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ABSTRACT 

This study presents different aspects on the use of deterministic methods including 

Artificial Neural Networks (ANNs), and linear and nonlinear regression, as well as 

probabilistic methods including Bayesian inference and Monte Carlo methods to develop 

reliable solutions for challenging problems in geotechnics. This study addresses the 

theoretical and computational advantages and limitations of these methods in application 

to: 1) prediction of the stiffness and strength of stabilized organic soils, 2) determination 

of unknown foundations for bridges vulnerable to scour, and 3) uncertainty 

quantification for one-dimensional diffusion processes. 

ANNs were successfully implemented in this study to develop nonlinear models 

for the mechanical properties of stabilized organic soils. ANN models were able to learn 

from the training examples and then generalize the trend to make predictions for the 

stiffness and strength of stabilized organic soils. A stepwise parameter selection and a 

sensitivity analysis method were implemented to identify the most relevant factors for 

the prediction of the stiffness and strength. Also, the variations of the stiffness and 

strength with respect to each factor were investigated.   

A deterministic and a probabilistic approach were proposed to evaluate the 

characteristics of unknown foundations of bridges subjected to scour. The proposed 

methods were successfully implemented and validated by collecting data for bridges in 

the Bryan District. ANN models were developed and trained using the database of 

bridges to predict the foundation type and embedment depth. The probabilistic Bayesian 
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approach generated probability distributions for the foundation and soil characteristics 

and was able to capture the uncertainty in the predictions. 

The parametric and numerical uncertainties in the one-dimensional diffusion 

process were evaluated under varying observation conditions. The inverse problem was 

solved using Bayesian inference formulated by both the analytical and numerical 

solutions of the ordinary differential equation of diffusion. The numerical uncertainty 

was evaluated by comparing the mean and standard deviation of the posterior 

realizations of the process corresponding to the analytical and numerical solutions of the 

forward problem. It was shown that higher correlation in the structure of the 

observations increased both parametric and numerical uncertainties, whereas increasing 

the number of data dramatically decreased the uncertainties in the diffusion process. 
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1. CHAPTER I  

 INTRODUCTION  

Predicting the outcome of some measurements of a physical system is called the 

modelization problem or the forward problem (Tarantola 2005). Physical theories allow 

us to make such predictions, given the parameters that characterize the system. In 

contrast, the inverse problem uses the actual measurements to infer the values of the 

parameters characterizing the forward model. This can be mathematically represented as 

(Kaipio and Somersalo 2005; Tarantola 2005):   

                                                                         gm d m                                                             ( 1-1) 

 

where d is the vector of observations of the system, m is the vector of the model 

parameters, and g is the forward operator (usually a nonlinear operator). Inverse 

problems normally arise when direct measurement of the unknown quantity is 

impossible, and the measurements of other related quantities provide indirect access to 

infer the quantity of interest. 

 Inverse problems are often ill-posed, meaning that one of the conditions of 

existence, uniqueness, and stability are often violated in the solution (Marzouk et al. 

2007). There are often several solutions for an inverse problem (the problem is over-

determined), as there are several models that can fit through the noisy data. Thus, there 

is a significant level of uncertainty in the solution of inverse problems that initiates from 

the mathematical model, parameter estimations, measurements, and numerical 

approximations.  
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Deterministic methods often solve inverse problems based on the least-squares 

optimization. For instance, least-squares methods provide point estimates of the solution 

by minimizing the objective function which is the sum of squared errors (residuals). In 

order to address the ill-posed nature of the inverse problems, some deterministic 

methods add Tikhonov regularization terms to the objective function to treat strong ill-

posed conditions (Tikhonov and Arsenin 1977). 

On the other hand, probabilistic methods consider the model parameters as 

random variables and generate probability distributions for these parameters. Bayesian 

inference provides the possibility of taking into account current knowledge about a 

quantity of interest (prior probability distributions), and then update it based on new 

observations. Thus, Bayesian inference is a methodology to estimate the model 

parameters and to quantify the uncertainty associated with the estimations. 

This study presents contrasting aspects on the use of deterministic methods 

including Artificial Neural Networks (ANNs), and linear and nonlinear regression 

models, as well as probabilistic methods including Bayesian inference and Monte Carlo 

to develop reliable solutions for inverse problems in geotechnics. This study addresses 

the theoretical and computational advantages and limitations of these methods in 

application to: 1) prediction of the stiffness and strength of stabilized organic soils, 2) 

determination of unknown foundations for bridge scour, and 3) uncertainty 

quantification for one-dimensional diffusion processes. 

ANNs were implemented in this study to create nonlinear models to predict the 

unknown quantity of interest based on a number of observations of that quantity. ANNs 
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were trained to learn from the available data, and during this process, their weights were 

adjusted to minimize the error function. Chapter II discusses the deterministic methods 

implemented in this study including ANNs, and linear and nonlinear regressions.  

Bayesian inference was applied to quantify the uncertainty of the unknown 

parameters, given a priori information and new experimental observations. The 

uncertainty was then propagated from the model parameters to the model predictions in 

order to evaluate the uncertainty of the process. Chapter III describes the probabilistic 

methods implemented in this study. 

Chapter IV presents the results of research on the stiffness and strength of 

stabilized organic soils. Organic soils are mainly soft and highly compressible; therefore, 

their strength properties are often improved by stabilization techniques including deep 

soil mixing. In contrast to mineral soils, only limited studies have investigated the 

mechanical behavior of stabilized organic soils. This study investigates the stiffness and 

strength of soils with different organic contents stabilized with various binder types and 

mixing proportions using ANNs. The predictive ANN models were developed using a 

database of laboratory experiments that were conducted at the University of Cambridge 

by Hernandez-Martinez (2006). Also, the effects of organic content, binder type and 

quantity, mixing proportions, aging, time, temperature, and other testing conditions on 

the stiffness and strength of stabilized organic soils were investigated through sensitivity 

analyses.  

Chapter V and VI discuss the results of research on the determination of 

unknown foundations of bridges for scour evaluation. As of 2005, approximately 60,000 
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bridges throughout the United States were identified as having unknown foundations. 

Departments of Transportation (DOTs) have implemented different measures to evaluate 

the scour failure risk of over-river bridges with unknown foundations to monitor their 

safety on a regular basis. However, the problem of unknown foundations has not yet 

been properly addressed and there is an essential need for robust and more cost-effective 

solutions. This study introduces a deterministic and a probabilistic methodology for 

predicting the characteristics of unknown foundations of bridges, particularly their 

embedment depths, for scour evaluation. An evidence-based approach incorporating 

ANNs and the Bayesian inference method was implemented to generate single 

predictions for the type and embedment depth of foundations, and to evaluate the 

uncertainty of the predictions through probability distributions.  

Chapter VII presents the results of research on evaluating the parametric and 

numerical uncertainties in one-dimensional diffusion processes under varying 

observation conditions. The ordinary differential equation (ODE) of diffusion has been 

widely applied to model various processes including the transport of contaminants in 

saturated soils and the movement of water (moisture) in unsaturated soil. There are 

uncertainties in the solution of the inverse diffusion problem, which initiate from various 

sources including the measurements and observations, model calibration, and numerical 

approximations. This study uses probabilistic methods including the Bayesian inference 

and Monte-Carlo to quantify the uncertainties that emerge from the model parameters 

and the numerical approximation of the one-dimensional diffusion problem. Finally, 

Chapter VIII presents the overall conclusions derived from the performed studies.   
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2. CHAPTER II 

DETERMINISTIC METHODS 

Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANNs), first introduced by (McCulloch and Pitts 1943), are 

computational models consisting of parallel inter-connected processing units called 

neurons. ANNs have emerged from the idea of simulating the brain function with a 

computational system in terms of pattern recognition, learning, and generalization. 

Neurons in ANNs resemble the biological neurons, and connections between them 

resemble axons and dendrites through which biological neurons transmit and receive 

signals. Each connection between two neurons holds a value called weight, which 

represents the synapse at the intersection of the axon and dendrites between two 

biological neurons. The process of learning in ANNs, similar to human brain, is defined 

as adjustment of connections’ weights (synapses in biological cells) by signals passing 

through them (Bishop 1995; Haykin 1999). 

Figure  2-1 compares a biological neuron with a simple ANN model (perceptron). 

X1 to Xn represent the input parameters, W1 to Wn are weights of the connections, and b is 

bias of the neuron. Y1 is the output of the neuron which can be written as: 

                                                                      1

1 ( )

n

i i
i

v W X b

Y v


 



                                                               ( 2-1) 
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Function φ is defined as the neuron transfer function (activation function), which 

maps the inputs of a neuron to the desired output. There are a variety of possible transfer 

functions; the most common ones are: threshold, linear, Gaussian and sigmoid functions 

that are depicted in Figure  2-2. 

 

  

                                       a)                                                          b) 

Figure  2-1. a) Biological Neuron, b) A Single Perceptron 
 

 

 

Figure  2-2. Transfer Functions in ANNs 
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ANNs are usually divided into two broad categories in terms of their 

architecture: feed-forward and recurrent or feedback networks. In feed-forward 

networks, the input of each unit in a layer is the output of the units in layer before, while 

in recurrent networks, the input of a neuron could come from units (neurons) in the latter 

layer or from itself. Feed-forward networks are memory-less in the sense that their 

response to an input is independent of the previous network state. Recurrent networks, 

on the other hand, are dynamic systems. 

Learning in ANNs can be considered as updating network architecture and 

connections’ weights so that the network can efficiently perform a task. The network is 

usually trained by presenting a set of input data. ANNs are able to learn from the 

underlying rules, like implicit relation between input-outputs, acting as an artificial 

intelligent model.  

ANNs have been developed and modified over time to model complex problems 

in regression, pattern recognition, prediction, and optimization. Among various types, 

Radial Basis Functions (RBF) and Multilayer Perceptrons (MLP) are known as 

Universal Approximators and can be applied for the purpose of nonlinear regression 

modeling.  

The performance of ANNs are usually evaluated using the coefficient of 

determination (R2) between the actual or measured values (targets) and the predicted 

values by the model (outputs), and the root mean square of error (RMSE) in the model 

predictions. To avoid over-fitting, a fraction of the database is used to train the ANN 
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model (training dataset), and the rest are used to evaluate and monitor the generalization 

ability of the model (validation and test datasets).  

                                                                 

2

2 1

2

1

( )
1

( )

n

i i
i

n

i
i

y d
R

d d






 






                                                         (2-2) 

 
 

                                                              2

1

1
( )

n

i i
i

RMSE y d
n 

                                                     (2-3) 

 
 

where, 

yi = predicted values by a model (output) 

di = actual or measured values (target) 

d = average of the measured values over a dataset 

All the computational models in this study including the ANN models were 

developed by programming in MATLAB (MathWorks 2013). Also, for developing the 

ANN models, the code modules in the Neural Network toolbox of MATLAB were 

utilized (Demuth et al. 2009). 

