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ABSTRACT 

 

 A multiparametric and fundamental equation of state is presented for the fluid 

thermodynamic properties of helium. The equation is valid for temperatures from the λ-

line (~2.17 K) to 1500 K and for pressures up to 2000 MPa. The formulation can 

calculate all thermodynamic properties, including density, heat capacity, speed of sound, 

energies, entropy and saturation properties. A new equation of state is necessary to 

overcome difficulties associated with the current standard in the asymptotic region 

between the λ -line and 3 K and also difficulties related to lack of data, extrapolation 

performance, and accuracy at higher temperatures.   

Below 50 K, the uncertainties in density are 0.20% at pressures up to 20 MPa.  

From 50 K to 200 K the uncertainties decrease to 0.05 % at pressures up to 80 MPa.  At 

higher temperatures the uncertainties in density are 0.02 % up to pressures of 80 MPa.  

At all temperatures and at pressures higher than listed here, the uncertainties may 

increase to 0.3% in density.  The uncertainties in the speed of sound are 0.02%.  The 

uncertainties in vapor pressure are less than 0.02% and for the heat capacities are about 

2%.  Uncertainties in the critical region are higher for all properties except vapor 

pressure.  
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1. INTRODUCTION 

Helium has worldwide importance in various industries, but its supply is limited 

and declining. Its thermodynamic properties are essential information to use it 

efficiently.  Helium has unique properties.  As a consequence, helium is a vital material 

for many industrial and scientific applications, and often a suitable replacement does not 

exist.  Unlike most substances, every unit of helium produced and utilized eventually 

escapes the Earth’s atmosphere and becomes unavailable for the future.  This situation is 

worrisome given the uses for helium. To illustrate this point, this section also covers 

information on supply and extraction of helium, and the most common legislation that 

regulates its use and production in the United States with the intention of conserving as 

much as possible.  Finally, the section examines the relevance of thermodynamic 

information for helium regarding its extraction and consumption, the current standard 

equation of state for helium and its problems, and how the new equation of state for 

helium developed herein solves those problems. 

 

1.1 PROPERTIES OF HELIUM 

Helium was essentially unknown before the twentieth century.  Its first 

observation was in spectra collected during the solar eclipse on August 18, 1868.  

Spectroscopic observations had become common and well-studied since the previous 

solar eclipse, and at least six observers identified a new line in the atmosphere of the 

sun.  This new line reflected a new element named helium, after the Greek word for sun.  

Thirty years passed before the first terrestrial observation of helium in 1895 when Sir 
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William Ramsay and Lord Rayleigh published the same spectroscopic observation of 

helium in gas evolved from uranium and thorium ores.  After this publication, helium 

appeared in other sources, such as the atmosphere and natural gas. 

Since its discovery in 1868, the unique properties became interesting both to 

scientists and industrial personnel.  Helium is the second most abundant substance in the 

universe (after hydrogen) and contributes about 25% of the mass of the universe.  

However, the concentration of helium in our terrestrial atmosphere is only 0.0005% by 

volume [1].  The helium atom has the smallest volume of all elements and has the 

second lightest mass.  It has a very stable and symmetrical structure, which makes it 

chemically and radiologically inert.  The nucleus of the atom consists of two protons and 

either one or two neutrons, depending upon the isotope.  Two isotopes, He-3 and He-4, 

form natural helium.  The concentration of He-3 in natural helium is very small it 

varying from 2x10-8 to 1.2x10-5 % depending upon the sample.  This work concentrates 

upon Helium-4, which is the most common form of helium. 

Helium is also the element with the highest ionization potential which impedes 

the formation of stable compounds between helium and other elements.  Interactions 

between helium atoms are very low as well, and the liquefaction temperature of helium 

is the lowest of all of the gases, and it does not freeze as the temperature approaches 

absolute zero.  For instance, helium-4 liquefies at 4.2 K under one atmosphere pressure, 

whereas hydrogen does the same at 20.4 K and neon around 27.1 K.  Because helium has 

the lowest boiling point among all elements, liquid helium provides the lowest operating 

temperatures of any refrigerant. 
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The first industrial application of helium was for lifting, specifically as a 

substitution for hydrogen in zeppelins, balloons and blimps.  Although hydrogen 

provides more lifting power than helium (because is lighter), helium is preferable given 

the explosion hazards related to hydrogen.  The properties that make helium ideal for 

lifting, lightness and chemical inertness, also are attractive for other applications.  Other 

unique characteristics of helium are its thermal conductivity and diffusivity.  The 

thermal conductivity of helium is about six times greater than that of other gases, and 

helium atoms can diffuse without major difficulty through solid materials.  These 

properties are crucial for the fabrication of optical fibers in which the high thermal 

conductivity is advantageous during the heat treatment part of the fabrication, while the 

high diffusivity of helium through glass assures that no bubbles remain trapped in the 

fiber that might affect normal performance of the glass. 

The low boiling point of helium is important for purging, pressurizing and for 

cryogenic applications.  This latter use represents the largest single category of 

applications by percentage of helium consumed.  These range from individuals engaged 

in small-scale cryogenic research to large groups using high-energy accelerators and 

high-field magnets.  Cryogenic applications also include medical uses in equipment such 

as superconducting quantum interference devices (SQUIDS) and magnetic resonance 

imaging (MRI) devices.  The ability to remain fluid at temperatures close to absolute 

zero is also important to cool metal alloys below their critical temperatures when 

creating superconductors, which are used in advanced physics research for the 

experimental treatment of various cancers and the measurement of properties of 
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materials at very low temperatures.  Because helium is also used for purging and 

pressurizing systems, it is a crucial substance in United States space exploration and 

defense efforts. The National Aeronautics and Space Administration (NASA) and the 

Department of Defense (DOD) use huge amounts of helium, because it is the only gas 

that can purge and pressurize tanks and propulsion systems for rockets fueled by liquid 

hydrogen and oxygen.  Helium is the only candidate for this role because it is the only 

element whose boiling point is lower than that of hydrogen Other gases would freeze 

into pellets that could damage the engine of the equipment. 

In addition to the aforementioned properties, liquid helium is of great scientific 

interest because it undergoes a rare phase transition, called λ-transition, to a superfluid 

liquid phase (helium II) state when the temperature is lower than 2.2 K.  The superfluid 

state is the macroscopic manifestation of a quantum fluid explained by a phenomenon 

known as Bose-Einstein condensation [2] [3].  When superfluid, helium is viscosity-free 

and experiences an extraordinarily high thermal conductivity (about one million times 

greater than its conductivity in the normal phase) [4].  Last but not least, helium is also a 

reference fluid in thermometry. The current scientific temperature scale (ITS-90) was 

defined utilizing helium as a standard in several ranges of temperature [5].  All these unit 

properties appear in Figure 1. 
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Figure 1.  Unique properties of helium. 

 

1.2 SUPPLY AND USES OF HELIUM 

The remarkable properties of helium assure the use of helium for many 

applications.  However, many still do not recognize the importance of helium in 

industry, military and civilian aerospace applications, medical purposes and cutting-edge 

research.  The applications and statistical data presented herein are subject to the 

information provided by the Bureau of Land Management (BLM), part of the U.S. 

department of Interior; more specifically by the Federal Helium Program.  The Federal 

Helium Program, established in 1925, seeks to ensure supplies of helium for the Federal 

Government for defense, research, and medical purposes.  With time, the program has 

The second lightest element. 

Chemically and radiologically inert. 

Highest ionization potential among all elements. 

Lowest boiling point among elements: lowest operating 
temperaures out of any refrigerant. 

Remains liquid down to aboslute zero at atmospheric pressure. 

Solid helium is very compressible. Volume changes of about 30%. 

Liquid helium undergoes a phase transition to a superfluid state 
(helium II) and becomes viscosity-free with very high thermal 
conductivity. 

Specific heat and thermal conductivity of helium gas are very high. 
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evolved into a conservation program with a primary goal of supplying the Federal 

Government with high-grade helium for high-tech research and aerospace purposes. 

The most recent change of the program occurred through the Helium 

Privatization Act of 1996, which redefined the primary functions of the program to 

operate and maintain a helium storage reservoir and pipeline system, provide crude 

helium gas to private companies, evaluate the Nation’s helium-bearing gas fields, and 

provide responsible access to federal land for managed recovery and disposal of helium.   

Helium became a matter of crucial attention the United States government during 

World War I.  The Army recognized it as a safe, noncombustible alternative to hydrogen 

for use in buoyant aircraft.  The Federal Program, started in 1925, was to satisfy the 

defense needs of the nation.  The Bureau of Mines built and operated a large helium 

extraction and purification plant north in Amarillo, Texas, that started operating in 1929.  

From 1929 to 1960 the federal government was the only domestic producer of helium.  

During and after World War II the demand for helium increased.  As a result, the 

Congress passed amendments to the Helium Act in 1960.  The amendments provided 

incentives for private natural gas producers to strip helium from natural gas and sell it to 

the government.  Some helium was also used for research, the NASA space program, 

and other applications, but most was injected into a storage facility known as the Federal 

Helium Reserve.  Federal demand for helium decreased after the war, and by the 1990s 

private demand for helium far exceeded federal demand.  The 1996 Helium Privatization 

Act redefined the government’s role in helium production.  The Bureau of Land 

Management was made responsible for operating the Federal Helium Reserve and 
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providing enriched crude helium to private companies.  Figure 2 shows the major 

helium-bearing natural gas fields managed by the BLM today.  Historically, the fields 

around Amarillo, TX have been the principal sources of helium. Recently, natural gas 

fields in Wyoming with rich helium and other non-fuel content have become a new 

potential source of helium. 

 

 
Figure 2.  Major U.S. helium-bearing natural gas fields. Acknowledgement: U.S.G. 
Survey. Helium statistics-Historical statistics for mineral and material commodities in 
the United States [6]. 
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Three ways exist to recover helium from natural gas in an economically feasible 

manner: 

• As a secondary product during the production of methane or natural gas liquids 

(NGLs), requiring an original concentration of helium greater than 0.3 %  

• Direct production of helium when the concentration of helium and other non-fuel 

constituents is relatively high to justify their extraction, requiring an original 

concentration of helium greater than 0.3 % 

• During the production of liquefied natural gas (LNG), most likely liquid 

methane.  Helium is extracted from the tail gases, the gases that remain after the 

methane has been liquefied.  The helium concentration in those tail gases is much 

higher than in the original gas, allowing the economical extraction of helium 

even through the original natural gas might contain as little as 0.04 percent 

helium.  

Only two reserves outside the United States are available, and they have been 

exploited for so many years that they are considered very mature wells by now; this is 

the main reason why the rest of the world has relied upon the United States as the 

principal source of helium.  Figure 3 exhibits the amount of helium recovered and sold 

by the United States up to 2010 [6].  The report shows that the recovery process in the 

country has changed to a point that suggests the net stored helium flow is negative.  This 

is a consequence of the maturing process of the Hugoton field in the USA, and also the 

effect of legislation that stopped the national production of helium: The Helium 

Privatization Act of 1996, Public Law 104.273 directed the Federal Helium Program to 
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discontinue production and sale of refined helium by April 9, 1998. The Act also 

directed the Government to offer for sale the helium stored in the Federal helium 

reserve, in excess of 600 million cubic feet, between January 1, 2005, and January 1, 

2015 [6].  On the other hand, the development of large LNG plants has brought hope for 

new sources of helium in the world.  Those plants appear mainly in Algeria, Qatar, and 

Russia, with smaller facilities in Australia.  As a matter fact, projections for world 

production of helium in 2015 and 2020 favor offshore recovery rather than national 

production.  Figure 4 illustrates this assertation.  

 

 
Figure 3.  Helium recovery in the United States. Acknowledgment: U.S.G. Survey. 
Helium statistics-Historical statistics for mineral and material commodities in the United 
States [6]. 
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Figure 4.  Actual (2005 and 2008) and estimated (2015 and 2020) crude helium 
capacities by crude helium source. Acknowledgment: U.S.G. Survey. Helium statistics-
Historical statistics for mineral and material commodities in the United States [6]. 
 

In Figure 4, light blue refers to helium available from selling the federal helium 

reserve; medium blue represents crude helium produced from neighboring natural gas 

fields connected to the helium pipeline; dark blue denotes domestic helium resources, 

principally in Wyoming, not connected to the helium pipeline; brown denotes foreign 

sources of helium [6]. 

Regarding current production of helium, the latest data reported by the U.S. 

Geological Survey refers to 2010.  Table 1 summarizes this information. 
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Table 1.  Helium recovery in the United States. Acknowledgment: U.S.G. Survey. 
Helium statistics-Historical statistics for mineral and material commodities in the United 
States [6]. (Thousand cubic meters). 

 
 

A common trend is the utilization of stored helium to supply most of the current 

demand.  The BLM classifies demand for helium into seven categories: cryogenics, 

pressurizing and purging, welding, atmospheric control, leak detection, breathing 

mixtures, lifting, and other uses.  Figure 5 presents the percentage of helium and the 

amount in million cubic meters in each application. 

 

 
Figure 5.  Estimated helium consumption, by end use, in the United States during 2010 - 
quantities in million cubic meters. Acknowledgment: U.S.G. Survey. Helium statistics-
Historical statistics for mineral and material commodities in the United States [6]. 

    2006   2007   2008   2009   2010   
Crude helium:            Bureau of Land Management (BLM) sold (in-kind            and open market)  63,500  58,800  50,300  30,200  66,000   

Private industry:                    
 Private helium accepted and stored by BLM  18,100  15,800  21,600  15,800  12,400 
 Helium withdrawn from storage  -75,800   -76,500   -71,500   -55,400   -65,200   

Total net helium put into storage  -57,700  -60,700  -49,900  -39,600  -52,800   
Grade-A helium:                    

 Private industry sold  137,100  137,700  129,500  117,600  127,900 * 
Total helium stored  -57,700  -60,700  -49,900  -39,600  -52,800 

 Helium recovery from natural gas   79,400   77,000   79,600   78,000   75,100 * 
1Negative numbers denote a net withdrawal from BLM's underground storage facility, a partially depleted 

 natural gas reservoir at the Cliffside field near Amarillo, TX. 
 

  *Correction posted on January 13, 2012. 
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The first observation in Figure 5 is that most helium consumed is used for 

scientific and industrial applications that require very low temperatures, such as MRI 

equipment.  In third place lies the pressurizing and purging that involves space 

exploration and national defense purposes.  Controlled atmospheres examples are the 

fabrication of optical fibers and superconductor manufacturing.  Within “other” is the 

implementation of helium as a lifting gas, application that is most common among the 

public but one of the least relevant. 

 

1.2.1 Helium in cryogenics 

Cryogenics represents the largest use of helium.  The main uses of helium in the 

cryogenics category are: magnetic resonance imaging, semiconductor processing and 

fundamental research at low temperatures.  In respect of magnetic resonance imaging, 

liquid helium cools the superconductor magnets employed in many of these devices.  

The low temperatures available from helium and its low price make it desirable for this 

diagnostic tool.  There are more than 4000 MRI machines in the United States, and this 

number is expected to grow about 15 % per year.  This value makes United States one of 

the countries with the majority of superconducting devices in the world, and this is 

achieved because it is relatively simple and economic to obtain liquid helium in the 

country.  An important point is that no substitute exists for this purpose.  Perhaps using a 

high temperature superconducting wire might allow the implementation of other fluids at 

higher temperatures but the cost of doing so would be 500 times higher.   
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The semiconductor industry also uses helium in the fabrication of silicon wafers.  

Liquid helium cools superconducting magnets that are necessary to stabilize hot bubbles 

in semiconductor materials.  

The use of helium for large-scale research focuses upon implementation of 

superconducting magnets and superconducting microwave and radio-frequency devices 

that are key parts of large, charge-particle accelerators for nuclear physics investigations.  

The cryogenic facilities used in accelerator plants must provide significant refrigeration 

(tens of kilowatts) to cool accelerator rings that may be up to 27 km in diameter [4].  

These systems not only need the low liquefaction point of helium, but also its high 

thermal conductivity to assure constant temperature throughout the operation.  Given the 

combination of these two properties, helium is the only refrigerant that can accomplish 

this particular job. 

Small-scale research that requires helium mostly occurs in national laboratories 

and universities.  The areas of science associated with liquid helium are materials 

science and engineering, condensed-matter physics, chemistry, astronomy and 

astrophysics.  For example, liquid helium is necessary to cool superconducting magnets 

used in NMR equipment and hence supports the identification of unknown structures of 

substances.  Liquid helium also precools mixtures of He-3 and He-4 in dilution 

refrigerators for obtaining ultra-low temperatures.  When it comes to magnetic 

measurements, liquid helium is vital in superconducting quantum interference devices 

(SQUIDs). 
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Liquid helium supports astronomy and astrophysics by providing refrigeration to 

infrared detectors at very low temperatures allowing cancelation of noise in very weak 

signals.   

Liquid helium by itself is of great scientific interest because of its λ-transition 

and superfluid state.  The superfluid state is the manifestation of a quantum fluid with 

rare characteristics that are of interest to the scientific community.  The superfluid state 

is a consequence of Bose-Einstein condensation [3, 7, 8], which essentially states that at 

very low temperatures a large fraction of atoms of a sample would occupy the lowest 

energy level generating a condensate. Under such conditions, the atoms look completely 

identical and all together adopt a single identity.  When superfluid, helium is viscosity-

free and its thermal conductivity is extremely high.  During the lambda transition, 

helium undergoes singularities in heat capacities that are unique in nature.  Having said 

that, liquid helium as a cryogenic fluid is still very important and irreplaceable and 

future research on this matter will bring new applications of liquid helium. 

