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ABSTRACT 

 

This study presents a combined viscoelastic (VE)-viscoplastic (VP) analysis for Fiber 

Reinforced Polymer (FRP) composites subject to simultaneous mechanical load and 

conduction of heat. The studied FRP composites consist of unidirectional fibers, which 

are considered as linearly elastic with regards to their mechanical response, and isotropic 

polymeric matrix, which shows viscoelastic-viscoplastic response under various stresses 

and temperatures. Due to the viscoelastic and viscoplastic behavior of the polymeric 

matrix, the overall FRP composites exhibit a combined time-dependent and inelastic 

behavior. A simplified micromechanical model, consisting of a unit-cell with four fiber 

and matrix subcells, is formulated to homogenize the overall heat conduction and 

viscoelastic-viscoplastic responses of the FRP composites. The micromechanical model 

is compatible with a displacement based finite element (FE) and is implemented at the 

Gaussian integration points within the continuum finite elements, which is useful for 

analyzing the overall time-dependent response of FRP composite structures under 

various boundary conditions. The Schapery nonlinear integral model combined with the 

Perzyna viscoplastic model is used to describe the viscoelastic-viscoplastic response of 

the polymer constituents. An integrated time integration algorithm is formulated at the 

micromechanics level in order to solve the nonlinear viscoelastic-viscoplastic 

constitutive model at the matrix subcells and obtain the overall nonlinear response of the 

FRP. The viscoelastic-viscoplastic micromechanical model is validated using 

experimental data on off-axis glass/epoxy FRP composites available in literature. The 
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overall response of the FRP composites determined from the simplified 

micromechanical model is also compared with the ones generated from microstructures 

of FRP with various fiber arrangements dispersed in homogeneous polymer matrix. The 

microstructural models of the FRP with detailed fiber arrangements are generated using 

FE. The effects of thermal stresses, due to the mismatches in the coefficient of thermal 

expansions of the fibers and polymeric matrix, and stress concentrations/discontinuities 

near the fiber and matrix interfaces on the overall thermo-mechanical deformation of 

FRP composites are studied using the two micromechanical models discussed above. 

Finally, an example of structural analysis is performed on a polymeric smart sandwich 

composite beam, having FRP skins and polymeric foam core with piezoelectric sensors 

integrated to the FRP skins, undergoing three point bending at an elevated temperature. 

The creep displacement is compared to experimental data available in literature. 
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NOMENCLATURE 

 

BVP   Boundary Value Problem 

CTE   Coefficient of Thermal Expansion 

FE   Finite Element 

FRP   Fiber Reinforced Polymer 

FVF   Fiber Volume Fraction 
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HDPE   High Density Polyethylene 

MOC   Method of Cells 
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PZT   Lead Zirconium Tinanate 

RVE   Representative Volume Element 
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TSM   Thermo-rheologically Simple Material 

TTSP   Time-Temperature Superposition Principle 

UC   Unit Cell 

UV   Ultra Violet Ray 

UEXPAN  User Subroutine to Define Incremental Thermal Strains 

UMAT  User Subroutine to Define a Material's Mechanical Behavior 

UMATHT  User Subroutine to Define a Material's Heat Transfer 

Vf   Fiber Volume Fraction 
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VP   Viscoplastic 

WPC   Wood-Polypropylene Composite 
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CHAPTER I 

INTRODUCTION 

 

It was in the early 1940’s that the development of Fiber Reinforced Polymer (FRP) 

composites began and till date they continuously have an important role in the 

development of advanced structures. The characteristics of FRP composites, which are 

lightweight, high stiffness and strength to weight ratios, good resistance to fatigue 

failure, and easily customized to meet desired performances, make them appealing in 

various engineering applications such as automobile, naval and aerospace structures, and 

sporting goods. FRP composites are also used for the main and secondary components of 

the civil infrastructures, such as storage tank, grating, retrofitting bridge, pipe, etc., 

which can reduce the overall weight of the structures. It is noted that the weight density 

of FRP composites is about 20% of that of steel and 60% of the weight density of 

concrete. Moreover, the excellent corrosion resistance of the FRP composites makes the 

FRP composite structures capable of resisting hostile environmental conditions such as 

extreme moistures and chemical reactions. Recent applications could also subject the 

FRP composites to various temperature changes: low to elevated temperatures such as in 

the wind power plant and turbine blades. Despite the enormous applications of the FRP 

composites, there are still challenges in designing and analyzing structures comprising of 

FRP composites especially when they are undergoing significant nonlinear time-

dependent effects coupled with hostile environmental conditions. 
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FRP composites consist of two or more different kinds of materials 

(constituents), and they are orthotropic, or at least transversely isotropic, with regards to 

their mechanical and physical properties. When subjected to external mechanical and 

non-mechanical stimuli, the response of FRP composites depends strongly on the 

microstructural characteristics of the FRPs, i.e., fiber arrangements, compositions, and 

properties of the constituents, and directions of loading. FRP composites consisting of 

epoxy matrix show a pronounced time-dependent behavior due to the viscoelastic nature 

of the polymers. When these composites are subjected to high mechanical loadings and 

elevated temperatures, the polymeric matrix could experience an inelastic (viscoplastic) 

deformation, leading to time-dependent and inelastic overall response of the FRP 

structures. Furthermore, the time-dependent and inelastic response becomes more 

significant when the FRP is subjected to off-axis mechanical loadings due to the 

additional shear effect presence in the composites. 

This study presents a micromechanical model for analyzing time-dependent and 

inelastic response of FRP composite materials and structures subject to various external 

mechanical and thermal stimuli. The micromechanical model is used to homogenize the 

response of FRP composites. The Fourier law is assumed to govern the conduction of 

heat through the composites. The Schapery nonlinear integral model is used for the 

viscoelastic response and is combined with the Perzyna viscoplastic model for the 

polymeric matrix. This time-dependent and inelastic homogenized response is integrated 

with finite element (FE) and used for analyzing and designing FRP structural 

components. The advantages of micromechanical modeling approaches are: they allow 
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incorporating microstructural characteristics in predicting overall response of 

composites, they are capable of determining nonlinear and inelastic response of the 

constituents due to the prescribed external stimuli, and they can provide a rigorous and 

robust prediction of the complex nonlinear response of the FRP composites. 

This chapter presents a literature review of viscoelastic (VE) and viscoplastic 

(VP) response of polymers and FRP composites including the temperature effect. 

Micromechanics modeling approaches, which are one of the important aspects in this 

study, are also reviewed. Finally, the motivation and objectives of this research are 

discussed. 

 

1.1. Literature Review  

1.1.1 Existing studies on VE-VP response of polymers  

Polymeric based FRP composites, when subjected to mechanical loading coupled 

with temperature and moisture changes, show an elastic behavior (instantaneous 

response) and significant viscous behavior (delayed response) due to the existence of the 

polymer matrix. Polymeric materials often exhibit viscoelastic (VE) solid response when 

subjected to mechanical loading. The response can be linear or nonlinear1 depending on 

the severity of the loads and environmental conditions. Upon removal of the mechanical 

loads, the viscoelastic polymers could undergo fully recovery when sufficient time is 

given. However, it is also possible that in addition to the viscoelastic response the 
                                                

1 The linear response is considered when the proportionality and superposition between the input and the 
corresponding response can be made, otherwise the response is considered nonlinear. 
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polymers can experience plastic (viscoplastic, VP) deformations. Under such condition, 

removal of the mechanical loading leads to a permanent deformation.  

There have been experimental and theoretical studies on understanding the VE 

and combined VE-VP behaviors of polymers. Creep-recovery tests have been conducted 

on polyurethane (Lai and Findley, 1973), oriented polypropylene monofilament (Ward 

and Onat, 1963), FM-73 polymer (Peretz and Weitsman, 1982, 1983), and Hercules 

3502 epoxy resin (Harper and Weitsman, 1985) under various loading histories and 

isothermal conditions. The results show that the above polymers experience nonlinear 

viscoelastic behaviors in which the nonlinearity becomes more pronounced at higher 

stresses and elevated temperatures. Recent experimental studies of polyimide resins 

show nonlinear viscoelastic response at elevated temperatures (Bhargava, 2007; Falcone 

and Ruggles-Wrenn, 2009). It has also been observed that long-term exposure to 

elevated temperatures could lead to oxidation in the polymers. Creep-recovery tests 

performed on some polymers such as high-density polyethylene, HDPE, (Lai and 

Bakker, 1996), polycarbonate (Frank 1998), and aramid and polyester fibers (Chailleux 

and Davies, 2003, 2005) show combined VE and VP responses. The experiments were 

performed on relatively short period (30 minutes) at different stress levels and room 

temperature (293K). The response of the polymers depends on the magnitude of the 

applied stresses.  

Constitutive models for VE response of isotropic materials with small and large 

deformation gradients has been developed based on the classical mechanics and 

thermodynamics framework; for examples the modified superposition principle (Findley 
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and Lai, 1967), multiple integral model (Green and Rivlin 1957), finite strain integral 

models (Pipkins and Rogers 1968), single integral models (Pipkins and Rogers 1968; 

Schapery 1969), thermo-mechanical theory of nonlinear viscoelastic model under non-

isothermal condition (Coleman ,1964). Constitutive models for combined linear VE and 

plastic behaviors based on an overstress function have been formulated by Landau et al. 

(1960), Naghdi and Murch (1963), Drozdov (1999). The VE strain rates are time and 

loading history dependent, and the plastic strain rates depend only on loading path 

histories. Constitutive models for coupled linear elastic and VP behaviors have also been 

proposed such as over-stress rate-dependent plasticity, Perzyna (1966, 1971), Perzyna 

and Wojno (1975), Bodner and Partom (1975), and endochronic VP model based on an 

irreversible thermodynamics, Valanis et al. (1971). The Perzyna model has been used to 

predict the VP behavior of aramid and polyester fibers by Chailleux and Davies (2003, 

2005). Recently, VP constitutive models of polymers based on an overstress function 

with nonlinear rate dependent have been proposed by Krempl and Ho (2000), Colak 

(2005), Hall (2005). Modeling combined VE-VP behaviors of polymers has been done 

by Schapery (1997), Frank and Brockman (2001), Drozdov and Christiansen (2008). The 

constitutive models in the above studies are described in terms of stress, temperature, 

moisture, time, and internal state variables. The internal state variables are attributed to 

the VE and VP strains.  

Depending on the complexity of the time-dependent and inelastic constitutive 

models and prescribed boundary conditions, it might not be possible to obtain closed 

form analytical solutions of time-dependent field variables. It is due to this reason 
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several numerical techniques have been proposed in order to determine approximate 

solutions of boundary value problems involving time-dependent and inelastic material 

response. Several numerical algorithms have been formulated for solving the Schapery 

VE integral equations, such as Henriksen (1984), Lai and Bakker (1996), Kennedy 

(1998), Poon and Ahmad (1999), Haj-Ali and Muliana (2004), Muliana and Khan (2008) 

and Sawant and Muliana (2008). Zienkiewicz and Cormeau (1972, 1974), Wang et al. 

(1997), Simo and Hughes (1998), and Heeres et al. (2002) presented several numerical 

algorithms of linear elastic-VP Perzyna constitutive models. An integration algorithm 

within FE framework for a combined Schapery nonlinear VE and Perzyna VP model has 

been formulated by Kim and Muliana (2009). The semi-analytic integration method has 

been proposed by Hirsekorn et al. (2011) for solving the creep response of nonlinear 

viscoelastic and viscoplastic materials. In the above model, the nonlinearity is defined in 

terms of stress inputs and the Prony series expansion is used for the creep function. The 

proposed integration scheme is robust and stable for predicting VE-VP behaviors of 

materials for a wide range of retardation times.  

 

1.1.2 Existing studies on VE-VP response of FRP composites 

Unidirectional fibers merely show linearly elastic behaviors with a relatively 

high stiffness compared to the polymer matrix, which exhibits VE or combined VE-VP 

responses. When a unidirectional FRP composite is subjected to a mechanical load along 

the longitudinal fiber direction, the overall response of the FRP composites show mainly 

linearly elastic behavior with negligible nonlinearity or inelasticity. When off-axis 
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loadings are considered the overall response can show significant VE or combined VE-

VP behaviors. Moreover, temperature, moisture, and aging effects can intensify the 

nonlinear time-dependent and inelastic response of the FRP composites.  

Lou and Schapery (1971) have conducted uniaxial tensile creep-recovery tests on 

off-axis glass fiber-epoxy composites under isothermal conditions. The creep tests were 

performed at several stress levels with regards to the ultimate strength of the specimens. 

The results showed nonlinear viscoelastic behaviors for the off-axis specimens, which 

were modeled using a power law time-dependent function. The material parameters were 

calibrated for each off-axis specimens and stress levels. Dillard et al. (1987) analyzed 

nonlinear creep response of T300/934 FRP composites. The power law time-dependent 

function was used to fit the experimental data. Creep-recovery tests on graphite/epoxy 

T300/5208 composites with various fiber angles were conducted by Tuttle and Brinson 

(1986). The Schapery integral model was used to predict the long-term creep response of 

T300/5280.  

Guedes and Marques (1998) reported an experimental work under creep- 

recovery, ramp loading and multiple relaxation tests on T300/5208 and IM7/5260 

composites. They used the Schapery VE model and Zapas and Crissman VP model to 

predict the experimental results. It was reported that the results of analytical solutions 

have a good agreement with the experimental results. Megnis and Varna (2002) 

characterized time-dependent and inelastic response of glass-epoxy FRP composites 

from creep-recovery tests under isothermal condition. They compared the experimental 

results with analytical solutions. The difference between the creep strains obtained from 
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the experimental results of the off-axis specimens and predicted linear VE strains shows 

that the FRP composite experienced VP deformation. It was reported that the VP 

response is pronounced for the off-axis creep tests due to high shear stresses. 

 

1.1.3 Temperature effects on viscoelastic FRP composites 

The response of FRP composites depends also on the temperatures and other 

environmental factors such as moisture, aging, chemical reaction, and UV. High 

temperatures could degrade the properties of composites and the creep deformation (or 

relaxation stress) in FRP composites change with temperatures. Elevated temperatures 

accelerate the relaxation and creep in the polymer FRP composites. The time-dependent 

response of materials at various temperatures can be classified as thermo-rheologically 

simple (TSM) and thermo-rheologically complex materials (TCM). For TSM materials, 

the effect of temperature on the viscoelastic response can be incorporated through a 

time-scale shift factor since the temperature is assumed to affect only the transient part 

of the stress relaxation or creep deformation. For TCM materials, it was suggested that 

temperature changes alter the molecular structures of the polymers and influence the 

instantaneous, transient, and relaxed (equilibrium) moduli (and compliances) of the 

materials, Harper and Weitsman (1985); Caruthers and Cohen (1980); Wineman and 

Rajagopal (2000).  

Tuttle et al. (1995) conducted cyclic thermo-mechanical loading tests on 

graphite-bismaleimide (IM7/5260) composites at various stress levels and temperatures. 

The experiment on the multi-angle composite laminate was done under a 50-hr cyclic 
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loading and isothermal conditions. The results showed nonlinear VE-VP responses under 

high temperature and stress levels. The experimental data were compared with the 

response obtained using the Schapery nonlinear VE integral model and VP functional 

proposed by Zapas and Crissman (1984). Experimental characterization on AS4/PEEK 

semi-crystalline polymer matrix composites (Wang et al., 1997) shows that the 

composite experiences elastic-VP behavior under thermo-mechanical loading. Tuttle, 

Pasricha, and Emery (1993) predicted the long-term response of IM7/5260 composites 

under cyclic thermo-mechanical loadings. Schapery’s nonlinear VE model and a 

functional VP model were used to predict the time-dependent response under the long-

term cyclic thermo-mechanical loading.  

Muddasani et al. (2010) conducted creep tests to examine the nonlinear VE 

response of E-glass/polyester multi-layered composites at various temperatures: 227.4K-

221.3K and stress levels: 0.2-0.6 of the ultimate tensile stress. The creep tests were 

performed on the uniaxial, transverse and 45o off-axis specimens. The results show that 

creep behavior is more pronounced in the off- axis specimens under elevated 

temperatures. The nonlinearity in the specimens increases with increasing temperatures. 

