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ABSTRACT

Radiation induced bystander effects have changed our understanding of the bi-

ological effects of ionizing radiations. The original assumption was that biological

effects require direct damage to DNA. The bystander effect eliminated that require-

ment and has become one main stream in radiation research ever since first reported

over 20 years ago.

Most bystander studies to date have been carried out by using conventional single

cell in vitro systems , 2D cell array and 3D tissue samples, which are useful tools

to characterize basic cellular and molecular responses. But to reveal the complexity

of radiation responses and cellular communication, live animal models have many

advantages. In recent years, models such as C. elegans and Zebrafish have been

utilized in bystander effects research. In the Loma Linda/TAMU experiment, a L1

larva C. elegans model was devloped to study the radiation bystander effects by

irradiating single intestine cell nuclei with a microbeam of protons.

Due to the stochastic nature of particle interactions with matter and changing

stopping power when protons slow down, precise dosimetry in the target nucleus is

a difficult problem. This research was undertaken to provide a detailed description

of the energy deposition in the targeted and surrounding non-targeted cell nuclei,

and to evaluate the probabilities of the non-targeted cell nucleus being irradiated. A

low probability is required to exclude the possibility of radiation biological effects in

non-targeted cells is caused by scattered particles.

Mathematical models of the microbeam system and the worm body were con-

structed in this research. Performing Monte Carlo simulations with computer code,

ii



Geant 4, this research provided dosimetry data in cell nuclei in different positions and

probabilities of scattering to non-targeted cell nuclei in various microbeam collima-

tor configurations. The data provided will be useful for future collimated microbeam

design.
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1. INTRODUCTION AND BACKGROUND

Since the discovery of ionizing radiation, it has been known that ionizing radia-

tion can damage living cells and tissues, and research on biological effectiveness of

radiation has been a focus area in radiation studies.

Lots of research has been done on the relationship between radiation risks and

radiation absorbed dose, quality factors and radiation sources. High dose exposures

are considered to be harmful to human body without doubt. Based on intensive

studies of the Japanese atomic bomb survivors and survivors of several nuclear ac-

cidents in the world, a lot of data about the carcinogenic risks and non-cancer risks

have been reported. Many experiments, both in vitro and in vivo, were performed to

study the biological effects of radiation at a relatively high dose level. For low dose

irradiation, in spite of intense studies on the radiation effects, there remain a lot of

uncertainties in the relationship between the dose and radiation risks. In radiation

protection, excess cancer risk associated with low dose radiation exposure is usually

estimated by the Linear Non Threshold (LNT) model for precaution, which means

extrapolating the low dose risks on the basis of what is observed in the population

exposed to high doses and on the basis of experimental data obtained at high dose.

It has always been the dogma of radiation biology that the deleterious effects

of ionizing radiation are due mainly to direct damage to DNA from the action of

irradiation or from very short lived free radicals generated by it. Furthermore, for

over a century since the discovery of X-rays, the course of biological consequences

was assumed to be limited to the target cells or their progeny for one or two cell

generations. The report of bystander effects revealed that direct radiation exposure

is not required for cells to express radiation induced damage. The experimental
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evidence of the bystander effect might result in a change in the dose response curve

in the low dose region.

1.1 Bystander effects

The term, radiation-induced bystander effect, is used to describe radiation-induced

biological effects in cells that are not directly traversed by a charged particle. By-

stander cells can be adjacent, within a few cell diameters, in a different organ, or

even in a different animal to the irradiated cells. In most systems the bystander

cells are unirradiated, although in some cases the bystander signalers and responders

both receive some radiation dose [1].

Bystander effects was first reported by Nagasawa and Little [2] who observed

that, following a low dose of alpha particle irradiation, increased frequency of sister

chromatid exchanges was observed in 30% of cells even though less than 1% of cell

nuclei were transversed by an alpha particle. Bystander effects have been intensely

studied, in the last 20+ years after bystander effects became part of the radiobiology

vocabulary, using a wide variety of radiation sources, which differed in their radiation

quality. In addition to the most commonly examined radiation sources, such as

alpha, beta, x rays and gamma rays, bystander effects have been investigated after

irradiations with protons, high-energy electrons, Auger electrons, and heavy particles

[1]. Linear energy transfer (LET) dependence has been observed in several studies

by comparing bystander effects induced by different radiations [3, 4] or induced

by the same radiation but at different energies [5]. Bystander effects have been

demonstrated for both high- and low-LET radiations but the effect is usually much

more pronounced for densely ionizing radiation [6]. Radiation source dependences

have also been observed in several studies. In some cases, bystander effects can be

observed after exposure to one radiation source but not another [1].
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As with the radiation source and LET, absorbed dose has also been shown to be

related with bystander effects in various studies. However there is no simple rela-

tionship between the magnitude of effects induced and the absorbed dose. Irons, et

al. [7] reported that the relationship between bystander effects and dose is differ-

ent depending on the biological process. In in vitro cultures of cells, transforming

growth factor-beta (TGF-beta) levels increased with the dose, however the levels of

tumor necrosis factor-alpha (TNF-alpha) were increased only for higher x-ray doses.

For alpha particles, several studies have revealed that some biological effects such as

survival and the frequency of oncogenic transformation in bystander cells depend on

the dose to the irradiated cells. But other studies, usually in different cell lines, indi-

cated that the magnitude of the bystander effect induced is similar when comparing

single and multiple alpha particles traversals to one or more cells (see [1]). A dose

threshold is also observed by Liu et al. [8] who found that there were no radiation

effects induced in unirradiated cells for x- or gamma-ray doses below several mGy

to the irradiated cells. A lack of a bystander response with neutrons occurred up to

about 1 Gy.

For purposes of radiation protection the LNT model has been used to extrapolate

the risks of health effects of ionizing radiation exposure at low doses from known high

dose date since the 1970s. Bystander studies showed that in a narrow range of low

doses the radiation risks are much larger than the results extrapolated by the LNT

model [9]. Due to bystander effects, the target for the biological effects of radiation

is larger than the cells irradiated, so the responses of tissues to low-dose radiation

cannot be reduced to a summation of individual cell responses. Besides the low dose

region, the shape of the dose-response curve for radiation-induced carcinogenic risk

in the dose region that is relevant for the majority of the population may also be

influenced by bystander effects [6, 1, 10].
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Bystander effects have received considerable attention and have remained a focus

of low-dose radiobiology research since they were reported. The relationship with

absorbed dose, LET, type of radiation, and signal communication between targeted

and non-targeted cells have been intensely studied. But there is still lots of uncer-

tainty in the bystander effects area, such as the radiation risks to human body for

low dose radiation, despite significant progress and numerous data published.

The initial bystander experiments were conducted using low dose broadbeam

radiation, and conclude the induction of effects in unirradiated cells by relying on

statistical methods [2, 3]. The number of cell nuclei to be directly irradiated was

calculated by the total number of primary particles emitted from the radiation source

and the ratio of the cross-sectional area of the cell nucleus to the whole area of the

2D cell array, assuming that one radiation particle could only transverse one cell in

the 2D cell array. When discussing the impact of bystander effect in the context of

carcinogenic risk at low radiation doses delivered by a uniform radiation source, the

relevant dose range in vivo is limited to traversal by a few ionizing tracks per cell

at most, since exposures that result in higher numbers of traversals will not leave

unirradiated cells within the irradiated volume (Figure 1.1). About 60% of cells do

not receive any hits if the hits per cell is only 0.5, and the fraction of cells that do

not have any radiation transverse decreased quickly as the dose increase. If only

1% of cells are desired to be directly irradiated, the mean number of hits per cell

should be restricted to 0.01. The doses are limited to very low level, depending on

the LET of the source radiation and cell dimensions. In addition, in the radiobiology

experiments using broad beam irradiation, usually it is hard to satisfy the need to

observe effects in both directly irradiated and unirradiated bystander cells, as it is

impossible to distinguish directly irradiated and unirradiated bystander cells. With

a microbeam, however, the irradiated cells can be identified using their positions.
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The bystander problem has inspired a variety of novel experimental methods such

as the charged-particle microbeam and x-ray microprobes [1].

Figure 1.1: Probablity distributions of number of hits per cell when the mean number
is 0.5 through 4. Only 15% of cells receive 0 hit, when the mean is 3. And the
proportion declines for larger mean values

The use of microirradiation techniques in radiation biology dates back to the

1950s to the work of Zirkle and colleagues [11]. They designed methods to generate

microbeams of protons and alpha particles to irradiate a small fraction of average-

sized cells. While these earlier studies with microbeams were highly innovative, they

did not eliminate the random variation around the specified average dose. Recent

developments in microbeam technology have made drastic improvements in particle

delivery, focusing, target imaging and precision to allow for rapid advances in our

knowledge in radiation biology.

The development of single particle microbeams, where a single cell and/or a
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subcellular compartment can be selectively irradiated with one or multiple particles,

has greatly facilitated our understanding of a variety of biological endpoints including

cytoplasmic irradiation, bystander effects and genomic instability. With advances in

microbeam technology, it has been possible to demonstrate unequivocally that cells

and tissues that are not directly exposed to radiation, but merely in the vicinity

of ones that are, can contribute to the radiobiological response; this represents a

major paradigm shift in our understanding of the target theory and other low dose

phenomena. There is increasing evidence that the non-targeted response can equally

be demonstrated in multicellular organisms using a microbeam [12].

Various cell-lines have been used in the microbeam based bystander effects stud-

ies, revealing bystander effects in different biological target end points. Such by-

stander effects research has often been undertaken using microbeam irradiation of

individual cells plated in 2-D monolayer and recently in 3-D tissue like constructs,

to study the intercellular communications in order to reveal the mechanisms of by-

stander effects. Use of whole organisms for microbeam studies has many advantages

over the 2-D and 3-D tissue like cell matricies, because the whole organisms have a

multicellular morphology and communications between cells. Several organisms have

been used in the microbeam bystander effects studies, such as Arabidopsis thaliana,

Bombyx mori and C. elegans. In the Loma Linda/TAMU experiments L1 larva C.

elegans were used to study the bystander effects in the intestine cells. The simple

culture conditions and maintenance, rapid life cycle, short life span, fully sequenced

genome, transparent body, and small number of somatic cells make C. elegans a

suitable model for in in vivo microbeam studies to investigate bystander effects in

whole organisms.
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1.2 Caenorhabditis elegans

Caenorhabditis elegans (C. elegans)is a small nematode, commenly found in gar-

den soil, feeding on soil bacteria. With a simple and straight biological structure, C.

elegans adult has only 900-1100 cells in total. Similar to other nematodes, the life

cycle of C.elegans is comprised of the several different stages: embryonic stage, four

larval stages(L1-L4), and adulthood.

During embryonic development, cell division progresses from a single cell to about

550 essentially undifferentiated cells and as it progresses through the larval stages

it takes form as an animal with fully differentiated tissues and organs. At the end

of the embryo stage, there are four germ cell precursors, Z1 to Z4. The main body

plan of the animal is already established at the end of embryogenesis. During L1 to

L4 stage, the nervous system and reproductive system develops. The general body

plan does not change during post-embryonic development.

In the Loma Linda/TAMU experiment, the L1 larval are irradiated and specific

intestine cells are targeted. The microbeam protons or alpha particles are aligned

with the target nucleus. The intestine is comprised of 20 large epithelial cells that are

mostly positioned as bilaterally symmetric pairs to form a long tube around a lumen.

The ancestor of these cells is the E blastomere cell, which is born on the surface of the

embryo about 30 minutes after fertilization. The intestinal development is divided

into specific stages which are indicated by the number of E descendants present,

such as E2, E4, E8, E16, and E20, although occasionally due to an extra cell division

during development the mature intestine is seen to be made of 21 cells instead of the

usual 20. Each of these cell pairs forms an intestinal cell ring. The anterior most is

an exception and is comprised of four cells. The intestine has distinct apical, lateral,

and basal regions. Each intestinal cell forms part of the intestinal lumen at its apical
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pole and secretes the constituents of the basal lamina from its basal pole. Each

intestinal cell is sealed laterally to its neighbors by large adhered junctions close to

the apical side. It also connects to the neighboring intestinal cells via gap junctions

on the lateral sides. During development, int II, int III and int IV rings initiate a

coordinated 90 degree rotation, however, it seems to be variable. The orientation of

cells in the adult int VI-IX rings is variable too. Rings VI-VIII tend to adopt left-

right positions, whereas ring IX cells are usually positioned dorsoventrally. As the

animal ages, the intestine does not fill the entire cavity behind the pharynx, instead,

it becomes deflected to permit the growth of the gonad within the same cavity.

The outer surface of C. elegans is covered by a tough, but flexible, extracellular

cuticle, which protects the animal from the environment, maintains body shape,

and permits motility by acting as external support. Initially the adult cuticle is

approximately 0.5 um in thickness, with aging, the thickness of the adult cuticle

increases. Larval stage cuticles differ from adult in the type of layers present or their

relative thickness. Under the hypodermis, there is a layer of muscle cells, which are

arranged in four longitudinal bundles located in four quadrants.

In bystander effects research using microbeams, clearly demonstrating the prob-

ability of non-targeted cells to be irradiated is necessary and required to exclude the

possibility that the bystander effects are induced by direct transverse by scattered

particles. In addition the energy deposition in the target cells, which is difficult

to measure, is helpful to evaluate the bystander effects, especially when studying

the relationship of bystander effects and absorbed doses. With the known structure

of intestine zone in the worm body, dosimetry in a particular cell nucleus, which

is difficult to achieve in experiments, is possible with a detailed computer model.

And the scattering to other cell nuclei can be investigated in different microbeam

configuration.
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2. EXPERIMENTAL SETUP

As discussed above, bystander effect studies has inspired the development of

microbeam equipment, which can deliver precise numbers of particles to part of

the target cell. With microbeam irradiation targeting on one or several identifi-

able cells, distinguishing the directly irradiated cells and unirradiated bystander

cells is possible. High spatial resolution is crucial in studies regarding cell-to-cell

communications, functionality of sub-components within the cell, and intercellular

communications. Depending on the questions to be addressed, the requirement of

beam diameter ranges from several micrometers down to nanometer level. Several

micrometer resolution is most common and sufficiant to limit the irradiation to one

particular cell without irradiating the surroundings. Better spatial resolutions are

required, however, to precisely irradiate subcellular components. In future develop-

ments, sub-micrometric beams may be required to target a single gene. In the Loma

Linda/TAMU experiment, a 5 micrometer diameter particle beam is constructed to

meet the requirement of the bystander effect research in C. elegans.

2.1 Methods of generating microbeams

In order to limit the irradiation to a specific cell in a population or to a specific

site in a cell, the accelerated beam of charged particles has to be reduced to a

micrometric or sub-micrometric size. There are two methods to accomplish this

requirement: collimation or focusing, magnetically or electrostatically.

Collimation, which is first introduced by Zirkle [11] is an easier way to narrow

radiation beams, reducing the fluence to a relevant level for low dose irradiation. The

main limitation of mechanical collimation is the scattering of particles on the inside

walls of the apertures, which increases in proportion to the ratio of the perimeter to
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the area of the aperture [13]. Scattering will produce particles with lower energies and

wider lateral angles than the primary beam. Collimator material and the geometry

have to be properly optimized to minimize the scattered component and improve the

beam quality. Coupled collimators are often applied to reduce the scattering, with the

first one narrowing the beam and the second stopping the particles scattered by the

first. Also, alignment of the collimators with respect to the incoming beam is a very

delicate task. Several solutions for collimation and collimator alignment systems

have been adopted at different laboratories developing microbeam by mechanical

methods.