 

1.2.2 Helium in pressurizing and purging 

Helium is the only fluid used to pressurize and purge rocket propulsion systems, 

and it be so as long as the propellant is a combination of liquid oxygen and liquid 

hydrogen.   Helium gas pressurizes the propellant tanks for the engines.  Pressure-fed 

propulsion systems also provide engine-chamber pressurization.  Then, helium gas 

purges the propellant feed systems for liquid-hydrogen engines.  Helium is unique in this 
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role because its normal boiling point is lower than that of hydrogen.  Other gases would 

either freeze and damage the engine, or react with the hydrogen. 

This application is common in the Army or at the National Aeronautics and 

Space Administration (NASA).  The use of helium for these purposes should grow 

dramatically with the planned construction of a new International Space Station.  

Because helium lacks a replacement for this endeavor, recycling helium and maximizing 

efficiency of its use is a current concern for aerospace engineers.  In addition, they hope 

to avoid cryogenic propellants. If that happens, the demand of helium to pressurize and 

purge would decrease. 

 

1.2.3 Helium in welding 

Helium has use in arc welding and laser processing.  In the former case, gas 

metal arc welding and gas tungsten arc welding use helium.  The properties of helium 

involved in these processes are high ionization potential, high thermal conductivity and 

its inertness.  Helium acts as a shielding gas during the first phase preventing 

atmospheric contamination of the molten metal and stabilizing the arc, and in gas 

tungsten arc welding it shields the red-hot tungsten electrode from the environment.  As 

a result of using helium, the penetration of the welding is greater including metals with 

high thermal conductivity and travel speeds are higher allowing greater productivity.  

Helium is not completely necessary for this application, in countries where helium is 

hard to obtain, argon serves as another inert shielding gas but the productivity is lower. 
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Helium is also used as a shielding gas in laser welding with carbon dioxide.  Also 

it is present in the laser gas that accompanies CO2.  Carbon dioxide lasers are used for 

cutting, drilling, cladding, and heat treatment. However, welding is the only process that 

also uses helium as a shielding gas.  Other inert gases can replace helium in the shielding 

process, but helium is the only one that prevents the formation of plasma at very high 

power densities. Other gases would ionize when the power is higher than 5 kW while 

helium remains unchanged.  The presence of helium in the laser gas helps cool the 

excited carbon dioxide molecules. The percentage of helium in this part of the process is 

less than for shielding, but it is more crucial and no substitute exists.  

 

1.2.4 Atmospheric control with helium 

Helium creates inert atmospheres in many industrial processes.  The areas that 

use helium the most for this purpose are optical fiber manufacturing, plasma-arc coating, 

plasma-arc melting, and heat treatment.  Optical fiber technologies have accelerated the 

development of modern communications.  This industry depends upon helium to 

enhance the thermal gradient and improve the uniformity of the claddings. Helium also 

refrigerates fresh fiber, where it is a non-reacting thermal-contact agent. An additional 

property of helium that is critical to this activity is its diffusivity, which prevents the 

formation of bubbles in the glass by expelling any traces of air trapped in the glass (they 

would destroy the fiber's transmission properties).  Plasma-arc coating is a process used 

in the aerospace industry and other industries to apply wear-resistant coatings to critical 

components. A mixture of 10 percent helium and 90 percent argon is typical.  Plasma-
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arc coatings applied in 100 per cent argon atmospheres are not as adherent [4].  Plasma-

arc melting makes specialty metal billets, such as titanium for jet-engine components.  

Helium does not have replacement for this application because although argon may 

provide good inertness, its specific heat is not high enough to create a deep melt in the 

furnace.  The process provides better uniformity and control over the composition and 

has effectively replaced electron-beam melting, which was the traditional method.  The 

same combination of helium’s inertness and high thermal conductivity is useful in other 

heat treatment processes.  For example, nickel-base superalloys cool rapidly in helium 

atmospheres. Argon can replace helium in special applications. 

 

1.2.5 Helium for leak detection 

Helium is a marvelous leak detector because of its low viscosity and large 

diffusion coefficient, which is a consequence of being such a small molecule.  Mass 

spectroscopy based upon helium as a leak detector is critical for science and technology.  

Helium-based leak detection also is implemented in the manufacturing of rocket engines 

and maintenance of vacuum equipment in industry and academia.  Indeed, helium leak 

detection is the standard in any activity requiring leak-tight systems.  The usual 

procedure in leak testing is to spray the area outside the system being tested with helium 

and then try to detect its presence on the inside using a vacuum environment attached to 

a mass spectrometer.  More sophisticated leak detectors work by filling the system with 

helium and then checking each single unit of the equipment where the leak may occur 

using a sniffer connected to a mass spectrometer.  Argon could be a replacement for this 
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service but it would require more elaborated and expensive mass spectrometers, argon 

leak rates also would be about an order of magnitude smaller, making the device much 

less sensitive to very small leaks. 

 

1.2.6 Helium as a lifting agent 

Lifting is the most widely known application of helium among the public given 

its use in party balloons.  Although hydrogen is the lightest gas, helium assumed the role 

of lifting gas because its chemical inertness makes it a safer option.  Helium replaced 

hydrogen for blimps in the 1930s after a number of tragic accidents involving hydrogen-

filled airships.  Helium is used in blimps for advertising, to detect low-flying cruise 

missiles, and to carry radar equipment to detect drug smugglers along the nation's 

borders [4].  One future use of helium is as a lifting gas in devices to lift heavy loads for 

construction. 

 

1.2.7 Helium in breathing mixtures 

Deep-sea divers and individuals working under high atmospheric pressures for 

extended periods of time breathe mixtures of helium and oxygen.  Helium is preferable 

to nitrogen because the absorption and releasing process into and out of the body is 

faster, thus reducing decompression times. 
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1.2.8 Potential uses of helium 

Potential uses of helium still rely upon its availability and price in the market.  

Most of the potential uses have links to advances in science and technology at low 

temperatures.  For example, superconductors offer intriguing prospective applications, 

and liquid helium is vital for cooling such devices.  Superconducting magnets could play 

a role in transport technology by implementing magnetic levitation.  This is very 

promising because if trains did not contact their tracks, they could travel much faster 

without frictional loses.  Another use could be superconducting magnetic storage devices 

(SMES) that store energy in magnetic fields.  SMES devices contain superconducting 

coils that can be fed and discharged using a switch connected to the power grid.  SMES 

devices are one of the few ways to store energy without converting it into mechanical or 

chemical energy.  

In addition to these previous applications, superconducting technology is an 

important, secondary technology for plasma confinement fusion. Helium would be 

appropriate to cool down the superconducting magnets that generate the magnetic 

containment environment.  Other areas that might develop during the coming years that 

require helium for their operations are superfluid applications, such as in lubrication, and 

superconducting electronics.  Superconducting systems using Rapid Single-Flux 

Quantum Logic are currently the leading technologies under consideration for petaflop 

computing.  Liquid helium or cryo-coolers using helium are necessary for all the 

products currently commercial or under development. 
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1.3 IMPORTANCE OF ACCURATE THERMODYNAMIC PROPERTIES FOR 

HELIUM 

Because helium and its unique properties are critical in several important 

applications in industry, science, federal agencies and national defense, it is necessary to 

face the problem that every unit of helium used is another unit of helium lost to the 

atmosphere.  This situation is worrisome because no replacement for helium exists in 

many applications, and the sources of helium are limited.  This fact motivated a new law 

passed by the U.S. Senate in March of 2012 known as the “Helium Stewardship Act of 

2012,” in which they recognize the current importance of helium and encourage research 

studies on its extraction, conservation, separation and possible replacement in a manner 

that protects the interests of private industry, the scientific, medical, and industrial 

communities, commercial users, and Federal agencies. 

Accurate thermodynamic information for helium is absolutely essential to 

optimize existing processes and applications that involve helium and to assure efficient 

improvement of extraction, conservation, storage and final use of the fluid. Data are 

mandatory to design equipment for either the extraction of helium or its use in the 

industrial and scientific communities.  In the past, many laboratories have conducted 

measurements on properties of helium. Thermal, volumetric and acoustic properties as 

wells as critical parameters and virial coefficients have been collected over a wide range 

of conditions (even at very low temperatures) [1].  However, tables of data are 

impractical to implement in computer-aided design and insufficient to cover all 

conditions of interest, hence, correlations have begun to replace tables.  Most 
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correlations exist for particular properties such as virial coefficients [1, 9-13], heat 

capacities [1, 14-17], velocity of sound [17-19], vapor pressure [20-24],  and Pressure-

Volume-Temperature (PVT) data [25-27].  Even though these approaches may be 

accurate over a limited range, they often fail under other conditions or when predicting a 

derived property different from the one used to fit the data.  Today, one of the most 

accurate sources of thermodynamic property information is an empirical multiparameter 

equation of state [28].  These equations have become reference sources of 

thermodynamic data for several pure substances [29-31], and many engineering and 

scientific applications that require high accuracy predictions of various thermodynamic 

properties (not only the explicit variables of the equation) use them over wide ranges of 

conditions.  McCarty and Arp [32] published the current, standard equation of state for 

helium in 1990.  It covers both superfluid and normal fluid from 0.8 to 1500 K at 

pressures up to 2000 MPa.  Although McCarty’s equation of state represents a 

significant contribution to helium-related research, it has some issues requiring 

correction: 

• Although the selected data are high quality, he used only 10 sets of data, which 

are not a good representation of all the experimental work done on helium. Also, 

the equation only considers one set of data for heat capacities and two for sound 

speed. This does not represent a heterogeneous compilation.  Another important 

point regarding the data is that Donnelly et al. [33] provided an important 

compilation of helium data at low temperatures after McCarty published his 

equation. 
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• Most of the data are not reproduced within their experimental uncertainties.  This 

is a principal goal when developing equations of state.  However, helium is a 

difficult fluid to fit because of its peculiar properties. 

• Caloric properties yield unreasonable results and affect other properties are, such 

as acoustic properties. 

• Unreasonable behavior in regions lacking data is a fault. 

• The temperature values used for all data sets do not correspond to the current 

standard temperature scale (ITS-90). 

• Comparisons to theoretical calculations of helium thermodynamic properties are 

absent. 

• McCarty’s equation of state appears in terms of pressure, thus it is not a 

“fundamental equation of state.”  Equations of state (like BWR-type equations) 

require integration to estimate caloric properties.  In addition, pressure-explicit 

equations require supplementation by a temperature dependent correlation for the 

heat capacity.  The integration leads to severe restrictions upon exponential terms 

in the equation [28]. 

The ultimate motivation behind this doctoral research proposal is the need of a 

new source of high-quality thermodynamic information for helium.  This need is a 

consequence of the importance of helium for both industry and scientific research, and 

the deficiencies of the current reference equation of state for helium. 
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1.3.1 Objective 

The goal of this work is to design a new, wide-range equation of state for helium 

4.  Figure 6 is a general phase diagram for helium 4 at low temperature.  The new 

equation of state focuses upon the normal fluid part (gas and liquid He-I) and the 

transition to the superfluid region liquid He-II. The expected limits of the equation of 

state are 2.18K to 1500 K up to 2000 MPa. 

In order to achieve the global objective, the development of the new equation of 

state focused upon several characteristics related to the following goals: 

• Goal 1. Development of a multiparameter and fundamental equation of state for 

normal fluid behavior. 

 

 
Figure 6.  Phase diagram of helium 4 at low temperature.  Several triple points can be 
observed in solid phases in equilibrium with fluid phases. 
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Multiparameter equations of state in terms of pressure or compressibility factor 

involve integration to calculate caloric properties and require supplementary equations 

for the heat capacity.  Moreover, the integration constrains exponential terms in the 

equation of state [34].  A fundamental equation of state is more flexible with regard to 

the terms, and all thermodynamic properties are available from its derivatives.  Of the 

thermodynamic potentials, one could use a Gibbs free energy-based or a Helmholtz free 

energy-based equation of state because their natural variables are considerably easier to 

deal with when measuring (temperature and pressure for the former case and 

temperature and density for the latter one).  However, at the phase boundary the Gibbs 

energy has a discontinuity in slope between the liquid and vapor phases.  Because the 

inputs are temperature and pressure, it is impossible to make an equation of state that 

does both liquid and vapor.  Therefore, one of the goals is to develop a fundamental 

equation of state based upon the Helmholtz free energy potential. 

• Goal 2.  Rigorous and broad data selection process. 

One relevant goal of this research project is to include a variety of experimental 

data covering several thermodynamic properties not included in previous equations.  The 

new equation utilizes not only PVT, heat capacities and speed of sound data but also 

data on second, third and fourth virial coefficients, critical point, latent heat of 

vaporization, internal energy, enthalpy, derivative of pressure with respect to 

temperature, entropy and saturation data (vapor pressures, vapor densities, liquid 

densities and saturation heat capacity).  The whole idea is to design an equation of state 

that represents all types of data. By fitting multiple properties, it is possible to improve 
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thermodynamic consistency among all properties.  Given the current importance of 

quantum mechanics calculations, it is reasonable to include ab initio predictions of 

second, third and fourth virial coefficients in the new, multiparameter equation of state. 

• Goal 3.  Use the current temperature scale standard, ITS-90. 

Data on helium are available form more than 50 years ago with values reported 

using different temperature scales.  In the new equation of state, all data in ITS-27, 

IPTS-48, IPTS-68, NBS-55, IPTS-58, IPTS-68 and EPT-76 temperatures scales are 

converted to ITS-90.  McCarty’s equation of state uses the EPT-76 scale.  The entity in 

charge of temperature scale standards is the Bureau International des Poids et Mesures 

(BIPM), which ensures world-wide uniformity of measurements and traceability to the 

International System of Units (SI). 

• Goal 4.  High accuracy. 

The equation of state must reproduce experimental values with low deviations.  

Although the ultimate goal is to be within the experimental uncertainty, it is reasonable 

to get an equation that does better than or equal to the current standard, that is to reach 

uncertainties lower than 1% in densities at low temperatures (<20 K), 0.1% at 

temperatures between 200 and 400 K, 3% in the speed of sound in the liquid phase, 0.1% 

in the speed of sound between 100 and 500 K, and 5% in heat capacities. 

• Goal 5.  Extrapolation capabilities. 

This is a key point to improve upon the current equation of state.  Unreasonable 

behavior in regions with no data must not exist.   

• Goal 6.  Minimize the number of parameters used to fit the equation. 
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This goal relates to future application of the equation.  A multiparameter 

equation of state with the least possible number of terms is desirable to decrease the 

computational time of calculations.  However, decreasing the number of parameters 

must balance with the accuracy that more parameters might offer.  

• Goal 7.  Reasonable transition to the superfluid region.  

Once a sufficiently good equation of state is available for the normal region, a 

different procedure predicts basic elements of the superfluid transition and matches the 

normal behavior at the lambda line (transition between normal fluid and superfluid). 

 
Accomplishing each goal also accomplishes the global objective.  As a result, the 

equation of state for helium-4 presented in this document represents the most suitable 

candidate to replace McCarty’s equation of state as the new standard for helium.  This 

doctoral project includes cooperation with the National Institute of Standards and 

Technology (NIST). Dr. Eric Lemmon at the Thermophysical Properties Division of 

NIST, provided the numerical methods used during the fitting procedures, and made his 

expertise available during the work. 
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2. EQUATIONS OF STATE – LITERATURE REVIEW 

This section presents a general literature review of equations of state 

development through the last century.  Research on and continuous about the behavior of 

fluids has existed for many years, however starting with the findings and results of 

scientists such as Boyle and Dalton in the 17th century, interest on this field increased 

and led to several theories and models to describe the thermodynamic behavior of fluids.  

“Modern” equations of state began with van der Waals in 1873 [35], not only because 

his predictions were closer to the real behavior of gases and liquids, but also because van 

der Waals introduced for the first time two important physical effects: attractive and 

repulsive interactions.  As seen throughout this section, the reader can see how van der 

Waals was the inspiration for both cubic equations of state and non-cubic equations of 

state.  The former case refers to equations with cubic dependence upon density, and the 

latter case mostly reflects improvements of repulsive interactions using hard-sphere 

models.  Parallel to the progress of van der Waals- type equations of state was the 

derivation of virial equations of state, which added a physical meaning to their 

functional form because of their basis in statistical mechanics.  Finally, this section 

contains a brief description of molecular-based equations of state.  Although these 

equations involve several complex molecular models for interactions, generally they 

offer an adequate functional form for other semi-empirical equations. 
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2.1 VAN DER WAALS AND CUBIC EQUATIONS OF STATE 

After Boyle and Marriot established the ideal gas equation of state in the 17th 

century [35], description of properties of real fluids became a priority in the scientific 

community.  However, a practical and reasonably accurate form did not evolve until 

1873 when van del Waals proposed a cubic equation in molar volume that could 

represent both gas and liquid phases, supercritical states, and vapor-liquid equilibrium 

qualitatively correctly [36].  The van der Waals equation also contains a “hard sphere 

term + attractive term:” van der Waals assumed molecules have a finite diameter, which 

decreases the available volume for molecular motion and increases the number of 

collisions with walls thus increasing the pressure.  He defined the actual volume 

available for molecule motion as v-b, where b is the volume of the molecules (a 

constant) for each fluid.  Besides this effect, van der Waals considered that 

intermolecular attractions decrease the pressure, and that this event is directly 

proportional to the number of molecules in a vessel, and inversely proportional to the 

volume v of the vessel.  He postulated this term as (–a/v2), where a corresponds to a fluid 

specific parameter.  Then, it is logical to think that both effects would lead to the ideal 

gas law at the zero density limit; so the resulting van de Waals equation is, 

 (1) 

 or in terms of pressure, 

p + a
v2

⎛
⎝⎜

⎞
⎠⎟ v − b( ) = RT
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 (2) 

in which the two terms correspond to repulsive and attractive contributions to pressure 

respectively.  Interestingly, the attractive term corresponds qualitatively to the quantum 

mechanical prediction for molecules at large separations. Information of the critical 

point of the fluid is necessary to determine a and b for the substance.  For that purpose, 

the following critical constraint applies, 

 (3) 

knowing Tc, pc, and vc and solving Eq. (3) results in 

 (4) 

 (5) 

although van der Waals equation was a relevant contribution to explain qualitatively and 

from a theoretical point of view the behavior of fluids, the accuracy was not very good. 