Radial Basis Function Networks  

RBFs are used both for complex pattern classification and approximation problems in 

high-dimensional spaces. Learning can be viewed as finding a surface in a 

multidimensional space that provides the best fit to the training data. RBF networks are 

designed as feed-forward networks consisting of three layers: input, hidden, and output 

as presented in Figure  2-3. According to Cover’s theorem, in interpolation problems the 
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network performs a nonlinear mapping from the input space to the hidden space, and 

then a linear mapping from the hidden space to the output space (Haykin 1999). 

The first layer consists of input nodes and applies an input vector containing a 

specific number of elements to the next layer (the hidden layer). The hidden layer is 

composed of nonlinear neurons that are connected directly to all of the neurons in the 

output layer. If applying the fixed center learning strategy, the centers of the hidden 

neurons are the input vectors in the training dataset, and therefore the number of hidden 

units is equal to the size of the training dataset. The number of nodes in the output layer 

depends upon the number of the elements in the target of the problem. 

The (weighted) distances of the inputs from the hidden units’ centers are 

computed and then passed through the radial basis function. In this sense, a neuron will 

have a maximum output when the new input exactly matches its center. The outputs of 

the hidden units are then multiplied by the weights of the second layer (output layer) and 

are transferred using a linear function. In this sense, the outputs of the network are 

superpositions of the activities of all the radial functions in the network (Poggio and 

Girosi 1990). 

Learning Process  

The hyper-surface maps an m-dimensional input space to the single dimensional output 

space. Having a set of data for N different point  | 1, 2, ,m
i i N  X   and 

corresponding set of N real numbers  1| 1, 2, ,id i N   as the desired responses, a 
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function 1: mY    can be found that satisfies the multivariable interpolation 

condition: 

                                                                     ,     1, 2, ,i iY d i N  X                                           ( 2-4)	

  
 
where Y has the following form: 

                                                                     
1

( )
N

i i
i

Y w


 X X X                                               ( 2-5) 

 

  is a radial-basis function, and ‖. ‖ denotes a norm that is usually Euclidean. The 

radial-basis function widely used in RBFs’ hidden neurons is the Gaussian function:  

                                                                         

2

2
( )

2( )  e 



X -C

X                                           ( 2-6)   

                                              

where X is the input vector, C is the vector determining the center of the basis function, 

and σ is the parameter that specifies the spread of the basis functions and controls the 

smoothness of the interpolation. 

The final output function of the network can be written as follows: 

                                                                   
2( )1be   X C

2Y W + b                                        ( 2-7) 

  

where, 

Y = output matrix (model response) 

W = weight matrix (model parameters) 

X = input matrix (predictor variables) 

C = centers of Gaussian functions 
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1

2
1b


 = spread of the Gaussian function (model parameter) 

b2 = bias vector of the output layer (model parameter) 

 

 

Figure  2-3. Architecture of the RBF Network 
 

Considering b2=0, the RBF network provides an interpolating function which 

passes through all the data points. Such a function is over-fitted, and therefore highly 

oscillatory (Bishop 1995). Thus, the bias parameter was considered in order to smooth 

the interpolation and to improve the generalization of the model. The performance of the 

networks was evaluated for various values of b1. The value that minimized the error on 

the test data set was eventually selected as the spread of the Gaussian functions.    



 

12 

 

The weights of the second layer were calculated so as to minimize the error 

function (the sum of squared errors) given by: 

                                                            
2

1

1
(Y( ) )

2

N

i i
i

E d


  X                    ( 2-8) 

 

Minimizing the error function of Eq. 2-8 leaded to solving a set of linear 

equations: 

                                                                  
T

T T 1 T( )




ΦW d

W Φ Φ Φ d
                                                        ( 2-9) 

 

where φ is the output of the hidden layer, and d is the target matrix containing id  

elements. 

Training 

An ensemble of networks were generated by the Random Subsampling method also 

known as Monte-Carlo cross-validation (Picard and Cook 1984). In this method, the 

RBF network is trained for a large number of iterations, and at each iteration data points 

are randomly selected and assigned to each subset of the database (the training and test 

subsets) at a 4:1 proportion. Therefore, a new model was trained and evaluated at each 

iteration that ultimately generated an ensemble of networks. The network learned from 

the data points in the training set and its generalization was examined over the test 

dataset. The performance of the model was considered to be the average performance of 

all the networks in the ensemble. Also the uncertainty in the model performance was 

assessed through the distribution of R2 values.  
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Multilayer Perceptron Networks 

MLPs are feed-forward neural networks with at least one hidden layer consisting of 

neurons with sigmoid activation functions. The learning procedure consists of adjusting 

the weights of connections in the network to minimize the objective or error function. 

The MLP network architecture is shown in Figure  2-4. MLPs apply either a log-sigmoid 

or a tan-sigmoid transfer function in the hidden units, and a linear function in the output 

units. The tan-sigmoid activation function for MLP networks appears as: 

                                                           ( ) tanh( )
e e

e e



 



X X

X -X
X X                                                    ( 2-10) 

 

and the log-sigmoid function appears as: 

                                                          
1

( ) tanh( )
1 e

  
 X

X X                                                      ( 2-11) 

  

A primary analysis was performed to select the type of sigmoid function; tan-

sigmoid and log-sigmoid functions resulted in relatively similar model performance. 

However, tan-sigmoid slightly outperformed the logistic function. In general, tan-

sigmoid activation functions leads to faster convergence than log-sigmoid functions 

(Bishop 1995).   

The output layer has one neuron associated with the response variable. The 

output function of the network can be written as: 

                                                          

2( )

2( )

1

1

e

e

 

 


 



1 1

1 1

W X b

2 2W X b
Y W b                                            ( 2-12) 
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where, 

Y = output matrix (model response) 

W1 = weight matrix of the hidden layer (model parameters) 

W2 = weight matrix of the output layer (model parameters) 

X = input matrix (predictor variables) 

b1 = bias vector of the hidden layer (model parameters) 

b2 = bias vector of the output layer (model parameters) 

Learning Process 

The weights are adjusted according to the Back Propagation (BP) algorithm. Error back-

propagation learning consists of conducting two rounds: a forward pass and a backward 

pass. In the forward pass, an input vector is applied to the sensory nodes of the network, 

and its effect propagates through the network layer by layer. In a similar way to the 

Least Squares algorithm, the BP algorithm applies a correction proportional to the 

derivative of the error function with respect to weights, in the backward pass. The error 

function is minimized in this process by starting with any set of weights and repeatedly 

changing each weight by an amount proportional to the derivative of the error function 

(Haykin 1999). 
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Figure  2-4. Architecture of the MLP Network  
 

 

Forward Computation  

This includes the computation of the local fields and function signal appearing at the 

output of all neurons, layer by layer through the network. The induced local field    l
jv n    

for neuron j in layer l is: 

                                                     
         

1
1

0

  
m

l ll
j ji i

i

v n w n y n



          (2-13) 
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where    1l
iy n  is the output function of neuron i in layer l-1 at iteration n, and  l

jiw n  

is the synaptic weight of neuron j in layer l that is fed from neuron i in layer l-1. For i = 

0,    1
0 1ly n   and   ( )l l

ji jw n b n  where bj
l is the bias applied to the neuron j in layer l. 

For neuron j in layer L (output layer) the error signal is computed as: 

                                                                 
  

     
j

j

L
j

L
j j

y v n

e n d n y n



 
                                                 ( 2-14) 

 

where  jd n is the j element of the desired response vector  d n . 

Backward Computation 

BP algorithm applies a correction to synaptic weights defined by the delta rule:  

                                                               
 
 

-   ji
ji

E n

n
w

w



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
            ( 2-15) 

 

where ߟ is called the leaning-rate parameter and E (n) is the error function: 

                                                                    2
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

                                 ( 2-16) 

 

This method is based on the gradient decent algorithm for finding weights which 

leads to finding the minimum on the error surface. According to chain rule in calculus 

the gradient of the error function with respect to weight is given by: 
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where, 
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Defining the local gradient for neuron j as: 
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This can be written as: 

                         
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Thus, the weight adjustment for connection between neuron j in layer l and 

neuron i in layer l-1 can be written as: 
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Levenberg-Marquardt Algorithm 

The most popular optimization algorithm for error back propagation is the gradient 

decent method. However, this method is often very slow, giving preference to high 

performance optimization algorithms that converge much faster, such as the Levenberg-

Marquardt (LM), Conjugate Gradient, Quasi-Newton, and Bayesian Regularization 

among others. In this study, the LM optimization algorithm was applied to perform the 

nonlinear error minimizations.  

The LM can be considered as an interpolation of the Gauss-Newton (GN) and the 

gradient decent methods. LM is known to be a more robust algorithm than GN because it 

can converge even when the initial guess is far from the optimum region; however, it is a 

bit slower than the GN algorithm. This algorithm solves the following matrix equation 

for the vector of weights w: 

                                            ( diag( )) [ ( , )]T T T   J J J J J T Y X w          ( 2-23) 
 

where Y is the output of the network or the response of the fitted function at the 

parameter vector of w, and w represents the vector containing all the weights and biases 

of the network. T is the vector of the target values (observed or measured values), and J 

is the Jacobian matrix where Jij is defined as: 

                                                                
( , )i j

ij
j

x w
J

w






Y
                                   ( 2-24) 

 

δ is the increment value that iteratively adjusts the model parameters (weights), and λ is 

the damping factor (also called the learning rate parameter) adjusted continuously 
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throughout the process. If the objective function (the sum of the squared errors) 

decreases rapidly, a smaller value is chosen for λ, and the algorithm leans towards the 

Gauss-Newton. Whereas, for iteration that generates an insufficient reduction in the 

objective function, λ is increased that brings the algorithm closer to the gradient descent. 

Training 

For the purpose of training, the working database was split into three groups: training, 

validation, and test, with 3:1:1 proportions. The weights of the network were adjusted 

using training examples. The network performance was monitored during training over 

the validation dataset. The learning process continued until one of the stopping criteria 

was reached. The stopping criteria included the minimum error, maximum number of 

iterations, minimum gradient of error function, and when error over the validation 

dataset started to increase.  

The random subsampling method was performed in order to have a more realistic 

estimate of the MLP models’ performance and to evaluate the uncertainty in the 

measured performance of the models.  

Also, in order to assess the optimum number of hidden neurons, an analysis was 

performed where MLP networks were created with different hidden neurons ranging 

from 5 to 100. As a result of this analysis, the best configuration for MLP networks was 

identified. 
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Generalized Regression Neural Networks (GRNNs)  

GRNNs introduced by Specht (1991) have a similar architecture to RBFs; the only 

difference between them is in adjusting the second-layer weights. In RBF networks, the 

weights and biases in the second layer are computed by minimizing the difference in the 

MSE. This usually results in generating exact solutions or a zero error for training data. 

