula of average delay much agreed with Webster’s in a systematic way, thereby

successfully solving the problem. Newell’s work has been discussed in Chapter 2.

The theoretical development of discrete-time model and bulk service queues (see

Chapter 2) also have the influence on practice as well. In his another work, Miller [68]

provided the following approximation expression instead of root-finding to estimate

the E(Q):

E(Q) =
exp[−1.33

√
sg(1− x)/x]

2(1− x)
. (A.5)

It seems that the parameters in the above equation were calibrated after evaluating

the exact value of solutions under sg = 10, 30, 90, 0.4 ≤ x ≤ 0.96, and Poisson arrivals

(p.7 in [68]). The equation (A.5) with a simplified version of Equation (A.3) gives

an accurate solution to various cases [90, 99], and leads to the further simplification

for practice use [7].

We want to close this brief discussion in this section by remarking two points
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here. Although Ohno [90], Allsop [13] and others made comparisons by evaluating

the above delay expressions through simulation, some of the formulas have their own

advances especially in some particular situations. More important, the theoretical

techniques and approximation methods developed among the efforts of obtaining

these results are invaluable and should be noted in both theory-oriented and practice-

oriented research.

A.2.2 Analysis Period Dependence

The above analysis of residual queues relies on the steady-state condition. This

condition reflects in the tendency to infinity as the traffic demand approaches satu-

ration. Furthermore, it may take a long period for a signalized intersection to reach

the steady-state condition in real environment. The problem might become severe

when the demand varies in time. However, establishing a theoretical solution for

queues with a time-dependent demand is rather difficult, let along the subject of

the varying demand around the capacity. To overcome this obstacle in practice,

Kimber and Hollis [49] purposely employed a coordinate transformation technique

to the residual queue length (overflow) and then the delay expression. But the very

original idea maybe have the root in a study by Webster and Cobbe [115] when they

investigated the effect of a parked vehicle on delay at an intersection (see Figure 27

in [115]). It was based on the results of designed simulations and the observation

that long residual queues may remain for many cycles if demand fluctuates around

the capacity. The approach is to smooth the delay under the steady-state condition

into the oversaturated results obtained by deterministic approaches. As shown in

Figure A.1 for residual queue length, the transformed curve maintains the relation-

ship of 1.0 − X1 = L1 = L2 = X3 − X2 if all three curves have the same length of

queue. Although the original formulas for both delay and residual queue length are
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Figure A.1: Coordinate transformation (modified from Figure 6 in Kimber and
Hollis[49]).

in a general form [21], they are considered as inconvenience in the sense of practice.

Akçelik [8] simplified the formula and generated the following equation for residual

queue length

E(Q) =
QcpT

4

[
(x− 1) +

√
(x− 1)2 +

12(x− x0)

QcpT

]
,when x > x0, (A.6)

where Qcp is the capacity, T the length of analysis period and x0 the degree of

saturation below which the average residual queue has length of zero [8]. To make

a convenient applicable formula, Akçelik and Rouphail [11] further proposed several

modification rules for determining variable traffic flows in different analysis periods

based on deterministic demand functions [63].

The coordinate transformation approach is essentially heuristic and does not rep-

resent theoretically validity [109]. The time-dependent analysis still needs future

investigation. Nevertheless, given that rare progress has been made on the theo-
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retical side, it is still widely adopted in the American, Canadian, and Australian

capacity guides [109] in a variety of formulas. In fact, as Burrow [21] and Dion [34]

noted, the delay formulas for pre-timed signals used in various countries are similar.

A.2.3 Other Issues

Since the establishment of the general form of delay model, numerical efforts

have been made to improve the model and calibrate the parameters in a state-of-art

manner. For example, In Li et al.[55], the effects of signal coordination were taken

care of and were involved in the calibration of parameters. Roupail and Akçelik [96]

described and compared the path-trace and queue sampling methods for estimating

delay in practice. Engelbrecht et al. [37] applied these methods to oversaturated

condition. In another study, Fambro and Rouphail [38] incorporated related param-

eters to count the effects of upstream signal metering, platoon dispersion and queue

spillback. In addition, the effect of left-turn lane geometry on delay also received

attention. Messer and Fambro [66] recognized that the left-turn bay length would

significantly affect delay. This topic still needs some further investigation today.