For example, the critical compressibility factor for mixtures and pure components 

predicted by van der Waals is around 0.375, but the actual value for most hydrocarbons 

is around 0.27 [37].  This fact combined with lack of accuracy in other regions was the 

driving force that led to new cubic equations of state resulting from modifications of the 

van der Waals expression. 

In 1949 Redlich and Kwong [38] modified empirically the attractive term of van 

der Waals equation making it temperature dependent; resulting in 
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 (6) 

 (7) 

 (8) 

the Redlich-Kwong equation of state (RK) has been used successfully in several cases 

for the prediction of properties of gas mixtures [39-43], the calculation of fugacities, and 

high-pressure phase equilibrium of mixtures [44, 45].  However, the Redlich-Kwong 

equation still could not estimate properties of both gas and liquid phases.  The 

temperature dependence of the attractive term was still too simple to determine vapor 

pressures.  Also, liquid volumes had insufficient accuracy [46].  Further research in this 

field sought to improve the temperature dependence of the attractive term for the 

calculation of vapor pressures, and to enhance the functional form of the equation for 

better prediction of volumetric properties. 

Trying to improve the accuracy of Redlich-Kwong equation of state, Soave 

proposed a more general temperature-dependent term in the equation by making the 

parameter a change with temperature [47], 

 (9) 
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 (12) 

this is the so called Soave-Redlich-Kwong equation of state, in which ω is the acentric 

factor of the fluid.  For the validation of his equation, Soave calculated vapor pressures 

for a variety of hydrocarbons and their binary mixtures and demonstrated that his new 

equation could fit phase equilibrium data and critical behavior better than the simple 

Redlich-Kwong equation.  The Soave-Redlich-Kwong equation of state (SRK) played a 

relevant role in the progress of cubic state and represented a vote of confidence to these 

equations as tools for vapor-liquid equilibrium calculations. 

Peng and Robinson in 1976 redefined a(T) as well as the denominator of the 

attractive term [48] 

 (13) 

 (14) 

 (15) 

Peng-Robinson equation of state improves the prediction of liquid volumes and the 

critical compressibility factor compared to previous cubic equations of state.  Later in 

1977, Peng and Robinson showed how to use their equation to calculate saturation and 

critical properties for pure components and mixtures [49].  The results suggested the 

Peng-Robinson equation of state performs as well or better than Soave-Redlich-Kwong.  
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Since then, the Peng-Robinson equation of state has found wide use in academia and 

industry because it offers relatively accurate results with practical computational usage.   

Other cubic equations of state have appeared following the same idea of 

including empirical expressions in the attractive term of van der Waals that allow better 

accuracy.  Some good examples are the equations from Patel-Teja [50] and Stryjek-

Vera-Peng-Robinson [51-53].  The results of several studies indicate that cubic 

equations of state need at least three parameters for an acceptable representation of 

liquid and vapor volumes (3 - 4 %).  Also, a certain temperature dependence is necessary 

to predict vapor pressures within 1 - 2 % when the fluid parameters come from the 

critical constraints, or 0.5 % when the parameters come from fitting pure component 

data [46].  The most accurately derived property from these equations is the heat of 

vaporization. This result might lead one to expect accurate vapor pressures predictions 

when using the heat of vaporization with the Clasius-Clapeyron equation.  Cubic 

equations predict critical behavior poorly because of the rigidity of their form.  They also 

predict second-order derivatives, such as caloric properties, with very low accuracy.  

However, despite these difficulties, cubic equations of state are a good balance between 

accurate volumetric properties prediction and computational cost, and they still find use 

in semi-quantitative calculations of equilibrium phenomena, process design and fluids 

simulation.  Another advantage is that cubic equations of state can be adjusted in several 

ways to estimate acceptable results for the majority of practical applications [54], so 

cubic equations of state have a stable position in the field. 
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2.2 VAN DER WAALS AND NONCUBIC EQUATIONS OF STATE 

As shown in section 1.1, most cubic equations of state are only empirical 

modifications of the attractive term in the van der Waals equation.  This section focuses 

upon non-cubic equations of state that originate from modifications of the van der Waals 

repulsive term or both the repulsive and the attractive term.  These equations are more 

useful at higher temperatures and pressures where the repulsive term is more important 

than the attractive interactions.  These equations fit well to hard-sphere fluid system, 

which treats molecules as spheres with finite volume and are defined by a potential of 

interaction that considers only repulsive forces [55].   

The non-cubic equations that involve only modification of the repulsive term of 

van der Waals have the following form 

 (16) 

in which Zhs is the hard-sphere compressibility factor, which is a function of the packing 

fraction of the system, η, defined by η=b/4v. In this definition, b the molecular covolume 

from the van der Waals equation of state. 

Some famous expressions for the hard-sphere compressibility factor are: 

Reiss-Frisch-Lebowitz [56], 

 (17) 

Thiele [57], 

p = RT
v
Zhs − a

v2

Zhs = 1+η +η2

1−η( )3
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 (18) 

Ree-Hoover [58], 

 (19) 

Guggenheim [59], 

 (20) 

Carnahan-Starling [60], 

 (21) 

Hall [61], 

 (22) 

Boublik [62] 

 (23) 

Erpenbeck-Wood [63], 

 (24) 

Malijevsky-Veverka [64], 

Zhs = 1+ 2η + 3η2

1−η( )2

Zhs = 1+1.75399η + 2.31704η2 +1.108928η3

1− 2.246004η +1.301056η2

Zhs = 1
1−η( )4

Zhs = 1+η +η2 −η3

1−η( )3

Zhs = 1+η +η2 − 0.67825η3 −η4 − 0.5η5 −1.7η6

1− 3η + 3η2 −1.04305η3

Zhs =
1+ 3α − 2( )η + 3α 2 − 3α +1( )η2 −α 2η3

1−η( )3

Zhs = 1+1.7227128η + 2.2532688η2 + 0.89244864η3 − 0.34302926η4

1− 2.2772872η +1.32624176η2
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 (25) 

An article by Mulero [55] is an extended review of hard-sphere models for fluids.  

In general, the Guggeheim equation of state (Eq. (16) combined with Eq. (20)) was the 

first relatively accurate hard-sphere model, and it can calculate reasonable equilibria 

close to the critical region.  The parameters a and b come from critical properties.  

Perhaps the most widely used replacement of van der Waals repulsive term is the 

equation published by Carnahan and Starling in 1969 (Eq. (16) combined with Eq. (21)).  

This equation also follows the same predictions obtained from molecular dynamics 

calculations, and it is accurate for systems composed of nonpolar substances.  Also, 

Carnahan and Starling used virial coefficients to develop their equation, which makes it 

popular among proponents of statistical mechanics [65].  The equation published for 

hard-sphere solids by Hall in 1972 (Eq. (16) combined with Eq. (22)) corresponds to an 

empirical modification of the model proposed by Carnahan and Starling. It agrees well 

with simulation data and finds use in solid-liquid equilibrium calculations of hard-sphere 

systems [55].  Boublik in 1981 used the hard-spheres model proposed by Carnahan and 

Starling as a basis for his equation extended to molecules with arbitrary geometry.  He 

included a nonsphericity parameter α defined as α=RoSo/Vo, where Ro, So and Vo are the 

mean curvature, mean surface and mean volume of the hard convex molecule 

respectively.  Erpenbeck and Wood [63] fit their own computer simulations and 

proposed a van der Waals type equation of state with the hard-sphere compressibility 

factor stated in Eq. (24).  The advantage of this equation lies in avoiding singularities for 

Zhs = 1+1.056η +1.6539η2 + 0.3262η3

1−η( )3 1+ 0.056η + 0.5979η2 + 0.3076η3( )
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pressure for some real values of the packing fraction, a problem that has occurred with 

some empirical equations.  However, the Erpenbeck-Wood equation of state cannot 

reproduce simulation date from other authors.  Finally, Malijevsky and Veverka 

published what is today the most acceptable modern equation for hard-sphere (Eq. (16) 

combined with Eq. (25)).  Its accuracy is slightly better than Carnahan-Starling equation 

of state, although its functional form is more complex.   

Non-cubic equations of state whose only modification to the van der Waals 

equation of state is in the repulsive term generally do a better job of reproducing 

volumetric properties at high temperatures and pressures and near the critical region than 

normal cubic equations of state. However, they are not very good at predicting vapor 

pressures because their attractive term lacks temperature dependence. 

Other equations of state have appeared that change both the attractive and 

repulsive terms in van der Waals equation, or combine a hard-sphere formulation with 

an empirical temperature dependence for the attractive part.  Carnahan and Starling 

combined their hard-sphere model with the Redlich-Kwong temperature dependent term  

 (26) 

the results from Eq. (26) revealed that it improved the calculation of hydrocarbon 

densities and phase equilibria [65].  De Santis in 1976 proved that Eq. (26) fits pure 

components well from ideal gases to saturated liquid states. 

Chen and Kreglewski in 1977 [66] were able to predict phase behavior of fluids 

by combining the hard-spheres model proposed by Boublik in Eq. (23) with an attractive 

p =
RT 1+η +η2 −η3( )

v 1−η( )3
− a
v v + b( )T 0.5
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term that consists of a power series correlation of simulation data for square-well fluids 

published by Alder in 1972 [67].  This new formulation is the so-called BACK equation 

of state [65] 

 (27) 

in which u is the characteristic energy, vo is the hard-core volume and Dij are numerical 

coefficients.  They estimated Dij from volumetric data of Argon and treated them as 

universal constants.  The BACK equation assumes the characteristic energy and the 

hard-core volume are temperature-dependent, and use representations for them from the 

literature [46, 68]. Finally, experimental data are necessary to determine three 

parameters. 

Christoforakos and Franck in 1986 added a temperature dependent repulsive term 

to a modified version of the hard-sphere model of Carnahan and Starling [69]: 

 (28) 

in which 4β=b(Tc/T)0.3.  The attractive term relates to the virial coefficients of gases 

from a square-well potential.  The parameters ε and λ represent the depth of the well and 

the width of the well respectively.  They applied this equation to high-pressure phase 

behavior for some binary aqueous mixtures. 

Three years later in 1989, Heilig and Franck [70] published a modification of the 

Carnahan-Starling equation of state with a different attractive term based upon virial 

coefficients  

p = RT
v

1+ 3α − 2( )η + 3α 2 − 3α +1( )η2 −α 2η3

1−η( )3
− jDij

u
kT

⎛
⎝⎜

⎞
⎠⎟
i vo

v
⎛
⎝⎜

⎞
⎠⎟

j

j
∑

i
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

p = RT
v

1+ β / v + β 2 / v2 − β 3 / v3

1− β / v( )3
−
4β λ 3 −1( ) exp ε / kT( )−1( )

v
⎡

⎣
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⎤

⎦
⎥
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 (29) 

in which B and C are the second and third virial coefficients respectively of a square-

well fluid. 

Another well-known non-cubic equation that enhances both the repulsive and the 

attractive terms in van der Waals equation is the one developed by Deiters [71].  He 

proposed a semi-empirical approach with three adjustable parameters a, b, and c,  

 (30) 

in which ρ=b/v, y=0.7404ρ, co=0.6887, λ=-0.06911c and Teff=(cT/a+λρ)/η.  I is a hard-

sphere constant, and packing fractions range from 1 for a dilute gas to 0.46 for dense 

fluids.  The parameter co is useful to adjust the Carnahan-Starling model to fit better 

experimental vapor pressures for Ar, while values of c greater than 1 take into account 

deviations from spherical geometries.  Eq. (30) can predict reasonably accurate vapor-

liquid properties for binary mixtures. 

 

2.3 THE VIRIAL EQUATION OF STATE 

Almost 30 years after van der Waals published his equation of state, 

Kammerlingh Onnes [72] introduced in 1901 the virial equation of state, 

p = RT
v

1+ β / v + β 2 / v2 − β 3 / v3

1− β / v( )3
− B
v +C / B

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

p = 1+ cc0 4y − 2y
2 1− y( )3⎡⎣ ⎤⎦{ } RTρ − aI exp 1

Teff
⎛
⎝⎜

⎞
⎠⎟ −1

⎡
⎣⎢

⎤
⎦⎥
Rρ2Teff
b
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 (31) 

Eq. (31) is also known as the virial expansion.  B is the second virial coefficient, C is the 

third virial coefficient, D is the fourth, and so on.  For pure components, virial 

coefficients are only function of temperature and hence completely independent of 

density and pressure.  The real advantage of the virial equation of state over other 

empirical or semi-empirical equations of state is that there is a theoretical relation 

between the virial coefficients and intermolecular potentials [73].  Statistical 

thermodynamics provides a way to estimate the virial coefficients as a function of 

interaction between molecules in isolated clusters.  B depends on the interactions 

between pairs of molecules, C upon interactions in a cluster of three molecules, D upon 

interactions in a cluster of four molecules, and so on.   

Another advantage of virial equations is the possibility of estimating the virial 

coefficients from experimental data.  B is appropriately found from low pressure P-ρ-T 

data by definition, 

 (32) 

similarly, the third virial coefficient can also be found from low pressure P-ρ-T data, 

 (33) 

this emphasizes the fact that the virial coefficients are properties of the fluid in the limit 

of zero density.  From isothermal data, B can be found as the intercept on the ordinate of 

(Z-1)/ ρ versus ρ, and C as the slope as ρ goes to zero. 

p
ρRT

= Z = 1+ Bρ +Cρ2 + Dρ 3 + ...

B = lim
ρ→0

∂Z
∂ρ

⎛
⎝⎜

⎞
⎠⎟ T

C = lim
ρ→0

1
2!

∂2Z
∂ρ2

⎛
⎝⎜

⎞
⎠⎟ T
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It has been observed for several fluids that the virial expression when truncated 

after the third term gives good representation of the compressibility factor to about half 

the critical density and fair results up to the critical density.  For much higher densities, 

the virial equation of state provides poor predictions given the lack of experimental and 

theoretical capabilities to estimate the fourth and higher order coefficients.  However, 

the virial expression is applicable for moderate densities and the study of vapor-liquid 

equilibria problems [74].   

As mentioned before, the importance of the virial expression lies in its relation to 

intermolecular interactions.  In an ideal gas, molecules do not exert any force upon each 

other. A similar situation occurs for a real gas at low density where all the molecules are 

so far apart that they do not interact significantly with one another.  However, as density 

increases, molecules interact more frequently.  The virial coefficients account for these 

effects.   

From a statistical thermodynamics perspective, virial coefficients are linked to 

intermolecular potential functions [73].  Consider a simple case of a gas composed of 

spherically symmetric molecules such as argon or helium.  Let Γ(r) be the potential 

energy between such molecules, and r is the distance between molecular centers.  The 

second and third virial coefficients are given as functions of the potential energy and the 

temperature by,  

 (34) B = 2πNA 1− exp −Γ r( ) / kT( )⎡⎣ ⎤⎦
0

∞

∫ r2dr
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 (35) 

where fij=exp(-Γij/kT)-1, k is Boltzmann’s constant and NA is Avogadro’s constant.  

Analogous expressions exist for the fourth and higher virial coefficients.  In this context, 

the virial equation of state applies to stable and electrically neutral molecules.  For 

complex molecules, not only the distance between molecular centers affects the potential 

function, but aspects such as the spatial geometry and orientation.  The accuracy of the 

virial equation of state from statistical thermodynamics increases as the level of theory 

becomes deep enough to generate a potential model able to take into account all kinds of 

interactions [74]. 

 

2.4 MOLECULAR-BASED EQUATIONS OF STATE 

Improvements in statistical mechanics and advances in computer power have 

allowed the development of equations of state based upon molecular theories that are 

accurate for real fluids and their mixtures.  Most of the models presented in the previous 

sections refer to simple molecules, for which the most significant intermolecular forces 

are repulsion and dispersion (van der Waals forces), with weak electrostatic forces.  

However, many fluids and mixtures do not fall within this category, for instance polar 

solvents, electrolytes, hydrogen-bonded fluids, polymers and liquid crystals.  For such 

fluids, new intermolecular forces must be considered (coulombic, strong polar activity, 

chain flexibility forces, induction and association).  For these cases the typical 

predictions fail given their inadequate functional form.   

C = −8π 2NA
2

3
f12 f13 f23r12r13r23[ ]dr12 dr13 dr23

r12−r13

r12+r13

∫
0

∞

∫
0

∞

∫
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Two key concepts that most of the molecular-based equations of state have in 

common are: chain-like molecules [75] and perturbation theory [76].  Many studies have 

assumed non-spherical molecules to be chains of freely jointed spherical segments [77]. 

Despite its simplicity, this molecular model accounts for many size and shape effects of 

molecules and has been applied successfully to small molecules and large polymeric 

fluids and mixtures.  Essentially, the chains form from covalent-like bonds, and the 

model can approximate a broad range of molecules, from non-associating near-spherical 

(for example methane and n-pentane) and non-spherical (chain alkanes and polymers) to 

associating near-spherical (methanol) and non-spherical (alkanols).  Each molecule is 

characterized by the number of segments, m, and the segment diameter, σ.  These 

parameters are estimated using Barker-Henderson theory and fitting liquid densities [78].  

The number of segments (m) gives an idea of the sphericity of the molecule, for 

spherical molecules m = 1. 

The use of thermodynamic perturbation theory makes it possible to express the 

properties of a complex system as a function of a simpler reference system and then add 

“correction terms” that depend upon the types of interactions in that system of 

molecules.  Although this is the basic idea, the theory behind these interactions is what 

makes molecular-based equations of state a challenging topic.   

