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ABSTRACT

Nuclei at very high energy, characterized by a saturation scale, can be described

by an e�ective theory of Quantum ChromoDynamics (QCD) called Color Glass Con-

densates. The earliest phase of the collision of two nuclei is modeled as the collision

of two sheets of color glass. The classical �eld resulting from the collision then decays

and equilibrates to a plasma of quarks and gluons. Using a recursive solution of the

Yang-Mills equations, we calculate analytic expressions for the gluon �eld created in

ultra-relativistic heavy ion collisions at small times� . We have worked out explicit

solutions for the �elds and the energy momentum tensor up to 4th order in an ex-

pansion in � . We generalize the existing calculations to go beyond the limit of large

homogenous nuclei. This allows us to calculate radial and elliptic 
ow of gluon �elds.

The resulting transverse and longitudinal structure of the Poynting vector �eld has

a rich phenomenology. Besides the well known radial and elliptic 
ow in transverse

direction, classical quantum chromodynamics predicts a rapidity-odd transverse 
ow

that tilts the �reball for non-central collisions, and it implies a characteristic 
ow

pattern for collisions of non-symmetric systemsA + B . The rapidity-odd transverse


ow translates into a directed particle 
ow v1 which has been observed at RHIC

and LHC. The global 
ow �elds in heavy ion collisions could be a powerful check

for the validity of classical Yang-Mill dynamics in high energy collisions. We also

propose a procedure to calculate the energy momentum tensor of gluon �elds on an

event-by-event basis. The matching of the initial �eld energy momentum tensor to

viscous hydrodynamic initial conditions is discussed and some preliminary results

of a subsequent hydrodynamic evolution are shown. Our results can provide event-

by-event initial conditions for hydrodynamic simulations of nuclear collisions that

ii



include initial 
ow and initial shear stress.
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1. INTRODUCTION

Quantum ChromoDynamics (QCD) has been used to describe the interactions

of quarks and gluons very successfully. When momentum transfers are large, the

perturbative QCD (pQCD) is applicable due to asymptotic freedom [1, 2]. Lattice

QCD (lQCD) (for a recent review, see e.g. [3]) predicts that protons and neutrons will

melt into a decon�ned phase called Quark Gluon Plasma (QGP) [4, 5] which exists

above a pseudo critical temperatureTc � 150� 160 MeV [6, 7]. The experiments

at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC)

provide physicists opportunities to explore matter under conditions of such extreme

density and pressure. Matter under those extreme conditions is of interest for several

reasons. Firstly, we can explore properties of QCD in the non-perturbative regime,

e.g. the structure of the phase diagram; secondly, QGP is believed to be relevant

for the earliest phase of the universe� (10� 5 s); furthermore, some high density

astrophysical objects, like neutron stars, are speculated to be made of dense quark

matter. Here we are mostly interested in the QGP, and the best way to create and

study it in the laboratory is through ultra-relativistic heavy-ion collisions (URHICs).

1.1 Quantum ChromoDynamics

The classical Lagrangian density of QCD has quark and gluon �elds as its fun-

damental degrees of freedom. For a quark of massmf according to its 
avor f , the

Lagrangian can be written as,

L cl =
N fX

f

�qf (i
 � D � � mf )qf �
1
4

F ��
a F a

�� : (1.1)

1



D � is a covariant derivative which acts on colored quark �eldsqf (f = u; d; s; c; b; t),

D � = @� � igtaAa
� ; (1.2)

whereAa
� is the gluon �eld and ta, a = 1 ; :::;8, are 3� 3 traceless hermitian matrices

which are a fundamental representation of the SU(3)c Lie algebra satisfying

[ta; tb] = if abctc ; (1.3)

with f abc being the structure constants of SU(3)c.

The �eld strength tensor F a
�� of gluons is given by

F a
�� = @� Aa

� � @� Aa
� + igf abcAb

� Ac
� ; (1.4)

in terms of the gluon gauge �eldsAa
� (a = 1 � � � 8).

QCD has several properties that make it very intriguing and complicated. The

�rst fascinating property of QCD is the asymptotic freedomof the coupling constant

� s = g2=4� . Unlike in QED, where only fermions carry charges, in QCD quarks

and gauge boson { the gluons { carry color charge. This is explicitly shown by the

last term in Eq. (1.4) which leads to interactions between gluons. Consequently the

coupling constant of QCD � s decreases logarithmically as the momentum transfer

increases [1, 2, 8],

� s(Q) =
g2

4�
=

1
� 0 ln(Q2=� 2

QCD )
; (1.5)

where � 0 = (33 � 2nf )=(12� ) for QCD. If the momentum transfer Q is smaller than

the scale �QCD ’ 200 MeV, � s(Q) formally diverges. However Eq. (1.5) is obtained

2
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Figure 1.1: Energy density over temperature to the fourth order (T4) and three

times the pressure over T4 for physical light quark mass andml = 0 :1ms. Reprinted

�gure with permission from M. Cheng et. al, Phys. Rev. D 81, 054504 (2010) [9].

Copyright (2010) by the American Physical Society.

from perturbative calculations and is not strictly applicable for smallQ. In the "per-

turbative" regime with large momentum transferQ � 1 GeV, theoretical predictions

have been tested up to very high precision by various experiments. However, pertur-

bative calculations break down already at momentum transfers well above �QCD . If

the momentum transfer is not signi�cantly greater than � QCD , \non-perturbative"

techniques are required for QCD calculations.

Another intriguing property of QCD is con�nement, which refers to the fact that

colored charged particles, e.g. quarks and gluons, cannot be isolated singularly, and

as a result we cannot directly observe a colored object. Nevertheless, the fact that

quarks carry three di�erent color charges has been con�rmed by experiments without

3
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Figure 1.2: The subtracted chiral condensate as function of the temperature cal-

culated at ml = 0 :05ms and at 0:1ms. Reprinted �gure with permission from M.

Cheng et. al, Phys. Rev. D 81, 054504 (2010) [9]. Copyright (2010) by the American

Physical Society.

a doubt. Heavy Ion Collisions give physicists opportunities to study the properties

of quarks and gluons in the decon�ned phase at high temperature. Fig. 1.1 shows

the theoretical predictions from lattice QCD. The energy density of nuclear matter

increases rapidly atT � 180� 200 MeV, indicating a large jump in the number of

degrees of freedom when going from a hadronic gas to QGP.

One more very interesting phenomenon in QCD related to the QCD phase tran-

sition is chiral symmetry breaking. In the chiral limit where the light quark mass is

negligiblemu; md ! 0, the QCD Lagrangian can be approximated as,

L chiral =
X

l= u;d

�ql (i
 � D � )ql �
1
4

F ��
a F a

�� : (1.6)

4



We de�ne the left- and right-handed projector for quarks asPL = 1
2(1 � 
 5) and

PR = 1
2(1 � 
 5)), respectively, where
 5 = i
 0
 1
 2
 3. We can decompose the quark

�eld q = ( u; d)T into its chiral components,

qL = PL q; qR = PRq : (1.7)

Eq. (1.6) then can be written as,

L chiral = �qL (i
 � D � )qL + �qR(i
 � D � )qR �
1
4

F ��
a F a

�� ; (1.8)

and in the chiral limit the Lagrangian exhibits chiral symmetry, i.e. it is symmetric

under rotation in 
avor space for each chirality. However, because of the nontrivial

structure of QCD vacuum, there is a non-vanishing expectation value

h�qqi = h�qRqL + qL qR i � � 3
QCD : (1.9)

Quarks interacting with this condensate will acquire an e�ective mass about 300

MeV. The chiral symmetry is spontaneously broken for hadrons and it turns out

that the melting of chiral condensate and the restoration of chiral symmetry take

place around the same pseudo-critical temperature that matters became decon�ned.

Fig. 1.2 shows the melting of chiral condensate predicted by lQCD [9, 10].

The above features of QCD can be summarized in a QCD phase diagram, see

Fig. 1.3. When both temperature and density are low, nuclear matter lives in a

hadronic phase with spontaneously broken chiral symmetry. The decon�ned quark-

gluon phase exists at high temperature. Various forms of quark Cooper pairing in the

domain of high-density but low-temperature will give rise toColor-SuperConducting

(CSC) phases. The dashed line illustrates the chiral crossover transition predict by

5
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Figure 1.3: Schematic picture of the QCD phase diagram with respect to temperature

T and baryon chemical potential� B . Figure reprinted from [11] with permission from

ELSEVIER.

lQCD. Currently it is believed that the crossover will end at a hypothetical critical

point where a �rst-order phase transition (solid line) begins. Physicists at RHIC are

actively searching for the critical point at this time [12].

1.2 Relativistic Heavy Ion Collisions

There is convincing evidence that the QGP has been created in the laboratory

through heavy ion collision at RHIC [4, 5] and LHC [13, 14, 15]. The Relativistic

Heavy Ion Collider located at Brookheaven National Laboratory (BNL) is built to

collide nuclei at center of mass (c.m.) energy up to
p

sNN = 200 GeV per nucleon

pair. The Large Hadron Collider is located at the European Organization for Nuclear

Research (CERN), and the colliding energy of the nucleon pair can reach 5.5 TeV

for large nuclei.
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The idea of a heavy ion collider is that a large amount of energy will be deposited

into a very small spatial region by accelerating heavy nuclei to ultra-relativistic speed

and colliding them. A large amount of the kinetic energy will be converted to thermal

energy in a very short time scale (less than 100 fm /c� 10� 22 s) resulting in extremely

high density and temperature. The top energy density created at RHIC is estimated

to be larger than 15 GeV / fm3 [4, 5], and the top energy density created at LHC

is estimated to be about 3 times larger [16].

Some of important experimental signatures of QGP can be summarized below

[4, 5]:

1. Signatures from the phase transition. New degrees of freedom by decon�ning

quarks and gluons at su�ciently high temperature will result in a rapid increase

in energy density� , entropy density s and pressurep around the critical tem-

perature, see Fig. 1.1. The drastic change in the number of degrees of freedom

will be re
ected in various �nal observables, such as the hadron multiplicity

dN=dy, the transverse energydE? =dy, and the average transverse momentum

hp? i , the collective behaviors and so on. Hydrodynamics and statistical models

are useful tools to explore these signatures.

2. Jet Quenching and Parton Energy Loss. Bjorken �rstly pointed out that par-

tons traveling through bulk partonic matter might undergo signi�cant energy

loss [18], which is can be observed by measuring subsequent hadrons of the

parton from fragmentation. More quantitative theoretical calculations showed

that gluon radiation induced by passage through the matter is signi�cant [19]

and such induced gluon radiation would soften and broaden the jets. The

suppression and broadening of jets has been con�rmed by experimental data

[20].

7



3. Quark Recombination. Recombination models [21, 22, 23, 24, 25] were intro-

duced to explain observed features of hadron production RHIC collisions. The

recombination models predict e�ects on baryon and meson production rates

[26, 27] by assuming that coalescence proceeds viaconstituent quarks. Re-

combination models are able to explain the key properties of �nal particles

observed in experiments like elliptic 
ow [28], and allow a conclusion that such

properties are formed in the decon�ned phase.

4. Electromagnetic Probes. Due to the fact that photons and dileptons only

interact electromagnetically with the surrounding matter, the mean free path

of photons and dileptons is much larger than the typical size of the hot quark

matter created by heavy ion collisions. As a result photons and dileptons can

provide undisturbed information inside the �reball, e.g. about the temperature

of the QGP. For recent review see [29].

5. Heavy quarks. It had �rst been pointed out by Matsui and Satz that theJ= 

yield should be suppressed in URHIC if QGP is created. Due to the color

Debye screening, the binding potential becomes short-ranged [31, 32].