They also analyzed the nonlinear VE response of the multilayered composites with 

temperature effect and showed that the studied composites belong to the TCM material. 

Chien and Tzeng (1993) investigated the thermal effect on the VE behavior of thick-

walled composite cylinders. The VE response depends on the material properties, fiber 

orientations, and temperatures. It was concluded that the off-axis specimens experience 

significant VE response. The VE behavior of cylinders subjected to a uniform 
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temperature difference of 423K, which is below the glass transition temperature, 443K, 

is studied. Tamrakar et al. (2011) have studied time and temperature dependence on an 

extruded wood-polypropylene composite (WPC). The response is compared with the one 

of polyvinylchloride (PVC). The quasi-static and creep tests subjected to various 

temperatures were conducted and the degradation in the mechanical properties under 

elevated temperatures was characterized. Time-temperature superposition was also 

applied to predict the long-term creep response of both materials and the result shows 

the long-term creep compliance of WPC is incredibly higher than that of PVC.  

Zhang and Hartwig (1997) investigated VE behavior of AS4/PEEK FRP 

composites subjected to low temperature under cyclic loading. The damping behavior 

depends mainly on the matrix properties. Mivehchi and Varvani-Farahani (2011) studied 

fatigue lives of FRP composites under various temperatures. The results show that 

temperature significantly influences the mechanical properties of FRP composites. 

Bradshaw and Brinson (1999) predicted the mechanical response of composite laminates 

under non-isothermal and aging effects. The hygrothermal strains were significantly high 

at early time and decreased as steady state condition is reached. Sawant and Muliana 

(2008) formulated a numerical algorithm for predicting overall nonlinear viscoelastic 

response of orthotropic materials. The nonlinearity was due to stresses and temperatures 

suitable for TCM materials. They used the numerical algorithm to predict thermo-

viscoelastic response of various FRP composites under various fiber volume fractions, 

fiber orientations, and temperatures. Recent studies by Miyano et al. (2008), Nakada and 

Miyano (2009) and Cai et al. (2010) consider the coupled time-temperature effect on the 
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creep and fatigue behaviors of various fiber reinforced polymer (FRP) laminated 

composites and a honeycomb sandwich composite under bending. They adopted the 

time-temperature superposition principle (TTSP), coined to Leaderman (1943) and 

thermo-rheologically simple materials as per Schwartz and Staverman (1952), to obtain 

the long-term overall response of the composites by shifting the short-term creep/cyclic 

response at various environmental conditions. 

 

1.1.4 Micromechanical models of FRP composite material 

Various micromechanical models have been developed to predict the overall 

response of FRP composites with complex microstructural geometry. In this study, the 

micromechanical modeling approaches are classified into two groups. The first 

micromechanical modeling approach deals with obtaining the overall response of 

composites based on simplified microstructural characteristics, in which a representative 

volume element (RVE) of the composite is considered as the smallest unit-cell that can 

give a reasonable prediction. The size of RVE based on this approach depends on the 

responses being examined, i.e., elastic, plastic (Kouznetsova et al., 2001, Suquet, 1985). 

The second micromechanical modeling approach considers a RVE of the composite as a 

domain containing all possible microstructural configurations that exist in the composite. 

This concept can be employed by discretizing the microstructural model based on 

experimentally obtained microstructural images, see for example Shan and Gokhale 

(2002), and the overall response can be obtained by solving boundary value problems 



 

12 

 

(BVPs) using for example FE. This approach leads to a relatively large RVE and high 

computational costs, especially for nonlinear multi-field problems. 

Several homogenized models, following the first micromechanical modeling 

approach, have been proposed; many of them are for linearly elastic response. A rule of 

mixture based on a uniform strain constraint of the composite was proposed by Voigt 

(1887), while rule of mixture based on a uniform stress constraint of the composite was 

considered by Reuss (1929). Several other micromechanical models for predicting linear 

elastic response in composites are: dilute-distribution method by Eshelby (1957), self-

consistent model which uses a concept of effective medium theory and determines the 

mechanical properties of composites for infinite media by Hershey (1954), Kroner 

(1958), Budiansky and Wu (1962) and Hill (1965), concentric cylinder assemblage 

(CCA) method that describes cylindrical fibers surrounded by cylindrical matrix medium 

by Hashin and Rosen (1964), and the Mori-Tanaka method which is based on the 

Eshelby elasticity solution for incorporating inhomogeneity in an infinite medium and 

uses the average strains in the constituents caused by the fiber interaction effects by 

Mori and Tanaka (1973). 

The above micromechanical models have been extended to predict elastic and 

inelastic responses of FRP. Budiansky (1965), Hill (1965), Walpole (1969) used the self-

consistent model to study an elastic behavior of fibrous composites. Rosen and Hashin 

(1970) extended Levin’s model of general anisotropic composites by using a variational 

approach. Laws (1973) studied thermo-elasticity problem in anisotropic composites 

using Hill’s self-consistent approximation. Laws and Mclaughlin (1978) applied the self-
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consistent method and a numerical inversion method to analyze viscoelastic response of 

particulate and fibrous composites. Dvorak and Bahei-El-Din (1979) used the self-

consistent model to analyze elastic-plastic response of fibrous composites. Christensen 

and Lo (1979) proposed a three-phase cylindrical model of unidirectional FRP 

composites to analyze the effective mechanical properties. The Mori-Tanaka 

micromechanical model has been modified to derive the effective VE properties of 

three-phase composite and used to predict the VE response of FRP composites by Fisher 

and Brinson (2001). 

A method of cells (MOC), 3D nonlinear micromechanical models, was 

developed by Aboudi (1991) to evaluate the effective elastic and plastic responses of 

FRP composites comprising of periodical rectangular fibers surrounded by matrix. 

Sadkin and Aboudi (1989) used the MOC with four-cell micromechanical model to 

analyze temperature effects on the VE response of unidirectional FRP composites. The 

MOC was then used by Haj-Ali and Pecknold (1996) to formulate a new numerical 

scheme of a simplified unit-cell model for fiber reinforced composites, derived from 

periodically distributed microstructures. Haj-Ali and Muliana (2003, 2004) extended the 

simplified unit-cell micromechanical model for modeling the time dependent behavior of 

FRP. Till date, limited micromechanical models for a combined time-dependent and 

inelastic response of FRP composites have been proposed. Aboudi (2005) has developed 

a micromechanical model to predict the VE-VP responses of multiphase materials. The 

VE-VP model developed by Frank and Brockman (2001) is implemented in the 

multiphase composites. Matsuda and Ohno (2011) presented a micromechanical model 

http://www.sciencedirect.com/science/article/pii/S0020768302006637#ref_BIB20
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for analyzing elastic-VP response of unidirectional and woven laminated composites. 

Representative unit-cell models were selected and FE meshes were generated on the 

selected unit-cells. An elasto-VP constitutive model for an isotropic material was used 

for the polymer matrix and a linear elastic transversely isotropic model was used for the 

fibers. 

 

1.2 Motivation and Research Objective 

Current studies have shown that FRP composites exhibit pronounced VE 

responses that strongly depend on temperatures. Most of studies concerning the effects 

of temperatures on the overall responses of FRP are done under isothermal conditions, 

neglecting the effect of thermal stresses due to temperature changes on the overall 

performance of the composites. During their service, most FRP composite structures 

experience continuous cycles of temperature changes in addition to mechanical loadings. 

However, understanding the time-dependent performance in FRP composite structures 

when the properties and responses of the constituents in the FRP composites change due 

to conduction of heat is currently lacking. FRP composites could undergo coupled VE-

VP responses when subjected to relatively high mechanical loading; and only limited 

studies have considered the combined VE-VP responses of FRP composites. 

The current study deals with the analysis of VE-VP behaviors of unidirectional 

FRP composites in which the response of the polymeric matrix depend on stresses and 

temperatures. A VE-VP micromechanical model of the FRP composite is developed 

based on a simplified unit-cell model consisting of four fiber and matrix subcells. The 
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Schapery nonlinear integral model is used for the VE response and is combined with the 

Perzyna VP model in order to describe the VE-VP response of polymeric matrix. A time 

integration algorithm is formulated at the micromechanics level in order to solve the 

nonlinear VE-VP constitutive model at the matrix subcells and obtain the overall 

nonlinear response of the FRP. The micromechanical model is compatible with a 

displacement based FE and can be used to analyze the VE-VP response of FRP 

composite structures. In order to verify the simplified micromechanical model FE 

meshes comprising of detailed fiber arrangements dispersed in a homogeneous and 

continuous polymeric matrix are generated. The response obtained from the detailed FE 

meshes is compared to the one obtained from the simplified micromechanical model. 

Furthermore, experimental data on the combined VE-VP response of FRP composite 

reported by Megnis and Varna (2002) are used to validate the simplified 

micromechanical model.  

The above simplified micromechanical model is modified to determine the 

overall thermal expansion coefficient, thermal conductivity, and heat capacity of the 

FRP composites.  The simplified micromechanical model with thermo-mechanical 

coupling effects is then integrated to FE framework and used to analyze coupled 

transient heat conduction and deformation in FRP composite structural components. The 

purpose is to examine the effect of temperatures and thermal stresses on the VE-VP 

behaviors of FRP composite 

This dissertation consists of the following components: Chapter II presents a 

constitutive model for the combined VE-VP response of isotropic polymers. The effect 
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of temperatures on the overall VE-VP response is also studied. Chapter III discusses a 

simplified micromechanical model for analyzing VE-VP response of FRP composites. 

Chapter IV discusses a simplified micromechanical model incorporating the temperature 

effect. Sequentially coupled heat transfer and deformation in FRP composites is studied. 

Chapter V presents analyses of composite structures, i.e., sandwich composite beams 

having FRP laminated composite skins and polymeric foam core, undergoing heat 

conduction and mechanical loading. The integrated micromechanical model and FE 

framework is used for the analyses. Finally, summary, recapitulation of the present study 

and future works are discussed in Chapter VI. 
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CHAPTER II 

COMBINED VISCOELASTIC-VISCOPLASTIC CONSTITUTIVE MODEL FOR 

ISOTROPIC POLYMERIC MATERIALS* 

 

This chapter presents a constitutive model for a combined viscoelastic (VE) and 

viscoplastic (VP) response of isotropic polymeric material based on a small 

displacement gradient (linearized strain) theory. The nonlinear Schapery integral model 

is used for the VE part and the Perzyna model is considered for the VP component; thus 

the nonlinearity is due to the stress-dependent material parameters. In addition, the 

material parameters are allowed to vary with temperatures. The combined VE-VP 

constitutive model is solved numerically, which is compatible with a displacement based 

FE and is integrated to the simplified micromechanical model for FRP composites 

(discussed in Chapter III). A brief discussion on the VE-VP numerical algorithm, which 

has been developed by Kim and Muliana (2009), is presented in this chapter. In this 

study, the VE-VP numerical algorithm is modified to incorporate the temperature effect. 

Parametric studies on the effect of temperatures on the overall VE-VP response of 

polymers are also presented. 

 

                                                

* Reprinted with permission from Jaehyeuk Jeon, Anastatia Muliana, “A Simplified 
Micromechanical Model for Analyzing Viscoelastic-Viscoplastic Response of 
Unidirectional Fiber Composites”, J. Eng. Mater. Technology, DOI:10.1115/1.4006508, 
2012, Copyright 2012 by ASME 
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2.1 Viscoelastic-viscoplastic Constitutive Model 

In a small displacement gradient problem, the total strains and incremental 

strains can be additively decomposed into the VE, VP, and thermal components: 
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(2.1) 

where the superscripts ve, vp and th denote the VE, VP, and thermal components, 

respectively, and ∆ indicates the incremental component. Here, the time-dependence of 

variables is denoted with superscript of the time t. Thus, ,ve t

ij  and ,vp t

ij  are the VE and 

VP strains at current time t, respectively ,ve t

ij  and ,vp t

ij  are the incremental form of 

VE and VP strains at current time t, respectively. The current total mechanical strain is 

described in terms of the VE and VP components. An example of a uniaxial strain 

response during a creep-recovery history is illustrated in Figure 2.1. During creep, the 

elastic and plastic deformations are allowed to increase with time and upon removal of 

the mechanical stress only the elastic component of strain is recoverable, resulting in a 

residual (permanent) strain. The permanent strain after complete recovery is equal to the 

total VP strain accumulated during loading until time t1. 
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Figure 2.1 VE and VP strain response due to a creep-recovery loading history 

The incremental thermal strain is given by , ( )th t t t t

ij ijT T     , where  , tT , 

and 
ij  are the linear coefficient of thermal expansion (CTE), temperature field at 

current time and Kronecker delta, respectively. In this study, we assume the constituents 

to be isotropic; thus, the CTE becomes a scalar quantity. The values of CTE can also 

vary with temperatures. In order to reduce complexity, the present study neglects the 

dissipation of energy from the VE and VP deformations so that the temperature changes 

in the body are due to the prescribed external thermal stimuli. 

A nonlinear single-integral constitutive equation (Schapery, 1969), which is 

used for the VE component, is modified for a multi-axial loading. The current total VE 

strain consists of the deviatoric and volumetric strain components, written as 
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Jo and Bo are the instantaneous elastic shear and bulk compliances, respectively. ΔJ and 

ΔB are transient shear and bulk compliances, respectively. The nonlinear parameters 0g , 

1g , and 2g are dependent on the current effective stress t  and temperature tT . In the 

linear VE responses, 0g , 1g , and 2g  are unit, and stress-strain based constitutive 

equations can be interchanged. The above constitutive equations are suitable for small 

deformation gradient problems. In order to reduce the complexity in terms of calibrating 

time-dependent parameters, the corresponding linear elastic Poisson’s ratio,, is taken as 

constant. The shear and bulk compliances are: 

0 0 0 02(1 )   ,                3(1 2 )

2(1 )  ,         3(1 2 )
t t t t

J D B D

J D B D   

 

 

   

       
                            (2.5) 

For the transient part, a Prony series of exponential function is used for the time-

dependent function, which for the uniaxial compliance is expressed as 

1
(1 exp[ ])

t
N

t

n n

n

D D 


                                                 (2.6) 

where the reduced-time (effective time) is 

0

( )
( , )

t

t d
t

a T 


 


                                              (2.7) 

The parameter a ( ,t tT ) is time shift factors measured with respect to the reference 

stress and temperature. The integral models in Eqs. (2.3) and (2.4) are solved 

numerically using a recursive-iterative approach. Detailed recursive-iterative algorithm 

for the nonlinear VE responses can be found in Haj-Ali and Muliana (2004). The final 

form of the incremental VE strain by using the recursive-iterative scheme is 
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tJ  and tB  are the shear and bulk compliances, respectively, that depend on the 

effective stress and temperature at the current time t. History variables are included in 

t

ijA  and tB . The shear and volumetric hereditary variables, respectively, tt

nijq 

,
 and tt

nkkq 

,
 

are stored and updated for the next time step. The current time hereditary variables 

updated from the previous time step are 
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Among the VP models, Perzyna’s VP constitutive model, based on an overstress 

function, is used for the VP component. The VP strain (Perzyna 1966, 1971) for an 

isotropic material is written as 

, ( , )t t
vp t t
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ij

F k
 
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
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
                  (2.15) 

where ,vp t

ij  is the VP strain rate at current time t and tλ  is the magnitude of the VP 

strain rate. The stress dependent yield function ( , )t tF k  is expressed in terms of the 

effective stress
3
2

t t t

ij ijS S  , where t

ijS  is the deviatoric stress components; the 

accumulated effective VP strain 
0

t

t sk k ds  ,   , ,2
3

t vp t vp t

ij ijk   . The normal direction 

at the stress point on the yield surface F is derived as vector /F   which is the 

direction of the VP strain rate. The VP yield function based on an overstress function for 

isotropic hardening materials at current time t is: 

( , ) - -t t t o t

yF k hk                                               (2.16) 

The parameter o

y  is the initial yield stress measured from a uniaxial loading. The 

hardening material parameter, h, can also depend on the current effective stress t . In 

this study, the following form for the plastic multiplier is used: 
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where p is the viscosity constant during the viscoplastic deformation, < > represents the 

Macauley bracket, and the function ( )F  is given as: 
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The power n is the material constant that needs to be calibrated from experiments. The 

incremental form of the VP strain component is summarized as (see Kim and Muliana, 

2009 for a detailed discussion): 
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When the stress components are prescribed, the corresponding incremental VE and VP 

strains can be immediately calculated and the total strain is then obtained from Eq. (2.1). 