A very detailed review on molecular-based equations of state, including their 

progress in theories and complexity throughout the past 30 years appears in the works of 

Beret and Prausnitz [76], Nezbeda [79] and Wei [65].  In general, these theoretical 

models are important because they bring physical meaning to their terms. However, their 
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accuracy and consistency when predicting any thermodynamic property is still 

debatable. 

An example is the SAFT (Statistical Associating Fluid Theory) equation of state 

developed by Jackson, Chapman and Gubbins [77].  SAFT is a method that combines 

Wertheim’s thermodynamic perturbation theory (TPT) for associating fluids with 

modern ideas for formulating molecular-based equations of state.  SAFT considers a 

fluid composed of chain-like molecules.  These molecular units associate to form 

relatively long-lived dimers or higher n-mers. Such fluids could be those with hydrogen 

bonding and charge transfer.   

The SAFT equation of state generally is expressed in terms of the Helmholtz 

energy of the system with other thermodynamic properties derived from it.  The 

perturbed form of the Helmholtz energy approximation is, 

A ρ,T[ ] = Aid ρ,T[ ]+ Aex,hs ρ,T[ ]+ Aatt ρ,T[ ]+ Aex,Totalassoc ρ,T[ ]  (36) 

the first term corresponds to the ideal gas Helmholtz energy.  The ideal gas contribution 

to the energy does not include intra-molecular interactions. Those appear in the 

association term.  The second incremental term is the hard-spheres term and represents 

the change in energy caused by excluded volume/short-range repulsion.  The excess 

energy for hard spheres can be approximated by a weighted segment density formalism 

originally postulated by Rosenfeld and known as fundamental measure theory (FMT) 

[80].  The third term is the long-range attraction based upon the mean field 

approximation [81] in which a many-body problem is converted into a single-body 

problem by considering an average of interactions.  A pair potential model is necessary 
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in this term, and the Lennard-Jones potential is the most common one.  Along with the 

number of segments and the segment diameter, the final parameter needed to fully 

describe the molecules is the intermolecular interaction parameter, ε, which appears in 

the expression for the pair potential. 

The excess energy caused by association accounts for the intramolecular 

interactions.  To explain the theory of association, it is necessary to understand first the 

basis of chain formation (linear or branched) and the concept of sites.  One can picture 

the system as a mixture of hard spheres that undergo two kinds of bonding, covalent-like 

bonds to form chains and association interactions. For the association terms, the type of 

interaction is hydrogen bonding, which is a short-range and highly orientation-dependent 

site-site interaction. The theory allows branched or chain-like associated clusters as 

depicted in Figure 7. 

 

 

Figure 7. Formation of branched sites from associating hard spheres. 
 

For the case of a linear chain of m segments, the segment number 1 has a single 

associating site (known as A). Segments 2 to m-1 have two associating sites A and B, 
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and segment m has an associating site B.  To extend this model to branched systems, the 

segments to which the branches are attached at the backbone must have additional 

associating sites.  It is important to keep in mind that the mixture of spheres must be 

stoichiometric.   

As opposed to associated clusters, multisegmented chain molecules form via 

strong covalent-like bonds occurring through bonding sites.  The procedure for 

formation of chains is similar to the one presented in Figure 1, retaining the constraint 

that the ratio of spheres is stoichiometric. 

Figure 8 summarizes the principles of association and chain formation in the 

SAFT EoS.  The final representation of the molecule is in Figure 2(a).  Initially, the fluid 

consists of hard spheres (b), then a dispersive potential such as Lennard-Jones or square-

well accounts for attraction among the spheres (c).  Next, the formation of chains occurs 

in (d). It is mandatory to notice that the chain formation is related to bonding sites, 

which mathematically is treated as the limit of complete association.  Finally, interaction 

sites are introduced at certain positions along the chain, which enable the chains to 

associate through some attractive interaction like hydrogen bonding (e). 
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Figure 8. Path to form a molecule in the SAFT model.  (a) final molecule containing 
chain and associating sites; (b) initially the fluid is a mixture of hard spheres; (c) 
attractive forces involved; (d) chains are formed by means of complete association; (e) 
association sites are responsible for association complexes. 
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3. MULTI-PARAMETER EQUATIONS OF STATE FOR PURE FLUIDS 

This section presents detailed information about current formulations of 

empirical, multi-parameter equations of state.  Well-developed multi-parameter 

equations of state can reproduce thermodynamic properties of fluids within the accuracy 

of experimental data. As a consequence, a multi-parameter equation of state can become 

a thermodynamic reference equation for the fluid under study.  As a result of improved 

computational power, highly accurate multi-parameter equations of state are common in 

several engineering exercises and are the most practical source of thermodynamic 

information for challenging and demanding applications and for internationally agreed 

upon reference tables for fluids.  It is relevant to clarify that a multi-parameter equation 

of state is not a thermodynamic correlation. Correlations provide relatively accurate 

thermodynamic information for a specific property but usually fail to reproduce other 

derived properties, and their performance is poor outside the range considered during the 

fit.  This is the main advantage of multi-parameter equations of state over the equations 

of state studied in Section 2. Although accuracy might be comparable for a specific 

property, for example p-ρ-T data, most of the Section 2 equations of state cannot predict 

other properties with the same level of accuracy as they do for the p-ρ-T points.  The 

beauty of a multi-parameter equation of state, and what makes it a thermodynamic 

reference, is consistency and extrapolation capabilities. Consistency relates to being an 

accurate source for all thermodynamic properties of the fluid (including properties that 

cannot be measured directly), and extrapolation capabilities relate to reproducing 

relatively accurate and well-behaved properties in regions where no data are available.    
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The beginnings of current multi-parameter equations of state date from the virial 

equation of state.  The observations that a polynomial series seems to work properly for 

gases and gaseous-like supercritical states, and the fact that the virial coefficients have a 

molecular meaning represent an attraction for the scientific community.  However, a 

functional form for the virial coefficients is necessary and, although statistical 

thermodynamics offers a feasible solution to that problem, simple empirical correlations 

for the virial equation avoid the complexity of unknown intermolecular potential models.  

Later, Benedict, Webb and Rubin proposed adding an exponential term to a truncated 

virial expansion.  This is the BWR equation of state [82, 83]  

The development of multi-parameter equations of state accelerated with the 

availability of more sophisticated computational systems.  Then, two main 

classifications of multi-parameter equations of state appeared: the first branch 

corresponds to simple modifications of the BWR equation of state, equations for several 

fluids and specifically for mixtures with a variety of mixing rules.  A good example is 

the equation developed by Starling in 1975 [84] that applies to mixtures of light 

hydrocarbons.  These formulations apply in engineering applications for selected 

properties.  The other branch corresponds to deeper modifications of the BWR equations 

of state that led to accurate thermodynamic descriptions for specific fluids.  Examples 

are the equations proposed by Altunin [85, 86] and the MBWR equation by Jacobsen 

and Stewart [87].  In this regard, an important step in the development of “reference 

equations of state for pure substances” was the implementation of phase equilibrium data 

along with the typical p-ρ-T data. These equations were not only applicable in the 
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homogeneous region, but also could define accurately the boundary of the two-phase 

region.  This was the birth of multiproperty fitting. 

Two factors impacted the development of highly accurate multi-parameter 

equations of state within the last 20 years: the enhancement of optimization algorithms 

and better formulations of functional forms.  With increased multi-property fitting, the 

numerical aspect became a problem.  One of the best initial solutions to this problem 

was the stepwise regression analysis proposed by Wagner [88].  This procedure seemed 

to work properly for several study cases, and it used a bank of terms to reduce the 

number of final optimized parameters.  Along with numerical improvement, one major 

change impacted the design of equations of state.  Most equations of state were explicit 

in terms of pressure or compressibility factor. Such equations require integration to 

calculate caloric properties, and they require expressions for the ideal heat capacity and 

saturation properties. Furthermore, the integration process has numerical issues.  New 

formulations of equations of state are based upon fundamental expressions.  The term 

“fundamental equation” in this section refers to the use of thermodynamic potentials 

(internal energy, enthalpy, Gibbs energy, and Helmholtz energy) as models for the 

equation.  The advantage of fundamental equations offer is the ability to obtain all 

thermodynamic properties from their derivatives without additional equations for 

saturation properties and without integrating to calculate another property (the 

integration procedure involves more numerical issues than a simple differentiation).  

Recently, the most common fundamental equation used in the design of multi-parameter 

equations of state is the Helmholtz energy as a function of density and temperature. This 
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formulation is successful because its independent variables are observables and, unlike 

Gibbs energy, do not present a discontinuity when moving between the single- and two-

phase regions.   

Development of a multi-parameter equation of state implies analysis and rigorous 

selection of data.  Essentially, data with lower uncertainty, no outliers and trusted 

experimental techniques are preferred.   Data with systematic errors can affect the 

performance of the equation, so such data should be avoided.  Some data, reference 

states and molecular information are essential. They are the temperature, pressure and 

density at the critical point and triple point, the molecular weight, the acentric factor, the 

molar gas constant, and the enthalpy and entropy reference values.  Also, some types of 

data are fundamental for the design of the equation of state such as pρT covering the 

entire thermodynamic surface, vapor pressure, saturated liquid and vapor densities, 

ideal-gas heat capacities and speed of sound measurements.  It is clear that the accuracy 

of the equation improves if other data are available, such as energies, caloric properties 

and virial coefficients.  

Subsequently, the choice of the thermodynamic property formulation is in order. 

Generally, it is a pressure-based model or a fundamental equation.  Then, the process of 

finding the optimum set of parameters for the thermodynamic formulation involves 

science and knowledge of thermodynamics of fluids, experience, and art to some extent.  

The general goal of correlation is to develop a consistent thermodynamic model able to 

reproduce data within experimental uncertainty with good extrapolation capabilities.  

This goal implies the following [89]: 
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1. All thermodynamic properties can be reproduced within their experimental 

uncertainty by integrating or differentiating the equation of state. 

2. The equation of state satisfies ideal gas behavior in the limit of zero density. 

3. The equation of state satisfies the Maxwell criterion, that is, equal Gibbs energy 

for both saturated liquid and vapor states at a given vapor pressure and 

temperature. 

4. The critical behavior is consistent with theoretical constraints and experimental 

behavior.  However, the critical region representation deviates from the real 

behavior because of complexity and the lack of current functional forms that 

allow more accuracy in this region without adding numerical difficulties. 

5. The behavior of constant property lines (e.g. isotherms, isochores, isobars) is 

consistent with theoretical calculations and experimental data. 

6. The behavior of properties at extreme conditions or in regions with no data must 

be smooth and coherent with any thermodynamic information. 

Another important point regarding the resulting equation of state is its simplicity, 

which affects the computational cost of the equation.  Following this idea, one more goal 

is to minimize the number of parameters in the final optimization without compromising 

the accuracy and consistency of the model. 

 

3.1 PRESSURE-EXPLICIT EQUATIONS OF STATE 

Despite the fact that most of the current reference equations of state are based 

upon Helmholtz energy formulations, pressure-explicit forms still dominate technical 
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applications.  Following are some of the most common thermodynamic property 

formulations in terms of pressure.   

 

3.1.1 The Benedict-Webb-Rubin Equation of State 

The BWR equation of state, published in 1940, represents a breakthrough in the 

prediction of volumetric properties of fluids, even at relative high densities [82].  The 

general form is  

p = RT ρ + B0RT − A0 −
C0

T 2
⎛
⎝⎜

⎞
⎠⎟ ρ + bRT − a( )ρ 3 + aαρ6

+
cρ 3 1+ γρ2( )exp −γρ2( )

T 2

  (37) 

A0, B0, C0, a, b, c, α and γ are parameters of the equation.  The exponential term allows 

reasonable calculations of: liquid fugacities in equilibrium calculations, high-density 

data reproduction and improved calculation of the critical region [82].   

Eq. (37) was clearly superior to cubic equations of state for pure fluids.  Several 

modifications of the BWR equation of state have appeared to study pure fluids and are 

still important in technical applications. 

In 1962, Strobridge [90] modified the BWR equation of state for nitrogen using  

p = ρRT + n1RT + n2 +
n3
T

+ n4
T 2 +

n5
T 4

⎛
⎝⎜

⎞
⎠⎟ ρ

2 + n6RT + n7( )ρ 3 + n8T ρ 4

+ρ 3 n9
T 2 +

n10
T 3 +

n11
T 4

⎛
⎝⎜

⎞
⎠⎟ exp −n16ρ

2( ) + ρ5 n12
T 2 +

n13
T 3 +

n14
T 4

⎛
⎝⎜

⎞
⎠⎟ exp −n16ρ

2( ) + n15ρ6
 (38) 

In 1973, Starling generalized a BWR-type equation of state for light hydrocarbon 

systems with 11 adjustable coefficients [84]. 



 

 

 

 

53 

The BWR equation of state and its modifications remain significant in several 

technical applications as a result of accurate predictions for the gas phase and moderate 

densities.  However, results for energetic properties at liquid or liquid-like supercritical 

states may be in error by more than ±10 %.   

 

3.1.2 The Martin-Hou Equation of State 

Martin and Hou [89] released an equation of state that has been useful for 

mixtures containing halocarbons refrigerants.  Its form is: 

p = RT
v − b

+
Ai + BiT +Ci exp −γ( )

v − b( )ii=2

5

∑  (39) 

where γ =κT /Tc .  The constants Ai, Bi, Ci and κ come from treating experimental data.  

To improve the accuracy of the equation, they add an additional term for refrigerants, 

p = RT
v − b

+
Ai + BiT +Ci exp −γ( )

v − b( )ii=2

5

∑ +
A6 + B6T +C6 exp −γ( )
exp uv( ) 1+C ' exp uv( )( )  (40) 

in which the additional parameters are fluid dependent constants.  The Martin-Hou 

equation of state performs similarly to the BWR equation of state [89].   

 

3.1.3 The Bender Equation of State 

Bender published another modification of the BWR equation of state [91] 

( ) ( )[ ]220
225432 exp ρρρρρρρρρ aHGFEDCBRTp −+++++++=   (41) 

in which the coefficients of the equation are polynomial functions of temperature that 

need 19 parameters for a total of 26 coefficients.  The Bender equation of state was one 
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of the first modifications of the BWR equation that aimed to describe vapor-liquid phase 

equilibria as well as energetic properties in the liquid phase with results that represent 

the measured values with accuracy suitable for technical applications. 

 

3.1.4 The Jacobsen-Stewart Equation of State 

The equation developed by Jacobsen and Stewart, known as the mBWR equation 

of state, would become the most successful and sophisticated modification of the BWR 

equation of state.  It has the form 

( )∑∑
=

−

=

−+=
15

10

1722
9

1

exp
n

n
n

n

n
n aap ργρρ   (42) 

in which γ = 1 ρc
2 .  32 constants accompany 15 different polynomial forms for an [87].  

This functional form upgraded the reference equation for nitrogen, and it has found wide 

use for the thermodynamic characterization of other fluids such as refrigerants and 

cryogens. 

 

3.1.5 Thermodynamic properties from pressure-explicit equations of state 

Given a functional model, the next step is to identify the necessary equations to 

predict other thermodynamic properties.  For that purpose, several thermodynamic 

relations are necessary, but they appear in any thermodynamics textbook need not be 

repeated here. 

Several thermodynamic properties based upon pressure-explicit equations of 

state appear in this section.  Ancillary equations are necessary for the vapor pressure, 
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saturated liquid density, saturated vapor density, and the ideal isobaric heat capacity.  

Example for ancillary equations for the vapor pressure, saturated liquid density, and 

saturated vapor density are:
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in which θ = 1−T Tc .  Ni, ti and the number of terms vary for each property and fluid. 

Integral representations for properties pass through the two-phase region to 

estimate liquid properties.  Properties that require integration often encounter numerical 

complications during the calculations.  That is the case of entropy, enthalpy, internal 

energy and heat capacities. 

The entropy of a thermodynamic state is  
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in which cp
0  is the ideal isobaric heat capacity.  The reference entropy of the ideal gas at 

T0 and p0 depends only upon the fluid under study.  The enthalpy is 
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the reference state of the ideal gas also depends upon the fluid under investigation.  The 

internal energy is 

( ) ( )
ρ

ρρ pThTu −= ,,   (48) 

and the isochoric and isobaric heat capacities are 
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3.2 EQUATIONS OF STATE IN TERMS OF THE HELMHOLTZ ENERGY 

The principal advantage of fundamental equations of state is that they contain the 

necessary thermodynamic information to obtain all thermodynamic properties from their 

derivatives.  The four typical fundamental expressions are the internal energy u(s,ρ), 

enthalpy h(s,p), Helmholtz energy a(T, ρ) and Gibbs energy g(T,p).  The first two 

formulations are not useful for equations of state development because entropy is not 

measurable.  The Gibbs free energy might be useful because temperature and pressure 

are easy to measure. However, it has a discontinuity in slope at the phase boundaries, 

which would impair the performance of the equation in the two-phase region [89].  

Hence, the Helmholtz energy is the most suitable option for the design of equations of 

state for the whole fluid region. 
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Sections 3.2.1 to 3.2.5 include examples of equations of state based upon the 

Helmholtz energy.  Jacobsen et al [89] recommended this approach.  Section 3.2.6 

shows the modern functional form used for this work.  Given the model, section 3.2.7 

shows how to calculate thermodynamic properties from the Helmholtz energy. 

 

3.2.1 The equation of Keenan, Keyes, Hill and Moore 

The equation published by Keenan in 1969 was the first thermodynamic 

formulation in terms of the Helmholtz energy [92].  This equation covers the liquid, 

vapor and solid regions of water.  The formulation is 

a ρ,T( ) = a0 (T )+ RT lnρ + RT ρQ ρ,τ( )  (51) 

∑
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in which τ = 1000 K/T, a0(T) is the ideal gas behavior of the fluid and Q(ρ,τ) 

corresponds to the residual part of the Helmholtz energy.  This equation of state is no 

longer used, but it represents an important contribution to the study of Helmholtz energy 

formulation for equations of state. 