However, the weights in the second layer of the GRNN are not adjusted using error 

minimization.  Instead, the weights are set equal to the value of the outputs (targets), so 

the hidden layer has the same number of neurons as the input/target pairs. 

Probabilistic Neural Networks (PNNs)  

PNNs are used for classification type of problems and have a similar architecture to 

GRNNs. However, the output layer for PNNs is a decision-making layer and has as 

many neurons as the number of classes (or categories) of the target parameter. The 

transfer function of the output neurons for PNNs is not linear as it is in GRNNs. This 

function (compete function) compares the inputs of all the neurons and outputs one, for 

the largest value and zero, for the others. Figure  2-5 presents the architecture of the PNN 

network used in this study. 

Linear Regression (LR) and Nonlinear Regression (NLR) 

Linear Regression (LR) and Nonlinear Regression (NLR) were performed and the 

performance of the regression models was compared with ANNs. The LR model was 

defined as: 
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                                                               1
ˆ

n n       Y X X βX                                     (2-25) 

where, 

Y = output matrix (model response) 

β0, … , βn = regression coefficients (model parameters) 

X = input matrix (predictor variables) 

The coefficients were computed using the linear least-squares method as: 

                                                                    
1ˆ ( ' ) 'β X X X Y                                                            (2-26)        

                                                           
 

 

 

Figure  2-5. Architecture of the PNN Network 
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Also, a nonlinear model similar to the output function of MLPs was defined as: 

                                                        tansig( ) 1 2Y LW IWX + b + b                 (2-27)   

  
where, 

X [np × ns] = input data  

Y [no × ns] = target data 

IW [N × np] = weights of the first (hidden) layer  

LW [no × N] = weights of the second (output) layer  

b1 [N × ns] = bias of the first layer 

b2 [no × ns] = bias of the second layer 

ns = number of training data 

np = number of input variables 

no = number of output variables  

N = number of nonlinear functions (equal to number of hidden neurons in an MLP) 

A nonlinear least square approach was then taken to compute the weights and 

biases. Similar to the MLPs, the LM algorithm was implemented to perform the 

optimization. The objective function to be minimized was the sum of the squared errors. 

The weights and biases were initialized by random selection in range [-1 1]. The LM 

algorithm adjusted the weights and biases at each iteration, starting with the initial 

values and continuing until the convergence or one of the stopping criteria was reached.  

Similar to MLPs, the data was first normalized and 1,000 models were generated 

through the random subsampling of the data points for the training and test datasets. The 

main difference between the MLP and NLR models was the difference in computing the 
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gradient of the objective function with respect to weights, which was performed by the 

backpropagation method for MLPs. 
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3. CHAPTER III  

PROBABILISTIC METHODS 

Bayesian Inference 

Beliefs and state of knowledge about an unknown quantity can be mathematically 

represented as a probability distribution. Updating the current state of knowledge in the 

light of new evidence based on the Bayes’ Theorem is called Bayesian Inference (Hoff 

2009). In other words, Bayesian inference is a methodology to estimate the probability 

of a vector of variables when new evidence becomes available. According to the Bayes’ 

paradigm, considering  1, , n θ  , a vector of model parameters, and  1, , nd dd 

, a vector of new observations about the process of interest, then p(θ) represents the prior 

distribution, p(d|θ) represents the likelihood, and p(θ|d), the posterior distribution can be 

computed as (Robert 2007; Hoff 2009): 

                                                      
p( ) p( | )

p( | )
p( ) p( | ) d




θ d θ
θ d

θ d θ θ
          ( 3-1) 

 

The denominator of the above equation is a normalizing constant; thus, the 

posterior distribution is proportional to the prior times the likelihood: 

                                                              p( | ) p( ) p( | )θ d θ d θ                                                        ( 3-2)                  

 

Calculating the integral in the denominator is often mathematically complex, 

therefore p(θ|d) can be computed only up to the normalizing constant. Also estimating 

the statistics of the posterior such as mean or confidence intervals require solving 
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complex mathematical integrations. In order to avoid solving difficult integrals, random 

sampling methods (Monte-Carlo) are often used to approximate different characteristics 

of posterior distributions by taking samples from p(θ|d).  

The likelihood is defined as the probability distribution of the observations, 

which is formulated as the discrepancy between model predictions and observations. 

This discrepancy includes both the measurement error and the model discrepancy. 

Observations are usually assumed to be independent and identically distributed (i.i.d.) 

random variable following a Normal distribution, thus the likelihood function can be 

written as: 

                                                        
2( , ) |  ~ i.i.d. (0, )i id u x N  θ                                              ( 3-3) 

 

                                   2p( ) p( , , ) ( , ) 0,1 n i i
i

d d N d u x      d θ θ θ                              ( 3-4) 

 

where (x, )u   is the forward model, and σ is the standard deviation of error. 

If the statistics of the prior distribution or of the likelihood distribution are not 

known a priori, they can be defined as hyper-parameters or random variables 

themselves, and can be estimated as part of the Bayesian inversion. Assuming the 

parameters of the prior distributions and the standard deviation of error to be known a 

priori and all the model parameters to be independent, the following equation holds:  

                                       1 1 1p( , , ) p( ) p( ) p( , )n n n            d d                               ( 3-5) 
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Markov Chain Monte Carlo  

The Markov-Chain Monte-Carlo method (MCMC) allows for generating random 

samples from a posterior probability distribution when only the kernel of the posterior 

distribution is available up to the normalizing constant. Theoretically, the simulated 

samples in the Markov-Chain will converge to a stationary distribution after a number of 

samples, irrespective of the starting point of the chain. The chain is assumed to converge 

to the target distribution when the cumulative mean and standard deviation of the 

samples become stationary. Therefore, the initial samples before convergence are 

discarded (burn-in value) and the rest of the samples are used to reproduce the posterior 

distributions. The MCMC allows for constructing the posterior joint probability 

distributions of the unknown parameters of a model given a set of observations from that 

model. Also, the posterior marginal distributions of the parameters (as well as the 

correlation between them) can be obtained using this method (Gamerman and Lopes 

2006). 

To select or reject samples during the sampling process, there exist different 

schemes such as the Metropolis-Hastings, the independence, and the Gibbs sampler 

(Hoff 2009). From all these, Metropolis-Hastings is the most widely used method. 

Considering p(ߠ) to be the target distribution (the posterior distribution), the pseudo 

code for Metropolis-Hasting’s sampler can be written as: 

- Select a starting point: (0)  

- for i=1:n (number of samples) 

- Sample a candidate point from an arbitrary proposal distribution: ( ) ( ) ( 1)~ q( )i i i                        
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- Compute 
( ) ( 1) ( )

( 1) ( ) ( 1)

p( )q( )
= min ,1

p( )q( )

i i i

i i i

  


  



 

  
 
  

 

- Sample from the uniform distribution: ~ U(0,1)u  

- if > u , ( ) ( )i i  ,else, ( ) ( 1)i i    

- end 

The Metropolis algorithm was implemented assuming symmetric proposal 

distributions. In this study, the candidate samples were drawn from a multivariate 

normal distribution. The convergence of the Markov chains were evaluated using 

diagnostic plots, including plots of the cumulative mean and standard deviation of the 

samples. Also, the autocorrelation of the sample chain and the acceptance rate of the 

sampler were observed to ensure that the chain was not sticky and had a good mixing. 

Note that the probabilistic methods in this study including the MCMC 

simulations were programmed and implemented in MATLAB.  
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4. CHAPTER IV 

PREDICTION OF THE STIFFNESS AND STRENGTH OF 

STABILIZED ORGANIC SOILS 

Introduction and Literature Review 

Soils cover the vast majority of the lithosphere’s surface, where soil formation processes 

take place due to interactions with the hydrosphere, atmosphere, and biosphere. 

Although both organic and mineral components are present in most soils, they are found 

in nature as either predominantly mineral or predominantly organic, depending upon 

their specific soil formation agents (i.e., parent material, climate, topography, bio-agents, 

and time). Organic soils usually originate in places with the continuous presence of 

water, since water prevents organic materials from degrading and turning into sediments. 

Organic soils are often considered soft and highly compressible, therefore, under high 

pressures, excessive settlement and instability may become of issue (Edil and Den Haan 

1994; Kruse and Haan 2006). Thus, soil stabilization methods often are applied to 

improve the strength properties of organic soils.  

The use of deep soil mixing to improve the stiffness and strength of organic soils 

is well established (Hampton and Edil 1998; Jelisic and Leppanen 2003; Lambrechts et 

al. 2003; McGinn and O´Rourke 2003; Hayashi and Nishimoto 2005). Extensive 

experimental tests and analytical studies have investigated the mechanical behavior of 

stabilized mineral soils (Mitchell 1981; Schnaid et al. 2001; Chew et al. 2004; Porbaha 

2004; Kitazume 2005; Consoli et al. 2007; 2009; 2010). In comparison, limited studies 
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are available in the literature that describes the strength properties and the mechanical 

behavior of stabilized organic soils (Clare and Sherwood 1956; Huttunen and Kujala 

1996; Hampton and Edil 1998; Tremblay et al. 2002; Grubb et al. 2010a; 2010b).  

This study models the stiffness and strength of cement-stabilized organic soils 

and analyzes the effects of various control variables on these parameters. The modeling 

and analyses were performed based upon a database including the results of unconfined 

compression tests performed on stabilized organic soils at the University of Cambridge 

(Hernandez-Martinez 2006).  

The mechanical properties (stiffness and strength) of stabilized soils are often 

measured under various control variables when tested in a laboratory; therefore, 

modeling and interpreting the effects of these variables and their interactions with the 

mechanical properties of stabilized soils becomes increasingly complex as the number of 

control variables and treatment levels increase. In such high-dimensional systems, 

Artificial Neural Networks (ANNs) can provide a powerful nonlinear regression tool to 

capture the complex relationships between high-dimensional predictors (control 

variables) and the response variables (dependent variables). 

The objective of this study was to demonstrate the ability of ANNs as robust 

models to estimate the stiffness (elasticity modulus, E) and unconfined compression 

strength (UCS) of organic soils. Also, this study aimed to investigate if ANNs can 

outperform the conventional empirical methods (e.g. linear regression) that consistently 

have been used in geotechnical practice for modeling the strength parameters of 

stabilized soils. Finally, it was intended to improve the understanding of the effects of 
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the key factors, including organic and water content, binder type (Portland cement, blast 

furnace, pulverized fuel ash, lime, magnesium oxide, and gypsum), and mixing 

proportions (water to binder ratio, grout to soil ratio) on the mechanical behavior of 

stabilized organic soils under varying testing conditions, including specimen size, time, 

temperature, relative humidity, and carbonation.  

The performance of ANN models were compared to Linear Regression (LR) 

models to emphasize the capability of ANN in performing high dimensional nonlinear 

regressions. Also, a Neural Network–based stepwise parameter selection method was 

proposed to identify the most influential parameters on the stiffness and strength of 

stabilized organic soils, and to generate an optimized model. A sensitivity analysis was 

performed by generating model response graphs in order to investigate the impact of 

each parameter on the prediction of E and UCS. 