Focusing has higher spatial resolution, and can be used to target smaller cellular

structures than mechanical collimation. The narrowest beam the focusing method

can achieve is down to sub-micrometeric size, so it has a high spatial resolution and

targeting accuracy in vacuum. However, the vacuum window which is required to in-

troduce the beam from vaccuum to the target, would reduce the performances due to

scattering. And the cost of installing a focused system is usually greater than setting

up a collimated microbeam. Focused beams are used widely in non-radiobiological

applications which can benefit from their high beam current and precision, but they

are problematic for low dose radiations. The intense beam generated by the focusing

system makes it difficult to deliver precise numbers of particles to the target cell,

which usually requires only several particles.

2.2 Collimator setup

In the Loma Linda/TAMU experiment, a collimated microbeam system was built

to narrow the wide charged particle beam generated by the accelartor to the required

diameter. As shown in the Figure 2.1, the collimator system includes the lower

adjustable steel aperture, control shutter, copper aperture and Mylar sample holder.
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The charged particle beam, which has a large diameter and is essentially mono-

genetic is generated by an electrostatic accelerator. The radiation beam was initially

narrowed down to about 3-micrometer square by the adjustable aperture, which con-

sists of 4 steel blades. In the experiment, the steel blades were carefully adjusted to

narrow down the radiation beam to about 3 µm X 3 µm, and at the same time mak-

ing sure it is aligned with copper aperture. The alignment is achieved by positioning

each steel blade to reduce the beam fluence through the copper collimator without

stopping it. Some particles in the result are scattered by interactions with the edge of

the steel blade. The scattered particles are blocked by the copper collimator, which

is 25 µm in thickness with a 5 µm diameter laser drilled hole in the center. Because

the copper collimator is about 30 cm away from the steel aperture, most scattered

primary particles and delta rays cannot travel through the small collimator hole.

The larger size of the copper hole than the steel aperture window avoids interactions

of source beam and the copper edge. The hadron particles are introduced to the

air from the vacuum after passing through thin Mylar R©which includes the sample

holder and a window to seal the collimator hole. The target nucleus in the worm can

be aligned with the radiation beam as it is close to the copper hole.

11



Figure 2.1: The schematic of the collimator setup in Loma Linda/TAMU bystander
effect experiments

In the Loma Linda/TAMU experiments, each targeted cell was irradiated by

about 25 protons by controlling the shutter to give the same product of fluence rate

and shutter open time. As the average fluence is fixed, the total number of particles

that reach the target would be random and following Poisson distribution. For

experiments requiring lower fluence, a thin scintillator can be mounted between the

copper collimator and the sample holder to measure the number of primary particles

that can reach the target[14]. In those experiments, the signal from the scintillator is

used to control the operation of the shutter, so the exact number of primary particles

can be delivered to the target cell.
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3. MODELS AND SIMULATION

The collimator-based microbeam facilities are easier to construct compared with

a focusing system, but collimated systems also have some limitations including low

intensity, scattering from the collimator edges, the need to place the target close to

the collimator [15], and the need for precise alignment of collimator components.

Energy deposition in the target cell or nucleus is the quantity needed by the

radiation biologist, especially when the relationship between the absorbed dose and

bystander effects is the research interest. In the microbeam irradiation system, low

energy particles are usually used and the target is usually located near the end

of the charged particle track. The absorded dose to the target can be estimated by

continuous slowing down approximation (CSDA), but Bragg Peak effects and particle

energy straggling, after traveling through sample holder, scintillator detector, and

the tissue before reaching the targeted area, would increase the uncertainty of the

dose in the targeting area. The probabilities of non-targeted cells or cell nuclei being

irradiated by scattered particles are also important in bystander effect studies. The

probabilities should be very low in order to exclude the possibility that biological

effects in non-targeted cells or cell nuclei are caused by scattering rather than by

bystander signals.

In order to evaluate the scattering and energy deposition in specific targets for

different microbeam system configuration, a mathematical model of the microbeam

facilities and the target organisms was developed. The model was built using Geant4,

which is a popular Monte Carlo simulation package and is widely used in radiation

track structure simulations. The geometry setup mainly includes two parts, the

collimator system and the worm body. The collimator system model was constructed

13



according to the experimental setup shown in Figure 3.1. The model of the C. elegans

body was built according to the cell position in the body as shown in the Figure 1.2,

and the distance between any two nuclei and their angles relative to the vertical

section are selected according to the data in [16, 17], although the number may vary

slightly in individual worms.

3.1 Collimator models

The Figure 3.1 shows the plot of Geant4 model of the microbeam system, in-

cluding an adjustable steel aperture, a copper aperture and a sample holder. In the

simulation, a wide beam of monoenergetic charged particles was used to simulate

the original radiation beam source generated by the accelerator. The directions of

charged particles from the accelerator are essentially identical and the standard devi-

ation of the energy is small compared to the total energy, so the ideal wide radiation

beam can be used to represent the radiation source without modeling the complex

accelerator. The shutter in the experimental setup (Figure 2.1) is used to control

the irradiation time interval in order to control the total number of particles deliv-

ering to the target. During a shutter open period, although only a small number of

particles can reach the target, a large number of source particles was generated by

accelerator. In the simulation, the shutter was not built and a fixed total number

of source particles is used to simulate the shutter open time. Because the relative

variation of the a large number of particles is very small, a fixed number of source

particles can closely simulate the shutter open time.
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Figure 3.1: The computer model built to simulate collimated microbeam. The lower
aperture was formed by four adjustable steel blades, and the upper one is a copper
sheet with a laser drilled hole in it. The scale for different parts may vary

The aperture models and their shapes significantly affect the radiation scattering,

so it is very important that the shape is accurately modeled. For an ideal shape

steel aperture and copper aperture, the scattering is negligible. Because the source

particles travel parallel to the surface of the rectangular steel blade and the inner wall

of the copper hole, the only scattering is from the interactions of charged particles

hitting the edge of the steel aperture. In experimental conditions, there is always an

angle between the radiation direction and the aperture wall.
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Figure 3.2: Scattering from the surface of the collimator

Figure 3.2 shows the different types of scattering at blade edges when the ra-

diation beam is not parallel to the aperture wall. The scattering will increase the

number of lower energy particles with changed directions. With an rough surface,

the scattering would be increased substantially. In the simulation, several different

steel aperture surface models were built to study the scattering effects to the results.

The model of the copper aperture has a significant effect on the results because the

distance from it to the target is only several micrometers, and any scattering from the

copper could contribute to the dose to the target. Laser drilled small diameter holes

are used in several microbeam facilities ([18]), the small laser drilled holes in metal

provide an easy way to generate microbeams, but they have several disadvantages

making them less than ideal for the collimation microbeam system. Laser drilled

holes usually have poor surface finish, because the metal melting pattern is not

symmetric and some ablated material is redeposited on the inside of the holes [19].

The hole produced by laser drilling is tapered, with a larger entrance and smaller

exit (laser beam entrance/exit when drilling), which will increase the scattering and

degrade the energy spectrum. Due to the asymmetry and rough inner wall surface,

a large diameter should be selected to make sure the smallest diameter of the hole
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is larger than the diameter of the first aperture.

In the simulation, very detailed models of copper aperture were built to simulate

the inner wall surface with different exit and entrance diameter ratios.

3.2 Worm body models

A detailed model of the worm was built to estimate the dose delivered to the

targeted cell nuclei. Figures 3.3 shows the transverse section of intestine model

for the L1 worm. The dimensions of skin, muscle, and hypodermal tissue were set

according to the transverse section images in the refrence[16]. In the model, different

atomic compositions were built for different tissues, although in this study the atomic

composition has negligible effects on the dose distribution or scattered particles. For

low energy x-rays, the atomic composition could have a significant effect on dose

deposition in target area. The worm model developed for this study is expected to

be useful for other bystander effect research using x-ray beams.

In the model, all 20 intestine cells in L1 stage worm were built, cell dimensions and

nucleus positions were set according to measured data[17]. The location of intestine

cell nuclei in worm body varies in different worms, but the standard deviation of the

locations is small for L1 stage worm[20]. Due to the low variation, the model using

average cell nucleus locations could represent realistic worms. Measured data shows

the average diameter of intestine cell nuclei is 3.23 µm [20], and the dose deposition

date shown in this work were based on the average diameter. For larger or smaller

cell nucleus the absorbed dose will be slightly different.
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Figure 3.3: A transverse view of the worm computer models

3.3 Scintillator and sample holder models

For low fluence studies a scintillator detector is required between the collima-

tor and the target, providing signals to control the shutter, in order to facilitate

experiments when exact number of particles is required. The thin layer of scintilla-

tor, which is about 10 micrometers thick, absorbs a fraction of the particle’s energy,

widens the energy spectrum and weakens the targeting accuracy. Scattered particles

from the aperture edges could be stopped in the scintillator, as a results the number

of particles delivered to the target is different from the output of the detector. In the

simulation, the effects of scintillator and Mylar R©sample holder on scattering were

also studied to provide references for the experiments.
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4. RESULTS AND DISCUSSION

In order to calculate the limitations of the collimated microbeam, simulations

using the computer model focused on the beam scattering and energy deposition.

The purpose was to clearly demonstrate the probability of non-targeted cells being

irradiated by scattered particles and to provide biologists the dose distribution in

the target cell nuclei for different collimator setups. The Geant 4 code was used to

simulate single particle interactions in the collimator system and the worm phantom.

So the probability that a single proton will irradiated a non-targeted cell nucleus and

the energy deposition spectrum in target could be estimated by simulating a large

number of particles.

In this chapter, the best microbeam quality that can be generated in the collima-

tor system of the Loma Linda/TAMU experiments was evaluated, by simulating an

ideal condition collimator. Any requirement beyond the results should be pursued

by alternate methods, like focusing. Simulations of scattering on different part of

collimators and the smallest diameter of the beam the collimation system can gener-

ated were performed and the results were analyzed in this part. The results will aid

future collimator design efforts by providing information to select the best collimator

diameters and other physical properties, and providing information on what should

be addressed to improve the system performance.

The energy deposition in a targeted cell nucleus is randomly distributed because

the particle track length in the spherical nucleus depends on the position where the

charged particle enters, and the random process of the interaction of charged particles

with materials. The simulation result for the energy delivered to the target by a single

particle is meaningless, instead we provided energy deposition distributions in the a
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target cell nucleus by simulating large number of particles.

4.1 Beam scattering

The effect of the scattering from the collimators on the microbeam is the primary

issue for the simulation. Scattering is one of the several limitations on microbeam

precision and is controled by mechanical collimators. Due to scattering, the diameter

of the beam, when it reaches the target, is larger than its original size when it is

traversing the final collimator aperture. Folkard et al. [21] measured values of the

scattering from a 1 µm diameter aperture. They found that 4% of the protons were at

least 5 µm away from the mean position and 10% were at least 2 µm away. Gerhard

et al. [18] published that 92% of the particles were within the nonscattered core

of the 5 µm collimator beam produced by their dual aperture collimator. Besides

effecting the diameter of the beam, energy loss is another result of the particles

hitting the collimators. In the Folkard et al. [21] experiment, the mono-energetic

proton beam was spread out into a spectrum with a full-width at half-maximum

energy of 47keV for the main peak, and about 96% particles fell within this full

energy peak. Scattering is related to the shape of the collimators and the geometry

of the system. Theoretically, the scattering is proportional to 1/r, in which r is the

diameter of the collimator. Also the thickness of the aperture has a large effect on

the scattering. The system should be clean, straight and properly aligned to reduce

the scattering effects. In the following sections, the effects of scattering on the dual

collimators, and alignment effects are discussed.

4.1.1 Ideal shape colliamtors

To investigate the characteristics of the best microbeam a collimation system can

generate and reveal the theory of the collimated microbem, an ideal collimator model

was built . In ideal conditions, the steel aperture blades were built in a rectangular
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shape with smooth surface which is parallel to the direction of source particle beam.

The copper aperture has a tubular hole without laser drilling debris on the inner

wall, and the diameter is a little larger than that of the first aperture. The two

apertures are perfectly aligned.

Due to the larger diameter of the second aperture, the main beam particles which

travel through the first aperture will cleanly pass the second aperture without any

interactions. Any scattered and partial energy particles that could reach the tar-

get tissue would be sacttered from the edge of the steel blades. Figure 4.1 shows

scattering of particles interaction with the steel aperture blade, when there are 200

particles in the main beam. To illustrate the scattering interaction between the

particles and steel blade, particles which cleanly pass the aperture is not plotted.

About 20 primary particles were scattered back to the main beam, but they quickly

reached another point on the aperture blade and were stopped. With thick aperture

blade, the probabilities of scattered particles travel through the collimator aperture

are lower. So in some microbeam sytems where only one collimator is used to nar-

row the source radiation beam, a thick collimator was usually preferred to reduce

scattering.
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Figure 4.1: Charged particle scattering near the edge of the steel aperture in the ideal
conditions. To clearly demonstrate scattering, the primary particles which passed
through the aperture without interactions were not plotted. Distance between the
two aperture blade is 3 µm. Blue line: protons; Red line: delta rays; Grey: steel
blades

In order for the scattered particle to arrive at the target tissue, the scattering

angle which is between the direction of scattered particles and the blade surface

must be very low, because of the large distance between the two apertures. In

the Loma Linda/TAMU bystander effects experiments, the maximum angle between

the scattered particle direction and the blade surface which allowed travel through

the final collimator is about 10−3 deg. As shown in the Figure 4.2, it is hard to

find scattered particles which can pass through the copper aperture. In some other

experiments, where the distance between two collimators is small, the maximum

angle would be larger, for example the maximum angle is about 0.1 degree if the

distance is several millimeters.
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Figure 4.2: Rare scattered particles from the steel aperture could reach the target
in the ideal conditions. To clearly demonstrate scattering, the primary particles
which passed through the apertures without interactions were not plotted. Blue
line: protons; Red line: delta rays; Grey: steel blades. The distance between the two
apertures is not in the same scale with the apertures.

Figure 4.3 shows the scattered particles spread out quickly after interacted with

the steel aperture blades, and it is hard to see any scattered particles in the 50 µm X

50 µm square around the primary beam when the distance from the steel aperture is

larger than 30 mm. So all primary particles will travel through the second aperture

in ideal conditions cleanly if the distance between the two apertures is not too small.
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Figure 4.3: Scattering from the steel aperture under ideal conditions. The color
represents scattered particle density at different distance from 10 mm to 40 mm when
1 million primary particles in the main beam. Primary particle: 3 MeV protons

Simulation results showed that the probability of one primary particles to be

scattered and directly irradiate a non-targeted cells is less than 10−6 in the ideal

conditions.

4.1.2 Steel collimator shape effects

In the real experimental setup, neither are the collimator blades ideal rectangles

nor is the blade surface parallel to the radiation direction. The roughness of the

surface finish and the angle between the surface and the radiation beam are factors

that can increase scattering from the collimator.

The angle between the surface of the blade and the beam direction creates a small

zone on the edge (Figure 4.4 shows the zone width is d). When particles incident

on the edge within the zone, most of them will be transmitted through the blade.

The width of the zone only depends on the CSDA range of charged particles in the

material and the angle between the blade edge and the beam direction. The width

of the zone is about 0.2 µm for 3 MeV protons in a steel collimator if the angle α

in Figure 4.4 is 1 degree. Comparing with the ideal condition, the small tilt angle
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hugely increased the probabilities of primary particles to be scattered out of the

aperture blade. Although the particles impinged on the zone would travel through

the steel blade, a small fraction of the reduced energy particles would travel within

small scattering angle with the initial beam direction and go through the second

aperture.