 

3.2.2 The equation of Pollak 

Pollak released a new Helmholtz energy formulation for water in 1975 [93].  His 

expression was, 
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a ρ,T( )
RT

=α δ ,τ( ) =α 0 (τ )+ ln δ
δ t

+α r δ ,τ( )   (54) 
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∑ + exp −A1δ
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riτ ti

i=25

40

∑   (55) 

where δ = ρ ρ+ , τ = Tt T , Tt is the temperature at the triple point, δt is 0.9997602 and 

ρ+ is simply 1 g cm-3.  α(δ,τ) is the reduced Helmholtz energy and is the most common 

notation of Helmholtz energy in the field of equations of state.  α0(τ) is the ideal 

contribution to the dimensionless Helmholtz energy, and αr(δ,τ) is the residual part.  This 

equation of state has 40 parameters, and it is more accurate than the equation developed 

by Keenan and his colleagues.  An unfortunate feature of this equation is that it cannot 

be integrated analytically to obtain caloric properties. 

 

3.2.3 The equations of Haar and Gallagher, Haar, and Gallagher and Kell 

The equations developed by Haar and Gallagher in 1978 [94] along with the one 

published in 1984 by Haar, Gallagher and Kell became international standards for 

ammonia and water respectively.  However, other equations currently serve as standards. 

Nonetheless, the original versions still are useful in technical applications.   

The equation of state for ammonia is 

( ) ( ) ( )TaTa,Ta ,r0 ρρ +=  (56) 

⎥⎦
⎤

⎢⎣
⎡ +−+= ∑

=

− )818.4ln(1ln)(
11

2

3
1

0 TTaTaRTTa
i

i
i  (57) 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟⎠

⎞
⎜⎜⎝

⎛
−+= −−

= =
∑∑ 11
9

1

6

1

r )(ln),( j
c

i

i j
ijaRTTa ττρρρρ   (58) 



 

 

 

 

59 

where τ=500 K/T and τc=1.2333498.  The equation of state for water has three different 

terms: an ideal gas contribution, a residual part and a base function.  The base function 

term provides more accurate predictions in the dilute-gas region [89]. 
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TR=T/100 K, y=bρ/4, and α, β, γ, ai, ki, and li are determined from experimental data.  

The parameters B and b are temperature-dependent and contain eight more parameters.  

The variables δi and τi depend on specific density and temperature values. The 

expressions are  

δ i =
ρ − ρi
ρi

  (63) 

τ i =
T −Ti
Ti

 (64) 

 

3.2.4 The equation of Schmidt and Wagner 

The equation of state from Schmidt and Wagner is the first modern multi-

parameter equation of state [95].  It was developed for oxygen, and its success mostly 
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relies upon utilization of better optimization techniques and faster computers.  The 

equation of state in terms of the reduced Helmholtz energy is 

a(ρ,T )
RT

=α (δ ,τ )=α 0 (δ ,τ )+α r (δ ,τ )  (65) 

in which τ = Tc /T, δ = ρ /ρc, Tc is the critical temperature and ρc is the critical density.  

The Helmholtz energy of the ideal gas is  

a0 = h0 − RT −Ts0  (66) 

in which the ideal gas enthalpy and entropy are, 
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cp
0 is the ideal gas heat capacity, ρ0 is the ideal gas density at T0 and p0, and T0 and p0 are 

arbitrary reference states.  Combining these equations results in the following equation 

for the Helmholtz energy of an ideal gas, 
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this equation requires an extra expression for the ideal gas heat capacity either from 

experimental data or statistical mechanics.  The dimensionless form of the ideal 

Helmholtz energy is 
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in which the state (τ0,δ0) is τ0=Tc/T0, δ 0 = p0 RT0ρc( )  and T0, p0, h0
0  and s0

0 are 

reference values. 

The equation for the residual part, optimized using a bank of suitable terms, for 

oxygen is 
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Eq. (71) contains 13 polynomial terms and 8 exponential terms.  Exponential terms are 

necessary for the representation of the critical region. 

 

3.2.5 The equation of Jacobsen, Stewart, Jahangiri and Penoncello 

This formulation developed in 1986 was used successfully for nitrogen [96] and 

ethylene [97].  It used the same expression for the reduced Helmholtz energy and 

essentially the same ideal gas term as presented in Eq. (65) and Eq. (70).  The residual 

term was different though 

α r (δ ,τ ) = akδ
ikτ jk exp −γδ lk( )

k=1

m

∑   (72) 

γ=1 for all cases except when lk=0 then γ=0.  All density exponents are positive integers 

while the temperature exponents can be any real number. 

 

3.2.6 Modern functional form 

The modern functional form for the reduced Helmholtz energy is the one used to 

develop the reference equation of state for helium 4.  This modern functional form 
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corresponds to the one implemented for other fluids by Span and Wagner [31] and 

Lemmon [30].  The general form is identical to Eq. (65).  All temperature values in 

kelvins, and the temperature scale must be taken into consideration for applications that 

require high levels of accuracy.  Preston-Thomas [5] established the current temperature 

scale ITS-90.  All property values in different temperature scales are previously 

converted to ITS-90 for equation of state development.  Also, Mohr and Taylor [98] 

produced the current internationally accepted gas constant, which is R=8.314472 J mol-1 

K-1 with a standard uncertainty of ±0.000015 J mol-1 K-1.   

The partition of the reduced Helmholtz energy into two terms obeys statistical 

mechanics concepts.  The dimensionless ideal gas term, α0, accounts for the effects of 

translation, rotation and vibration of the molecules, but ignores the presence of other 

molecules.  The dimensionless residual term, αr must account for all interactions among 

molecules.  Models exist for α0 that yield good results depending on the information 

available for the heat capacities. However for the residual Helmholtz energy, the 

situation is more complicated.  Molecular simulation may be a possible future solution to 

this problem. However, while this approach enhances physical understanding of the 

fluid, the current state-of-the-art for computers makes the approach far from being a 

replacement for empirical equations of state.  In other words, the greatest importance of 

molecular simulations in this matter is to impart understanding of physical effects, and 

the possibility of obtaining thermodynamic information in regions where it is not 

possible to collect experimental data.  In general, accurate formulations for αr still 

require empirical representations of experimental data.   
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The expression for the dimensionless ideal Helmholtz energy is Eq. (70), in 

which the reference values for helium are T0 = 100 K, p0 = 0.101325 MPa, h0
0 RT0 = 2.5  

and s0
0 R = 12.4284  [1].  The thermodynamic functions for helium 4 in the ideal gas 

limit are relatively simple to calculate given that helium is a monatomic gas and 

statistical thermodynamics offers a feasible solution.  The isobaric heat capacity of 

helium is not a function of temperature,  

cp
0 = 5

2
R  (73) 

Details of this derivation appear in any statistical thermodynamics textbook [73].  Thus, 

Eq. (70) rewritten for helium is 
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Span [28] provides more information for other fluids that require sophisticated 

expressions for the ideal heat capacity term. 

Most of the modern Helmholtz energy-based equations of state treat the residual 

contribution as Eq. (72), inspired by the use of polynomial terms along with exponential 

terms from the BWR equation of state and its modifications.  This equation has as 

independent variables the inverse of the reduced temperature and the reduced density; as 

a matter of fact, the inverse temperature is also a statistical thermodynamics concept, in 

which the analogous independent variable is β = 1 kBT . 

The new functional form for the residual Helmholtz energy used in this work 

contains additional terms with exponentials of both temperature and density.  These 
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terms are the Gaussian-bell shaped terms or critical-region terms that correspond to the 

last terms in Eq. (75). 
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The parameters Nk, dk, tk, lk, Ipol, Iexp Icrit, ηk, βk, εk, and  γk are the functional form.  

Equations of state that use only exponential and polynomial terms can describe a fluid 

with high accuracy except in the critical region, although the exponential terms provide 

an improvement.  The Gaussian-bell shaped terms can mimic the crossover from 

classical to non-classical behavior close to the critical point, but they disappear rapidly 

away from the critical point.  This functional form has appeared in current worldwide-

accepted reference equations of state such as methane [99], carbon dioxide [31], water 

[100], nitrogen [29], argon [101], ethylene [102] and propane [30]. 

Common problems observed in multi-parameter equations of state come from 

“irregular values” in the parameters of Eq. (75) that, although they might reproduce data 

with low deviations, cause incorrect behavior of derived properties.  These irregularities 

affect the determination of phase boundaries, the calculation of metastable states within 

the two-phase region, and the shapes of isotherms in the low temperature vapor phase 

[103].  These problems can be traced to the magnitude of t in τ t in Eq. (75).  As the 

temperature goes to zero, τ t goes to infinity for values of t > 1, causing the pressure to 

increase rapidly to infinity.  The effect is more pronounced for higher values of t.  The 

primary use of terms with high values of t is for modeling the area around the critical 
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region, where the properties change rapidly.  Outside the critical region, this influence 

balances with the δ d term in the vapor phase and the exp(–δ l ) term in the liquid phase.  

Hence, at temperatures close to the triple point temperature in the vapor phase, where the 

density is very small, higher values of d in the δ d part of each term result in a smaller 

influence of the exponential increase in temperature.  Likewise, in the liquid region at 

similar temperatures, a higher value of l dampens the effect of the τ t part in the term.  At 

densities near the critical density, δ dexp(–δ l ) is close to 0.39, and the shape of the τ t 

contribution can greatly affect the critical region behavior of the model.  Regarding the 

numeric values of the parameters in the functional form, all tk should be greater than 

zero, and dk and lk should be integers greater than zero to satisfy zero derivatives at zero 

density [28]. 

 

3.2.7 Calculating thermodynamic properties from the Helmholtz energy model 

The functions used to calculate pressure (p), compressibility factor (Z), internal 

energy (u), enthalpy (h), entropy (s), Gibbs energy (g), isochoric heat capacity (cv), 

isobaric heat capacity (cp), and the speed of sound (w) from Eq. (65) are: 
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the fugacity coefficient and second, third and fourth virial coefficients are  
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other derived properties, given below, include the first derivative of pressure with 

respect to density at constant temperature (∂p/∂ρ)T, the second derivative of pressure 

with respect to density at constant temperature (∂ 2p/∂ρ 2)T, and the first derivative of 

pressure with respect to temperature at constant density (∂p/∂T)ρ, 
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Lemmon et al [104] provide equations for additional thermodynamic properties.   

The derivatives of the ideal Helmholtz energy do not appear because of their 

simplicity.  The derivatives of the residual Helmholtz energy necessary for most of the 

calculations are: 
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3.3 FITTING PROCEDURES 

Designing a multi-parameter equation of state involves correlating high quality 

data using least-squares methods to develop a model (Helmholtz energy in this case) that 

ultimately reproduces the data within its experimental uncertainty and exhibit proper 

behavior in the ideal gas and low density regions as well as in zones that require 

extrapolation from data.  One important task of the correlator is to select a set of data 
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that is representative of all available data because fitting all data points is very time 

consuming and, for many cases, does not make any difference on the result.  Selecting a 

subset of data may be a function of the accuracy of the experimental values, the 

availability of data in a specific region, and the reliability of the methods and procedures 

used in the laboratory. 

Once a representative set of data is available, the next step is to choose the 

appropriate numerical procedure to minimize the resulting least-squares problem.  The 

type of fitting procedure (e.g., nonlinear versus linear fits of the parameters) determines 

the use of the experimental data.  Even though linear fitting procedures have been useful 

for several fluids, such as argon and carbon dioxide [28] [31] [101], they fail when the 

coefficients of the linear approximation of the residuals with respect to the parameters 

vector is not linear [28].  Another disadvantage of these algorithms is that they are 

constrained to linear and linearized data. Hence, not all properties are fit properly, such 

as sound speed, which is highly nonlinear.  In linear fits, only equalities can be used. 

Thus in regions with no data, the curves of the experimental values usually are 

extrapolated by hand and subsequently those “new values” become input data.  The fact 

that linear fit procedures must deal with linearized data (not raw data) can directly affect 

the accuracy of the equation of state because the solution would also have an implied 

error from the previous linearization.  Nonlinear fitting has many advantages over linear 

fitting, such as the capability to fit any type of experimental data.  Shock-wave 

measurements of the Hugoniot curve are an example in which nonlinear fitting can use 

(p, ρ, h) measurements.  Another advantage in nonlinear fitting is the ability to use 
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"greater than" or "less than" operators for controlling the extrapolation behavior of 

properties in regions with no data.  Curves can be controlled by ensuring that a 

calculated value along a constant property path is always greater (or less) than a previous 

value. Thus, only the shape is specified not the magnitude.  The nonlinear fitter then 

determines the optimal magnitude for the properties based upon other information in a 

specific region.  Having said this, the numerical procedure for the development of the 

new helium equation of state was based on nonlinear fitting algorithms.  Also 

considering both that McCarty’s helium equation of state was developed using linear 

optimization techniques and the aforementioned extrapolation abilities inherent to 

nonlinear fittings, the use of nonlinear algorithms is a way to avoid unreasonable 

behavior in regions with no data and improve significantly the behavior of the standard 

for helium 4. 

Regarding nonlinear methods, a good preliminary equation is necessary as a 

starting point.  All of the coefficients and exponents in the advanced functional form 

described in Eq. (75) were fit simultaneously. Thus, with Ipol + Iexp + Icrit = 18, 

approximately 90 parameters are fit at the same time.  The nonlinear methods followed 

for the development of this project appear in a powerful nonlinear optimization solver 

that will be used for development of the equation of state.  Lemmon [103] created this 

solver.  Essentially the minimization is a constrained minimization with initial line-

search and Lagrange multipliers. Lemmon has dedicated more than 15 years to the 

continuous improvement of formulations and numerical methods with regard to multi-

parameter equations of state.  This work includes a collaboration with the National 



 

 

 

 

72 

Institute of Standards and Technology, and the equation of state presented in this 

document should be the next worldwide thermodynamic standard for helium. 

 The goal of the nonlinear algorithm is to find the set of parameters of the 

equation of state that minimizes the overall sum of squares of the deviations of 

calculated properties from the input data, in which the residual sum of squares is  

...222 +++= ∑∑∑ vv ccpp FWFWFWS ρρ   (99) 

W is the weight assigned to each datum, and F is the function that minimizes the 

deviations.  The equation of state is fit to pρT data for instance with either deviations in 

pressure Fp = (pdata–pcalc)/pdata for vapor-phase and critical-region data, or deviations in 

density, Fρ = (ρdata–ρcalc)/ ρdata, for liquid phase data.  Other experimental data are fit in a 

similar manner. 

The weighting process is crucial when fitting an equation; it varies with region, 

type of data, and experimental uncertainty.  The critical point is a characteristic state of 

any substance; given this importance, its weight is large (~10^7).  Regarding pρT data, 

the saturation region is relevant, and a weight on a saturation point is generally greater 

than a regular pρT point.  Also, between two experimental sets covering the same 

property with different uncertainty, the one with lower deviations receives a higher 

weight than that for the set with higher uncertainties.  The nature of the property is also a 

factor to take into account. For example, pρT data are less affected by the weight than 

heat capacities. Hence to cause a change in the equation, a heat capacity point generally 

has a lower weight than a pρT point.  Typical values of W are 1 for pρT and vapor 

pressure values, 0.05 for heat capacities, and 10 to 100 for vapor sound speeds.  In 
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addition of reflecting experimental uncertainties, the weighting allows the correlator to 

emphasized certain kinds of data during the equation development. 

Constraining the fitting problem may assure proper behavior in regions with no 

data.  One can constrain the actual value of a property (positive, negative or zero), or its 

slope, curvature, third and fourth derivative.  These constraints are purely subject to 

thermodynamic knowledge of the correlator and appear throughout the development of 

the equation.  At the end, the results will not only be a set of parameters, but also a set of 

constraints that led to a proper set of parameters.  As an example, the second virial 

coefficient goes to zero when the temperature goes to infinity, and the curvature of the 

third virial coefficient is positive from about 3 times the critical temperature to infinity.  

The equation of state was constrained to the critical parameters by adding the values of 

the first and second derivatives of pressure with respect to density at the critical point, 

multiplied by some arbitrary weight, to the sum of squares.  In this manner, the 

calculated values of these derivatives would be zero at the selected critical point. 

Although one may think that fitting a massive amount of data with many 

constraints from the start of the process is a way to hasten the fit, by doing so all 

calculations might fail.  Nonlinear optimization techniques are very sensitive and can be 

very time consuming if the correlator does not follow an appropriate path.  The entire 

fitting process is progressive. It must start with the most accurate data and the basic 

constraints (conditions at extremes). Subsequently more data can be added and, 

considering preliminary results, new constraints also. 
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To reduce the number of terms in the equation, terms were eliminated in 

successive fits by either deleting the term that contributed least to the overall sum of 

squares or by combining two terms that presented similar values of the exponents 

(resulting in analogous contributions to the equation of state).  After eliminating a term, 

the fit was repeated until the sum of squares for the resulting new equation was of the 

same order of magnitude as the previous equation.   

Because non-integer numbers for the density exponents resulted from the 

nonlinear fitting methods, each density exponent was rounded to the nearest integer, 

followed by refitting the other parameters to minimize the overall sum of squares, until 

all of the density exponents in the final form were positive integers.  A similar process 

was used for the temperature exponents to reduce the number of significant figures to 

one or two decimal places.  
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4. DEVELOPING AN EQUATION OF STATE FOR HELIUM-4 

This section explains the basic steps and recommendations that led to the 

development of a multiparameter reference equation of state for helium-4.  Initially, the 

presentation consists of establishing the equations and the fitter along with initial values 

for the parameters.  Then, a rigorous data selection process is necessary along with a 

distribution of weights for the data.  For development of the equation, it was crucial to 

define constraints on thermodynamic properties, especially in regions that lack data.  

