
ENHANCEMENTS TO SQLITE LIBRARY TO IMPROVE PERFORMANCE ON 

MOBILE PLATFORMS

A Thesis

by

SHYAM SAMBASIVAN RAMACHANDRAN 

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, A.L. Narasimha Reddy
Committee Members, Riccardo Bettati

Paul V. Gratz

Head of Department, Chanan Singh

 

August 2013

Major Subject: Computer Engineering



ABSTRACT

This thesis aims to present solutions to improve the performance of SQLite 

library on mobile systems. In particular, two approaches are presented to add light-

weight locking mechanisms to the SQLite library and improve concurrency of the 

SQLite library on Android operating system. The impact on performance is discussed 

after each section.

Many applications on the Android operating system rely on the SQLite library to 

store ordered data. However, due to heavy synchronization primitives used by the 

library, it becomes a performance bottleneck for applications which push large amount 

of data into the database. Related work in this area also points to SQLite database as one 

of the factors for limiting performance. With increasing network speeds, the storage 

system can become a performance bottleneck, as applications download larger amounts 

of data. 

The following work in this thesis addresses these issues by providing approaches 

to increase concurrency and add light-weight locking mechanisms. The factors 

determining the performance of Application Programming Interfaces provided by 

SQLite are first gathered from IO traces of common database operations. By analyzing 

these traces, opportunities for improvements are noticed. An alternative locking 

mechanism is added to the database file using byte-range locks for fine-grained locking. 

Its impact on performance is measured using SQLite benchmarks as well as real 

ii



applications. A multi-threaded benchmark is designed to measure the performance of 

fine grained locking in multi-threaded applications using common database operations.

Recent versions of SQLite use write ahead logs for journaling. We see that writes 

to this sequential log can occur concurrently, especially in flash drives. By adding a 

sequencing mechanism for the write ahead log, the writes can proceed simultaneously. 

The performance of this method is also analyzed using the synthetic benchmarks and 

multi-threaded benchmarks. By using these mechanisms, the library is observed to gain 

significant performance for concurrent writes.

iii



DEDICATION

This thesis is dedicated to my parents who have been instrumental in providing 

unlimited support in all my endeavors and inspired me to achieve more.

iv



ACKNOWLEDGMENTS

I would like to thank Dr. Reddy, my committee chair, for his invaluable support 

and guidance through the course of research work. I am grateful for the opportunities he 

gave for constant learning and development. I would like to thank my committee 

members, Dr. Bettati and Dr. Gratz, for taking their precious time to review my thesis 

and providing valuable feedback. I would also like to thank the members of Dr. Reddy's 

research group for the great suggestions and discussions during the time I spent with the 

group. Finally, I am thankful to my family members and friends who extended their 

support and help when it was needed.

v



TABLE OF CONTENTS

                                                                                                                                  Page

ABSTRACT..................................................................................................................ii

DEDICATION..............................................................................................................iv

ACKNOWLEDGMENTS.............................................................................................v

TABLE OF CONTENTS..............................................................................................vi

LIST OF TABLES......................................................................................................viii

LIST OF FIGURES......................................................................................................ix

1. INTRODUCTION ....................................................................................................1

1.1 Background..........................................................................................................1
1.2 Related Work.......................................................................................................2
1.3 Android System Overview...................................................................................3
1.4 SQLite Database..................................................................................................5

2. IMPROVED CONCURRENCY THROUGH BYTE-RANGE LOCKING..............9

2.1 Locking Mechanisms in SQLite..........................................................................9
2.2 Implementation of Byte-Range Locks...............................................................12

2.2.1 Control Flow of SQLite Read and Write Transactions...............................13
2.2.2 Changes to Implement Byte-Level Locking ..............................................15

3. EVALUATION OF BYTE-RANGE LOCKING.....................................................20

3.1 Experimental Setup............................................................................................20
3.2 Benchmarks and Results....................................................................................21

3.2.1 Androbench.................................................................................................22
3.2.2 RL Benchmark............................................................................................23
3.2.3 Browser Benchmark ...................................................................................24
3.2.4 DB Bench....................................................................................................28

3.3 Conclusion of Enhancement using Byte-Range Locking..................................30

4. ENHANCEMENT TO WRITE AHEAD LOGGING.............................................31

4.1 Overview of Write Ahead Logging....................................................................31

vi



4.2 WAL Implementation in SQLite [3]..................................................................32
4.3 Enhancements to Write Ahead Log...................................................................35

5. EVALUATION OF CHANGES TO WRITE AHEAD LOGGING.........................38

5.1 DB Bench Benchmark.......................................................................................38
5.2 Comparison between SSD and HDD.................................................................40
5.3 Maximum Performance Gain Analysis - DB Bench..........................................42
5.4 Sandisk and Intel SSD – A Comparison............................................................43
5.5 Comparison with Berkeley DB..........................................................................46

6. CONCLUSION AND FUTURE WORK.................................................................47

REFERENCES............................................................................................................49

vii



LIST OF TABLES

Page

Table 1: Locking Mechanisms in SQLite ........................................................................10

Table 2: Byte-Range Calculation......................................................................................18

Table 3: Header of the Write Ahead Log..........................................................................32

Table 4: Frame Header of the Log....................................................................................33

viii



LIST OF FIGURES

Page

Figure 1: Sub-Systems in Android Architecture [5]...........................................................4

Figure 2: Components of SQLite [8]..................................................................................6

Figure 3: Page Cache..........................................................................................................7

Figure 4: Exclusive Locking for Writes............................................................................11

Figure 5:  Byte-Range Locks for Pages............................................................................16

Figure 6: Androbench : Transaction Per Second for Various SQLite Operations ...........22

Figure 7: Androbench : Time Taken for Various SQLite Operations...............................23

Figure 8: RL Bench : Time Taken for Various Operations...............................................24

Figure 9: Firefox Benchmark : Download Times for Tabs 1-4 : Size 128KB..................26

Figure 10: Firefox Benchmark : Download Times for Tabs 1-4 : Size 256KB................26

Figure 11: Firefox Benchmark : Download Times for Tabs 1-4 : Size 512KB................27

Figure 12: Firefox Benchmark : Download Times for Tabs 1-4 : Size 1MB...................27

Figure 13: DB Bench : 2 Threads ....................................................................................28

Figure 14: DB Bench : Time Taken for Overlapping vs Non-Overlapping Updates.......29

Figure 15: Write Ahead Log : Locking Mechanism and Appending Mechanism............34

Figure 16: Write Ahead Log : Locking Mechanism with Sequencer...............................36

Figure 17: DB Bench - 10K Inserts on Intel SSD............................................................39

Figure 18: DB Bench - 25K Updates on Intel SSD..........................................................39

Figure 19: DB Bench : Comparison of SSD and HDD - Vanilla Code............................40

ix



Figure 20: DB Bench : Comparison of SSD and HDD - Delayed Checkpoint................41

Figure 21: DB Bench : Comparison of SSD and HDD - Sequencer................................41

Figure 22: DB Bench : Comparison of SSD and HDD - Both Enhancements.................42

Figure 23: DB Bench : Performance Comparison for Various Enhancements.................43

Figure 24: DB Bench : Comparison of Flash Drives - Vanilla Code................................44

Figure 25: DB Bench : Comparison of Flash Drives - Delayed Checkpoint....................44

Figure 26: DB Bench : Comparison of Flash Drives - Sequencer....................................45

Figure 27: DB Bench : Comparison of Flash Drives - Both Enhancements....................45

Figure 28: Comparison of SQLite and Berkeley DB........................................................46

x



1. INTRODUCTION 

This section covers the background, related work and motivation for the work 

presented in this thesis.

1.1 Background

Mobile systems are extensively used today and the technology behind such hand-

held  devices  has  been  constantly  improving.  With  increase  in  network  connectivity 

speeds,  the software and hardware stack on these devices must see improvements to 

provide a good user experience. From the storage perspective, all of these systems have 

an internal flash memory with option for an external flash storage.  The storage sub-

system in particular plays a major role in determining the performance of applications. 