The space-time picture of a heavy ion collision (HIC) is sketched in Fig. 1.4.

This depicts the quark matter during various stages after the collision which we will

discuss now:

1. Preceding the collision, the two incoming nuclei can be described as two Lorentz{

contracted ‘pancakes’ in the laboratory frame. The Lorentz{contraction factor

is about 100 for RHIC and 3500 for LHC. The wavefunction of such a high

energy nucleus is dominated bygluonswhich carry small fractions of the lon-

gitudinal momenta of their parent nucleons, or more precisely, gluons with

8
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Figure 1.4: Schematic space-time picture of a HIC as a function of timet and the

longitudinal coordinate z along the beam axis. Figure reprinted from [33] with

permission from the author.

Bjorken-x � 1. From measurement of parton distribution functions, we learn

that the density of small x gluons xg(x; Q2) increase rapidly at smallx until

gluon fusion (g+ g ! g) is as important as gluon splitting (g ! g+ g) processes,

characterized by a saturation scaleQs. From the uncertainty principle, such

high density gluons should carry large transverse momentum. For example,

the transverse momentumk? is roughly 2 GeV for a gluon withx = 10� 4 [33].

The coupling constant in this regime with large scaleQs should be relatively

small because of asymptotic freedom. An e�ective theory of QCD called the

Color Glass Condensate (CGC) [36, 37] has been written down to describe such

nuclei at very high energy and large occupation number.

2. Two nuclei moving with the speed of light hit each other at time� = 0, where

� is the longitudinal proper time. From the uncertainty principal, the time

scale of an interaction is proportional to the inverse of the momentum transfer
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1=Q. Hard probes, i.e. particles with very high momentumQ � 1 GeV, are

produced very fast after the two nuclei collide. From the CGC perspective, the

gluon �elds in the initial incoming nuclei are liberated through the collisions

and the subsequent dynamics of their interaction and evolution of the matter,

so called Glasma, are governed by the Yang-Mills equations up to a time scale

� � 1=Qs. Where Qs is the saturation scale which characterize the scale which

parton density stops growing rapidly asx decreases. The value ofQs is about

1 GeV at RHIC and Qs � 4 GeV at LHC [38, 39]. Here, we are particularly

interested in the evolution of such early time energy momentum tensor of the

glasma.

3. The classical Yang-Mills equations do not predict thermalization. However,

experimental data from both RHIC and LHC suggest a rapid thermalization of

the bulk matters produced in heavy ion collisions. The data, when compared

to hydrodynamic models, are consistent with a relatively short thermalization

time, of order � � 1 fm/c for RHIC [40] and thermalization time at LHC

is estimated to be even shorter than at RHIC but quantitative study is not

available yet. The microscopic understanding of equilibration requires a more

complete description of quantum non-abelian dynamics [41, 42, 43], and it is

outside the scope of this dissertation.

4. The thermalized, decon�ned and strongly interacting phase of QCD matter

called the quark gluon plasma exists roughly for about� � 10 fm/c after the

collision happened. The properties of strongly interacting matter enable us to

depict its evolution using the relativistic hydrodynamics. We will introduce

the basic concepts of hydrodynamics in the next section.

5. As the hot and dense system is expanding, the temperature decreases. When

10



the critical temperature (Tc � 150� 160) is reached, the decon�ned quark-gluon

plasma undergoes a transition to a hadronic matter. The hadronic matter still

maintains approximately local thermal equilibrium, and hydrodynamics can

still characterize the evolution of the hot hadronic gas until kinetic freeze out

temperature around 100 MeV is reached. There is also work to study the

dynamics of the hadronic phase with transport models like Ultrarelativistic

Quantum Molecular Dynamics model (URQMD) [44].

1.3 Relativistic Hydrodynamics

The utilization of hydrodynamics in nuclear collision was �rst proposed by Lan-

dau [45] and successfully applied by Bjorken [46]. For a review please refer to [47, 48].

The general form of the energy-momentum tensor of an ideal relativistic 
uid can be

written as,

T ��
ideal = e u� u� � p � �� (1.10)

where � �� = g�� � u� u� is a operator orthogonal to the 
uid velocity u� , and e

and p are energy density and pressure, respectively, in the local rest frame of the


uid. If there are no external sources, as for the QGP created by HICs, the energy

momentum tensor should be conserved and satisfy

@� T ��
ideal = 0 : (1.11)

If there are conserved charges, like net baryon number, we also should have conser-

vation of the corresponding currentj � ,

@� j � = 0 : (1.12)
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Equation (1.10) can be written in terms of scalar quantities,

u� @� e+ ( e+ p)@� u� =0 (1.13)

(e+ p)u� @� u� � � �� @� p =0 : (1.14)

These equation will reduce to the non-relativistic hydrodynamic equations forj~vj �

1.

If dissipative e�ects are to be included, the energy momentum tensor of the 
uid

will have additional terms to Eq. (1.10) and can be written as

T �� = T ��
ideal + � �� ; (1.15)

where � �� is the viscous stress tensor which describes deviations from local thermal

equilibrium. It is conventional to decompose ��� to a traceless part � �� and its

reminder � �� �. The shear viscous stress tensor must be orthogonal to the 
uid

velocity u� � �� = 0.

The fundamental conservation equations then read,

u� @� e+ ( e+ p)@� u� � � �� r ( � u� ) = 0 ;

(e+ p)u� @� u� � � �� @� p + � �
� @� � �� = 0 : (1.16)

whereA( � B � ) is short notation for symmetrization A ( � B � ) = 1
2(A � B � + A � B � )) .

In addition, one has to postulate equations for ��� . In �rst-order viscous hydro-

dynamics they are given by gradients of the velocity �eld times the viscosity,

� �� = � r <� u�> ; � = � r � u� ; � � 0 ; � � 0 ; (1.17)
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where � is the shear viscosity and� the bulk viscosity coe�cient, and A<� B �> is

the traceless part ofA ( � B � ) . Eq.(1.17) is called the Navier-Stokes approximation.

The Navier-Stokes approximation does not preserve causality. Consequently vari-

ous second order viscous hydrodynamic models were introduced. For example, the

Muller-Israel-Stewart theory [49, 50], and others [51, 52]. For a recent review of

viscous hydrodynamics refer to [53, 54].

These hydrodynamic equations together with an Equation of State (EOS) can

predict the long wavelength behavior of a 
uid with given initial conditions.

The most convincing evidence that thermalized QPG is produced in heavy ion

collisions comes from the hydrodynamic behavior of transverse momentum distribu-

tion and collective 
ow of �nal particles. The m? scaling

E
d3N
d3p

� exp(� m? =T) (1.18)

observed in URHIC for particle withp? < 2 is a strong evidence that a thermal equi-

librium matter has been created in URHIC. The azimuthal momentum distribution

of �nal particles can be expanded into a Fourier series,

dN
d�

=
N
2�

(1 + 2v1 cos� + 2v2 cos 2� + :::) ;

vn =

R
d� cos(n� ) dN

d�R
d� dN

d�

= hcos(n� )i ; (1.19)

where v1 is called directed 
ow and v2 is elliptical 
ow. The triangular 
ow v3

and higher 
ow received much attention recently. One of the achievements of this

dissertation is a derivation of rapidity-odd from CGC which could lead to directed


ow of �nal particles after hydrodynamics evolution.
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1.4 Initial Conditions for HICs

Currently there are two models that are widely used to calculate the initial values

of the energy momentum tensor at time of thermalization, the Glauber Model [55]

and CGC model [57]. The starting point of both models are usually the Woods-Saxon

pro�les for the nucleon density in nuclei,

� A (~x) =
� 0

1 + exp[(j~xj � R)=a]
; (1.20)

where � 0 is a constant that should satisfy
R

d3x� A (~x) = A, with A being the mass

number of colliding nuclei,R is the nuclear radius anda is the skin thickness pa-

rameter. For gold (197Au), we have, R = 6 :38 fm and a = 0 :535 fm; while for lead

(207Pb) we use,R = 6 :62 fm anda = 0 :546 fm [55]. It is useful to de�ne a thickness

function by integrating the density along the longitudinal axis because of the Lorentz

contraction,

TA (x? ) =
Z 1

�1
dz� A (~x); (1.21)

The Glauber model assumes that in HICs, the initial energy density deposited

at position x? is given by the density of binary nucleon-nucleon collisionsncoll and

the density of nucleons participating in collisionsnpart . ncoll is the product of the

number of nucleons atx? in one nucleus, the number of nucleons at this position in

the other nucleus, and the probability that these nucleons hit each other, i.e.

ncoll (x? ; b) � TA (x +
b
2

; y) � TA (x �
b
2

; y) � � NN (
p

s) ; (1.22)

where � NN (
p

s) is the nucleon-nucleon cross section. Generally, the energy density
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pro�le of two colliding nuclei is assumed to be a linear combination of binary collision

and number of participants,� (x? ; b) = �n coll (x? ; b) + �n part (x? ; b).

Monte-Carlo Glauber models [55] are used to provide event-by-event (E-by-E) ini-

tial conditions. The di�erence between MC-Glauber models and the simple Glauber

model above is that, instead of using the average density Eq. (1.20), the actual

thickness function for one event is calculated by simulating the positions of nucle-

ons inside the nucleus using the Wood-Saxon distribution. Such E-by-E simulations

enable us to study 
uctuation e�ects. Nucleon position 
uctuations are crucial for

obtaining the observed odd 
ow coe�cients.

The CGC [36, 37] as introduced above is an e�ective theory of QCD dealing

with the saturation physics at low Bjorken-x in high energy nuclear collisions. The

cross-section of gluon-gluon scattering in QCD is roughly� � � s(Q2) �
Q2 with Q

being the momentum of the gluon. The density of gluons in the transverse plane

must be proportional to the number of nucleons over the areaA=(�R 2
0), where R0

is the nucleus radius. Gluons will interact with each other strongly if the scattering

probability,

A
�R 2

0
� = � s(Q2)

A
R2

0Q2 � 1 : (1.23)

is of order 1, where� s(Q2) is strong interaction constant. Therefore, one �nds that

there is a "Saturation" scaleQ2
s � � s

A
R2

0
which de�ne the saturation region. IfQs � 1

GeV perturbation theory can be applied.

The most widely used initial conditions inspired by CGC are called the KLN

model [56], the transverse energy pro�le at� = � 0 is given by

� (x? ; b) = const �
�

dNg

d2xT dY
(xT ; b)

� 4=3

(1.24)
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whereNg is the number of gluons produced in the collision,

dNg

d2xT dY
�

Z
d2pT

p2
T

Z pT

d2kT � s(kT ) � +

�
(pT + kT )2

4
; xT

�
� �

�
(pT � kT )2

4
; xT

�

(1.25)

where

� � (k2
T ; xT ) =

1
� s(Q2

s)
Q2

s

max(Q2
s; k2

T )
(

nA
part (x? ; � b)

TA (x � b=2; y)
)(1 � x)4 (1.26)

and Q2
s(x; x? ) is determined by

2T2
A (x � b=2; y) GeV2

nA
part (x? ; � b)

�
fm2

1:53

� �
0:01

x

� 0:288

(1.27)

with x = pTp
s . There are also other models based on CGC, for example, the IP-Glasma

model [58, 59], which also considers the 
uctuation on the nucleon level.

In this dissertation, we will give initial conditions that provides de�nite initial

velocities and shear stress pro�le with respect to transverse coordinates and space-

time rapidity � = 1
2 ln t+ z

t � z from a �rst principle CGC calculation.

