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ABSTRACT 

 

This thesis demonstrates the effect of micro-damage healing on stress and 

displacement fields in the vicinity of a crack tip in the material that tend to self-heal. The 

micro-damage healing model is modeled by incorporating time-dependent traction 

within the crack faces. This time-dependent traction occurs in a small zone referred to as 

healing process zone. The effect of the micro-damage healing on crack propagation in 

elastic media is investigated by deriving analytical relations for Stress Intensity Factor 

(SIF) when micro-damage healing mechanism is in effect. It is shown that the larger 

values of both healing process zone and bonding strength decrease the value of SIF near 

the crack tip. In order to clearly capture this phenomenon, a novel technique based on 

complex variables is used to derive the equations to calculate the stress and displacement 

fields in elastic media. Using the third correspondence principle, which is suitable in 

analyzing the crack shortening (healing phenomenon), the corresponding results of stress 

and displacement fields in elastic media are converted into viscoelastic media. Since 

asphalt has time-dependent material properties, the viscoelastic result is more accurate 

than the elastic. It is shown that an increase in the value of both healing process zone and 

bonding strength results in a decrease in the stress and displacement fields near the crack 

tip. Finally, the effect of using different coefficients in defining the bonding strength and 

relaxation time is evaluated.  

Asphalt concrete pavements are concurrently subjected to mechanical and 

environmental loading conditions during their service life. Applied mechanical and 
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environmental loadings gradually degrade properties of asphalt concrete pavements. 

However, under specific conditions, asphalt concrete has the potential to heal and regain 

part of its strength. Identifying a model for the healing process is crucial. This proposed 

model is not dependent on the test methods that empower its usage in computational 

modeling. Moreover, this research considers both effects of instantaneous healing (a 

result of wetting) and time-dependent bond strength (a result of molecular diffusion 

between the crack faces), using the complex-variable method. Schapery (1989) 

considered only instantaneous healing and regarded it as the total bond strength. 

Therefore, considering both effects of instantaneous and time-dependent bond-strength 

makes this model superior with respect to the analogous model. It is hoped that this 

research provides insight on the healing mechanism at micro-scale. 
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1. INTRODUCTION 

 

Asphalt concrete pavements are subjected to concurrent mechanical loading and 

environmental conditions during their service life. While traffic is considered as 

mechanical loading, other factors, such as moisture, temperature, and oxidation 

diffusion, are specified as environmental effects that impact pavement performance. 

Although asphalt properties degrade under the aforementioned conditions, asphalt has 

the ability to regain at least some of its strength under some specific conditions. 

Partial or full recovery of strength or stiffness, called healing, is an intrinsic 

property of bitumen that leads to an improvement in the serviceability of asphalt 

pavements. This phenomenon can be observed within both cohesive and adhesive 

modes. Cohesive healing occurs in the bitumen or mastic; however, adhesive healing 

takes place at the bitumen–aggregate interface. Healing can be influenced by both 

internal factors and external factors. Physical, compositional, chemical and 

thermodynamic properties, such as penetration value and softening point, chemical 

composition, surface free energy, and volumetric properties are specified as internal 

factors. Factors, such as the rest periods, temperature, loading methodology, load level, 

damage level, compressive stress, aging, and moistures, are considered external factors. 

Investigating the effect of both internal and external factors on the healing 

process has drawn considerable attention in recent years, largely spurred by work at 

Texas A&M University in the mid-1980s (Kim et al., 1990). Previously published 

studies have suggested that extended rest periods, can greatly improve the healing ability 
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of asphalt mixtures (Kim, 2003; Kim et al., 2001; Shen et al., 2010; Tan et al., 2012). 

However, greater levels of damage due to higher loading magnitudes or more loading 

cycles have proven to negatively impact healing since regions of greater damage are 

probably less likely to heave due to a higher gradient of molecular disturbance 

associated with more damage (Little et al., 2001). Moreover, higher temperature 

accelerates the healing mechanism (Shen et al., 2010; Williams et al., 2001).  

1.1 Effect of micro-damage healing on pavement performance 

Improved serviceability through healing must also reflect the potential for 

healing to affect the factors that impact serviceability including fatigue cracking and 

rutting. Results of fatigue cracking, obtained from laboratory and field experiments, do 

not usually match each other. Therefore the experimental results are scaled using the so-

called shift factor which can be as high as 20 (Little and Bhasin, 2007). Shift factors 

(SF) are caused by healing ( hSF ), residual stresses ( rSF ) and resilient dilation ( dSF ) 

which are expressed in Eq.  (1) (Lytton et al., 1993). 

 h r dSF SF SF SF    (1) 

The hSF value varies between 1 and 10, while the value of rSF changes between 

1

3
to 3. Finally dSF  can be as low as 1 and as high as 5. Lytton et al. investigated the 

importance of rest periods (i.e., healing), including both frequencies and durations, on 

the aforementioned healing shift factor ( hSF ), such that: 

 1 ( )b

h rSF a t   (2) 
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where rt is the rest period, a  and b  are the healing coefficient and exponent, 

respectively. Different rest periods result in different values of a  and b . Lytton et al. 

(1993) attained the healing coefficients based on the field data for different climatic 

zones. 

Eq. (2) can be expressed in more detailed format, such that: 

 
0 0

1 ( ) ( )hri r
n t

SF a
N t

   (3) 

where rin and 0N represent the number of rest periods and cycles to fatigue failure, 

respectively. Moreover, 0t and rt express the time between cyclic load and rest period in 

fatigue test, respectively (Little et al., 2001). 

Little et al. (2001) and Lytton et al. (2001) tried to improve the concept of shift 

factor by implementing the asphalt binders’ healing potential, such that: 

 1 2Function( , , , )r

dh
t h h h

dN
  (4) 

where 1h and 2h  are the short-term and long-term healing rate, respectively, and h is the 

maximum healing achieved by the binder. Since 
dh

dN
(rate of healing per load cycle) has 

the same concept as 
dC

dN
 (rate of cracking per load cycle) in fracture mechanics, it can 

be implemented in fatigue- crack modeling. 

1.2 Experimental studies on the significance of micro-damage healing 

Developing a model for the healing process is crucial and requires expensive and 

time-consuming tests. The common laboratory testing practice is to induce resting 
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periods among the loading cycles to investigate the changes in the material’s properties 

before and after the rest period. Although these experiments have their own merits, 

conclusions might also be dependent on the test methods which restrict their usage in 

computational modeling. Fatigue related healing test (FH) and fracture related healing 

test (FRAH) are the two common lab tests used to characterize healing capabilities of 

asphalt concrete materials. Fatigue related healing tests are also divided into two 

categories: Fatigue related healing with intermittent loading (FHI) and Fatigue related 

healing with storage periods (FHS). In FHI tests, the intermittent loading is applied; 

however, in FHS tests, a continuous loading with an inserted storage period is 

considered. Kim and his co-workers conducted a controlled-strain dynamic mechanical 

analysis (DMA) test in order to understand the fatigue and healing characterization of 

asphalt mixtures in sand asphalt samples (Kim, 2003; Kim et al., 2001). They used a 

parameter, called pseudo stiffness, to estimate the effect of rest periods on healing. The 

experiment on the cylindrical sample, used for this torsional test, was conducted under 

25C and 10 Hz. As it can be seen in Figure 1, they showed that the slope of stress-

pseudo strain response at the 3000
th

 cycle is smaller than at the 80
th

 cycle, meaning that 

the micro damage has occurred. 
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Figure 1: Stress-strain hysteresis loops and typical trend of strain-controlled fatigue tests 

(Kim, 2003). 

 

A two-minute rest period is applied ten times in order to capture the micro 

damage healing. As it is expected, an increase in dynamic modulus is achieved after 

each rest period which is shown in Figure 2.  

 

 

Figure 2: Normalized dynamic modulus versus number of loading cycles with and 

without rest periods (Kim, 2003). 

 

Shen and her colleagues studied the effect of cohesive healing for two different 

types of binders named PG64-28 (neat binder) and PG70-28(polymer modified binder) 
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under the condition of 10 ⁰C and 25 ⁰C with 10 Hz. (Shen et al., 2010). Based on the 

result presented in Figure 3, as the rest period increases, the G* loses its value in longer 

loading cycles. It is also mentioned that the phase angle does not change significantly, so 

the G* is used as a parameter to represent deterioration in fatigue loading test. Authors 

also evaluate the effect of strain level and temperatures on healing in their paper. 

 

 

Figure 3: G* deterioration curve for the PG64-28 binder with different RPs (Shen et al., 

2010). 

 

 

In the FRAH, the resting period is inserted between two fracture tests. 

(Bommavaram et al., 2009) used this type of test for determining intrinsic healing 

properties of asphalt binders. 

As mentioned before, the experimental results are dependent on the test methods. 

Therefore, finding a way to overlook this problem is essential. Some of the previous 

studies done in this field are outlined in the subsequent sub-sections.  
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These studies show the significant effect of resting time on the healing capability 

of asphalt concrete materials. Therefore, it is imperative to investigate the effect of 

resting time and different loading scenarios on the healing response of materials. This 

thesis tries to address this issue by mathematically illustrating stress and displacement 

fields, in the presence of healing effect, during a hypothetical loading-unloading 

scenario.  