Figure 4.4: The angle between the steel blade edge and beam direction cause a
transverse zone.

Due to cutting tools, environmental conditions, and the material itself, all ma-

chining processes will produce some roughness on the surface. There are several

measurements used to describe the surface roughness properties:

Ra: The average the arithmetic mean of the absolute departures of a roughness pro-

file from the mean line of the measurement. Usually surface finish level mean Ra.

Rp: Highest peak height along the assessment length.
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Rv: Deepest valley depth along the assessment length.

R(p+v): Rp + Rv.

Generally, for abrasive finished surface, the surface finish Ra falls in 0.2 to 1.0 µm.

Rp + Rv value, however, is much larger, about 1.2 to 5.0 µm. So the variation of

the surface peaks and valleys on a abrasive finished aperture blade is the same order

as the 3 µm gap between the two aperture blades. The small peaks of the surface

would significantly increase scattering from the blade edge.

After interaction of the charged particles with the small peaks on the rough sur-

face of the steel collimator, the direction and energy of a charged particle will be

changed slightly due to the small interaction length. The surface roughness slightly

enhances the probability of scattered particles traveling through the steel aperture

and reaching the copper collimator, resulting in an increased percentage of partial

energy particles reaching the target. Depending on the alignment and the direction

of scattered particles, the partial energy scattered particles either directly irradiated

the target cell or scattered again on the copper collimator. The particles that di-

rectly reached the target tissue would change the energy deposition properties, while

the particles interacting with the edge of the copper aperture would were either be

absorbed by the collimator or scattered again and hit cells surrounding the target.

Lower energy particles reaching the targeted cell and changing energy deposition is

important when exact number of particles is required to be delivered to the targeted

cell. It will significantly change the energy deposition when only a few particles are

desired in one irradiation. But it is negligible in the Loma linda/TAMU experiment

as the number of particles to one cell nucleus is a relatively large number, following a

Poisson distribution. So the energy deposition varies following Poisson distribution

even if every particle deposits the same amount energy.

The second situation, in which the scattered particles irradiated non-targeted
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cells, is a more important issue in the bystander effects research. The probability

of scattered particles transversing surrounding cells should be controlled to a very

low level to exclude the possibility that the radiation effects in surrounding cells

are induced by scattered radiations, rather than the radiation bystander effects.

Furthermore, the most important purpose of using a charged particle microbeam

to irradiated a single cell in bystander effects research is to distinguish the directly

irradiated cells and non-irradiated cells, in order to study the biological differences

in directly irradiated and unirradiated bystander cells, signal transfer and linkage

between cells, etc. So knowing the probability of surrounding cells being irradiated

is important in the bystander effects research. However, it is hard to get the exact

number through simulation since the roughness of the steel aperture surface is hard

to measure and to model and the scattering is sensitive to the tilt angle of the

surface and the peaks on the surface near the edge where it is closest to the aperture

center-line. In the following paragraphs, the simulation results and several models

are discussed.

4.1.2.1 Surface Models

According the surface roughness level, a similar simple model was built with

triangular peaks on the surface with average height of 0.2 µm to represent a surface

finish level of Ra = 0.2 µm. The height of the peaks is randomly generated with a

half normal distribution (The positive half of the normal distribution curve), and the

largest is around 0.6 µm which is close to the maximum peak value on the real surface

with Ra = 0.2 µm (Appendix A Table A.1). In radiation experiments, the scattering

mainly comes from the tinny peaks on the surface, the valleys play important roles

only when the thickness of the aperture blade is similar to the range of ionizing

radiations and the valleys reslut some primary particles not being stopped in the
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blade. The model which could represent the real surface in our setup as shown in

the Figures 4.5.

Figure 4.5: The simple surface roughness models just contains small peaks on the
surface without valleys to simply represent the rough surface. The height and base
length of peaks were generated randomly and the number of the peaks also varies to
fill the whole edge. The figure shows Ra = 0.2 µm and Rp = 0.6 µm.

The peaks on the surface largely increased the probability of scattering with small

direction change. Figure 4.6 and 4.7 show the scattered particle density around the

main radiation beam at different distances after they pass the steel aperture, with

an ideal shape and roughness surface model described above respectively. In both

figures, the the angle between the steel aperture blade surface and the direction of

the beam is 1 degree.
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Figure 4.6: Scattering particles at different distance from the target tissues for ideal
shape collimator. A 25 µm X 25 µm area is ploted. The color in the figure depends
on the number of scattering particles per square micrometer when 1 million primary
particles travel through the copper collimator hole. The results represent an ideal
shape steel collimator and the angle of steel collimator edge to the radiation beam
is 1 degree.

Figure 4.7: Scattering particles at different distance from the targeted tissues for real
steel collimators. A 25 µm X 25 µm area is ploted. The color in the figure depends
on the number of scattering particles per square micrometer when 1 million primary
particles can travel through the copper collimator hole. The collimator model is
shown in the Figure 4.5 and the angle of steel collimator edge to the radiation beam
is 1 degree.

For the ideal rectangular shape steel apertures, particles scattered from the in-
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teractions of the primary particle with the edge of the aperture blades is very rare,

even if the angle α, between the blade surface and beam direction, is 1 degree. The

scattered particle flux is about several particles per µm2 per 1 million primary par-

ticles at the surface 10 mm away from the steel aperture in vacuum, and decreases

quickly with the distance from the steel aperture. It is difficult to see the scattered

particles when the distance from the first aperture is larger than 20 mm. The simu-

lation results from our rough surface model (Ra = 0.26 µm, Rp=0.8578 µm), show

scattering is more obvious compared to the ideal shape. The scattered particle flux

is about 100 per µm2 per 1 million primary particles at the 10 mm away from the

steel aperture and is about 20 at the surface which is about 30 mm from the target.

It also decreases quickly with the distance.

Table 4.1 lists the number of scattered particles that could pass through the

copper aperture for different aperture distances from 10 mm to 40 mm per 1 million

primary particles and the percentage of the partial energy particle to the total number

of particles traveling through the apertures. The result for ideal shape and rough

surface model were compared. In both configurations, α, the angle between the beam

direction and steel blade surface, is 1 degree. For ideal conditions (α = 1 deg) the

scattered particle percentage in the main beam is only 0.0019%, the percentage is

even lower at greater distances. For the rough surface models, the percentage drops

from 1.2% to 0.17% when the distance between the two apertures increases from 10

mm to 40 mm.

The energy distribution of the scattered particles changed slightly with the dis-

tance from the steel aperture (Figure 4.8). Low energy particle probability decreases

with larger distance, but the energy of most scattered particles is close to the full
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Table 4.1: Total number of non-full energy primary particles within 5 µm diameter
of the center

Distance from the steel aperture
Model 40 mm 30 mm 20 mm 10 mm

Rough edge Number 1724 2422 4229 12412
Percent(%) 0.17 0.24 0.42 1.2

Ideal edge Number 0.75 0.75 1.5 18.5
(α = 1 deg) Percent(%) 0.0001 0.0001 0.0002 0.0019

energy particles. The fraction of scattered particles for which the energy is less than

90% of full energy is less than 5%.

Figure 4.8: Energy spectrum of scattered particles at different distances from the
steel aperture from 10 mm to 40 mm. A 25 µm X 25 µm area around the main beam
was scored. Errorbars show one standard deviation.

Based on the results, we concluded that both the tilt angle of the steel blade

and the surface roughness increase scattering to the main beam, but the surface
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finish contribute much more to the scattering than the tilt angle. The 1 degree tilt

angle fraction the non-full energy percentage in the main beam from negligible to

0.0019% at the surface 10 mm away from the aperture, however with the roughness

level of Ra= 0.2 µm, the probability at the same distance is 1.2%. Second, with

larger distance between the two apertures, the scattered particles in the main beam

decreases quickly. The scattered particle flux decrease approximately proportional

to 1/d2, where d is the distance from the steel aperture. So the scattering from

the first aperture only affects the beam quility for single aperture system or when

the distance between the two apertures is small. To improve the collimation system

performance, larger distance between the two apertures is preferred, but increasing

the distance between the two apertures makes it difficult to align the apertures.

In the Loma Linda/TAMU experimental setting, the distance between the two

apertures is about 30 cm. The large distance makes the probability that a scattered

particle from the first aperture passing through the second aperture extremly small.

Results show that the number is less than 5 per million primary particles.

4.1.3 Copper collimator effects

The copper aperture is the last substantial shield before charged particles reach

the target cell or nucleus, and serves to block scattered particles that have not cleanly

passed the first aperture. At the same time, the particles scattered from the copper

collimator would directly irradiate the target and surrounding cells. To minimize the

scattering from the copper aperture and block as many scattered particles from first

aperture as possible, the aperture plate should be thicker than the CSDA range of full

energy particles and the aperture should be larger than the first aperture. Compared

to the scattering from the steel aperture, scattering from the copper aperture is more

important to the results of the biological experiment as there is no further shield after
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particle travels through it.

As discussed in section 4.1.1, charged particles will travel through the copper

aperture hole without any interactions if collimator shape, dimensions and the align-

ment are ideal. If the apertures are not ideally aligned or the diameter of the second

aperture is too small, the radiation beam could impinge on the edge of the aper-

ture, inducing particle scattering. In addition, the scattered particles from the first

aperture could also be scattered again and travel through the laser hole to reach

target cells, but the probability is very low in the Loma Linda/TAMU experiment

because of the large distance between the two apertures. In some other experiments

([18]), when the two apertures were not very far apart, the probability, however, is

not negligible.

When particles impact on the edge of the copper aperture, whether due to im-

proper alignment or smaller size of the second aperture, the inner wall geometry of the

laser hole would affect the scattering a lot. As discussed in the Model section, laser

drilled holes usually have poor inner wall surface finish and smaller entrance than

exit, which increases the scattering and reduces the full energy particle percentage.

The inner wall surface roughness depends on the laser properties and environmental

conditions when drilling. While the ratio of the entrance diameter to the exit diame-

ter depends on the laser used for drilling and also the thickness of the copper. With

thinner copper foil the diameter of the exit is closer to the diameter of the entrance.

So the copper collimator should be selected as thin as possible, as long as it can stop

the full energy particles, in order to reduce the scattering from the inner wall of the

laser drilled hole.

In addition, the zone around the hole, which is about 1 µm wide, is also affected

by the heat of the laser beam, reducing the thickness of the copper shielding around

the collimator. In most experiments with microbeam facilities, this effect will be
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negligible, but if the thickness of the copper aperture plate is close the the range

of full energy particles, the reduced thickness could induce additional low energy

scattering to the target or surrounding cells.

In the Loma Linda/TAMU experiment, the copper aperture is a 25.4 µm (0.001

inch) thickness copper foil with a 5 µm-diameter laser drilled hole in the center. The

projected range of a 3 MeV proton in copper is about 22 µm, so the copper collimator

is thick enough to block all scattered and un-aligned particles. The steel aperture

is a 3 µm by 3 µm square, so the diameter of the laser hole is large enough for the

square radiation beam.

4.1.3.1 Inner wall model

The wall morphology of laser drilled holes has been investigated by slicing the

holes along their length in several studies. The morphology is quite different for

different materials depending on the metal properties. Weck et al. [19] studied the

inner wall structure of high aspect ratio holes in copper. Regular ripples were seen

on the wall of the holes when they were machined in air with laser pulse length

between 150 fs and 1 ps. For shorter pulse lengths, ripple structures were reduced

and smoother sections are present. When the holes were drilled in vacuum, the

surface appears as if liquid droplets condensed on the surface instead of the ripple

structure. The size of these features was relatively constant in their research, about

0.2 µm.

In the mathematical models, small cylindrical sections were used to represent the

ripples on the surface of the laser drilled hole as shown in Figure 4.9. To fit the small

sections on the inner surface of the hole, the outer radius is the same as the radius of

the hole at the position where the cylindrical sections were located. The thickness,

which is the outer radius minus inner radius, of the cylindrical sections represents

34



the height of the ripples. In the simulation, random numbers of the thickness with

a Gaussian distribution were generated to represent the uncertainty of the ripple

heights. The average thickness was set to 0.14 µm, and the standard deviation was

0.02 µm. So 95% of the model ripples height falls between 0.1 and 0.18 µm, and about

2% falls between 0.18 and 0.2 µm. To prevent the possibilities of generating ripple

height larger than 0.2 µm, for which the probability is 0.13%, an upper limit of 0.2

µm was set. The arc length of the cylindrical sections was also randomly generated

and the average value is 0.2 µm. Data are shown in Appendix A Table A.2 and

Table A.4.

Figure 4.9: Computer models of the ripples on the inner surface of the laser drilled
hole. Left figure: overview of the models on the inner wall; Right: cylinder section
used to represent the ripple.

Triangular, rectangular, and sphere shapes were used to build the liquid droplets

on the surface, especially for the holes drilled in vacuum. Setting similar to those used

for the cylindrical sections representing ripples were used for the droplet dimensions.
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4.1.3.2 Scattering on the inner wall

To study the effects of the laser hole morphology on the scattering, several dif-

ferent diameters of the laser whole model were simulated, and the results comparing

with ideal condition copper aperture are shown in Table 4.2. In the simulations, a

3 µm by 3 µm square aperture was used, and its model was described in the steel

aperture section. The diameters shown in the table were the exit diameters of the

laser hole, which is mounted to be the entrance side for the radiation beam to reduce

scattering. For the 5.0 and 4.4 µm diameter configurations, the copper aperture is

clearly larger than the first aperture, so the full energy particle fraction is high and

the probabilities of the non-targeted cells being irradiated were low, the results for

the two distinct settings are different because some of the main beam particle may

hit the small ripples in the 4.4 µm diameter aperture. If the dimension of the second

aperture is clearly smaller than the first aperture, for example, 2.4 µm shown in the

table, the scattering is significant on the small ripples, with only 51% of full energy

particles and the probability of having one surrounding cell nucleus to be irradiated

is 3%.

The scattering is more obvious if the diameter of the copper aperture decreases.

So in the collimator design, it is important to make sure the size of the second aper-

ture is larger than the first one. Considering the rough surface finish, the dimension

of the second aperture is larger than expected.

4.1.4 Alignment

For mechanical collimatiors, alignment of the apertures is the most important

task. Nearly perfect alignment is necessary to reduce scattering in the inner wall of

the apertures and maximize the full energy particle percentage. The small diameter

of the apertures makes alignment a delicate task in most collimated microbeam
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Table 4.2: Probabilities that non-target cell nuclei are irradiated for different the
copper aperture diameter and different models

Aperture diameter (µm) 5.0 4.3 4.0 3.5 3.0 2.5

P(>0.9E)
ideal 1.0 1.0 0.99 0.96 0.88 0.73
ripple 1.0 0.99 0.96 0.90 0.78 0.49

P1(%)
ideal 0 0.001 0.001 0.005 0.03 0.05
ripple 0.0004 0.002 0.005 0.009 0.05 0.1

P25(%)
ideal 0 0.03 0.03 0.1 0.7 1
ripple 0.01 0.05 0.1 0.2 1 3

P(>0.9E): fraction of particles with energy greater than 90% of full energy.
P1: Probabilities of non-target cell nucleus are irradiated,
if one primary particle hits the target nucleus.
P25: Probabilities of non-target cell nucleus are irradiated,
if 25 primary particles hit the target nucleus.
ideal: simulation with ideal shape of copper aperture.
ripple: simulation with the inner surface models.

facilities.

If the two apertures are well aligned, the scattered and partial energy particles

are negligible even though the surface of the first aperture is rough, as long as the

the minimum diameter of the second aperture is larger than the diameter of the first.