1.5 Outline of the Dissertation

In chapter 2 we �rst give a brief overview of CGC. After formulating the Yang-

Mills equations for the classical gluon �elds after the collision, we use a recursive

solution in powers of the longitudinal proper time� [60] and carry the calculation

of gluon �elds up to 4th order in � . Comparison with a numerical solution is also

shown in this chapter. In chapter 3 we calculate the energy momentum tensor of

the gluon �elds after the collision and check the energy-momentum conservation up

to O(� 4). We generalize the McLerran-Venugopalan Model to go beyond the limit
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of large homogenous nuclei in chapter 4. We show that the transverse dynamics on

non-perturbative lengths can be safely separated from CGC dynamics. The energy

momentum tensor after averaging over color con�gurations is calculated. In chapter

5, the transverse and longitudinal structure of the Poynting vector �eld is discussed.

Besides the well known radial and elliptic 
ow in transverse direction, we �nd a

rapidity-odd transverse 
ow that tilts the �reball for non-central collisions. Instead

of just calculating average color con�gurations, we propose a procedure in chapter 6

to calculate the energy momentum tensor of glasma in an event-by-event framework.

Chapter 7 is devoted to matching the energy momentum tensor of the glasma to

viscous hydrodynamic initial conditions and the e�ects of rapidity-odd momentum


ow are discussed. We summarize this dissertation in Chapter 8 and present an

outlook on future work.

1.6 Useful De�nitions

Some conventions and useful formulae used in the following are gathered here. 3-

vectors are denoted by bold symbols, vector arrows denote 2-vectors in the transverse

plane. E.g.x � = ( t; x) = ( t; ~x? ; z). Light cone coordinates are de�ned by

x � =
1

p
2

�
x0 � x3�

: (1.28)

with d4x = dx+ dx� d2x? and x � y� = x+ y� + x � y+ � x i
? yi

? . Small Latin indices i

indicate transverse components of a vector, i.e.i = 1 ; 2. Note that @� = ( @=@t;�r )

and @� = @=@x� .
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Proper time � and space time rapidity for a space-time pointx � are de�ned as

� =
p

t2 � z2 =
p

2x+ x � ; (1.29)

� =
1
2

ln
t + z
t � z

=
1
2

ln
x+

x � : (1.30)

It is useful to express cartesian and light cone derivatives in hyperbolic ones through

@� =
x �

�
@
@�

�
1

2x �

@
@�

: (1.31)

and

@
@t

= cosh �
@
@�

�
1
�

sinh �
@
@�

; (1.32)

@
@z

= � sinh �
@
@�

+
1
�

cosh�
@
@�

: (1.33)

The momentum rapidity of a particle is de�ned as,

y =
1
2

ln
E + pz

E � pz
: (1.34)
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2. THE COLOR GLASS CONDENSATE

This chapter is devoted to the classical e�ective �eld approach of heavy ion colli-

sions called the color glass condensate. At ultra-relativistic energy, nuclei are highly

Lorentz contracted along the direction of motion and the gluons inside the nucleus

can be viewed as a thin sheet of color �elds. The gluonic evolution time scale is much

larger than the time scale of collision, so the gluon �elds are treated as "glass". The

wavefunction of the nuclei is dominated by high density, coherent gluons. Large

occupation numbers enable us to describe gluons inside the nuclei as semi-classical

color �elds.

2.1 The Classical E�ective Theory

The fundamental ingredient of CGC is a separation of partons based on their

longitudinal momenta k+ = xP + . Here P+ is the longitudinal momentum of the

nucleon andx is the momentum fraction carried by the parton. The soft partons

( x < x 0, at RHIC x0 � 10� 2 and at LHC x0 � 10� 4 [33]) are treated as the

quasi-classical chromo �eldA � generated by fast partons whosex is larger than

some scalex0. The physics should only weakly depend on such separation and a

renormalization group equation can be written down to govern changes inx0, for

review refer to [34, 35]. The sources and �elds are related by the classical Yang-Mills

equations,

[D � ; F �� ] = J � : (2.1)
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For a nucleus moving along the positive light cone axisx+ , we can write the compo-

nents of the currents in light cone coordinates as

J + (x) = � (x � )� 1(~x? ); J i (x) = 0 : (2.2)

with transverse SU(Nc) charge distributions � (~x? ) in the nuclei.

The components of the currents for two nuclei moving in light cone coordinates

are

J +
1 (x) = � (x � )� 1(~x? ) ; J �

1 (x) = 0 (2.3)

J �
2 (x) = � (x+ )� 2(~x? ) ; J +

2 (x) = 0 (2.4)

J i
1;2(x) = 0 : (2.5)

This current ful�lls the equation of continuity,

[D � ; J � ] = 0 : (2.6)

if we choose an axial gauge with

x+ A � + x � A+ = 0 : (2.7)

We will keep this choice of gauge throughout this dissertation except where we specif-

ically mention that we work in covariant gauge.

2.2 General Shape of the Field

Kovner, McLerran and Weigert [62] have �rst discussed the general space-time

structure of the gluon �eld in the collision of two such nuclei colliding on the light
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η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

Figure 2.1: Color �elds in di�erent region of the lightcone. Figure reprinted from

[63] with permission from ELSEVIER.

cone. They have argued that in axial gaugeA � is a smooth function ofx � except

for the two light cone hypersurfaces with the currents where discontinuities appear.

The �elds in the backward lightcone (region (4) in Fig. 2.1) vanish, and the �elds

outside the lightcone (region (2) & (3)) should be pure gauge. It is easy to check

that, in the case of one nucleus moving on the light cone, the following �eld

A � (x) =0 (2.8)

A i (x) =�( � x � )
1
i
U1(~x? )r i Uy

1(~x? ) + �( x � )
1
i
U2(~x? )r i Uy

2(~x? ) (2.9)

is a solution to the Yang-Mills equations. WhereU1(~x? ) and U2(~x? ) are di�erent

gauge transformations on opposite sides of the sheet atx � = 0. The above solu-

tion indicates that the transverse vector potential can be describe by a pure two

dimensional gauge transformion.
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One thus can write down the following ansatz solution for the �elds generated by

collision of two nuclei in di�erent regions in thex+ -x � -plane:

A+ (x) =�( x+ )�( x � )x+ A(�; ~x ? ) ; (2.10)

A � (x) = � �( x+ )�( x � )x � A(�; ~x ? ) ; (2.11)

A i (x) =�( x � )�( � x+ )A i
1(~x? ) + �( x+ )�( � x � )A i

2(~x? )

+ �( x+ )�( x � )A i
? (�; ~x ? ); (2.12)

with i = 1 ; 2 is index for transverse coordinates.A i
1(~x? ) and A i

2(~x? ) are the gluon

�elds of the single nuclei before the collision, which are purely transverse in this

gauge. A(�; ~x ? ) and A i
? (�; ~x ? ) are smooth functions in the forward light cone and

describe the �eld after the collision. They are the �elds we will be interested in.

There is no explicit dependence on the space-time rapidity� = 1=2 lnx+ =x� in A

and A i
? , re
ecting the boost-invariance of the system.

In each sector of the light cone the Yang-Mills equations have to be satis�ed

separately. In the forward light cone they can be written in the convenient form [62]

1
�

@
@�

1
�

@
@�

� 2A �
�
D i ;

�
D i ; A

��
= 0 ; (2.13)

ig�
�
A;

@
@�

A
�

+
1
�

�
D i ;

@
@�

A i
?

�
= 0 ; (2.14)

1
�

@
@�

�
@
@�

A i
? + ig� 2 �

A;
�
D i ; A

��
�

�
D j ; F ji �

= 0 : (2.15)

The �eld strength tensor in the forward light cone can be expressed in terms of the
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gauge potentialsA and A i
? in this gauge as

F + � = �
1
�

@
@�

� 2A; (2.16)

F i � = � x �
�

1
�

@
@�

A i
? � [D i ; A]

�
; (2.17)

F ij = @i A j
? � @j A i

? � ig[A i
? ; A j

? ]: (2.18)

Boundary conditions connect di�erent light cone sectors. The ones for the forward

light cone read [62]

A i
? (� = 0 ; ~x? ) = A i

1(~x? ) + A i
2(~x? ); (2.19)

A(� = 0 ; ~x? ) = �
ig
2

�
A i

1(~x? ); A i
2(~x? )

�
: (2.20)

We interpret them as initial conditions for the �elds at � = 0 for the �elds in the

forward light cone � > 0.

Eqs. (2.13) through (2.15) together with the conditions (2.19) and (2.20) pose

the boundary value problem to be solved. An analytic solution in closed form is not

known for the most general case. The weak �eld or abelian limit was �rst treated

in [62] and will be reproduced below. Several groups have also discussed numerical

solutions [64, 65, 66].

A di�erent approach to solve the problem was advocated by Fries et al. in [60, 67].

The basic idea is to focus on analytic solutions for the near-�eld, i.e. for \small"� .

In that case one can utilize a systematic expansion of the Yang-Mills equation in

powers of� . The rationale is that the approximation of coherent classical �elds will

not be su�cient anymore after a typical time scale � 1=Qs anyway [68, 69]. At

that time decoherence, particle production, particle-�eld interactions, and eventu-

ally thermalization have to be taken into account. We will see that the expansion
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technique can actually provide more. One can write down a recursive solution to the

�eld equations that is in principle valid at any arbitrary order in � .

2.3 � -Expansion and Recursive Solution

The assumptions justifying the dominance of classical �elds in the collision cease

to be valid at long times after the collision,� � 1=Qs. Thus let us de�ne the power

series

A(�; ~x ? ) =
1X

n=0

� nA(n)(~x? ); (2.21)

A i
? (�; ~x ? ) =

1X

n=0

� nA i
? (n)(~x? ): (2.22)

We employ an equivalent power series for the �eld strength, covariant derivatives and

the energy-momentum tensor. Eqs. (2.13) { (2.15) permit a set of singular solutions,

but only the solutions regular at� = 0 are physical solutions for the boundary value

problem.

Let us discuss this point for the abelianized version of the equations in more detail.

In the case of weak �elds the non-linear terms in the YM equations can be neglected,

leading to a greatly simpli�ed, abelian version of the boundary value problem for

which an analytic solution in closed form can be given [61, 62]. After dropping the

non-linear terms and applying a Fourier transformation of the transverse coordinate,

@i ! � ik i
? , equations (2.13) and (2.15) take the shape of Bessel equations

1
z

d2

dz2 zA +
1
z2

d
dz

zA +
1
z

zA �
1
z3 zA = 0 (2.23)

z2 d2

dz2 A i
? + z

d
dz

A i
? + z2A i

? = 0 (2.24)

wherez = k? � and with a physical polarizationr i A i
? = 0 chosen for the transverse
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vector [62]. There are two independent sets of solutions, Bessel functions of the �rst

kind A � J1(z)=z, A i
? � J0(z) which are regular at � = 0, and Neumann functions

A � N1(z)=z, A i
? � N0(z) which lead to A � z� 2 and a singularity A i

? � ln � for

� ! 0. The solution with Neumann functions is not compatible with Eq. (2.14)

which imposes@=@�Ai? = 0. The singular solution therefore has to be excluded. It

is easy to see that the non-abelian �eld equations do not change this argument.

Let us now return to the solution of the general non-abelian problem. The power

series turns the set of 3 di�erential equations (2.13), (2.14), (2.15) inx? and � into

an in�nite system of di�erential equations in x? . As �rst shown by Fries, Kapusta

and Li [60], we can solve this system recursively. The boundary conditions (2.19),

(2.20) provide the starting point of the recursion

A i
? (0) = A i

1 + A i
2 ; (2.25)

A(0) = �
ig
2

�
A i

1; A i
2
�

: (2.26)

Next one can prove that all odd-power contributions vanish,A(2k+1) = 0, A i
? (2k+1) =

0. Finally, one �nds the recursion relations for evenn, n > 1,

A (n) =
1

n(n + 2)

X

k+ l+ m= n � 2

�
D i

(k) ;
�
D i

( l ) ; A(m )
��

; (2.27)

A i
? (n) =

1
n2

 
X

k+ l= n � 2

h
D j

(k) ; F ji
( l )

i
(2.28)

+ ig
X

k+ l+ m= n � 4

�
A(k) ; [D i

( l ) ; A(m ) ]
�
!