In case the strain components are prescribed like in a displacement based FE it is 

necessary to calculate the current total stresses and VP strain component, which depends 

on the current total stresses. For this purpose, a trial incremental VP strain is determined 

from the stress at the previous time: 
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The trial incremental stress is now written as: 

 
 , ( ) ,, t vp t tr th tt tr

ij ij ijij ijkl
C                         (2.21) 

and the total trial stress is ( ) ( )t tr t t t tr

ij ij ij    . Based on this trial stress, the 

incremental VE and VP strains are calculated using Eqs. (2.8) and (2.19), respectively. 

The residual incremental strains and plastic multiplier are now determined: 

 , , ,t e t vp t t th t

ij ij ij ij ij         R                         (2.21)

0

0

n
t t t t t t

yt t

yp

hk h kt   
 



      
   

  

R
                 (2.22) 

The Perzyna model depends on the plastic multiplier t , which at current time remains 

as an unknown variable. To determine the total stress in the VE-VP model, we need to 

minimize each component of the residual tensors, t

ijR  and tR . This study uses the 

Newton-Raphson iterative method in order to minimize the residual components. Once 

the convergence is achieved, the consistent tangent stiffness matrix is calculated. 

 

1

' ' '
2

2 3
3 2

;
t t t
ij ijt t t t

ijkl ijkl ijmn mnkl mn pq pqklt t tt
kl kl

C S I I S S I
  


  



     
     

     


R R
 (2.23) 

where ' 1
3ijkl ik ji ij klI      .  
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2.2 Implementation of VE-VP Models with Experimental Verification 

The combined VE-VP constitutive model is used to predict the mechanical 

response of high-density polyethylene (HDPE) under various loading histories. The 

experimental data were obtained from Lai and Bakker (1995). The VE-VP constitutive 

model is implemented in ABAQUS FE using user material subroutine UMAT. Extensive 

verifications of the VE-VP numerical algorithm, in absence of temperature effects, can 

be found in Kim and Muliana (2009). The time-dependent material parameters in Eq. 

(2.6), the Prony series coefficients of HDPE, are given in Table 2.1. The elastic modulus 

of HDPE is 4535MPa. Poisson’s ratio of the tested HDPE is 0.3. The stress-temperature 

dependent nonlinear VE parameters in Eqs. (2.3) and (2.4) are given in Figure 2.3(a). 

The stress dependent VP hardening parameters of the Perzyna model are shown in 

Figure 2.3(b). The Perzyna VP parameters, p (fluidity) and n (power) are calibrated to 

35 [MPa/s] and 1.36, respectively by fitting the experimental data of HDPE. The initial 

yield stress 0
y  of the Perzyna VP model is calibrated to 1MPa. The above material 

parameters are obtained at the reference (room) temperature, T0. 

The numerical algorithm of the Schapery VE and Perzyna VP model is verified 

with experimental data of a two-step loading, which are shown in Figure 2.2. The first 

step loading is 10MPa for 1800 seconds and the next step loading is followed to 8, 6, 4, 

2, and 0MPa, respectively, for 1800 seconds. In the case of low stress level of the second 

step loading, the numerical results are fitted better than the case of relatively high stress 

level of second step loading. Based on the results of the numerical model fitting to 

experimental data, the constitutive model at reference temperature, only stress 
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dependent, and the numerical methods have been verified for the isotropic polymeric 

material. 

 

Table 2.1 Prony series coefficients for the HDPE 

n λn [s-1] Dn x 104 [MPa-1] 
1 1 2.23 
2 10-1 2.27 
3 10-2 1.95 
4 10-3 3.5 
5 10-4 5.5 
6 10-5 5.5 

 

 

Figure 2.2 Total strains from the two-step loading histories Perzyna Model (Kim, J.S., 

Muliana, A.H., 2009) 
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(a) 

 

(b) 

Figure 2.3 (a) Nonlinear parameters of the Schapery VE model (Lai and Bakker, 1995) 

and (b) Stress dependent hardening parameters for the Perzyna VP model 
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2.3 Temperature-dependent VE-VP Model 

The combined Schapery and Perzyna model is modified to incorporate the effect 

of temperature on the overall time-dependent and inelastic material response. The 

material parameters in the VE-VP model are allowed to vary with temperatures. Since 

experimental data on the detailed temperature-dependent VE-VP response of polymers 

are currently lacking, the current section presents parametric studies on understanding 

the effect of temperature changes on the overall VE-VP response. Martienssen and 

Warlimont (2005) reported the elastic moduli of HDPE at room temperature up to 333K. 

The linear elastic modulus is decreasing as the temperature increases, as shown in Figure 

2.4(a). At 333K the elastic modulus drops to 29.8% of the elastic modulus at the 

reference temperature, 296K. The corresponding compliance at this temperature range is 

also given in Figure 2.4(b). The 0 ( )g T  of the HDPE can now be calibrated from the 

elastic compliance. 
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(a) elastic modulus                                                 

 

(b) compliances 

Figure 2.4 Elastic Modulus and Compliances versus temperature 
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The temperature dependent material parameters for the VE part for HDPE are expressed 

by the following functions: 

0
0

0

( ) 1 T T
g T

T



                         (2.24) 

1 2( ) ( ) 1g T g T                   (2.25) 

0

0

( ) exp( )T T T
a T

T



      (2.26) 

where 0T  is the reference temperature, which is 296K; temperature T are in Kelvin, The 

material constants  =18.91 and  =40, respectively. The curves of 0 ( )g T  and ( )Ta T  

are shown in Figures 2.5 and 2.6, respectively. 

 

Figure 2.5 Linear function 0 ( )g T  versus temperature 
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Figure 2.6 Exponential function ( )Ta T versus temperature 

 

Based on the degradation of the temperature dependent elastic modulus, it is 

assumed that the VP parameters such as fluidity, ( )p T , and yield stress, 0 ( )y T , 

degrade with the temperature increase following the degradation in the elastic modulus; 

while the hardening parameters, h, and power, n, are assumed constant (temperature-

independent). Since the elastic modulus decreases to 49.9% at 313K and 29.8% at 333K 

from the value at the reference temperature, the fluidity, ( )p T , and yield stress, 0 ( )y T  

at the three temperatures are shown in the Table 2.2.  
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Table 2.2 Viscoplastic parameters with temperature 

T [K] p  [MPa/s] 0
y  [MPa] 

296 35 1 
313 17.465 0.499 
333 10.43 0.298 
 

Figure 2.7 illustrates the effect of 0 ( )g T  and ( )Ta T  on the creep recovery 

strains at temperatures 296K, 313K, and 333K. The creep strain is higher at elevated 

temperatures, which is expected. The increase in the instantaneous strain is due to the 

parameter 0 ( )g T  while the increase in the rate of creep and recovery strains is due to the 

parameter ( )Ta T . As seen in the recovery period, at 333K the response shows faster 

strain recovery. The parametric study is now performed on understanding the effect of 

temperature-dependent fluidity, ( )p T , and yield stress, 0 ( )y T  on the overall VE-VP 

response. The corresponding creep-recovery strains due to ( )p T and 0 ( )y T  are shown 

in Figures 2.8 and 2.9. The creep strain increases significantly at elevated temperatures 

since by decreasing the fluidity and initial yield stress the materials flow easily with the 

deformations. The recovery period based on the overstress VP model is unaffected by 

( )p T  and 0 ( )y T , which should be expected since the plastic deformation is only 

formed during loading. 
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Figure 2.7 Creep Recovery Strain by the effect of 0 ( )g T  and ( )Ta T  

 

Figure 2.8 Creep Recovery Strain by the effect of ( )p T  (Fluidity) 

 

Figure 2.9 Creep Recovery Strain by the effect of 0 ( )y T  (Yield Stress) 
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From the above discussions, the nonlinear VE-VP constitutive model and its 

numerical implementation are capable of simulating the time-dependent and inelastic 

response of isotropic materials under various stress inputs and temperatures. This 

constitutive model is used for the polymeric matrix system in the FRP composites and 

the overall time-dependent and inelastic response of FRP composites is obtained using 

micromechanical model (Chapter III). 
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CHAPTER III 

MICROMECHANICAL MODEL FOR FRP COMPOSITES* 

 

This chapter presents a micromechanical model for predicting the overall VE-VP 

response of FRP composites, having unidirectional elastic fibers dispersed in polymeric 

matrix. A composite representative volume element (RVE) is defined by a rectangular 

fiber placed in a rectangular matrix medium. The changes in the micro-structural 

geometries of the FRP composites during the deformation can be ignored due to the 

small displacement gradient assumption. A unit-cell consisting of one fiber and three 

matrix sub-cells is modeled due to the two-plane symmetry of the RVE (Figure 3.1). The 

first sub-cell represents a fiber constituent, while sub-cells 2, 3, and 4 represent a matrix 

constituent. The total volume of the unit-cell is equal to one, and each volume of the 

sub-cells depends on the volume fraction of fibers. The fiber direction is aligned to x1-

direction, and the other directions x2 and x3 are transverse fiber directions. The fiber is 

assumed to be transversely isotropic and linear elastic, while the matrix is assumed to be 

isotropic with VE-VP response. The outcome of the micromechanical model is a 

homogenized VE-VP response of FRP composites. The micromechanical model is 

compatible with a displacement based FE and is implemented in ABAQUS user 

subroutine material UMAT. The homogenized VE-VP response obtained from the 

                                                

* Reprinted with permission from Jaehyeuk Jeon, Jeongsik Kim, Anastatia Muliana, 
“Modeling Time-dependent and Inelastic Response of Fiber Reinforced Polymer 
Composites”, Computational Materials Science, Vol.70, pp.37~50, 2013, Copyright 2013 
by Elsevier 
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simplified micromechanical model is validated using experimental data reported by 

Megnis and Varna (2002) on off-axis glass FRP composites. Furthermore, 

microstructural models of FRP comprising of longitudinal fibers dispersed randomly in a 

homogeneous VE-VP polymeric matrix are generated for FRP at different fiber volume 

contents using FE, termed as FE microstructural models. The VE-VP response from the 

simplified micromechanical model is compared to the ones from the FE microstructural 

models. 
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Figure 3.1 Unit-Cell Micromechanical Model for FRP composite 
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3.1 Micromechanical Formulation for FRP Composite 

The formulation of the four-cell micromechanical model of a unidirectional 

medium is expressed in terms of the average stresses and strains in the subcells. The 

approximated (average) stresses and strains of the FRP are formed using a volume 

averaging scheme: 

( )

( ), ( ) ( ) ( ) ( ),

1 1

1 1( )
N N

t t t

ij ij k ij

V

x dV V
V V

    

 

  
 

        i, j = 1,2,3                    (3.1) 

( )

( ), ( ) ( ) ( ) ( ),

1 1

1 1( )
N N

t t t

ij ij k ij

V

x dV V
V V

    

 

  
 

         i, j = 1,2,3                      (3.2) 

where  ( )t

ij kx and ( )t

ij kx are the components of stress and strain fields in the 

representative unit-cell model. t

ij  and t

ij  indicate the effective stresses and strains at 

current time. The stresses and deformations are assumed spatially uniform in each sub-

cell. The stress ( ),t
ij

 and strain ( ),t
ij

 are the average stress and strain in each sub-cell at 

current time. Traction continuity and displacement compatibility at the interfaces 

between sub-cells are satisfied in an average sense. The superscript (α) denotes the sub-

cell number and N is the total number of sub-cells. In this case, N equals to four. The 

unit-cell total volume V is defined as: 

1

N
( )V V 



                                                       (3.3) 

The micromechanical relations are expressed in terms of incremental stress and 

strain components. The incremental forms of the effective stress and strain tensors at the 

current time are t t t t
ij ij ij     and t t t t

ij ij ij    , respectively. The volume averaging 
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schemes in Eqs. (3.1) and (3.2) are then used to obtain the overall incremental stress and 

strain components. Hill (1965) defined the concentration matrices for linear elastic 

composites in order to relate the effective strain and/or stress to the stress and/or strain in 

the constituents. In this study, the micromechanical model is compatible with 

displacement based FE structural analyses, in which the effective strains 

t t t t

ij ij ij      are the independent known variables at time t. Thus, the concentration 

matrices ( ( ),tB ) are formulated to relate the effective incremental strain of the unit cell 

to the incremental strains in the sub-cells:  

( ), ( ),t t t

ij ijkl

    B                                                     (3.4) 

The above equation describes a linear relationship between the global (average) and 

local field variables. Substituting Eq. (3.4) to the average strain in Eq. (3.2), in terms of 

incremental forms, gives: 

( ) ( ),

1

1 N
t t t

ij ijkl klV
V

 



 


   Β                                              (3.5) 

Equation (3.5) is valid for an arbitrary average strain increment tε  such that the 

( ),tB matrices should satisfy the following constraint: 

( ) ( ),

1

1 N
t

ijkl ik jlV
V

 



 


 B                                              (3.6) 

leading to: 

( ) ( ),

1

1 ( ) 0
N

tt

ijkl ik jl kl
V

V

 



 


  Β                                           (3.7) 
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The linearized constitutive equation is used in each sub-cell (see Chapter II), which is 

written as: 

( ), ( ), ( ), ( ), ( ),t t t t t t

ij ijkl kl ijkl klrs rsC C          Β                                           (3.8) 

where ( ),tC   is the consistent tangent stiffness matrix of the sub-cell (α) at current time t. 

Substituting Eq. (3.8) into Eq. (3.1), the effective incremental stress is expressed as: 

      ( ) ( ), ( ),

1

1 N
t t t t

ij ijkl klrs rsV C
V

  



 


   Β                                                    (3.9) 

The unit-cell effective tangent stiffness matrix C t at time t is express as follows:  

( ) ( ), ( ),

1

1t t t

ijrs ijkl klrsC V C
V

  







  Β                                                    (3.10) 

The volume of the unit-cell (Figure 3.1) is taken as one. The volume of the sub-cell 1 

represents the fiber volume fraction (FVF) of the composite. The magnitude of side 

lengths h and f are always less than one. In this study, the fiber subcell with a square 

cross-section is considered (h=f). The volumes of the four sub-cells are then shown as: 

(1) (2) (3) (4), (1 ), (1 ), (1 ) (1 )V fh V h f V f h V h f                      (3.11) 

The 3D nonlinear constitutive models of the fiber and matrix are separately used 

in the fiber and matrix sub-cells. The response of the fiber in the first sub-cell is linear 

elastic and transversely isotropic, on the other hand, the response of the isotropic 

polymeric matrix is VE-VP. The traction continuity and displacement compatibility are 

satisfied within the micromechanical model that is based on perfect bond on the 

interfaces between the sub-cells. The following equations (micromechanical relations) 
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satisfy the displacement compatibility of homogenized unit-cell for a unidirectional 

composite medium:  

(1), (2), (3), (4),
11 11 11 11 11
t t t t t                                                           (3.13) 

(1) (2)

(1) (2) (1) (2)
(1), (2),

22 22 22
t t tV V

V V V V
  

 
                                                   (3.14) 

(3) (4)

(3) (4) (3) (4)
(3), (4),

22 22 22
t t tV V

V V V V
  

 
                                                  (3.15) 

(1) (3)

(1) (3) (1) (3)
(1), (3),

33 33 33
t t tV V

V V V V
  

 
                                                   (3.16) 

(2) (4)

(2) (4) (2) (4)
(2), (4),

33 33 33
t t tV V

V V V V
  

 
                                                 (3.17) 

(1) (2)

(1) (2) (1) (2)
(1), (2),

12 12 12
t t tV V

V V V V
  

 
                                                  (3.18) 

(3) (4)

(3) (4) (3) (4)
(3), (2),

12 12 12
t t tV V

V V V V
  

 
                                                  (3.19) 

(1) (3)

(1) (3) (1) (3)
(1), (3),

13 13 13
t t tV V

V V V V
  

 
                                                  (3.20) 

(2) (4)

(2) (4) (2) (4)
(2), (4),

13 13 13
t t tV V

V V V V
  

 
                                                 (3.21) 

(1) (1), (2) (2), (3) (3), (4) (4),
23 23 23 23 23
t t t t tV V V V                                              (3.22) 

The traction continuity leads to: 

(1) (1), (2) (2), (3) (3), (4) (4),
11 11 11 11 11
t t t t tV V V V                                            (3.23) 

(1), (2),
22 22

t t                                                                 (3.24) 

(3), (4),
22 22

t t                                                                 (3.25) 

(1), (3),
33 33

t t                                                                 (3.26) 
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(2), (4),
33 33

t t                                                                (3.27) 

(1), (2),
12 12

t t                                                                 (3.28) 

(3), (4),
12 12

t t                                                                 (3.29) 

(1), (3),
13 13

t t                                                                 (3.30) 

(2), (4),
13 13

t t                                                                 (3.31) 

(1), (2), (3), (4),
23 23 23 23 23
t t t t t                                                      (3.32) 

The concentration matrices are determined by using the micromechanical relations (Eqs. 