1.3 Macro-recovery parameter to characterize healing 

Some materials are self-healing, meaning that a chemical and/or thermodynamic 

process occurs that promote a structural recovery. The self-healing mechanism can be 

divided into five steps according to Wool and O’Conner (Wool and Oconnor, 1981). 

These stages are named (a) surface rearrangement, (b) surface approach, (c) wetting, (d) 

diffusion, and (e) randomization. The first stage affects the topological feature of the 

interface while the surface approach specifies the mode for healing. Wetting stage 

measures the wetting function. Improvement of the mechanical property is mostly 

dependent on the diffusion part and at the last stage, the healing process is completed. 

Figure 4 shows all the stages described above.  



8 

 

 

Figure 4: Five stages of healing (Wool and Oconnor, 1981). 
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Denoting the fracture stress by  , the changes of stress in each stage are as 

follows. While in steps (a) and (b),   has a positive value, in the wetting stage, it 

reaches a specific value called 0 . The diffusion stage increases the amount of stress by

d , such that:  

 
1/4

d Kt   (5) 

where K is a constant, dependent on temperature, pressure and molecular weight. d  

finally in the last stage reaches the fracture strength of the virgin material, called . 

Also, authors conducted some experiments to show the relation between the parameters 

and time, molecular weight, temperature and pressure. 

When two polymers contact each other at temperatures above the glass transition, 

the distance between them fades away and healing process begins. As discussed above, 

the healing process has five stages, but in this case, healing is mostly due to diffusion 

and randomization parts. Polymer chains cannot move freely since other chains inhibit 

their movements. This phenomenon is described as the Reptation model in which a chain 

is modeled in a tube to show the restriction caused by other chains (de Gennes, 1971). 

Kim proposed a theory for the last two stages of healing based on the Reptation model. 

(Kim and Wool, 1983). At 0t  , it was assumed that no chain crossed the conformation 

region; however, for 0 rt T  , the chain started to cross the initial tube line and go 

through the interface as it can be seen in Figure 5. This portion of chain is called the 

minor chain. The fourth and fifth parts of the healing process were complete after the 

time rT  is reached. 
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Figure 5 : Disengagement of a chain from its initial tube. The emergence and growth of 

minor chains are also shown (Kim and Wool, 1983). 

 

Wool and O’Connor (1981) redefined their previous procedure to describe self-

healing using two stages. In the first step, the two surfaces came into contact with each 

other, called wetting in which mechanical property and surface free energy were 

considered as important factors( i.e., considered as the combination of steps a-c in Figure 

4) . Short-term and long-term strength gain, the second stage of healing, was caused by 

interfacial cohesion and intermolecular diffusion( i.e., considered as the combination of 
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d and e steps). Wool and O’Connor proposed Eq. (6) to capture the effect of both 

wetting and diffusion. 

 
( )

( )  

t

h

d
R R t d

d



 











  τ   (6) 

where R shows the process of healing in all stages,      is the intrinsic healing function,   

   is the wetting distribution function, and  is the time variable. As mentioned before, 

the higher temperature leads to a higher value of R. 

Wool and O’Conner (1982) described the intrinsic healing function for stress, 

strain, and energy in Eqs.(7),(8) and(9).  

  1/4

0

1
( , )hR t Kt 



   (7) 

  1/4

0

1
( , )hR t Jt 


   (8) 

  
2

1/4

0

1
( , )

2
hR E t Kt

YE




   (9) 

The subscript implies values measured in the virgin fracture state. J is derived 

via /K Y  where Y is a tensile modulus. The value for E is calculated as 2 / 2E Y , 

which defines the fracture energy per unit area. (Kim and Wool, 1983) conducted 

experiments to verify the theory in Wool and O’connor ‘s paper(1982). 

The intrinsic healing function for polymers is presented in Eq.  (10). 

 
0.25

0( ) ( )hR t R Kt t     (10) 

where ζ (t) represents the surface arrangement of the molecules. The symbol   stands 

for convolution integrals. Since this model is established for a simple polymer with 
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short-time healing, it is not appropriate for the asphalt binders. Avrami’s model was used 

by Bhasin and Little (2008) to propose a new formula, suitable for healings in asphalt 

binders, which covers both short-term and long-term strength gain in healing 

 0( ) (1 )
rqt

hR t R p e     (11) 

where p, q, and r are the material parameters that define the time-dependent strength 

gain at the interface. The term 0R , represents the short-term strength gain caused by 

interfacial cohesion; whereas, the term (1 )
rqtp e  effectively captures the long-term 

strength gain due to intermolecular diffusion. (Bommavaram et al., 2009) presented a 

methodology to find these parameters for five different types of binders.  

Little and Bhasin (2008) used Schapery’s (1989) formulation for the rate of crack 

shortening along with the concept of macro-recovery parameter introduced by Wool and 

O’connor (1981) and related the wetting distribution as a function of fundamental 

properties of asphalt, such that: 

 
 

1/

02  2
1 

 Φ( , ) 1
[   ]

4 1  

mc

m b

Wd t X
D

dt D k




  


  

  
  

  (12) 

where cW  is the work of cohesion,   is the Poisson’s ratio, b  is the stress at crack 

surfaces,   is the healing process zone, 0D , 1D  and m  are creep compliance 

parameters, and mk  is a material constant. This equation is just applicable for the 

constant rate of wetting. 
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This thesis contributes in modeling the micro-damage healing phenomenon by 

incorporating the effects of both wetting and intrinsic healing mechanism on stress and 

displacement fields near the crack tip.  

1.4 Different approaches to model micro-damage healing effect 

Several researchers have introduced different indices to explain this 

phenomenon. Tan et al. (2012) defined two indices to clarify the concept of healing. 

 
1 min( ) 1

*

*
00ter al

initial

G
HI

G
   ;     

* 

 2

* 
 

( )
100

after beforeterminal

before
initial

G N N
HI

NG

  
  
 
 

 (13) 

where 1HI  is the healing index (modulus ratio), *

initialG  is the initial modulus value 

before rest, and *

afterG  is the initial modulus after rest; while 2HI  is a healing index 

(cycle number ratio) ,               is the dynamic modulus when the loading stops, 

        is the number of cycles when the loading stops prior to rest, and        is the 

number of cycles when the loading stops after the rest period. Looking into Figure 6, it is 

obvious that the rest period can have a significant effect on the material response, 

especially when applied before the failure. Most of the modulus loss is recovered over 

time.  
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Figure 6: Schematic of fatigue indices (Tan et al., 2012). 

 

(Little and Bhasin, 2007) defined another healing index based on the pseudo-

strain energy, which was measured against different rest periods based on the 

experimental data of five different binders. 

Another significant contribution to understand healing phenomenon was the 

fracture mechanics-based work of Schapery. Schapery (1989) proposed a crack 

shortening evolution function in viscoelastic media using the correspondence principle; 

however, Schapery only considered instantaneous healing to determine the rate of crack 

shortening. More details on Schapery’s model are provided in section 2. 
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Although models based on fracture mechanic theories provide insight on the 

crack propagation and growth at micro-scale, they cannot be extended to a specimen 

containing considerable number of micro-cracks. Therefore, introducing a method to 

capture this phenomenon at macro-scale was crucial.  Abu Al-Rub et al. (2010) and 

Darabi et al. (2012) extended the classical continuum damage mechanics framework to 

the continuum damage-healing framework by introducing the micro-damage healing 

internal state variable. They argued that the proposed framework inherits the simplicity 

and robustness of the well-known continuum damage mechanic theories (e.g. 

(Kachanov, 1958)). They proposed a phenomenological-based micro-damage healing 

evolution function and applied it to predict the effect of micro-damage healing on the 

mechanical response of bituminous materials. Further explanation is provided in section 

3. 

This research enhances Schapery’s work by considering both effects of intrinsic 

and time-dependent bond strength using complex-variable method. This model 

mathematically demonstrates the effect of micro-damage healing on the stress intensity 

factor (SIF), displacement field, and stress field near the crack tip in the elastic media. 

Using the third correspondence principle, the result of stress and displacement fields in 

elastic media can be transformed into viscoelastic media. It is observed that an increase 

in the value of bonding strength and healing process zone will result in a decrease in the 

both stress and displacement field. In the last step, the effect of different relaxation time 

and bonding strength is evaluated.  
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2. FRACTURE MECHANICS 

 

This chapter presents the fundamental concepts of fracture mechanic theories. 

Although considering the interactions between multiple cracks is a baffling task using 

fracture mechanics theories, they can be used effectively to understand the mechanism of 

crack nucleation, growth, and propagation at micro-scale. 

2.1 Different modes of fracture 

The stress distribution near the crack tip can be divided into three different 

categories: Mode I, Mode II and Mode III. A crack will open perpendicularly to its 

surface in the first mode (i.e. the stress induced is compression or tension). Mode II 

produces in-plane shear stress and Mode III induces anti-plane shear stress. Figure 7 

schematically displays different modes of fracture. 