Apart from the study on delay, the problem of dilemma zone when signal changing

to amber also got attention from the early development. The adequacy of signal

change interval was at first given from a theoretical perspective by Gazis et al. [40]

and Olson and Rothery [91]. Then Webster and Ellson [116] carried out a thorough

experiments and practical studies and proposed a method whereby the signal system

would not change to amber when drivers fall into the dilemma zone [116]. The effects

of types and locations of controllers and vehicle speed on such treatment were also

discussed. Due to the limitation of the space, we do not elaborate all the efforts here.
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A.3 Isolated Vehicle-Actuated Signal

It is much more difficult to study vehicle-actuated signal than pre-timed signal.

It is partly because all the approaches can be treated separately at pre-timed signal,

while the approaches at vehicle-actuated signal should be considered as a whole,

as many researchers noted [114, 32, 26]. It is also partly because no “theory” can

explicitly solve the problem of delay at vehicle-actuated signal and provide convenient

formulas for practical advance.

It is common for a vehicle-actuated controller to set maximum and minimum

green times. In a rigorous analysis, it means that one has to determine whether a

queue has been cleared before or after the minimum green time and whether a queue

could be cleared before the maximum green time. The consequence is a too much

information involved equation from which a closed-form solution cannot be obtained.

Even for a one-way street intersection with a basic control setting, i.e., fixed unit

extension1, the difficulties cannot be overcome. Perhaps due to this reason, most of

theoretical studies make the assumption that there is neither maximum green nor

minimum green time [32, 80, 26]. For a two-way street intersection, the difficulty

arises when evaluating the maximum queue clearance time and the simultaneous sat-

isfactory of unit extensions on two opposing approaches. Nevertheless, the problem

can be tackled by focusing on a particular distribution or by approximate analysis

for general cases. The noted work on theoretical side include Darroch et al. [32],

Newell [80, 87] and Cowan [26]. Particularly, the fluid and diffusion approximation

developed by Newell [80, 87] are very useful and powerful in both theoretical research

and advanced practice.

Next section we will review some widely used approaches in practice for vehicle-

1In convention unit extension is also called passage time or gap time.
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actuated signal. These approaches arise from empirical studies and have employed

both heuristics and crude mathematical modeling. Admittedly, rigorous models that

incorporate all practice-related factors and control parameters are unlikely to be

developed and unlikely to be of help to the traffic engineers. Hence, the rule-of-

thumb approach is necessary for the real-world complicated applications, as indicated

in Appendix H in Akçelik [8]. However, it does not indicate that we can be unaware

of the weakness of these approaches. Despite modern controllers able to adapt the

gap time to the speed of actuated vehicles, our discussion will be limited to the

operation of a basic type of actuated controller which uses a fixed unit-extension

time.

A.3.1 Green Time and Cycle Length

The concept of degree of saturation for vehicle-actuated signals is of considerable

concern, since the green times and cycle length vary cycle by cycle, leaving some

challenges to determine the degree of saturation. It may be proper to define the

degree of saturation by the average phase lengths. However, practicing operations

of vehicle-actuated signals demands not only the average values but also the vari-

ance. Among the methods in practice, the approaches proposed in Lin[56, 57] and

Akçelik[10] may represent the most useful methods.

A set of models have been proposed by Lin[56, 57] for the estimation of average

cycle splits from semi-actuated and fully-actuated signal controls. For semi-actuated

signals, the method is workable and of practical importance. For full-actuated signals,

there may need some more discussions. The proposed models rely on the following
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equations for estimation of average cycle splits:

γ1 = 0.5Y1 + Y2 + I1 + g2, (A.7)

γ2 = 0.5Y2 + Y1 + I2 + g1, (A.8)

gi =
∞∑
n=0

(Ii +Dn + En)P (n/γi), i = 1, 2, (A.9)

where gi represents green times of phase i, Dn represents the part of the green

extended by a moving queue in the critical lane after the initial portion on that

direction, En the additional green extension after queue clearance by successive ar-

rivals whose headways are less than one unit extension, and P (n/γi) the probability

of number of arrivals during time period γi.