(3.13)-(3.32)) and the constitutive relation in Chapter II. Equations (3.13-3.32) consist of 

two groups of strain vectors satisfying the displacement compatibility equations and the 

equilibrium relations, which are written in Eqs. (3.33) and (3.34). The residual vectors 

t

R  and t

R  in Eqs. (3.33) and (3.34) arise from imposing the displacement 

compatibility and equilibrium relations, respectively, with linearized stress-strain 

relations. In this study, the strain components in each subcell are taken as independent 

field variables. Thus, there are 24 strain components that require forming 24 equations. 

In the linear elastic case, these residual vectors are zero, while in the nonlinear and 

inelastic case the linearized micromechanical relations result in non-zero residuals. The 

linearized micromechanical relations cannot be satisfied with nonlinear response of the 

matrix subcells. In order to minimize the residual, an iterative correction scheme is 
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formulated at the global and local levels. The numerical scheme is briefly shown in 

Figure 3.2. 
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Figure 3.2 A numerical algorithm for the simplified VE-VP micromechanical model 

 

3.2 Detailed FE Micromechanical Models for FRP Composites 

In FRP composites, fibers are not necessarily of the same size nor are they 

positioned regularly in the matrix medium. In order to examine the effects of fiber 

arrangements in the polymeric matrix, microstructural geometries of FRP composites are 

generated using FE. The detailed FE microstructural models describe the configuration 

of fibers and matrix. Figure 3.2 shows the micromechanical models with microstructural 

details for composites with 10%, 20%, 50% fiber volume fractions. For each fiber 

volume fraction, two kinds of microstructural configurations, i.e., uniform and random 

fiber distributions, are considered. The effects of different fiber arrangements on the 
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overall time-dependent response and stress/strain field of the composites are studied. In 

addition, FE micromechanical models are considered for composites with 40%, 54%, 

67%, 75% fiber volume contents with uniform fiber arrangements. The fibers in the 

micromechanical models with detailed fiber arrangements have the same diameter. The 

detailed micromechanical models are generated using 3D continuum elements. These 

micromechanical models have a total of 73728-247290 elements. A convergence study 

is conducted in order to determine sufficient numbers of elements in each 

micromechanical model with detailed fiber arrangements. The numbers of fibers in the 

cubic RVE depend on the volume fraction of fiber. Like in the unit-cell model, a linear 

elastic material response is used for the fibers and the VE-VP material response (Chapter 

II) is considered for the polymeric matrix. It is assumed that the interfaces between 

fibers and matrix are bonded perfectly. Incorporating detailed fiber arrangements in a 

homogeneous matrix allows capturing the variations in the field variables and localized 

stresses within the composite microstructures. The ultimate goal is to examine the effect 

of variations in the field variables and localized stresses on the overall (average) time-

dependent and inelastic response of FRP composites. 

 

3.3 Comparison of the Homogenized Unit-cell Model and FE Micromechanical Models  

The overall VE-VP response obtained from the homogenized micromechanical 

model, having four sub-cells, is compared with the one of micromechanical models 

having detailed fiber arrangements generated using FE, as seen in Figure 3.3. Carbon 

fiber is used for the fiber constituent and the matrix properties are based on HDPE 
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reported by Kim and Muliana (2009). The linear elastic properties of the carbon fibers 

(T300) are given in Table 3.1, which is reported by Miyagawa et al. (2005). The VE-VP 

properties of the HDPE matrix are given in Chapter II. Figure 3.3 shows the detailed FE 

micromechanical models with 10%, 20%, 50% fiber volume fractions. For each fiber 

volume fraction, two kinds of microstructural configurations, i.e., uniform and random 

fiber distributions, are considered. The detailed micromechanical models are generated 

using 3D continuum elements.  

 

 

Figure 3.3 FE meshes of micromechanical models with detailed fiber arrangements 
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Table 3.1 Mechanical Properties of Carbon Fibers  

Carbon Fiber 
E11 

[GPa] 

E22=E33 

[GPa] 

G12=G13 

[GPa] 

G23 

[GPa] 
ν12=ν13 ν23 

(T300) 230 10.4 27.3 3.08 0.256 0.3 

 

First, the effective linear elastic moduli of the FRP composites with 10%, 20%, 

50% fiber volume fractions generated from the UC and detailed FE micromechanical 

models are compared, which are summarized in Table 3.2 and illustrated in Figure 3.4. 

The reported moduli are along the fiber longitudinal direction and transverse to the fiber 

direction. It is seen that the effective elastic moduli of the FRP composites obtained from 

the unit-cell and FE heterogeneous micromechanical models with uniform and random 

fiber array are comparable. The differences (in percent) of the effective elastic moduli of 

the two models, shown in Table 3.2, slightly increase with increasing the fiber volume 

contents from 10% to 50%. The reason of the increasing differences is probably due to 

interaction between fibers that could lead to stress-concentration effects. In the 

simplified unit-cell model, fiber is assumed fully surrounded by the matrix and 

interactions between fibers are not considered. In the composites with detailed 

microstructural arrangements, the spacing between fibers decreases as the fiber volume 

contents increase, which can result in localized stresses as reported by Muliana and 

Sawant (2009). The uniform fiber arrangements for the composites with 10 and 20% 

fiber volume fractions show less difference than the random fiber arrangements. The 

spacing between fibers in the composite models with random fiber arrangements is 
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irregular that can result in higher possibility of the stress concentration due to narrow 

space between the fibers, which is more realistic microstructural representations. Figure 

3.5 shows the effective stress (von Misses stress) fields of a composite with 10% fiber 

volume content loaded along and transverse to the fiber axis. In both loadings, a uniaxial 

stress 10MPa is applied. It is seen that when the composite is loaded in the transverse 

fiber direction, more variations of the stress fields in the matrix are observed. However, 

for the composites with 10% fiber volume content, the variations are relatively small. 

Figure 3.6 illustrates the effective stress contours for composites with 20 and 50% fiber 

volume contents loaded in the transverse fiber direction. As fiber volume content 

increases, the spacing between fibers decreases, resulting in higher stresses localized in 

these regions.  

The axial and transverse elastic moduli of the detailed micromechanical models 

for 40%, 54%, 67%, 75% fiber volume contents of FRP composites with uniform fiber 

configuration are shown in Table 3.3. The moduli of the FRP composites obtained from 

the detailed micromechanical models are comparable to the ones obtained from the unit 

cell model with relatively small differences. Figure 3.7 shows the overall elastic moduli 

for all studied volume contents generated from the unit-cell model and detailed 

micromechanical model with uniform fiber arrangements. It is seen that the effective 

elastic moduli from the two micromechanical models are in a good agreement, indicating 

a minimum effect of the localized stresses on the overall elastic moduli of FRP 

composites. 
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Table 3.2 Comparisons of the Effective Elastic Moduli 

 

Vf  [%] 

(Fiber Volume 

Fraction)  

10 20 50 

Fiber Array 

Effective 

Elastic 

Modulus 

[GPa] 

Diff. 

% 

Effective 

Elastic 

Modulus 

[GPa] 

Diff. 

% 

Effective 

Elastic 

Modulus 

[GPa] 

Diff. 

% 

E11 

Unit Cell 27.08 0 49.63 0 117.27 0 

Detailed FE 

[Uniform] 
26.49 2.19 48.46 2.35 112.23 4.49 

Detailed FE 

[Random] 
26.41 2.47 48.32 2.63 114.02 2.77 

E22 

Unit Cell 5.22 0 5.64 0 7.13 0 

Detailed FE 

[Uniform] 
5.21 0.15 5.62 0.43 6.99 2.00 

Detailed FE 

[Random] 
5.20 0.33 5.59 0.96 6.98 2.10 
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Table 3.3 Comparisons of the Effective Elastic Moduli for Unit-cell and Detailed 

Micromechanical Models with Uniform Fiber Arrangements 

Loading 

Direction 
Axial Loading [E-Moduli] Transverse Loading [E-Moduli] 

Model 

Unit-

Cell 

[GPa] 

Detailed 

FE 

[GPa] 

% 

Difference 

Unit-

Cell 

[GPa] 

Detailed 

FE 

[GPa] 

% 

Difference 

Vf =40% 94.72 92.42 2.49% 6.60 6.49 1.58% 

Vf =54% 126.63 123.55 2.49% 7.37 7.18 2.57% 

Vf =67% 154.85 151.02 2.53% 8.11 7.92 2.44% 

Vf =75% 173.63 169.33 2.54% 8.64 8.44 2.42% 
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(a) 

 

(b) 

Figure 3.4 (a) Effective elastic moduli along and (b) transverse fiber directions 
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Figure 3.5 Stress contours of composites with 10% fiber volume content under uniaxial 

stress 10MPa 

 

 



 

52 

 

a) Vf = 20%, uniform fibers                          b) Vf = 20%, random fibers  

       

 

c) Vf = 50%, uniform fibers                          d) Vf = 50%, random fibers 

       

 

Figure 3.6 Stress contours of composites with 20 and 50% fiber volume contents loaded 

in the transverse fiber direction 
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(a) 

 

(b) 

Figure 3.7 Effective elastic moduli of FRP composites with different fiber volume 

contents: (a) along the fiber direction and (b) transverse to the fiber directions 
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seconds followed by 1800-second recovery. The creep-recovery loading with stress of 

3MPa is considered in the transverse fiber directions in order to avoid the high localized 

stresses in the matrix between the fibers. The VE-VP responses obtained from the two 

micromechanical models are compared. The UC model is integrated to one continuum 

3D element and the homogenized (overall) response is sampled at each material 

(Gaussian) integration point. In the case of micromechanical models with detailed fiber 

arrangements, the VE-VP constitutive models discussed in Chapter II are implemented 

at the material points within the matrix finite elements. In order to examine the 

efficiency of the two-micromechanical modeling approaches, computing (central 

processing unit, CPU) times during the creep-recovery analyses for the composites with 

10, 20, and 50% fiber volume contents are monitored, as reported in Table 3.4. The CPU 

times are reported for the creep-recovery analyzes with a uniaxial stress applied in the 

fiber and transverse directions. As expected the computing time required in the UC 

model is much less than the one of the FE micromechanical models with microstructural 

details. It is noted that the micromechanical models with the combined VE-VP response 

results in much higher computing time than when only the VE response is considered, 

which is due to more iterations needed in solving the VE+VP response.  

The corresponding strains during the creep-recovery loadings for the composites 

with 10-75% fiber volume contents, when the VE is considered for the polymeric matrix, 

are shown in Figures 3.8-3.10. The strains determined from the UC and 

micromechanical models with detailed fiber arrangements are relatively close with a 

percentage difference at time 1800 seconds is given in Tables 3.5 and 3.6. The detailed 
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micromechanical models with uniform fiber arrangements are considered. When the 

composite is loaded along the axial fiber direction, the fiber carries the majority of the 

loads and the time-dependent behavior of the matrix is insignificant. On the other hand, 

for loading in the transverse fiber direction the matrix carries relatively high mechanical 

loading, resulting in pronounced time-dependent response. The effective stress contours 

for composites with 54, 67, and 75% fiber volume contents loaded in the transverse 

direction under an overall stress level 3MPa are illustrated in Figure 3.11. The contours 

are obtained at 1800 seconds. It is seen that localized stresses are shown in the 

composites. These localized stresses are higher than the nominal stress prescribed on the 

boundary of the micromechanical models. The stress-dependent viscoelastic constitutive 

model for the matrix results in higher strain response which significantly increases the 

localized stresses in the composites. The detailed micromechanical models are capable 

in capturing the detailed variations of the stress and strain fields, while the UC model is 

limited in incorporating the different stress and strain fields in the matrix. It is noted that 

in the UC model, the variations of the stress and strain fields in the matrix are captured 

by the three sub-cells and each sub-cell has uniform stress and strain fields. Table 3.6 

presents the percent differences in the overall strains determined from the UC and 

detailed micromechanical models for composites with 40, 54, 67, and 75% fiber volume 

contents. It is seen that the highest difference is for the composites with 67% fiber 

volume contents loaded in the transverse fiber direction which is probably due to the 

significant effects of the localized stresses on the matrix dominated response. However, 

for the composite with 75% fiber volume content under the transverse loading, percent 
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differences between the responses obtained from the UC and detailed micromechanical 

models decrease. This is probably due to the relatively dense fibers in that the linear 

elastic fibers would carry significant amount of the mechanical load. 

 

Table 3.4 CPU time for VE and VE+VP in homogeneous and heterogeneous models 

  FE Models Vf 
[%] 

Total CPU Time [s] 

Elements Fiber Dir. Transverse Dir. 

VE 

Unit-cell 
model 

10 1 2.1 75.4 
20 1 2 75.6 

50 1 1.6 168.7 

Detailed FE 
model 

10 73728 41170 [11 hr] 534776 [149 hr] 
20 73728 10952 [3 hr] 164220 [46 hr] 
50 137490 25724 [7 hr] 20632 [6 hr] 

VE+VP 

Unit-cell 
model 

10 1 1.9 78.6 
20 1 1.9 79.7 
50 1 1.8 3836.6 

Detailed FE 
model 

10 73728 92753 [26 hr] 11059224 [128 days] 
20 73728 137217 [38 hr] 2095620 [24 days] 
50 137490 24582 [7 hr] 3539790 [41 days] 

 

 

 

 

 

 

 



 

57 

 

Table 3.5 Percent difference of the strains from the unit-cell and FE micromechanical 

models 

Fiber Array 
Time 

[s] 

Loading 

Direction 
Strain 

Difference % 

Vf= 10% Vf = 20% Vf = 50% 

Unit-cell 

Model / 

Detailed 

FE Model 

VE 1800 

Fiber 
ε11 2.43% 2.49% 4.45% 

ε22 2.05% 1.82% 5.52% 

Transverse 
ε11 1.67% 1.79% 4.86% 

ε22 1.99% 2.03% 5.37% 

VE+VP 1800 

Fiber 
ε11 2.42% 2.49% 4.46% 

ε22 2.05% 1.82% 5.54% 

Transverse 
ε11 0.02% 6.31% 5.02% 

ε22 0.31% 3.90% 5.69% 
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Table 3.6 Percent difference of the strains from the unit-cell and FE micromechanical 

models with uniform detailed fiber arrangements 

Loading 
Direction Model Vf = 40% Vf = 54% Vf = 67% Vf = 75% 

Axial 
Loading 

ε11 
[mm/mm] 

Unit-
Cell 1.08E-04 8.01E-05 6.51E-05 5.79E-05 

(1800 s) Detailed 
FE 1.11E-04 8.21E-05 6.68E-05 5.94E-05 

% Difference 2.53% 2.54% 2.53% 2.53% 

Transvers
e Loading 

ε22 
[mm/mm] 

Unit-
Cell 1.73E-03 1.26E-03 9.17E-04 7.27E-04 

(1800 s) Detailed 
FE 1.77E-03 1.34E-03 9.87E-04 7.58E-04 

% Difference 2.47% 6.05% 7.12% 4.10% 

Number of Elements 244590 240630 234360 247290 

Fiber Arrangement 12x12 13x15 15x16 15x18 

Arrangement Ratio 1 0.867 0.938 0.833 
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(a)  creep recovery strain for fiber direction loading [10MPa] 

 

(b)  creep recovery strain for corresponding fiber direction loading [10MPa] 

Figure 3.8 Creep-Recovery for VE in fiber direction loading 
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(a)   creep recovery strain for transverse direction loading [3MPa] 

 

(b)  creep recovery strain for corresponding transverse direction loading [3MPa] 

Figure 3.9 Creep-Recovery for VE in transverse direction loading 
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(a)  creep recovery strain for fiber direction loading [10MPa] 

 

(b)  creep recovery strain for transverse direction loading [3MPa] 

Figure 3.10 Creep-Recovery for VE in along and transverse to the fiber direction loading 
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a) Vf = 54% b) Vf = 67% 

c) Vf = 75% 
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Figure 3.11 Stress contours of composites with 54, 67 and 75% fiber volume contents 

loaded in the transverse fiber direction for creep behavior at 1800 seconds 

 

Figure 3.12 shows the comparisons of the strains in the UC and 

micromechanical models with detailed fiber arrangements considering VE and VE-VP 

behaviors under 10MPa applied along the axial fiber direction. The responses are 

obtained for composites with 10, 20, and 50% fiber volume contents. Again due to 



 

63 

 

relatively small amounts of stresses experienced by the matrix, insignificant VP 

deformations are observed as seen by the nearly similar VE and VE-VP responses. 