 

 

Figure 7: Different modes of fractures in a particle near the crack tip (Zehnder, 2012).  

 

These three modes are also known as opening mode, sliding mode and tearing 

mode, respectively. The actual load applied to the crack could be the combination of 

these three modes. Both corresponding stress and displacement fields for all three Modes 
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are determined in the literature; however, only the first mode is investigated in this 

thesis. 

2.2 Stress intensity factor and energy release rate 

Onset of crack propagation can be defined using two different concepts: energy 

release rate and stress intensity factor. Griffith (1921) was the first who investigated 

crack nucleation and growth using fracture mechanics. He assumed an elliptical shape 

for the crack. Based on Griffith’s criterion, crack propagation requires a sufficient 

amount of released energy during the crack growth. This criterion is expressed in 

mathematical expression as follows (Broek, 1986), 

 ( ) 0 ( )
d d d

U F W F U W
da da da

       (14) 

where U , F , and W are elastic energy contained in the plate, work of the external 

force,  and energy for crack formation, respectively. Moreover, a  defines the length of 

the crack. The right hand side of Eq. (14) is the crack resistance force, R , and the left 

hand side states the energy release rate (crack extension force), denoted byG . 

Suppose there is a plate with an internal crack, subjected to load P in 

perpendicular direction of crack. The work done by the external load is Pd  where d  

represents the change in displacement. Under the assumption of linear elastic relation 

between displacement and loading ( CP  ), elastic energy can be calculates as: 

 21

2
U CP  (15) 

Substituting Eq. (15) into Eq.(14), the energy release rate can be found, such that: 
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2

C
G P

B a





 (16) 

where B is the plate thickness.  

Dugdale (1960) showed that the stress field near the crack tip can theoretically 

reach infinity in an elastic media containing a single centered crack. To characterize the 

stress field near the crack tip, he proposed the concept of the Stress Intensity Factor 

(SIF) in order to remove the singularity and to define a measure that can be used to 

compare stress fields near the cracks with different geometries. The SIF in opening 

mode (mode 1) is denoted by IK  and is expressed as:  

 
0

( ) 2I
x

K Lim x x 


 
 

 (17) 

where x  is the distance from the crack tip. It can be shown that for a crack with the 

length of 2a  subjected to far field stress of
R , IK can be expressed as: 

 
R

IK a   (18) 

Fracture toughness is the material property which shows the resistance of the 

crack to fracture, denoted by ICK . In a situation where the value of IK  is greater than

ICK , the crack will propagate. 

The relations between the energy release rate and stress intensity factor for plane 

stress and plane strain conditions are presented in Eqs.(19) and (20), respectively. 

 
2

I
I

K
G

E
  (19) 

 
2

2(1 ) I
I

K
G

E
   (20) 
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where subscript I  refers to the first mode of fracture and IK is the stress intensity factor. 

(Dugdale, 1960) also assumed the material behaves in an elastic-perfectly plastic 

mode. With the presence of plastic zone, the stress is bounded at the tip with no 

singularity. This requires that 0R

IK   for the fictitious crack, by which the plastic zone 

size and the displacement at the crack tip can be determined (Hellan, 1985). 

Many studies were done to improve the work of (Griffith, 1921). He determined 

the breaking stress for both case of plane strain and plane stress by considering the 

surface energy of the crack and an increase in the strain energy caused by the crack in 

brittle solid. However, his formulation was not applicable to ductile materials. Orowan 

(1954) and Irwin (1957) tried to generalize Griffith’s criterion. Barenblatt (1959a; 

1959b; 1962) also worked on the equilibrium cracks in his studies (i.e., dimension of the 

crack does not change under the given load). In his calculation, he divided the crack into 

inner and outer regions. In the inner region, the displacement of the lower and upper 

parts of the crack is considerable; therefore, their forces can be negligible. However, in 

the outer region, the forces are significant, but the displacement is not. He claimed that a 

specific minimum force is required for the creation of the crack. After the crack reaches 

this state, even a small increase in the applied force could result to a sudden rupture. The 

mathematical theory of equilibrium cracks formed in brittle fracture is expressed in Eq. 

(21). 

 
N

s
   a finite quantity (21) 



20 

 

where s and N  shows the distance of a point to the crack boundary and stress density 

coefficient, respectively. (Mueller, 1971) also studied in this field. 

2.3 Stress and displacement fields using complex variable method 

Many studies focus on the stress distribution in the vicinity of the cracks. One 

solution is to assume a stress function and check whether it satisfies the equilibrium 

equations and boundary condition (Williams, 1957, 1959). Stress field is expressed in 

Eq.(22)  

 11 ,22  ;     22 ,11  ;     12 ,12   (22) 

where  is the stress function. Stresses obtained from Eq. (22) already satisfy the 

equilibrium equations. In order to satisfy the compatibility equations, the stress function 

must satisfy the biharmonic equation as indicated in Eq.  (23). 

 4 0    (23) 

The next step is to use the boundary conditions of the crack to find the stress 

function. The displacement field is the integral form of strain, obtained from the stress-

strain law; however, this method is complicated due to the mathematical calculations. 

Williams (1957) used direct relationships between the displacement field and stress 

function.  

Besides the airy stress function approach (described in Eq. (22)), some studies 

used complex variables to determine the stress field near the crack. (Hellan, 1985; 

Sedov, 1972)  
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As can be clearly seen in Figure 8, the coordinates of the crack are defined using 

1x x (in the direction of the crack) and 2x y (perpendicular to the surface of the 

crack). 

 
Y

X

 
Figure 8: Schematic illustration of the crack direction. 

 

The parameter z is expressed by Eq.  (24). 

 z x iy   (24) 

where 1i   . Using the complex variable technique, Westergard (1939) defined the 

stress and displacement fields in the vicinity of the crack, such that: 

 
11

Re Imy      (25) 
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Re Imy      (26) 

 12 Rey    (27) 
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k
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 


   (28) 

 
2

1 1
( Im Re )

2 2

k
u y

G
 


   (29) 

where the value of k  is 3 4 for plane strain and 
3

1








for plane stress. Im and Re

shows the corresponding imaginary and real part of that value. The  function in mode I 

is calculated by Eq. (30), proposed by Sedov(1972). 
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
  (30) 

where 2g shows the traction loading on the surface of the crack in the 2x direction and a  

defines the half length of a crack. The stress and displacement fields are planned to be 

calculated near the crack; therefore, the coordinate 0y  is used in the computation. Eqs. 

(26) and (29) simplify to Eqs. (31) and (32), respectively. 

 
22

Re   (31) 

 
2

1 1
( Im )

2 2

k
u

G



  (32) 

A detailed procedure is explained in section 4. 

2.4 Boltzman superposition and rate of crack shortening 

(Schapery, 1975) conducted another pertinent research on crack closing and 

bonding in linear visco elastic media. Before going through the details of Schapery’s 

paper, some basic concepts in visco elastic media must first be presented. 

Boltzmann’s superposition principle implies that the sum of the strain output 

resulting from each component of stress input is the same as the strain output resulting 

from the combined stress input. This principle is also valid for the stress field (i.e., the 

sum of the stress output resulting from each component of strain input is the same as the 

stress output resulting from the combined strain input.) (Findley et al., 1989) 

Assume that a constant stress 1 is applied at 1t  then 1 1( ) ( )t H t     where 

( )H t is a Heaviside unit function. If the stress input varies with time instead of being 

constant, it can be approximated by the sum of a series of constant stress input, described 
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by
1

( ) ( )
r

i i

i

t H t  


   . A corresponding strain for constant stress can be written in 

the form of 
1

( ) ( ) ( )
r

i i i

i

t H t D t   


     where ( )D t represents the creep compliance. 

When the number of steps turns to infinity, summation changes into integral as 

expressed in Eq.(33). 

 
0

( ) ( ) ( ) ( )

t

t H t D t d        (33) 

Since dummy variable  is always less than or equal to t , ( )H t   always 

equals one. Therefore Eq. (33) converts to Eq.  (34). 

 
0

( )
( ) ( )

t

t D t d
 

  



 

  (34) 

Using the same procedure, when  is constant and   is a function of time, the 

following equation can be derived 

 
0

( )
( ) ( )

t

t E t d
 

  



 

  (35) 

where ( )E t is the relaxation modulus. With the help of Laplace transformation, Eq. (36) 

shows the relationship between creep and relaxation tests.  

 
0 0

( ) ( ) 1

t t
D E

E t d D t d   
 

 
   

    (36) 

The correspondence principle in linear viscoelastic theory relates the stress and 

displacement fields in elastic and viscoelastic media using Laplace transform (i.e., the 
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viscoelastic solution can be constructed based on the elastic solution). Three different 

correspondence principles are used for different cases (Schapery, 1984). 

2.4.1 CP- I  

The first correspondence principle is valid for time-independent surfaces. The 

boundary condition is described as follows. 

 
R R

ij j in T       on TS ;     
R R

i iu U      on US  (37) 

TS and US show the boundary with prescribed traction and prescribed 

deformation, respectively. In this case, the viscoelastic solution is expressed in Eq. (38) 

and (39). 