If γi is known, then, as the author claimed in [56, 57], the average green Gi can

be estimated for phase i from the Equation(A.9). However, this method may be

uncertain for the desired results due to the following reasons. First of all, it may

need, in practice, to figure out how the n arrivals form a queue and how long it will

take the queue to be clear. In reality, only a portion of the n arrivals form the queue,

while such portion is totally random in different cycles. The practice engineers hence

need to specify how many of these arrivals contribute the Dn and others contribute

the En, which may lead to some difficulties. Or, one can use Poisson distribution

for the probability P (n/γi) as in [56, 57], in that the explicit expressions are readily

available for P (n/γi) and deduced exponential headway. In this case, the headway

distribution cannot be shifted exponential any more as assumed in [56, 57].

In practice, it is of importance to gain some knowledge of the variance of green

times in that such quantity attributes to the delay [80]. However, the above models

are essentially deterministic so that they cannot provide an estimation of the variance

of green times. If the methods would improve to take the randomness of evolution
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processes of queues into consideration, or if the estimation for Dn would capture

the variance of queueing processes, the practice would benefit from the knowledge of

moments of green times.

Akçelik[10] presented alternative methods to estimate the average green times

and cycle length at vehicle-actuated signals. In order to involve the platoon arrivals,

the methods employed the Cowan’s headway distributions [27] for estimation of the

extension green time beyond the queue clearance. The proposed methods show the

advantage in that they are direct and convenient enough for practical use.

The proposed method used the following equation for green time estimation:

g = gmin + ge = gmin + gs + eg, (A.10)

where gmin is minimum green, gs queue clearance time or saturated portion of green

time, and eg the green extension time after gs. The calculation of gs was suggested

as the result of the equation for the case of a single green period per cycle:

gs = fq(yr)/(1− y), (A.11)

where fq is a calibration factor, y flow ratio (arrival flow rate over saturation flow

rate), s saturation flow rate and r red time. The Equation (A.11) depends on the

red time thereby it is not a real closed form formula. As indicated by the author, it

requires iterative computation to obtain the numerical solution. The implication of

this equation is that the arrival traffic flow can be viewed as fluid or deterministic

flow.
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Another approximation is also proposed by the following equations:

c =
L+Gm + E

1− Y ′
, (A.12)

g = fqyc+ (1− y)eg, (A.13)

where L is lost time per cycle, Gm the sum of green times for critical movements

whose green times are set to minimum or maximum, E =
∑

(1− yi)egi the adjusted

extension time for all critical movements, and Y ′ adjusted flow ratio. This method

was also used in Rouphail et al. [97] in an alternative version. The advantage of

this set of equations rests on no requirement of iterative computation. It is based

on heuristic and serves as an approximation to the average value of green time and

cycle time. It should be noted that the calculation of E must be based on the arrival

distribution.

As mentioned previously, the above analysis for green times and cycle length

provides a way to approximate the average value but the variance, which is a missing

part in practice. Moreover, it is vital to note that the green time for one approach

partially depends on the queues (randomly) accumulated during the green time for

the other approach. Hence, the random interdependence of signal phases for two

conflict traffic flows may be large in some cases to affect the performance of signals.

This effect may be taken into consideration in practice as well.

A.3.1.1 On Green Extension for Cowan’s M3 Model

The green extension mentioned in previous section depends on the arrival distri-

bution. Akçelik[10] provided an expression (Equation 14) and was cited in Lin and

Courage [58], and Rouphail et al. [99]. However, it is incorrect in the general form,

though it is correct for exponential case.
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The following equation was provided in [10] for green extension:

eg =
exp[λ(e0 −∆)]

φq
− 1

λ
, (A.14)

We denote the gap time (unit extension or critical gap in our paper) by e0 as the

same notation in [10]. The underlining arrival headway for the equation (A.14) obeys

the cumulative distribution function (Cowan’s M3 model [27]):

F (t) =

 1− φ exp[−λ(t−∆)], for t ≥ ∆,

0, for t < ∆,
(A.15)

where λ = φq/(1 − ∆q), q total arrival per second, ∆ minimum headway and φ

proportion of unbanched vehicles. For exponential distribution, we have ∆ = 0,

φ = 1.0 and λ = q. In this case, the green extension formula agrees with the correct

expression (see, for example, Lin[56]).

For the M3 distribution in the general form, however, Equation (A.14) is incorrect.