The application developer has access to a set of application programming interfaces to 

store persistent-data related to the application. In mobile systems based on Android, this 

functionality is provided by the SQLite [1] database library. The SQLite database layer 

provides an interface to store structured data on the persistent storage. Most applications 

use the SQLite library to store data as well as meta-data for its use. 

Recent studies  [2] have shown that optimizations to the SQLite layer can offer 

significant  improvements  in  performance.  The  study  finds  a  correlation  between 

application performance and the underlying storage performance. The reason for such a 

correlation is identified to be because of poor flash device performance,  random I/O 

from application databases and use of synchronous writes. While the performance of 

1



flash device can be improved by replacing the hardware, we see a potential in making 

changes to the SQLite layer for performance.

The processor  speeds  on cell  phones  and tablets  are  increasing.  Additionally, 

most of these devices are powered by multi-core processors. Such hardware promotes 

multi-threaded applications to be written for such devices. Enhancements in the storage 

stack can reasonably improve the overall performance. Some enhancements to improve 

concurrent access to the SQLite database have been discussed in sections 2 and 4 of the 

thesis.

In the work described in this thesis, we look into some methods that can improve 

performance at the database layer. The SQLite library is also enhanced to allow efficient 

writes to the database for applications which are multi-threaded by design.

1.2 Related Work

The choice of SD cards and their impact on applications on mobile systems has 

been extensively studied by Kim et. al. [2]. They also propose a set of pilot solutions to 

address the performance issues on mobile devices. It involves employing a small phase 

change memory (PCM) to store performance critical  data,  using a log-structured file 

system for  SQLite  databases  or  making  changes  to  the  fsync  code-path  in  order  to 

considerably reduce the synchronization primitives. The pattern of I/O to the SQLite 

database has been studied and it is seen that it mostly remains random and with some 

writes  being  mostly updates  to  the  same block address.  The default  synchronization 

setting of writes to the database is full synchronous writes. While the use of synchronous 

2



writes can be disabled by the application, it can risk the durability of the database and 

therefore, most applications do not disable it.

Some  methods  like  placing  the  SQLite  database  on  RAM  or  changing  the 

application interface to the SQLite database have also been discussed in [2]. The work in 

this thesis focuses on using light-weight locking solutions and improvements to the write 

ahead log [3] of SQLite.

1.3 Android System Overview

The Android operating system is developed on top of the Linux Kernel [4]. The 

Android  version  used  throughout  this  work  is  Android  4.0,  code-named  ice-cream 

sandwich. Linux 3.0 kernel is used in this version of Android. 

Android is an operating system which includes more than just the Linux kernel. 

Some of the additions (Figure 1) include a binder driver for inter-process communication 

and many native libraries like libc, SQLite, SSL, Dalvik VM and other core libraries. 

Android applications come in the apk format containing the dex byte code.  This byte 

code  can  be  understood  by the  Dalvik  VM.  It  is  essentially  used  to  sandbox  each 

application and run as a separate process.  Android also provides a whole lot of APIs for  

application  developers  to  access  the  native  libraries.  The  application  framework  is 

mostly written in JAVA. The native libraries are written in C or C++. 

At the root directory level, some of the main directories that are mounted on start 

up are /data, /system, /dev and /sdcard.  Android likes to keep the application and its data 

separately. This is enabled by creating separate directories for each application in the 

3



/data  directory.  Each  application  directory  in  turn  contains  'cache',  'databases',  'lib' 

directories. The 'databases' directory contains all the related databases that are created by 

the application. 

An  application  can  access  the  data  only  within  its  directory.  The  /system 

directory contains the native libraries and frameworks. The shared library libsqlite is 

present in '/system/lib'. SQLite is written in C and so, a Java Native Interface (JNI) must 

4

Figure 1: Sub-Systems in Android Architecture [5]



be created for applications to access the library. The libsqlite_jni shared library is present 

in '/system/lib/'. 

Whenever an application wants to access the functionality provided by the low 

level library, it uses the interfaces provides by the application framework. The package 

“android.database.sqlite”  [6] contains all the classes and interfaces related to creating 

and managing an SQLite database. In this way, Android provides a convenient way for 

applications to store structured data. The SQLiteDatabase class among others provides 

most of the public methods required to create a database, making configuration changes, 

executing statements, transaction processing and enabling/disabling write-ahead logging. 

These methods result in calls to libsqlite which is the core of storing and retrieving data. 

An application may choose to create as many databases in its /databases directory and 

have as many threads accessing these databases. 

In  this  work,  we focus  on the SQLite  library and make enhancements to  the 

locking mechanism and write  ahead logging.  An overview of  SQLite  is  provided in 

section 1.4.

1.4 SQLite Database

SQLite is widely used on mobile systems since it is light-weight as well as most 

suited for embedded applications. It is a transaction based relational database system [7]. 

The library contains three main components namely the SQL compiler, core processing 

methods and the back-end interface.  The core processing methods have an interface, 

5



SQLite command processor and a virtual machine generator. The interfaces in this unit is 

frequently accessed by the external applications.

The  main  functionality  of  the  library  is  in  present  in  the  virtual  machine 

generator  and  back-end  interface  (Figure  2).  The  virtual  machine  is  also  called  the 

Virtual  Database  Back-End  (VDBE).  When  an  sqlite  command  is  executed,  a  new 

VDBE is created, which is nothing but a state machine to execute the correct set of back-

end methods to achieve the desired task. 

 

6

Figure 2: Components of SQLite [8]

SQL Compiler

Tokenizer

Parser

Code Generator

Core

Interface

SQL Command 
Processor

Virtual Machine

Backend

B-tree

Page Cache

OS interface 
(read(), write(), 
fcntl()..)

SQLite statement



The Back-End itself consists of three main modules. The first is the B-tree data 

structure to maintain the indices in memory for the database. Each table has a separate 

B-tree associated with it. The Pager module or the page cache is at the core of every 

transaction. The SQLite database is a single file on disk divided into a number of pages. 

The page cache among others contains a list of all the dirty pages that have to be written 

to the disk. If the cache is full, the pages are replaced in a variant of least recently used 

fashion. A logical view of a page cache is shown in Figure 3.

7

Figure 3: Page Cache

Page cache

Pointer to head of Dirty List
Pointer to tail of Dirty List

Page Cache size

Page size

methods to make a page clean
Reference to page 1

Page Header

Data pointer

Page number

Pointer to next Dirty Page
Pointer to previous Dirty 
page = NULL

Page Header

Data pointer

Page number

Pointer to next Dirty Page 
Pointer to previous Dirty 
page

Doubly 
Linked- list 
of pages

Page
In

memory

Page
In

memory



The OS interface module functions as a wrapper over various system calls such 

as read, write and fcntl in a portable way. Most of the locking primitives come into play 

here. SQLite uses exclusive file level locking for writing to the database file.

There is an additional module in SQLite for viewing the contents of the database 

from the command line shell. This can be obtained by executing the 'sqlite3' command 

on the busy-box. It is a helper module to view the schema of the database, perform unit 

tests or execute SQL statements over the command line. It can also be used to collect 

traces and for debugging purposes.

8



2. IMPROVED CONCURRENCY THROUGH BYTE-RANGE LOCKING

This  section  describes  the  locking  mechanisms  in  SQLite,  the  changes  to 

implement byte-range locks and how it reduces the time for a transaction is discussed. 

The SQLite library with and without the byte-lock changes are compared using various 

benchmarks and the results are analyzed.

2.1 Locking Mechanisms in SQLite

The  SQLite  database  is  stored  as  a  single  file  on  disk.  The  database  file  is 

organized as pages, each of size 512 bytes or a higher multiple of 2. All the pages that 

are read from the database or written to the database reside in a page cache. The page 

cache is essentially a portion of memory allocated by the SQLite library in the heap of 

the process address space. For the page cache to be consistent, the writes to the page 

cache must be serialized. Moreover, the writes from the page cache to the database file 

must take place under an exclusive lock, so that the page cache does not get corrupted in 

the middle of a data transfer. To make this work, SQLite currently has four main levels  

of locking [9] as described in Table 1.