   1
( )

ij

ij

Rt

R

ij

R

Ed E t d
E


   





  

  (38) 

 { } ( ) i

Rt

R

i i R

u
u Ddu E D t d 





  

  (39) 

where ij and iu are the stress and displacement fields in the viscoelastic problem; 

however, 
ij

R and
i

Ru  satisfy equations in the reference elastic problem. 

2.4.2 CP- II 

The second correspondence principle is applicable when 0TdS

dt
 (i.e., when the 

crack growth is being modeled). The boundary conditions considered in this case are: 

 ij j in T       on TS ;     i iu U      on US  (40) 

In this case, the viscoelastic solution is expressed in Eqs.  (41) and (42). 
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R

ij ij   (41) 

 { } ( ) i

Rt

R

i i R

u
u Ddu E D t d 





  

  (42) 

2.4.3 CP- III  

The third correspondence principle is applicable when 0TdS

dt
 (i.e., when the 

crack closing is being modeled). The concept of healing is also classified in this type of 

correspondence principle. The boundary conditions considered here are: 

 
R R

ij j in T       on TS ;     
R R

i iu U      US    (43) 

In this case, the viscoelastic solution is expressed in Eqs. (44) and  (45) . 

 { }R

ij ijEd   (44) 

 
R

i iu u  (45) 

Returning to CP-III, the elastic problem is defined by the three major equations. 

First, standard equilibrium equation, which is expressed by / 0R R

ij j ix F    . Second, 

strain-displacement equation, which is defined by 
1

( / / )
2

R R R

ij i j i iu x u x      and 

finally, stress-strain equations, which is determined by (1 ) /R R R

ij ij ij kk RE         . 

Additionally, the boundary conditions were defined in Eq. (43).  

Forces and tractions are different in viscoelastic and elastic problems; however, 

the corresponding elastic problem is found using convolution integrals as expressed in 

Eqs. (46) and (47). 
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t

R i
i i R

T
T DdT E D t d 





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  (46) 

   ( )

t

R i
i i R

f
f Ddf E D t d 





  

  (47) 

The viscoelastic boundary value problem is defined by the field equations 

expressed in Eqs. (48) to (50). 

 / 0ij j ix F     (48) 

 
1

( / / )
2

ij i j i iu x u x       (49) 

  (1 ){ } { } /R

ij ij ij kk RDd Dd E          (50) 

The boundary conditions are also defined in Eq. (51). 
 

 

 ij j in T       on TS ;     i iu U      uS       (51) 

Schapery (1989) restricted his research to the opening mode and he neglected the 

effect of two other modes. Figure 9 schematically shows the stress and displacement 

near the crack tip in which parameters a  and   define the half-crack length, and the 

distance in which two surfaces have a bond to each other, respectively. This bonding 

strength is defined by b  (Schapery, 1975). 
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Figure 9: Bonding strength and displacement near the crack tip (Schapery, 1989). 

 

The opening displacement ν is obtained from CP-III. 
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

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


    (52) 

where 
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( ) 2( ) ln

1 ( )

F



  

  
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 
 

  
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  

and 
2(1 ) /R RC E  . 

The stress counterpart normal to the surface in the elastic problem, called
R

b , is 

solved by Eq. (53). 

   ( )

t

R b
b b RDd E D t d


   





  

  (53) 

The stress singularity which is removed by the Barenblatt, results Eq.(54) for 

stress intensity factor in elastic media. The procedure was fully explained by (Schapery, 

1975). 
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 1/2 1/2

0

2
( ) ( )R R

I bK d



   


   (54) 

Stress and displacement fields near the crack tip are caused by both external 

loads and failure stress. First, the corresponding stress and displacements due to the 

loads with zero f  are considered. Second, none zero failure stress without loading is 

determined. Therefore the total result will be the summation of effects gained from both 

categories. 

(Williams, 1957) found the corresponding stress and displacement equations 

based on considering external loads. Since the measurements are restricted to the vicinity 

of point P, mentioned in Figure 9, some simplifications were made on the original 

equations. Shortened equations are expressed in Eqs.  (55) and (56).   

 
0 0 1/2

1 1[ / (2 ) ] ( )x y IK H      (55) 

 
1/2 1/2

0 [ / (2 ) ] ( )e IC K H     (56) 

where 
21

4eC
E


 . Young’s modulus and Poisson’s ratio are denoted by E  and 

 , respectively. (Barenblatt, 1962) also found a way to calculate the results for the 

failure stress. 
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As mentioned before, the total stress of the crack tip will be the summation of 

Eqs.(55) and (58) . In order to have a finite value of stress at the crack tip, the stress 

intensity factor should be calculated.  

Schapery assumed a time-independent value for b  which is spatially uniform 

over 0    . The work per unit surface area done on the particle by b is b b  where 

b is the displacement at  . He defined bond energy, 2 b , by adding the work of the 

upper and  lower surface of the crack. 

Creep compliance is assumed to be equal to 0 1( ) mD t D D t  , where 0 1,D D and m 

are positive constant and . Therefore, the reference bonding stress is expressed 

in Eq.  (59). 

 
0 1(1 ) ( / )R m m

b R b bE D D a         (59) 

where /   . Finally, the stress intensity factor is calculated in Eq. (60). 

 1/2 1/2

0 1(8 / ) ( / )R m

I R b m bK E D D a         (60) 

Where m  is found using 
1/2( / 4) (1 ) / (1.5 )m m m      . Also (.)  is the gamma 

function. The Beta function, defined by 

1

1 1

0

( , ) (1 )x yB x y t t dt   is used for deriving the 

above equations. Also beta function and gamma function are related through Eq.  (61). 

 
( ) ( )

( , )
( )

x y
B x y

x y

 

 

  (61) 

Based on previous explanation, Schapery finds the work done in Eq. (62). 

0 1m 
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 2 2
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4
(1 ) ( / )m

b b b b m m bW v D D c a     


       (62) 

where (2 1) / ( 1)mc m m   . Total surface energy is equal to the work done by both 

upper part and lower part. 

Using some mathematical manipulations, normalized bonding zone length and 

bonding speed are expressed in Eqs. (63) and (64) . 

 
2 2/ (1 )m mZ c      (63) 

where
2 2 2

0/ 2 (1 )m b b mD c       . 

 
2 (1/ ) (2 1/ )/ (1 ) m m

b m ma a Z c      (64) 

where 
1/

1 0( / ) m

m m m ma D D c  . 

Parameter  and Z are defined in Eq. (65) and (66). 

 1/2 1/20.5 ( ) ( 4 / 4) 1m m m mc Z c Z c Z c         (65) 

 
2

0( / )R R

I IZ K K  (66) 

where 
2 2 2

0 0( ) 4 ( ) / (1 )R

I b RK D E     . 

For different values of m , Schapery plotted the normalized displacement and 

normalized speed versus Z parameter which was defined in Eq. (66).  

The theory is also extended to more general creep compliance defined by

0( ) ( )D t D D t  where 0D is the initial compliance. Schapery also found an upper and 

lower limit for stress intensity factor in his paper.  

Fracture mechanics seems to be a starting point for understanding the process of 

crack initiation and growth; however, in order to capture the impact of all the damages 
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caused to the specimen by cracks, the method of continuum damage mechanics must be 

used. In the next section, basic concept in continuum damage mechanics is discussed. 

The core concept behind this research is based on the fracture mechanics. The 

idea, illustrated by Schapery, is extended by considering both effect of instantaneous and 

time-dependent bond strength. Moreover, the concept of correspondence principle III, 

which was fully explained in this section, is used to transform the stress and 

displacement fields in elastic media into viscoelastic media. 
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3. CONTINUUM DAMAGE HEALING MECHANICS 

 

Introducing a method to capture the effects of an array or system of cracks in a 

specimen is crucial. Therefore, the concept of continuum damage mechanics (CDM) was 

introduced. This chapter briefly demonstrates CDM but the main focus is on the works 

done to extend this concept to continuum damage healing mechanics (CDHM). 

3.1 Describing different configurations in CDM 

Kachanov (1958) introduced the concept of effective (undamaged) configuration; 

however, his idea needed to be revised in order to capture the behavior of materials with 

healing ability. Darabi et al. treat micro-damage healing as the reduction of the damaged 

area and damage density(Abu Al-Rub et al., 2010; Westergaard, 1939). In their model 

the cross section is divided into three different parts, represented by undamaged 

(effective) area, unhealed crack area, and area where micro-cracks and micro-voids are 

healed. Figure 10 shows the above explanation in the schematic way. It is assumed that 

the area with completely healed micro-cracks reaches the same property as the 

undamaged area.  

 Eq. (67) can be expressed based on explanation in Figure 10. 

  D uhA A A A A      (67) 

where A , A , and A  are the cross-sectional area in the damaged (nominal), undamaged 

(effective) and healing configuration, respectively. The damaged area consists of two 

different parts, explained in Eq.(68). 

 D uh hA A A    (68) 
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where uhA  and hA  represent the healed micro cracks and unhealed micro cracks, 

respectively. 

Since loads are not carried by the unhealed micro cracks, Eq. (69) is written as a 

relation between nominal and healed configuration. 