:

One can easily check that these expressions solve (2.13) - (2.15).

One can use the abelianized case for a cross check. After dropping non-linear

terms and after applying a Fourier transformation to the transverse coordinates the
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recursive solutions can be easily resummed to give

ALO
(n) =

2
n!!2(n + 2)

(� k2
? )n=2Aab

(0) ; (n > 1) (2.29)

ALO i
? (n) =

1
n!!2

(� k2
? )n=2ALO i

? (0) (2.30)

where the double factorial isn!! = n(n � 2)(n � 4) � � � and the index LO signals the

abelian case. These terms are just the coe�cients of the Bessel functions already

discussed above,

ALO (�; k? ) =
2ALO

(0) (k? )
k? �

J1 (k? � ) (2.31)

ALO i
? (�; k? ) = ALO i

? (0) (k? )J0 (k? � ) : (2.32)

Hence we have shown that the small-� expansion works for all� in the abelian case.

2.4 The Near Field

A resummation similar to the abelian case seems elusive for the general solution.

Nevertheless one can analyze the few lowest order terms which are equivalent to

describing the \near �eld" close to the light cone. We do this in terms of the more

physical �eld strength tensor. The near �eld up to order � 3 order has been worked

out by Fries et al [61]. We observe that only the longitudinal components of the

electric and magnetic chromo�eld have non-vanishing values at� = 0:

E 3
(0) = F + �

(0) = ig
�
A i

1; A i
2
�

; (2.33)

B 3
(0) = F 21

(0) = ig� ij �
A i

1; A j
2
�

: (2.34)
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We denote these initial values brie
y with E0 � E 3
(0) and B0 � B 3

(0) to emphasize

their importance as the \seed" values for� ! 0. The transverse �elds vanish at

� = 0: F i �
(0) = 0.

The dominance of longitudinal �elds at early times has been rediscovered a few

years back [70] and has since then been discussed as the reason for a variety of

physical e�ects. The color 
ux tubes associated with these �elds could lead to

particle production via the Schwinger mechanism [71], imply non-trivial topological

con�gurations [72, 73], and induce long-range rapidity correlations. It also is a

posteriori justi�cation for the color capacitor picture. Interestingly the longitudinal

magnetic �eld can be of the same size as the longitudinal electric �eld.

The next order O(� 1) brings no further contribution to the longitudinal �elds,

F + �
(1) = 0 = F 21

(1) , but it is the leading order for the transverse �elds

F i �
(1) = �

e� �

2
p

2

�
[D j

(0) ; F ji
(0) ] � [D i

(0) ; F + �
(0) ]

�
: (2.35)

Hence the transverse electric and magnetic chromo�elds grow linearly from their zero

value at � = 0. We can express them in terms of the initial longitudinal �elds as

E i
(1) = �

1
2

�
sinh � [D i ; E0] + cosh � � ij [D j ; B0]

�
(2.36)

B i
(1) =

1
2

�
cosh� � ij [D j ; E0] � sinh � [D i ; B0]

�
: (2.37)

Note that we suppress the index (0) on transverse covariant derivatives in the fol-

lowing and write D i � @i � igA i
? (0) , unless noted otherwise.

Fries et al also computed the next-to-leading correction in� to all components

[61]. The �rst correction to the initial value of the longitudinal �elds appears at
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order O(� 2) and is in our short notation

E 3
(2) =

1
4

[D i ; [D i ; E0]] ; (2.38)

B 3
(2) =

1
4

[D i ; [D i ; B0]] : (2.39)

There is no correction to the transverse �elds at this order,F i �
(2) = 0. Generally,

the longitudinal �elds have only contributions for even powers of� , the transverse

�elds pick up contributions exclusively for odd powers of� . From generalizing to all

orders in � we can also conclude that the longitudinal electric and magnetic �elds are

independent of� while the transverse �elds are a superposition of terms depending

on cosh� and sinh� .

Going beyond previous work by Fries et al [60], we calculated the order� 3 results

[74]. The orderO(� 3) for the transverse �elds are

F i �
(3) = �

e� �

4
p

2

�
[D j ; F ji

(2) ] � [D i ; F + �
(2) ]

�
+

ig
8

�
� ij [B0; F j �

(1) ] � [E0; F i �
(1) ]

�

�
ig
8

e� �

2
p

2
� ij [D j ; [E0; B0]] (2.40)

whereasE 3
(3) = 0 = B 3

(3) . In terms of the initial �elds the third order �elds are

E i
(3) = �

1
16

�
cosh� � ij [D j ; [D k ; [D k ; B0]]] + sinh � [D i ; [D k ; [D k ; E0]]]

�
(2.41)

�
ig
16

� ij sinh �
�
[B0; [D j ; E0]] + [ E0; [D j ; B0]]

�

�
ig
16

cosh�
�
[E0; D i ; E0] � [B0; [D i ; B0]]

�

�
ig
16

sinh �� ij [D j ; [E0; B0]] ;
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B i
(3) = �

1
16

�
sinh � [D i ; [D k ; [D k ; B0]]] � cosh�� ij [D j ; [D k ; [D k ; E0]]]

�

�
ig
16

cosh�
�
[B0; [D i ; E0]] + [ E0; [D i ; B0]]

�

�
ig
16

sinh �� ij �
[B0; [D j ; B0]] � [E0; [D j ; E0]]

�

�
ig
16

cosh� [D i ; [E0; B0]] :

The longitudinal �eld survives at order O(� 4) are

E 3
(4) =

1
64

[D i ; [D i ; [D j ; [D j ; E0]]]] +
1
16

ig� ij [[D i ; E0]; [D j ; B0]] ;

B 3
(4) =

1
64

[D i ; [D i ; [D j ; [D j ; B0]]]] �
1
64

ig� ij [[D i ; E0]; [D j ; E0]]

+
3
64

ig� ij [[D i ; B0]; [D j ; B0]] :

Our explicit expressions provide truncated expressions which approximate the

full solutions to an accuracy

E 3 = E 3
trunc + O(� 6) ; (2.42)

E i = E i
trunc + O(� 5) (2.43)

for the electric �eld. The same scheme holds for the magnetic �eld~B . Explicit ex-

pressions for even higher powers of� could in principle be derived from the recursion

relations (2.27) and (2.28).

2.5 Comparison to Numerical Results

We just make a few remarks on how numerical solutions of the Yang-Mills equa-

tion quantitatively con�rm important aspects of the series expansion in� . We com-
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Figure 2.2: Squares of components of the color �eld as function of� in a numerical

calculation by Lappi. Figure reprinted from [63] with permission from ELSEVIER.

pare our results to numerical solutions of the classical Yang-Mills equations obtained

by Lappi [63]. Fig. 2.2 shows the squares of longitudinal and transverse electric and

magnetic �elds. Immediately after the collision, there are only longitudinal �elds

which decrease as� increases. The transverse �elds build up linearly for small� .

The growth is cut o� when � 3 terms become important and the increase will stop.

We note that the key features of these �elds are provided by the small-� expansion

if terms up to � 4 are considered. Initially, at � = 0, the value of longitudinal �elds

should be given by the� 0 order series expansionE0 and B0. The � 2 terms account

for the rapid decrease of longitudinal �elds as� increases for small� . The � 4 order

terms should be positive and will approximately determine the in
ection point for

the longitudinal �elds in Fig. 2.2. The cut o� in the slope of transverse �elds is

almost a straight line for very small � , which con�rms that the behavior is domi-

nated by the �rst order in � . The � 3 terms will increase. In short, the longitudinal

�elds can be written as aa� 4 � b� 2 + c function and transverse �elds can be �tted
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by a0� � b0� 3 function for 0 < g 2�� < 0:5 1 with a; a0; b; b0; c > 0. In the following

sections we will determine these coe�cients in more detail.

1Note that the color charge density � de�ned in this work (see Chapter 4 for de�nition) corre-
sponds to � 2 in Lappi’s notation.

31



3. THE ENERGY MOMENTUM TENSOR OF THE FIELD

From the �eld strength tensor we can easily calculate the energy momentum

tensor of the �eld

T �� = F �� F �
� +

1
4

g�� F �� F�� : (3.1)

For brevity we employ a notation where SU(Nc) indices are summed over implicitly

unless said otherwise. ThusAB = AaB a = 2 Tr( AB ), a = 1 ; : : : ; N 2
c � 1, are

equivalent notations for a singlet formed from the contraction of two SU(Nc) objects

A and B . We discuss the �rst few orders in� of the components of the tensor.

3.1 Components of the Energy Momentum Tensor up to Order� 2

3.1.1 Order � 0

It is straightforward to see that only the diagonal elements ofT �� have �nite

values at � = 0. We de�ne "0 to be the initial value for the energy density

"0 = T00
(0) =

1
2

�
E 2

0 + B 2
0
�

= �
g2

2
�
� ij � kl + � ij � kl � � [A i

1; A j
2][Ak

1; A l
2]

�
(3.2)

The other diagonal elements of the energy momentum tensor are

T11
(0) = T22

(0) = "0 (3.3)

T33
(0) = � "0 (3.4)

Hence the structure of the energy momentum tensor for� ! 0 is the same as that

for a longitudinal �eld in classical electrodynamics. There is a maximum \pressure"

anisotropy between the transverse and longitudinal directions. Despite being far

from equilibrium we take the liberty to use the notations of longitudinal pressure
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pL = T33 and transverse pressurepT = T11 = T22. We �nd the transverse pressure

to be very large,pT = "0, compared to an equilibrated system (an ideal relativistic

gas with the same energy density would have a transverse pressurepT = � 0=3) while

the longitudinal pressurepL = � pT = � "0 is equally large and negative.

The sign of the longitudinal pressure is not surprising. It means that there is

a deceleration of the nuclei, as if a plates of the "color capacitor" are being pulled

together by the longitudinal �elds. This is the mechanism that removes kinetic

energy from the nuclei and deposits it as �eld strength between them. However keep

in mind that in our setup we do not calculate the �eld and the motion of the nuclei

selfconsistently. We assume that they move along the light cone undisturbed. The

BRAHMS experiment has reported that the initial nuclei (represented by the baryon

number in the system) lose about 70 to 75% of their kinetic energy in collisions of gold

nuclei at RHIC [75]. This means the nuclei or their fragments stay ultrarelativistic

throughout the collision and it is a viable approximation to keep their motion �xed

on the light cone.

The qualitative behavior of the system is then clear from the simple form ofT ��

for � ! 0. While the negative longitudinal pressure leads to thedecelerationof the

colliding nuclei, the transverse pressure forces the system toexpand in transverse

direction. This transverse expansion can happen immediately, without any need for

equilibration or decoherence. In fact the transverse pressure is 3 times larger than

naively assumed. If the �elds decohere and thermalize, the longitudinal pressurepL

has to change sign. In fact this change of sign has to happen fast enough since oth-

erwise the deceleration workdW = pL dV done on the nuclear debris would become

too large and lead to a yo-yo e�ect.
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3.1.2 Order � 1

At the next order O(� 1) the componentsT0i and T3i are the only ones to pick

up contributions. They describe the 
ow of energy and longitudinal momentum into

the transverse direction. Note thatT0i is the transverse component of the Poynting

vector ~S = ~E � ~B . Therefore the expected transverse expansion sets in linearly in

� . We have

T0i
(1) = � ij

�
B0E j

(1) � E0B j
(1)

�
(3.5)

=
1
2

cosh� � i +
1
2

sinh � � i ;

T3i
(1) = � E0E i

(1) � B0B i
(1) (3.6)

=
1
2

sinh � � i +
1
2

cosh� � i :

Recall that we agreed to omit the index (0) on covariant derivatives:D i = @i �

igA i
? (0) .