Assigning constraints is a key step during the fitting process.  Besides using common 

thermodynamic properties for constraints, this work uses, for the first time, two 

additional parameters to constraint equations of state: the Gruneisen parameter and the 

Phase Identification Parameter (PIP).  This section ends with basic elements of the 

transition to superfluid; it was necessary to conclude the design of the equation by 

matching the behavior of the normal fluid with the onset of helium-II. These 

characteristics definitely add a challenging new aspect to the development of 

multiparameter equations of state for pure fluids. 

 

4.1 INITIAL SETUP 

This project was a collaboration with the National Institute of Standards and 

Technology (NIST).  Dr. Eric Lemmon is the principal investigator at NIST in charge of 

developing reference equations of state for fluids, thermodynamic correlations and 

technical equations of state for mixtures.  NIST provided the program used during this 

project, which they have developed over the past decade.  This program, written in 
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Fortran, is specifically applicable to development of equations of state.  The new 

functional form for the Helmholtz free energy used for helium presented by Eq. (65), Eq. 

(74) and Eq. (75) in Section 3, as well as the derivatives and formulas to determine the 

rest of thermodynamic properties (Eq. (76) to Eq. (98) in Section 3) are in the program.  

The fitting procedures explained in section 3.3 cover the numerical aspects of the 

algorithm.  In addition to the Helmholtz energy-based equations related to 

thermodynamic properties, the initial setup also requires a built-in subroutine for unit 

conversions and update of temperature scales to ITS-90.  This is necessary to establish 

accurate formulations for designing a reference equation of state.  Relations between 

previous temperatures scales and ITS-90 appear in Preston [5].   

Another crucial aspect is to select initial values for all parameters in the equation.  

A new equation of state for propylene provided a starting point. Usually, a recent 

equation of state contains a good bank of terms to develop a correlation for another fluid.  

The equation contains six terms for the polynomial part of Eq. (75), six terms for the 

exponential part and nine critical region terms. Thus, the preliminary equation of state 

consists of 21 terms. 

 

4.2 DATA AND WEIGHTING PROCESS 

Significant new experimental data have become available since the development 

of the current standard equation of state for helium [32].  Whereas McCarty and Arp had 

available only 10 data sets featuring three different properties (pρT, isochoric heat 
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capacity and sound speed), after a rigorous literature review on measured properties of 

helium identified 145 data sets covering 15 different thermodynamic properties. 

An important contribution for the current work is the data published after the 

release of the current standard for helium.  Donnelly et al. [33] published a relevant 

compendium of saturation data for helium along with new, accurate pρT at high 

temperatures [105, 106].  These data were part of the representative set of data for the 

final equation. 

A new feature in this upgrade of the equation of state is the implementation of 

theoretical data.  Taking advantage of new computational technology, it is possible to 

use quantum mechanical calculations to predict thermodynamic properties of substances.  

Sandler et al. [107] recently showed how to calculate intermolecular potentials that 

would lead to thermophysical properties.  Other important works have treated 

interatomic potentials of helium from different perspectives and have estimated virial 

coefficients for helium [106, 108-111].  These calculations along with the data employed 

for the development of the equation appear in Table 2. 

 

Table 2.  Total sets of experimental and theoretical data combined. 

Author Type of data Reference 

Barrufet 

Berman and Mate 

2nd Virial coefficient 

Latent heat of 
vaporization 

Saturated vapor density 

[9] 

[112] 
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Table 2. Continued 

Author Type of data Reference 

Berry 2nd Virial coefficient 
3rd Virial coefficient 

[113] 

Blancett et al. 2nd Virial coefficient [114] 

Blancett et al. PVT* 
2nd Virial coefficient 
3rd Virial coefficient 

[115] 

Blancett et al. PVT* [116] 

Briggs PVT* [117] 
[118] 

Buchmann PVT* [119] 

Canfield et al. PVT* [120] 

Canfield et al. PVT* 
2nd Virial coefficient 
3rd Virial coefficient 

[121] 

Cataland and Plumb Sound speed [122] 

Cramer PVT* 
2nd Virial coefficient 
3rd Virial coefficient 
4th Virial coefficient 

[123] 

Dillard and Robinson 

Donnelly and Barenghi 

2nd Virial coefficient 
PVT* 

Saturation heat capacity 
Sound speed 
Latent heat of 
vaporization 

Vapor pressure 
Saturated liquid density 

[124] 

[33] 
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Table 2. Continued 

Author Type of data Reference 

Dugdale and Franck Isochoric heat capacity [125] 

Edeskuty and Sherman PVT* [126] 

Edwards and Woodbury PVT* [127] 

Edwards and Woodbury Saturated vapor density 
Saturated liquid density 

[128] 

El Hadi Saturated liquid density 
Saturated vapor density 

PVT* 

[129] 

El Hadi et al. PVT* [130] 

Evers et al. PVT* [131] 

Gaisser and Fellmuth 2nd Virial coefficient 
3rd Virial coefficient  

[110] 

Garberoglio et al. 3rd Virial coefficient [108] 

Gibby et al. PVT* 
2nd Virial coefficient 

[132] 

Glassford and Smith PVT* 
Internal Energy 

[133] 

Grilly and Mills PVT* [134] 

Grilly and Mills PVT* [135] 

Gugan and Michel 2nd Virial coefficient 
3rd Virial coefficient 

[136] 
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Table 2. Continued 

Author Type of data Reference 

Hall and Canfield 

Hall and Canfield 

2nd Virial coefficient 

2nd Virial coefficient 
PVT* 

[13] 

[137] 

Hill and Lounasmaa Isochoric heat capacity 
PVT* 

(δP/δT)v 

[138] 

Holborn and Otto 2nd Virial coefficient 
PVT* 

[139] 

Holste et al. 2nd Virial coefficient [140] 

Hoover et al. 2nd Virial coefficient 
3rd Virial coefficient 

[141] 

Hurly et al. Sound speed 
PVT* 

[10] 

Hurly and Moldover 2nd Virial coefficient [111] 

Keesom and Kraak 2nd Virial coefficient 

PVT* 

[142] 

Keesom and Walstra PVT* 
2nd Virial coefficient 
3rd Virial coefficient 

[142] 

Keesom and Walstra PVT* 
2nd Virial coefficient 

[143] 

Kell et al. 2nd Virial coefficient [144] 

Keller PVT* 
2nd Virial coefficient 
3rd Virial coefficient 

[145] 
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Table 2. Continued 

Author Type of data Reference 

Kerr 

Kessler and Osborne 

PVT* 

Sound speed 
Vapor pressure 

2nd Virial coefficient 

[146] 

[147] 

Kierstead Critical point [148] 

Kistemaker and Keesom PVT* 
2nd Virial coefficient 
3rd Virial coefficient 

[149] 

Kramer and Miller 2nd Virial coefficient 
3rd Virial coefficient 

[150] 

Ku and Dodge 2nd Virial coefficient 
3rd Virial coefficient 

PVT* 

[151] 

Liebenberg et al. PVT* 
Sound speed 

[152] 

Linshits PVT* [153] 

Linshits et al. PVT* 
2nd Virial coefficient 

[154] 

Lounasmaa Isochoric heat capacity 
Saturation heat capacity 

[155] 

Lounasmaa Isochoric heat capacity [156] 

Lounasmaa (δP/δT)v 
PVT* 

[157] 

Lounasmaa and 

Kaunisto 

PVT* 

(δP/δT)v 

[158] 
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Table 2. Continued 

Author Type of data Reference 

McLinden et al. PVT* [105] 

Mallu et al. 

Mansoorian et al. 

2nd Virial coefficient 

2nd Virial coefficient 
3rd Virial coefficient 

[159] 

[160] 

Mehl 2nd Virial coefficient 
3rd Virial coefficient 

[109] 

Michels and Wouters PVT* 
2nd Virial coefficient 
3rd Virial coefficient 

[161] 

Miller et al. PVT* [162] 

Moldover Critical point [163] 

Moldover Isochoric heat capacity [164] 

Moldover Isochoric heat capacity [165] 

Moldover and 

McLinden 

2nd Virial coefficient 

3rd Virial coefficient 
4th Virial coefficient. 

PVT* 

[106] 

Nijhoff PVT* [166] 

Patel et al. 2nd Virial coefficient 
3rd Virial coefficient 

[167] 

Pfefferle et al. 2nd Virial coefficient 
3rd Virial coefficient 

[168] 

Prasad et al. 2nd Virial coefficient 
PVT* 

[169] 
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Table 2. Continued 

Author Type of data Reference 

Provine and Canfield 

Roach 

PVT* 

Saturated liquid density 
Saturated vapor density 

Vapor pressure 
PVT* 

[170] 

[171] 

Sengers and Hastings 2nd Virial coefficient [172] 

Stewart. PVT* [173] 

Stroud et al. 2nd Virial coefficient 
PVT* 

[174] 

Suh and Storvick 2nd Virial coefficient [175] 

Sullivan and Sonntag 2nd Virial coefficient 
PVT* 

[176] 

Tanner and Masson 2nd Virial coefficient [177] 

Tsederberg et al. PVT* [178] 

Tsiklis et al. PVT* [179] 

Tsiklis et al. PVT* [180] 

Vogl and Hall PVT* 
2nd Virial coefficient 

[181] 

White et al. PVT* 
2nd Virial coefficient 
3rd Virial coefficient 

[182] 

Wiebe et al. PVT* [183] 
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Table 2. Continued 

Author Type of data Reference 

Zelmanov Isochoric heat capacity 

Enthalpy 

[184] 

Zhang et al. PVT* 
2nd Virial coefficient 
3rd Virial coefficient 

[185] 

*PVT data refers generally to pressure- temperature-density data; or replacing either density or 
pressure by compressibility factor, pv values, or compression ratio. 

 

A few data sets were not used in this project as recommended by McCarty and 

Arp [32].  The data by Sullivan [176] was classified as suspect by Sychev et al. [1], and 

because new data covered the same conditions, the Sullivan et al. publication was not 

used.  The pρT data by Wiebe et al. [183] was replaced in this work by more recent data 

with less scatter.  Also, the data by Glassford and Smith [133] were not considered 

because they appear to be inconsistent.  Finally Briggs et al. [118] were not used because 

of more trustworthy data being available at the same conditions. 

One of the most common problems encountered with data during the fitting 

process was inconsistent data.  The problem was easy to solve when dealing with 

outliers because they are obvious either from deviation plots or because they contribute 

most to the sum of squares compared to other data points in the same set.  The solution 

for outliers is to assign zero weight to them.  The situation is much more complicated 

when dealing with inconsistencies between data sets that have no obvious deficiencies. 
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Most of the data reported in Table 2 lack uncertainty statements therefore it is 

difficult to determine which data set is more “accurate.”  In reality, no a specific list of 

solutions can help you overcome such problems, but from experience the next steps 

might facilitate this process. 

• The first step is to identify that there is an actual problem with inconsistent data.  

Symptoms are that either the sum of squares remains static or there is a 

systematic behavior with some data when plotting deviations.  The sum of 

squares is in fact a sign of inconsistent data when it does not change by switching 

initial values for the parameters or when all the thermodynamic properties look 

reasonable.  Systematic deviations indicate a problem with data that requires 

further checking of the data involved. 

• After identifying a problem with data, the next step is to determine which data 

sets are implicated.  One should estimate the contribution of each data point to 

the sum of squares. Generally, a data set is doubtful when several of its points 

have high contributions to the sum of squares.  Also, if a data set presents 

systematic behavior, it is suspect.   

• In order to find out which other data set is in conflict with the one found in the 

previous step, the suspicious data set should be removed and the minimization 

should proceed.  Elimination of an incorrect data set causes a relatively drastic 

decrease of the sum of squares for most cases. 

• Once the conflicting data sets are identified, the next step is to determine why 

they conflict and which set is better.  For the majority of situations, both data sets 
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share either the same conditions of temperature and density and/or the type of 

property.  The best defining factor is the uncertainty statement, but this seldom is 

available.  Other factors for consideration include: the reliability of the 

researchers who made the measurements, the quality of the experimental 

techniques, the availability of other data sets at similar conditions that might 

provide useful comparisons and the age of the data. 

• Finally, whenever there is an idea about which data set might be more 

“accurate,” the most suspicious data set can be removed from the fitting or 

assigned lower weights than the set believed to be correct. 

 

4.2.1 Weighting data points  

Weighting is a process during fitting that gives direction to the development of 

the equation.  A measurement assigned a higher weight influences the minimization of 

the sum of squares more than a measurement with lesser weight.  If the uncertainty of a 

measurement is known, the first step is to assign an experimental uncertainty σj to each 

measurement j; then calculate a weighted residual.  If the experimental value is, for 

example, a pressure point measured as a function of temperature and density, the relative 

residual ζ is defined as, 

ς j =
pj ,calc Tmeas,ρmeas,n( )− pj ,meas Tmeas,ρmeas( )

σ p, j

.  (100) 

in which n is the parameter vector. 
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The relative residual is equal to unity when deviation of the prediction from the 

experimental value is the same as the experimental uncertainty.  Thus, for a reference 

equation of state, the residuals should be less than unity for almost all data (typically > 

95 % of the points, if s is twice the standard deviation for an expanded uncertainty at a 

confidence interval of 0.95).  In this equation the calculated pressure depends upon n, 

thus upon the fitted coefficients of the equation of state.   

For the sum of squares in Eq. (99) from section 3.3, the weight is  

Wj = 1/σ j
2  (101) 

which supports the idea that if a data point has low uncertainty its weight should be 

higher. 

However, for the case of helium, the majority of the data collected did not have 

uncertainty statements.  Accuracy was determined by comparisons to data from other 

authors or by calculating deviations from a thermodynamic correlation that was believed 

to be very accurate at the time the data were collected.  Hence, the weighting process 

became subject to the expertise of the correlator rather than information from the 

original researchers.  From experience, the aspects considered when assigning weights 

were: 

• The laboratory that took the measurements.  The best way to predict future 

performance is from past performance.  If the laboratory is known to be 

trustworthy, the measurements are likely to be accurate, and the assigned weights 

are larger.  Authors included in this category are for instance, McLinden, Hall, 

Holste, Moldover, Canfield, Blancett, Provine, Lounasma, Keesom, Vogl, Hill, 
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Donnelly, Wagner, Span and Catalan.  Nonetheless, this criterion is subjective.  

As the equation development progresses, one may find that individual data sets 

reported by a highly regarded laboratory is not correct. 

• Another important aspect is the type of property fitted, because the weights are 

chosen to reflect the accuracy of the measurement technique.  Typical values of 

W are 1 to 1000 for pρT, 0.05 to 1 for heat capacities, 10 to 100 for vapor sound 

speeds, 1 to 100 for virial coefficients and 1 for energies.  An exception in the 

pρT weight is data from McLinden [105], whose uncertainty is 0.04% deviation 

in density. The  weights on those data points was 10000, which forced the 

equation to fit them almost exactly. 

• The thermodynamic conditions also affect the weights.  Because accurate 

representation of the critical point is extremely important, within pρT data the 

measurements in this region generally are weighted at 107 or higher even though 

the accuracies are not significantly greater.  Vapor pressure and saturated 

densities also require higher weights, generally around 105. 

• During the development process, it is often necessary to increase temporarily 

weights on data points in regions where the fit is not satisfactory.  Once the 

deviations are within expectations, the weights may be decreased.  

 

4.3 CONSTRAINTS 

Constraints are key elements to avoid unreasonable behavior in regions with no 

data, and they ensure proper thermodynamic behavior for lines of constant temperature, 
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density and pressure (for instance, preventing their crossing).  One could constraint the 

actual value of a property (positive, negative or zero), or its slope, curvature, third and 

fourth derivatives.  These constraints come from principles of thermodynamics and 

appear throughout the development of the equation.  It is rare that sufficient 

measurements exist for a fluid that such constraints are not necessary.  More often, 

insufficient data are available and regions exist where the equation can deviate from real 

behavior when overfitting available data produces what appears to be very good results.  

The overfitting causes incorrect slopes that give the appearance of a good fit to the 

limited data but a bad fit in the region where data are not available.  The first and most 

important constraint forces is the correct slope and curvature at the critical point, that is 

∂p/∂ρ = 0 = ∂2p/∂ρ2.  Also, it is mandatory that the virial coefficients to go to zero at 

infinite temperature. 

Many other constraints can be added to the fit. Three inputs are necessary to 

construct a constraint. The first one indicates the property being constrained, the second 

indicates which variables to hold constant and which to vary, and the third indicates 

what attribute of the property should be constrained:  the line, the slope, the acceleration, 

the third derivative, the fourth derivative, or all of these derivatives.  These values can be 

negative, positive or close to zero.  Besides typical thermodynamic properties, 

recognized properties also include the first and second derivatives of pressure with 

respect to density, (Z–1)/ρ,  which is important to study virial coefficients, and the 

Gruneisen and phase identification parameter.  The phase identification parameter is 
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used for the first time in the development of equations of state in this work.  Analogous 

to data points, weights assigned to constraints govern their relative influence on the fit.   

Adding and deleting constraints is also a frequent task.  The behavior of 

thermodynamic properties always should be checked for unreasonable behavior, even at 

extreme conditions or in the two-phase region.  Constraints come and go to ensure that 

the data are fit within expected performance. 

 

4.4 GRUNEISEN AND PHASE IDENTIFICATION PARAMETERS 

Two new parameters have recently become key tools for evaluating equations of 

state. These are the Gruneisen parameter and the phase identification parameter (PIP). 

These new parameters, along with the isochoric and isobaric heat capacities and speed of 

sound, can help identify problems during the development of an equation. In particular, 

the new parameters are more sensitive than those that have been used for decades, and 

can identify areas needing improvement that otherwise would go unnoticed. With these, 

the extrapolation behavior of an equation can be fashioned so that the equation predicts 

results as well as possible in the absence of data.  Thermodynamic definitions of the 

Gruneisen parameter and PIP appear in this section in context with definitions of related 

derivatives of the Helmholtz potential.  