     A A    (69) 

where  and   illustrate the stress in nominal and healing configuration, respectively.   

(Abu Al-Rub et al., 2010) define two parameters in Eq.(70) to demonstrate other 

relations between damaged and healed configurations.  

 
DA

A
  ;     

h

D

A
h

A
  (70) 

where   and h  are the damage variable and healing variable, respectively. Using these 

parameters, the relations between stresses in the aforementioned three configurations are 

derived as follows. 

  
1 (1 )h


 

 
;      

1 (1 )

1

h
 

 



     (71) 
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Figure 10: Schematic representation (Westergaard, 1939) 
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3.2 Different hypotheses to relate strain in different configurations 

The thermodynamic based micro-damage healing model can be based on three 

different hypotheses in order to obtain the correlation between strains in the damaged 

and healed configurations. Eq. (72) is applicable between undamaged and healed strain 

for all three hypotheses. 

 
1 (1 )

1

h
 

 



 (72) 

where  and  are the corresponding strains in undamaged and healed configurations.  

A brief discussion on these three hypotheses, called strain equivalence 

hypothesis, elastic strain energy equivalence hypothesis and power equivalence 

hypothesis, is presented in the subsections that follow. 

3.2.1 Strain equivalence hypothesis 

While this is the simplest transformation hypothesis, it is not applicable in large 

deformations or significant damage development. Equivalency in strain tensors in both 

nominal and healing configurations is the basis of this hypothesis which leads to a 

relation between the tangent stiffness moduli in nominal and healing configurations, as 

expressed in Eq. (73).  

 
( 1)[1 (1 ) ( ) ] ( )D h h h D            (73) 

where D and D  are tangent stiffness moduli in nominal and healing configuration, 

respectively. Both nonlinear response and changes in the stiffness moduli are captured 

by this equation. 
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3.2.2 Elastic strain energy equivalence hypothesis 

This hypothesis considers equivalent elastic strain energy for both nominal and 

healing configuration. Eq. (74) shows the relation of tangent stiffness moduli in nominal 

and healing configuration. 

 
2 ( 1)[[1 (1 )] 2(  )(1 (1 )) ] ( )D h h h h D               (74)                                                 

3.2.3 Power equivalence hypothesis 

Eq. (75) demonstrates the relation of tangent stiffness moduli in nominal and 

healing configuration for power equivalence hypothesis. 

2 ( 1)

( 1)

0

[[1 (1 )] ( )(1 (1 ))

( )[ ( ) ] ]( )

t

D h h h h

h h h h dt D

     

       





        

   
                 (75) 

While the difference between Eqs. (74) and (75) is negligible in case of low rate 

of healing and damage, Eq. (75) is more accurate to use. 

3.3 Thermodynamic framework 

The thermodynamic framework for modeling of the micro-damage healing is 

discussed by Darabi et al.(1939). All equations are written based on the elastic behavior 

and all the virtual motions are assumed to be independent. The effects of components in 

both internal and external power are discussed in Darabi’s paper. As damage increases, 

the internal power increases; however, when healing occurs, the internal power 

decreases. This reduction in the value of internal power is the result of free energy of the 

cracks or an increase in configurational entropy. Both conjugate damage force and 

healing force are decomposed into two parts namely energetic and dissipative. The 
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Energetic part shows the capability of energy storage in a material and is measured by 

Helmholtz free energy. On the other hand, the dissipative part shows how energy 

dissipates in the material which can be measured by the rate of energy dissipation.  
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4. MICRO-DAMAGE HEALING AT MICRO-SCALE 

 

4.1 Introduction 

This research enhances Schapery’s (1989) evolution function for the rate of crack 

closure by considering the effects of instantaneous healing and time-dependent bond 

strength (Wool and O’Conner (1982; 1981)). The model presented in this research 

mathematically illustrates the effect of micro-damage healing on the stress intensity 

factor (SIF), displacement field, and stress field near the crack tip. The concept of 

Schapery’s correspondence principle III is used to transform the displacement and stress 

fields, determined in elastic media, to viscoelastic media. Moreover, the effect of two 

different parameters, bonding strength coefficient and relaxation time, on bonding 

strength is also evaluated. 

4.2 Effect of micro-damage healing on stress intensity factor (SIF) 

It is necessary to recall some key formulations on SIF that were fully described 

in section 2. Dugdale (1960) proposed the concept of the stress intensity factor in order 

to remove the singularity and to define measures that can be used to compare stress 

fields near the cracks with different geometries. The SIF in the opening mode (mode1) is 

denoted by IK  and is expressed as:  

 
0

( ) 2I
x

K Lim x x 


 
 

 (76) 

where x  is the distance from the crack tip. It can be shown that for a crack with the 

length of 2a  subjected to far field stress of R , IK can be expressed as: 
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 R

IK a   (77) 

Consider an infinite plate containing a centered crack of length 2a . The plate is 

under the far field stress R
 in the direction perpendicular to the crack. In the absence of 

a healing process zone, crack faces are traction free. However, when the healing 

mechanism is in effect, crack faces are subjected to the bond strength
R . Figure 11 

schematically illustrates the far field stress applied to the mode I crack and the induced 

bond strength within the healing process zone.  

4.2.1 Elastic media- Considering constant bonding strength 

The problem at hand is to determine the stress intensity factor (SIF) for a mode I 

crack in the presence of the micro-damage healing mechanism.  

Figure 12 shows a quarter of the plate containing a mode I crack since the 

symmetric boundary conditions are applied.  To solve this problem, the superposition 

principle is used. Since the material is assumed to behave linearly elastic, use of the 

superposition principle is valid. Therefore, the problem shown in Figure 12(a) is 

decomposed to the following sub-problems: 

1- Far field stress applied to the plate containing a centered crack in Figure 12(b). 

2- Induced bond strength within the healing process zone is considered in Figure 

12(c). 
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2a

 [Healing Process Zone]

 [Induced Bond Strength during Healing]R

 [Far Field Stress]R

R

 

Figure 11: Far field stress applied to the plate containing a centered crack and induced 

bond strength within the healing process zone. 

 

The superposition principle is also applied to Figure 12(c) in order to calculate its 

corresponding SIF. Therefore, it is decomposed into the following sub-figures: 

1- Traction field is applied in the entire length of the crack as shown in Figure 13 

(a). 
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2-Another force equal but in the opposite direction is applied in the region of 

( )a    to ( )a  , as shown in Figure 13(b).  

 

a



R

p

 
(a) 

a



a

p

 
(b) (c) 

 

Figure 12: Illustration of superposition principle to solve Mode I crack in the presence of 

micro-damage healing. 
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a

p

 

(a) 

a



p

a



p

 

(b) (c) 

 

Figure 13: Decomposing stresses shown in Figure 12(c). 

 

The summary of the procedure described above is illustrated in Figure 14. 
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Far field stress applied to the plate containing a centered crack and 

induced bond strength within the healing process zone as it is 

illustrated in Figure 15

Far field stress applied to the plate 

containing a centered crack in Figure 16(b).

Induced bond strength within the 

healing process zone is 

considered in Figure 16(c).

Traction field is applied in the 

entire length of the crack as shown 

in Figure 17 (a).

Another force equal but in the opposite 

direction is applied in the region outside 

of healing process zone, as shown in 

Figure 17(b).  

Figure 14: Summary of the procedure to calculate the corresponding SIF. 

 

As mentioned in section 2, stress intensity factor in mode I can be expressed as 

 2

1
( )

a

I

a

a
K g d

aa


 

 




  (78) 

where a  is the half length of the crack and 2 ( )g x is the stress function in the vicinity of 

the crack (Hellan, 1985; Sedov, 1972). This stress function has the value of p in Figure 

13 (a) and p in Figure 13(b). Using the same format as Eq. (77) the SIF of Figure 13(a) 

is expressed by IK P a  . Substituting the value of 2 ( )g x in Eq. (78), the SIF will be 

expressed in the following format: 

 

( )

( )

2
arctan( )

2

a

I

a

P a P a a
K d

aa a





 


   



 

 
 

 
  (79) 
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Using the superposition principle, the total stress intensity factor ( 
TotalSIF ) is 

stated in Eq.  (80). 

 
2

arctan( )
2

total R

I

P a a
K a P a

a


  

  



  


 (80) 

Eq. (80) includes three terms. The first term represents the effect of far field 

stress on the stress intensity factor. The second term shows the effect of bond strength on 

reducing the stress intensity factor. Finally, the last term illustrates the effect of the 

healing process zone characteristics on the stress intensity factor.   

To understand how SIF changes with the healing phenomenon, the equation 

should be written in dimensionless format, such that: 

 

1
2

1 arctan( )

2 1

I

total

R RR

a

K P P
NSIF

a a



   


 



   



 (81) 

The left hand side of Eq. (81) shows the ratio of stress intensity factor with 

healing properties to the stress intensity factor without considering healing properties. 

Normalized Stress Intensity Factor (NSIF) ranges from zero to one, such that NSIF=1 

indicates no micro-damage healing while NSIF=0 indicates that the micro-damage has 

been completely healed. This ratio is denoted by the normalized stress intensity factor 

(NSIF) in the figures.  