9



SHARED This lock allows just reading the database. There can be as 

many processes / threads holding a SHARED lock 

simultaneously. However, even if a single SHARED lock is 

held by any process / thread, the database cannot be written to 

by acquiring an EXCLUSIVE lock. The use of SHARED 

lock increases concurrency, mainly by allowing multiple 

readers. 

RESERVED When a thread acquires a RESERVED lock, it indicates that 

the thread is about to write to the database in the near future. 

It should be noted that the thread is still doing only reads. 

Only a single thread can acquire a RESERVED lock at a time. 

PENDING This lock indicates that the thread is ready to write to the 

database and is waiting for the other SHARED locks to clear. 

The difference between RESERVED and PENDING is that 

new SHARED locks cannot be acquired while there is a 

PENDING lock. Existing SHARED locks are however 

allowed to move forward. 

EXCLUSIVE The EXCLUSIVE lock must be obtained to commit to the 

database file. Only one EXCLUSIVE lock is allowed per 

Table 1: Locking Mechanisms in SQLite 

10



database file (Figure 4). To maximize concurrency, SQLite works 

to minimize the amount of time that EXCLUSIVE locks are held.
Table 1 Continued

The  multiple  levels  of  locking  was  introduced  to  allow for  transaction  level 

concurrency. SQLite allows multiple transactions from different database connections. 

This is enabled by a mode called Shared Cache mode [10], where the the Pager cache is 

shared between two or more connections. The library takes care of serializing the writes 

to  the  database.  It  supports  table-level  locking  and  so  writes  to  two  tables  can  go 

simultaneously. SQLite does not allow multiple transactions from a single thread, i.e., 

we  cannot  have  a  'Begin  Transaction'  within  another  'Begin  Transaction'.  Moreover, 

multiple reads can also co-exist.

The  locking  structure  creates  a  problem  of  deadlock  and  starvation  despite 

improving  concurrency  [11].  For  example,  if  two  threads  read  the  database  after 

acquiring a SHARED lock and subsequently make some changes and decide to write to 

the database. Only one of the two threads can acquire a RESERVED lock to go on to 

obtain  an  EXCLUSIVE lock.  However,  EXCLUSIVE lock  cannot  be  obtained  now 

because  the  other  thread  is  holding  a  SHARED  lock.  SQLite  solves  this  deadlock 

11

Figure 4: Exclusive Locking for Writes

Page 1 
metadata

Page 2 Page 3 Page 4 Page 5Database 
file



problem by allowing the thread requesting a RESERVED lock to retry a fixed number of 

times. It would not succeed and hence return an error code to the application, which has 

to be handled by the application. The thread with the EXCLUSIVE lock will proceed, 

making  way  for  the  other  thread  to  acquire  the  SHARED,  RESERVED  and 

EXCLUSIVE locks to commit. It can be seen that this creates a problem of starvation. 

While  SQLite  is  not  designed  for  high  performance  concurrent  applications 

which cannot tolerate starvation, the number of locking steps between SHARED lock 

and EXCLUSIVE lock mean more calls  to the operating system. Moreover,  the two 

threads may be writing to two different pages of the database file. This scenario could 

benefit  from  using  light-weight  locking  mechanisms  and  fine-grained  locks  for  the 

database file.

2.2 Implementation of Byte-Range Locks

In this implementation, the granularity of locking is modified from database file-

level locks to page-level locks. By doing so, exclusive locking of the database file can be 

avoided when multiple threads are writing to non-overlapping pages of the database file. 

Whenever a commit occurs, a set of pages are written to the database. Before writing this 

list of pages, they are sorted based on the page numbers, a byte-level lock is obtained 

from the starting page to the last page in the page list and then the write call is invoked.  

Since the page-list is sorted before acquiring the byte-level lock, there is no chance that 

two threads acquire write locks on overlapping pages, thereby avoiding the situation of a 

deadlock.

12



This section is divided into two sub-sections: 2.2.1 describes the Control flow of 

SQLite read and write transactions and section 2.2.2 describes the changes to implement 

byte-level locking.

2.2.1 Control Flow of SQLite Read and Write Transactions

Common  SQLite  statements  such  as  INSERT,  UPDATE,  DELETE  and 

REPLACE result in data being manipulated and eventually end as sqlite read or write 

calls  to  the  actual  database  file.  The  SQLite  exec  method  is  a  wrapper  around  the 

prepare, step and finalize methods. 

The prepare method checks for  the integrity of  the  Database  schema version 

number,  by comparing the integer value read from the database file with the integer 

value of the in-memory schema representation. 

The step method starts a Virtual DataBase Engine (VDBE) [12] which works on 

the parameters passed to start a state machine. The state machine's job is essentially to 

figure out the right set of operations to perform on the SQLite statement. When it is time 

to begin a read or write transaction to the database, the VDBE calls the Btree's begin 

transaction method. Every database has an associated B-tree data structure. The B-tree is 

an on-disk representation of the database, with a separate B-tree for each table and index 

in the database. The B-tree methods access the lower Pager sub-system to perform reads 

and writes to the database. The I/O occurs in fixed block/page sizes of 512 bytes or a 

higher power of 2. This is called the page size. When the pager sub-system is ready to 

begin  a  transaction,  it  calls  sqlite3PagerBegin()  method.  Until  now,  the  lock  on the 

13



database file was a SHARED lock. Within the call to sqlite3PagerBegin(), the lock level 

is raised to RESERVED lock. The pages are read from the database file and placed in the 

page cache. The VDBE state machine performs appropriate actions on the page based on 

the type of statement. If the page has to be written back to the database, the page is 

marked writable and the rollback journal is updated. The steps in changing the Journal 

file involves opening the Journal, reading the Journal header and writing the previous 

version of the page out to the Journal. At a point when the transaction has come to an 

end, the VDBE commit state kicks in. At this stage, the data from the page cache must be 

destaged to the database file. The VDBE commit method acquires an Exclusive lock on 

the database file, syncs the Journal just in case the the data was still  held in the OS 

buffers, and performs two phases of commit. The first phase writes out the pages to the 

database file  and the  second phase decrements  the  lock  level  from EXCLUSIVE to 

RESERVED and then to SHARED.  If required, the Journal file is truncated since all the 

data has been committed. 

The finalize method is used to free up the memory allocated to the VDBE and 

delete the instance of the VDBE.

 The control flow of the read and write was obtained by adding traces to functions 

and dumping them to a file. 

The locking primitives on the database file is implemented by the unixLock() 

method which accepts the file descriptor and lock-type as arguments. The method first 

does a sanity check to see if the request is valid. A valid request is one in which a higher 

lock is requested while holding a lower level lock. A thread will be able to obtain a 

14



RESERVED only if it holds a SHARED lock. The section 2.2.2 provides details on the 

changes made to implement byte-range locking.

2.2.2 Changes to Implement Byte-Level Locking

In the original code which had 4 levels of locking, the reserved and pending 

locks were required to avoid write starvation. Byte-range locks enable locking portions 

of the file exclusively. With such locks in place, it is possible to eliminate reserved and 

pending locking levels. This is because, the entire file is not locked for a write operation 

and so portions of a file can still be read using shared locks. In the modified approach, 

the byte-range locks are implemented at a page level. A page is the smallest unit that can 

be read or written to the database file. The locking state of each page is maintained in 

memory. In this way, it is possible to read portions of file, still writing to other pages in  

the database file.

A locking method named unixLockByte() is created, which takes the start_byte 

and end_byte of the file to be locked in addition to the file descriptor and lock-type. The 

locking is internally implemented using POSIX fcntl() system calls. The fcntl() call  [13]

[14] takes the file descriptor, a command parameter which tells the system call to get/set 

record locks and the third argument is a pointer to an flock structure. The flock structure 

contains mainly the following:

1. Lock type – Read lock, write lock or Unlock

2. start_byte – the starting offset in bytes relative to 'whence'

15



3. whence – it can be either SEEK_SET, SEEK_CUR or SEEK_END. The starting byte 

offset will be set from the beginning of the file, current position of the file descriptor or 

from the end respectively.

4. length or the range or bytes to lock from start_byte

5. pid of the process holding the lock in case it is already held by another process.