Simulation results shows that the fraction of full energy particles is more than 99%

for a well aligned system, and the non-full energy particles are the scattered particles

from the edge of the tiny rough peaks on the steel aperture edge. If the two apertures

are not suitable aligned, primary particles have a chance to hit the rough inner wall

of the second aperture, reducing the full energy particle percentage and increasing

the probability of scattering to surrounding tissues.

Several simulations were conducted to study the relationship of scattering and

the offset distance of center axis of the two apertures (Figure 4.10). All results were

based on the models described in the steel aperture and copper aperture sections.

The steel aperture is a 3 µm by 3 µm square with 1 degree tilt angle between the
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beam direction and inner blade surface. The diameter of the copper aperture was

set to 5 µm with ripple models on the inner wall surface.

Figure 4.10: Distance of the two apertures center axis in poor alignment conditions.
The scales in the different parts may be different.

Table 4.3 shows the relationship of full energy particles that irradiate the target

cell nucleus. If the offset is less than 0.35 µm, the scattering is negligible and the

beam is as good as ideally aligned of the two apertures. For offset distance larger

than 0.5 µm, the scattering increases quickly. The larger size of the second aperture

allows some alignment errors of the two apertures.

Figure 4.11 illustrates the energy spectrum of particles scattered from the copper

aperture. Unlike the energy distributions of the scattered particles from the steel

38



Table 4.3: Full energy particles percentage to the target for different alignment
conditions

Offset Distance (µm) Full energy particles(%)
<0.35 100

0.5 99.8
1.0 97
1.5 89
2.0 83

aperture, there are more lower energy particles after scattering from the laser hole.

The differences are caused by the large scattering angle of low energy particles. Due

to the large distance between the two apertures and the thickness of the steel aperture

blades, scattered particles with large angles are either absorbed by the collimator or

scattered out. However, the distance between the target and the copper aperture

is only several micrometers, so all scattered particles, if traveling through the laser

hole, will irradiate the target. In addition, the small thickness of the copper foil

sheet, which is only a little larger than the CSDA range of the primary particles,

allows more scattered particles travel through the aperture.
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Figure 4.11: Partical energy distributions in different alignment conditions, when the
offset distance between the two apertures is 1.0,1.5 and 2.0 µm. 1 million primary
particles in the main beam were simulated. Errorbars show one standard deviation.

Table 4.4 shows the probability that a non-targeted cell nucleus would be irradi-

ated under different alignment conditions comparing the ideal copper aperture and

our computer model. If the target nucleus is irradiated by 25 primary particle per

irradiation, the possibility that a non-targeted cell nucleus is irradiated is about 3%

estimated for our computer modelof a typical aperture, and 2.2% for an ideal copper

aperture. The rough inner wall surface of the copper aperture increases the prob-

ability of scattering to other nuclei, but the effect is not very significant. However

the fraction of the low energy scattered particles reaching the target tissue, which

would affects the absorbed dose in the targets, is much larger using the rough surface

aperturemodel.
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Table 4.4: Probabilities of non-target cell nuclei being irradiated for different align-
ment conditions

Offset distance (µm) 0 0.5 1.0 1.5 2

P(>0.9E)
ideal 1 1 0.98 0.96 0.93
ripple 1 1 0.97 0.89 0.83

P1(%)
ideal 0 0.0004 0.008 0.05 0.09
ripple 0.0007 0.0004 0.01 0.06 0.1

P25(%)
ideal 0 0.01 0.2 1 2
ripple 0.06 0.01 0.3 2 3

P(>0.9E): fraction of particles less than 90% of full energy.
P1: Probabilities of non-target cell nucleus are irradiated,
if one primary particle hits the target nucleus.
P25: Probabilities of non-target cell nucleus are irradiated,
if 25 primary particles hit the target nucleus.

4.1.5 Minimun beam size the mechanical collimator can create

In some radiation biological effectiveness studies, only parts of the DNA are

desired to be irradiated rather than the whole cell nucleus. Thus, sub-micrometer

precision is required to deliver the charged particles to the experiment sites. However,

the scattering increases when the diameter of the collimator aperture decreases. And

the scattering in the plastic sample plate and the target tissue makes the beam spread

out. The minimum diameter of the mechanical collimation charged particle beam

is restricted by the collimator, scattering in tissue, and mechinical properties of the

collimator. The particle usage efficiency is also a limitation to the particle beam, if

the beam is too thin the irradiation time would be extended for enough dose, as a

result the worm movement during irradiation time would enlarge the uncertainty.

4.1.5.1 Scattering for different diameter

The surface roughness level of the collimator inner wall contributes a lot to the

main beam scattering. The scattering effects becomes dominant when the diameter
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is smaller. Table 4.5 shows the primary particle energy distribution for different

copper aperture diameters. Model parameters are shown in Appendix A Table A.3.

In the simulation, the steel aperture is set to 0.4 µm. Although the diameter of the

laser hole in the copper aperture is larger than the diameter of the steel aperture

for the 0.6 µm and 0.8 µm diameter setting, the ripples and peaks on the inner

wall of the laser drilled hole have a chance to block some particles. For the 0.6 µm

diameter copper aperture, only 68.7% of particles have energy larger than 90% of

the full energy. For the 1.4µm diameter laser hole, the full energy particles are only

99.7% due to the scattering in the thin rough peaks in the steel collimator and their

energy is only several keV shy of the full energy, so their energy is considered to be

full energy particles.

Table 4.5: Full energy particle percentage to the target at different copper aperture
diameters with the steel aperture set at 0.4 X 0.4 µm

Diameter (µm) 0.3 0.6 0.8 1.4
minimum Diameter (µm) 0.16 0.35 0.5 1
Full energy percentage (%) 20 37 83 99.7
Larger than 90% of full E (%) 52 69 97 100

Although the full energy particle percentage is low for small laser hole diameters,

the probability of the non-targeted cell nucleus being irradiated is relatively low

and the probability of the surrounding objects being irradiated is negligible if only

one or two particles are delivered to the targeted cell nucleus. But in the Loma

Linda/TAMU experiments, about 25 primary particles are delivered to the target

cites per irradiation, the probability of the surrounding cell nucleus is irradiated is

much larger as shown in Table 4.6.
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Table 4.6: Probability of a surrounding cell nucleus being irradiated when intestine
cell nucleus 6d is targeted using a 0.4 X 0.4 µm steel aperture and the listed copper
apertures

Diameter (µm) 0.3 0.6 0.8 1.4
4v (%) 0.02
5d (%) 0.005
6v (%) 0.1 0.09 0.01

6d (%, the target) 100 100 100 100
7d (%) 0.03 0.009

Total for non-target(%) 0.2 0.100 0.013
Total for 25 primary particles(%) 4.52 2.48 0.33

The smaller diameter of the collimators requires better alignment precision to

minumize the scattering in the second collimator. Table 4.7 shows effects of the

offset distance between the two aperture center axis on the scattering and full energy

percentage for different copper aperture diameter. The steel aperture setting is the

same for the two simulations, 0.4 µm square. The smallest diameter of the 0.8

µm diameter second collimator setting is similar to the size of the first diameter,

so a small offset of the two collimator center would result in the part of the main

radiation beam hitting on the edge of the laser hole. But for the larger diameter

second collimator setting, the 1.0 µm minimum diameter is still much larger than

the first collimater diameter, so providing a large allowance for alignment error.

Table 4.7: Probability of the surrounding cell nucleus are irradiated

Diameter (µm) 0.8 (minimum 0.5) 1.4 (minimum 1.0)
Offset of collimators (µm) 0 0.1 0.3 0 0.1 0.3 0.5
Full Energy (%) 84 76 60 100 100 95 68
P(>90% of full Energy) 97 93 81 100 100 99 88
P1(%) 0.01 0.02 0.08 0 0 0 0.1
P25(%) 0.3 0.4 2 0 0 0 3
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The adjustable steel collimator can produce smaller diameter beams, but the

limitation is the laser drilled holes in the copper collimator due to their natural

disadvantage that laser drilling is not capable of making high aspect ratio holes.

Also, holes produced in this way are tapered and have poor surface finish, which will

increase scattering and degrade the energy spectrum.

4.1.5.2 Scattering in the tissue

Because of the scattering, identical charged particles do not follow the same

path in tissue, nor are the paths straight, especially for light particles. Multiple

scattering in the matter spreads the initial parallel beam of charged particles into a

conical angular distribution (Figure 4.12). The magnitudes of direction and range

straggling vary depending on the energy, mass, and particle charge. Since light

particles (protons) are more easily scattered than heavier particles (alpha particles),

their energy would be deposited in a relatively large volume due to the direction

straggling. Figure 4.12 shows the scattering of a 3 MeV proton beam in water. The

primary particle beam is 0 diameter when entering the phantom (red color), but at

60 micrometer depth the beam spreads out to about 2 µm in diameter.

Figure 4.12: The spreading of 3 MeV proton beam at different depths in water. All
particles enters the water phantom at the same position and identical direction.
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Considering that the detector for single particle applications is about 10 µm,

and is usually mounted between the second aperture and the sample plate, the total

thickness of matter the radiation beam has to travel through before reaching targeted

cell nucleus is around 20-60 µm. The diameter of the beam is then about 0.3 to 2

µm larger than the original beam size. This spreading out makes producing a vary

small radiation beam meaningless.

The scattering in the phantom could contribute to the scattering to non-targeted

cell nuclei. Table 4.8 shows the probabilities of non-targeted cell nuclei to be ir-

radiated for different cell nuclei depths in phantom. Scattered particles from the

copper aperture and in the phantom contribute to the probabilities of surrounding

cells to be irradiated. Most scattered particles have only small scattered angles, so

the probabilities for the scattered particle reaching a surrounding cell is small if the

worm is located at the surface of the water phantom. But if the worm is located

too deep in the phantom, the range of low energy charged particles is too short to

irradiate a surrounding nucleus.

Worms are usually located near the surface of the water phantom to easily align

the targeted nucleus and the aperture, so the detector which is usually mounted

between the sample holder and the collimator will increase the probability of scat-

tered particles irradiating non-targeted cell nuclei when it provides information of

the number of particles reaching the target.
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Table 4.8: Probabilities of the surrounding cell nuclei are irradiated for different
target cell nuclei depths in phantom

Depth (µm) 10 20 30 40 50 60
P1(%) 0.17 0.22 0.33 0.37 0.35 0.26
P25(%) 4.2 5.4 7.9 8.9 8.5 6.5

Results based on the rough steel aperture and copper aperture model.
To evaluate scattering, the offset distance between two apertures is 2 µm.

4.2 Energy deposition

A charged particle, being surrounded by its Coulomb electric force field, loses

its kinetic energy by interacting with one or more electrons or with the nucleus of

practically every atom it passes. Delta rays are ejected from the atom when a hard

collision occurs between an atomic electron and the charged particle. Due to the

range of the scattered delta rays, the kinetic energy of charged particles is deposited

in a larger volume than that occupied by the original beam.

For a hadron particle with several MeV per nucleon, the continuous slowing down

approximation (CSDA) range in water of the most energetic secondary electrons is

around 100 nm. The energy deposition for a beam of 3 MeV protons in water is

shown in Figure 4.12. For 3 MeV protons, the most energetic secondary electron is

about 3 keV [22], for which the CSDA range in water is about 300 nm. The figure

shows that most kinetic energy is deposited in a very short range, the doses dropped

quickly outside of the main beam (yellow color shows dose is only 1/1000 of the dose

indicated by red color).

The energy deposition in the target and surrounding cells is the key issue con-

cerning biologists conducting bystander effect studies. For a rough estimation, the

stopping power/LET data can be used. But it is far from precise, as the stopping

power varies when a particle travels through a medium, especially when the it reaches
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the end of its range. The path length in a cell/cell nucleus is different depending on

the position a particle entering the cell nucleus, particle scattering and beam strag-

gling. More detailed information about energy deposition in a specific cell and cell

nucleus can be obtained through target simulation and Monte Carlo calculation.

The average energy deposition in the worms can be estimated using the stopping

power of the source particles. The stopping power of a particle in a material is

defined as the average energy loss per unit path length at the point in the specified

the material, as a result of Coulomb interactions with electrons and with atomic

nuclei[23, 22]. The stopping power is subdivided into collision stopping power and

radiative stopping power, when considering the fate of the energy lost by the charged

particle. The former is the rate of energy loss resulting from the sum of the soft

and hard collisions, which are conventionally referred to as collision interactions.

Radiative stopping power is that due to radiative interactions, which are almost

exclusively bremsstrahlung production.

For protons and alpha particles, the predominant contribution to the total stop-

ping power comes from the electronic stopping power (collision stopping power), due

to inelastic collisions with electrons. A smaller contribution comes from the nuclear

stopping power, due to elastic Coulomb collisions in which recoil energy is imparted

to atoms. The radiation stopping is very low for heavy particles at low energy.

The nuclear stopping power is important only at very low energies. For example,

in water, the nuclear stopping power contributes more than one percent to total

stopping power only at energies below 20 keV for protons and 150 keV for alpha

particles. The radiative stopping power (due to emission of bremsstrahlung) which

is important for electrons, is negligibly small for protons or alpha particles, because

it is inversely proportional to the square of the mass of the charged particle.

The collision stopping power strongly depends on the velocity of the particle. The
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collision stopping power increase rapidly as the particle velocity decreases (until the

particle’s effective charge starts to decrease). The steep rise in stopping power for

the low energy range largely accounts for the Bragg Peak observed in the absorbed

dose near the end of a charged particle’s path.

Linear energy transfer (LET) is the energy transferred per unit length of the

track. The special unit usually used for this quantity is kiloelectron volt per micron

(keV/um) of unit density material. The linear energy transfer of a charged particle in

a medium is the quotient of dE/dL, where dE is the average energy lost by a charged

particle of specified energy in traversing a distance of dL. That is, LET = dE/dL,

the stopping power.

4.2.1 Energy deposition sensitivity with the position

The CSDA range of 3 MeV protons in water is about 200 µm, which is much

larger than the diameter of the worm body. When the particles traverse through the

targets, the LET increases as the particle energy decreases. So the dose to the target

cell/nucleus is sensitive to their position in the radiation target phantom. Figure 4.13

shows Monte Carlo results for the relative dose at different depth of the target after

running large numbers of particles. The dose at the depth of 50 µm is about 30%

larger than the dose at the 10 µm depth. The relationship of dose to the target and

the depths of the target in the water phantom makes the precise dosimetry difficult

in the experiment. The depth of the target nucleus depends on the thickness of

plastic plate, scintillation detector and also its position in the worm body. So the

dose evaluation depends on the experimental setup. The intestine cell rings have a

180 degree rotation from ring I to VIII, resulting the expected dose to the nucleus

differing in the same experimental setup.
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Figure 4.13: The dose of 3 MeV protons in water phantom at different depth of the
phantom. Results based on Monte Carlo simulation of a large number of particles.

For heavier charged particles, alpha particles for example, LET increases faster

near the end of the track than it does for protons. So precise dosimetry of heavier

charged particles in the small worm body is more challenging than for protons.