We notice that we have two contributions to the 
ow. The �rst term is the


ow driven by the gradient of the transverse pressure as we would expect from a

hydrodynamic picture

� i = �r i "0 : (3.7)

The second term involves the 2-vector

� i = � ij �
[D j ; B0]E0 � [D j ; E0]B0

�
: (3.8)

It is anomalous in the sense that it is not driven by the transverse pressure and enters

the energy momentum tensor as a rapidity-odd 
ow. It can, among other things,

lead to directed 
ow and has been �rst presented in [76] and is discussed in detail in
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[77]. We will explore its meaning in Chapter 5.

3.1.3 Order � 2

At the order O(� 2) the diagonal elements ofT �� receive their �rst corrections and

all the previously vanishing components acquire their leading contribution. On the

other hand the transverse 
ow of energy and longitudinal momentum is not a�ected,

T0i
(2) = 0 = T3i

(2) : (3.9)

The expressions for the energy density, the longitudinal 
ow of energy and the 
ow

of longitudinal momentum are

T00
(2) = E0E 3

(2) + B0B 3
(2) +

1
2

E i
(1) E

i
(1) +

1
2

B i
(1) B

i
(1)

= �
1
4

(r i � i + � ) �
1
8

sinh 2� r i � i +
1
8

cosh 2�� ; (3.10)

T03
(2) = � ij E i

(1) B
j
(1) (3.11)

= �
1
8

cosh 2� r i � i +
1
8

sinh 2� � ;

T33
(2) = � E0E 3

(2) � B0B 3
(2) +

1
2

E i
(1) E

i
(1) +

1
2

B i
(1) B

i
(1)

=
1
4

(r i � i + � ) �
1
8

sinh 2� r i � i +
1
8

cosh 2� � : (3.12)

The only new combination of �elds appearing is related to longitudinal 
ow and

reads

� = [ D i ; E0][D i ; E0] + [ D i ; B0][D i ; B0] : (3.13)

Clearly � is a measure for longitudinal 
ow of energy which does not mix with

transverse 
ow at this order in � . On the other hand we see that the 
ow� i cou-

ples transverse and longitudinal degrees of freedom. We will discuss energy and
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momentum conservation in more detail below.

The results for the remaining new contributions to this order are

T ii
(2) =

(� 1)i

2
�
E 1

(1) E
1
(1) + B 1

(1) B
1
(1) (3.14)

� E 2
(1) E

2
(1) � B 2

(1) B
2
(1)

�
+ E0E 3

(2) + B0B 3
(2)

= �
1
4

(�4 � 0 + � + ! i ) ;

T12
(2) = � E 1

(1) E
2
(1) � B 1

(1) B
2
(1) = 
 : (3.15)

4 here is the 2-dimensional Laplace operator. There is no implicit summation over

the double indexi = 1 ; 2 in the �rst equation. The new quantities are

! i =
(� 1)i

2
�
[D 1; E0]2 � [D 2; E0]2 (3.16)

+ [ D 1; B0]2 � [D 2; B0]2
�

;


 =[ D 1; E0][D 2; E0] + [ D 1; B0][D 2; B0] : (3.17)

Note that ! i does not transform like a 2-vector. In the last equations one has to be

careful not to confuse upper vector indices 2 with squares.
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3.2 Order � 3 and � 4.

At order � 3 the only contributions are the �rst corrections for the transverse 
ow

componentsT0i and T3i . They are

T0i
(3) = � ij

�
B0E j

(3) + B 3
(2) E

j
(1) � E0B j

(3) � E 3
(2) B

j
(1)

�

=
1
16

�
cosh� � i + sinh � � i � ; (3.18)

T3i
(3) = � E0E i

(3) � E 3
(2) E

i
(1) � B0B i

(3) � B 3
(2) B

i
(1)

=
1
16

�
sinh � � i + cosh � � i � : (3.19)

The transverse 
ow vectors� i and � i de�ned in Eq. (3.19) are given in terms of

E0 and B0 by

� i =
�
D i ; E0[D l ; [D l ; E0]] + B0[D l ; [D l ; B0]]

�
+ [ D i ; E0][D l ; [D l ; E0]]

+ [ D i ; B0][D l ; [D l ; B0]] � ig� ij B0[E0; [D j ; E0]] ; (3.20)

� i = � ij ��
D j ; E0[D l ; [D l ; B0]] � B0[D l ; [D l ; E0]]

�
� 3[D j ; E0][D l ; [D l ; B0]]

+ 3[D j ; B0][D l ; [D l ; E0]]
�

� 3igE0[B0; [D i ; B0]] : (3.21)

At order � 4 corrections to the energy density, longitudinal 
ow of momentum and

longitudinal 
ow of energy are

T00
(4) = � + �

1
32

cosh 2� + �
1
32

sinh 2� ; (3.22)

T33
(4) = � � + �

1
32

cosh 2� + �
1
32

sinh 2� (3.23)

T03
(4) = �

1
32

cosh 2� + �
1
32

sinh 2� (3.24)
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Where

� = B0B (4) + E0E(4) +
1
2

(B (2) B (2) + E(2) E(2) )

� =[ D i ; B0][D i ; [D k ; [D k ; B0]]] + [ D i ; E0][D i ; [D k ; [D k ; E0]]

+ ig� ij [D i ; B0]([B0; [D j ; B0]] � [E0; [D j ; E0]])

+ ig� ij [D i ; E0]([B0; [D j ; E0]] + [ E0; [D j ; B0]] + [ D j ; [E0; B0]]])

� = � ij [D i ; E0][D j ; [D k ; [D k ; B0]]]

� � ij [D i ; B0][D j ; [D k ; [D k ; E0]]]

+ ig[D i ; B0]([B0; [D i ; E0]]

+ [ E0; [D i ; B0]] + [ D i ; [E0; B0]])

+ ig[D i ; E0]([E0; [D i ; E0]] � [B0; [D i ; B0]])

This completes the list of contributions we have calculated. The truncated series

for the energy momentum tensor presented here is accurate up to corrections of order

O(� 5) for the T0i and T3i components and of orderO(� 6) for all other components.

3.3 Checking Energy and Momentum Conservation

The solutions of the Yang-Mills equations automatically satisfy energy and mo-

mentum conservation, i.e.@� T �� = 0 + corrections of higher order in � . This can

be checked explicitly order by order.@� T � 0 and @� T � 3 receive contributions only for

odd powers of� , whereas@� T �i exclusively consists of even powers.

Transverse momentum conservation,� = 1 ; 2, is obvious at order� 0. From the
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corresponding equation

@� T �i
���
� 0

=
�

cosh� � sinh �
@
@�

�
T0i

(1) (3.25)

�
�

sinh � � cosh�
@
@�

�
T3i

(1) + r i T ii
(0)

= � i + r i "0 :

all terms containing the anomalous 
ow� i drop out and the remaining expression

obviously vanishes using the known result for the hydrodynamic 
ow� i . Note that

the index i is not summed in the term containingT ii .

At order � 1 we have,

@� T � 0
���
� 1

= (cosh �
@
@�

�
1
�

sinh �
@
@�

)T00
(2)

+ ( � sinh �
@
@�

+
1
�

cosh�
@
@�

)T30
(2) + r i T i 0

(1)

= �
1
2

cosh� (r i � i + � )

+
1
2

cosh� (� sinh 2� r i � i + cosh 2�� )

�
1
2

sinh � (� cosh 2� r i � i + sinh 2�� )

+
1
2

cosh� r i � i +
1
2

sinh � r i � i

=0 : (3.26)

The proof for � = 3 is completely analogous.
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At order � 2 we have a very similar picture

@� T �i
���
� 2

=
�

3 cosh� � sinh �
@
@�

�
T0i

(3) (3.27)

�
�

3 sinh� � cosh�
@
@�

�
T3i

(3)

+ r i T ii
(2) + r j T ji

(2)

= � i � r i (�4 � 0 + � + ! i ) + r j 
 :

with the anomalous 
ow contributions � i canceling. Again, the indexi = 1 ; 2 is not

summed upon multiple appearance and in addition we de�nej to be the transverse

index with j 6= i . Momentum conservation holds if the equation

� i = r i (�4 � 0 + � + ! i ) � r j 
 : (3.28)

is true. We can check it explicitly:

r x (�4 � 0 + � + ! x ) � r y 
 (3.29)

= � r x �
((E0[D l ; [D l ; E0]] + B0[D l ; [D l ; B0]])

+ ([ D l ; E0][D l ; E0] + [ D l ; B0][D l ; B0])

� ([D l ; E0][D l ; E0] + [ D l ; B0][D l ; B0])
�

+
1
2

�
[D x ; [D x ; E0]2] + [ D x ; [D x ; B0]2]

� [D y; [D y; E0]2] � [D y; [D y; B0]2]
�

+ [ D y; [D x ; E0][D y; E0] + [ D x ; B0][D y; B0]]

=
�
D x ; E0[D l ; [D l ; E0]] + B0[D l ; [D l ; B0]]

�

+ [ D x ; E0][D l ; [D l ; E0]] + [ D 1; B0][D l ; [D l ; B0]] = � x
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Overall we have now established that our truncated expression for the energy mo-

mentum tensor satis�es

@� T � 0 = 0 + O(� 3) ; (3.30)

@� T �i = 0 + O(� 4) ; (3.31)

@� T � 3 = 0 + O(� 3) : (3.32)

We are con�dent that this is a solid basis for further analysis.
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4. AVERAGING OVER COLOR SOURCES WITH TRANSVERSE DYNAMICS

So far we have held the charge distributions� k in the two nuclei �xed and have

expressed the �elds and the energy momentum tensor after the collision in terms

of the initial �elds E0 and B0. E0 and B0 are in turn determined by the gauge

potentials A i
k in the two nuclei before the collision using our choice of axial gauge.

In a given nuclear collision the color charge densities are not known. In fact when

integrating over transverse space the total color charge should be zero, and if we look

at the expectation value (or long time average) of� i
k in nucleusk at any �xed point

in the transverse plane it should vanish as well,h� i
k i = 0. However 
uctuations can

result in non-vanishing color charge at a given point in time and space. The internal

dynamics of the 
uctuations are much slower than the time scale of the high energy

collision such that we can treat the� i
k as frozen but random with average 
uctuation

strength h� i
k � i

l i = �� kl where � > 0 is an average squared color charge density. This

opens the way to two possible implementations. We could analyze random samples

of charge densities with Monte-Carlo methods. This will lead to an event-by-event

determination of the energy momentum tensor. Such MC techniques have recently

been explored in [59]. We will investigate this option in Chapter 6. Here we calculate

expectation values for observables which will allow us to analytically study important

aspects.

In this and the following chapter we will ensemble-average classical gluon �elds

over all possible charge distributions with the conditions above and calculate expec-

tation values. For an observableO measured after the collision of two nuclei this

would be

hOi � 1 ;� 2 =
Z

d[� 1]d[� 2]O(� 1; � 2)w(� 1)w(� 2) (4.1)
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where thew are appropriate weights. In the McLerran-Venugopalan model the weight

functions are chosen to have the simplest Gaussian shape

w(� k) = e�
R

d2x? � 2
k (~x? )=2g2 � k ; (4.2)

where the 
uctuation strength is set by average densitiesg2� k .