However, when the load 3MPa is applied in the transverse fiber direction, as shown in 

Figure 3.13, the effect of time-dependent and inelastic response on the overall 

performance of FRP becomes significant. The higher the fiber volume fraction is, the 

less the time-dependent and inelastic effects are, which should be expected. Table 3.5 

also presents percent difference in the corresponding strains from the UC and FE 

microstructural models. Consistent with the elastic moduli, the differences (in percent) 

of the effective time-dependent and inelastic strains obtained of the two models 

generally increase with increasing the fiber volume contents from 10% to 50%. It is 

noted that for the 20% fiber volume fraction, the percent difference in the effective time-

dependent and inelastic strains of two models are slightly larger than the one of the 50% 

fiber volume fraction which could be due to arrangement of fibers. Further investigation 

on understanding the effect of microstructural arrangements on the overall response of 

the FRP composites is necessary by varying the fiber distributions and sizes, and 

conducting statistical analysis, which are not the scope of this study. This study 

highlights that the localized stresses within the microstructures of the composites can 

influence the overall response of the composites. 
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(a)  creep recovery strain for fiber direction loading [10MPa] 

 

(b)  creep recovery strain for fiber direction loading [10MPa] 

Figure 3.12 Creep-Recovery for VE and VE-VP response in fiber direction loading 
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(a)   creep recovery strain for transverse direction loading - VE+VP [3MPa] 

 

(b)  creep recovery strain for transverse direction loading - VE+VP [3MPa] 

Figure 3.13 Creep-Recovery in transverse direction loading for VE-VP response 
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3.4 Numerical Verification of Unit-cell Micromechanical Model with Experimental Data 

for Unidirectional FRP Composite 

Experimental data on the VE-VP response of glass FRP unidirectional 

composites reported by Megnis and Varna (2003) are used to verify the simplified unit-

cell micromechanical model. The tests were performed on several off-axis specimens: 

20o, 30o, 45o, 90o and 0o, and stress levels. The linear elastic properties of the E-glass 

fiber in the fiber direction were obtained from Matweb (1997). The elastic properties of 

the fibers in the transverse direction and the linear elastic modulus of the matrix, epoxy, 

were calibrated by fitting the instantaneous response of the 0o and 90o creep tests in 

Figures 3.14-3.16. To calibrate the shear modulus of the linear elastic fibers, the 

instantaneous strains from the off-axis creep tests, i.e., 20o, 30o, and 45o fibers shown in 

Figures 3.17-3.19 were used. The properties of fiber and polymer matrix are shown in 

Table 3.7. The time-dependent extensional compliance for the linear viscoelastic matrix 

is given in Table 3.8. These properties were calibrated by fitting the compliance data 

under a small stress loading reported in Megnis and Varna (2003). The VP parameters in 

the Perzyna’s model were characterized by fitting the shear strain experimental data of 

the off-axis specimens at high stress levels shown in Figures 3.17-3.19. The initial yield 

stress 0
y  is taken as 27.876MPa. The calibrated values of the fluidity p and the power 

n are 0.9 [MPa/s] and 1.2, respectively. The stress dependent hardening parameters 

( )th   are shown in Figure 3.14. In this study, we take the viscosity parameter constant, 

while the rate of plastic deformation can vary with stresses. The non-constant hardening 

parameters are associated with the rates of plastic deformation during the creep tests, as 
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discussed by Kim and Muliana (2009). An alternative model could have been done by 

considering the following form of the magnitude of the VP strain rate 

. ( )1 ( )
( )

p

t

p

F e
 


 



  , in which the fluidity parameter depends on the effective stress. 

The remaining data of the off-axis specimens that were not used in the 

calibration are used to validate the micromechanical model. It is seen in Figure 3.15 that 

creep response of the uniaxial specimen under 130MPa shows nearly elastic response. 

The plots are shown for the axial and corresponding transverse strains. Since the fibers 

carry most of the external load the overall VE-VP response is negligible. The creep 

response of the transverse specimen (90o) under 50MPa stress is illustrated in Figure 

3.16. The micromechanical model with only a VE effect is sufficient in capturing the 

experimental strains, which is due to a relatively low stress applied to the composites. 

The fiber volume content of the composite is 56%, resulting in smaller stress transferred 

to the polymeric matrix and insignificant VP effect. The VP effect is more pronounced 

for the off-axis composites, i.e., 20o, 30o, and 45o, loaded under sufficiently high stresses 

shown in Figures 3.17-3.19. It is seen that the micromechanical model with only 

viscoelastic effect underestimates the creep response. The significant VP effect is due to 

a relatively high effective stress in the matrix when the shear deformation is pronounced 

like in the off-axis composite specimens, as also stated in Varna et al. (1997, 1999). 

Percent errors between the experimental data and VE-VP micromechanical model are 

reported in Table 3.9. The values were calculated at the last data point. The percent 

errors of the off-axis specimens are generally higher than the ones of the uniaxial and 
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transverse specimens. The reason could be due to the VP material parameters, which 

were calibrated by matching the overall off-axis creep response of the composites. It is 

perhaps necessary to characterize the VP properties of the epoxy matrix by conducting a 

series of creep-recovery test of this matrix like the one studied by Lai and Bakker 

(1995). Nevertheless, the present micromechanical model is capable of predicting the 

VE-VP response of the FRP composites experiment data at various off-axis angle and 

stress levels. 

Table 3.7 Elastic properties of fiber and polymer matrix 

Mechanical Properties of E-Glass Fibers Epoxy Matrix 

Vf E11 E22=E33 
ν12=ν13 ν23 

G12=G13 G23 E 
ν 

[%] [GPa]  [GPa] [GPa] [GPa] [GPa] 

56 72 32 0.2 0.2 38 38 4.25 0.448 

 

Table 3.8 Time-dependent compliance of the polymeric matrix 

n Dn x 10-5 [S-1] λn [MPa-1] 

1 3.85 1 

2 3.851 1.7 x 10-1 

3 3.852 1.8 x 10-2 

4 3.853 8.0 x 10-4 

5 3.854 1.0 x 10-4 

6 3.855 1.0 x 10-5 
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Table 3.9 Percent errors between experiment data and VE+VP micromechanical model 

Time 

[h] 
Loading Angles Strain 

Experiment 

Data 

VE+VP 

Model 

Error 

[%] 

381 
0 ° (From Fiber 

Direction) 

ε11 0.0032 0.0031 2.25 

ε22 -0.001 -0.001 0.07 

410 
90 ° (From Fiber 

Direction) 

ε11 0.0042 0.0042 0.09 

ε22 -0.0004 -0.0004 3.64 

380 
45 ° (From Fiber 

Direction) 

ε11 0.0054 0.0051 5.11 

ε12 -0.0023 -0.0025 8.02 

403 
30 ° (From Fiber 

Direction) 

ε11 0.0113 0.0098 12.91 

ε12 -0.0127 -0.0138 9.43 

380 
20 ° (From Fiber 

Direction) 

ε11 0.0059 0.005 15.97 

ε12 -0.0069 -0.0074 6.76 
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Figure 3.14 Hardening parameters of Perzyna model (calibrated from the viscoplastic 

creep strains) 

 

 

 

 

 

 

0
1
2
3
4
5
6
7
8
9

10

25 35 45 55 65 75 85 95

h
 [

x
1
0

-4
] 

σ [MPa] 



 

71 

 

 

 

Figure 3.15 Creep strain for [0]m laminate. ( o) experiment strain data, (—)calculated 

viscoelastic strain. Applied stress [130MPa] (fiber direction). 
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Figure 3.16 Creep strain for [90]m laminate. (o) experiment strain data, (—)calculated 

viscoelastic strain. Applied stress [50MPa] (Transverse of fiber direction). 
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Figure 3.17 Creep strain for [45]m laminate. Applied stress [50MPa] is local direction 
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Figure 3.18 Creep strain for [30]m laminate. Applied stress [115MPa] is local direction 
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Figure 3.19 Creep strain for [20]m laminate. Applied stress [100MPa] is local direction 
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CHAPTER IV 

COUPLED MECHANICAL AND THERMAL ANALYSES OF FRP COMPOSITES  

 

Fiber reinforced polymer (FRP) composites are widely used in many engineering 

applications involving wide temperature changes such as in aircraft structural 

components, turbine blades, retrofitting nuclear reactor containment concrete structures, 

etc. Under external mechanical loadings and extreme temperature changes the FRP 

composites experience coupled thermal-mechanical responses. For example, temperature 

changes in FRP composites lead to internal thermal stresses in the fiber and polymeric 

matrix; at elevated temperatures the polymeric matrix show pronounced viscoelastic or 

viscoplastic response that causes stress relaxation (and simultaneous creep deformation) 

in the polymeric matrix; and continuous changes of the stress fields in the matrix 

constituent influence the overall performance of FRP structures. The existence of high 

thermal stresses might result in formation of cracks and/or inelastic deformations in the 

constituents. Understanding the effect of temperature changes on the overall 

performance of FRP composites becomes important for better designing FRP composite 

materials and structures.  

This chapter presents analyses of coupled heat conduction and deformations in 

FRP composites through the use of integrated micromechanical models and FE method. 

Micromechanical models presented in Chapter III are modified for determining the 

effective (overall) thermal and mechanical properties of the FRP composites. These 

micromechanical models are implemented within continuum elements in FE framework. 
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The first section of this chapter discusses micromechanical formulation for heat 

conduction analyses in FRP composites, followed by micromechanical models for 

thermo-mechanical deformations.  

 

4.1 Heat Conduction Analyses of FRP Composites 

4.1.1 Micromechanical formulation of heat conduction 

The unit-cell model, discussed in Chapter III, is now used for determining the 

thermal properties and analyzing heat conduction in FRP composites. The unit-cell 

model consists of four fiber and matrix subcells and a volume averaging scheme is used 

to obtain the average (effective) field variables of the FRP composites. The spatial 

variation of the temperature gradient and heat flux vectors in each subcell is assumed 

uniform. The volume averaged heat flux and temperature gradient are given as: 

( )

( ) ( ) ( ) ( ) ( )

1 1

1 1( )
m

N N
m m m m m

i k ii

m mV

q q x dV V q
V V 

          ,where , 1,2,3i k                 (4.1) 

( )

( ) ( ) ( ) ( ) ( )

1 1

1 1( )
m

N N
m m m m m

i i k i

m mV

x dV V
V V

  
 

          ,where  i

i

T

x






                  (4.2) 

q
i

(m)  is the component of the heat flux in subcell (m), ( )m

i is the component of the 

temperature gradient and N is the number of subcells. The variables q  and   are the 

effective heat flux and temperature gradient, respectively. It is assumed that the Fourier 

law governs the heat conduction in the composites; the dissipation in the composites, the 
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radiation, and the velocity of the composite bodies can be ignored. The transient heat 

conduction in the composite media is governed by the following equation: 

,i i

dT
c q

dt
                                                        (4.3) 

The effective heat capacity c  is assumed as: 

( )

( ) ( ) ( ) ( ) ( )

1 1

1 1( )
m

N N
m m m m m

k

m mV

c c x dV V c
V V

  
 

                           (4.4) 

The above equation for the heat conduction will be solved incrementally: 

;     
t

t t t tdT T
c c T T T

dt t
  

   


                                     (4.5) 

The superscript in the above equation indicates the time associated to the field variables. 

The incremental form of the effective heat flux at the current time is: 

t t t t

i i i
q q q



                                                        (4.6) 

The incremental form of the heat flux linearized constitutive equation of the composite 

is: 

tt t
iji jq K                                                              (4.7) 

where 
t

ijK  is the components of the effective thermal conductivity tensor which can 

depend on current temperature and 
t

t

j

j

T

x



 


is the incremental temperature gradient. 

The micromechanical formulation is expressed in terms of linearized incremental 

relations. In order to relate the effective field variables to the field variables in each 
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subcell, the concentration matrix ( )m

ijF  will need to be formulated as discussed in 

Chapter III: 

( ), ( ),m t m t t

i ij j   F                                                       (4.8) 

The incremental heat flux in each subcell is related to the incremental temperature 

gradient in each subcell through the subcell’s thermal conductivity: 

( ), ( ), ( ),m t m t m t

i ij jq k                                                       (4.9) 

Using Eqs. (4.8), (4.9) and the volume averaging scheme in Eq. (4.1), the effective 

thermal conductivity in the composite is expressed as: 

( ) ( ), ( ),

1

1 N
t m m t m t
ik ij jk

m

K V k
V 

  F                                                (4.10) 

In order to define the concentration matrix ( )m

ijF for the FRP composites, the 

micromechanical relations and constitutive equations for all subcells are imposed. 

Detailed micromechanical relations for analyzing heat conduction in FRP composites 

can be found in Muliana and Kim (2010). The above micromechanical models are 

implemented at each material (Gaussian) point in 3D continuum finite elements which 

will be used to analyze heat conduction in homogenized composite media. For this 

purpose a user material subroutine UMATHT of ABAQUS FE code is used.  

 

4.1.2 Numerical Implementation 

The above micromechanical models lead to response of FRP composites as 

homogenized bodies, which give a crude approximation of the field variables (average 
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values). This will be used for analyzing response of large-scale composite structures. In 

reality, composites are heterogeneous bodies, whose responses depend strongly on the 

microstructural characteristics such as sizes, shapes, and arrangements of the inclusions, 

and the properties of the constituents.  The heterogeneity in the microstructures often 

causes significant localized field variables, such as stress or heat flux concentration at 

the interfaces between fibers and matrix, which can influence the overall response of the 

FRP composites. The above micromechanical models can incorporate the detailed 

nonlinear constitutive models for all constituents and simplified (idealized) geometry of 

the microstructures in the composites, but they are limited in capturing the effects of 

detailed microstructural characteristics and localized field variables on the overall 

response of the composites. In order to examine the response obtained from the 

simplified micromechanical models to the ones determined with more realistic 

microstructures, FRP microstructural models with several fibers arranged in the 

homogeneous matrix are generated for composites with different fiber volume contents 

(see Figure 4.1 as an example). These FRP microstructural models are meshed using 3D 

continuum finite elements and FE method is used to obtain solutions in terms of field 

variables due to prescribed boundary conditions.   