Another issue affecting dosimetry is the number of particles to the target cell

nucleus. In the corresponding experiment, there were about 25 protons delivered to

the target nucleus per irradiation. To control the number of particles delivered to

the target, the target nucleus were irradiated for a specific time by operating the

shutter locating under the steel collimator. During the irradiation interval, a large

number of source particles is generated from the accelerator but only a small random

number of particles could reach the target nucleus, because the small diameter of

the collimator and the probability that a single primary particles can travel through
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the collimator is very low. The number of particles delivered to the target follows a

Poisson distribution, with an expectation of 25 (Fig 4.14). The simulation reported

here followed the same process as the experiment. A large number of source particles

were generated randomly distributed in a broadbeam to simulate fixed irradiation

time interval. The number is calculated by the probability that a particle travels

through the collimator and the expectation value of particles required to be delivered

to the target nucleus. Fig 4.14 shows the distribution of the number of primary

particles transverses the target nucleus and compares the distribution with Poisson

and Gaussian distribution. The distribution of particle numbers delivered to the

target is close to Gaussian, with the average of 25, and standard deviation of 5. The

particle numbers have a probability of 65% to fall in between 20 to 30 , and 95% to

fall in between 15 to 40. The probability of the number below 5 is negligible as it is

less than 0.15%.

Figure 4.14: Results of Monte Carlo calculation of the number of particles delivered
to the target cell nucleus, when the fluence at the first aperture was set to produce
an expectation of 25. the result is a Poisson distribution. The large expectation
values makes the distribution close to Gaussian
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Since the number of parimary particles delivered to the target is randomly dis-

tributed, total energy deposition in one irradiation (averge 25 primary particle in

the simulation) to the target nucleus is also close to a normal distribution, and the

average depends on the depth of the target nucleus in the phantom (Figure 4.15).

In the simulation, the diameter of the target nucleus was set to 3.3 µm, which is the

average of the L1 stage intestine cell nucleus diameter [20]. To get low variation of

the energy deposition spectrum, 1 million protons were simulated. The collimator

model using the rough surface aperture model with a 3 µm square steel aperture and

5 µm copper aperture, and they were precisely aligned. The expected energy depo-

sition in the target nucleus is larger if it is located in deeper location in the water

phantom. The average energy deposition is about twice when the target nucleus is

located 60 µm depth in the phantom of the energy deposition when it is located near

the surface of the phantom (0 µm in Figure 4.15).

In addition, the variation of the energy deposition is much larger when the target

nucleus is in a deeper location due to the energy struggling. The 3 µm square beam

does not fit into the 3.3 mum diameter cell nucleus, not all particles delivered by

the microbeam facility irradiate the target cell nucleus. The possibility that some

particles travel through the aperture are not delivered to the target nucleus caused

the small peak beside the main peak on the energy deposition spectrum curve (0 µm

in Figure 4.15).
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Figure 4.15: Monte Carlo calculated dose to the target nucleus follows Gaussian
distribution, and depends on the depth in the phantom. Energy deposition in the
deeper nuclei is a larger than the shallow ones because of bragg-peak effect. Nuclei
are assumed to be spheres 3.3 µm in diameter. 1 millition 3 MeV protons simulated.

4.2.2 Alignment of the target and collimators

The small diameter of the radiation beam requires precise alignment of the target

cell nucleus and collimator in order for the planed dose to be delivered. The accuracy

of positioning the target cell nuclei over the collimator should at least match the

spatial resolution of the collimator. Although scattering and beam spreading occur

in the collimator edge and the tissue phantom, the dose decreases quickly away from

the center of the radiation beam as shown in Figure 4.16. The radiation beam is

concentrated on a very small spot area at the entrance plane and spreads out as it

travels into the target phantom. It spreads out more quickly if the beam is scattered

by the second collimator, demostrated in the right side of Figure 4.16. But the dose

at the position sevearal micrometers away from the original radiation beam is one or

two orders less than the dose in the center beam.
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Figure 4.16: Proton beam spreads out quick in the water phatom. 1 million protons
were simulated.

The small diameter of the collimated beam and the curveture of the spherical

nucleus makes the dose to the nucleus very sensitive to the alignment of the cell

nucleus and the collimator. Usually the diameter of a cell nuclus is several microm-

eters, varying with the size of cells. Figure 4.17 shows dose distribution in the cell

nucleus varying with the offset distance of the z-axis of the target nucleus and the

collimator. In the simulation setting, the diameter of the target nuclei is 3.3 µm and

the radiation beam is created by a 3 µm square steel aperture followed by a 5 µm

diameter copper aperture. The blue dashed line shows that the dose still ramain the

same if the center of the target nucleus is 1 µm away from the radiation beam center.

But if the target nucleus is further away from the beam, radiation dose decreases

quickly.
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Figure 4.17: Alignment of target nucleus effection on the dose distribution. In the
simulation, the target nucleus was located 10 µm depth in the phatom; 1 million 3
MeV protons simulated.

4.2.3 Energy deposition in surrounding cells

The probabilities that surrounding cell nuclei being irradiated were discussed in

the beam scattering section. Energy deposition in the non-targeted cells is caused

by the large angle scattered primary particles. The range of delta rays is too small

to travel to the non-targeted cells if the primary particle remains in the beam. The

long distance the primary particle travels in the tissue make the LET of the particle

in the non-targeted cell larger than the LET of primary particles in target cell. So

energy deposition in the irradiated surrounding cell nucleus is larger than that in the

targeted nucleus by one primary particle.

For 2-D cell arrays and 3-D tissues, the probability of surrounding cells to be

irradiated is much larger than our simulated results, which is 1 dimension intestine

cells.
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5. DISCUSSION AND FUTURE PLANS

5.1 Discussion

The simulation results showed that the collimator setup used in the Loma Linda/TAMU

experiment can generate a high quality microbeam, with high full energy percentage,

and low probability to irradiate a non-targeted cell nucleus.

Scattering from the first aperture is obvious but the large distance between the

two apertures makes it very rare for a particle scattered by the first aperture to

passing through the second aperture. The scattering from the first aperture should

be considered only when the distance between the the apertures is less than 10 mm.

The tilt angle between the aperture blade surface and the beam direction, and the

rough surface of the blade, are the primary factors that increase the scattering, but

the small peaks and valleys on the blade surface contribute more to the scattering.

Scattering from the second aperture is the primary reason for cell nuclei sur-

rounding the target to be irradiated and also causes low energy particles irradiating

the target, when the two apertures are not properly aligned or the size of the second

aperture is too small. In the Loma Linda/TAMU experiments, the larger diameter of

the copper aperture compared to the first aperture allow a certain alignment error,

thus improving the system performs and reliability.

Dose to the nucleus is randomly distributed following a normal distribution and

depends on the thickness of material the beam has traveled through before reaching

it. The lower energy scattered particles from the collimation system could change

the energy deposition in the target nucleus. In the experiments when exact number

of particles are required to be delivered to the target nucleus, absorbed doses to

the target nucleus are more sensitive to the low energy scattered particles. If the
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energy of scattered particles is too low to reach the target nucleus, the target nucleus

remain unirradiated but the detector still gives the signial that the target nucleus is

irradiated as the detector is mounted between the second aperture and the sample

holder. If the energy of scattered particles is still large, the dose to the nucleus is

larger than normal due to Brag-peak theories.

In the Loma Linda/TAMU experiments, the effects of low energy scattering to the

target nucleus could be ignored because about 25 primary particles were delivered

to the targeted nucleus, and single particles with lower energy will not significantly

affect the dose in the target nucleus. But the large number of primary particles

delivered to the target in the experiments increased the probability that surrounding

cells would be irradiated.

5.2 Future plans

Although the model of the collimator is an adequate representation of the setup

in the experiments, it can be improved to get better results. The basic unit of model

of the second aperture uses small tube sections to represent the small ripples in the

inner wall of the laser drilled hole in the copper. The morphology of the model is

close to the real, but the tinny peaks on the ripples, which may make a significant

contribution to the scattering, were not modeled.

The C. elegans models were built using Monte Carlo simulation toolkit Geant4.

In this models, we constructed different tissues with different atomic compositions

to represent the realistic worms and get better data, but there are some limitations.

Using Geant4 package, it is difficult to build complex geometries because it uses basic

solid structures to form a geometry. Another model which does not rely on Geant

4 is in process. In the new model, all cell nuclei will be included; intestine, skin,

neurons, et al.
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To verify the simulation results, we have to make comparisons with experimental

results. The ability to detect the number of particles that traverse the target is a

key feature of the microbeam, and also a prerequisite to control the number. A thin

detector is usually mounted between the collimator and the target, which reduces the

spacial accuracy of the beam. This detector location provides the total number of

particles irradiating the target. Another place to site the detector is above the target

[18], detecting particles after they traverse the target. This configuration, however,

could not be used for situations where the particle only partially penetrates the

targets.

The targeting accuracy of the collimator can be evaluated by exposing CR-39

’track-etch’ plastic to the particle beam at the sample position then processing using

a method introduced by Fews and Henshaw [24, 21, 25]. The passage of a particle

is visible on the surface of the plastic as a micron-sized pit. Track detecting plastics

are cheap, easy to use, and provide a permanent record of events. Comparing with

electronic detectors, which provides energy information only, the plastics shows the

geometric distribution of detected particles as well as reflecting the particle energy.

The probabilities of non-targeted cell nuclei to be irradiated can be evaluated

using ’track-etch’ plastic and other detection methods if the detector could reflect

the charged particle position. Using various detection methods, such as surface

barrier detectors, the energy deposition in the single nucleus can be measured.
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APPENDIX A

PARAMETERS USED IN GEANT4 CODES

Table A.1: Randomly generated height of the peaks on the surface of 4 steel blades
(µm)

0.1746 0.5586 0.1270 0.6258 0.1188 0.5104 0.0852 0.3881 0.4009 0.2517
0.2343 0.1107 0.0295 0.5266 0.0403 0.1362 0.4295 0.4971 0.1156 0.1280
0.1088 0.0443 0.2426 0.3662 0.3211 0.1424 0.0715 0.4055 0.5076 0.0207
0.0208 0.4583 0.0526 0.1976 0.2362 0.2336 0.0785 0.2068 0.3388 0.2317
0.1246 0.4145 0.2065 0.0707 0.1374 0.7994 0.3659 0.2093 0.6996 0.2777
0.1748 0.2029 0.6011 0.3643 0.1055 0.1936 0.0629 0.4347 0.0747 0.5667
0.1576 0.1376 0.3129 0.2012 0.1077 0.2333 0.4468 0.2709 0.6285 0.3158
0.5829 0.1433 0.1665 0.4130 0.0510 0.0189 0.0610 0.0216 0.0382 0.0934
0.0236 0.2676 0.3622 0.2727 0.0721 0.6459 0.1647 0.0385 0.4394 0.2601
0.1023 0.0227 0.1541 0.0800 0.0024 0.2744 0.6202 0.3567 0.0623 0.0095
0.2027 0.1819 0.2839 0.3025 0.4931 0.2153 0.1126 0.5247 0.2885 0.5481
0.3778 0.1873 0.0495 0.4725 0.3464 0.3781 0.1759 0.4402 0.5567 0.6768
0.1701 0.2387 0.3170 0.2327 0.1952 0.3591 0.3329 0.7319 0.1765 0.6250
0.1375 0.1050 0.1125 0.1782 0.3973 0.1209 0.0551 0.1004 0.1322 0.1665
0.0648 0.1628 0.1511 0.6226 0.7657 0.0017 0.2300 0.8578 0.5752 0.4431
0.2199 0.2421 0.0929 0.2463 0.3112 0.4311 0.6376 0.2825 0.5766 0.3120
0.2226 0.4494 0.1138 0.1211 0.2149 0.0624 0.1671 0.2206 0.0950 0.2283
0.1555 0.0510 0.1615 0.0164 0.3571 0.1831 0.3739 0.3025 0.1051 0.3013
0.2008 0.0185 0.0643 0.4501 0.2510 0.1784 0.3751 0.1172 0.4782 0.6663
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The laser hole in the 25.4 µm thickness copper is tapered. Geant4 Solid geometry

class G4Cons was used to built the laser hole and ripples on the inner wall. G4Cons

is defined by the following parameters (Geant4 toolkit could be downloaded from

http://geant4.cern.ch/):

pRmin1 inside radius at -pDz

pRmax1 outside radius at -pDz

pRmin2 inside radius at +pDz

pRmax2 outside radius at +pDz

pDz half length in z

pSPhi starting angle of the segment in radians

pDPhi the angle of the segment in radians

Table A.2: Parameters of the 5 µm diameter laser hole

pRmin1 (µm) 0
pRmax1 (µm) 2.5
pRmin2 (µm) 0
pRmax2 (µm) 2.8
pDz (µm) 12.7
pSPhi (degree) 0
pDPhi (degree) 360
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Table A.3: Parameters for different diameters of lasor holes (µm)

Diameter 0.3 0.6 0.8 1.4
PRmax1 0.15 0.3 0.4 0.7
pRmax2 0.2 0.5 0.6 0.9
Ripple H mean 0.04 0.08 0.09 0.14
Ripple H STD 0.01 0.015 0.02 0.02

Ripple H mean: mean height of the ripples.
Ripple H STD: standerd deviation of the heights.

The ripples were randomly generated. The thickness, which equals to pRmax-

pRmin, follows Gaussian distribution with an average of 0.14 µm, standard deviation

of 0.02 µm, minimum of 0, and maximum is 0.2 µm. The length of a section unit is

0.5 µm. Table A.4 listed parts of the sections randomly generated when simulating.

Table A.4: Randomly generated small ripples on the inner surface of the laser hole
(µm)

Z pSPhi spanPhi Thickness pRmin1 pRmax1 pRmin2 pRmax2

-12.45 0 9.62506 0.131573 2.66843 2.8 2.6763 2.80787

-12.45 12.2236 7.45436 0.119099 2.6809 2.8 2.68877 2.80787

-12.45 23.0024 9.65544 0.137658 2.66234 2.8 2.67022 2.80787

-12.45 36.0094 6.37428 0.152176 2.64782 2.8 2.6557 2.80787

-12.45 45.2713 5.90315 0.153408 2.64659 2.8 2.65447 2.80787

-12.45 53.5922 5.96642 0.141519 2.65848 2.8 2.66636 2.80787

-12.45 62.7587 9.92221 0.143111 2.65689 2.8 2.66476 2.80787

-12.45 76.0178 6.92478 0.135051 2.66495 2.8 2.67282 2.80787

-12.45 85.9567 6.61292 0.133757 2.66624 2.8 2.67412 2.80787

-12.45 94.9649 5.58403 0.117099 2.6829 2.8 2.69077 2.80787

continued on next page
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–continued from previous page