The averaging corresponds to a random walk in the space of SU(Nc) valued

functions. In the following we will calculate these expectation values for the energy

momentum tensor using a slightly generalized McLerran Venugopalan model.

4.1 The McLerran Venugopalan Model with Transverse Dynamics (MVTD)

We start with a brief review of the MV model. We implement the averaging over

color sources in a given nucleus by �xing the expectation value

h� a(x � ; ~x? )� b(y� ; ~y? )i =
g2

(N 2
c � 1)

� ab� (x � ; ~x? )� (x � � y� )� 2(~x? � ~y? ); (4.3)

for a nucleus moving along the + or� light cone respectively, together with the

condition that expectation values of any odd number of� -�elds vanish. We drop the

index k labeling a particular nucleus here for ease of notation. We have explicitly

written out the coupling constant g that was contained in � as de�ned in Eqs. (2.1)

and (2.3). � and � are then number densities summed over color degrees of freedom.

Note that the normalization of � di�ers by a factor N 2
c � 1 from many other de�nitions

in the literature [63]. We allow a dependence of the expectation value on both the

longitudinal coordinate x � and the transverse coordinate~x? .

The longitudinal smearing is necessary to compute expectation values correctly

as �rst realized in [78]. A nucleus has to be given a small, but �nite, thickness across
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the light cone which we will do by introducing

� (x � ; ~x? ) = � (~x? )h(x � ) (4.4)

whereh is a non-negative function with �nite width � around x � = 0 such that

Z
dx� � (x � ; ~x? ) = � (~x? ) : (4.5)

We do not need to specify it further (but we could imagine e.g. a Gaussian of width

� ).

We have introduced the dependence of the area charge density� on ~x? as a

generalization of the assumptions of the proper McLerran-Venugopalan model, where

the nuclei are in�nitely large in the transverse direction and on average invariant

under rotations and translations. Real nuclei break these symmetries, and it is a

worthwhile goal to investigate the stability of the MV results under small deviations

from these symmetries. Our motivation here is that no transverse dynamics can be

generated in the strict MV model.

We will allow the following relaxation of the MV conditions: in each domain of

size� 1=m in the transverse plane� is almost constant, more precisely we want that

j� (~x? )j � m� 1
��r i � (~x? )

�� � m� 2
��r i r j � (~x? )

�� � : : : : (4.6)

The purpose here is that inside domains of size 1=m the well-de�ned physics of the

color glass is applicable, while on length scales larger than 1=m unrelated infrared

behavior is allowed to occur. Fig. 4.1 shows that the �rst inequality in Eq. (4.6) is

true for more than 90% of matter in a nucleus if reasonable values of the infrared
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Figure 4.1: The ratio of gradients of charge density over charge density for a realistic

gold nucleus with Woods-Saxon pro�le. Eq. (4.6) is true for more than 90% of

matter in a nucleus if a realistic infrared cuto� 1 fm� 1 � 200 MeV is chosen.

scale are chosen. Thus we imagine a hierarchy

1=Qs � 1=m � RA (4.7)

and m hence is an infrared scale which separates color glass physics from long-range

QCD.

We have two main goals in this expanded McLerran-Venugopalan (MVTD) model:

(i) Results must be well behaved under these small deviations from translational and

rotational invariance, otherwise the original MV model would not be infrared safe.

In practice this means that observables should be only weakly dependent on the

infrared scale. We will explicitly check this condition below. (ii) The results will

provide a long-range dynamics, expanded in gradients of� , which is compatible with

color glass physics at small distances. This will allow us to safely apply the MV

model locally to realistic nuclei as long as the location is su�ciently far away from
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the boundary of the nucleus where the density� starts to fall o� quickly. We also

have a chance to address the consequences of inhomogeneities in the transverse plane

as long as their typical length scale is larger than the typical color glass length scale.

It is this feature that will allow us to calculate 
ow in color glass.

4.2 The Gluon Distribution

The most important expectation value is the two-point gluon function, or gluon

distribution hA i
a(~x? )A i

a(~y? )i in light cone gauge. The Yang-Mills equations (2.1) for

a single nucleus on the +-light cone are most easily solved in a covariant gauge where

A �
cov = � � + � . The equations then reduce to

� � (x � ; ~x? ) = � � cov(x � ; ~x? ) (4.8)

where the Laplace operator � acts on the transverse directions. The explicit solution

is

� (x � ; ~x? ) =
Z

dz2
? G(~x? � z? )� cov(x � ; ~z? ) (4.9)

with a Green’s function G(x? ) = � ln(x2
? =� 2)=(4� ) where � is an arbitrary length

scale. However, we will be better served by introducing a physically motivated

regularization through a gluon massm which can be inserted into the Fourier trans-

formation of the Green’s function ~G(k) = 1 =k2 ! 1=(k2 + m2) [79]. 1 This leads to

the representation

G(x? ) =
1

2�
K 0(mx? ) (4.10)

using Bessel functionsK 0. This Green’s function reproduces the previous expression

in the limit m ! 0 with � = 2 e� 
 E =m, where 
 E is Euler’s constant. The two-gluon
1Note that the gluon mass could be an unrelated infrared scale but for simplicity we choose the

IR cuto� in the gradient expansion of � to be identical.
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correlation function in covariant gauge as the average of two gluon �elds can then

be easily derived from (4.3) as

h� a(x � ; ~x? )� b(y� ; ~y? )i =
g2

N 2
c � 1

� ab� (x � � y� )
 (x � ; ~x? ; ~y? ) (4.11)

where we have introduced the Green’s function


 (x � ; ~x? ; ~y? ) =
Z

d2~z? G(~x? � ~z? )G(~y? � ~z? )� (x � ; ~z? ) : (4.12)

We will show below that 
 depends strongly on the IR regularization scalem. It

diverges like 1=m2 in the limits j~x � ~yj ! 0.

The gluon �eld A i in light cone gauge can be derived from the covariant expression

with the help of the Wilson line

U(x � ; x? ) = P exp

"

� ig
Z x �

�1
� (z� ; ~x? )dz�

#

: (4.13)

Here P denotes path ordering of the �elds� from right to left. One can show that

the correct gauge transformation to arrive at the light cone potential is [78].

A i (x � ; ~x? ) =
i
g

U(x � ; ~x? )@i Uy(x � ; ~x? ) (4.14)

This enables us to calculate the expectation value of a pair of gluons in the MV

model in the light cone gauge which is related to the gluon distribution

hF + i
a (x � ; ~x? )F + j

b (y� ; ~y? )i =
D�

Uy
ac@

i � c
�

(x � ; ~x? )
�

Uy
bd@

j � d

�
(y� ; ~y? )

E
: (4.15)

In this equation we have used gauge transformationsF = UFcovUy to covariant
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gauge and then expressed the Wilson linesU by their counterparts in the adjoint

representation,U, by virtue of the relation

UtaUy = Uabtb : (4.16)

Let us take a small detour here to discuss expectation values of adjoint, parallel

Wilson lines in the MV model [78]. A systematic study was recently carried out by

Fukushima and Hidaka [80]. For a single line we get

hUab(x � ; ~x? )i = � ab exp
�

�
g4Nc

2(N 2
c � 1)

�
Z x �

�1

 (z� ; ~x? ; ~x? )dz�

�
: (4.17)

This expectation value is suppressed since
 (z� ; ~x? ; ~y? ) tends to diverge in the limit

m ! 0.

For a double line we have



Uab(x � ; ~x? )Ucd(x � ; ~y? )

�
= � ad� bcd(x � ; ~x? ; ~y? ) (4.18)

where

�( z� ; ~x? ; ~y? ) = 2 
 (z� ; ~x? ; ~y? ) � 
 (z� ; ~x? ; ~x? ) � 
 (z� ; ~y? ; ~y? ) : (4.19)

is a subtracted version of
 , and

d(x � ; ~x? ; ~y? ) = exp

"
g4Nc

2(N 2
c � 1)

Z x �

�1
dz� �( z� ; ~x? ; ~y? )

#

(4.20)

is the exponentiation of the integral of � along the light cone. In the original MV

model the subtraction in � removes the 1=m2 singularity in 
 for small m and renders
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the exponentiald �nite. In particular, �( x � ; ~x? ; ~y? ) vanishes in the ultraviolet limit

~y? ! ~x? . We will show below that this crucial cancellation is still valid for our

generalization. Here we have also dropped contributions from non-color singlet pairs

[80].

We return to the discussion of the correlation function of �elds. One can prove

that the only possible contraction of �elds on the right hand side of (4.15) comes

from a factorization into correlators � hU yUyih@i �@j � i . The latter factor can be

derived from (4.11)

h@i � a(x � ; ~x? )@j � b(y� ; ~y? )i =
g2

N 2
c � 1

� ab� (x � � y� )r i
x r j

y 
 (x � ; ~x? ; ~y? ) : (4.21)

This leads to the result

hF + i
a (x � ; ~x? )F + j

b (y� ; ~y? )i =
g2

N 2
c � 1

� ab� (x � � y� )

�
�
r i

x r j
y 
 (x � ; ~x? ; ~y? )

�
d(x � ; ~x? ; ~y? ) (4.22)

for the expectation value of �elds in light cone gauge. The correlation function of

two gauge potentials in light cone gauge follows from an integration with retarded

boundary conditions

A i (x � ; ~x? ) = �
Z x �

�1
dz� F + i (z� ; ~x? ) : (4.23)
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One integral is easily taken to give

hA i
a(x � ; ~x? )A j

b(y
� ; ~y? )i = g2� ab

2r i
x r j

y 
 (~x? ; ~y? )
g4Nc�( ~x? ; ~y? )

�
Z min f x � ;y � g

�1
dx0� @

@x�
exp

�
g4Nc

2(N 2
c � 1)

�( ~x? ; ~y? )
Z x0�

�1
dz� h(z� )

�
: (4.24)

Note that we have taken a factorh(x � ) from both 
 and � and we have rewritten

one factor ofh(x � ) as a derivative@=@x� of the exponential. We formally de�ne 


[and �] ( ~x? ; ~y? ) as the integral of 
 [and �] ( x � ; ~x? ; ~y? ) over x � from �1 to + 1 ,

respectively.

We can then take the second integral. We will only be interested in minf x � ; y� g >

0 and upon taking the limit of vanishing width � of h we have

hA i
a(~x? )A j

b(~y? )i = 2g2� ab
r i

x r j
y 
 (~x? ; ~y? )

g4Nc�( ~x? ; ~y? )

�
�

exp
�

g2Nc

2(N 2
c � 1)

�( ~x? ; ~y? )
�

� 1
�

: (4.25)

This result holds for both the McLerran-Venugopalan model [78] and our general-

ization. For further evaluation we have to understand the correlations functions


and �. We will calculate them next. Before we proceed let us brie
y write down the

gluon distribution function in the ultraviolet limit ~y? ! ~x? . In that limit � ! 0,

and we can expand the exponential function around 0 using only the two leading

terms to arrive at the simple expression

hA i
a(~x? )A j

b(~x? )i = � ab
g2

N 2
c � 1

r i
x r j

y 
 (~x? ; ~y? )
���
~y? ! ~x?

: (4.26)
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4.3 Gluon Fields in the Generalized MV Model

The cancellation of the singularity in 
 through the subtraction in Eq. (4.19)

is a classic result of the proper McLerran-Venugopalan model. We will now show

that this benign result holds for the inhomogeneous charge densities� that we have

permitted. This will also prove that the original assumptions of the MV model

regarding homogenous charge distributions are well de�ned, since stable under small

perturbations. Let us introduce center and relative coordinates for two points~x?

and ~y? in the transverse plane via~R = ( ~x? + ~y? )=2 and~r = ~y? � ~x? .