The FRP microstructural models with cubic geometries of side length 6 mm are 

considered. The cross sectional area of one cylindrical fiber is 0.1 mm2, and the fiber 

volume fraction is proportional to the volume of the entire fibers to the volume of the 

cubic medium. The fibers are arranged uniformly in the matrix medium. The studied 

FRP composites are made of E-glass fiber and epoxy matrix. The transient heat 
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conduction analyses are performed for FRP with different fiber volume fractions, 10, 20, 

40, 50, 67, 75%. For each fiber volume fraction, transient heat conductions along the 

unidirectional fiber (longitudinal) and transverse to the fiber directions are performed 

until steady state condition is reached within the given tolerance. The tolerance is 

defined in terms of temperature gradient 
i

T

x




, and steady state condition is numerically 

achieved when the maximum temperature gradient is less than 0.1 K/mm. The 

corresponding temperature profiles, 1 2 3( , , , )T x x x t , are obtained by solving the following 

governing equation ,i i

dT
c q

dt
    for the heterogeneous medium and at the interfaces 

between fibers and matrix, temperature is assumed continuous. The initial and boundary 

conditions for the heat conduction along the longitudinal and transverse fiber directions 

are given as follows: 
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Figure 4.1 Surface boundary of microstructure of FRP composites 
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The properties of the E-glass fiber and epoxy matrix in the FRP composite material are 

given in Tables 4.1 and 4.2. 

 

Table 4.1 E-glass fiber and epoxy matrix physical properties 

Constituents  Density (kg/m3)  Specific heat (J/kg K)  

E-glass  2600 840 

epoxy  1250 1110 

 

Table 4.2 E-glass fiber and epoxy matrix thermal conductivity 

Thermal Conductivity (W/m K)  k11 (longitudinal) k22=k33 (transverse) 

E-glass  1.1 1.1 

epoxy  0.188 

 

Heat conduction in the longitudinal (axial) fiber direction 

The times to reach steady state condition in the transient heat conduction 

analyses of FRP composites with several fiber volume contents are presented in Table 

4.3. The responses of FRP composites form the simplified micromechanical (unit-cell) 

model are compared to the ones with detailed microstructural characteristics. The 

percent differences in the steady state times from the unit-cell model and FRP 
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micromechanical models with detailed microstructural characteristics are within 2.61%. 

For low fiber volume fractions, such as 10 and 20%, the simplified unit-cell model 

shows good agreements with the FRP models with microstructural details. However, for 

the composites with higher fiber volume fractions higher deviations are observed in the 

steady state times. It is noted that the thermal conductivity of fibers is higher than that of 

the matrix; thus, conduction along the fibers tends to be faster than the conduction along 

the matrix. For the FRP composites with low fiber volume contents, spacing between 

fibers are relatively large compared to the FRP composites with higher fiber volume 

contents. In such condition, the influences of heat conduction in the matrix regions 

between fibers on the overall conduction due to the macroscopic temperature gradients 

are relatively small. The simplified micromechanical (unit-cell) model does not 

incorporate the possible effects of heat conductions between fibers. On the other hand, 

the conduction between fibers might accelerate the overall heat conduction in the 

composites, indicated by lower steady state time when FRP with microstructural details 

are considered. For the FRP composites with relatively high fiber volume fractions, the 

percent differences in the steady state times between the unit-cell models and FRP 

models with microstructural details become smaller, which might be because the thermal 

conductivity of the fiber dominates the overall heat conduction in the composite media. 

The temperature fields at several instants of time during the transient heat 

conduction along the axial fiber direction in the FRP composite media are shown in 

Figure 4.2. The responses of 10% fiber volume fraction, illustrating 3-D temperature 

distribution, and the cross sections of temperature distribution at several instants of time 
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are shown for FRP composites with 10, 50, and 75% fiber volume contents. The 

temperature profiles obtained from the unit-cell model and micromechanical model with 

microstructural details are in reasonably good agreements. The FRP models with 

microstructural details show slight waviness in the temperature fields around the fibers 

due to its capability of capturing variations in the localized temperature profiles from the 

differences in the thermal conductivities of fibers and matrix. The unit-cell model 

presents average temperature profiles in homogenized composites.  

 

Table 4.3 Steady state times during transient heat transfer analyses 

Direction of heat 
conduction Model 

Fiber Volume Fraction [%] 

10 20 40 50 67 75 

Steady State time 
(Axial) [s] 

Unit-Cell 220 191.5 157.5 146 131.5 126 

Detailed FE 219 189 153.5 143.5 129 124 

% Difference 0.46% 1.32% 2.61% 1.74% 1.94% 1.61% 

Steady State time 
(Trans) [s] 

Unit-Cell 263 253.5 226.5 209.5 179 163 

Detailed FE 254 240 214 206.5 173.5 154 

% Difference 3.54% 5.63% 5.84% 1.45% 3.17% 5.84% 
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Vf = 10% - AXIAL (3-D Heat Conduction of Detailed FE Model at 10 Seconds) 
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Figure 4.2 Temperature contours for axial heat conduction 

 



 

87 

 

 
 

1s                  5s                    10s  20s      40s 
 

Vf = 50% (AXIAL) 
 

       

 
 

1s                      5s                        10s        20s            40s 
 

Vf = 75% (AXIAL) 
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Figure 4.2 Continued 
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Heat conduction in the transverse fiber direction 

The steady state times for the transient heat conduction along the transverse fiber 

direction for FRP composites with several fiber volume contents are given in Table 4.3. 

The calculated steady state times due to conduction along the transverse fiber direction 

are higher than the ones for the conduction along the axial fiber direction. This is due to 

the low thermal conductivity of the matrix, which slows down the heat conduction in the 

transverse fiber direction. The corresponding temperature profiles for FRP composites 

with 10, 50, and 75% fiber volume contents are illustrated in Figure 4.3. The wavy 

shapes in the temperature profiles around the fibers are more distinctive due to the 

matrix thermal resistance. The wavy shapes are more distinctive in lower volume 

contents. The heat conduction in the matrix regions is relatively slow due to the 

relatively low thermal conductivity in matrix. The conduction in the fibers occurs faster 

until it reaches the interface of matrix, which is shown by the wavy shapes.  Overall, the 

temperature profiles generated from the unit-cell model and FRP models with 

microstructural details are in good agreements. It is concluded that for several case 

studies presented here, the unit-cell model gives reasonably good averages of the heat 

conduction performance of the FRP composites. 

 Figure 4.4 depicts the temperature distributions along the conduction lengths of 

the FRP composites with different fiber volume contents, corresponding to the 

temperature field contours in Figures 4.2 and 4.3. It is seen that the temperature 

distributions from the unit-cell model are comparable to the ones from the 

micromechanical models with detailed microstructures. However, the unit-cell model 
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results in smooth and continuous temperature distributions with continuous temperature 

gradients due to the homogenized responses of the FRP composites. 

 

 

Vf = 10% - TRANS (3-D Heat Conduction of Detailed FE Model at 20 Seconds) 
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Figure 4.3 Temperature contours for transverse heat conduction 
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Vf = 50% (TRANS) 
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Vf = 75% (TRANS) 
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Figure 4.3 Continued 
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Axial Heat Transfer                 Transverse Heat Transfer 

  

 

  

Line : Unit-Cell Model; Symbols : Detailed FE Model 

Figure 4.4 Temperature profiles in the composite medium 
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4.2 Micromechanical Model for Thermo-mechanical Analyses of FRP Composites  

The four-cell micromechanical (unit-cell) model derived previously in Chapter 

III is now extended for analyzing the overall thermo-mechanical responses of 

composites that include the effect of thermal stresses. This micromechanical model is 

also used to determine the effective coefficient of thermal expansion (CTE) of the 

unidirectional FRP composite, having nonlinear time-stress-temperature dependent 

properties of the constituents. The incremental micromechanical formulation is 

described in terms of the average strains and stresses in the subcells, as discussed in 

Chapter III.  

For the linearized thermo-elastic constitutive relation, the effective stress and 

strain of the FRP composites are written as: 

0[ ] [ ( )]M T M
ijkl ijkl ijklij kl kl kl kl klC C C T T                            (4.11) 

where ijklC  are the effective elastic stiffness tensors and 
ij  are the effective CTE. The 

field variables M

ij  and T

ij  are the effective mechanical and thermal strains, 

respectively. The parameters T  and 0T  are the effective current and reference 

temperatures, respectively. The micromechanical model formulation is obtained in terms 

of the constitutive relations in each constituents and microstructural geometry, i.e. RVE. 

The linear thermo-elastic constitutive relations in each constituent or subcell (m) are 

related by the following relation: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
0[ ] [ ( )]m m m m m m m

ij ijkl kl ijkl kl kl ijkl kl klC C C T T                         (4.12) 
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The average stresses and strains in the FRP composites are obtained through a 

volume averaging scheme, as discussed in Chapter III. This study considers thermo-

viscoelastic (-viscoplastic) response of the polymeric matrix, which violates the 

linearized thermo-mechanical relations in Eqs. (4.11) and (4.12). In order to obtain 

solutions to thermo-viscoelastic (-viscoplastic) boundary value problems in FRP 

composites, an incremental formulation is considered. The linearized relation is first 

used to obtain trial solution at each time increment followed by iterative schemes to 

minimize errors from linearizing the nonlinear responses.  

 The incremental form of total stresses and mechanical and thermal strains are: 

( ), ( ), ( ),

, , ,

( ), ( ), ( ),

, , ,

( ), ( ), ( ),

t t t t

ij ij ij

m t m t t m t

ij ij ij

M t M t t M t

ij ij ij

M m t M m t t M m t

ij ij ij

T t T t t T t

ij ij ij

T m t T m t t T m t

ij ij ij

  

  

  

  

  

  













  

  

  

  

  

                                                (4.13) 

The superscript, t - Δt, denotes quantities at the previous converged time, and prefix, Δ, 

denotes an incremental quantity at the current time increment. The material parameters 

in the constitutive models for the fiber and matrix constituents are temperature 

dependent, thus it is necessary to quantify the current temperature or incremental 

temperature in each subcell. Since it is assumed that the RVE’s length scale (micro-

scale) is much smaller than the structural scale, in each unit-cell (material point of a 

composite) the steady state condition is reached in a relatively short period compared to 

the macroscopic conduction time. The transient heat transfer analysis within a unit-cell is 
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ignored and temperatures are assumed to vary at the material points. The current 

incremental temperature and total temperature in each subcell are evaluated as follows: 

 
,( ) tt mT T                                                        (4.14) 

,( ) ,( ) ,( )t m t t m t mT T T                                               (4.15) 

 

 The micromechanical model is designed to be compatible with displacement 

based FE structural analyses in which the effective mechanical strains ( ,M t

ij ) are the 

independent variables. Hill (1965) proposed the average stresses and strains in each 

subcell can be expressed in terms of the effective stress and strain by defining a 

concentration tensor. In this study, a strain interaction tensor ( ( ),m t
B ) that relates the 

effective incremental mechanical strain, ,M t

kl , to the incremental average mechanical 

strains in each subcell, ,( ),M m t

ij  is defined: 

,( ), ( ), ,M m t m t M t

ij ijkl kl   B                                               (4.16) 

Using the linearized incremental strain in Eq. (10), the incremental stress in the subcell 

(m) is: 

( ), ( ), ( ), ,m t m t m t M t

ij ijkl klpq pqC   B                                              (4.17) 

Substituting Eq. (11) into the incremental form of Eq. (5) gives the effective incremental 

stresses: 

( ) ( ), ( ), ,

1

1 N
t m m t m t M t

ij ijkl klpq pq

m

V C
V

 


   B

                                     (4.18) 
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The unit-cell effective tangent stiffness matrix 
t

ijpqC  is then defined by: 

( ) ( ), ( ),

1

1 N
t

m m t m t
ijpq ijkl klpq

m

C V C
V 

  B

                                        (4.19) 

The fourth order tensor, ( ),m t

ijklB , is derived by satisfying the micromechanical relations 

and the constitutive equations, as discussed in Chapter III. The homogenized incremental 

strain relations by satisfying the displacement compatibility along the longitudinal fiber 

direction (x1) in the subcells are given as: 

, , (1), (1), (2), (2),t M t T t M t T t M t T t

ij ij ij ij ij ij ij                                  

(3), (3), (4), (4),M t T t M t T t

ij ij ij ij                        ,     , 1i j            (4.20)                                              

The homogenized incremental strain relations by satisfying the displacement 

compatibility for the transverse fiber directions (x2) and (x3) are given as: 

(12), ,(12), ,(12), (1) (1), (2) (2),
(1) (2)

1 [ ]t M t T t M t M t

ij ij ij ij ijV V
V V

            


 

(1) (1), (2) (2),
(1) (2)

1 [ ]T t T t

ij ijV V
V V

    
                  (4.21)

 

(34), ,(34), ,(34), (3) (3), (4) (4),
(3) (4)

1 [ ]t M t T t M t M t

ij ij ij ij ijV V
V V

            


 

(3) (3), (4) (4),
(3) (4)

1 [ ]T t T t

ij ijV V
V V

    
                  (4.22)

 

,     , 2i j   

(13), ,(13), ,(13), (1) (1), (3) (3),
(1) (3)

1 [ ]t M t T t M t M t

ij ij ij ij ijV V
V V

            

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(1) (1), (3) (3),
(1) (3)

1 [ ]T t T t

ij ijV V
V V

    
                   (4.23)

 

(24), ,(24), ,(24), (2) (2), (4) (4),
(2) (4)

1 [ ]t M t T t M t M t

ij ij ij ij ijV V
V V

            


 

(2) (2), (4) (4),
(2) (4)

1 [ ]T t T t

ij ijV V
V V

    
                 (4.24)

 

,     , 3i j   

The homogenized incremental stresses by satisfying the traction continuity for loading 

along the fiber direction are expressed as: 

4
( ) ( ),

1

t
m m t

ij ij

m

V 


  
          

, 1; , 1,2,3i j k l 

             (4.25)
 

, ,t t t tt M t T t
ij ijkl ijkl ijklkl kl klC C C                                                        (4.26) 

4
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
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ij ijkl kl klC T                                                     (4.27) 

4
( ) ( ), ( ),

1

1t t m m t m t
ijkl kl ijkl kl

m

C T V C T
V

 

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The effective consistent tangent CTE for fiber direction of orthotropic nonlinear 

response is then described as: 
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41, ( ) ( ), ( ),

1

1t t t m m t m t
ij ijklij ijkl kl
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4
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m
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                                                            (4.31) 

The traction continuity along the transverse fiber direction (x2) are expressed as: 

    (1), (2),t t

ij ij                       , 2; , 1,2,3i j k l                    (4.32) 

(3), (4),t t

ij ij                                                                       (4.33) 
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ij ijkl kl ijkl kl ijkl klC C C                                                               (4.34) 
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                               (4.36)
 

The effective consistent tangent CTE for transverse fiber direction of orthotropic 

nonlinear response is then described as: 

1, (12) (12), (12), (34) (34), (34),1 [ ]
t t t t t t t
ij ijklij ijkl kl ijkl klC V C V C

V
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

  
                         (4.37) 

(12) (1) (2)V V V  ,        
(34) (3) (4)V V V   
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The traction continuity for the transverse fiber direction (x3) is: 

  (1), (3),t t

ij ij                    , 3; , 1,2,3i j k l                 (4.38) 

(2), (4),t t

ij ij                                                                (4.39) 
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The effective consistent tangent CTE for transverse fiber direction of orthotropic 

nonlinear response is then described as: 
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4.3 Numerical Implementation and Verification 

The coupled thermo-mechanical problem for unidirectional FRP composite is 

sequentially done in a 3D continuum element by using subroutines UMATHT, UMAT, 

and UEXPAN of ABAQUS FE code. It is assumed that the deformation in the FRP 

composite depends on the temperature field, but the heat conduction process is 

independent on the deformation, i.e., the effect of energy dissipation due to the viscous 

deformation is ignored and its contribution to the heat generation is assumed negligible 

as this study focuses on small deformation gradient problems. In this study, the transient 

heat transfer analysis is performed and subroutine UMATHT is used for determining the 

effective thermal properties. The outcome from the heat transfer analysis is the time 

varying temperature profiles, sampled at nodes. These temperature profiles with or 

without external mechanical stimulus will be used as inputs to analyze the deformation 

in the FRP composite structures. The user subroutine UMAT and UEXPAN are used to 
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incorporate the nonlinear material parameters related to the deformation in FRP 

composites.  