Z pSPhi spanPhi Thickness pRmin1 pRmax1 pRmin2 pRmax2

-12.45 104.008 6.58371 0.137091 2.66291 2.8 2.67078 2.80787

-12.45 113.541 7.00609 0.149511 2.65049 2.8 2.65836 2.80787

-12.45 123.546 8.88436 0.141777 2.65822 2.8 2.6661 2.80787

-12.45 135.52 7.98424 0.136336 2.66366 2.8 2.67154 2.80787

-12.45 146.552 7.97175 0.16257 2.63743 2.8 2.6453 2.80787

-12.45 157.059 5.95608 0.124592 2.67541 2.8 2.68328 2.80787

-12.45 165.591 6.53229 0.129463 2.67054 2.8 2.67841 2.80787

-12.45 175.069 5.8603 0.162039 2.63796 2.8 2.64583 2.80787

-12.45 183.899 7.93884 0.148504 2.6515 2.8 2.65937 2.80787

-12.45 194.855 7.81488 0.160441 2.63956 2.8 2.64743 2.80787

-12.45 205.703 7.12878 0.140602 2.6594 2.8 2.66727 2.80787

-12.45 215.996 7.56616 0.19361 2.60639 2.8 2.61426 2.80787

-12.45 226.597 6.53884 0.155201 2.6448 2.8 2.65267 2.80787

-12.45 236.39 7.53965 0.128446 2.67155 2.8 2.67943 2.80787

-12.45 247.259 6.24594 0.151023 2.64898 2.8 2.65685 2.80787

-12.45 256.412 6.73965 0.126856 2.67314 2.8 2.68102 2.80787

-12.45 266.859 7.30441 0.133289 2.66671 2.8 2.67459 2.80787

-12.45 277.298 7.20131 0.138962 2.66104 2.8 2.66891 2.80787

-12.45 287.469 7.33725 0.129763 2.67024 2.8 2.67811 2.80787

-12.45 297.651 7.59448 0.135361 2.66464 2.8 2.67251 2.80787

-12.45 308.438 7.78711 0.146439 2.65356 2.8 2.66144 2.80787

-12.45 318.847 7.12267 0.134438 2.66556 2.8 2.67344 2.80787

continued on next page

65



–continued from previous page

Z pSPhi spanPhi Thickness pRmin1 pRmax1 pRmin2 pRmax2

-12.45 328.86 7.13877 0.123325 2.67667 2.8 2.68455 2.80787

-12.45 338.918 6.51394 0.159402 2.6406 2.8 2.64847 2.80787

-12.45 348.632 7.27693 0.120326 2.67967 2.8 2.68755 2.80787

-11.95 0 7.78919 0.151753 2.65612 2.80787 2.66399 2.81575

-11.95 10.2784 6.49431 0.111516 2.69636 2.80787 2.70423 2.81575

-11.95 19.7632 7.24173 0.165844 2.64203 2.80787 2.6499 2.81575

-11.95 29.7111 7.38053 0.148916 2.65896 2.80787 2.66683 2.81575

-11.95 40.0472 7.06327 0.0980821 2.70979 2.80787 2.71767 2.81575

-11.95 49.6668 6.59143 0.112108 2.69577 2.80787 2.70364 2.81575

-11.95 59.2488 7.16568 0.16316 2.64471 2.80787 2.65259 2.81575

-11.95 69.7448 6.94699 0.129995 2.67788 2.80787 2.68575 2.81575

-11.95 79.6158 8.62298 0.147857 2.66002 2.80787 2.66789 2.81575

-11.95 91.2061 7.25653 0.135638 2.67224 2.80787 2.68011 2.81575

-11.95 101.274 7.05305 0.122601 2.68527 2.80787 2.69315 2.81575

-11.95 111.695 7.97304 0.120288 2.68759 2.80787 2.69546 2.81575

-11.95 122.894 6.94124 0.148332 2.65954 2.80787 2.66742 2.81575

-11.95 132.887 6.66306 0.142306 2.66557 2.80787 2.67344 2.81575

-11.95 142.299 9.74225 0.141827 2.66605 2.80787 2.67392 2.81575

-11.95 155.003 8.58089 0.144969 2.66291 2.80787 2.67078 2.81575

-11.95 166.489 6.54884 0.149891 2.65798 2.80787 2.66586 2.81575

-11.95 176.271 6.37549 0.135947 2.67193 2.80787 2.6798 2.81575

-11.95 185.359 7.07206 0.131763 2.67611 2.80787 2.68398 2.81575

continued on next page
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Z pSPhi spanPhi Thickness pRmin1 pRmax1 pRmin2 pRmax2

-11.95 195.518 6.68501 0.134424 2.67345 2.80787 2.68132 2.81575

-11.95 204.785 7.576 0.161096 2.64678 2.80787 2.65465 2.81575

-11.95 215.335 5.99098 0.1128 2.69507 2.80787 2.70295 2.81575

-11.95 223.812 6.96638 0.161917 2.64596 2.80787 2.65383 2.81575

-11.95 233.839 7.4737 0.140743 2.66713 2.80787 2.67501 2.81575

-11.95 244.641 8.25666 0.13772 2.67015 2.80787 2.67803 2.81575

-11.95 256.118 9.07287 0.128532 2.67934 2.80787 2.68722 2.81575

-11.95 268.66 5.84159 0.142362 2.66551 2.80787 2.67339 2.81575

-11.95 277.648 7.92628 0.171811 2.63606 2.80787 2.64394 2.81575

-11.95 288.39 6.24319 0.141298 2.66658 2.80787 2.67445 2.81575

-11.95 297.193 6.38372 0.139794 2.66808 2.80787 2.67595 2.81575

-11.95 307.087 8.05039 0.146288 2.66159 2.80787 2.66946 2.81575

-11.95 318.203 6.7296 0.130465 2.67741 2.80787 2.68528 2.81575

-11.95 328.526 7.45761 0.162729 2.64514 2.80787 2.65302 2.81575

-11.95 339.983 6.23988 0.141475 2.6664 2.80787 2.67427 2.81575
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Table A.5: L1 stage worm body dimensions (µm)

Name Size (µm)
Body dimeter 20
Skin thickness 1.0
Cuticle depth 0.1
Intestine length 125
Muscle depth 0.4
Nucleus radius 3.3

Table A.6: Intestine cell nuclei positions

Intestine Ventral (µm) Dorsal (µm)
AP DV LR AP DV LR

2 9.4 5 0 9.4 -5 0
3 21.5 5 0 19.5 -5 0
4 35.4 4.92 0.87 31.4 -4.92 -0.87
5 48.9 0 5 43.1 0 -5
6 57.5 -0.87 4.92 64.2 0.87 -4.92
7 72.4 -1.71 4.7 77.9 1.71 -4.7
8 87.2 -2.5 4.33 91.1 2.5 -4.33
9 97.5 -5 0 99.9 5 0

AP: center locations of each cell nucleus along the anterior-posterior axes
relative to intestine 1.
DV: center locations of each cell nucleus along dorsal-ventral axes.
DV: center locations of each cell nucleus along left-right axes.
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APPENDIX B

ENERGY DEPOSITION DATA

Table B.1 shows the energy deposition to a single cell nucleus by simulating

around 5000 protons to get 1000 protons hitting a cell nucleus. In the simulation,

the targeted cell nucleus is 6D, and the offset of the two apertures were is 2 µm.

The particle # in the table shows order of the protons in the simulation, and the

accumulated # shows the total number of particles that hitted the worm body from

the beginning of the simulation.

Table B.1: Energy deposition to nucleus by 3 MeV protons

Index Partical # Accumulated #(hitting the worm) Nucleus Edep(MeV)

1 2 1 6D 0.038408019

2 13 4 6D 0.005799484

3 14 5 6D 0.026701755

4 33 12 6D 0.026535572

5 34 13 6D 0.056664333

6 39 15 6D 0.05500851

7 42 16 6D 0.03867993

8 46 18 6D 0.044251283

9 48 19 6D 0.044983288

10 51 22 6D 0.000753689

11 54 23 6D 0.041610105

12 55 24 6D 0.040667062

continued on next page
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Index Partical # Accumulated #(hitting the worm) Nucleus Edep(MeV)

13 57 25 6D 0.038882265

14 65 28 6D 0.035971069

15 66 29 6D 0.01399115

16 73 32 6D 0.039465574

17 80 34 6D 0.037044793

18 81 35 6D 0.053178078

19 84 37 6D 0.037508366

20 87 40 6D 0.024721944

21 89 41 6D 0.001343226

22 93 43 6D 0.025810437

23 95 44 6D 0.030047435

24 96 45 6D 0.002856877

25 98 47 6D 0.025032637

26 99 48 6D 0.008952064

27 105 51 6D 0.019269116

28 106 52 6D 0.012740437

29 116 55 6D 0.054657816

30 117 56 6D 0.031493302

31 120 57 6D 0.062938487

32 124 58 6D 0.041908079

33 127 60 6D 0.020969985

34 137 61 6D 0.028948578

continued on next page
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Index Partical # Accumulated #(hitting the worm) Nucleus Edep(MeV)

35 153 64 6D 0.02896023

36 155 66 6D 0.034676455

37 160 71 6D 0.032764002

38 174 75 6D 0.027578705

39 177 77 6D 0.044433122

40 181 78 6D 0.043776766

41 190 84 6D 0.013139315

42 193 85 6D 0.0652474

43 201 89 6D 0.048540913

44 202 90 6D 0.084130198

45 211 93 6D 0.037906941

46 213 94 6D 0.016703744

47 220 97 6D 0.048183243

48 226 100 6D 0.035003323

49 235 103 6D 0.040482604

50 241 105 6D 0.031548648

51 252 107 6D 0.015191215

52 256 109 6D 0.037974292

53 257 110 6D 0.148081938

54 260 111 6D 0.041493281

55 264 113 6D 0.031810686

56 270 114 6D 0.050384495

continued on next page
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Index Partical # Accumulated #(hitting the worm) Nucleus Edep(MeV)

57 271 115 6D 0.019641645

58 272 116 6D 0.046884226

59 282 119 6D 0.039816897

60 283 120 6D 0.033534972

61 289 124 6D 0.037817023

62 293 125 6D 0.04059366

63 295 126 6D 0.039696409

64 296 127 6D 0.034993636

65 304 130 6D 0.026781277

66 305 131 6D 0.026679295

67 309 133 6D 0.019310977

68 311 134 6D 0.03622104

69 323 137 6D 0.039676877

70 324 138 6D 0.043219973

71 326 139 6D 0.04715757

72 328 140 6D 0.041161056

73 329 141 6D 0.015984744

74 330 142 6D 0.048659896

75 336 144 6D 0.032962851

76 338 146 6D 0.049821251

77 340 147 6D 0.01205089

78 341 148 6D 0.066722731

continued on next page
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Index Partical # Accumulated #(hitting the worm) Nucleus Edep(MeV)

79 350 154 6D 0.023998409

80 355 156 6D 0.037986883

81 356 157 6D 0.023845054

82 359 159 6D 0.024437942

83 367 161 6D 0.000589785

84 371 163 6D 0.03409022

85 373 164 6D 0.037102668

86 374 165 6D 0.033911184

87 387 171 6D 0.059372208

88 391 174 6D 0.019668333

89 395 177 6D 0.059282819

90 396 178 6D 0.016792924

91 400 181 6D 0.035783548

92 401 182 6D 0.033617222

93 407 184 6D 0.040562476

94 410 186 6D 0.034902669

95 411 187 6D 0.036682665

96 413 188 6D 0.026792627

97 415 189 6D 0.044470003

98 420 190 6D 0.038718579

99 421 191 6D 0.029366308

100 422 192 6D 0.026292299

continued on next page
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Index Partical # Accumulated #(hitting the worm) Nucleus Edep(MeV)

101 424 193 6D 0.033296081

102 429 194 6D 0.027829759

103 437 199 6D 0.035370559

104 456 202 6D 0.033542458

105 459 203 6D 0.046357515

106 460 204 6D 0.039458677

107 468 208 6D 0.02386937

108 472 209 6D 0.029184324

109 484 213 6D 0.05399002

110 486 214 6D 0.059401045

111 493 217 6D 0.020110664

112 498 220 6D 0.039616782

113 506 221 6D 0.035097955

114 519 224 6D 0.039794345

115 520 225 6D 0.035449522

116 521 226 6D 0.034586211

117 523 228 6D 0.031150067

118 526 230 6D 0.034154491

119 537 235 6D 0.047098479

120 542 238 6D 0.038243264

121 546 239 6D 0.038289252

122 554 242 6D 0.00413841

continued on next page
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Index Partical # Accumulated #(hitting the worm) Nucleus Edep(MeV)

123 556 243 6D 0.036057573

124 566 244 6D 0.049297305

125 579 249 6D 0.042138047

126 583 250 6D 0.029559378

127 592 252 6D 0.045068176

128 595 254 6D 0.02402895

129 596 255 6D 0.087709483

130 597 256 6D 0.038019776

131 598 257 6D 0.024203796

132 604 260 6D 0.020529451

133 607 261 6D 0.01583108

134 617 263 6D 0.095880845

135 619 264 6D 0.030073511

136 622 265 6D 0.076057793

137 625 267 6D 0.014780659

138 626 268 6D 0.050191094

139 628 269 6D 0.023581063

140 630 270 6D 0.035247831

141 636 274 6D 0.041476924

142 641 277 6D 0.031007465

143 645 278 6D 0.036840197

144 647 279 6D 0.032952307

continued on next page
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145 656 282 6D 0.02566536

146 674 290 6D 0.028824478

147 683 293 6D 0.021832371

148 684 294 6D 0.086958264

149 686 295 6D 0.043825614

150 702 298 6D 0.021172434

151 707 300 6D 0.022654988

152 709 301 6D 0.036119411

153 710 302 6D 0.056924006

154 715 306 6D 0.043389074

155 716 307 6D 0.083327099

156 723 311 6D 0.024693067

157 724 312 6D 0.036600354

158 726 313 6D 0.018001267

159 727 314 6D 0.112966566

160 728 315 6D 0.018411422

161 730 316 6D 0.02875997

162 736 319 6D 0.044139264

163 740 321 6D 0.037836977

164 745 323 6D 0.01578675

165 750 324 6D 0.023978376

166 754 325 6D 0.043940497
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167 755 326 6D 0.028953036

168 758 327 6D 0.038641396

169 771 330 6D 0.024409755

170 779 333 6D 0.035967174

171 781 335 6D 0.005705782

172 785 336 6D 0.04488122

173 794 338 6D 0.013351438

174 805 340 6D 0.069928374

175 807 341 6D 0.036435328

176 809 342 6D 0.02934748

177 815 345 6D 0.029016697

178 818 346 6D 0.034096383

179 821 348 6D 0.026804627

180 822 349 6D 0.03600799

181 824 350 6D 0.033920494

182 827 351 6D 0.019264268

183 830 352 6D 0.034148926

184 833 353 6D 0.016658112

185 846 357 6D 0.030477685

186 847 358 6D 0.02675274

187 855 363 6D 0.046001516

188 869 370 6D 0.034916385
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189 873 373 6D 0.010772797

190 874 374 6D 0.031485188

191 881 376 6D 0.005735168

192 882 377 6D 0.021962033

193 884 379 6D 0.056512041

194 886 380 6D 0.082610508

195 892 382 6D 0.009983613

196 893 383 6D 0.046423316

197 894 384 6D 0.019669947

198 895 385 6D 0.069941071

199 897 387 6D 0.017042899

200 900 388 6D 0.024752278

201 910 391 6D 0.045303267

202 916 392 6D 0.021581519

203 919 394 6D 0.051622382

204 924 397 6D 0.012402997

205 928 399 6D 0.027958484

206 932 400 6D 0.042185718

207 939 402 6D 0.002517146

208 947 404 6D 0.029732426

209 953 406 6D 0.041582089

210 958 408 6D 0.035135837
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211 960 409 6D 0.037146334

212 961 410 6D 0.043275498

213 962 411 6D 0.00829891

214 977 415 6D 0.044156947

215 981 418 6D 0.050429949

216 988 421 6D 0.012826327

217 989 422 6D 0.031337646

218 990 423 6D 0.006930222

219 991 424 6D 0.014014714

220 994 426 6D 0.011116486

221 1003 428 6D 0.022794075

222 1012 432 6D 0.00908325

223 1014 433 6D 0.021275225

224 1016 434 6D 0.078857432

225 1019 436 6D 0.03858419

226 1029 440 6D 0.043711861

227 1041 445 6D 0.04452962

228 1045 447 6D 0.04188299

229 1046 448 6D 0.060247659

230 1053 450 6D 0.013065383

231 1054 451 6D 0.08755051

232 1056 452 6D 0.026752936
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233 1058 453 6D 0.03033791