As the ratio of corresponding healing length to the crack length increases, the 

normalized SIF decreases. In this case the forces between the upper and lower parts of 

the crack try to close the opening and therefore the value of SIF decreases. It is also 
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evident that in order to reach a specific crack opening, the ultimate stress applied at the 

far field should be greater in order to propagate the crack when the impact of healing or 

the capability of healing is considered compared to when a material does not possess the 

capability to heal.  On the other hand, as the ratio of bonding strength to the far field 

stress increases, the normalized SIF decreases. Figure 15 and Figure 16 both show the 

effect of healing on NSIF. 

 

 
 Figure 15: Considering the effect of healing on the normalized stress intensity factor 

(NSIF). The ratio of 
R

P



remains constant for each set of data. 
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Figure 16: Considering the effect of healing on the normalized stress intensity factor. 

The ratio of 
a


remains constant in each set of data. 

 

4.2.2 Elastic media- Considering time-dependent bonding strength 

As explained in section 1, the two surfaces came into contact with each other, 

called wetting in which mechanical property and surface free energy were considered as 

important factors. Short-term and long-term strength gain, the second stage of healing, 

was caused by interfacial cohesion and intermolecular diffusion. In the previous step, the 

bonding strength, p , was assumed to be constant. The next step is to generalize this 

approach to capture both instantaneous and time-dependent bonding strength as 

expressed in Eq. (82) to develop an effective model for this phenomenon. 
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where rt is the rest period, a  and b  are the healing coefficient and exponent, 

respectively. Different rest periods result in different values of a  and b . Lytton et al. 

(1993) attained the healing coefficients based on the field data for different climatic 

zones. 

Eq. (2) can be expressed in more detailed format, such that: 

 
0 0

1 ( ) ( )hri r
n t

SF a
N t

   (3) 

where rin and 0N represent the number of rest periods and cycles to fatigue failure, 

respectively. Moreover, 0t and rt express the time between cyclic load and rest period in 

fatigue test, respectively (Little et al., 2001). 

Little et al. (2001) and Lytton et al. (2001) tried to improve the concept of shift 

factor by implementing the asphalt binders’ healing potential, such that: 

 1 2Function( , , , )r

dh
t h h h

dN
  (4) 

where 1h and 2h  are the short-term and long-term healing rate, respectively, and h is the 

maximum healing achieved by the binder. Since 
dh

dN
(rate of healing per load cycle) has 

the same concept as 
dC

dN
 (rate of cracking per load cycle) in fracture mechanics, it can 

be implemented in fatigue- crack modeling. 

1.2 Experimental studies on the significance of micro-damage healing 

Developing a model for the healing process is crucial and requires expensive and 

time-consuming tests. The common laboratory testing practice is to induce resting 
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Figure 17: Considering the effect of time on the normalized stress intensity factor 

(NSIF). 

 

4.3 Effect of micro-damage healing on displacement and stress fields 

4.3.1 Elastic media- Neglecting the effect of healing phenomenon 

In this section the corresponding calculation of Figure 12(b) is considered. The 

terminology of stress and displacement near the internal crack is described through a 

complex-variable technique as mentioned in section 2. The stress and displacement 

fields are defined by Eqs. (85) and (86). 
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In the first step of computation, the value of  function must be calculated. 

 
2 2

2 2

1
R

a

I
a

a
d

zz a

 
 
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




 


  (87) 

With the help of some mathematical manipulation and changing of variables of 

z
t

a
  and x

a


 the Eq. (87) simplifies to Eq. (88) 

 

2
1

12

11

1

R

I

x
dx

t xt











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
  (88) 

where t  is the arbitrary complex number not lying on the segment [-1, 1] of the real 

axis. It is noteworthy to talk about the function 
2 1t  before explaining the procedure 

to compute Eq. (88). For the large real values of t , this function is real; therefore, the 

symmetry property is applicable. This means that the value of the function at a complex 

number t  is equal to the complex conjugate value of the function at the conjugate point

t .  

 
,

( ) ( )

t R t

f t f t

 


 (89) 

This function maps purely imaginary values to purely imaginary values, meaning 

that: 

 
2 2 2

1 1 1( )t i t i           (90) 

One pair of imaginary points with a different sign was assumed. According to the 

following calculation, two possible answers with opposite signs are found. 
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 (91) 

With the help of a symmetry property ( ( ) ( )f t f t ), the negative sign in Eq. 

(91) is shown to be acceptable. Therefore, this function maps each pair of points on the 

imaginary axis with negative signs to image values on the imaginary axis with negative 

signs. This property can be extended to the whole domain, and consequently this 

function is odd. 

The residue theorem is applied to solve Eq. (88). The path of this integral 

consists of a large circle (oriented counter clock-wise) together with an ellipse (oriented 

clockwise) that surrounds the slit which is clearly seen in Figure 18. 

 

 

 

 

 

Figure 18: Introducing the contour in the complex plane. 

 

Using the residue theorem, Eq. (92) is derived. 
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In order to compute the integration over the circular path, the following 

decomposition is used. 

 
2

2

1 1

( )( 1 )

x it
i dx

t x x t t x x ix


  
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 (93) 
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 


  

   
   (94) 

The integral in the right hand side of Eq. (94) tends to 0 when the radius expands 

to a large value. Therefore Eq. (94) simplifies to 

 
1

2
1

2
x

dx t
t x





 


  (95) 

Assume that the ellipse ( 2 ) collapses down to a slit. The top part of the ellipse (

1 ) approaches the slit oriented from left to right, while the bottom part of the ellipse (

1 ) approaches the slit from right to left. As mentioned before, the value of the integral 

on the top part is the negative of the value of the integral in the bottom part since the 

function is odd. As a result Eq. (96) is derived. 

 
1

12 2

1

1 1
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x x
dx

t x t x


 


    (96) 

Using Eq.(94), (95) and (96), the value of equation (88) is computed. 
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 (97) 

The next step is to integrate the I value determined in Eq. (97). 

 2 2
.

R R

I
z a z const  

 
     (98) 

As mentioned before, the stress near the crack tip is computed by means of Eq. 

(85). The crack is oriented in the x direction; therefore the variable z is converted to 

variable x . 

 22
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 (99) 

As a result, 22 is equal to 
2 2

R x

x a




for x a and 0 for x a . Also the 

displacement field can be calculated with the help of Eqs. (86) and (97). 
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4.3.2 Elastic media- Considering constant bond strength p  

This case is fully explained in Figure 13. The function of I  must be defined for 

both cases described in Figure 13 (a) and (b). The calculation of Figure 13(a) is similar 

to what was previously explained but with the difference in the value of the stress. 

Instead of having R
, the stress p  is replaced. I  value for the case described in 

Figure 13(a) is denoted by (1)I   and explained in Eq. (101). 
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 
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  (101) 

The corresponding stress and displacement fields with analogy to the previous 

part are written in Eq.  (102) and (103). 
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As described in Figure 13(b), the bonding strength is defined over a part of the 

region; therefore, the equation I  is expressed in the following format denoted by (2)I  . 
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Before going through the rest of the calculation, further explanation seems 

essential of the procedure necessary to derive Eq. (104). Changing of variables and 
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doing some mathematical manipulations, the first row of Eq. (104) changes into Eq. 

(105) 
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where 
a


 changes into x ,

z

a
changes into z , and finally, b  represents the value of

 




. The new proposition is to prove if 0 1b  , and z  is a complex number not 

lying in the segment [ , ]b b  of the real axis, then 
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 (106) 

Since z  is excluded from the integration path, the left hand side of Eq. (106) 

encounters no singularity. Therefore, the integral represents an analytic function of z . 

Since bhas a positive value less than one, function arcsinb is well-defined. The tangent 

function can be written in terms of the complex exponential function, as shown in Eq. 

(107). 
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The hypothesis that z is outside the integral path guarantees that the arctan  in Eq. 

(106) is well-defined. Therefore, both sides of Eq. (106) are analytic functions of z . 

In order to solve Eq. (106) , the variable x  is replaced by
2

2

1

u

u
. Therefore the 

following equation can be expressed.  
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Eq. (106) changes into: 

 
2 2 2

2 2 22 2
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where 2(1 1 ) /c b b     . The method of partial fractions is applied to derive Eq. 

(110) . 

 
2 2 2

2 2 2 2 2 2 2

(1 ) 1 ( 1) 2

(1 ) (1 ) 2 2 1 ( 1)

u z z u

u u z u z u z u u u

  
  

       
 (110) 

The third term integrates to 0  by symmetry. Moreover, the second term can be 

written in terms of arctan c . Therefore Eq. (110) reduces to: 
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Since 
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Using a mathematical identity ( arctan( ) arctan( ) arctan( )
1

A B
A B

AB


 


) and the 

above calculations, Eq. (111) simplifies to:  
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Identity shows that 
2
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2arctan( ) arctan( )
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c
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, so the result becomes
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. An algebraic calculation proves that 
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. Therefore, Eq. (104) is derived. 