ANNs have been used widely in various geotechnical applications such as in the 

prediction of pile capacity (Goh 1994a, 1995, 1996; Lee and Lee 1996; Goh et al. 2005; 

Pal and Deswal 2008), constitutive modeling of soils behavior (Ellis et al. 1995; 

Penumadu and Jean-Lou 1997; Ghaboussi and Sidarta 1998; Zhu et al. 1998a, b; 

Penumadu and Zhao 1999), site characterization (Basheer et al. 1996; Rizzo et al. 1996), 

earth retaining structures (Goh et al. 1995), settlement of foundations (Goh 1994a; 

Sivakugan et al. 1998; Shahin et al. 2000), slope stability (Ni et al. 1996), design of 

tunnels and underground openings (Shi et al. 1998), liquefaction (Goh 1994b; Najjar and 

Ali 1998; Juang and Chen 1999; Young-Su and Byung-Tak 2006), soil permeability and 

hydraulic conductivity (Najjar and Basheer 1996), soil compaction (Basheer and Najjar 
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1995; Najjar and Basheer 1996; Najjar et al. 1996b), and soil swelling and classification 

of soils (Yudong 1995; Najjar et al. 1996a).  

A number of studies have applied ANNs to model the stiffness and strength of 

stabilized soils and other cement-based products. For instance, Stegemann and Buenfeld 

(2002) performed a neural network analysis to predict the physical and environmental 

properties of cement-solidified wastes and wastes used in cement-based construction 

applications. The main purpose of this study was to investigate the effects of impurities 

on the quality of products made with Portland cement. Data from UCS tests of cement 

paste with pure metal compound additions were used to train a number of ANNs 

(Multilayer Perceptron). In a similar study, the effects of different types of industrial 

waste on the unconfined compression strength of Portland cement were investigated 

using ANNs. According to this study, ANNs were able to account for the nonlinear 

dependency of UCS and waste quantities (Stegemann and Buenfeld 2003). Stegemann 

and Buenfeld (2004) generated a database from the results of different laboratory tests 

on cement-stabilized wastes. ANNs were applied to predict the UCS and to investigate 

the effects of contaminants and hydraulic binders on the strength of stabilized wastes. It 

was found that ANNs were able to account for the nonlinear features in the behavior of 

stabilized wastes and that developing a more accurate model for practical applications 

would require more information about material composition, sample preparation, and 

testing conditions. Narendra et al. (2006) proposed a generic mathematical model using 

Multilayer Perceptron (MLP), Radial Basis Function (RBF), and Genetic Programming 

(GP).  They used the data from experimental tests, conducted on stabilized CL and CH 
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inorganic clays using different water contents, cement contents, and different curing 

periods. The RMSE computed for the proposed approaches showed that MLP had the 

best performance among all the methods. GP, RBF, and empirical models were ranked 

respectively in terms of model performance. Sebastia et al. (2003) used ANNs to predict 

the UCS of coal fly ash-cement mixtures. These researchers showed how neural network 

analysis could help to identify the variables that have the most significant influence on 

UCS, and compared the results of different MLP networks (with different combinations 

of input variables) with LR models. Das et al. (2011) utilized MLPs with the Levenberg-

Marquardt, Bayesian Regularization, and Differential Evolution algorithms to predict the 

UCS and maximum dry density of cement-stabilized soils. The inputs for the ANN 

models included liquid limit, plasticity index, clay fraction, sand, gravel, moisture 

content, and cement content. 

The following sections describe the experimental database, the predictive models 

generated in this study, and the inferences generated from the proposed approach. The 

performance of different models for prediction of E and UCS are discussed and 

compared. The main emphasis is on identifying patterns that can improve the overall 

understanding of the stiffness and strength of stabilized organic soils. The results of the 

stepwise parameter selection method are described, and the most influential parameters 

are identified for the different ANN models. Finally, the results of the sensitivity 

analysis are discussed based on the model response graphs presented for the different 

parameters, and the impact of each parameter on the model responses is illustrated.  
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Approach 

Experimental Database 

The experimental database includes the results of unconfined compression tests on three 

organic soils, including Irish moss peat (Pt) with 94% organic content, and two organic 

clays OH-1 and OH-2, one with medium organic content (30%) and extremely high 

plasticity (PL=123%) and the other with low organic content (4%) and high plasticity 

(PL=34%), respectively. The soils were mixed with six mixtures made of six different 

binders, including Portland Cement (PC), Blast Furnace Slag (BFS), Pulverized Fuel 

Ash (PFA), Lime (L), Gypsum (G), and Magnesium Oxide Cement (MgO-C).         

Table  4-1 shows a summary of the characteristics of the organic soils, binders, and 

mixtures used to prepare the samples (Hernandez-Martinez 2006). A histogram of the 

number of experiments for each soil and binder is presented in Figure  4-1. 

 

        Table  4-1. Characteristics of the Organic Soils, Binders, and Mixtures 

Organic Soil Density (kg/m3) OC 
(%) 

w 
(%) 

Irish Moss Peat (Pt) 294 
94 

210  

446 500  
1014 1000  

Medium Organic Clay (OH-1) 1219 30 180  
Low Organic Clay (OH-2)  1471 4  85  

Binders Binder Mixtures   Ratio 

Portland Cement (PC) PC     1 
Blast Furnace Slag (BFS) PC+BFS                 1:2 
Pulverized Fuel Ash (PFA) PC+PFA                  1:1 
Lime (L) PC+PFA+L             3:6:1 
Magnesium Oxide Cement (MgO-C) PC+PFA+MgO-C   1:3:1 
Gypsum (G) L-G-BFS                  1:1:1 
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Figure  4-1. Histogram of the Unconfined Compression Tests 
 

For preparing the testing specimens first, the organic soils were mixed with grout 

using a small, concrete-type mixer for ten minutes. Then the produced mix was placed in 

five layers in a split PVC. After the specimens were prepared, most were cured at the 

environment temperature (21°C). To accelerate the ageing, some of the specimens were 

placed in conventional ovens and in carbon dioxide (CO2) incubators at three different 

temperatures (21°C, 45°C and 60°C) and at three different relative humilities (70%, 

80%, and 90%). The samples were cured to different ages of 14, 28, 60, 90, 105, and 120 
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days before they were removed for testing. The experimental database includes the 

results of 1,030 tests, with total of 339 distinct tests after excluding the repetitive ones. 

For the purpose of modeling, the values of E and UCS were averaged for the repeated 

tests. Table  4-2 presents the control variables and their corresponding ranges of variation 

in the database. The histograms of the variables are provided in Figure 4-2. 

 

Table  4-2. List of Control and Response Variables and Their Levels/Range of Variation in the 
Database 

No. Variables Range of Variation Mean 
Standard 
Deviation

Control Variables (Input Parameters) 

1 Organic Content of Soil (OC) 
4 (OH-2), 30 (OH-1), 94 
(Pt) (%) 

69.2 (%) 33.2 (%) 

2 Water Content of Soil (w) 85, 180, 210, 500, 1000 (%) 
400.2 
(%) 

258.6 (%) 

3 
Ratio of Binder for Portland Cement 
(RB-PC) 

0, 0.2, 0.3, 0.33, 0.5, 1 0.749 0.339 

4 
Ratio of Binder for Blast Furnace 
Slag (RB-BFS) 

0, 0.33, 0.67  0.180 0.292 

5 
Ratio of Binder for Pulverized Fuel 
Ash (RB-PFA) 

0, 0.5, 0.6 0.045 0.154 

6 Ratio of Binder for Lime (RB-L) 0, 0.1, 0.33  0.012 0.056 

7 
Ratio of Binder for Magnesium 
Oxide (RB-MgO-C) 

0, 0.2 0.005 0.032 

8 Ratio of Binder for Gypsum (RB-G) 0, 0.33  0.009 0.054 

9 Quantity of Binder (QB) 100 - 500 (kg/m3) 
265.9 

(kg/m3) 
76.6 

(kg/m3) 
10 Grout to Soil Ratio (G/S) 0.14 - 3.38 0.856 0.568 
11 Water to Binder ratio (W/B) 0.5, 0.8, 1 0.937 0.157 
12 Specimen Diameter/Height (D/H) 0.5, 1 0.920 0.183 
13 Time (t) 14 - 180 (days) 61 (days) 36 (days) 
14 Temperature (T) 21, 45, 60 (ºC) 32.9 (ºC) 15.7 (ºC) 
15 Relative Humidity (RH) 70, 80, 90 (%) 87.6 (%) 4.9 (%) 
16 Carbonation (CO2) 0, 20 (%) 2.9 (%) 7.1 (%) 

Response Variables (Target Parameters) 

 Elastic Modulus (E) 0.83 - 214.62 (MPa) 
34.03 
(MPa) 

31.44 
(MPa) 

 
Unconfined Compression Strength 
(UCS) 

0.04 - 2.09 (MPa) 
0.50 

(MPa) 
0.40  

(MPa) 
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Figure  4-2. Histograms of the Control Variables in the Unconfined Compression Tests 

(%) 
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Figure 4-2. Continued  
 



 

38 

 

Numerical Experiments 

The experimental database did not include a full factorial design. This means that only a 

fraction of the possible combinations of the different levels for the control variables were 

considered in the laboratory experiments. In order to study the effects of experimental 

design on the model performance, three subsets of the database were identified with a 

more complete factorial design that resulted in three numerical experiments. 

In each numerical experiment, one or more specific factors (control variables) 

were varied in their ranges to investigate their effects, while other factors were held 

constant at their control values. Figure  4-3 to Figure  4-5 present the graphical 

representations of the three subsets associated with the numerical experiments. Table  4-3 

presents a summary indicating the characteristics of each group according to the 

participating variables.  

 

Table  4-3. Characteristics of the Numerical Experiments 

 
No. of Tests  Varying Variables Constant Variables 

Group 1 108 w, W/B, QB, G/S, D/H, t 
OC, RB-PC, RB-BFS, RB-PFA, 
RB-L, RB-MgO-C, RB-G, T, RH, 
CO2 

Group 2 178 
OC, w, RB-PC, RB-BFS, T, t 
RH, CO2 

RB- PFA, RB-L, RB-MgO-C, RB-
G, W/B , QB, G/S, D/H  

Group 3 53 
OC, w, RB-PC, RB-BFS, RB-
PFA, RB-L, RB-MgO-C, RB-
G, t 

W/B, QB, G/S, D/H, T, RH , CO2  

Total           339 
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Figure  4-3. Numerical Experiments: Group 1 
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Figure  4-4. Numerical Experiments: Group 2 
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Figure 4-4. Continued 
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                              Figure  4-5. Numerical Experiments: Group 3 
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Models 

RBF and MLP networks were developed to predict E and UCS as presented in 

Figure  4-6 and Figure  4-7. The performance of the networks were evaluated using the R2 

between the measured value in the laboratory (target) and the output of the model 

(output), and the RMSE of the model predictions. To avoid over-fitting, a fraction of the 

database was used to train the proposed ANN models (training dataset), and the rest was 

used to evaluate and monitor the generalization ability of the model (validation and test 

datasets). Ensembles of networks were generated by the random subsampling method for 

both RBF and MLP models, and the statistics of the networks’ performances were 

evaluated. Also, a linear regression model was developed and trained in a similar manner 

as for the ANNs. 