We �rst recall the argument in the original McLerran-Venugopalan model. For

constant � (~x? ) = � 0 we need to calculate the correlation function


 0(r ) � 
 0(~x? ; ~y? ) = � 0

Z
d2z? G(~x? � ~z? )G(~y? � ~z? )

= � 0

Z
d2k?

(2� )2 ei~k? ~r 1
(k2

? + m2)2 = � 0
r

4�m
K 1(mr ) (4.27)

which only depends on the relative distancer due to isotropy and translational in-

variance . Due to the factorization ofh(x � ) all results also hold for the correlation

functions not integrated overx � . As mentioned before
 0 exhibits a quadratic depen-

dence on the infrared cuto�m for small r . In particular, we have
 0(0) = � 0=(4�m 2).

Hence the subtracted 2-point function (4.19) in this case, in the ultraviolet limit

r ! 0 becomes

� 0(r ) = 2 
 0(r ) � 2
 0(0) = � 0
r 2

8�

�
ln

r 2m2

4
+ 2 
 E � 1

�
+ O(m2r 4) : (4.28)

This is equivalent to the result in [78] using a �nite gluon mass regularization. The

power singularity 1=m2 is replaced by a weak logarithmic dependence onm for small
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r .

Let us now check that the same cancellation takes place if� is weakly varying

on length scales 1=m as permitted above. We are only interested in typical values

of r = j~y? � ~x? j . Q� 1
s since the inverse distance should be larger than the infrared

regulator, r � 1 � m. In fact the computation of the energy momentum tensor only

requires the limit mr � 1 (which we have called the ultraviolet limit). Next we

recall that the Green functionsG(z? ) � K 0(mz? ) fall o� on a scale � 1=m � r .

Under these conditions, we can restrict ourselves to the �rst few terms of a Taylor

expansion of� around ~R in the calculation of 
 :

� (~z? ) = � ( ~R) + ( ~z? � ~R) i r i � ( ~R) + : : : (4.29)

which leads to the expression


 ( ~R;~r) � 
 (~x? ; ~y? ) = 
 0( ~R; r ) +
1
2

r i r j � ( ~R)
 ij (~r) + : : : : (4.30)

Here we have
 0( ~R; r ) = � ( ~R)rK 1(mr )=(4�m ) analogous to (4.27), representing the

constant term. The linear term vanishes due to

Z
d2~z? G(~z? + ~r=2)G(~z? � ~r=2)zi

? = 0 ; (4.31)

and the second order term is


 ij =
Z

d2~z? G(~z? )G(~r � ~z? )zi
? zj

? = � ij r 2

24�m 2 K 2(mr )+
r i r j

r 2

13r 3

96�m
K 1(mr ) (4.32)

These correlations functions can be conveniently computed in Fourier space, similar

to the technique in Eq. (4.27).

52



The subtraction of 
 (0) removes the leading quadratically divergent term inm

as in the original McLerran-Venugopalan model. In the relevant limitrm ! 0 we

have

�( ~R;~r) = � ( ~R)
r 2

8�
�
ln m̂2r 2 � 2

�
+ O(�m 2r 4)

+ r i r j � ( ~R)
�
� � ij +

r i r j

r 2

13
2

�
r 2

48�m 2 + O([r 2� ]m0r 4) + O(r 4� ) : (4.33)

where m̂ = �m and � = exp( 
 E + 1=2)=2 � 1:47. Indeed, the dependence on the

cuto� m is at most logarithmic for the small variations of� that are permitted. Note

that we will never keep gradients of� larger than order 2 since higher orders will be

hard to control phenomenologically.

Besides the subtracted correlation function � we need to check the double deriva-

tive r i
x r j

y 
 (~x; ~y) in the gluon distribution (4.26). Up to second order gradients we

obtain

r i
x r j

y 
 (~x; ~y) = � ( ~R)
1

4�

�
� ij K 0(mr ) �

r i r j

r 2 mrK 1(mr )
�

+
�
�r i r j � ( ~R)

7
2

+ 4 � ( ~R)� ij
�

r
48�m

K 1(mr ) + O(r 3� ) : (4.34)

We take the limit mr ! 0 and keep only terms isotropic in~r by setting r i r j =r2 !

� ij =2, as no dependence on the direction of~r should remain in this limit. The leading

terms of the correlation function with two derivatives read

r i
x r j

y 
 ( ~R; r )
���
r ! 0

= � � ( ~R)
1

8�
� ij ln(m̂2r 2)

+
�
�r i r j � ( ~R)

7
2

+ 4 � ( ~R)� ij
�

1
48�m 2 ; (4.35)
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wherem̂ = e �m � 1:47m

Eqs. (4.33), (4.34) together with (4.25) or (4.26) determine the gluon distribution

in the generalized McLerran-Venugopalan model. For the case of constant� we

recover the standard expression for the gluon distribution [78, 63]

hA i
aA i

ai =
4(N 2

c � 1)
g2Ncr 2

�
1 � (m̂2r 2)

g4N c
16 � ( N 2c � 1)

�r 2
�

: (4.36)

Recall that our de�nition of � has an additional factorN 2
c � 1 compared to [78, 63].

The generalized result in the ultraviolet limit is

hA i
a(~x? )A j

b(~x? )i = � ab
g2� (~x)

8� (N 2
c � 1)

�
� ij ln

Q2

m̂2 +
r kr l � (~x)
m2� (~x)

�
1
6

� kl � ij �
7
12

� ik � jl
��

:

(4.37)

up to second order in gradients. Here we have regularized the limitr ! 0 by an

ultraviolet cuto� Q � 1=r in the logarithm.

4.4 Higher Twist Gluon Correlation Functions

For the components of the energy momentum tensor beyond the leading term

in the � expansion we will need expectation values of expressions of the gluon �eld

beyond the gluon distribution function. We will compute those correlation functions

in this subsection. With more �elds or more derivatives they are akin to \higher

twist" gluon distributions, and we will see that there is indeed a power counting

hierarchy.

With one additional transverse derivative in the 2-gluon correlation function we
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have

h@kA i
a(x � ; ~x? )A j

b(y
� ; ~y? )i =

Z x �

�1
dx0�

Z y �

�1
dy0�

�D
(D kF + i )a(x0� ; ~x? )F + j

b (y0� ; ~y? )
E

+ ig
D�

Ak ; F + i �
a (x0� ; ~x? )F + j

b (y0� ; ~y? )
E�

: (4.38)

Using the same change to covariant gauge as in Sec. 4.2 the �rst and second expec-

tation value can be transformed into

D
Uy

aa0(x0� ; ~x? )Uy
bb0(y0� ; ~y? )@k@i � a0(x0� ; ~x? )@j � b0(y0� ; ~y? )

E

= � ab
g2

N 2
c � 1

� (x0� � y0� )
�
�r i

x r k
x r j

y 
 (x0� ; ~x? ; ~y? )
�

d(x0� ; ~x? ; ~y? ) ; (4.39)

if cda

Z x �

�1
dx00�

D
F + k

c (x00�; ~x? )F + i
d (x0� ; ~x? )F + j

b (y� ; ~y? )
E

= if cda

Z x �

�1
dx00�

D
Uy

cc0(x00�; ~x? )Uy
dd0(x0� ; ~x? )Uy

bb0(y0� ; ~y? )

� @k � c0(x00�; ~x? )@i � d0(x0� ; ~x? )@j � b0(y0� ; ~y? )
�

= 0 ; (4.40)

respectively. The second term vanishes since an even number of adjoint Wilson lines

and �elds � have to be contracted with each other (combinationshU� i � 0 are

suppressed) [80]. For the �rst term we recall that in covariant gaugeD k
covF + i

cov =

@k@i � . The two integrals overx0� and y� can be dealt with exactly as in the case of

the gluon distribution. The result for arbitrary longitudinal positions x � > 0 (after

taking the thickness� of light cone sources to zero) in the relevant UV limit is

h@kA i
a(~x? )A j

b(~x? )i = �
g2

N 2
c � 1

� abr i
x r k

x r j
y 
 (~x? ; ~y? )

���
~y? ! ~x?

: (4.41)
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Similarly we can treat two more expectation values with 2 derivatives each. We

obtain

h@kA i
a(~x? )@lA j

b(~x? )i =
g2� ab

(N 2
c � 1)

"

r i
x r k

x r j
yr l

y 
 (~x? ; ~y? )

+
g2Nc

2(N 2
c � 1)

r i
x r j

y 
 (~x? ; ~y? )r k
x r l

y 
 (~x? ; ~y? )

#

~y? ! ~x?

: (4.42)

The expectation value can be written as a sum of four terms� DFDF , � FFDF ,

� DFFF , FFFF as in (4.39). The second and third vanish for the same reasons the

second term in (4.39) dissappears. The other two terms can be shown to correspond

to the two contributions in the equation above. In the same spirit we have

h@k@lA i
a(~x? )A j

b(~x? )i =
g2� ab

(N 2
c � 1)

"

r i
x r k

x r l
x r j

y 
 (~x? ; ~y? ) �
g2Nc

2(N 2
c � 1)

� r i
x r j

y 
 (~x? ; ~y? )r k
x r l

x 
 (~x? ; ~x? )

#

~y? ! ~x?

: (4.43)

The higher derivatives of the correlation function
 are straightforward to calcu-

late. We have

r i
x r k

x r j
y 
 (~x? ; ~y? ) =

� ( ~R)
4�

��
� ij r k

r
+ � ik r j

r
+ � jk r i

r

�
mK 1(mr )

r i r j r k

2r 3 m2rK 2(mr )
�

+
r l � ( ~R)

8�

�
� jl r i r k

r 2 � � il r j r k

r 2 � � kl r i r j

r 2

�
mrK 1(mr )

�
r l � ( ~R)

8�
�
� jl � ik � � il � jk � � kl � ij �

K 0(mr ) (4.44)

where we have kept the two leading orders,� 1=r and � m, in our power counting

in mr . One can check that the contribution of the leading term to observables (e.g.

to � i ) vanishes due to the odd number of powers inr i . Hence the relevant term in
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the UV limit is

r i
x r k

x;y r j
y 
 (~x? ; ~y? )

��
~y? ! ~x?

=
r l � ( ~R)

16�
ln

Q2

m̂2

�
� � jl � ik � � il � jk + � kl � ij �

: (4.45)

The lower signs are valid if the derivativer k acts ony? instead ofx? . As discussed

above we have dropped a termO(g2�Q ) that does not contribute to observables. One

can check from the lower signs in (4.45) thathA i
a@kA j

b(~x? )i has the same form modulo

a permutation f i; ag $ f j; bg consistent with the symmetry of the expression.

Caution is needed when we are calculating four derivatives on
 . The leading

behavior of r i
x r j

yr k
x r l

x;y 
 (~x? ; ~y? )
��
~y? ! ~x?

is similar to 4 ln r which vanishes every

where excerptr ! 0. A proper integration will give us the leading term, together

with the next leading term, we have (again regularizing 1=r by Q),

r i
x r j

yr k
x r l

x;y 
 (~x? ; ~y? )
��
~y? ! ~x?