 

4.3.1 Effective CTE of glass fiber/epoxy composite 

In order to validate the effective CTE obtained from the UC model, available 

analytical solutions, experimental data for glass/epoxy composites, and the 

micromechanical model with detailed microstructures are used. Figure 4.5 illustrates an 

example of FE meshes of an FRP microstructure with detailed fiber arrangements, for a 

composite with nearly 20% fiber volume content. The red color indicates the fibers and 

the blue color is for the matrix medium. The size of the FRP microstructure is 

31 1 1 mm  . The diameter of fibers for all FRP composites with different fiber volume 

contents is kept constant. The overall CTEs for FRP composites with different fiber 

volume contents at room temperature are first determined. The linear elastic and CTE 

properties of the E-glass fiber and epoxy at room temperature are shown in Table 4.4. 

These values are obtained from the date available in Karadeniz and Kumlutas (2007).   

 

Table 4.4 Mechanical and thermal properties 

Material E [GPa] G [GPa] ν α [10-6/K] 

Glass fiber 72 40 0.2 5 

Epoxy 3.5 3.89 0.35 52.5 
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Figure 4.5 Detailed FE model for coupled mechanical and thermal analysis (Vf = 19.6%) 

 

Figures 4.6 and 4.7 illustrate the effective CTEs of unidirectional FRP 

composites along the fiber and transverse to the fiber directions, respectively. The results 

obtained from the UC model are in a reasonably good agreement with available 

experimental data and analytical micromechanical models, especially for the overall 

CTEs along the fiber direction. Some mismatches with the experimental data are 

observed for the overall CTEs in the transverse fiber directions, especially for 

composites with low fiber volume contents. The reason of these mismatches could be 

due to the variation of the thermal stresses, i.e., localized thermal stresses are shown near 

the interface between fibers and matrix, while the UC model is limited in capturing such 
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variations. It is also seen in Figure 4.7 that the UC model shows similar results as other 

analytical models, except for the Schapery’s model (Schapery, 1968), which is shown to 

be in a good agreement with the experimental data, and micromechanical models with 

detailed fiber arrangements. The effective CTEs of a unidirectional FRP composite from 

the Schapery’s model are: 1
f f f m m m

f f m m

E V E VE

E V E VE

 



 


 for the axial fiber direction and 

2 1(1 ) (1 ) ( )f f f m m m f f m mV V V V             for the transverse fiber direction. 

 

 

Figure 4.6 CTE of glass fiber/epoxy composite of axial fiber direction for different 

volume fractions 
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Figure 4.7 CTE of glass fiber/epoxy composite of transverse fiber direction for different 

volume fractions 

 

4.3.2 Sequentially coupled thermo-mechanical analysis
 

The effect of temperature changes due to heat conduction on the deformation of 

viscoelastic-viscoplastic FRP composites is studied using the UC model and 

micromechanical models with microstructural details. Transient heat conduction analysis 

is first conducted and the temperature profiles at each instant of time are used as input 

variables in the deformation analysis of FRP composites. The size of the FRP samples is 

31 1 1 mm  ; the small size is considered in order to accelerate the heat conduction 

analyses. The FRP composite is initially at room temperature (293K) and elevated 

temperature 393K is prescribed on the surfaces of the FRP composite. The initial and 

boundary conditions of the heat conduction analysis are presented in Figure 4.1. The 
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FRP composites are made of E-glass fiber and epoxy matrix. The physical and thermal 

properties for the fiber and matrix are given in Tables 4.1, 4.2, and the mechanical 

properties and CTE is given in Table 4.4. The viscoelastic-viscoplastic properties of 

epoxy matrix which are calibrated from experimental data in Chapter III are used for the 

time-dependent response. 

 Heat conduction along the axial fiber direction is considered. Table 4.5 

summarizes the steady state times for FRP composites at different fiber contents 

determined from the UC model and micromechanical models with detailed fiber 

arrangements. The steady state is reached in relatively short time compared to the results 

in Table 4.3, which is due to the small size FRP samples. The corresponding temperature 

profiles at several times for FRP composites with different fiber volume contents are 

illustrated in Figure 4.8. As expected higher fiber volume contents accelerate the heat 

conduction. 

 

Table 4.5 Steady state time of axial heat conduction for UC model and detailed FE 

model 

Vf  [%] 10 19.6 32.4 51.2 64.8 

Steady State Time [s] 
UC Model 18.2 15.4 13.0 11.0 10.0 

Detailed FE Model 19.2 16 13.4 11.4 10.4 

% Difference 5.2 3.8 3.0 3.5 3.8 
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Next, the micromechanical models are used to determine the deformation in the 

viscoelastic FRP composites due to the conduction of heat. The thermal stresses, which 

are mainly due to the mismatches in the CTEs of the fibers and matrix at the steady state 

condition, are examined for FRP composites with different fiber volume contents. It is 

noted that the thermal stresses vary with time during the transient heat conduction. Since 

the steady state time is reached in a relatively short period, the effect of viscoelastic 

matrix due to the thermal stresses is rather insignificant. Figures 4.9 and 4.10 illustrate 

the axial and transverse thermal stresses at steady state. The responses are shown for 

FRP composites with different fiber volume contents determined from the 

micromechanical models with detailed fiber arrangements. It is seen that non-uniform 

and discontinuities in the thermal stress fields are observed. For comparisons, the 

thermal stress profiles obtained from the simplified UC models are also presented for the 

FRP composite with 51.2% fiber volume content, which show a uniform temperature 

profile. This is because the UC model treats the composites as homogenized media. As 

seen from the thermal stress profiles, higher magnitude of stresses are experienced by 

the stiffer fibers, which is expected. The thermal stresses in the matrix are generally 

small, although some higher values are observed close to the interface between fibers 

and matrix. High stresses in the matrix could lead to plastic (viscoplastic) deformation. 
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Figure 4.8 Temperature contours for axial direction during heat conduction 
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Figure 4.8 Continued 
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Figure 4.9 Thermal stresses in the axial fiber direction (σ11) at steady state conditions 
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Figure 4.10 Thermal stresses in the transverse fiber direction (σ 22) at steady state 

conditions
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In order to study the effect of coupled thermo-mechanical loading, FRP 

composite with 64.8% fiber volume content is now subjected to a mechanical stress once 

it reaches steady state temperature 393K. The steady state time of the FRP composite 

64.8% fiber volume content is around 10 seconds, as shown in Table 4.5. The external 

loading is applied on the FRP along the transverse fiber direction with stress 10MPa. 

The creep-recovery of VE-VP response is performed for 3600 seconds, and the external 

stress is unloaded at 1800 seconds while temperature still remains at 393K for the 

remaining period. The corresponding stress contours of detailed micromechanical model 

and UC model are shown in Figure 4.11. For the detailed micromechanical model, the 

largest value of the von Mises stress is around 33-43MPa in the small region which is 

slightly beyond the yield stress of the matrix, 27.876MPa. Thus, there might be some 

effects of plastic deformations on the overall response of the composite. On the other 

hand, the UC model, which cannot capture the localized stress concentration effect, 

shows the stress contours close to the prescribed mechanical stresses with small 

variations due to the thermal stress effects. In order to examine the effect of the thermal 

and mechanical inputs in the UC model, thermal and mechanical boundary conditions 

are prescribed separately and stress fields in the UC model due to thermal and 

mechanical boundary conditions are monitored for 1800 seconds due to the possible 

stress relaxation effect from the viscoelastic(-plastic) matrix. The stress variation in the 

UC model is shown due to thermal expansion effect during the transient heat conduction 

while the UC model subjected to pure mechanical loading remains at a constant 10MPa, 

as depicted in Figures 4.12 and 4.13. After the heat conduction reaches steady state, after 
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10 seconds, the thermal stress varies with time, although the variation is relatively small, 

which is due to the viscoelastic matrix. This explains the variation in the stress contours 

from the coupled thermo-mechanical boundary conditions in Figure 4.11. Figures 4.14 

and 4.15 present the creep-recovery curve for detailed micromechanical model and UC 

model of FRP composites with 64.8% fiber volume content, which highlight the effect of 

VE and VP deformations. The strains in Figures 4.14(a) and 4.15(a) are due to the 

thermo-mechanical effect, along the loading and transverse to the loading directions, 

respectively. For detailed micromechanical model, higher strains are due to the thermal 

expansion and some plastic deformations. The VP deformation shows 0.38% higher 

value than VE deformation at 3600 seconds. For the comparison of the creep-recovery 

responses in the two models, the creep-recovery strains of the transverse fiber direction 

shows a significant discrepancy during thermo-mechanical loading. In the recovery state, 

thermal strain remains due to thermal expansion and the percent difference between two 

models are similar to the difference in the creep strains of the two models. It is seen that 

this discrepancy is due to the CTE difference of the transverse fiber direction as shown 

in Figure 4.7. The corresponding creep-recovery strain in the axial fiber direction 

presents small percent difference since the CTEs in the axial fiber direction of the two 

models are in good agreement, as shown in Figure 4.6. The percent difference of the 

creep strains is shown in Table 4.6. 
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von Mises stress 

 

                            Detailed micromechanical model  UC model 

43 MPa 33 MPa 3 MPa13 MPa 10.8 MPa 10.5 MPa 9.3 MPa9.7 MPa  

S11 

Figure 4.11 Stress contours of FRP composites in creep-recovery response with 64.8% 

fiber volume content under mechanical loading at 1800 seconds. The matrix in the 

detailed micromechanical model is assumed undergoing viscoelastic and viscoplastic 

deformation. 
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                            Detailed micromechanical model  UC model 

20 MPa 8 MPa -29 MPa-16 MPa 0 MPa  

S22 

 

                            Detailed micromechanical model  UC model 

53 MPa 34 MPa -26 MPa-7 MPa 11.4 MPa 10.6 MPa 8.6 MPa9.2 MPa  

Figure 4.11 Continued 
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von Mises stress 

 

2.E-05 s (Beginning)    7.E-05 s 

 

10 s                 1800 s 

16.7 MPa 13.7 MPa 0.58 MPa4.5 MPa
 

Figure 4.12 Stress contours of UC model with 64.8% fiber volume content under thermal 

boundary condition (during and after heat conduction). 
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Constant during 1800s 

10 MPa
 

Figure 4.13 Stress contours of UC model in creep-recovery response with 64.8% fiber 

volume content under mechanical loading only. 

 

Table 4.6 Percent difference of viscoelastic creep strain for detail FE model and UC 

model 

  

VE creep strain of transverse direction  
at 1800 s 

VE creep strain of 
axial fiber direction at 

1800 s 
Expansion + 

Mechanical loading Only Expansion Expansion + 
Mechanical loading 

Strain ε22 ε11 ε22 ε11 ε11 ε22 

detailed 
FE model 3.83E-03 5.69E-04 2.32E-03 6.22E-04 7.08E-04 1.69E-03 

UC model 2.71E-03 5.60E-04 1.60E-03 6.12E-04 7.01E-04 1.24E-03 

% 
difference 29.3 1.5 31 1.6 1.0 26.8 
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(a) 

 

(b) 

Figure 4.14 Creep-Recovery for thermal expansion and transverse loading (transverse 

direction) 
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(a) 

 

(b) 

Figure 4.15 Corresponding creep-recovery response for thermal expansion and 

transverse loading 
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(a) 

 

(b) 

Figure 4.16 Creep-Recovery for thermal expansion and axial loading (fiber direction) 
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CHAPTER V 

THERMO-MECHANICAL STRUCTURAL ANALYSIS OF SANDWICH 

COMPOSITES  

 

The proposed UC models for heat conduction and deformation analyses of 

viscoelastic-viscoplastic FRP composites are implemented in FE and used for analyzing 

and designing FRP structural components. This chapter presents time-dependent 

analyses of polymeric sandwich composite beams due to transient heat conduction and 

mechanical loading as examples of structural analyses. The studied sandwich composites 

comprise of FRP skins and polymeric foam core. Lead Zirconia Titanate (PZT) sensors 

are also integrated within the FRP skins, which are usually used for monitoring life 

performance of the polymeric sandwich constructions.  The ability to monitoring life 

performance of sandwich structures and each constituent in the sandwich composite can 

avoid catastrophic failures in sandwich structures and leads to more reliable sandwich 

constructions.  Prior to designing smart sandwich composites, it is necessary to 

understand the performance of these composites under various boundary conditions, 

such as coupled mechanical and thermal effects. Since composites involve different 

constituents and various microstructural geometries, it is then important to quantify 

variations in field variables in the composites such as stress discontinuities or stress 

concentrations at the interfaces of different constituents in order to detect possible 

debonding/delamination.  
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Sandwich composites have been used in load-bearing components in buildings, 

spacecraft, aircraft, wind blades and naval structures. Some applications of sandwich 

composites are shown in Figure 5.1. The multilayered FRP laminated composite skins, 

which consist of strong and stiff fibers, and the low density thick foam core provide a 

relatively strong, stiff, and lightweight structural component. The polymer matrix in the 

FRP skins and foam core can experience pronounced time-dependent (viscoelastic or 

combined viscoelastic and viscoplastic) response when subjected to mechanical 

loadings. Hostile environmental conditions such as extreme temperature changes, humid 

environment, and UV exposure can significantly change the properties of the 

constituents in the sandwich composites. For example rates of creep deformations in 

polymers increase at elevated temperatures. On the other hand, the stiff fibers in the FRP 

skins and PZT components generally exhibit linear elastic behavior within working 

temperatures of polymeric sandwich composites.  

GFRP [Glass Fiber/Epoxy]Polyurethane Core

Heat

Heat

HeatHeat

Sandwich Composite

Thermal Condition

Loading Condition

Applications

Numerical 
Analysis

Coupled FE Analysis

 

Figure 5.1 Applications of sandwich composites and analysis methods 
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Despite many advantages of using polymeric sandwich composites, one of the 

common failures in sandwich composites is delamination between skins and foam core 

and also within layers in the laminated skins. This delamination is due to stress 

discontinuities (or stress concentrations) at the interfaces/interphases of dissimilar 

materials. In addition, there might be non-negligible stress concentrations at the 

interfaces between the PZT and FRP layers. Thus, it is necessary to monitor time-

dependent changes in the field variables (stress, strains, and displacements) in the 

sandwich composites under various loading histories. This can be achieved through the 

use of time-dependent multi-scale analyses. 

 

5.1 Smart Sandwich Composites with PZT Wafers 

This chapter analyzes time-dependent response of a sandwich composite beam 

under three-point bending at elevated temperatures, as an example of structural analysis. 

The schematic representation of smart sandwich composite structures is shown in Figure 

5.2. The smart sandwich composites consist of different constituents: multilayered glass 

fiber reinforced polymer (GFRP) skin, polyurethane foam core, and lead zirconate 

titanate (PZT) wafers that are placed within the bottom layers of the GFRP skin. The 

PZT wafer is used to monitor life performance of sandwich structures. Detailed 

information on this sandwich composite can be found in Kim et al. (2011). The 

constitutive models of each constituent of the sandwich composites are shown in Figure 

5.2. The polymeric matrix and foam core are considered as viscoelastic materials, and 

the glass fiber and PZT wafers are treated as linear elastic materials. The simplified UC 
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models, discussed in Chapter III and IV, are used for obtaining the effective time-

dependent response of the GFRP skins. The multi-scale model is incorporated with 

ABAQUS FE code. The heat conduction throughout the composite body due to heating 

to testing temperature 80oC (353K) is analyzed first and the temperature profiles 

obtained from the heat transfer analysis are used to study the effects of thermal stresses 

and prescribed mechanical loadings on the overall performance of sandwich structures.  