 

Figure  4-6. RBF Network Architecture 
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Figure  4-7. MLP Network Architecture 
 

Results and Discussion 

RBF Network Analysis 

As discussed above, three numerical experiments were performed by defining three 

subsets of the database. This categorization of data provided three groups of experiments 

with more complete factorial designs (see Figures 4-3 through 4-5). The data was 

normalized prior to presenting to the network. The data normalization improved the 

performance of the RBF models, as the R2 slightly increased over the test datasets. 

Table  4-4 and Table  4-5 present a summary of the prediction results for the three groups 

and for the total database for E and UCS.  
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Table  4-4. Performances of the RBF Models Trained 
 with the Three Subsets 

Model RMSEave (Test) 

E UCS  

RBF-Tot 13.77 0.11 

RBF-Gr1 12.59 0.11 

RBF-Gr2 9.61 0.10 

RBF-Gr3 25.09 0.14 

 

 

Table  4-5. Performance of the RBF Model Trained Using the Whole Database 

Model All Training Test 

R2
ave RMSEave R2

ave RMSEave R2
ave RMSEave 

RBF-Tot-E 0.89 2.778 0.92 0.03 0.77 13.77 

RBF-Tot-UCS 0.952 0.086 0.96 0.08 0.92 0.11 

 

 

The performance of the models trained over the three different subsets and the 

model trained using the whole database was compared based on the average RMSE 

rather than R2, as the data points that were used for training these models were different 

in terms of variability and number. It was observed that the RMSEave over the test 

datasets for RBF-Tot was almost equal to that of RBF-Gr1 and RBF-Gr2 for prediction 

of UCS. However, for prediction of E, RBF-Gr1 and RBF-Gr2 slightly outperformed the 

RBF-Tot. Also, RBF-Gr3 showed significantly higher error comparing to other models 

including RBF-Tot, particularly for the prediction of E. The reason could be that Group 

3 contained the least number of data points, which might have caused the RBF-Gr3 to be 

overfitted to the data points. On the contrary, it was observed that RBF-Gr2 that was 
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trained with more data points (Group 2) showed the best performance among the three 

models, despite of the high variability in the levels of the input variables. The better 

performance of RBF-Gr2 comparing to RBF-Tot showed that clustering the database 

into subsets with more complete factorial designs could improve the performance of the 

trained models. However, in this study clustering the database did not improve the 

performance of all the models corresponding to the three subsets of the database. Also, 

for each Group, some of the variables were held constant; therefore, for sensitivity 

analysis either the three models should be used together, or the RBF-Tot, in order to be 

able to explore the effect of all the input parameters. Because the RBF-Gr1 and RNF-

Gr3 did not outperform RBF-Tot, and to be able to have a comprehensive model that 

could take into account the variability of all the input parameters, RBF-Tot was selected 

for further analyses. 

RBF-Tot demonstrated relatively better performance with R2
ave=0.92 for 

prediction of UCS comparing to prediction of E with R2
ave=0.77. The reason could be 

that UCS was the primary observation in the experiments obtained as the peak value of 

the stress-strain curve, whereas E not only depended on the peak value, but also on the 

level of deformation achieved. Therefore, there might be other factors, for instance the 

axial strain at failure, affecting E that were not considered as input variables for the 

models.  

In general, the good performance of RBF-Tot shows that the RBF model learned 

the relationship between the inputs and the targets and successfully generalized the 

relation to the new data points. Figure  4-8 shows the distribution of the R2 values that 
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correspond to the 1,000 networks of the RBF-Tot ensemble. It is evident that the 

uncertainty of the predictions for the training dataset was significantly lower than for 

that of the test dataset. Also, one can observe that the uncertainty of the predictions for E 

was significantly higher than for UCS.  

 

 

Figure  4-8. Histograms of the R2 Values, Corresponding to the 1000 Networks of the RBF-Tot 
Ensembles 

 

MLP Network Analysis 

There are a number of rules of thumb for determining the number of hidden units. For 

instance, one rule is that one hidden layer usually suffices and the number of hidden 

neurons should be between the number of input elements and the number of output 

elements. Another rule indicates that the number of hidden neurons should not be greater 

than twice the number of input elements. However, there is no theory available yet 

which specifies the required number of hidden units for an MLP network. According to 

(Bishop 1995), in MLPs with continuous nonlinear hidden-layer activation functions, 

one hidden layer with an arbitrarily large number of units suffices for the "universal 
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approximation" property. A more recent study (Trenn 2008) suggests that the minimum 

number of hidden units for a single hidden layer network to reach a certain order of 

approximation is: 
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n

n
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                                                          ( 4-1) 

 

where,  

n = Minimum number of hidden units  

N = Order of approximation  

n0 = Number of input variables 

N refers to the degree of Taylor polynomials approximating the MLP function. 

For instance, in order to have an approximation to the order of 2 in this problem (with 16 

input variables), at least nine hidden neurons is required.  

Too few hidden neurons increase the prediction error and prevent the ANN 

model from having enough flexibility to fit the data points. On the other hand, too many 

hidden neurons make the model too complex and cause the model to be over-fitted to the 

data and fail to generalize to new data points. 

In order to investigate the effect of the number of hidden neurons on the 

performance of the MLP networks, ensembles of MLP networks with different numbers 

of hidden neurons were created. Figure  4-9 presents the variation of the average R2 for 

the MLP ensembles with the numbers of hidden neurons. According to this figure, the 

optimum number of hidden neurons for the MLP network was 20 for the prediction of E 
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and 25 for UCS predictions. The generalization ability of the network dropped 

significantly, as the number of hidden neurons exceeded the optimum value.  

 

 
                                                                           a) 

 

                                                                            b) 
Figure  4-9. Variation of the Average R2 with the Number of Hidden Neurons, a) E, b) UCS 
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Note that all of the MLP networks were trained using the whole database because 

the numerical experiments indicated that the division of the database did not enhance the 

performance of the models for all the three subsets. 

The prediction results of the MLP ensembles for E and UCS are summarized in 

Table  4-6. The average R2
 of the test dataset is 0.61 for E and 0.8 for UCS. Therefore, 

the RBF network seemed to outperform the MLP networks in this problem. Similar to 

RBF-Tot model, the MLP models showed higher R2
ave for the prediction of UCS as 

compared to E.   

Figure  4-10 presents the distribution of the R2 associated with the 1,000 networks 

of the MLP ensemble. According to this figure, the uncertainty of the predictions over 

the training dataset was very small as compared to the other subsets. Also, the 

uncertainty of the prediction of UCS was less than E. 

Figure  4-11 presents the predictions of E and UCS generated by one of the 

models in the MLP ensemble over the training and the test subsets.  

 

Table  4-6. Performances of the MLP Ensembles for E and UCS Prediction 
Model R2

ave RMSEave 

All Training Validation Test All Training Validation Test 

MLP-20-E 0.81 0.95 0.50 0.61 13.58 6.15 20.74 18.47 

MLP-25-UCS 0.90 0.99 0.73 0.80 0.12 0.04 0.20 0.17 
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Figure  4-10. Histogram of the R2 Values, Corresponding to the 1000 Networks in the MLP Ensemble 
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                           a)                                                                                 b)       

        

                            c)                                                                                 d)       
Figure  4-11. Predictions of E over a) Training, and b) Test Datasets, and Predictions of UCS for c) 

Training and d) Test Datasets Generated by a Network in the MLP Ensemble 
 

 

Stepwise Selection of Input Parameters for ANNs 

In order to identify the most significant parameters for the strength properties of 

stabilized organic soils, a stepwise parameter selection method was implemented 

(Gevrey et al. 2003). The stepwise selection method for ANNs reduces the model 

dimensionality and optimizes the performance of the network. Highly correlated 

predictor variables can negatively affect the model performance. Thus, in order to 
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optimize the performance of the model, it is necessary to remove the redundant 

parameters from the model. 

This method includes Forward Stepwise Selection (FSS) and Backward Stepwise 

Elimination (BSE) of the input parameters, based on their significance to the 

performance of the network. At each step, an ensemble of networks is trained using a 

control subset of the database (including 80% of the whole database) and the selected 

input parameters. In forward stepwise selection, parameters compete with each other to 

be added to the model, one by one. A parameter is added to the model only if the 

adjusted R2 for the model becomes larger than the adjusted R2 of the reduced model.  

In the first step, 11 ANN models were generated, each with only one of the 

parameters in the study. The parameter that had the greatest effect on the model 

performance (the largest adjusted R2) was added to the model. Likewise, in the second 

step 10 models were generated with the selected parameter in step one, as well as each of 

the remaining parameters. This process continued until no other variable could be added 

to the model. In other words, the procedure stopped once adding the input parameters 

could no longer improve the model's performance.  

In the backward elimination, a network containing all the parameters was created 

at first, and then the parameters were gradually removed one by one. The parameters 

competed with each other to be removed from the model. A parameter was removed 

when the adjusted R2 for the reduced model became larger than the present model. In the 

first step 11 ANN models were generated, each with only one of the parameters missing. 

Likewise, in the second step 10 models were generated by removing another parameter 
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from the 10 remaining parameters. This process continued until no other input parameter 

could be eliminated from the model.  

Adjusted R2 provided the possibility of penalizing the model for the number of 

parameters, meaning that R2 was decreased in relation to the number of parameters in the 

model. Adjusted R2 was calculated based on the following equation: 

 

                                                                      

2
2 ( 1)

1adj

n R p
R

n p

 


                                                      ( 4-2) 
 

where: 

R2
adj = Adjusted value 

n = No. of data points presented to the network in the training dataset 

R2 = R2 for the reduced model 

p = No. of network’s parameters (weights and biases) for the reduced model 

Table  4-7 and Table  4-8 present the selected and removed parameters using the 

forward and backward stepwise methods for the RBF and MLP models, respectively. 

The parameters were ranked based on their sequence of addition to the model in the FSS 

process, which represented their significance to the model's performance. For the 

purpose of ranking, the process of adding the parameters continued even after the R2
adj of 

the reduced model started to decrease. After this stage, the parameter that caused the 

least decrease in R2
adj was added to the model at each step. This continued until all the 

parameters were added to the model. 
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Based on the FSS method, w, OC, QB, and W/B were parameters that could be 

removed from the RBF model for the prediction of UCS. However, based on the BSE 

method, only W/B could be eliminated. For the prediction of E, FSS and BSE selected 

the same parameters. 