= �
� ( ~R)
4�

Q2 1
8

�
� ij � kl + � ik � jl + � jk � il � (4.46)

+
r m r n � ( ~R)

32�
ln

Q2

m̂2 (� ij � km � ln � � ik � jm � ln

� � il � jm � kn + � jk � im � ln � � jl � im � kn � � kl � im � jn ) :

The leading term only depends on the charge density at the transverse position while

the next leading term depends on 2nd gradients on charge density, which essentially

contribute to energy momentum tensor at the same order ofr i � i and r i � i . Thus we

have all the ingredients to calculate expectation values of components of the energy

momentum tensor up to 2nd order in time which we will do in the next chapter.
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5. ENERGY MOMENTUM TENSOR AND FLOW OF GLASMA

We now return to the case of two colliding nuclei and calculate expectation values

for the energy momentum tensor. We will further break down the expressions for the

components of the energy momentum tensor in the small time expansion in terms of

the initial longitudinal �elds such that they can be written in terms of the �elds A i
1

and A i
2 in the individual nuclei. It is then straightforward to apply the results of the

last section to obtain the proper expectation values that can be observed in nuclear

collisions. 1

5.1 Energy Density and Flow

The expectation value of the initial energy density� 0 from Eq. (3.2) can be written

as [63],

"0 � h "0i =
g2

2
f abef cde

�
� ij � kl + � ij � kl � hA i

1;aAk
1;ci � 1 hA j

2;bA
l
2;di � 2 : (5.1)

Note that in this chapter we calculate only averages of components of the energy

momentum tensor and will henceforth suppress the symbolh: : :i in the notation for

simplicity.

Applying (4.37) for each nucleus the initial energy density is

"0(~x? ) = T00
(0) (~x? ) =

g6Nc

32� 2(N 2
c � 1)

� 1(~x? )� 2(~x? ) ln2 Q2

m̂2 � c0� 1(~x? )� 2(~x? ) : (5.2)

� 1 and � 2 are the expectation values of the densities of charges, as discussed in the
1Part of the contents in this chapter is reprinted from Global 
ow of glasma in high energy

nuclear collisions by G. Chen and R. J. Fries, 2013, Phys. Lett. B, 723, 417-420. Copyright [2013]
by Elsevier.
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last section, in nuclei 1 and 2, respectively. We have dropped terms� rr �=m 2

subleading for the energy density.

We have de�ned the coe�cient c0 as,

c0 =
g6Nc

32� 2(N 2
c � 1)

ln2 Q2

m̂2 : (5.3)

Eq. (5.2) is consistent with the expression derived by Lappi in [63] up to a factor of

(N 2
c � 1)2 coming from di�erent de�nition of charge density � .

The expectation value of 
ow in transverse direction at orderO(� ) is given by

� i = � c0r i (� 1� 2) ; (5.4)

for rapidity-even contribution. We assume here that we can chooseQ2 and m̂ uni-

versally and that they do not depend on~x? . If Q = Qs that would not be true.

The rapidity odd 
ow vector needs to be evaluated with the same technique as the

energy density. Separation of contributions from both nuclei leads to

� i = g2f abef cde� ij �
� mn � kl � � kl � mn � �

h(@i Am
1;a)Ak

1;cihAn
2;bA

l
2;di

+ h(Am
1;a)Ak

1;cih(@An2;b)A
l
2;di

�
(5.5)

Recall that terms with an odd number of �elds, e.g.� h AAA i have a vanishing

expectation value. The expectation value then takes a form surprisingly similar to

� i :

� i = � c0
�
� 2r i � 1 � � 1r i � 2

�
: (5.6)
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5.2 The Energy Momentum Tensor up to Order� 3

The longitudinal 
ow of energy at order � 2 can be calculated in the same way,

� = h[D m ; E0][D m ; E0] + [ D m ; B0][D m ; B0]i

= g2f abef cde
�
� ij � kl + � ij � kl � (h(@mA i )1;a(@mAk)1;ci � 1 hA j

2;bA
l
2;di � 2

+ hA i
1;aAk

1;ci � 1 h(@mA j )2;b(@mA l )2;di � 2 + h(@mA i )1;aAk
1;ci � 1 hA j

2;b(@
mA) l

2;di � 2

+ hA i
1;a(@mAk)1;ci � 1 h(@mA) j

2;bA
l
2;di � 2 )

+ 2
g4

2
f abAf eAB f cdCf fcB

�
� ij � kl + � ij � kl � �

�
hAm

1;eA
m
1;f i � 1 hA i

1;aAk
1;ci � 1 hA j

2;bA
l
2;di � 2

+ hA i
1;aAk

1;ci � 1 hA j
2;bA

l
2;di � 2 hAm

2;eA
m
2;f i � 2

�
: (5.7)

Using formulas we derived in Chapter 4 Sec. 4.4, we have

� =4Q2� 0 ln� 1 Q2

m̂2 (5.8)

+ c0
�
(4 � 1)� 2 + r i � 1r i � 2 + � 1(4 � 2)

�

+
g4Nc

4� (N 2
c � 1)

ln
Q2

m̂2 (� 1 + � 2)� 0 :

Other new contributions to the energy momentum tensor at order� 2 can be

obtained by the same procedure,

! i =
(� 1)i

2
c0

�
@1@1(� 1� 2) � @2@2(� 1� 2)

�
; (5.9)


 =
1
2

c0@1@2(� 1� 2) : (5.10)

! i will break the isotropy of the pressure such thatT11 6= T22 .

The energy 
ow � i at order � 3 can be expressed as derivatives of second order
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quantities. This has been proved explicitly in Eq. (3.30).

� i = r i (�4 � 0 + � + ! i ) � r j 
 : (5.11)

The rapidity odd 
ow at order � 3 � i = 0 if we assume the correlator of three �elds

vanishes.

Hence after average the color con�guration, the energy momentum tensor up to

order O(� 3) in the ( t; x; y; z) coordinates can be written as

T ��
f =

0

BBBBBBB@

T00
(0) + � 2T00

(2) �T 01
(1) + � 3T01

(3) �T 02
(1) + � 3T02

(3) T03
(0) + � 2T03

(2)

�T 01
(1) + � 3T01

(3) T11
(0) + � 2T11

(2) � 2T12
(2) �T 13

(1) + � 3T13
(3)

�T 02
(1) + � 3T02

(3) � 2T12
(2) T22

(0) + � 2T22
(2) �T 23

(1) + � 3T23
(3)

T03
(0) + � 2T03

(2) �T 13
(1) + � 3T13

(3) �T 23
(1) + � 3T23

(3) T33
(0) + � 2T33

(2)

1

CCCCCCCA

: (5.12)

Explicit expression can be obtained by combining the results of Chapters 3 and this

Chapter. The full structure is too large to be listed here. For convenience, let us

also give the energy momentum tensor up to orderO(� 3) for brevity in the �; x; y; �

coordinate system. The metric tensor in that system isgmn =diag(1; � 1; � 1; � 1=� 2).

Then the energy momentum tensor can be written in a more compact form as

Tmn
f =

0

BBBBBBB@

� 0 � � 2

8 (� 24 � 0 + � ) �
2 � x + � 3

16 � x �
2 � y + � 3

16 � y �
8 r i � i

�
2 � x + � 3

16 � x � 0 � � 2

4 (�4 � 0 + � + ! x ) 
 1
2 � x

�
2 � y + � 3

16 � y 
 � 0 � � 2

4 (�4 � 0 + � + ! y) 1
2 � y

�
8 r i � i 1

2 � x 1
2 � y � � 0

� 2 + 1
8(� 24 � 0 + 3 � )

1

CCCCCCCA

.

(5.13)

It is obvious that the energy momentum tensor is boost invariant since the compo-

nents are independent of� in the �; x; y; � coordinate system. This is a check that

the original assumption of the MV model is intact. Eq. (5.13) and the detailed
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expressions (5.2), (5.4) , (5.6), (5.9), (5.10) and (5.11) are one main result of this

dissertation. The consequences of matching this energy momentum tensor to 
uid

dynamics will be discussed later.

5.3 An Electrodynamic Analogue

The rapidity-odd energy 
ow � i is a surprising result. Traditionally boost-

invariance in models of heavy ion collisions have led to only rapidity-even quantities.

However, as we have already shown above, the energy momentum tensor (5.13) is ex-

plicitly boost-invariant despite the presence of� i . Here we want to give an intuitive

interpretation of the astonishing origin of such rapidity odd 
ow. Let us consider

the following equivalent boundary value problem in classical electrodynamics. In the

forward light cone � > 0 we have the Maxwell Equations@� F �� = 0 without sources.

On the light cone � = 0 we demand the boundary conditions~E (� = 0 ; ~r) = E0(~r)~ez,

~B (� = 0 ; ~r) = B0(~r)~ez, i.e. the initial �elds are purely longitudinal. We also assume

that those �elds are related through transverse �eldsA i
1 and A i

2 as E0 = � ij A i
1A j

2

and B0 = � ij A i
1A j

2. The abelian problem for �xed initial conditions has been solved

analytically in chapter 2 section 2.3, see also [62], but it will su�ce here to give the

solution order by order in powers of� as we did in the case of QCD. From the QCD

solutions we can immediately conclude that the longitudinal �elds in the abelian case

are

E 3 =
�

1 +
t2 � z2

4
r 2

�
E0 (5.14)

B 3 =
�

1 +
t2 � z2

4
r 2

�
B0 ; (5.15)
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while the transverse �elds are

E i =
z
2

r i E0 +
t
2

� ij r j B0 (5.16)

B i =
z
2

r i B0 �
t
2

� ij r j E0 ; (5.17)

for small times � , i.e. t2 � z2. The Cartesian coordinates permit simple checks of

these solutions with Gauss’, Amp�ere’s and Faraday’s Laws.

There is a straight-forward interpretation of some aspects of these results. Let

us choose, just as an example, a transverse position whereE0; B0 > 0 and r 2E0,

r 2B0 < 0 so that the longitudinal �elds decrease away from the light conet2 = z2.

Two observers at �xed pointsz = z0 > 0 andz = � z0 would observe the same electric

(magnetic) 
ux through a small transverse areaa2 with an initial value E0a2 (B0a2)

at t = z0 which then diminishes at the same rater 2E0a2t=2 (r 2B0a2t=2) for both.

Due to Amp�ere’s (Faraday’s) Law this reduction induces magnetic (electric) �elds

curling with a negative (positive) chirality around the longitudinal �elds, respectively,

see Fig. 5.1.

On the other hand the same two observers at �xed pointsz0 and � z0 can at time

t = z0 count the electric or magnetic 
ux through small cubes of volumea3 whose

sides are aligned with the coordinate axes. One side is held atz = � z0, while the

opposite side is atz = � z0� a for the observer atz0 or � z0, respectively. In the former

case the total 
ux out of the box due to the longitudinal �eld is � z0a3r 2E0=2 > 0

while for the observer at� z0 the net 
ux of longitudinal �eld has the opposite sign.

Thus at z0 a net 
ux of transverse �eld has to enter into the box while at � z0 the

same amount has to 
ow out of the box to satisfy Gauss’ Law.

To summarize, the transverse �elds naturally have a part due to Gauss’ Law with

vanishing circulation (� ij r j ), which is odd in � , and they have a part due to Amp�ere’s
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Figure 5.1: Two observers atz = z0 and z = � z0 test Amp�ere’s and Faraday’s

Laws with areasa2 in the transverse plane and Gauss’ Law with a cube of volume

a3. The transverse �elds from Amp�ere’s and Faraday’s Laws (black solid arrows) are

the same in both cases, while the transverse �elds from Gauss’ Law (black dashed

arrows) are observed with opposite signs. Initial longitudinal �elds are indicated by

solid grey arrows, thickness re
ects �eld strength. Picture reprinted from [77] with

permission from ELSEVIER.

and Faraday’s Law (and with di�erent signs between the magnetic and electric part

due to the Lenz rule) with vanishing transverse divergence (r i ), which is even in

� . Fig. 5.2 shows the transverse electric and magnetic �elds for two rapidities� for

random �elds A i
1 and A i

2 in a sector of the transverse plane. One can check that this

statement about transverse �elds translates directly into a matching statement about

the transverse 
ow of energy since the initial transverse Poynting vector is linear in
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