Denoting 
a

c
a


 makes our calculation much simpler to represent. 
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The value of (2)I  is calculated using integration. 
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 (114) 

The displacement field is evaluated by the use of Eq.  (86). Therefore, the 

imaginary part of function (2)I  is needed.  
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The stress is defined by using Eq. (31) and (104). 
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Using superposition method, the displacement and stress fields are described in 

Eq. (117) and (119), respectively. 
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 (117) 

In order to have figures of the displacement field, its equation must be presented 

in the following dimensionless format. 
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Figure shows the displacement field near the crack tip. Term 2

1

4

R

u

k

G
a




 on the 

left-hand side of Eq. (118) is called the normalized displacement (NU). At the crack 

point the displacement is zero, but moving away from the crack tip the displacement is 

shown to increase. The ratio of 
R

p



 varies while the value of c  remains constant in each 

figure. For a constant value of c , as the value of 
R

p



 increases the normalized 
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displacement decreases. This clearly shows that the healing phenomenon tends to reduce 

the distance between the upper and lower part of the micro-crack. Also, it can be seen 

that the normalized displacement in Figure (a) is less than the normalized displacement 

in Figure(b) for the region 0.95 1
x

a
   due to greater bonding zone.  

 

(a) 

Figure 19: Displacement field near the crack tip under constant value of c . 

 

:
R

p



: 0.9c
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(b) 

Figure 19: Continued. 

 

Figure 20 shows the displacement field near the crack tip under constant value of 

R

p



. The ratio of c  varies while the value of 
R

p



 remains constant in each figure. In 

other words, it demonstrates the effect of different healing process zone in displacement 

fields. For a constant value of 
R

p



, as the value of c  decreases, the normalized 

displacement decreases. This clearly shows that the healing phenomenon tends to reduce 

the distance between the upper and lower parts of the micro-crack. Also, it can be seen 

that the normalized displacement in Figure 20(b) is less than the normalized 

displacement in Figure 20(a) for the corresponding bonding region due to greater 

bonding strength. The effect of different healing process zone on stress field is discussed 

afterwards. 
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(a) 

 

(b) 

Figure 20: Displacement field near the crack tip under constant value of 
R

p



. 
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Eq. (119) has the value of 
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for x a  and 0 for x a . 

As the value of 
a

x
 goes to infinity, the ratio of 22

R





 reaches the value of 1
R

p



 , 

which can be clearly seen in both Figure 21 and Figure 22. Figure 21 shows the stress 

field near the crack tip under constant value of
R

p



. The term 22

R





 in the left-hand side 

of Eq. (118) is called the normalized stress (NS). At the crack point, the stress goes to 

infinity as it was fully explained in SIF section, but moving away from the crack tip, the 

stress decreases. The ratio of 
a


 varies in each figure while the value of 

R

p



 remains 

constant. For a constant value of 
R

p



, as the value of 
a


 increases, the normalized stress 
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decreases. Also it can be seen that normalized stress in Figure 21(b) is less than the 

normalized stress in Figure 21(a) due to greater bonding strength.  

Figure 22 shows the stress field near the crack tip under the constant value of 
a


. 

The ratio of 
R

p



 varies in each figure while the value of 
a


 remains the same. For a 

constant value of 
a


, as the value of 

R

P



increases, the normalized stress decreases. 

Also, it can be seen that normalized stress in Figure 22(b) is less than the normalized 

stress in Figure 22(a) due to greater bonding zone. As mentioned before, the ratio of 

22

R





 reaches the value of 1
R

p



  when the value of 
a

x
 goes to 0. Also, it must be 

mentioned that when 
R

p



is greater than 1, the stress could become compressive since it 

represents the case when crack faces are under compressive stress states. Therefore, the 

compressive normalized stress is not plotted in this case.  
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(a) 

 

(b) 

Figure 21: Stress field near the crack tip under constant value of 
R

p



. 
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(a) 

 

(b) 

Figure 22: Showing stress field near the crack tip under constant value of 
a


. 

0.1
a




0.01
a




:
R

p



:
R

p





65 

 

4.3.3 Elastic media- Loading-unloading scenario 

In this part the far field stress does not remain constant any more. The effect of 

triangular loading and unloading on displacement and stress fields is evaluated. The 

period of loading and unloading cycles are assumed to be equal to T . The far field stress 

is written in terms of R
 using 

( )R

R

t
F








 , where F  is defined as stress factor and can 

be expressed by a value in range 0 1F  . The far field stress loading and unloading 

cycles is shown in Figure 23. 

 

 

Figure 23: Far field stress loading and unloading cycles. 

 

Displacement and stress field are expressed in Eqs. (120) and (121). 
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As the value of F increases, the loading scenario is considered. As a result, the 

normalized displacement also increases, which can be clearly seen in the Figure 24. 

Comparing the results of Figure 24(a) and (b), for the constant value of c , as the ratio of 

R

p



increases, the normalized displacement decreases. 
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(a) 

 

(b) 

Figure 24: Normalized displacement under loading and unloading cycle. 
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Figure 25 shows the displacement field near the crack tip under loading and 

unloading cycles. The ratio of 
R

p



 is constant while the value of c  varies in each figure. 

In other words, the effect of different healing process zone is considered. For a constant 

value of 
R

p



, as the value of c  increases, the normalized displacement decreases. It 

clearly shows that the healing phenomenon tends to reduce the distance between the 

upper and lower part of the micro-crack. Also it can be seen that normalized 

displacement in Figure 25(a) is less than the normalized displacement in Figure 25(b) for 

the region 0.95 1
x

a
   due to a greater bonding zone.  

The effect of different values of F , c  and 
R

p



 on stress field is evaluated 

afterwards. In Figure 26, the value of c  remains constant and the effect of change in the 

value of 
R

p



 is considered. Comparing Figure 26(a) and Figure 26(b) shows that an 

increase in 
R

p



  results in a decrease in the stress field. This phenomenon is compatible 

with the fact that healing tries to close the micro cracks; therefore, it reduces the stress 

field. Also it is evident that an increase in the value F leads to an increase in the value 

of stress field.  
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(a) 

 

(b) 

Figure 25: Normalized displacement under loading and unloading cycle 
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(a) 

 

(b) 

Figure 26: Effect of loading-unloading scenario on stress field- constant value of c  and 

variable value of 
R

p



. 
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In Figure, the value of 
R

p



 remains constant and the effect of change in the value 

of c  is considered. Comparing Figure(a) and Figure(b) shows that an increase in c   

results in an increase in the stress field. This phenomenon shows that larger bonding 

zone can have more reduction on the value of stress field. 

 

 

(a) 

Figure 27: Effect of loading-unloading scenario on stress field- constant value of 
R

p



 

and variable value of c . 
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(b) 

Figure 27: Continued. 

 

4.3.4 Elastic media- Time-dependent bond strength 

Since the bonding strength for this case is dependent on time and is independent 

of space, it does not affect Eq. (30). Therefore the result presented in Eq. (117) and (119) 

can be used for this case. The only difference that must be applied is substituting the 

time-dependent value of stress with the constant value of stress in Eq.(117) and (119). 

Eqs. (122) and (124) express the displacement and stress field for this case, respectively. 
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 (122) 

The displacement field is written in dimensionless format as follows, 
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Wool and O’Connor (1982; 1981) formulate the traction stress shown in 

Eq.(126). k is dependent on temperature, pressure and molecular weight. When all the 

necessary chain ends are available for immediate reputation across the interface (no 

surface rearrangement) then ( ) ( )t t  and Eq. (126) is changed into Eq. (127).  

 1/4

0 * ( )b k t t     (126) 

 1/4

0b k t     (127) 

Instead of using Eq.(127), Eq. (82) is used in substituting ( )p t . It is also assumed 

that the 0 0.3 ( )b t   (Bhasin et al., 2008). As mentioned before, the left-hand side of 
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Eq. (123) is called normalized displacement. Figure 28 shows the effect of time-

dependent bonding strength on normalized displacement. It is evident that an increase in 

time results in a decrease in displacement value in general. Comparing Figure 28(a) and 

Figure 28(b) illustrates that as the ultimate bonding strength increases, the normalized 

displacement decreases. 

 

 

(a) 

Figure 28: Effect of time-dependent bonding strength on normalized displacement- 

constant value of c and variable value of 
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(b) 

Figure 28: Continued. 

 

In Figure 29, the effect of different bonding zone value of normalized 

displacement is evaluated. The greater bonding zone results in an decrease in the 

displacement value in 0.95 1
x

a
  . In order to make this result more clear, Figure 29(c) 

shows the difference in the value of normalized displacement obtained from Figure 

29(a), denoted by NU (33a) and Figure 29(b), denoted by NU(33b). 
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(a) 

 

Figure 29: Effect of time-dependent bonding strength on normalized displacement- 

constant value of 
( )b

R

t







and variable value of 

c

. 
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(c) 

Figure 29: Continued. 

 

Figure 30 shows the effect of time-dependent bonding strength on the normalized 

stress. It is clear that as time passes, the increasing bonding strength reduce the value of 

normalized stress. Moreover, as the ultimate value for bonding strength increase, the 

normalized stress decreases. 
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(a) 

 

Figure 30: Effect of time-dependent bonding strength on normalized stress- constant 

value of 

( )b

R

t


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

and variable value of c . 