 

Top Skin[GFRP]

Bottom Skin[GFRP]

Core

[Polyurethane Foam] PZT

[Lead Zirconate Titanate]

PZT

Micromechanical model

Homogeneous composite

Fiber Matrix

Constitutive model for Foam Constitutive model for PZT Constitutive model 
for Fiber and Matrix

 

Figure 5.2 A multi-scale frameworks of smart sandwich composite 

 

5.2 Computational Modeling for Smart Sandwich Composites 

The dimensions of the sandwich composites are shown in Figure 5.3. Total 

168200 elements are generated in the sandwich beams, which are C3D8 continuum 

elements. The components of sandwich composites are: (a) polyurethane foam core with 
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thickness 19.05 mm and density 4.1 3kg/m ; (b) unidirectional E-glass and epoxy resin 

with thickness of 1.524mm, consisting of 8 layers 8[90 / 0 ]   in total for each top and 

bottom layers; and (c) two PZT wafers with 7 mm diameters and 0.254 mm thickness. 

The two PZT wafers are inserted in the lay-ups between the 4th and the 5th layers of the 

bottom skin, which experiences tension under the three-point bending load. The top and 

bottom E-glass/epoxy skins in the sandwich composites consist of eight layers of each E-

glass/epoxy composites. Each ply consists of the weaving fiber yarns perpendicular to 

the unidirectional fiber layers with relatively low reinforcements in the transverse fiber 

direction (Kim et al., 2011). In this study, the effective properties of each ply are 

modeled by assuming a stack of [90 / 0 ]   fiber layup with the different thickness of 

each fiber direction, which follows the actual thickness of the fiber yarns, and different 

fiber volume fractions are considered for the 0  and 90  fiber directions. In Figure 5.3 

(b), each [90 / 0 ]   layer is modeled using three elements through the thicknesses, one 

element is for the 90o fiber direction and two elements are for the 0o fiber direction. A 

total of 24 elements through the thickness is considered for the eight 8[90 / 0 ]   layers. 

The 90  fiber directions have one element thickness due to the low reinforcement and 

thinner layer in the transverse fiber directions. The fiber volume contents and thickness 

of each layer in a single ply of the GFRP skins are determined by matching the overall 

elastic properties of GFRP skins with 0  and 90  off-axis angles; see Kim et al. (2011) 

for a detailed discussion. The elastic properties for the isotropic epoxy resin at room 

temperature are determined from the tensile tests on a bulk epoxy specimen. The 
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mechanical properties for 0  and 90  E-glass/epoxy layers at room temperature are 

determined by using the simplified micromechanical model of unidirectional 

composites. The mechanical properties of each constituent and component are shown in 

Table 5.1. The time-dependent properties for epoxy matrix and polyurethane foam core 

are shown in Table 5.2. These properties are obtained from Kim et al. (2011). Tables 5.3 

and 5.4 present the thermal properties for the constituents of the sandwich composites. 

 

Table 5.1 Elastic properties for constituents of the sandwich composites at room 

temperature 

Constituents  E11 = E22 [MPa] ν12 

E-glass fiber  72,000 0.25 

Epoxy matrix   3020 0.2977 

Polyurethane foam   22.78 0.3 

Lead Zirconia Titanate (PZT) wafer 80,000 0.34 
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Table 5.2 Time-dependent compliance for epoxy matrix and polyurethane foam core 

n   λn [S-1]   Dn (Epoxy) [MPa-1]  Dn (Foam) [MPa-1] 

1 1 2 x 10-6 5 x 10-4 

2 1 x 10-1 3 x 10-6 5 x 10-4 

3 1 x 10-2 7 x 10-6 1 x 10-3 

4 1 x 10-3 2 x 10-5 2 x 10-2 

5 1 x 10-4 2 x 10-5 1.3 x 10-2 

6 1 x 10-5 3 x 10-5 1.5 x 10-2 

7 1 x 10-6  –  2 x 10-2 

8 1 x 10-7  –  2 x 10-2 

 

Table 5.3 thermal conductivity for smart sandwich composites 

Thermal Conductivity [W/m K] k11 
(longitudinal) 

k22=k33 
(transverse) 

E-glass fibers 1.1 1.1 

epoxy matrix 0.188 

polyurethane foam 0.029 

Lead Zirconia Titanate (PZT) wafer 1.1 

 

Table 5.4 CTE of smart sandwich composite constituents 

CTE E-glass Epoxy Polyurethane foam PZT 

α [10-6/K] 5 52.5 76.2 50 
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Figure 5.3 (a) Dimensions of sandwich composites with PZT 
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Figure 5.3 (b) Bottom skin of E-glass/epoxy with PZT insertion 

 

For the thermo-mechanical analysis of the smart sandwich beam, two analyses 

are performed sequentially. First, the heat conduction analysis in the sandwich 

composite is performed to determine the temperatures at nodal points. Second, the 

thermo-mechanical three-point bending analysis is performed to determine the 

deformations and stresses in the sandwich beam subjected to coupled thermo-mechanical 

effects. The boundary conditions for the heat conduction are shown in Figure 5.4. For 

the transient heat conduction, the composite is initially at 293K and then subjected to 

353K on its surfaces. The transient heat conduction analysis continues within the 

temperature gradient tolerance (0.05), which reaches around 306.5 seconds. The 

boundary conditions of the thermo-mechanical analysis are shown in Figure 5.5. The 

sandwich composite structure experiences thermal expansion due to increase in 
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temperature during the heat conduction process. The mechanical loading of 186.6 N is 

then applied on the mid-section of the beam for 1200 seconds, as shown in Figure 5.5.  
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Figure 5.4 Boundary conditions of heat conduction in the sandwich composites 
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186.6 N

 

Figure 5.5 Boundary conditions of three-point bending in the sandwich composites 

 

5.3 Analyses of Coupled Heat Conductions and Thermo-mechanical Loading in 

Sandwich Beams 

The temperature profiles during the heat conduction analysis are shown in Figure 

5.6. The temperatures are reported at several instants of time till reaching at 306.5 

seconds which is within the tolerance (0.05). Figure 5.6 (a) shows heat conduction 

within FRP skins, which reaches steady state at 29 seconds. The half of the smart 



 

130 

 

sandwich beams is presented in Figure 5.6 (b), and the progress of heat conduction until 

steady state is shown. 
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Figure 5.6 (a) Temperature contours of top and bottom skins in heat conduction analysis 
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Figure 5.6 (b) Temperature contours of the sandwich structure in heat conduction 

analysis 
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Next, a thermo-mechanical analysis is performed. The thermal expansion and 

temperature-dependent material properties result in the thermo-mechanical coupling 

response. The smart sandwich composites comprise of polymer components so that it is 

expected to show the time-dependent response during the thermo-mechanical analysis. 

The embedded PZT sensors have an important role in monitoring the life performance of 

the structure under histories of loadings. The stress analysis of the smart sandwich 

structure is important because the embedded PZT wafers within plies of the skins result 

in discontinuous materials and geometry, so that stress concentrations may occur around 

the regions where the discontinuities exist. Due to the different thermal expansion 

coefficients, the interfaces of each component present the stress concentration shown in 

Figures 5.8 and 5.9 during the transient heat conduction. The polyurethane foam core 

experiences compressive stress along the longitudinal (x1) direction, as shown in Figure 

5.7 (a) due to the constrained from the top and bottom skins. The compressive stresses 

are due to higher thermal expansion coefficient of the foam core compared to the one of 

the skins. High stress concentrations are also generated the around PZT. Figure 5.8 

presents the stress distribution in E-glass/epoxy skins with PZT. The PZT wafers are 

extremely compressed due to the thermal expansion of E-glass/epoxy (-172MPa). The 

PZT wafers are trapped in E-glass/epoxy skins and each component has a different 

thermal expansion yielding different directional stress. On the other hand, the FRP skins 

surroundings the PZT wafers experience tensile stress (66MPa). The localize stresses 

may cause the debonding of layers or fracture within the layers. The lateral deflections in 

the foam and skins at both top and bottom regions during the transient heat conduction 
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are also monitored, as shown in Figure 5.10. The deformation shows mainly elastic 

behaviors, which are dominated by the E-glass fibers.  The thermal stresses show 

negligible creep deformation.  

After steady state temperature is reached, the sandwich beam is subjected to a 

concentration load of 186.6 N for about 108 hours. In the bending simulation, the top 

and bottom skins presents stress concentration between 66MPa and -10MPa, as shown in 

Figure 5.9 (a). The overall lateral displacement of the sandwich beam during three-point 

bending creep analysis is presented in Figure 5.11. The FE simulation is performed with 

two different element types, linear (C3D8) and quadratic (C3D20) elements. The number 

of linear elements is 24080 and the number of quadratic elements is 168232. The number 

of quadratic elements is approximately seven times larger than that of linear elements. 

The quadratic elements present around 2% more deflection than the linear elements. 

However, the predictions of the creep responses of the smart sandwich composite from 

the two element types show a good agreement with the experimental data reported by 

Kim et al. (2011), as shown in Fig. 5.11.  
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Figure 5.7 (a) Stress contours (S11) of polyurethane core 
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Figure 5.7 (b) Stress contours (von Mises) of polyurethane core 
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Figure 5.8 (a) Stress contours (S11) of E-glass/epoxy skins 
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Figure 5.8 (b)  Stress contours (von Mises) of E-glass/epoxy skins 
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Figure 5.9 (a) Stress contours (S11) of smart sandwich composites 
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Figure 5.9 (b) Stress contours (von Mises) of smart sandwich composites 
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Figure 5.10 The elastic response of thermal expansion during transient time 

 

 

Figure 5.11 The creep response of three point bending 
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CHAPTER VI 

CONCLUSION AND FUTURE RESEARCH 

6.1 Conclusions 

An integrated micromechanical and FE framework has been developed for 

analyzing heat conduction and thermo-mechanical deformation of FRP composite 

materials and structures. The studied FRP composite consists of polymeric matrix that 

experiences combined viscoelastic-viscoplastic behaviors and elastic fiber 

reinforcements. A simplified micromechanical model, which is a unit-cell (UC) model 

comprising of four subcells, has been formulated for analyzing time-dependent response 

of FRP composites subjected to coupled mechanical loading and thermal effect. A nested 

time-integration algorithm has been developed for analyzing the overall heat conduction 

and thermo-mechanical deformation response of FRP composites, having viscoelastic-

viscoplastic constitutive model for isotropic polymeric constituents. The UC model 

results in orthotropic homogenized properties, i.e., the effective thermal conductivity, 

effective heat capacity, effective coefficient of thermal expansion, effective elastic 

moduli, and time-dependent responses of the composites. The time integration algorithm 

and micromechanical models are implemented in user material subroutines (UMAT, 

UMATHT, UEXPAN) in commercial FE software, ABAQUS, and used for analyzing 

coupled heat conduction and deformation of FRP composite structures. The research 

findings from each chapter are discussed as follows: 

1) In Chapter II, a time integration algorithm is formulated to solve for a 

viscoelastic-viscoplastic constitutive equation of polymers with temperature 
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effect. The polymers are assumed to be isotropic and the constitutive model is 

derived based on continuum mechanics theory for materials undergoing small 

deformation gradients. A total strain is decomposed into the viscoelastic, 

viscoplastic, and thermal strain components. The Schapery’s single integral 

equation is used for the 3D isotropic nonlinear viscoelastic responses. The 

Perzyna model is used for the viscoplastic response. In addition, parametric 

studies have been done in order to understand the effects of temperatures on the 

combined viscoelastic and viscoplastic response. The material parameters in the 

constitutive models are allowed to vary with temperatures, i.e., higher 

temperature accelerates the creep deformations, soften the material response, and 

increase the plastic deformations. 

2) In Chapter III, a simplified micromechanical model consisting of four-cells, a UC 

model, is formulated to predict the time-dependent behavior of heterogeneous 

FRP composites. A representative volume element is chosen from a periodic 

array of square fibers dispersed in polymeric matrix. The simplified 

micromechanical model consists of unidirectional elastic fiber for one sub-cell 

and viscoelastic-viscoplastic matrix for other three sub-cells. The average 

stresses and strains of the FRP composite are formulated by using a volume-

averaging scheme. Linearized micromechanical relations are derived by 

satisfying traction continuity and displacement compatibility. Two integrated 

iteration algorithms are performed to minimize errors from linearizing the 

nonlinear responses. The first iteration is done at the matrix subcells for the time 
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dependent polymer matrix and the second iteration is used for the 

micromechanical relations of an orthotropic medium. For verification of the UC 

model, experimental data available in literature on combined viscoelastic-

viscoplastic response are compared to the time-dependent response obtained 

from the UC model. Furthermore, micromechanical models of FRP composites 

with detailed fiber arrangements have been generated using FE, termed as 

detailed FE microstructures, for composites with several fiber volume contents. 

The mechanical responses obtained from the UC model are compared to the ones 

of the detailed FE microstructures. The detailed FE microstructures can capture 

the stress concentrations in the FRP composite, which the UC model is not 

capable of. The overall responses predicted from the two models are relatively in 

good agreements. 

3) In Chapter IV, a coupled heat conduction and thermo-mechanical analysis is 

performed for FRP composites using the integrated micromechanical model and 

FE framework. The UC model in Chapter III is modified to determine the 

effective thermal conductivity and heat capacity of FRP composites. Fourier’s 

law is considered for the heat conduction and the volume-averaging scheme is 

used for obtaining the effective heat flux and temperature gradient. In order to 

verify the heat conduction analysis from the UC model, FRP microstructures 

with detailed fiber arrangements are generated using FE, for composites with 

various fiber volume fractions. The transient heat transfer analyses along the 

fiber axis and transverse to the fiber axis from the two models are compared. The 
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temperature profiles determined from the two models are relatively in good 

agreements. The thermo-mechanical behavior of FRP composite due to 

temperature changes is investigated and the effect of thermal stresses due to the 

mismatches in the thermal expansion coefficients of the fibers and matrix is also 

studied. Furthermore, the effective thermal expansion coefficients of FRP 

composites having glass fibers obtained from the UC model are compared to 

experimental data and other analytical solutions available in literature. Finally, 

the possible plastic deformation due to existence of high thermal stresses in the 

FRP composites is examined using the two micromechanical models. Localized 

thermal stresses are observed at various locations near the interfaces between 

fibers and matrix, which are captured in the micromechanical model with 

detailed fiber arrangements. However, the effect of plastic deformation due to 

thermal stresses on the overall time-dependent response of FRP composites is 

relatively small. 

4) In Chapter V, thermo-mechanical analysis of composite structures is conducted 

on a polymeric sandwich beam under creep bending at elevated temperature 

using the integrated micromechanical model and FE framework. The studied 

sandwich beam consists of polyurethane foam core, GFRP skins, and PZT 

wafers, which exhibit different thermo-mechanical behaviors. The UC model is 

used to provide homogenized properties and response of the GFRP skins. The 

transient heat conduction analysis is performed to simulate heating the sandwich 

composite from room temperature to the testing temperature (80oC). High 
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thermal stress concentrations are presented near the PZT wafers. Next, a 

concentrated load is applied at the mid-span of the sandwich beam in order to 

simulate three-point creep bending. The creep deflection shows a good 

agreement with experimental data. 

 

6.2 Future Research 

The current research can be extended as follows: 

1) Localized stresses and long-term exposures to elevated temperatures could 

degrade the properties of the constituents in the FRP composites, such as 

oxidation in the polymeric matrix at high temperatures. The micromechanical 

models can be modified to incorporate the degradation in the constituents 

and/or chemical reaction such as oxidation due to temperature changes. 

2) Polymers and FRP composites experience significant creep deformations 

under high mechanical loadings and at elevated temperatures. These creep 

deformations could lead to progressive deformations (tertiary creep stage) 

and material failures. Thus, the viscoelastic-viscoplastic constitutive model 

and micromechanical model can be extended to include damage and 

progressive crack propagation in the polymers and FRP composites. 

3) Besides external loadings and temperature changes, other environmental 

effects such as humidity and ultraviolet exposure can cause the deterioration 

in the polymers and FRP composites. These factors should be studied and 
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coupled to the thermo-viscoelastic-viscoplastic models in order to better 

predict life performance of polymers and FRP composites. 

4) Finally, the time-dependent thermo-mechanical study of polymers and FRP 

composites can be extended to understand fatigue failures in polymer and 

FRP composites due to various cycles of mechanical loading and 

temperatures, and other environmental effects. 
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