The  unlock  method  is  also  implemented  in  a  similar  fashion.  The 

unixUnlockByte() method takes the file descriptor, type of lock to downgrade to and the 

start_byte  and  end_byte.  The  fcntl()  call  is  used  to  decrement  the  locking  level  by 

specifying lock type of flock structure as F_UNLCK. The unlock methods are called by 

the phase-two commit methods since SQLite follows a two-phase locking mechanism to 

ensure the isolation property of the database is maintained. Locks are acquired until the 

phase-one  commit  but  never  released.  During  the  phase-two  commit,  the  locks  are 

released in the reverse order. 

With the enhancement of byte-range locks in place at page level (Figure 5), two 

threads can write to different regions of the database file. The behavior of the record-

level  or  byte-level  locks  follows  the  same  principle  enforced  by  using  SHARED, 

RESERVED and EXCLUSIVE locks. When there are one or more read locks on a given 

16

Figure 5:  Byte-Range Locks for Pages

Page 1 
metadata

Page 2 Page 3 Page 4 Page 5

Thread 1
Exclusive

Thread 2
Exclusive



byte-range,  a write lock is denied until  all  the read locks have been cleared.  Only a 

single thread can hold a write lock for a byte-range.  For all  other cases,  the lock is 

granted. Therefore, multiple reads can go in parallel in this case too. 

Since we want more light-weight locking mechanisms, the number of levels of 

locking is reduced to using SHARED and EXCLUSIVE locks. The SHARED locks are 

also  obtained as  byte-range locks  and are  used  to  read  the  database.  Since  multiple 

F_RDLCK (read locks) can co-exist, reads can go in parallel. If two or more threads 

want to write to the same byte-range, they will be serialized. The problem of starvation 

still  exists,  since  writes  cannot  go  ahead  until  all  the  reads  to  a  byte-range  have 

completed. But we see that it does not make a big difference because applications do not 

perform heavy concurrent reads and write on the same block. The I/O pattern mostly 

remains random with some updates to same block addresses [2]. 

SQLite  uses  the  first  page  on  the  database  file  to  store  meta-data  about  the 

database. There is a 4-byte integer at offset 24 called 'dbFileVers', which is incremented 

after each database change. While acquiring the SHARED lock, this integer is read from 

the database file and checked with the in-memory copy. If there is a mismatch, the Page 

cache is flushed to remove any invalid entries. In our implementation, it is possible that a 

thread writes to a database file and another thread sees a mismatch of this field, thereby 

flushing the page cache. However, the library is built with Shared-Cache feature enabled, 

so that multiple connections to the database from a process can share the page cache. 

Moreover, in android, each application runs as a process and it has its own database files. 

Therefore,  the  entire  page  cache  is  shared  between  multiple  threads  which  open  a 

17



connection to the database and the pages that were changed are visible to all the threads. 

As an optimization, the check of 'dbFileVers' is not performed and the page cache is not 

flushed while acquiring the SHARED lock. It may also be possible to mark as dirty / 

invalidate the modified pages in the cache of multiple processes if more than one process 

is accessing the database. But, that feature is not implemented as part of this project. 

At the point where phase-one commit is done, the page list to be committed is 

sorted by the page number. Locks are always acquired for the range of sorted page range 

and they never  should overlap.  Locks are also acquired until  phase one commit  and 

released in phase two commit. This ensures a deadlock free system. 

The equations to calculate the starting and ending byte of the commit is given in 

Table 2. The variable 'begin' is initialized to the first page number in the commit list and 

the variable 'end' is initialized to the last page number in the commit list.

Byte Range Expression to calculate byte-range
start_byte (begin-1) * pageSize
end_byte (end * pageSize)

Table 2: Byte-Range Calculation

An EXCLUSIVE byte-range lock is obtained on the database file from start_byte 

to end_byte, the page list is written to the database and the database is unlocked and the 

lock-level  is  set  to  SHARED lock.  If  an  error  occurs  in  any of  the  operations,  the 

EXCLUSIVE lock is given up and the normal error handling routines are called. 

18



This concludes the implementation of byte-range locks for writing to the 

database file. The next section describes the evaluation of byte-range locking using 

different benchmarks.

19



3. EVALUATION OF BYTE-RANGE LOCKING

This section is split into 3 sub-sections – 3.1 covers the experimental setup, 3.2 

covers  the  benchmarks  that  were  run  and  3.3  concludes  this  section  with  some 

comments.

3.1 Experimental Setup

The code was developed for the Android operating system. Android was ported 

to the x86 platform by the android-x86 project [15]. This enables the use of Android on 

x86 processors either directly or over Virtual Machines. The virtual machine approach is 

more suitable because it allows ease of testability and debugging. The android operating 

system is compiled as an iso image [16] which can be loaded using the Virtual Player. 

We  use  Virtual  box  [17] as  a  virtual  machine  player  for  the  experiments.  The 

configuration of the host system and the space allocated for the guest operating system 

are as follows:

• Android x-86 kernel image on Virtual Box

• Intel i3 – Quad core CPU 2.1GHz

• 6 GB System RAM

• 1 GB RAM allocated to Virtual machine 

• The virtual number of cores is set to 4

• 2 GB SATA hard disk for data storage, including apps and data

20



After  the  android  image  is  installed  as  a  virtual  machine,  the  image  disk  is 

unmounted to  enable normal  booting of the operating system. The Android-x86 in a 

virtual  box  offers  the  same  features  as  the  firmware  loaded  into  a  mobile  device. 

Additionally, the command line can be accessed by switching to TTY1. The command 

line is a busybox shell utility  [18] that allows the user to enter frequently used Linux 

commands.  The guest machine can access the host machine's internet connection. The 

IP address of the guest machine can be assigned by starting the DHCP client daemon 

[19]. The DNS server address may sometimes not be set properly. It can be set using the 

'setprop'  command  [20].  Now that  the  internet  connection  is  setup,  we can  proceed 

transferring applications from the host  machine to  the guest machine using SCP file 

transfer [21]. The APK files [22] can be installed using ADB install command [23] from 

the busybox shell. On a successful install, the application becomes accessible from the 

apps screen.

We use four benchmarks to evaluate the performance of using byte-range locks. 

The discussion on benchmarks and the results are given in section 3.2.

3.2 Benchmarks and Results

The benchmarks used to evaluate the performance of byte-range locks are :

• Androbench

• RL Bench

• Firefox Browser

• DB Bench

21



3.2.1 Androbench

Androbench [24] is one of the benchmarks available to measure the transactions 

per  second  (TPS)  and  latency  of  SQLite  insert,  update  and  delete  operations.  The 

benchmark is run with SQLite insert, update and delete each doing 300 transactions. The 

Figure 6 gives the TPS for each of the operations and a comparison of vanilla code and 

with the byte-range lock changes. It can be seen that the modified code can give up to 

15% more transactions per second than the vanilla code for insert and delete operations, 

but  no  significant  gain  for  update  operations.  This  benchmark  is  a  single  threaded 

benchmark,  and  so  the  gain  that  we  see  is  mainly  from  the  light-weight  locking 

mechanism. In Figure 7, we see a corresponding pattern for latency of insert, delete and 

update.

22

Figure 6: Androbench : Transaction Per Second for Various SQLite Operations 

SQLite Insert SQLite Update SQLite Delete
0

20
40
60
80

100
120
140
160
180

Androbench benchmark

Transaction rate

Vanilla
With byte-lock changes

tra
ns

ac
tio

ns
 p

er
 s

ec
on

d



3.2.2 RL Benchmark

The RL benchmark [25] is used to measure the time taken for a variety of 

database operations. The benchmark starts a predefined set of operations and gives the 

time taken for individual set of operations as well as the total time for all operations. The 

Figure 8 gives the data for 1000 inserts, 25000 inserts within a transaction and 25000 

inserts into an indexed table inside a transaction. It was noticed that for other operations, 

there was no significant improvement and hence they are not shown. While the 

performance of the three types of operations show an improvement, the operations 

performed within a transaction generally show higher performance gains. This is due to 

the reduced number of commit operations to the database file. Also, with an indexed 

23

Figure 7: Androbench : Time Taken for Various SQLite Operations

SQLite Insert SQLite Update SQLite Delete
0

0.5

1

1.5

2

2.5

Androbench benchmark

Latency

Vanilla
With byte-lock changes

Ti
m

e 
(s

)



table there is about 15% performance gain. This is mainly obtained by avoiding the 

overhead to iterate through the data structure and find the correct index.