234 1068 455 6D 0.040207608

235 1072 457 7D 0.07090113

236 1076 459 6D 0.021552935

237 1077 460 6D 0.016562235

238 1079 461 6D 0.047431833

239 1082 463 6D 0.021633117

240 1083 464 6D 0.016788691

241 1088 468 6D 0.001340419

242 1090 469 6D 0.039884385

243 1098 474 6D 0.030256986

244 1099 475 6D 0.009726013

245 1101 477 6D 0.028323544

246 1102 478 6D 0.027259798

247 1103 479 6D 0.000834364

248 1104 480 6D 0.037522165

249 1105 481 6D 0.066026399

250 1106 482 6D 0.039527443

251 1116 486 6D 0.034159541

252 1117 487 6D 0.001671994

253 1119 488 6D 0.018145789

254 1128 493 6D 0.0332798
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255 1132 494 6D 0.023294559

256 1139 496 6D 0.021637078

257 1142 497 6D 0.024975603

258 1146 499 6D 0.081594304

259 1150 501 6D 0.045256674

260 1156 502 6D 0.036413199

261 1161 504 6D 0.011644161

262 1163 505 6D 0.027383447

263 1164 506 6D 0.008872172

264 1165 507 6D 0.021797917

265 1166 508 6D 0.089100209

266 1179 510 6D 0.04102238

267 1181 511 6D 0.052370048

268 1184 513 6D 0.010891679

269 1185 514 6D 0.028784142

270 1190 515 6D 0.037507787

271 1199 517 6D 0.047276409

272 1202 518 6D 0.036507992

273 1203 519 6D 0.031701916

274 1209 521 6D 0.046388786

275 1211 522 6D 0.02077202

276 1214 524 6D 0.031519559
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277 1215 525 6D 0.02783245

278 1219 527 6D 0.04903871

279 1220 528 6D 0.03376849

280 1222 529 6D 0.006372026

281 1225 531 6D 0.076323563

282 1230 532 6D 0.047293203

283 1235 535 6D 0.022992306

284 1243 539 6D 0.000841649

285 1250 541 6D 0.032558015

286 1256 542 6D 0.021571475

287 1257 543 6D 0.03229711

288 1258 544 6D 0.076065512

289 1262 545 6D 0.043754249

290 1263 546 6D 0.03155722

291 1265 547 6D 0.027740329

292 1274 548 6D 0.043031499

293 1279 551 6D 0.016544848

294 1282 553 6D 0.061525433

295 1287 554 6D 0.057614776

296 1290 556 6D 0.027915

297 1298 559 6D 0.041014204

298 1300 560 6D 0.037756652
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299 1303 562 6D 0.045528933

300 1309 563 6D 0.025509648

301 1316 564 6D 0.047162067

302 1318 565 6D 0.008631742

303 1321 566 6D 0.032397711

304 1326 568 6D 0.037053837

305 1327 569 6D 0.016194945

306 1331 571 6D 0.01340233

307 1338 575 6D 0.014903196

308 1344 577 6D 0.0269831

309 1348 579 6D 0.010246248

310 1354 582 6D 0.016297845

311 1358 584 6D 0.025082579

312 1359 585 6D 0.03098259

313 1369 587 6D 0.023210539

314 1374 589 6D 0.002215694

315 1383 593 6D 0.014759405

316 1384 594 6D 0.022786325

317 1386 595 6D 0.003604641

318 1389 596 6D 0.001078584

319 1393 598 6D 0.029825195

320 1397 602 6D 0.047946393
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321 1398 603 6D 0.050619532

322 1405 606 6D 0.038118649

323 1409 608 6D 0.049471913

324 1410 609 6D 0.028049669

325 1412 610 6D 0.045528284

326 1424 615 6D 0.043017368

327 1427 616 6D 0.057228066

328 1429 617 6D 0.023049529

329 1438 621 6D 0.039516869

330 1439 622 6D 0.038412144

331 1441 623 6D 0.030573958

332 1452 625 6D 0.061886914

333 1457 626 6D 0.016327707

334 1466 629 6D 0.033986804

335 1469 630 6D 0.019997631

336 1471 631 6D 0.042043793

337 1476 632 6D 0.046944723

338 1479 634 6D 0.018903512

339 1483 635 6D 0.047487808

340 1484 636 6D 0.018131145

341 1490 640 6D 0.022301018

342 1491 641 6D 0.028078034
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343 1500 644 6D 0.03278163

344 1508 648 6D 0.034820644

345 1509 649 6D 0.018863347

346 1511 650 6D 0.046450144

347 1514 651 6D 0.030389657

348 1515 652 6D 0.016401281

349 1520 655 6D 0.032522054

350 1523 657 6D 0.002787039

351 1538 663 6D 0.028391252

352 1539 664 6D 0.023522995

353 1544 667 6D 0.039863611

354 1553 673 6D 0.041533931

355 1559 677 6D 0.039761556

356 1560 678 6D 0.049580547

357 1564 680 6D 0.03495959

358 1571 682 6D 0.037760488

359 1572 683 6D 0.043748952

360 1573 684 6D 0.086125671

361 1581 688 6D 0.028513644

362 1583 689 6D 0.049586052

363 1590 692 6D 0.019096993

364 1598 695 6D 0.028083715
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365 1614 698 6D 0.022641463

366 1620 700 6D 0.022584552

367 1624 702 6D 0.037771681

368 1627 704 6D 0.026578862

369 1628 705 6D 0.011591881

370 1629 706 6D 0.057673164

371 1632 708 6D 0.035053279

372 1633 709 6D 0.045476858

373 1634 710 6D 0.065168533

374 1638 712 6D 0.096431317

375 1639 713 6D 0.04875577

376 1643 715 6D 0.030203134

377 1644 716 6D 0.043052876

378 1645 717 6D 0.017105915

379 1649 718 6D 0.040278311

380 1652 720 6D 0.007319819

381 1653 721 6D 0.043455887

382 1663 725 6D 0.037005687

383 1667 727 6D 0.042282612

384 1673 729 6D 0.042090455

385 1681 731 6D 0.026654085

386 1691 738 6D 0.031495014
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387 1700 742 6D 0.04363964

388 1706 744 6D 0.006620722

389 1708 746 6D 0.029595623

390 1711 748 6D 0.025874433

391 1722 752 6D 0.023962472

392 1725 753 6D 0.001599429

393 1727 754 6D 0.031792988

394 1733 757 6D 0.038685584

395 1736 759 6D 0.039995033

396 1737 760 6D 0.033534564

397 1745 764 6D 0.047904414

398 1756 770 6D 0.022490652

399 1760 772 6D 0.026401933

400 1762 774 6D 0.025670226

401 1765 775 6D 0.043107085

402 1768 776 6D 0.054293156

403 1774 779 6D 0.061294566

404 1777 781 6D 0.043511957

405 1778 782 6D 0.012097695

406 1783 783 6D 0.042779011

407 1789 787 6D 0.073577696

408 1799 790 6D 0.042173046
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409 1801 791 6D 0.037329715

410 1803 793 6D 0.04132443

411 1805 794 6D 0.032673165

412 1806 795 6D 0.009275185

413 1807 796 6D 0.044915744

414 1808 797 6D 0.035288945

415 1811 799 6D 0.0097021

416 1821 804 6D 0.027299187

417 1824 807 6D 0.047451762

418 1836 812 6D 0.031281142

419 1837 813 6D 0.025560633

420 1838 814 6D 0.044606928

421 1854 818 6D 0.040495983

422 1859 820 6D 0.057208585

423 1866 823 6D 0.047088053

424 1870 824 6D 0.052674252

425 1871 825 6D 0.037286291

426 1872 826 6D 0.014590471

427 1873 827 6D 0.041618679

428 1877 829 6D 0.04024779

429 1883 831 6D 0.033900343

430 1891 836 6D 0.013784305
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431 1896 837 6D 0.026538661

432 1898 838 6D 0.027075677

433 1901 840 6D 0.025473601

434 1905 841 6D 0.023230788

435 1909 842 6D 0.044236819

436 1914 843 6D 0.033296092

437 1915 844 6D 0.043538869

438 1920 845 6D 0.040658668

439 1921 846 6D 0.003075945

440 1922 847 6D 0.013805151

441 1923 848 6D 0.046424495

442 1928 850 6D 0.031195862

443 1932 853 6D 0.041672843

444 1933 854 6D 0.038980036

445 1943 856 6D 0.018976496

446 1951 859 6D 0.019734609

447 1964 866 6D 0.012101809

448 1970 869 6D 0.03107981

449 1975 871 6D 0.024547998

450 1978 872 6D 0.028766626

451 1999 880 6D 0.046774344

452 2001 881 6D 0.029011446
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453 2005 884 6D 0.035214969

454 2006 885 6D 0.005026442

455 2007 886 6D 0.002149288

456 2008 887 6D 0.019984363

457 2021 894 6D 0.036030501

458 2025 895 6D 0.029960592

459 2034 898 6D 0.037324296

460 2035 899 6D 0.02015228

461 2039 901 6D 0.028588962

462 2047 906 6D 0.023631272

463 2051 909 6D 0.027044524

464 2053 910 6D 0.037284342

465 2054 911 6D 0.021026881

466 2066 918 6D 0.019384157

467 2072 920 6D 0.039134343

468 2073 921 6D 0.023324828

469 2080 923 6D 0.033282315

470 2083 924 6D 0.013390577

471 2086 925 6D 0.024365827

472 2087 926 6D 0.045419259

473 2088 927 6D 0.030699882

474 2100 933 6D 0.033431173
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475 2102 934 6D 0.038771202

476 2110 938 6D 0.008952831

477 2114 941 6D 0.05288481

478 2115 942 6D 0.043100016

479 2117 943 6D 0.048261341

480 2119 944 6D 0.007861959

481 2131 952 6D 0.022191805

482 2136 954 6D 0.041114121

483 2137 955 6D 0.036458869

484 2144 958 6D 0.042573861

485 2156 963 6D 0.046361609

486 2163 967 6D 0.022704858

487 2169 969 6D 0.045958519

488 2172 971 6D 0.190879268

489 2177 972 6D 0.010913828

490 2198 977 6D 0.036251213

491 2200 978 6D 0.043405432

492 2201 979 6D 0.028504708

493 2203 980 6D 0.014579393

494 2209 981 6D 0.030758844

495 2226 986 6D 0.032103597

496 2228 987 6D 0.020580983
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497 2239 990 6D 0.006217268

498 2252 997 6D 0.053468246

499 2254 998 6D 0.005957864

500 2263 1003 6D 0.019443995

501 2264 1004 6D 0.03571441

502 2266 1005 6D 0.041341889

503 2271 1008 6D 0.06793181

504 2277 1010 6D 0.021810959

505 2278 1011 6D 0.021183633

506 2280 1013 6D 0.031745425

507 2295 1017 6D 0.032705066

508 2300 1019 6D 0.035000083

509 2301 1020 6D 0.021567132

510 2315 1027 6D 0.018381497

511 2317 1029 6D 0.016839356

512 2318 1030 6D 0.105250691

513 2322 1031 6D 0.014211223

514 2329 1035 6D 0.048126341

515 2343 1040 6D 0.017032826

516 2346 1041 6D 0.041316705

517 2348 1043 6D 0.040888048

518 2350 1045 6D 0.022696008
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519 2352 1047 6D 0.044829719

520 2354 1048 6D 0.022782978

521 2362 1051 6D 0.077395931

522 2367 1054 6D 0.022248289

523 2369 1055 6D 0.045588118

524 2370 1056 6D 0.031631676

525 2373 1058 6D 0.032642787

526 2374 1059 6D 0.059736242

527 2385 1063 6D 0.027713026

528 2388 1064 6D 0.029893191

529 2393 1066 6D 0.035320897

530 2395 1067 6D 0.036403574

531 2403 1069 6D 0.050401323

532 2407 1073 6D 0.018285046

533 2413 1074 6D 0.043704904

534 2416 1076 6D 0.041154475

535 2418 1078 6D 0.031477532

536 2424 1083 6D 0.003333529

537 2433 1087 6D 0.009536002

538 2435 1088 6D 0.039662467

539 2441 1089 6D 0.0129772

540 2442 1090 6D 0.030754742
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541 2447 1093 6D 0.013849479

542 2449 1094 6D 0.027025338

543 2455 1096 6D 0.00732945

544 2463 1099 6D 0.016687435

545 2469 1104 6D 0.024205981

546 2471 1105 6D 0.036748161

547 2477 1106 6D 0.013225697

548 2487 1109 6D 0.04215514

549 2490 1111 6D 0.012855454

550 2491 1112 6D 0.034929435

551 2494 1114 6D 0.024621178

552 2498 1115 6D 0.019093452

553 2510 1119 6D 0.033622596

554 2516 1123 6D 0.0170597

555 2517 1124 6D 0.037415049

556 2521 1126 6D 0.000941014

557 2522 1127 6D 0.031419786

558 2530 1129 6D 0.044735785

559 2535 1130 6D 0.052680668

560 2537 1131 6D 0.038746634

561 2554 1138 6D 0.011742432

562 2555 1139 6D 0.035488524
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563 2557 1140 6D 0.027697283

564 2558 1141 6D 0.037266759

565 2574 1149 6D 0.066674057

566 2576 1150 6D 0.052092932

567 2581 1153 6D 0.046584002

568 2582 1154 6D 0.043463934

569 2585 1155 6D 0.04011046

570 2589 1157 6D 0.034407537

571 2594 1158 6D 0.0176858

572 2596 1159 6D 0.039299235

573 2601 1160 6D 0.032431547

574 2607 1163 6D 0.048307133

575 2610 1166 6D 0.038489179

576 2616 1167 6D 0.026155491

577 2623 1171 6D 0.021950724

578 2625 1172 6D 0.01526354

579 2629 1175 6D 0.026436744

580 2630 1176 6D 0.02964393

581 2631 1177 6D 0.039482736

582 2632 1178 6D 0.038434777

583 2639 1180 6D 0.020893808

584 2651 1183 6D 0.002546853
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585 2653 1185 6D 0.002474245

586 2655 1187 6D 0.036449692

587 2660 1188 6D 0.038737355

588 2666 1190 6D 0.059630898

589 2672 1192 6D 0.031554372

590 2675 1193 6D 0.11537018

591 2677 1194 6D 0.019695486

592 2679 1195 6D 0.026447707

593 2680 1196 6D 0.032517905

594 2682 1197 6D 0.048812743

595 2693 1199 6D 0.039126511

596 2702 1203 6D 0.037000608

597 2707 1204 6D 0.043431214

598 2709 1205 6D 0.031370493

599 2715 1207 6D 0.024750522

600 2726 1212 6D 0.047457577

601 2728 1214 6D 0.03434634

602 2732 1215 6D 0.030790586

603 2735 1217 6D 0.017570018

604 2736 1218 6D 0.037986531

605 2745 1221 6D 0.025643437

606 2755 1224 6D 0.000216613
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607 2759 1225 6D 0.034951976

608 2761 1226 6D 0.024421594

609 2762 1227 6D 0.037849366

610 2769 1230 6D 0.034938967

611 2778 1232 6D 0.034932271

612 2780 1234 6D 0.008293457

613 2782 1235 6D 0.035675066

614 2786 1238 6D 0.006718394

615 2787 1239 6D 0.022482724

616 2789 1240 6D 0.041336402

617 2799 1244 6D 0.038990624

618 2811 1251 6D 0.000496086

619 2816 1254 6D 0.03981617

620 2817 1255 6D 0.026296569

621 2823 1257 6D 0.020874461

622 2832 1261 6D 0.062625363

623 2835 1263 6D 0.050873219

624 2849 1264 6D 0.01832529

625 2854 1267 6D 0.009818567

626 2856 1268 6D 0.046210344

627 2863 1271 6D 0.007179308

628 2864 1272 6D 0.046172022
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629 2872 1276 6D 0.019879787