 

             Table  4-7. Stepwise Selection of Parameters for the RBF Network 
 RBF-E RBF-UCS 

Order of 

 Addition/ 

Elimination 

FSS BSE Ranking/ 

Sequence 

of Addition 

FSS BSE Ranking/ 

 Sequence 

of Addition 

1 Binder Type w Binder Type G/S W/B G/S 

2 G/S OC G/S Binder Type  Binder Type 

3 t QB t t  t 

4 D/H W/B D/H T  T 

5 T  T RH  RH 

6 RH  RH CO2  CO2 

7 CO2  CO2 D/H  D/H 

8   w   w 

9   OC   OC 

10   QB   QB 

11   W/B   W/B 
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              Table  4-8. Stepwise Selection of Parameters for the MLP Network. 
 MLP-E MLP-UCS 

Order of 

 Addition/ 

Elimination 

FSS BSE Ranking/ 

Sequence 

of Addition 

FSS BSE Ranking/ 

Sequence 

of Addition 

1 Binder Type W/B Binder Type G/S QB G/S 

2 G/S  G/S Binder Type  Binder Type 

3 t  t t  t 

4 D/H  D/H T  T 

5 T  T RH  RH 

6 RH  RH CO2  CO2 

7 CO2  CO2 W/B  W/B 

8 QB  QB D/H  D/H 

9   w QB  QB 

10   OC OC  OC 

11   W/B   w 

 

 

The FSS method added all the parameters to the MLP model for UCS prediction, 

except for w. The BSE method removed only QB. For the prediction of E, the FSS 

method did not add w, OC, or W/B to the MLP. W/B was the only parameter eliminated 

from the model by the BSE method.  

The final selected parameters were different for the RBF and MLP models. 

However, the parameters selected by both the FSS and BSE methods for the RBF model 

covered those selected by the MLP model. Also, the ranking of the parameters for the 

predictions of both E and UCS were the same for the MLP and RBF networks. 

The QB is known to have a direct influence on the stiffness and strength of 

cemented soils. However, the stepwise selection method suggests that QB can be 
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removed from the model. By looking at the cross correlation of all the input and target 

parameters (see Table  4-9), one can observe that there exists a high correlation between 

G/S and QB (r=0.46), i.e. the G/S variable could represent QB to some extent. Also, OC 

is a relevant parameter because organic matter reduces the strength of soil. However, the 

FSS method suggested removing OC from the models. This also could be due to the high 

correlation of OC with G/S (r=0.61). W/B and w were removed because of their limited 

significance to E and UCS prediction in the presence of other relevant variables. Also 

notice the high negative correlation (-0.81) between these two parameters (for lower 

soils with initial water content higher ratio of water to binder were used). 

 

Table  4-9. Cross Correlation between the Input and Target Parameters 

 

 

 

 

 

OC w RB-PC RB-BFS RB-PFA RB-L RB-MgO-C RB-G QB G/S W/B D/H t T RH CO2 E UCS

OC 1.000 0.692 0.318 ‐0.175 ‐0.235 ‐0.165 ‐0.132 ‐0.132 0.156 0.606 ‐0.299 ‐0.326 ‐0.071 ‐0.158 0.107 ‐0.091 0.081 0.192
w 1.000 0.260 ‐0.166 ‐0.165 ‐0.116 ‐0.093 ‐0.093 0.137 0.003 ‐0.811 ‐0.286 ‐0.051 ‐0.172 0.115 ‐0.097 ‐0.191 ‐0.093
RB-PC 1.000 ‐0.792 ‐0.367 ‐0.416 ‐0.267 ‐0.364 0.154 0.183 ‐0.296 ‐0.323 ‐0.067 ‐0.126 ‐0.009 ‐0.020 0.177 0.298
RB-BFS 1.000 ‐0.181 0.050 ‐0.102 0.084 ‐0.129 ‐0.113 0.247 0.269 ‐0.002 0.330 ‐0.108 0.124 ‐0.069 ‐0.137
RB-PFA 1.000 0.131 0.599 ‐0.048 ‐0.061 ‐0.120 0.117 0.128 0.097 ‐0.222 0.144 ‐0.122 ‐0.160 ‐0.269
RB-L 1.000 ‐0.034 0.954 ‐0.043 ‐0.084 0.083 0.091 0.068 ‐0.158 0.102 ‐0.087 ‐0.128 ‐0.154
RB-MgO-C 1.000 ‐0.027 ‐0.034 ‐0.068 0.066 0.072 0.055 ‐0.125 0.081 ‐0.069 ‐0.081 ‐0.161
RB-G 1.000 ‐0.034 ‐0.068 0.066 0.072 0.055 ‐0.125 0.081 ‐0.069 ‐0.102 ‐0.109
QB 1.000 0.461 ‐0.276 ‐0.194 ‐0.011 ‐0.158 0.102 ‐0.087 0.404 0.592
G/S 1.000 0.224 ‐0.201 ‐0.047 ‐0.117 0.079 ‐0.067 0.450 0.563
W/B 1.000 0.372 0.020 0.303 ‐0.196 0.166 0.157 0.017
D/H 1.000 0.022 0.330 ‐0.214 0.181 0.108 ‐0.207
t 1.000 ‐0.035 0.017 ‐0.010 0.093 0.111
T 1.000 ‐0.311 0.353 ‐0.215 ‐0.291
RH 1.000 0.204 ‐0.019 0.051
CO2 1.000 ‐0.082 ‐0.091

E 1.000 0.851

UCS 1.000

Input Parameters Target Parameters
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Linear Regression (LR) Analysis 

In order to compare with ANN models, the stiffness and strength of organic soils were 

modeled using a linear regression method as well. To that end, the database was divided 

into two subsets: training and test, with a 4:1 ratio. Similar to the ANN models, the 

random subsampling method was implemented to generate an ensemble of models 

(1,000 models) by randomly selecting data points for training and test subsets. The 

models were trained using the training dataset, and the generalization of the model was 

evaluated through the test dataset. Table  4-10 presents the performances of the LR 

ensembles. By comparing these results with the results of the ANNs, one can observe 

that R2
ave of the LR model is significantly lower than the ANN models for both the 

training and test subsets. Figure  4-12 presents the distribution of R2 values of the LR 

models for the training and test datasets. 

 

 

Figure  4-12. Histogram of the R2 Values Corresponding to the 1000 Networks of the LR Ensembles 
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Table  4-10. Performance of the LR Ensemble for E and UCS Predictions 

Model R2
ave RMSEave 

All Training Test All Training Test 

LR-E 0.49 0.51 0.42 22.33 22.04 23.48 

LR-UCS 0.66 0.67 0.62 0.23 0.23 0.25 

 

 

Comparison of the Models 

The performance of the RBF, MLP, and LR models were evaluated and compared 

through the control database (used also for the stepwise parameter selection). 

Figure  4-13 presents the measured vs. predicted E and UCS for the three different 

models. R2 value is one minus the normalized error of the model predictions with respect 

to the standard deviation of the data. So in this sense, it provides a unit-less measure for 

the goodness of a fit. Also, R2 value can be considered as the fraction of data variance 

that is fully explained by the model. According to Figure  4-13, for RBF and MLP, R2 is 

greater than 0.95, and RMSE of E and UCS are considerably smaller comparing to the 

LR model. This illustrates that the ANN models outperformed the LR model to a great 

extent, because the ANN models were able to better capture the nonlinear relations 

between the input and the output variables. 
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Figure  4-13. Performances of Different Models over the Control Dataset 
 

Response Graphs and Sensitivity Analysis 

In addition to the stepwise selection method, the effects of input variables on the 

responses of the ANN models were evaluated using a sensitivity analysis method known 

as the profile method (Lek et al. 1996). This method not only illustrated the sensitivity of 
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the model's responses to each input variable, but also provided profiles of the model 

response variations with respect to the input variables. 

The MLP-20-E and MLP-25-UCS models were applied to generate the response 

graphs.  For this purpose, a set of fictitious matrices were constructed corresponding to 

each of the input variables (except for the binder ratio). For each variable, all other input 

variables were held constant at their mean value, whereas the studied parameter varied 

over its range. The range of variation of each input variable was divided into 10 intervals 

and the model response was evaluated at each point. Note that in this analysis the effect 

of binder ratio was not explored, because it was not possible to vary one binder type 

ratio and keep the ratios of the other types constant at the same time (the sum of the 

binder ratios for the six binder types should be equal to 1). Thus, for each parameter, 11 

input vectors were presented to the networks that resulted in 11 responses.  It was by 

those responses that the response graphs were generated.   

Figure  4-14 presents the response graphs showing the effects of OC, w, QB, G/S, 

W/B, D/H, t, T, RH, and CO2 on E and UCS. The response graphs represent the mean 

prediction of the 1,000 networks included in the MLP ensembles. The upper and lower 

bounds for the response graphs are also provided, which correspond to the 50% 

Confidence Interval (CI) of the model predictions. In interpreting these graphs one 

should consider the mean values at which other input parameters (except for the 

parameter under analysis) were held constant (see Table 4-2). 

According to Figure  4-14.a, increasing OC significantly decreases the E and 

UCS. This agrees with the previous studies regarding the negative influence of organic 
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matter on the stiffness and strength of soil (Edil and Den Haan 1994; Hernandez-

Martinez 2006; Kruse and Haan 2006; Santagata et al. 2008). Figure  4-14.b indicates 

that UCS increases by w up to w=800%, and then stays constant up to w=1000%. This 

result is rather surprising because generally an increase in water content causes a 

decrease in strength. Exceptions to this general trend have occurred, primarily in the 

field when the initial water content is very low. Also, this can occur when adding large 

quantities of dry binders that prevent the proper mixing and hydration and result in lower 

strength (Åhnberg 2006).  However, the results obtained herein could be due to different 

reasons such as the mixing ratio, binder quantity, or binder type. E showed a slight 

decrease as w increased.  Figure  4-14.c illustrates the effect of QB on the E and UCS, 

indicating that the stiffness and strength of the cement-stabilized soils grew by 

increasing the quantity of binder, a trend which is well established. Figure  4-14.d 

illustrates the significant effect of G/S on the E and UCS, as was also demonstrated in 

the ranking of parameters. As expected, increasing the ratio of grout to soil developed a 

higher stiffness and strength. The optimum range for G/S was between 2 and 2.5, 

according to this figure. Figure  4-14.e indicates that the optimum range for W/B was 

between 0.6 to 0.7, and larger values of W/B caused a considerable decrease in E and 

UCS. Figure  4-14.f illustrates that UCS decayed and E grew slightly as D/H increased. 