3.2.3 Browser Benchmark 

Next, we look at a browser benchmark using the Firefox web browser [26]. The 

Firefox browser uses SQLite to store data and meta-data. This was verified by adding 

traces to the SQLite library and running the Firefox application. By opening multiple 

tabs  simultaneously,  the  database  must  be  accessed  by each  tab  to  commit  data.  A 

mechanism is designed to open tabs simultaneously. First, the required number of tabs 

24

Figure 8: RL Bench : Time Taken for Various Operations
x-axis : (a) 1K inserts   (b) 25K inserts in a transaction   (c) 25K inserts into an indexed 
table in a transaction

a b c
0

0.5

1

1.5

2

2.5

3

3.5

RL bench

Latency

vanilla
with byte-lock 

tim
e 

(s
)

Total time: 
Vanilla 17s
With byte-lock 14.5s



are opened,  then the app is  closed.  When the browser is  restarted,  the web-cache is 

cleared and the previous session is restored. At this time, the data is downloaded for each 

tab and the database is accessed for each tab. The total duration from opening the set of 

tabs to the point when the web page is loaded by all the tabs is measured. The page being 

downloaded is present in the host machine. In this way, we can eliminate the variation in 

download times of internet pages. The download size represents the size of the web-page 

downloaded by each tab. The following Figures 9 - 12 give the download times for each 

set.

The improvement for download size of 128 KB is in the order of 10% on an 

average for multiple tabs. We also notice that there is no significant improvement in 

download time for a single tab in download sizes 256, 512 and 1024 KB. For all other 

cases,  there  is  an  average  improvement  of  15%  in  download  times.  The  peak 

improvement is seen with download size of 512 KB. In this case, (Figure 11) we can get 

around  20%  improvement  on  an  average.  The  download  sizes  have  an  impact  on 

determining the performance gain. As download size increases, more data is pushed to 

be written to the drive. This essentially takes majority of the time and hence we see a 

lesser improvement in download times. It should be noted that the fsync() calls in the 

SQLite library are not disabled and hence the library ensures that data is written to the 

drive cache. The data containing the download time for various data sizes is shown in 

Figures 9 - 12, along with the standard deviation of each data-set.

25



26

Figure 10: Firefox Benchmark : Download Times for Tabs 1-4 : Size 256KB

1 tab 2 tabs 3 tabs 4 tabs
0
5

10
15
20
25
30
35
40
45

Firefox browser benchmark

download size 256KB

vanilla
byte_lock

tim
e 

(s
)

Figure 9: Firefox Benchmark : Download Times for Tabs 1-4 : Size 128KB

1 tab 2 tabs 3 tabs 4 tabs
0

2

4

6

8

10

12

14

Firefox Browser benchmark

download size 128KB

vanilla
byte_lock

tim
e 

(s
)



27

Figure 11: Firefox Benchmark : Download Times for Tabs 1-4 : Size 512KB

1 tab 2 tabs 3 tabs 4 tabs
0

20
40
60
80

100
120
140
160
180

Fire fox Browser benchmark

download size 512 KB

vanilla
byte_lock

tim
e 

(s
)

Figure 12: Firefox Benchmark : Download Times for Tabs 1-4 : Size 1MB

1 tab 2 tabs 3 tabs 4 tabs
0

50

100

150

200

250

300

350

Firefox browser benchmark

download size 1MB

vanilla
byte_lock

tim
e 

(s
)



3.2.4 DB Bench

Next, we look at a customized benchmark extended from TestIndex benchmark 

[27]. The original benchmark is a single-threaded benchmark and the customized one is 

a  multi-threaded  benchmark.  It  performs  4  operations  –  inserting  1000  records, 

performing 20000 index searches, iterating through 20000 records and deleting 10000 

records.  The benchmark,  DB Bench opens multiple  connections  to  the database and 

accesses different  tables from each thread. SQLite supports table-level locking and so 

the writes can go simultaneously to two different tables. At the database EXCLUSIVE 

lock level, we have byte-range locks and so, the pages would be locked independently. 

28

Figure 13: DB Bench : 2 Threads 
Time taken for  (a) inserting 1K records, (b) performing 20K index searches, (c) 

iterating through 20K records and (d) deleting 10K records

a b c d
0

10
20
30
40
50
60
70

DB bench

custom benchmark - 2 threads

vanilla
byte lock

tim
e 

(s
)



From Figure 13, we can notice a performance improvement of 10% in case of 2 

threads inserting 1000 records each. There is an average improvement of 10% for index 

searches and 20% for deleting records. The performance gain also comes from the light-

weight locking mechanisms that were used.

The custom benchmark is also extended to perform overlapping updates, where 

data from the same table is accessed and non-overlapping updates, where data from two 

different tables are updated. 

From Figure 14, we see that there is a performance gain of about 30% for non-

overlapping updates, mainly because we perform a fine-grained locking on the database 

pages. The performance gain for overlapping updates is about 22%. We notice that the 

29

Figure 14: DB Bench : Time Taken for Overlapping vs Non-Overlapping Updates

Non-overlapping update 120000 records
Overlapping update 120000 records

0
10
20
30
40
50
60
70
80

DB Bench

Custom benchmark - 2 threads

vanilla
byte_lock

tim
e 

(s
)



performance does not really double for non-overlapping updates. This may be due to an 

inherent amount of work done before actually writing to the database file. 

 

3.3 Conclusion of Enhancement using Byte-Range Locking

With byte-range locks obtained across pages of the database, we see a benefit in 

single-threaded and multi-threaded benchmarks. We see a consistent improvement for 

SQLite  inserts.  For  SQLite  updates,  the  benefit  is  not  as  great  as  inserts.  The 

experiments were repeated as many times to obtain a consistent value. The graphs also 

show the standard deviation of the range of results. 

30



4. ENHANCEMENT TO WRITE AHEAD LOGGING

In this section, an overview of write ahead log (WAL) is presented, followed by 

its implementation in SQLite and the details on the enhancements to write ahead log, 

including the recovery mechanisms in case of power failures.

4.1 Overview of Write Ahead Logging

Database systems are designed to support atomic transactions, have durability, 

consistency and isolation [28][29]. Write ahead logging is a mechanism which provides 

atomicity and durability for the database. One requirement for write ahead logs is that a 

version of a page present in the log must not be overwritten until that version of the page 

has been committed to a nonvolatile storage media [30]. Usually, the logs keep growing 

until  a point where the pages in the log must be committed to the stable storage.  A 

growing log-file ensures that all data required to restore the state of a transaction are 

available in case of a power failure. Failures can also occur in the system, storage media 

or the process itself. The log must ensure durability in all these cases. 

With the current implementation of WAL as described in section 4.2, the log file 

is locked for each append. There is a potential for multiple threads to append to the log 

file if each of the threads know in advance the offset at which it has to write the data.  

Such  an  approach  is  discussed  in  section  4.3.  Moreover,  we  notice  that  checkpoint 

frequency  can  further  be  reduced  from  the  current  implementation  to  enhance  the 

31



performance. This approach is also discussed in section 4.3 along with a comparison of 

both the approaches.

4.2 WAL Implementation in SQLite [3]

SQLite uses two kinds of mechanisms to ensure durability of database – one is a 

rollback journal and the other is write ahead logging. The Write Ahead Log is a file in 

the same directory as the database file. The file contains a header of size 32 bytes stored 

in big endian format. It is organized as a sequence of frames. Each frame consists of a 

header and the database page it  represents.  The contents of the WAL header  [31] is 

shown in Table 3.