4.4.1 The Gruneisen parameter 

The Gruneisen parameter, Γ, appeared in the literature about 100 years ago [186] 

in discussions of thermodynamic equations for solid materials.  This work shows that 

attention to Γ(ρ,T) can provide valuable smoothing of derivatives of the Helmholtz 
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potential A(ρ,T) for fluids.  The thermodynamic equations that govern the Gruneisen 

parameter follow.   

The original definition of Γ is [186]: 

Γ  =  1 ρ( )  dp / dU  (102) 

This definition applied to solids, which means that the derivative is essentially at 

constant density.  This definition was extended to fluids [187] [188] by recognizing 

density as a variable.  The internal energy change at constant density is dU  = Cv dT.  

The definition of Γ becomes, 

Γ  =  ∂p ∂T( )ρ ρCv .   (103) 

Using the Maxwell relation ∂p/∂T|v  = ∂s/∂v|T, an alternative definition is, 

Γ = v T( ) ∂T ∂v( )s  (104) 

thus, conceptually Γ is the inverse of the dimensionless isentropic thermal expansivity. 

The Gruneisen parameter is also a derivative of the Helmholtz Energy.  Consider 

the thermodynamic "tree" of the Helmholtz energy in Figure 9.  At the top of the tree is 

the Helmholtz energy A(v,T) in the first level.  Temperature derivatives are diagonally 

downward to the left, and volume derivatives are diagonally downward to the right.  
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Figure 9.  Helmholtz energy tree – Gruneisen 

 

The highlighted boxes on the third level correspond to the Gruneisen (Γ) 

parameter and the isobaric expansivity (αp).  What is very interesting is that these two 

quantities equal the ratio of the properties on either side of the corresponding box: Γ = 

∂p/∂T|ρ / ρCv and αp = (T/V)(∂p/∂T)V / (∂p/∂V)T  (the quantities were multiplied by ρ and 

T  to create dimensionless quantities).  The basic conclusion is that Γ and αp occupy 

complementary positions in the tree of Helmholtz energy derivatives.  The isobaric 

expansivity is familiar when dealing with fluids but the Gruneisen is not, and it deserves 

at least commensurate attention in thermodynamic studies. 

The Gruneisen parameter is very sensitive to constraints, and it is very useful to 

resolve improper behavior for the isochoric heat capacity and speed of sound, even at 

very low temperatures near the lambda line transition and at high densities near the limit 

of the solid region. 
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4.4.2 The phase identification parameter (PIP) 

The phase identification parameter is a property defined in terms of partial 

derivatives of pressure, volume and temperature that can determine the phase of a fluid 

without using saturated properties as a reference.  Venkatarathnam and Oellrich [189] 

introduced the term in 2011 as a handy tool in phase equilibria calculations, particularly 

for liquid–liquid or vapor–liquid–liquid equilibria calculations.  The authors previous 

work on the isothermal compressibility [190] led to the definition: 

PIP = v
∂2 p ∂v∂T( )
∂p dT( )v

−
∂2 p dv2( )T
∂p dv( )T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
.  (105) 

PIP is a dimensionless parameter that states that a liquid or liquid-like phase 

should have a PIP value greater than 1, and a vapor-like phase a PIP value less than or 

equal to 1.  

PIP is a dimensionless parameter that should have a PIP value greater than unity 

for a liquid or liquid-like phase, and less than or equal to unity for a vapor-like phase.  

Figure 10 shows a plot of PIP versus temperature at constant densities for the equation of 

state for nitrogen [29].   
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Figure 10.  Phase identification parameter versus temperature at different densities for 
nitrogen.  The red curve is a density slightly less than the critical density.  The critical 
temperature for nitrogen is 126.19 K. 

 

As it is presented in Figure 10, the PIP parameter splits both liquid and vapor 

phases drastically around the critical point and reveals possible problems that otherwise 

would have not been observed.  The same situation happens along the lambda line for 

helium, where each point on the line behaves as a critical point.  The PIP for helium 

helped fix slope and curvature problems of isochores, isobars and isotherms near the 

critical point and the transition to superfluid. 

The PIP parameter represents an additional level of the Helmholtz energy tree 

presented in Figure 9.  Figure 11 shows that extension. 
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Figure 11.  Helmholtz energy tree – Phase identification parameter. 

 

The PIP parameter is a combination of branches on the fourth level.  This leaves 

open a door to new combinations of derivatives that might lead to new parameters of use 

in developing equations of state in the future. Like the PIP parameter, they might add 

novel features regarding the thermodynamic behavior of fluids. 

 

4.5 LAMBDA TRANSITION 

The two isotopes of helium have the lowest normal boiling points of all known 

elements, 4.21 K for 4He and 3.19 K for 3He.  In addition, when the temperature drops, 

both isotopes remain liquid under their own vapor pressures and only become solid at 

high pressures (≥25 atm).  However, liquid 4He, below approximately 2.2 K behaves as a 

superfluid with unusual characteristics described in Section 1.  The superfluid liquid 

phase is known as helium II and the normal liquid phase as helium I.  The line that 

separates these phases is the lambda transition curve or simply λ-line.  These important 

features appear in Figure 12. 
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Figure 12.  Pressure-temperature for helium-4 compared to that for an ordinary fluid 
(upper right). Acknowledgement: W.E. Keller, Helium-3 and helium-4 [191]. 
 

Aside from the λ-line that separates two liquid phases (one of them superfluid), 

Figure 12 also reveals another remarkable characteristic of helium: the absence of a 

triple point at which liquid, vapor and solid coexist at equilibrium.  Because there is no 

triple point, the characteristics points for helium are the critical point (discussed in 

section 5) and the λ-line points.  The lower λ-point is Tλ
l = 2.1720  K, pλ

l = 5.040 ×10−3  

MPa and ρλ
l = 146.15  kg m-3; whereas the upper λ-point is Tλ

u = 1.7633  K, pλ
u = 3.013  

MPa and ρλ
u = 180.44  kg m-3 [1].   
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One of the goals of this equation of state is to represent qualitatively correctly the 

characteristics of the lambda transition.  Some volumetric characteristics of this 

transition appear in Figure 13, where Tλ represents an estimated average of both the λ-

point temperatures.  The density of the saturated liquid (upper plot of Figure 13) passes 

through the λ-point and has a maximum slightly above the λ temperature; the density 

curve then decreases and presents a discontinuity of slope at the λ-point.  The isobaric 

expansion coefficient and the isothermal compressibility (middle and bottom plots in 

Figure 13 respectively) reflect and even magnify the variations in density.  The latter 

quantity presents a cusp-like behavior at the λ-point and is positive everywhere as 

expected. 

The behavior of some thermal properties appear in Figure 14.  The entropy of 

liquid helium (upper plot in Figure 14) is continuous everywhere but presents 

remarkably different behavior above and below the λ-point, which causes the entropy to 

have a discontinuous slope.  Although the curve always decreases moving toward 

absolute zero, the dependence of entropy with temperature is much higher in the helium-

II region.  Considering that entropy is a direct function of the organization and molecular 

configuration, such a change in the curve suggests that the λ transition marks a 

significant change in the configuration of the system. 
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Figure 13.  Schematics of some volumetric properties of liquid helium-4 along the 
saturation curve.  Upper plot is density, middle plot is expansion coefficient at constant 
pressure, and bottom plot is compressibility coefficient at constant temperature. 
Acknowledgement: W.E. Keller, Helium-3 and helium-4 [191].  
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Figure 14.  Schematics of some thermal properties of liquid helium-4 along the 
saturation curve.  Upper plot is entropy, middle plot is specific heat and bottom plot is 
heat of vaporization. Acknowledgement: W.E. Keller, Helium-3 and helium-4 [191]. 
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Although entropy is a primary thermodynamic property, it results from 

experimental measurements of specific heat.  The middle plot in Figure 14 shows the 

behavior of the specific heat with temperature around the λ-point.  The most relevant 

observation is the singularity at the λ-point similar to the behavior of the specific heat at 

the critical point.  Finally, the bottom plot of Figure 14 depicts the performance of the 

heat of vaporization (calculated using the Clausius-Clapeyron equation). 

In order to predict the abnormal and unique behavior of helium at the λ-point, it 

is necessary to utilize Gaussian-bell shaped terms similar to those used for the critical 

point.  This is novel implementation of such terms proves very useful to mimic the 

critical point-like characteristics observed along the λ-line.  
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5. RESULTS 

This section contains the results of developing the equation of state for 4He.  It 

begins with a brief summary of characteristic constants and the parameters of the 

equation of state.  The section proceeds with phase equilibrium parameters and ancillary 

equations that provide a quick method to determine volumetric properties along the 

saturation curve.  The section then focuses upon comparisons to experimental data and 

explanations of deviation plots.  The data associated with the deviations appeared in 

Table 2 of section 4.  All relative deviation plots presented in this section show the value 

calculated from the equation of state subtracted from the experimental value and divided 

by the experimental value.  Finally, this section covers comparisons between the current 

standard for helium and the new equation of state for helium presented in this 

dissertation together with some results showing the capabilities of the new equation to 

predict properties around the lambda line. 

 

5.1 THE NEW FUNCTIONAL FORM FOR HELIUM 

It is necessary to define the reducing parameters and characteristic constants of 

helium before proceeding with fitting.  The reducing parameters correspond to the 

critical properties, which appear in Table 3 along with other important parameters. 
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Table 3.  Physical constants and characteristic properties of helium. 

Symbol Quantity Value 

R Molar gas constant 8.314 472 J·mol–1
·K–1 

M Molar mass 4.002602 g·mol–1 

Tc Critical temperature 5.1953 K 

pc Critical pressure 0.22746 MPa 

ρc Critical density 17.3887 mol·dm–3 

 Lower λ-point temperature 2.1720 K 

 Lower λ-point pressure 0.005040 MPa 

 Lower λ-point density 36.5137 mol·dm–3 

 Upper λ-point temperature 1.7633 K 

 Lower λ-point pressure 3.013 MPa 

 Lower λ-point density 45.0807 mol·dm–3 

Tnbp Normal boiling point temperature 4.23 K 

T0 Reference temperature for ideal gas properties 100 K 

p0 Reference pressure for ideal gas properties 0.101325 MPa 

/RT0 Reference ideal gas enthalpy at T0 2.5 

/R Reference ideal gas entropy at T0 and p0 12.4284 

 

The functional form contains the parameters defined in Eq. (75) of Section 3.  

The rounded values and final equation that is part of Refprop 9.1 [192] are in Table 4.  
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Table 4.  Coefficients of the equation of state. (Eq. (75), Section 3). 

k Nk tk dk lk ηk βk γk εk 

1 0.014799269 1 4 -     

2 3.06281562 0.426 1 -     

3 -4.25338698 0.631 1 -     

4 0.05192797 0.596 2 -     

5 -0.165087335 1.705 2 -     

6 0.087236897 0.568 3 -     

7 2.10653786 0.9524 1 1     

8 -0.6283503 1.471 1 2     

9 -0.28200301 1.48 3 2     

10 1.04234019 1.393 2 1     

11 -0.07620555 3.863 2 2     

12 -1.35006365 0.803 1 1     

13 0.11997252 3.273 1 2 -8.674 -8.005 1.1475 0.912 

14 0.107245 0.66 1 2 -4.006 -1.15 1.7036 0.79 

15 -0.35374839 2.629 1 2 -8.1099 -2.143 1.6795 0.90567 

16 0.75348862 1.4379 2 2 -0.1449 -0.147 0.9512 5.1136 

17 0.00701871 3.317 2 2 -0.1784 -0.154 4.475 3.6022 

18 0.226283167 2.3676 2 2 -2.432 -0.701 2.7284 0.6488 

19 -0.22464733 0.7545 3 2 -0.0414 -0.21 1.7167 4.2753 

20 0.12413584 1.353 2 2 -0.421 -0.134 1.5237 2.744 

21 0.00901399 1.982 2 2 -5.8575 -19.256 0.7649 0.8736 

 

The final equation contains 6 polynomial terms, 6 exponential and 9 Gaussian-

bell shaped terms. This equation minimizes the combination of data and constraints 
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selected in Section 4.  Reducing the number of terms in the equation requires eliminating 

terms in successive fits by either deleting the term that contributed least to the overall 

sum of squares in a previous fit or by combining two terms that had similar values of the 

exponents (resulting in similar contributions to the equation of state).  After having 

eliminated a term, the fit was repeated until the sum of squares for the new iteration was 

of the same order of magnitude as the previous one.  This combination was the one that 

provided significant results in terms of deviations and thermodynamic behavior with the 

least number of terms.  Several combinations with fewer total terms were tested but none 

were fulfilled the expectations of a reference equation of state.  As the minimization 

proceeded, several parameters were fixed if they were essentially integers, then the 

number of variables in the minimization was reduced gradually. 

The exponents on density in the equation of state must be positive integers so 

that the derivatives of the Helmholtz energy with respect to density have the correct 

behavior near the ideal gas limit [103].  Because non-integer values for the density 

exponents resulted from the nonlinear fitting methods, a sequential process of rounding 

each density exponent to the nearest integer, followed by refitting the other parameters 

to minimize the overall sum of squares, was implemented until all of the density 

exponents in the final form were positive integers.  A similar process used for the 

temperature exponents reduced the number of significant figures to one or two decimal 

places. 
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5.2 PHASE EQUILIBRIUM OF HELIUM 

The single most important state of any fluid in the development of equations of 

state is the critical point.  This point becomes the reducing parameter for the equation 

and defines liquid and vapor states, as well as supercritical states that behave like gases 

(when the density is less than the critical density) and like liquids (when the density 

exceeds the critical density).  Nearly all fluids show similar behavior when their 

properties are scaled by the critical parameters.  The law of corresponding states uses 

this observation to predict properties for any fluid by mapping the surface of an 

unknown substance onto that of a well-known substance.  The prediction can improve 

after incorporating additional experimental data. 

The λ-line defines the boundary between helium I and superfluid helium II.  As 

discussed in Section 4, the equation of state should describe qualitatively the behavior of 

the fluid along the transition.  The melting (or freezing) line describes the boundary 

between the liquid and solid states for temperatures above the triple point.  Equations of 

state such as the one described here can calculate the properties at the melting point in 

the liquid phase, but cannot calculate properties of the solid phase.  Both the λ-line and 

the melting curve are boundaries of the equation of state and constrain the applicability 

of the equation.  Characteristic values of the λ-line are in table 1 whereas melting curve 

information is in the review released by Sychev, et al. [1]. 
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5.2.1 Critical point 

Numerous authors [112, 128, 130, 146, 148, 163, 165, 171, 193] report critical 

parameters for helium.  Difficulties in the experimental determination of the critical 

parameters and impurities in the samples cause considerable differences among the 

results obtained by the various investigators.  The critical density is difficult to 

determine accurately by experiment because of the infinite compressibility at the critical 

point and the associated difficulty of reaching thermodynamic equilibrium.  Therefore, 

reported values for the critical density are often calculated by extrapolation of rectilinear 

diameters with measured saturation densities, or by correlating single-phase data close to 

the critical point.   

The critical density and temperature adopted in this project are the values used by 

McCarty and Arp [32] but adjusted to the ITS-90 temperature scale.  The critical 

parameters come from the work done by Moldover in determining the behavior of heat 

capacities in the critical region [163].  The critical pressure usually results from 

extrapolating vapor pressures to the assumed critical temperature.  The critical point 

values recommended by McCarty and Arp appear in Table 3.  However, with the 

availability of new high accuracy vapor pressure and saturated liquid data [33] in the 

critical region, the reducing pressure (critical pressure) of the equation of state was 

determined simultaneously with the other coefficients and exponents in the equation, 

while the critical temperature and density remain almost exactly the experimental values 

by using a large weight for them.  The resulting critical point from the equation of state 

is 
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Tc = 5.1953 K (106) 

ρc = 17.38379 mol·dm–3 (107) 

pc = 0.22761 MPa (108) 

These values agree within experimental errors with those adopted by McCarty and Arp 

but differ slightly because more accurate saturation data now are available.  Figure 15 

shows the critical point along with both the reference lambda line and melting curve that 

represent the limits of the equation. 

 

 
Figure 15.  Critical point and boundaries of the equation. 
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5.2.2 Vapor pressures 

Saturation states define the boundaries between liquid and vapor, and ancillary 

equations can give good estimates.  These ancillary equations are not necessary when a 

full equation of state is available because application of the Maxwell criteria to the 

equation of state can provide the saturation states.  This criterion for a pure fluid requires 

finding a state in the liquid and a state in the vapor that have the same temperature, 

pressure, and Gibbs energy.  The ancillary equations can provide good estimates for the 

pressure and densities required in the iterative procedure to find the saturation states. 

Figure 16 summarizes the available vapor pressure data for helium. 

 

 
Figure 16.  Vapor pressure data. 
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The points identified as Arp correspond to calculations from the current standard 

equation of state for helium.  The Donnelly data received higher weights given their 

current relevance and accuracy.  The ancillary equation used to represent the vapor 

pressure is 

 (109) 

where N1 = –3.8357, N2 = 1.7062, N3 = –0.71231, N4 = –1.0862, θ = (1 – T/Tc), and pσ is 

the vapor pressure.  This equation is a modification of the equation first proposed by 

Wagner [88].  The original form of the equation has been used to model the vapor 

pressures for a large number of substances.   

Figure 17 shows the deviations of the equation of state from experimental vapor 

pressures.  Although the deviations are systematic, they fit the Donnelly data within its 

experimental uncertainty.  These measurements are very recent (1998) and are the most 

reliable source of experimental, saturated data of liquid helium. 
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Figure 17.  Deviation in vapor pressure. 

 

5.2.3 Saturated densities 

Figure 18 summarizes the available saturated densities data for helium.  An 

unexpected curvature appears on the vapor side of the graph (lower right) around 2.0 K.  