In fact, the green extension for any general distribution F (t) in a renewal process

can be calculated as (see, for example, Wang et al.[112] for the principle):

eg =

∫ e0
0
tdF (t)

1− F (e0)
. (A.16)

It is critical to note that for M3 distribution, F (∆) = 1− φ and F (t) = 0 if t < ∆.

Hence, the integral
∫ e0

0
tdF (t) should be considered as the Stieltjes integral (not the
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normal Riemann integral), i.e.,

∫ e0

0

tdF (t) =

∫ e0

∆−
tdF (t)

=

∫ e0

∆

tdF (t)− (1− φ)∆

= λφ exp[λ∆]

∫ e0

∆

t exp[−λt]dt− (1− φ)∆

= φ(−e0 −
1

λ
) exp[−λ(e0 −∆)]

+ φ(∆ +
1

λ
)− (1− φ)∆. (A.17)

Since 1 − F (e0) = φ exp[−λ(e0 − ∆)] and 1
λ

= 1
φq
− ∆

φ
, then the Equation (A.16)

yields:

eg =

(
2∆

(
1− 1

φ

)
+

1

φq

)
exp[λ(e0 −∆)]− 1

λ
− e0. (A.18)

The last term −e0 can be dropped due to the different setting in [10]. However,

the coefficient of exp[λ(e0 − ∆)] is different from the one in Equation (A.14). The

Equation 14 in [10] incorrectly regards 2∆(1− φ−1) as 0.

A.3.2 On Delay Models

The delay models for vehicle-actuated signals are basically adopted from the

Webster’s formula for fixed-time signals. Such adoption is based on the observation

that during the peak hours the vehicle-actuated signals are frequently running to

maximum. This observation also has been made as early as in Webster [114] and

the related adoption has been suggested by Akçelik in his report [8]. In practice, it

contains the uniform delay d1 and incremental delay d2 [97], though there is another

term called initial queue delay in the HCM 2010 [105]. The uniform delay is essen-

tially the same as the first term in the Webster’s formula, whereas the incremental
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delay is obtained by the coordinate transformation described in the previous section

[49].

The uniform delay requires the average cycle length of actuated signals as input.

The transformation for the incremental delay allows to handle the case of degree of

saturation larger than 1 in a heuristic way. Specifically, the incremental delay has

the following expression in general:

d2 = aT

[
(x− 1) +

√
(x− 1)2 +

bkI(x− x0)

QcpT

]
, (A.19)

where k is the incremental delay factor, Qcp capacity, I ratio of variance to mean

arrivals per cycle, and a, b and x0 parameters. Most of the past literature focuses

on how to modify these parameters to accommodate the issues arising from contem-

porary applications. For example, Li et al.[54] drop the progression factor and X2

used as a part of the parameter a in the 1985 HCM. Daniel, Fambro and Rouphail

[31] provide an estimate of the kI in Equation (A.19) for pre-timed, semiactuated

and fully actuated signals, and compare with the model in Malakapalli and Messer

[62]. Rouphail et al. [97] made the efforts to validate the delay model by extensive

simulation studies. Similar models have been also applied in the series of software

SIDRA [12] and in the NCHRP report [25].

More recently, another method, known as incremental queue accumulation (IQA),

was proposed by Rouphail et al. ([98, 101]) for estimating the performance of a

signalized intersection. The IQA method explicitly considers the cumulative arrivals

and departures during each time interval. In practice, this method is presented in

graphs, from which the results are easy to estimate. The original ideas have their

roots in Newell [83], in which the graphical method is greatly emphasized. These

contributions finally resulted in the delay formulas for actuated signals in HCM2010
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[105].

Despite widely usage in real-world applications, the adoption from delay formulas

for pre-timed signals lacks of rigorous examination. Although the current techniques

such as queueing theory are not able to handle the transition between near saturated

and oversaturated situations, it indeed demands the further research to better our

understanding on this subject.

A.4 Conclusion

There are numerical achievements for practical solutions when theorists and traf-

fic engineers have well communication. Needless to say, the existing problems in

operating traffic signals today highly encourage such collaboration to go further.