WAL Header ( 32 bytes)
Byte offset 0: Magic number.  0x377f0682 or 0x377f0683 
4: File format version.  Currently 3007000 
8: Database page size.  Example: 512 
12: Checkpoint sequence number 
16: Salt-1, random integer incremented with each checkpoint 
20: Salt-2, a different random integer changing with each checkpoint 
24: Checksum-1 (first part of checksum for first 24 bytes of header). 
28: Checksum-2 (second part of checksum for first 24 bytes of header)

Table 3: Header of the Write Ahead Log

32



The contents of the frame header [31] is shown in Table 4.

Frame header ( 24 bytes )
Byte offset 0 : Page number. 
4: For commit records, the size of the database measured in pages after 

the commit. For all other records this field is zero. 
8: Salt-1 (same as header) 
12: Salt-2 (same as header) 
16: Checksum-1
20: Checksum-2

Table 4: Frame Header of the Log

All  changes  to  the  database  are  recorded  by  writing  frames  into  the  WAL. 

Transactions commit when a frame is written that contains a commit marker.  A single 

WAL  can  record  multiple  transactions.   Periodically,  the  content  of  the  WAL  is 

transferred back into the database file in an operation called a "checkpoint". A single 

WAL file can be used multiple times.  In other words, the WAL can fill up with frames 

and then be check-pointed and then new frames can overwrite the old ones.  A WAL 

always grows from beginning toward the end.  Check-sums and counters attached to 

each frame are used to determine which frames within the WAL are valid and which are 

leftovers from prior checkpoints. 

33



In order to read a page from the database file, the reader algorithm first checks 

the log to see if it contains the page.  If the log contains the requested page, the last valid 

page with the same page number before a commit frame will be returned. Otherwise, the 

requested page is read from the database file.

The Salt values and the check-sums are used to confirm the validity of a frame. 

The write ahead log is always written towards the end indicated by the 'mxFrame' value, 

as depicted in Figure 15. 'mxFrame' is the total number of frames in the WAL. The WAL 

is managed by using an in-memory data structure wal-index. It is reconstructed each 

time a system resumes after a failure, by reading each frame header from the log and 

gathering information on the valid frames that are present in the log.  The wal-index 

contains all relevant information about the WAL, including the mxFrame. The wal-index 

can also be used to find the last occurrence of a page in the WAL.

The access to the write ahead log is limited to a single thread due to file level 

locking. It is however possible that multiple threads could append to the log provided 

they know the exact index to which data has to be appended. In section 4.3, the process 

34

Figure 15: Write Ahead Log : Locking Mechanism and Appending Mechanism

WAL 
header

Frame 0 
header + 
Data

Frame 1 
header + 
Data

Frame 2 
header + 
Data

Frame 3 
header + 
Data

mxFrame



of  adding  such a  mechanism to  the  write-ahead  log  to  support  append  by different 

threads is discussed. 

 In the trace collected for DB bench, it is noticed that the library checkpoints 

frequently,  even  when  the  write  ahead  log  frames  have  not  been  completely  filled. 

Limiting this checkpoint frequency can also have a significant impact on performance. 

Such a mechanism is also discussed in enhancements to write ahead log - section 4.3.

4.3 Enhancements to Write Ahead Log

As discussed in section 4.2, write-ahead logs only need to be appended at every 

write. In the enhanced implementation, a sequencer [32][33] is used by the write method 

of write-ahead log in order to allow multiple threads to write to the WAL. The function 

of the sequencer is to maintain the correct value of the end of the log. Any thread that  

wants to write to the WAL gets the last position in the log file from the sequencer. Any 

change to the sequencer happens under a lock so that multiple threads don't get the same 

end value. Once the position to write to the log has been obtained, the sequencer lock 

can be released and the thread can write to the log.  The action of the sequencer is 

depicted in Figure  16.  As long as every thread goes through the sequencer,  multiple 

writes can proceed to the log simultaneously. 

35



The method of writing to log using the index provided by the sequencer may 

introduce holes in the log in case of a failure. When power is restored, the library checks 

if a valid write ahead log is present. The log is read and the database is restored until the 

valid commit operations. The validity of a frame can be verified using the salt values and 

comparing them with the header of the WAL. If,  while replaying the log, an invalid 

frame is encountered, that transaction is not committed to the database. The values that 

follow  this  frame  are  also  ignored.  This  is  performed  to  maintain  the  integrity  of 

transactions.

Another  improvement  to  the WAL is  delaying checkpoints  from applications. 

Check-pointing is the action of copying out the frames from the log file to the database 

file and truncating the log. By default, the WAL is check-pointed periodically, mostly 

when the log is full. The size of the log is 1000 frames by default, but it may be changed 

by using  the  configuration  methods  provided  by  SQLite.  The  application  may  also 

request to checkpoint the log at any time. By delaying such checkpoints, the latency can 

36

Figure 16: Write Ahead Log : Locking Mechanism with Sequencer

WAL 
header

Frame 0 
header + 
Data

Frame 1 
header + 
Data

Frame 2 
header + 
Data

Frame 3 
header + 
Data

mxFrame
Sequencer



be reduced at the cost of relaxing the durability constraints. The durability is however 

not sacrificed by delaying checkpoints.

At the start of writing a set of frames to the log, the method checks if the log can 

be restarted, that is, started from index 0. Since we append to the log each time and delay 

checkpoint until the log is full, this check can be omitted. 

Finally, at the end of each checkpoint, the sequencer is set to 0 so that the log can 

restart.

In  the  next  section,  the  evaluation  of  changes  to  the  write-ahead  logging  is 

discussed.

37



5. EVALUATION OF CHANGES TO WRITE AHEAD LOGGING

To find the performance impact of changes to write ahead log, the application 

must request the library to use WAL for the existing connection. The default journaling 

mode is rollback journal. There are two changes made to the library – a) delaying the 

checkpoint and b) introducing a sequencer to append to the log. We find the impact of 

enabling either a, b or both. The performance is measured using five benchmarks. 

• DB Bench

• Comparison between SSD and HDD

• Maximum performance gain analysis - DB Bench

• Sandisk and Intel SSD comparison

• Comparison with Berkeley DB

5.1 DB Bench Benchmark

The DB Bench which was used for the evaluation of byte-range locks is used 

here too. However, it is slightly modified to perform only insert or update operations. 

For update operations, the records are first inserted to the database and then updated. It is 

seen that having both a and b is beneficial for two threads and does not cause decrease in 

performance in other cases. An Intel SSD is used for storage. Figure 17 shows the time 

taken for 10K inserts and Figure 18 shows the time taken for only 25K updates. While 

we can notice an equal improvement for (a) and (b), the reason behind this is not clear.

38



39

Figure 18: DB Bench - 25K Updates on Intel SSD

1 thread 2 threads 3 threads 4 threads
0

5

10

15

20

25

DB Bench

25K updates on SSD

vanilla
only delayed checkpoint
only sequencer
both sequencer and delayed 
checkpoint

tim
e 

(s
)

Figure 17: DB Bench - 10K Inserts on Intel SSD

1 thread 2 threads 3 threads 4 threads
0

10

20

30

40

50

60

70

DB Bench

10K inserts on Intel SSD

vanilla
(a) only delayed checkpoint
(b) with sequencer
both (a) and (b)

tim
e 

(s
)



5.2 Comparison between SSD and HDD

Next, the enhancements are compared on Solid State Drive and Hard Disk Drive 

(Figure 19 to Figure 22). For the vanilla code, the response times almost go in parallel. 

There  is  not  much deviation  in  the  the  slope  of  these  two curves.  But,  for  delayed 

checkpoint and using a sequencer, the hard disk time increases rapidly with increase in 

the number of threads.  This is due to the conversion of sequential  writes to random 

writes using a sequencer. The increase is not so much in case of SSD since SSDs don't  

incur head seeks for random writes. With both delayed checkpoint and the sequencer, we 

see a similar behavior.