Figure  4-14.g indicates that the age of the specimen is positively correlated with E and 

UCS for stabilized organic soils. It was observed that E and UCS grew fast during the 

first 90 days, the time in which the majority of the hydration process developed. After 

that, the rate of increase decayed. Figure  4-14.h indicates that the E and UCS of 
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stabilized organic soils decayed by increasing the temperature (T). This result is 

completely opposite of the result obtained in common stabilized mineral soils where 

temperature accelerated the strength and improved the stiffness. The negative effect of 

temperature on the stiffness and strength of organic soils is related to several factors: i) 

increasing the temperature causes a gradual loss of the evaporable water initially present 

in the fresh mix, ii) it also causes dehydration in the chemical reactions of hardened 

cement paste and the conversion of calcium hydroxide into calcium oxide, iii) it causes 

changes in porosity, and iv) peat loses its evaporable water due to temperature increase 

(Hernandez-Martinez, 2006). Figure  4-14.i indicates that RH=0.8 was the optimum 

value for both E and UCS. According to Figure  4-14.j, carbonation did not have a 

significant effect on the stiffness and strength of the stabilized organic soils. However, a 

slight developing trend was observed, specifically for UCS, with respect to CO2. 

The response graphs for the different input variables are plotted versus the scale 

of variation (1 to 11) in Figure  4-15. Comparing the response graphs and the range of 

variation of E and UCS in the domain of each variable, one can calculate the ranking of 

the input parameters. This ranking represents the order of the input parameters with 

respect to their influence on the stiffness and strength of stabilized organic soils, as 

presented in Table  4-11.  
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            a) 

 

              b)

 

          c) 

Figure  4-14. Response Graphs Depicting the Variation of E and UCS with respect to the Input 
Parameters 
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        d)

         e)

         f) 

Figure 4-14. Continued
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          g)

    h)

 

       i) 

Figure 4-14. Continued 
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       j) 

Figure 4-14. Continued 
 

Table  4-11. Ranking of Parameters based on the Sensitivity Analysis 

Ranking Parameter

Max. E 

Variation 

(MPa) 

Parameter

Max. UCS 

Variation 

(MPa) 

1 QB 80.59 G/S 0.99 

2 G/S 53.07 OC 0.81 

3 OC 34.97 QB 0.71 

4 T 32.91 W/B 0.55 

5 W/B 29.93 T 0.41 

6 t 25.61 w 0.33 

7 D/H 20.88 t 0.22 

8 CO2 4.25 CO2 0.12 

9 RH 3.94 RH 0.10 

10 w 3.74 D/H 0.08 
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Figure  4-15. Response Graphs for Different Input Variables with respect to the Scale of Variation 
 

Conclusions 

This study shows how ANN modeling can successfully be applied to develop predictive 

nonlinear models of mechanical properties of stabilized organic soils. Two ANN models, 

RBF and MLP were generated to predict E and UCS for stabilized organic clays with 

different organic contents and a variety of binder mixes. A linear regression model was 
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also developed to serve as a benchmark model.  It was observed that the performance of 

the MLP model was slightly better than that of the RBF model over the control dataset. 

However the RBF, on average, showed better performance over the test dataset than the 

MLP. Also, both of the ANN models outperformed the LR model significantly. The 

uncertainty of the model predictions was assessed by generating an ensemble of 

networks using the random subsampling method.  

ANN models predicted E with R2 > 0.8 and UCS with R2 > 0.9, after learning 

from the relationship between the input and the output parameters. Also, R2 of the ANN 

models was higher for prediction of UCS than E. This was related to other relevant 

factors that might have affected E and have not been considered in our model (as a 

predictor variable), possibly factors controlling the level of deformation developed upon 

failure. Results of the RBF analysis for the three subsets of the database showed that the 

experimental design could significantly affect the performance of ANN models 

developed for the prediction of response variables. 

The stepwise parameter selection method was implemented for the ANN models 

to identify the most relevant parameters and to eliminate the redundant parameters from 

the models. Also, a sensitivity analysis was performed using the MLP models that 

illustrated the effect of each input parameter on E and UCS. The generated response 

graphs demonstrated that ANNs can account for the nonlinear relations between the 

response and the input variables. Based on their significance to E and UCS, the input 

variables were ranked using both the stepwise selection and the sensitivity analysis 

methods. 
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 According to the results, grout to soil ratio, quantity of binder, binder mix type, 

amount of organic matter, water to binder ratio, temperature, and time (aging) are the 

most influential parameters on E and UCS. Also, initial water content is relevant for 

UCS to some extent; however, it seems to have a negligible effect on E. The sample size 

barely affected UCS, whereas it had a considerable influence on E. Carbonation and 

relative humidity seemed to have relatively insignificant effects on both E and UCS.  
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5. CHAPTER V 

DETERMINATION OF UNKNOWN FOUNDATIONS FOR 

BRIDGE SCOUR: A DETERMINISTIC APPROACH 

Introduction and Literature Review 

Following the FHWA requirement to inspect and monitor all bridges across the nation, 

the Departments of Transportation (DOTs) across the United States implemented 

different measures to determine bridges' vulnerability to failure (FHWA 2011). Through 

this process, a considerable number of bridges were found to have no available 

foundation information. Item 113 (Scour-Critical Bridges) of the National Bridge 

Inventory (NBI) uses a single digit to identify the current status of a bridge regarding its 

vulnerability to scour. This digit varies between 0 and 9, with 0 being the most critical 

and 9 the least. For Unknown Foundation Bridges (UFBs), the scour risk cannot be 

determined and a code of U is used (Weseman 1995). DOTs have implemented different 

measures to reclassify as many UFBs from the NBI as possible by updating Item 113. 

As of 2005, approximately 60,000 bridges throughout the United States were 

identified as having unknown foundations. Most of these bridges were built between 

1950 and 1980, which coincided with the construction of the interstate system. Majority 

of these bridges were classified as off-system bridges that counties and local agencies 

built and owned, and later were inherited by a DOT. Therefore, it was expected that 

UFBs would mainly be located on local roads. The numbers of UFBs across the United 

States, as well as their distribution over the years are provided in Table  5-1. 
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Table  5-1. Number of Unknown Foundation Bridges across the United States (Stein and Sedmera 
2006) 

 Rural Functional Classification Urban Functional Classification 
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Alabama 4 70 79 503 843 1,662 4 5 25 39 55 164 3,453 

Alaska 7 29 4 19 23 46 1 0 1 7 1 13 151 

Arizona 0 0 0 1 0 33 0 0 1 3 5 25 68 

Arkansas 0 1 11 48 4 10 0 0 1 2 0 2 79 

California 4 23 112 318 305 993 3 9 71 84 60 126 2,108 

Colorado 1 2 9 4 3 8 0 0 0 1 1 0 29 

Connecticut 0 0 0 0 0 0 0 0 0 0 0 0 0 

Delaware 0 0 0 0 0 0 0 0 0 0 0 0 0 

DC 0 0 0 0 0 0 0 0 0 0 0 8 8 

Florida 3 110 111 224 188 837 13 27 74 136 280 444 2,447 

Georgia 3 346 434 1,227 565 1,780 0 32 178 288 188 406 5,447 

Hawaii 0 0 0 0 0 0 0 0 0 2 0 8 10 

Idaho 0 1 1 71 74 318 0 0 3 6 9 14 497 

Illinois 0 0 0 1 0 1 0 0 0 0 0 0 2 

Indiana 0 1 0 140 263 828 0 0 42 101 75 156 1,606 

Iowa 0 1 3 92 256 1,371 0 0 0 11 6 30 1,770 

Kansas 0 0 0 0 1 5 0 0 0 0 0 0 6 

Kentucky 0 0 0 0 0 1 0 0 0 0 0 1 2 

Louisiana 17 13 180 527 488 2,963 12 1 30 84 58 401 4,774 

Maine 6 2 1 4 3 76 2 0 0 2 5 4 105 

Maryland 0 0 0 0 0 4 0 0 0 0 0 1 5 

Massachusetts 2 0 10 25 16 70 0 1 42 95 45 52 358 

Michigan 3 36 43 157 13 360 2 2 9 10 11 11 657 

Minnesota 0 0 2 16 24 161 0 0 0 4 2 7 216 

Mississippi 0 16 11 1,205 187 4,790 0 0 32 54 101 137 6,533 

Missouri 0 0 1 6 1 0 0 0 0 0 0 0 8 

Montana 2 1 5 1 429 1,244 0 0 0 1 0 2 1,685 
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Table 5-1. Continued 
 Rural Functional Classification Urban Functional Classification 
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Nebraska 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nevada 0 0 2 1 3 24 0 0 1 10 1 3 45 

New 
Hampshire 

0 0 0 3 6 22 0 0 2 5 4 1 43 

New Jersey 0 6 7 11 7 53 0 4 20 23 20 14 165 

New Mexico 0 7 7 46 41 254 1 0 13 27 39 33 468 

New York 0 0 0 1 1 13 0 2 7 9 4 12 49 

North 
Carolina 

0 29 95 464 700 
3,94

9 
0 2 30 81 77 379 5,806 

North 
Dakota 

0 0 3 210 0 
1,78

0 
0 0 0 5 3 7 2,008 

Ohio 0 2 1 13 23 222 0 0 2 1 5 12 281 

Oklahoma 0 0 9 1 1 9 1 2 5 0 0 0 28 

Oregon 5 58 90 425 235 801 4 2 18 50 51 56 1,795 

Pennsylvania 0 0 0 0 1 7 0 0 0 0 0 0 8 

Rhode Island 0 0 0 0 0 0 0 0 0 0 0 0 0 

South 
Carolina 

21 49 125 592 443 
1,90

4 
6 0 20 49 96 144 3,449 

South 
Dakota 

0 0 0 1 0 0 0 0 0 0 0 0 1 

Tennessee 6 8 32 74 252 654 0 0 8 27 24 73 1,158 

Texas 9 18 40 199 190 
6,52

4 
2 4 205 463 319 

1,14
0 9,113 

Utah 0 0 0 1 0 4 0 0 1 0 0 2 8 

Vermont 0 2 5 29 26 155 0 0 2 4 9 6 238 

Virginia 0 0 0 0 2 16 0 0 0 0 0 0 18 

Washington 0 0 1 47 39 102 0 0 5 4 3 5 206 

West 
Virginia 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Wisconsin 0 0 0 0 0 0 0 0 0 0 0 0 0 

Wyoming 0 0 1 0 43 347 1 0 0 3 7 13 415 

Puerto Rico 0 0 21 70 40 77 0 0 9 23 36 36 312 

Totals 93 831 
1,45

6 
6,777 

5,73
9 

34,4
78 

52 93 857 
1,71

4 
1,60

0 
3,94

8 
57,63

8 
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Texas has the largest population of UFBs in the United States (9,113). Among 

those, only 33 (0.4%) are located on principal arterials. By contrast, the state of Alaska 

has only 151 UFBs, but a significantly higher percentage of them are located on 

principal arterials (37 bridges or 25%). Although it is expected to find very few UFBs 

built in recent years, 69 UFBs located on principal arterials were built between 2000 and 

2005 (Stein and Sedmera 2006). 