Overall, all the efforts made by the above practicing pioneers have demonstrated as

excellent examples that adequately bring theoretical analysis to real-world applica-

tions and make useful results for the purpose of practice. This principle has to be

carried on by all engineers and researchers.
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APPENDIX B

SUPPLEMENT TO CHAPTER II

B.1 Proofs of Theorems

Theorem 3 (Darroch [33]) The sufficient and necessary condition to guarantee the

existence of the stationary distribution of Xk,n is

(g + r)µY < g. (B.1)

PROOF. We first prove the sufficiency, mainly following the proof in Darroch

[33]. Notice that the states Xc = i, i ∈ Z+ (here we ignore the index n for cycle) in

consecutive cycles forms a Markov Chain. Obviously it is irreducible and aperiodic,

it is sufficient to show this Markov Chain has a positive finite mean recurrence time.

Let N denote the number of cycles between two events {Xc = 0}. If we denote by

Sm =
m∑
n=1

(
c−1∑
k=0

Yk,n − g

)
, (B.2)

then {N > p} = ∩pm=1{Sm > 0}. Note that P(Sm > 0) = P( 1
m
Sm−E(S1) > −E(S1))

and E(S1) = (g+r)µY −g < 0. Suppose m is large enough, then m−1/2σ(S1)−1(Sm−

mE(S1)) ∼ N(0, 1) where N(0, 1) is normal distribution. Hence, using Chebychev’s

inequality,

P(
1

m
Sm − E(S1) > −E(S1)) ≤ E(m−1/2σ(S1)−1(E(Sm)−mE(S1)))4

m2σ(S1)2E(S1)4

=
1

m2
(6σ(S1)4(E)(S1)4)

=
K

m2
, as m large enough. (B.3)
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Therefore, P(N > p) < P(Sp) < K/p2, as p large enough, and then

E(N) =
∞∑
p=0

P(N > p)

≤ 1 +
M∑
p=1

P(N > p) +
∞∑

p=M

K/p2

≤ 1 +M +
∞∑

p=M

K/p2

< ∞, for some M large enough. (B.4)

Hence, {Xc = 0} has finite mean recurrence time. Based on the previous discussion,

the Markov Chain formed by Xc is ergodic. Obviously the same result is applied to

the queue length distribution during all slots of the cycle. The sufficiency is clear

since the ergodic property guarantees the existence of the stationary distribution.

The necessary condition is relatively easy to prove. From the Equation (2.8) in

Chapter 2, we know
∑c−1

k=r qk = g−cµY
1−µY

. Since qk ≤ 1, we should have g − cµY > 0.

�

One of the important issues in discrete queues is about the number of zeros of

equation zg = Y (z)c. Adan, van Leeuwaarden and Winands[4] proved the following

theorem:

Theorem 4 Suppose the following conditions are satisfied

(i) |Y (z)| = 1 is differentiable at z = 1 and Y ′(1) < g;

(ii) |Y (z)| = 1 on the unit cycle only at z = 1 and Y (0) > 0;

Then zg = Y (z)c has g distinct roots z0, z1, ..., zg−1 within the unit circle, where

z0 = 1 and |zk| < 1 for k 6= 0.
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In order to ease the presentation of the following theorem, we do not use the

concept of the period of the series as in Adan, van Leeuwaarden and Winands [4]

since the period will be exactly 1 in most cases. We also remark here that because

Y (z) is the probability generating function, Y (z) is analytic in |z| < 1 and continuous

up to the unit cycle.

The proof of existence can trace back to the work by Pollaczek [93, 94] and

Crommelin [29] when they dealt with the case of Poisson arrivals. In these early lit-

erature including Darroch [33], a stronger condition is assumed, i.e., Y (z) is analytic

in |z| < 1 + δ for some δ > 0. Adan, van Leeuwaarden and Winands[4] used the

classical argument and truncation of the Y (z) to prove the above the theorem. The

advantage of the proof is that it does not exclude many heavy tailed distributions

whose radius of convergence is exactly 1. These heavy tailed distributions include,

for instance, discrete Pareto and discrete lognormal distributions [4].

B.2 Approximate Average Queue Length in Newell [74] for µ > 1

As mentioned in the section Bulk Service Queue in Chapter 2, we will investigate

how µ = [g−µY (r+g)][rg/(r+g)]−
1
2 arises and what it means to the approximation.

The discussion is the same as in Newell [74]. Since the approximation methods, which

involve asymptotic analysis and error estimation, are useful in many applications,

we will provide some details here.