40

Figure 19: DB Bench : Comparison of SSD and HDD - Vanilla Code

1 thread 2 threads 3 threads 4 threads
0

20

40

60

80

100

120

140

DB bench - Comparison between SSD and HDD

Vanilla code

SSD
HDD

tim
e 

(s
)



41

Figure 20: DB Bench : Comparison of SSD and HDD - Delayed Checkpoint

1 thread 2 threads 3 threads 4 threads
0

10

20

30

40

50

60

70

DB Bench - Comparison between SSD and HDD

with delayed checkpoint

SSD
HDD

tim
e 

(s
)

Figure 21: DB Bench : Comparison of SSD and HDD - Sequencer

1 thread 2 threads 3 threads 4 threads
0

10

20

30

40

50

60

DB Bench - Comparison between SSD and HDD

with sequencer

SSD
HDD

tim
e 

(s
)



5.3 Maximum Performance Gain Analysis - DB Bench

The byte-range locking from phase one is combined with enhancements to WAL 

and the performance is compared using DB Bench (Figure 23). With both enhancements, 

the performance can get a lot better as seen from Figure 23. However, it should be noted 

that this is only a measure of potential performance that can be reached. The locking 

primitives were turned off for write ahead log and the byte-range lock was also added. 

This greatly reduces the overhead of locking. This only goes to show that there is scope 

for more improvement in performance by minimizing the locking primitives and that 

they do significantly add a overhead by heavily synchronizing  database operations.

42

Figure 22: DB Bench : Comparison of SSD and HDD - Both Enhancements

1 thread 2 threads 3 threads 4 threads
0

10

20

30

40

50

60

70

DB Bench - Comparison between SSD and HDD

with sequencer and delayed checkpoint

SSD
HDD

tim
e 

(s
)



5.4 Sandisk and Intel SSD – A Comparison

Next, we compare the response times obtained from Intel SSDs to Sandisk Flash 

drives (Figure  24 to Figure  27). Both show similar performance in most of the cases. 

There is considerable performance improvement over vanilla code for both flash drives. 

Since both are flash drives, it can be inferred that the performance variation is not as 

visible as a HDD and a SSD.

43

Figure 23: DB Bench : Performance Comparison for Various Enhancements

1 thread 2 threads 3 threads 4 threads
0

10

20

30

40

50

60

70

DB Bench - SSD

potential performance with byte-range locking

vanilla
(a) only delayed checkpoint
(b) with sequencer
both (a) and (b)
potential performance

tim
e 

(s
)



44

Figure 24: DB Bench : Comparison of Flash Drives - Vanilla Code

1 thread 2 threads 3 threads 4 threads
0

10
20
30
40
50
60
70

Comparison of flash drives

vanilla code

Sandisk
Intel

tim
e 

(s
)

Figure 25: DB Bench : Comparison of Flash Drives - Delayed Checkpoint

1 thread 2 threads 3 threads 4 threads
0

5

10

15

20

25

30

Comparison of flash drives

delayed checkpoint

Sandisk
Intel

tim
e 

(s
)



45

Figure 26: DB Bench : Comparison of Flash Drives - Sequencer

1 thread 2 threads 3 threads 4 threads
0

5

10

15

20

25

30

Comparison of flash drives

sequencer

Sandisk
Intel

tim
e 

(s
)

Figure 27: DB Bench : Comparison of Flash Drives - Both Enhancements

1 thread 2 threads 3 threads 4 threads
0
5

10
15
20
25
30
35

Comparison of flash drives

both delayed checkpoint and sequencer

Sandisk
Intel

tim
e 

(s
)



5.5 Comparison with Berkeley DB

Finally, we compare the SQLite database with Berkeley DB [34]. Berkeley DB 

supports many features like fine grained locking and improved concurrency [35]. But, it 

is seen that Berkeley DB performs well for inserts and SQLite performs well for all other 

cases (Figure 28). It could be that Berkeley DB is not optimized for a lot of operations 

that are performed. The final bar in Figure 28 gives the total time for the entire RL bench 

benchmark. It is significantly less for SQLite than it is for Berkeley DB.

46

Figure 28: Comparison of SQLite and Berkeley DB
x-axis : (a) 1 K inserts (b) 25 K inserts in a transaction 

(c) 25 K inserts into an indexed table in a transaction 

(d) 1K updates without index (e) 25 K updates with an index (f) Total time

a b c d e f
0

10

20

30

40

Comarison of Sqlite and Berkeley DB

RL Bench

vanilla berkeley DB
vanilla sqlite

tim
e 

(s
)



6. CONCLUSION AND FUTURE WORK

The thesis  covered  two enhancements  to  the  SQLite  library,  used  by mobile 

systems to  store  structured  data.  The  SQLite  library was  modified  to  provide  light-

weight locking mechanisms. Such a locking mechanism can improve performance and 

reduce some locking overhead of writes to  the database.  This was verified from the 

various benchmarks that were run. A byte-range locking mechanism was introduced to 

enable better  concurrent  access to  the database file.  The effect  of  adding byte-range 

locks is measured from various multi-threaded benchmarks. 

The  second  enhancement  is  done  to  the  write  ahead  log.  A  sequencing 

mechanism is added to enable concurrent access to the log. The performance is measured 

using  multi-threaded  benchmarks.  We  note  that  performance  can  be  improved  by 

reducing the checkpoint frequency to the minimum value. The performance of using a 

sequencer and reducing checkpoint frequency was compared across various benchmarks 

as well as using different types of storage devices. It is inferred that flash drives can see 

more improvements from enhancements to write ahead log. 

While  setting  up  benchmarks  for  write  ahead  log,  it  was  noticed  that  many 

applications do not enable the write ahead log. Since WAL is not enabled by default, 

such applications may see a lower performance.

The results obtained from changes to write ahead log indicate that there is scope 

for more improvement in this area in terms of minimizing the locking primitives. Mobile 

systems use flash memory for data storage. As a result, we can see significant gain in 

47



performance if  the entire software stack is  designed for flash memory.  Most storage 

subsystems  were  designed  for  disk-based  systems  and  are  reused  for  flash  based 

systems. By changing the storage stack, significant improvements can be noticed. 

It has already been discussed that employing a Phase Change Memory (PCM) 

can  improve  performance.  Even  if  the  speed  of  hardware  is  increased,  we  need  to 

employ  the  right  software  designed  for  these  systems  to  see  large  gains.  An 

implementation of a file system for Storage Class Memory [36][37] opens the possibility 

of more performance improvements by using faster memory as well as a file system 

designed for non-volatile media like PCM. Moreover, if a database system needs to be 

used for such systems, a database for PCM [38] can be used to design a well balanced 

system.

48



REFERENCES

[1] D.  Richard  Hipp,  Accessed  in  Feb  2013,  “About  SQLite  section”,  SQLite  : 

www.sqlite.org/about.html

[2] Hyojun Kim,  Nitin  Agrawal  and Cristian  Ungureanu,  “Revisiting  Storage  for 

Smartphones”,   in Proceedings  of  the  10th  Conference  on  File  and  Storage  

Technologies (FAST '12), Feb 2012

[3] SQLite  Development  Community,  Available  from  Jul  2010,  “Write  Ahead 

Logging section”,  http://www.sqlite.org/wal.html

[4] Linus Torvalds, Accessed in Nov 2012, “Download and Wiki Page of Kernel 

version 3.0”, http://kernel.org/

[5] Wiki Contribution, Available from Jun 2011, “Android Architecture Diagram”, 

http://elinux.org/Android_Architecture 

[6] Android Developer APIs Web Contributors, Accessed in Feb 2013, “SQLite 

Package”,http://developer.android.com/reference/android/database/sqlite/package

-summary.html 

[7] SQLite Web Community, Accessed in Apr 2013, “Overview Documents section”, 

http://www.sqlite.org/docs.html

[8] D.  Richard  Hipp,  Accessed  in  Apr  2013,  “SQLite  Architecture  Diagram”, 

http://www.sqlite.org/arch.html 

[9] SQLite  Web  Community,  Accessed  in  Nov  2012,  “SQLite  Locking”, 

http://www.sqlite.org/lockingv3.html

49

http://www.sqlite.org/lockingv3.html
http://www.sqlite.org/arch.html
http://www.sqlite.org/docs.html
http://developer.android.com/reference/android/database/sqlite/package-summary.html
http://developer.android.com/reference/android/database/sqlite/package-summary.html
http://elinux.org/Android_Architecture
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/log/?id=refs/tags/v3.0.82
http://www.sqlite.org/wal.html
http://www.sqlite.org/