This strange behavior is a result of the superfluid influence close to the transition. 
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Figure 18.  Saturated densities data. 

 

The points identified as Arp correspond to calculations from the current standard 

equation of state for helium.  Donnelly’s data are also available for the liquid region.  

The for the ancillary equation for the saturated liquid density is 

 (110) 

in which  N1 = 1.0926, N2 = 1.6584, N3 = -3.6477, N4 = 2.7440, N5 = -2.3859,                   

θ = (1 – T/Tc), and ρ' is the saturated liquid density.  Eq. (111) represents the saturated 

vapor density 
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 (111) 

in which N1 = –1.5789, N2 = –10.749, N3 = 17.711, N4 = –15.413, N5 = –14.352, and ρ" 

is the saturated vapor density.  Values calculated from the equation of state using the 

Maxwell criteria were used in developing Eq. (111), along with the rectilinear diameter 

criterion (the average of the saturated liquid and vapor densities). The values of the 

coefficients and exponents for Eq. (110) and Eq. (111) resulted from nonlinear least 

squares fitting techniques. 

 

 
Figure 19.  Deviation in saturated liquid density. 
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Figure 20.  Deviation in saturated vapor density. 

 

Figure 19 and Figure 20 illustrate the deviations of the equation of state from 

experimental data for saturated liquid density and saturated vapor density respectively.  

Similar to the vapor pressure, the saturated liquid density from Donnelly is fit very well.  

Arp’s correlation has similar behavior, except in the critical region where it behaves 

differently.  The deviations are larger near the critical temperature and the lambda line 

temperature because of the complexity of the physics in these regions.  The situation is 

different for the saturated vapor pressure represented in Figure 20.  The values of 

saturation along the vapor side come from the Maxwell criteria and the rectilinear 

diameter criterion using reliable saturated liquid densities.  Therefore, the high 

deviations reflect limited experimental capabilities at the time of the measurements.  As 
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a recommendation, new saturated vapor measurements would be useful for further 

tuning of the equation of state. 

 

5.3 pρT DATA AND VIRIAL COEFFICIENTS 

Figure 21 presents experimental pρT data for helium.  Figure 22 shows the pρT 

data measured recently by McLinden during the past five years [105, 106].  He reports a 

maximum experimental uncertainty of 0.04% in density, so these measurements 

represent an important new source of data for the current equation.  Figure 23 and 

Figure 24 compare densities calculated from the equation of state with experimental 

data; Figure 25 shows detailed comparisons with the highly accurate data taken by 

McLinden.  In Figure 23 and Figure 24, the deviations appear in groups classified by 

temperature.  The temperature listed at the top of each small plot is the nearest 

temperature to the measured value. 

Lounasma [157], Keller [145], Grilly [135], Hill [138], El Hadi [129], Roach 

[171] and Edwards [127] gave special attention to low temperature data (T<20 K).  Most 

of the data can be fit within 0.2 % deviation in density, except in the critical region 

where the deviations are higher.  
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Figure 21.  Overall pρT data for helium.  
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Figure 22.  McLinden’s pρT data for helium [105, 106]. 

 

Two cases of inconsistent data exist in this range. One of them is the data 

published by Edeskuty [126] that presents a systematic deviation close to the critical 

temperature. Apparently,  Donnelly’s saturated liquid densities cause this problem, but 

given the relevance of the latter, the former receives lower weights.  The other problem 

is between the data of Keller and those of Keesom [143], but the Keller data are more 

recent and cover a wider range of conditions, so they have been chosen.  
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Figure 23.  Deviation in pρT data from 2 K to 400 K.  
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Figure 24.  Deviation in pρT data from 450 K to 550 K. 
 

 
Figure 25.  Deviation from McLinden pρT data. 
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Hill’s data are relevant because they are close to the critical area.  Roach’s 

importance lies in having high-pressure measurements (~ 40 MPa) at low temperature, 

and El-Hadi’s relevance derives from the McCarty and Arp recommendation.  Also, as 

McCarty and Arp suggested in their equation, Glassford’s high-pressure data deviate 

significantly around 10 K. 

The data by White [182], Boks [114], Nijhoff [166] and Hall [137] received 

higher weights from 20 K to 50 K.  The density deviations for these data are up to 0.05 

% below 20 MPa and 0.07% up to 70 MPa.  As commented by McCarty and Arp, 

Sullivan’s data are strongly systematic. 

For medium temperatures (100 K to 150 K), the deviations are much lower.  For 

instance, from 100 K to 150 K, the density deviations for Canfield [120], Provine [170], 

Hall [13] and Tsederberg [178] are up to 0.02 % up to 20 MPa, increase to 0.05 % 

around 40 MPa and go back down to 0.02% at 70 MPa.  Sullivan’s data were separate 

and systematic, as expected.  For 200 K a systematic problem exists for one data set by 

Canfield [121] and Stroud [174] and the deviations go up to 0.2 % around 70 MPa.  On 

the other hand, data taken by McLinden, Tsederberg, Blancett [116] and Vogl [181] 

yielded deviations of about 0.03 % up to 60 MPa. 

New systematic problems appeared from 250 K to 300 K for Brandt, Stroud and 

Michels [181] with deviations as high as 0.2 %.  Data from Evers [131] have significant 

deviations as well, even though they are more recent than other data.  However, data by 

Vogl, McLinden, Miller [162], Weems [185], Blancett and Dillard [124] are fit well at 
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around 0.02 % in density deviation.  Finally, 0.01 % for 95% confidence interval exists 

for all data sets at temperatures from 350 K to 550 K. 

The McLinden data receive special attention.  The apparatus is a two-sinker, 

magnetic suspension densimeter, and the most accurate measuring technique for density 

currently available.  The deviation in density of the equation of state from the 

experimental data is 0.02 % at 2σ.  This value is lower than the experimental uncertainty 

he reports (0.04 %).  

Differences between experimental values and calculations from the equation of 

state for the second and third virial coefficients appear in Figure 26 and Figure 27 

respectively.  Virial coefficients plots mostly present absolute rather than relative 

deviations [31] [30] because they show more clearly difficulties associated with the data.  

The results are impressive for both the second and third virial coefficients.  The 

equation is consistent with values determined both experimentally and theoretically.  For 

experimental measurements, good agreement appears for values reported by Holste [30], 

Barrufet [9], Blancett [114-116], Canfield [116], Cramer [123], Dillard [124], Gugan 

[124], Holborn [139], Hoover [141], Keesom [141], 
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Figure 26.  Difference in second virial coefficient. 
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Figure 27.  Difference in third virial coefficient. 

 

Patel [167] and White [182] among others.  On the theoretical side, Moldover [106], 

Hurly [10], Gaiser [10], Sengers [172], and Harvey and Garberoglio [108] performed 

important calculations. 

New theoretical calculations have appeared for the fourth virial coefficient of 

helium [106], however this information is not useful for this equation of state.  

Currently, no multiparameter equation of state can describe the fourth virial coefficient.  
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Solving this problem this problem remains one of the main challenges in the field of 

multiparameter equations of state. 

 

5.4 CALORIC DATA 

The sources of experimental data for the caloric properties of helium are in Table 

2 in section 4.  Comparisons of values calculated from the equation of state for the 

enthalpy of vaporization are in Figure 28.  Only two data sets are available, and only one 

of them has low deviations.  These data are part of Donnelly’s paper.  He claimed an 

experimental uncertainty of up to 0.2 %, which suggests that the equation of state is 

capable of reproducing enthalpies of vaporization within the experimental error, except 

in the vicinity of the critical region and the lambda transition.  The accurate values for 

vapor pressure, and saturated liquid and vapor densities demonstrate that the equation 

will provide accurate heats of vaporizations. 

Figure 29 shows the deviations for saturated liquid heat capacity with respect to 

Donnelly’s values.  Donnelly reported experimental uncertainties of about 2 %.  The 

numbers predicted by the equation of state lie within the experimental uncertainty, 

except for the critical and the lambda transition regions, where the experimental 

uncertainty is higher.   
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Figure 28.  Deviation in heat of vaporization. 
 

 
Figure 29.  Deviation in saturation heat capacity.  
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Figure 30.  Deviation in sound speed. 

 

Comparisons of values calculated from the equation of state for the speed of 

sound are in Figure 30.  The calculations are accurate considering that at least for Hurly 

[10] the experimental uncertainty increases to 0.035 %.  Speed of sound measurements 

at low pressure are necessary for developing an equation of state because they help 

balance the lack of low experimental uncertainty of pρT data at such conditions. 
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Figure 31.  Deviation in isochoric heat capacity. 

 

Figure 31 shows the equation with experimental isochoric heat capacity values  

Special attention was given to the data of Lounasmaa [156] and Moldover [163-165].  

Lounasmaa’s data are important considering the number of points he collected, and 

Moldover’s are relevant because of his work in the critical region.  For areas different 

from the critical region and the lambda line, the experimental uncertainty is no worse 

than 5 %. In the difficult regions, the uncertainty can as much as 10 %.  This suggests 
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that most of the predicted isochoric heat capacities are inside the experimental 

uncertainty limit.  Good predictions of thermodynamic properties indicates internal 

consistency of the equation of state. For instance, good fits to accurate density, speed of 

sound and saturation heat capacity data also result in accurate descriptions of the isobaric 

and isochoric heat capacities 

Using several Gaussian-bell shaped terms for the equation helped tremendously 

to decrease the deviations of the isochoric heat capacity in the critical region and near 

the lambda transition because they are more capable of describing the sharpness of the 

isochoric heat capacity in these areas.   

 

5.5 IDEAL CURVES 

An ideal curve for any property of a real fluid is the curve of the hypothetical 

ideal gas at the same temperature and density.  Ideal curves can be defined for any 

property, but in the field of multiparameter equations of state they specifically refer to 

the compressibility factor and its first derivatives.  The characteristic curves are the 

Boyle curve, given by the equation 
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0=⎟
⎠
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⎝
⎛
∂
∂

vT
Z  (114) 

and the ideal curve, 

p
ρRT

= 1.  (115) 

They are useful because their shapes are essentially the same for any pure fluid, 

and because the available data for most fluids are insufficient to cover the conditions 

where the ideal curves reside. So, knowing their expected behavior is useful in shaping 

the extrapolation behavior of the fluid.  Unfortunately, for helium no data exist for the 

ideal curves region, so only the shape, but not the actual numeric values can be specified 

accurately. 

The temperature at which the Boyle and ideal curves begin (at zero pressure) is 

also known as the Boyle temperature, or the temperature at which the second virial 

coefficient is zero.  The point at which the Joule inversion curve begins (at zero 

pressure) corresponds to the temperature at which the second virial coefficient is a 

maximum.  Thus, in order for the Joule inversion curve to extend to zero pressure, the 

second virial coefficient must pass through a maximum value, a constraint that not all 

equations of state satisfy.  Figure 32 shows the ideal curves for helium predicted by the 

new equation of state.  They look reasonable as was found for other fluids [29] [101] 

[30]. 
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Figure 32.  Ideal curves of the equation of state for helium as a function of temperature 
and pressure. 
 

Equations of state with temperature exponents less than zero do not provide 

reasonable shapes for the ideal curves.  The effects of all terms should decrease at high 

temperatures, but the contribution of terms with t < 0, increases as the temperatures rises.  

Therefore, negative temperature exponents should never be allowed in an equation of 

state of the form presented in this work. 

 

5.5 COMPARISONS WITH MCCARTY’S EQUATION OF STATE 

One of the main difficulties found with McCarty’s equation of state was the lack 

of ability to obtain reasonable thermodynamic behavior upon extrapolation.  
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Extrapolation capabilities are important for two reasons: (1) if the extrapolation is 

correct, then state points in normal regions should be more accurate (because bad 

extrapolations outside the normal range result from incorrect derivatives in normal 

regions, with adverse effects on derivative properties such as heat capacities; and (2) 

mixture models can access regions outside the range of validity of the equation of state 

depending upon composition and non-ideality of the mixture. 

Constraints are a key element in enhancing the extrapolation behavior.  For 

example, additional plots of constant property lines on various thermodynamic 

coordinates were made to assess other behavior of the equation of state, and constraints 

helped to avoid having these constant property lines cross.  Typical constraints avoid 

abnormal positive or negative values in slopes, curvatures, third and fourth derivatives. 

One consequence that arises from poor extrapolation capabilities and consistency 

is incorrect derived properties from good thermodynamic properties.  Figure 33 shows 

the temperature-density behavior at constant pressure along with the saturation dome 

estimated by both the new equation of state for helium and the current standard 

(McCarty’s equation of state).  The plots are similar; except for the strong curvature on 

the liquid side around 2 K that the new equation reproduces following the data in Figure 

18.  Other than this significant difference, it would be hard to notice more complications.  
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Figure 33.  Temperature-density plot.(a) Helium equation of state presented in this 
document, and (b) McCarty’s equation of state for helium.  Lines are several isobars 
from 0.05 MPa to 5 MPa. 
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Figure 34.  ∂p ∂T( )ρ -temperature plot.(a) New helium equation of state presented in 

this document, and (b) McCarty’s equation of state for helium.  Lines are several 
isochores from 5 mol dm-3 to 75 mol dm-3. 
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Derivatives calculated from volumetric properties are similar to those presented 

in Figure 34, in which the derivatives ∂p ∂T( )ρ  for McCarty’s equation are ill behaved 

for extrapolations to high densities and low temperatures.  The equation of state 

presented here for helium reproduces these derived properties with reasonable behavior 

even at densities exceeding solid densities. 

Figure 35 shows temperature as a function of density extending to conditions that 

are far beyond the limits of the fluid data.  The purpose of this plot is to demonstrate that 

the equation continues to extrapolate well to high pressures, densities, and temperatures, 

and that no hidden irregularities exist beyond normal applications.  Most often these 

regions are overlooked and most equations of state have poor behavior at extreme 

values.  The difference between the new equation of state and McCarty’s is obvious and 

again confirms the superior extrapolation capabilities of the new equation. 

Probably the most visible difference between McCarty’s equation of state and the 

current equation of state appears in Figure 36. Moldover [165] showed experimentally 

that the isochoric heat capacity (both saturated liquid and vapor) go to a sharp end at the 

critical point. McCarty’s equation does not show this behavior for the vapor side, so that 

this is another improvement obtained with the new equation of state.  Also, Figure 36 

shows the singularity of the heat capacities around the lambda transition (~2 K), 

behavior that is reproduced by both equations. 
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Figure 35. Pressure-density plot.(a) New helium equation of state presented in this 
document, and (b) McCarty’s equation of state for helium.  Lines are several isotherms 
from 2 K to 20 K. 
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Figure 36.  Isochoric heat capacity-temperature plot.  (a) New helium equation of state 
presented in this document, (b) experimental behavior found around the critical 
temperature [165], and (c) McCarty’s equation of state for helium.  Lines are several 
isochores from 5 mol dm-3 to 60 mol dm-3. 
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5.6 BASIC ASPECTS AROUND THE LAMBDA TRANSITION 

This final section confirms the reasonable, qualitative predictions of the equation 

of state around the lambda line.  So far, the equation has good results for volumetric 

properties and the isochoric heat capacity around the superfluid transition.  Figure 37, 

Figure 38, Figure 39 and Figure 40 add more properties around the lambda line that 

compare to curves previously shown in Figure 13 and Figure 14 in Section 4.  For all 

cases, the behavior of the thermodynamic properties was as expected above the actual 

lambda temperature.  One limitation of the functional form used for the multiparameter 

equation of state lies in predicting superfluid properties.  No combination and/or number 

of terms produced acceptable results in the superfluid area. However, the transition was 

represented well. 

 

 
Figure 37.  Density of liquid 4He along the saturation curve in the vicinity of the lambda 
transition. 
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Figure 38.  Isothermal compressibility of liquid 4He along the saturation curve in the 
vicinity of the lambda transition. 
 

 
Figure 39.  Saturation heat capacity of liquid 4He in the vicinity of the lambda transition. 
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Figure 40.  Heat of vaporization of liquid 4He in the vicinity of the lambda transition. 
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6. CONCLUSIONS 

 

The uncertainty statement (k=2) for both the new equation of state and McCarty 

and Arp [32] equation of state are: 

• This work:  Below 50 K, the uncertainties in density are 0.20% at pressures up to 

20 MPa.  From 50 K to 200 K the uncertainties decrease to 0.05 % at pressures 

up to 80 MPa.  At higher temperatures the uncertainties in density are 0.02 % up 

to pressures of 80 MPa.  At all temperatures and at pressures higher than listed 

here, the uncertainties may increase to 0.3% in density.  The uncertainties in the 

speed of sound are 0.02%.  The uncertainties in vapor pressure are less than 

0.02%, and for the heat capacities are about 2%.  Uncertainties in the critical 

region are higher for all properties except vapor pressure. 

• McCarty and Arp:  The uncertainties of the equation of state range from 1% at 

low temperatures (<20 K) to 0.1% at temperatures between 200 and 400 K, and 

from 3% in the speed of sound in the liquid phase to 0.1% in the speed of sound 

between 100 and 500 K.  The uncertainty of heat capacities is about 5%. 

 

Comparing both uncertainty statements, the major conclusion is that the new 

equation of state for helium is more accurate.  Also, the new equation has improved 

extrapolation capabilities, and more accurate temperature (ITS-90) values.  The 

difficulties associated with unreasonable thermodynamic behavior (i.e. critical isochoric 

heat capacity) are significantly reduced with the new equation.  Nonetheless, two major 
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limitations appeared during development of the equation of state: fourth virial coefficient 

predictions and superfluid properties.  These two problems are associated with the 

current functional form in multiparameter equations of state and can be resolved with 

new terms in future investigations.  

This equation of state was released as one of the new features of Refprop [192] in 

its version 9.1 on April 9th of 2013.  Therefore, the equation of state presented here 

represents the new thermodynamic standard for 4He adopted by the National Institute of 

Standards and Technology. 
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