During the light traffic demand under equilibrium, it is unlikely the residual

queues would appear in several consecutive signal cycles. Suppose no queue at the

beginning of the cycle (with probability one), we can evaluate the distribution of

residual queues cycle by cycle until it converges. However, whereas in applications,

a qualitative description can be obtained through the evaluation for only one cycle.

As long as such result decays rapidly with the decrease of arrival rate, the result can
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serve as an approximation to the average queue length.

In Newell [74], the results are obtained in the sense of asymptote, i.e., r and

g →∞ with r/g fixed(or comparable with O(1)). The asymptotic methods can avoid

some difficulties in analysis and obtain the results often approximately accuracy. In

the case of binomial arrival per slot for the discrete time model, we have for 0 < j � r

P(Xc = j) =

(
r + g

g + j

)
(1− µY )r−jµg+jY

=
(r + g)!(1− µY )rµgY

g!r!

{
rµY

g(1− µY )

}j
exp

(
−

j∑
i=1

ln(1 +
i

g
) +

j−1∑
i=1

ln(1− i

r
)

)

=
(r + g)!(1− µY )rµgY

g!r!

{
rµY

g(1− µY )

}j
exp

(
−j2(r + g)

2rg
+O

(
i3

r

))
, (B.5)

where ln(1− x) = −x+O(x2) is applied.

Note in light traffic demand, the large values of probability would concentrate on

the cases with small values of j. Hence, we can carry the following calculation

E(Xc) =
∞∑
j=1

jP(Xc = j)

=
(r + g)!(1− µY )rµgY

g!r!

∞∑
j=1

j

{
rµY

g(1− µY )

}j {
1− j2(r + g)

2rg
+O

(
j4

r2

)}
,

=
(r + g)!(1− µY )rµgY

g!r!

{
rgµY (1− µY )

[g − µY (g + r)]2

}(
1− r + g

2rg
− 3

(r + g)µY (1− µY )

[g − µY (g + r)]2
+ ...

)
=

(r + g)!(r + g)(1− µY )r+1µg+1
Y

g!r!µ2

(
1 +O

(
µ−2
))
, (B.6)

where
∑
jx3 = 6x2(1− x)−4 + x(1− x−2) is applied. Though we cannot see how µ

arises from this equation, we use this notation to simply the expression. Note that

there is a little difference between this equation and the original one in Newell [74].
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Suppose r and g sufficiently large, then applying Stirling’s formula n! ≈
√

2πn
(
n
e

)
yields:

E(Xc) =

(
gr

2π(r + g)

)1/2
1

µ2
exp

{
(r + 1) ln

(r + g)(1− µY )

r
+ (g + 1) ln

(r + g)µY
g

}
·
(
1 +O

(
µ−2
))
. (B.7)

The parameter µ arises exactly if we expand the function of logarithm:

(r + 1) ln
(r + g)(1− µY )

r
= (r + 1) ln

(
1 +

g − (r + g)µY
r

)
= (r + 1)

(
g − (r + g)µY

r

)
− 1

2
(r + 1)

(
g − (r + g)µY

r

)2

+O
(
r−2(g − (r + g)µY )3

)
(B.8)

and

(g + 1) ln
(r + g)µY

g
= (g + 1) ln

(
1− g − (r + g)µY

g

)
= −(g + 1)

(
g − (r + g)µY

g

)
− 1

2
(g + 1)

(
g − (r + g)µY

g

)2

+O
(
g−2(g − (r + g)µY )3

)
.

(B.9)

If we sum up the above two equations and neglect the terms of order r−2 and r −

g(since we assume r and g are comparable), then we see the main term is exactly

−µ2/2. The error term will be small if we further assume µ � r1/6. Therefore, the

asymptotic expression for E(Xc) under this condition is

E(Xc) =

(
gr

2π(r + g)

)1/2
1

µ2
exp

{
−µ

2

2

}
·
(

1 +O

(
µ3

r1/2

)
+O

(
µ−2
))

. (B.10)
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For µ > 1 and r large enough, as µY decreases, µ increases faster so that E(Xc)

decreases faster. It indicates the above asymptotic expression (B.6), particularly the

expression (B.10), is indeed a good approximation during the range µ > 1.
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