[10] SQLite  Web  Community,  Accessed  in  Nov  2012,  “Shared  Cache  Mode 

section”,   http://www.sqlite.org/sharedcache.html

[11] Sibsankar Haldar, “Inside SQLite”, O'Reilly Media, Inc., 2007, pp 26-36

[12] SQLite Web Community, Available from Feb 2003, “Virtual DataBase Engine 

for SQLite as used in version 2.8.0”,  http://www.sqlite.org/vdbe.html

[13] The Open Group Base Specification, Accessed in Jan 2013,  “fcntl() 

description”, 

http://pubs.opengroup.org/onlinepubs/009695399/functions/fcntl.html

[14] W.  Richard  Stevens,  “Advanced  Programming  in  UNIX  Environment”, 

Addison-Wesley Professional Publishing, 2nd edition, section 14.3, 2005

[15] Chih-Wei  Huang,  Available  from  Jul  2012,  “Android  x86  4.0  Download 

section”,  http://www.android-x86.org/getsourcecode

[16] AOSP Developer  Community,  Accessed  in  Sep  2012,  Building  Customized 

Kernel for Android-x86, http://www.android-x86.org/documents/customizekernel

[17] Oracle  Virtual  Box  Developer  Community,  Accessed  in  Sep  2012,   “i386 

version for Ubuntu 10.04”,  https://www.virtualbox.org/wiki/Linux_Downloads 

[18] Denys  Vlasenko,  Accessed  in  Apr  2013,  “Busybox  Utility  FAQ and  About 

sections”,  http://www.busybox.net/about.html

[19] Sergei  Viznyuk,  Accessed  in  Jan  2013,  “DHCP  Command  Reference  and 

Description”,  http://www.phystech.com/download/dhcpcd_man.html 

[20] Wiki Contribution,  Available from May 2011, “Android Networking: Setting 

the DNS Server”,  http://elinux.org/Android_Networking 

50

http://www.android-x86.org/documents/customizekernel
http://elinux.org/Android_Networking
http://www.phystech.com/download/dhcpcd_man.html
http://www.busybox.net/about.html
https://www.virtualbox.org/wiki/Linux_Downloads
http://www.android-x86.org/
http://pubs.opengroup.org/onlinepubs/009695399/functions/fcntl.html
http://www.sqlite.org/vdbe.html
http://www.sqlite.org/sharedcache.html


[21] Wiki  Contribution,  Accessed  in  Feb  2012,  “Secure  Copy  Program  Usage”, 

http://en.wikipedia.org/wiki/Secure_copy 

[22] Open Source File Format Wiki Contribution, Accessed in Apr 2013, “APK File 

Format”, http://en.wikipedia.org/wiki/APK_(file_format) 

[23] Android Developer APIs Web Contributors, Accessed in Feb 2013, “Android 

Debug Bridge (ADB)”, http://developer.android.com/tools/help/adb.html 

[24] Computer  Systems  Lab  at  Sungkyunkwan  University,  Available  from  May 

2011, “Androbench Benchmark”, http://www.androbench.org/wiki/AndroBench 

[25] Open Source App on Google Play, Accessed in Oct 2012, “RL Benchmark”, 

https://play.google.com/store/apps/details?id=com.redlicense.benchmark.sqlite 

[26] Gerhard  Smith,  Accessed  in  Mar  2013,  “Firefox  for  Android-x86”, 

http://www.android-x86.org/download 

[27] McObject Developers, Accessed in Jan 2013, “TestIndex Benchmark for 

Android”,  http://www.mcobject.com/index.cfm?

fuseaction=download&pageid=581&sectionid=133 

[28] Bruce G. Lindsay, “The Transaction Processing Revolution ”, in SIGMOD, Vol 

37 No. 2, June 2008, pp 38-39

[29] Brahim Medjahed, Mourad Ouzzani, Ahmed K. Elmagarmid,  “Generalization 

of ACID Properties ”, in Encyclopedia of Database Systems, 2009, pp 1221-1222

[30] C.  Mohan,  Don  Haderle,  Bruce  Lindsay  et.  al.,  “ARIES:  A  Transaction 

Recovery Method Supporting  Fine-Granularity  Locking and Partial  Rollbacks 

51

http://link.springer.com/book/10.1007/978-0-387-39940-9
http://www.mcobject.com/index.cfm?fuseaction=download&pageid=581%C2%A7ionid=133
http://www.mcobject.com/index.cfm?fuseaction=download&pageid=581%C2%A7ionid=133
http://www.android-x86.org/download
https://play.google.com/store/apps/details?id=com.redlicense.benchmark.sqlite
http://www.androbench.org/wiki/AndroBench
http://developer.android.com/tools/help/adb.html
http://en.wikipedia.org/wiki/APK_(file_format)
http://en.wikipedia.org/wiki/Secure_copy


Using Write-Ahead Logging”,  in  ACM Transactions on Database Systems, Vol 

17, No. 1, March 1992, pp 94-97

[31] D. Richard Hipp, Accessed in November 2012, “WAL Header Format ; sqlite.c 

Source Code Comments section”

[32] Dahlia Malkhi et. al., “From Paxos to CORFU: A Flash-Speed Shared Log”, in 

ACM SIGOPS Operating Systems Review, Volume 46 Issue 1, 2012, pp 47-51

[33] Mahesh Balakrishnan et. al., “CORFU: a shared log design for flash clusters”, 

in NSDI'12: Proceedings of the 9th USENIX Conference on Networked Systems  

Design and Implementation, 2012

[34] Michael  A.  Olson,  Keith  Bostic,  and  Margo  Seltzer,  “Berkeley  DB”,  in 

USENIX Annual Technical Conference, 1999

[35] Oracle  Berkeley  DB,  Accessed  in  Mar  2013,  “Berkeley  DB”, 

http://www.oracle.com/technetwork/database/berkeleydb/db-faq-095848.html 

[36] X. Wu and A.L.N. Reddy,  "SCMFS: A File System for Storage Class Memory", 

in Supercomputing Conference 2011: Proc. of 2011 International Conference for  

High Performance Computing, Networking, Storage and Analysis, 2011

[37] Qian Cao, “SCMFS Performance Enhancement and Implementation on Mobile 

Platform”, Texas A&M Thesis Repositories, August 2012

[38] John Coburn, Trevor Bunker, Rajesh K. Gupta, Steven Swanson, “From ARIES 

to MARS: Reengineering Transaction Management for Next-Generation, Solid-

State Drives”, in UCSD CSE Technical Report CS2012-0981, 2012

52

http://www.oracle.com/technetwork/database/berkeleydb/db-faq-095848.html

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION 
	1.1 Background
	1.2 Related Work
	1.3 Android System Overview
	1.4 SQLite Database

	2. IMPROVED CONCURRENCY THROUGH BYTE-RANGE LOCKING
	2.1 Locking Mechanisms in SQLite
	2.2 Implementation of Byte-Range Locks
	2.2.1 Control Flow of SQLite Read and Write Transactions
	2.2.2 Changes to Implement Byte-Level Locking	


	3. EVALUATION OF BYTE-RANGE LOCKING
	3.1 Experimental Setup
	3.2 Benchmarks and Results
	3.2.1 Androbench
	3.2.2 RL Benchmark
	3.2.3 Browser Benchmark 
	3.2.4 DB Bench

	3.3 Conclusion of Enhancement using Byte-Range Locking

	4. ENHANCEMENT TO WRITE AHEAD LOGGING
	4.1 Overview of Write Ahead Logging
	4.2 WAL Implementation in SQLite [3]
	4.3 Enhancements to Write Ahead Log

	5. EVALUATION OF CHANGES TO WRITE AHEAD LOGGING
	5.1 DB Bench Benchmark
	5.2 Comparison between SSD and HDD
	5.3 Maximum Performance Gain Analysis - DB Bench
	5.4 Sandisk and Intel SSD – A Comparison
	5.5 Comparison with Berkeley DB

	6. CONCLUSION AND FUTURE WORK
	REFERENCES