 

Figure 31 also illustrate the effect of bonding zone on the normalized stress. As 

expected, larger bonding zone has more impact on the reduction of normalized stress.  
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(a) 

 

(b) 

Figure 31: Effect of time-dependent bonding strength on normalized stress- constant 

value of c  and variable value of 
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4.3.5 Viscoelastic media 

Time-independent bonding strength is the simplest case which can be argued. As 

discussed in the third correspondence principle, which is applicable for our case, the 

displacement field in elastic and viscoelastic media is the same. Considering constant 

bonding strength, Eq. (44) becomes easier to solve; however, time-independent bonding 

strength is not compatible with the true nature of the healing process. Using the 

convolution integral, the corresponding bonding strength in the viscoelastic media 

begins to relax, which contradicts the increasing nature of bonding strength with time. 

Moreover, Schapery assumed that bonding stress ( VE

b ) is independent of time meaning 

that the healing phenomenon happens instantaneously between two surfaces, and the 

effect of long term healing is neglected in his work. The first step toward enhancing the 

work of Schapery to asphalt, is to use the work of Wool and O’Conner to model the long 

term effect of healing. Therefore instead of constant bonding strength, calculations start 

with time-dependent bonding strength in elastic media.  

The effect of two parameters (i.e., m and ) on the stress field is studied. First, a 

general formulation is considered for bonding strength instead of using Eq. (127) as 

expressed in Eq.(128).  

 0( )R m

b t k t     (128) 

where 0 1m  . Three different values, 0.25 , 0.5and 0.75  are selected  for m . Second, 

two different values of 0.005and 0.05are chosen for (Zhang and Greenfield, 2007) in 

the relaxation modulus, which is expressed in Eq. (129) 

 0( ) ( )exp( )E t E E E t      (129) 
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where 
1

rT
  in which rT is the relaxation time.  

Using Eqs. (127), (44), and (129) the stress in Viscoelastic media is expressed as: 
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 (130) 

The first term in Eq. (130) shows relaxation in instantaneous healing. The second 

term indicates an increase in the value of bonding strength due to the time-dependent 

part of bonding stress. Eventually, this term reaches an asymptotic value of
1 m

R

E k t
E

 


where t represents the time during which healing phenomenon is completed.   Finally, 

the third component illustrates the coupling effect of recovery and relaxation. Further 

explanation is needed for the third part of Eq. (130). The integral in the third part was 

calculated by a Matlab code. The time increment, considered in Matlab code, is 
510
. 

The difference between the results obtained based on different time increment (i.e. 
510

and 
610
) was less than 2  percent. Therefore, in order to reduce the calculation time, the 

smaller time increment was selected. For the simplicity of the figures, the value of 

1

0

exp( ) exp( )

t

mm t d   


   is defined by 3P (part of the 3
rd

 component of stress). If 

sufficient time is given to the material with a long relaxation time, the value of 3P  will 

eventually reach 0 . 
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An increase in the value of m directly results in an increase in bonding strength, 

which can be clearly seen in Figure 32. Moreover, an increase in the value of  (a 

decrease in the value of relaxation time) has a negative effect on 3P . The 

corresponding time for the peak value of 3P gets smaller with a decrease in relaxation 

time (i.e., the material starts to relax in a shorter period of time and therefore the value of 

bonding strength drops in a shorter period of time). 

Moreover,  changes with temperature. Hotter weather accelerates the process of 

relaxation. Therefore the relaxation time decreases, which results in an increase in 

value. It also matches the experimental result which shows that higher temperature 

accelerates the process of healing. 

Another important contribution of this calculation is its ability to predict an 

optimum resting time for which the maximum bond strength can be obtained. The time 

at which the peak value of 3P  is occurred for each temperature is the optimum value 

for rest periods in that specific temperature because the maximum bond strength can be 

gained in this case. Therefore the optimum time for rest periods can be found using 

Figure 32.  
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(a) 

 

(b) 

Figure 32: Effect of different values of m on 3P . 
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(c) 

Figure 32: Continued. 

 

Figure 33 shows the effect of different coefficient of bonding strength with a 

constant relaxation time. An increase in the value of bond strength leads to an increase in 

the stress field in the vicinity of the crack.  
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(a) 

 

(b) 

Figure 33: Effect of different values of  on 3P . 
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The displacement field is also expressed in Eq.(131). 

 

2 2 2 2

2

2 20

0

2 2

2

2 2

2

1 1
(

4 4

2( )1
arcsin( )

4

)

( *arctan( )
1

1
*arctan( ))

1

R

m

mk k
u a x a x

G G

k tk
a x

G

k t

c a x
c x

xc

a x
ac

ac

 







 
    







 







 (131) 

Since the bonding zone is too small, constant bonding rate ( ba ) seems a 

reasonable assumption. Therefore time and displacement can transform into each other 

using
b

a x
t

a


 . 

The next step is to find the work done by the upper and lower parts of the crack. 

 
2

( )VE

b
b

d
W u d

d

 



   (132) 

To obtain a solution for Eq. (132), numerical integration is needed, which 

remains a challenge for further study on this topic. By having the bonding work, bonding 

zone and the rate of bonding will be determined. 
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5. SUMMARY AND CONCLUSIONS 

 

This section presents the pertinent conclusions regarding the analysis of the 

mechanisms of damage healing at the micro scale. These conclusions are followed by 

recommended directions for future work on this topic. 

5.1 Summary of objectives and results 

This thesis illustrates the effect of micro-damage healing on stress and 

displacement fields in the vicinity of a crack tip in a material, bitumen, which possesses 

self-healing potential. The micro-damage healing process is modeled by incorporating 

both instantaneous healing and time-dependent bond strength development between the 

crack faces. The time-dependent traction occurs in a small zone referred to as healing 

process zone. As a first approximation, of healing in bitumen, the effect of the micro-

damage healing on crack propagation was investigated considering bitumen to perform 

as an elastic media by deriving analytical relations for Stress Intensity Factor (SIF) when 

micro-damage healing mechanisms are in effect. Rest periods have an impact on both 

bonding strength and bonding size. Longer rest periods result in larger healing process 

zones and greater values of bonding strength. The bonding forces between the upper and 

lower parts of the crack try to close the opening and therefore, an increase in the bonding 

strength results in a decrease in the value of SIF. It is also evident that, in order to reach 

a specific crack opening, the ultimate stress applied at the far field is required to be 

greater in order to propagate the crack with healing capability compared to the material 
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without this property. Referring to the aforementioned results, SIF is a way to quantify 

the impact of healing in elastic media. 

In order to clearly capture healing phenomenon, a novel technique based on 

complex variables was used to derive the equations required to calculate the stress and 

displacement fields in elastic media. Using Schapery’s third correspondence principle, 

which is suitable for analyzing the crack shortening (healing phenomenon), the 

corresponding results of stress and displacement fields in elastic media are converted 

into viscoelastic media. In this part of the thesis the impact of rest periods and loading-

unloading scenario on healing were evaluated. 

5.2 Conclusions 

1. An increase in the bonding strength and healing process size results in a              

decrease in the both displacement and stress fields. 

2. Loading-unloading scenarios play an important role in the phenomenon of 

healing. A decrease in the far field stress in the unloading part has the same 

impact as an increase in the bonding strength. The results obtained by the 

complex- variable method indicate that an increase in bonding strength and 

healing process zone will result in a decrease in the stress and displacement 

fields near the crack field. 

3. The coefficient that defines the bonding strength and relaxation time in visco 

elastic media is a critical factor. An increase in the value of m (healing 

exponent) directly increases the bonding strength. Moreover, an increase in 

the value of  (i.e., a decrease in the value of relaxation time) has a negative 
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effect on 3P  (a part of stress field in the vicinity of the crack in the visco 

elastic media which indicates the coupling of healing and relaxation). The 

corresponding time for the peak value of 3P  gets smaller with a decrease in 

relaxation time and therefore the value of bonding strength drops in a shorter 

period of time.  

4. Hotter weather accelerated the process of relaxation. Another important 

contribution of stress field calculations in viscoelastic media is their ability to 

predict effective, economical and optimal rest periods. The corresponding 

rest period duration for peak value of 3P  for a respective temperature is 

associated with the period of time required to mobilize the maximum bond 

strength for the associated temperature.  

5.3 Possible future work 

Every model has its own advantages and disadvantages. The model presented in 

this thesis captures the effect of both instantaneous and intrinsic healing; however, it is 

based on mathematical calculations that require further validation for applicability of 

asphalt binders and mixtures and calibration for accuracy of prediction. Possible fruitful 

future research includes. 

1. Identify a testing protocol to validate the accuracy and precision of the 

model.  

2. Implement the calculations in ABAQUS with a cohesive zone element. In 

this case healing phenomenon is modeled and the results obtained from this 

method and mathematical calculations can be compared.  
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3. Expand the SIF analysis for elastic media to energy release rate for visco 

elastic media, which more realistically represent bitumen and asphalt 

mixtures. 
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