630 2878 1280 6D 0.007155505

631 2889 1283 6D 0.017961977

632 2901 1289 6D 0.035911673

633 2902 1290 6D 0.027566254

634 2905 1293 6D 0.00391899

635 2906 1294 6D 0.025982846

636 2920 1299 6D 0.013318211

637 2921 1300 6D 0.037526276

638 2923 1301 6D 0.042128108

639 2925 1302 6D 0.025335681

640 2930 1305 6D 0.04233088

641 2936 1307 6D 0.091117901

642 2942 1308 6D 0.024189723

643 2943 1309 6D 0.03441563

644 2947 1311 6D 0.00196772

645 2951 1312 6D 0.023241721

646 2952 1313 6D 0.049358815

647 2955 1314 6D 0.026609075

648 2986 1323 6D 0.04627446

649 2987 1324 6D 0.039336793

650 2989 1325 6D 0.040542557
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651 2990 1326 6D 0.017100697

652 3001 1328 6D 0.046199577

653 3018 1335 6D 0.049481675

654 3021 1338 6D 0.038221339

655 3022 1339 6D 0.12464208

656 3029 1342 6D 0.042079455

657 3032 1344 6D 0.023110708

658 3035 1346 6D 0.030455443

659 3038 1349 6D 0.020013165

660 3041 1351 6D 0.014635895

661 3045 1352 6D 0.044142903

662 3061 1358 6D 0.015943711

663 3063 1359 6D 0.040776761

664 3064 1360 6D 0.020940551

665 3068 1362 6D 0.045856966

666 3069 1363 6D 0.026526452

667 3077 1365 6D 0.017597257

668 3092 1372 6D 0.026916417

669 3094 1374 6D 0.040323331

670 3095 1375 6D 0.03331024

671 3096 1376 6D 0.030228355

672 3100 1379 6D 0.015819832
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673 3101 1380 6D 0.046222895

674 3105 1382 6D 0.05436895

675 3114 1385 6D 0.037953599

676 3118 1386 6D 0.051604225

677 3124 1390 6D 0.041068131

678 3126 1391 6D 0.019567209

679 3129 1392 6D 0.041173294

680 3130 1393 6D 0.041235008

681 3131 1394 6D 0.034568063

682 3141 1398 6D 0.041564312

683 3150 1402 6D 0.034994058

684 3156 1405 6D 0.034823618

685 3161 1407 6D 0.00605431

686 3163 1408 6D 0.041107397

687 3167 1409 6D 0.033409572

688 3168 1410 6D 0.016669822

689 3169 1411 6D 0.025711777

690 3173 1414 6D 0.03657123

691 3176 1416 6D 0.048249501

692 3180 1418 6D 0.03186898

693 3183 1420 6D 0.043724297

694 3184 1421 6D 0.044338117
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695 3188 1423 6D 0.022160784

696 3190 1425 6D 0.039273824

697 3192 1427 6D 0.030451941

698 3199 1428 6D 0.009610252

699 3201 1429 6D 0.031477222

700 3202 1430 6D 0.050732515

701 3204 1431 6D 0.026375333

702 3207 1433 6D 0.017397289

703 3224 1440 6D 0.024031111

704 3225 1441 6D 0.027286323

705 3226 1442 6D 0.001921861

706 3232 1444 6D 0.039563794

707 3243 1450 6D 0.009538079

708 3249 1452 6D 0.063038519

709 3257 1456 6D 0.016130393

710 3262 1457 6D 0.041941356

711 3268 1459 6D 0.016940033

712 3270 1460 6D 0.053559157

713 3284 1465 6D 0.033773149

714 3289 1467 6D 0.045977818

715 3292 1469 6D 0.002954058

716 3297 1472 6D 0.173318261
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717 3299 1473 6D 0.004598896

718 3301 1474 6D 0.040226936

719 3304 1476 6D 0.01571909

720 3307 1477 6D 0.041700758

721 3310 1478 6D 0.040639346

722 3312 1479 6D 0.067994812

723 3320 1481 6D 0.044376888

724 3334 1486 6D 0.035811495

725 3339 1487 6D 0.047032112

726 3341 1489 6D 0.04559723

727 3346 1492 6D 0.019450861

728 3349 1493 6D 0.025628362

729 3352 1496 6D 0.039226712

730 3354 1497 6D 0.040643397

731 3363 1501 6D 0.041073106

732 3367 1503 6D 0.040976693

733 3368 1504 6D 0.028814595

734 3372 1506 6D 0.018193487

735 3373 1507 6D 0.040000275

736 3375 1509 6D 0.045837227

737 3376 1510 6D 0.032307266

738 3377 1511 6D 0.00144572
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739 3386 1515 6D 0.042786603

740 3389 1517 6D 0.04486173

741 3390 1518 6D 0.026306985

742 3392 1519 6D 0.014136683

743 3393 1520 6D 0.036780646

744 3394 1521 6D 0.041464512

745 3399 1524 6D 0.020718965

746 3406 1525 6D 0.019755348

747 3415 1529 6D 0.040292141

748 3417 1531 6D 0.043605544

749 3418 1532 6D 0.05337411

750 3421 1533 6D 0.020736185

751 3422 1534 6D 0.036510761

752 3425 1535 6D 0.021654305

753 3431 1536 6D 0.00217258

754 3434 1537 6D 0.023023316

755 3436 1539 6D 0.027981114

756 3437 1540 6D 0.028699631

757 3444 1543 6D 0.02823922

758 3447 1545 6D 0.032162797

759 3453 1547 6D 0.043710713

760 3455 1548 6D 0.022027967
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761 3462 1551 6D 0.049473655

762 3463 1552 6D 0.044124443

763 3464 1553 6D 0.003631459

764 3470 1555 6D 0.039013648

765 3473 1556 6D 0.046177575

766 3474 1557 6D 0.030113662

767 3476 1558 6D 0.010406717

768 3480 1560 6D 0.030351757

769 3485 1565 6D 0.011375205

770 3489 1567 6D 0.049282712

771 3490 1568 6D 0.036521508

772 3492 1569 6D 0.007351374

773 3496 1570 6D 0.091337952

774 3501 1573 6D 0.030743466

775 3507 1574 6D 0.02246645

776 3510 1576 6D 0.04406188

777 3515 1577 6D 0.001170225

778 3517 1578 6D 0.04404092

779 3521 1579 6D 0.059496437

780 3523 1580 6D 0.03564808

781 3528 1583 6D 0.006225844

782 3530 1585 6D 0.004950678
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783 3533 1587 6D 0.046381526

784 3537 1588 6D 0.033004537

785 3540 1589 6D 0.0008693

786 3555 1594 6D 0.032589975

787 3559 1595 6D 0.007489924

788 3561 1596 6D 0.013469308

789 3564 1599 6D 0.022029734

790 3565 1600 6D 0.098980304

791 3570 1603 6D 0.033634459

792 3573 1606 6D 0.04052971

793 3579 1607 6D 0.025832542

794 3592 1610 6D 0.044362692

795 3606 1611 6D 0.013513856

796 3614 1617 6D 0.033262769

797 3615 1618 6D 0.035330586

798 3616 1619 6D 0.02969494

799 3618 1620 6D 0.077499802

800 3624 1622 6D 0.062411033

801 3632 1624 6D 0.030547033

802 3633 1625 6D 0.034679952

803 3644 1627 6D 0.001964207

804 3647 1629 6D 0.037346223
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805 3651 1631 6D 0.047839243

806 3652 1632 6D 0.023706708

807 3653 1633 6D 0.047743683

808 3655 1634 6D 0.034192145

809 3661 1636 6D 0.006083235

810 3668 1639 6D 0.012117849

811 3682 1648 6D 0.011092662

812 3685 1649 6D 0.04579138

813 3687 1651 6D 0.049989153

814 3688 1652 6D 0.237097443

815 3694 1654 6D 0.038437309

816 3705 1657 6D 0.036184235

817 3707 1659 6D 0.044470886

818 3713 1661 6D 0.008733547

819 3714 1662 6D 0.001635001

820 3718 1663 6D 0.004387666

821 3719 1664 6D 0.055583555

822 3724 1665 6D 0.043584704

823 3727 1666 6D 0.018006652

824 3731 1667 6D 0.012984535

825 3736 1668 6D 0.022092933

826 3740 1670 6D 0.020960141
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827 3750 1675 6D 0.188574586

828 3751 1676 6D 0.016964323

829 3759 1677 6D 0.021254714

830 3763 1679 6D 0.04005182

831 3771 1681 6D 0.034277798

832 3774 1684 6D 0.045489921

833 3775 1685 6D 0.043928109

834 3790 1690 6D 0.045908288

835 3791 1691 6D 0.034875759

836 3794 1692 6D 0.026426476

837 3797 1694 6D 0.042171515

838 3807 1695 6D 0.021473015

839 3814 1697 6D 0.017297993

840 3818 1698 6D 0.034144966

841 3819 1699 6D 0.043807625

842 3824 1702 6D 0.025084285

843 3825 1703 6D 0.024092782

844 3827 1705 6D 0.056649832

845 3829 1706 6D 0.085248334

846 3830 1707 6D 0.03620892

847 3831 1708 6D 0.041309255

848 3836 1710 6D 0.051837483
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849 3845 1714 6D 0.025897221

850 3848 1717 6D 0.031272789

851 3851 1719 6D 0.038248911

852 3853 1720 6D 0.03288015

853 3857 1723 6D 0.016977286

854 3860 1724 6D 0.033827322

855 3862 1726 6D 0.031542403

856 3870 1729 6D 0.043341847

857 3871 1730 6D 0.036302962

858 3875 1732 6D 0.037071933

859 3876 1733 6D 0.016360191

860 3877 1734 6D 0.050705975

861 3882 1735 6D 0.020008329

862 3887 1738 6D 0.032584174

863 3891 1740 6D 0.036729857

864 3893 1741 6D 0.029459958

865 3896 1742 6D 0.04169591

866 3904 1743 6D 0.018956934

867 3909 1746 6D 0.037195348

868 3915 1748 6D 0.04142808

869 3918 1749 6D 0.034733388

870 3926 1751 6D 0.054713918
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871 3928 1752 6D 0.035646083

872 3929 1753 6D 0.024546556

873 3936 1755 6D 0.065042078

874 3945 1761 6D 0.048483958

875 3952 1764 6D 0.004238233

876 3954 1765 6D 0.013845195

877 3957 1766 6D 0.042499725

878 3961 1767 6D 0.037582977

879 3965 1768 6D 0.039308081

880 3970 1770 6D 0.057112207

881 3972 1772 6D 0.009822478

882 3975 1775 6D 0.04331519

883 3983 1777 6D 0.044812809

884 4002 1784 6D 0.024805028

885 4010 1786 6D 0.018813112

886 4016 1789 6D 0.017875373

887 4025 1791 6D 0.045886844

888 4028 1792 6D 0.010140598

889 4031 1793 6D 0.007448216

890 4040 1795 6D 0.03606586

891 4044 1798 6D 0.026463933

892 4047 1800 6D 0.034972285
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893 4054 1802 6D 0.03397536

894 4056 1804 6D 0.02330034

895 4062 1807 6D 0.017453518

896 4064 1808 6D 0.071111112

897 4065 1809 6D 0.033238495

898 4069 1811 6D 0.030775729

899 4071 1812 6D 0.019207714

900 4075 1813 6D 0.028693092

901 4083 1817 6D 0.01811038

902 4084 1818 6D 0.020805844

903 4087 1819 6D 0.046002561

904 4098 1822 6D 0.021409787

905 4111 1824 6D 0.029425935

906 4126 1827 6D 0.039764236

907 4141 1833 6D 0.030870877

908 4144 1834 6D 0.033714537

909 4157 1837 6D 0.040106693

910 4166 1839 6D 0.041112717

911 4168 1841 6D 0.01161997

912 4169 1842 6D 0.014518857

913 4175 1845 6D 0.032793169

914 4182 1847 6D 0.005618414
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915 4183 1848 6D 0.030994774

916 4185 1849 6D 0.021747868

917 4186 1850 6D 0.042612175

918 4193 1852 6D 0.015887387

919 4222 1864 6D 0.04493718

920 4223 1865 6D 0.017580625

921 4224 1866 6D 0.039506599

922 4232 1869 6D 0.038316518

923 4234 1870 6D 0.048455008

924 4238 1872 6D 0.034803644

925 4239 1873 6D 0.011174847

926 4240 1874 6D 0.023409755

927 4244 1877 6D 0.026135286

928 4263 1885 6D 0.046911239

929 4276 1891 6D 0.031891715

930 4279 1893 6D 0.032534287

931 4298 1899 6D 0.033468877

932 4304 1900 6D 0.030856422

933 4311 1902 6D 0.042299223

934 4315 1904 6D 0.035575214

935 4317 1906 6D 0.013987039

936 4321 1908 6D 0.051982881
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937 4323 1910 6D 0.026483795

938 4325 1912 6D 0.014362767

939 4330 1913 6D 0.059549649

940 4336 1916 6D 0.012437025

941 4337 1917 6D 0.042254219

942 4346 1920 6D 0.033115554

943 4351 1923 6D 0.034010256

944 4353 1925 6D 0.035810128

945 4355 1926 6D 0.034440035

946 4356 1927 6D 0.035806039

947 4359 1928 6D 0.057908403

948 4362 1930 6D 0.028191661

949 4366 1931 6D 0.050985574

950 4367 1932 6D 0.032430109

951 4370 1933 6D 0.032880542

952 4372 1934 6D 0.036944771

953 4378 1936 6D 0.039298284

954 4385 1940 6D 0.014636537

955 4386 1941 6D 0.02099024

956 4398 1948 6D 0.021798191

957 4415 1955 6D 0.047880491

958 4419 1956 6D 0.040205229
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959 4429 1961 6D 0.022578951

960 4431 1963 6D 0.025575823

961 4436 1965 6D 0.033468144

962 4438 1966 6D 0.017365337

963 4445 1969 6D 0.022947087

964 4446 1970 6D 0.016605864

965 4449 1972 6D 0.041394043

966 4452 1973 6D 0.045287527

967 4453 1974 6D 0.033654498

968 4454 1975 6D 0.048146395

969 4464 1977 6D 0.011215573

970 4468 1979 6D 0.029236177

971 4478 1983 6D 0.040586154

972 4496 1992 6D 0.069032911

973 4498 1993 6D 0.020812452

974 4501 1994 6D 0.052900818

975 4507 1997 6D 0.019757223

976 4510 1998 6D 0.040017422

977 4512 1999 6D 0.021991293

978 4518 2002 6D 0.004665665

979 4520 2004 6D 0.022926411

980 4524 2006 6D 0.034075846
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981 4534 2011 6D 0.031420434

982 4541 2017 6D 0.027935551

983 4548 2021 6D 0.006427705

984 4557 2027 6D 0.044165442

985 4558 2028 6D 0.032540462

986 4563 2031 6D 0.029846889

987 4571 2033 6D 0.004254036

988 4575 2035 6D 0.033736791

989 4583 2037 6D 0.032396436

990 4584 2038 6D 0.04230115

991 4608 2049 6D 0.02660844

992 4610 2050 6D 0.001265371

993 4611 2051 6D 0.041442329

994 4621 2056 6D 0.045456899

995 4623 2057 6D 0.046858524

996 4628 2059 6D 0.036253146

997 4633 2061 6D 0.037899169

998 4640 2063 6D 0.029914143

999 4641 2064 6D 0.028484511

1000 4643 2065 6D 0.008017189
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