Researchers have tackled the problem of unknown foundations in the United 

States with different approaches and, occasionally, with a combination of different 

methods. There are a number of studies on applying nondestructive testing (NDT) 

methods to obtain information about UFBs (Maser et al. 1998; Olson et al. 1998; 

Mercado and O'Neil 2003; Olson 2005; Robinson and Webster 2008), while only few 

studies have used statistical, computational, and numerical solutions to infer the 

foundation’s characteristics. Given the uncertainty of the results generated by these 

methods and the uncertain nature of scour, risk-based approaches seem appropriate for 

performing a more rational assessment of unknown foundations. National Cooperative 

Highway Research Program (NCHRP) (Stein and Sedmera 2006) and Florida DOT 

(Mclemore et al. 2010) implemented a risk-based approach to manage bridges with 

unknown foundations considered susceptible to scour. The proposed guideline was 

reported to identify successfully the required Plan of Actions, including investigation, 

countermeasures, monitoring, and rehabilitation or replacement of UFBs, based upon 

their scour evaluation. 
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Soft computing methods in general, and ANNs in particular, have been widely 

applied for infrastructure safety monitoring and management, including bridge safety 

and integrity assessment in the recent years (Elkordy et al. 1994; Kim et al. 2000; Adeli 

2001; Kawamura et al. 2003; Arangio and Bontempi 2010). A number of studies have 

used ANNs to infer scour depth at bridge piers (Bateni et al. 2007; Lee et al. 2007; 

Zounemat-Kermani et al. 2009; Kaya 2010), but only a few have used ANN analyses to 

infer the type and dimension of the foundation (Mclemore et al. 2010; Sayed et al. 

2011). Also, some studies have explored the use of ANNs to interpret the results of 

NDTs for determination of UFBs (Rix 1995).   

Approximately 85% of UFBs in the state of Texas are categorized as off-system 

bridges. The bridge plans for most of these bridges are missing, and their foundation 

characteristics are unknown (i.e., type and dimensions of foundation). On-system 

bridges, on the other hand, are defined as bridges designed and constructed by DOTs 

whose design and construction records are available.  

This study was conducted as part of a TxDOT sponsored project (Briaud et al. 

2012), with the aim of providing a methodology for the deterministic evaluation of 

unknown foundations, which can facilitate the assessment of scour failure risk for UFBs. 

An evidence-based approach is proposed based on a database of bridges located in the 

TxDOT’s Bryan District. This approach can be further modified and extended to be 

implemented in other districts in Texas, and even in other states. Notice that the 

proposed models were calibrated based on bridges’ data collected from the Bryan 

District; therefore they cannot be applied to other regions due to site dependency, unless 
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they get trained by corresponding bridges’ data collected from those specific regions. 

The key hypothesis of this evidence-based approach was that the collected database was 

a representative sample of the Bryan District’s population of bridges. It is assumed that 

the information retrieved for the known bridges in the database captured the design and 

construction criteria, as well as the soil characteristics in the region.  

The deterministic method applies ANNs to learn from the inherent patterns in the 

foundation design for the bridges in the database, and further generalize these patterns to 

UFBs. This method allows engineers to make predictions regarding foundation type and 

embedment depth with a reasonable level of accuracy and avoid performing time 

consuming, costly experiments.  

Approach 

Database and Statistics 

There are approximately 1,700 bridges in the Bryan District. Among those, 1,100 are 

built over rivers and streams and are exposed to scour failure. A set of meetings were 

held in the Bryan District office to investigate the possibility of collecting data for 

bridges in this district. Data collection was then started by finding bridge inspection 

folders and scanning the relevant documents such as bridge plans, bridge inspection 

sheets, etc. A typical bridge plan located in the Bryan district is presented in Figure  5-1.  

Data were collected for approximately 40% (about 185) of the on-system bridges 

(511 bridges in total) built over rivers with known foundations. These bridges were 

sampled from four populations of bridges with major foundation types (drilled shafts 
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[DrSh], concrete piling [Conc], steel piling [Steel], and spread footing [Spread]) in 

compliance with their actual distributions throughout the Bryan District.  

 

 

Figure  5-1. A Typical Bridge Plan in the Bryan District, Showing the Original and Most Recent 
Ground Profile 

 
 

The statistics of the population of on-system bridges in the Bryan District 

showed that the most frequent type of bridge superstructure was concrete slab with 

girders (48.7%), followed by flat concrete slab (22.3%). It was found that the most 

common substructure below the ground (foundation) was concrete piling (54%), and 

above the ground was pile bent (66.3%). Table  5-2 shows the number and percentage of 

each type of substructures for on-system over-river bridges in the Bryan District. It can 

be observed that very few of the over-river bridges had spread footings, due to their 

susceptibility to scour. Also, it can be noticed that the number of driven piles (concrete 

piling) was more than twice of the number of drilled shafts. 



 

78 

 

Table  5-2. Percentage of Different Types of Substructures 

Substructure Type Above 
Gr. 

% 
Substructure Type Below 

Gr. 
% Cap Type % 

Pile Bents 66.3 Steel Piling 12.1 
Concrete 
Cap 

95 

Single Column Bent 0.0 Concrete Piling 54.0 Steel Cap 0 
Multiple Column Bent 24.7 Timber Piling 0.6 Timber Cap 0 
Concrete Column Bent with 
Tie Beam 

0.4 Drilled Shaft 21.5 
Masonry 
Cap 

0 

Concrete Column Bent Wall 0.2 Spread Footing 3.5 Other 0 
Concrete Pier 2.7 Pile Cap on Steel Piling 2.0 NA 5 
Masonry Pier 0.4 Pile Cap on Concrete Piling 0.8   
Trestle (all) 0.0 Pile Cap on Timber Piling 0.2 

  Other 0.0 Other 0.0 
NA (Single Span Bridges) 5.3 NA 5.3 
Sum 100 Sum 100 Sum 100

 

 

In order to demonstrate the geographic risk for these bridges, a set of GIS maps 

were developed. Figure  5-2 demonstrates the location of the bridges in the Bryan District 

of the TxDOT included in this study, along with their Scour-Critical indices (Item 113), 

Average Annual Daily Traffic (AADT), year built, and population density. Note that the 

scour-critical index decreases as the scour vulnerability increases. Only three bridges 

were identified as scour critical, illustrated with red or yellow coloring in the map. The 

two most critical bridges were located in Burleson where the population density and 

therefore, the risk of life loss were relatively lower. Also, it was observed that the three 

scour-critical bridges were built before 1960. According to these maps, the higher the 

age of the bridge, the lower the scour-critical index and, thus, the more susceptible the 

bridge is to scour failure. 
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Figure  5-2. Bridges in the Bryan District of TxDOT Collected for This 
Study, Showing the Scour-Critical Index, AADT, Year Built, and the Population Density over the 

Counties 
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For each interior bent of the bridges, the relevant data for a representative pile 

was collected. The relevant information for inferring the type and embedment depth of 

each foundation was identified based on the design procedures in the AASHTO and 

TxDOT’s bridge standard manuals (AASHTO 2002a, b; TxDOT 2006).  

The data were found in the inspection folders and from the inspection database 

(also a part of NBI) provided by TxDOT. Some information was directly extracted from 

the design and construction plans found in the bridge inspection folders. The data that 

were collected for the 185 (out of the 511) on-system bridges in the Bryan District 

formed the dataset for foundations’ embedment depth estimation. However, the whole 

database (511 bridges) was used for the purpose of foundation type prediction.   

The populated database provided the parameters required for training the 

predictive models. These parameters include superstructure elements, substructure 

elements, load elements, and soil properties. Note that each of the bridges had one or 

more interior bents and thus the total number of records in the database was around 580. 

Table  5-3 presents the main items in the database. The histograms for some of these 

items are presented in Figure  5-3. Some of these items were used for pile embedment 

length estimation and some other for foundation type prediction, as will be explained in 

the following sections.  

The soil boring data found in the bridge inspection folders provided the type and 

strength of soil based on results of Texas Cone Penetration (TCP) tests. A typical soil 

boring data sheet is provided in Figure  5-4. The ultimate skin friction (fu) along the piles 

was computed from the TCP values using the correlation graphs (Figure  5-5) 
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recommended by TxDOT (TxDOT, 2006). Note that for TCP >100, in the soil boring 

sheets the penetration depth for 100 blows was reported. However, for the purpose of 

modeling, the equivalent value of TCP for one foot of penetration was calculated. So the 

range of the TCP values in the database goes beyond 100. 

 

Table  5-3. List of the Main Parameters in the Database Used in the Models 

NBI Item/Parameter Min Max Mean Median 
Standard 
Deviation 

Item 3: County 21 239 131.38 145 73.54 

Item 16: Latitude (deg) 30.06 31.97 30.88 30.85 0.45 

Item 17: Longitude (deg) 95.4 97.25 96.27 96.25 0.4 

Item 26: Functional Class 1 25 4.15 4 3.8 

Item 27: Year Built 1922 2009 1964 1961 20 

Item 29: AADT 20 31070 4470.33 1900 5445.38 

Item 31: Design Load 1 5 3.44 4 1.42 

Item 34: Bridge Skew (deg) 0 45 4.59 0 12.2 

Item 43-1: Main Span Type 1102 2126 1232.86 1125 309.03 

Item 44-1-D1: Substructure Type 
above Ground for Main Span 

1 7 1.71 1 1.22 

Item 44-1-D2: Substructure Type 
below Ground for Main Span 

1 8 2.58 2 1.29 

Item 46: Total Number of Spans  1 44 5.4 4 4.93 

Item 48: Max Span Length (m) 10 240 39.73 30 25.46 

Item 51: Roadway Width (m) 19 90 34.45 33.5 12.29 

Item 71: Waterway Adequacy 1.12 9 6.55 6 1.16 
Item 107-1: Deck Type for Main 
Span 

1 2 1.06 1 0.24 

Average TCP along Pile (Avg. TCP) 
(blows/ft) 

10.5 1414.75 134.47 98.7 141.81 

TCP at Pile Tip (blows/ft) 10 2400 291.36 228.57 299.91 

Skin Friction (fu) (MPa)    0.03 1.94 0.21 0.17 0.17 

Point Bearing Capacity (qp) (MPa) 0.10 24.59 2.88 2.14 2.99 
Dead Load (kN) 62.41 10328.36 1997.12 1317.68 1888.62 
Live Load (kN) 229.65 1324.35 474.41 411.53 250.55 
Pile Embedment Depth (dp) (m) 3.05 26 9.35 8.99 3.55 
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*R: Rural, U(X): Urban (X1000 population) 

 

Figure  5-3. Histograms for the Items and Parameters in the Database 
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* C: Continous; Con:Concrete; PSC:Prestressed; SS: Single Span; Var: Variable; WS: Weathering Steel 

 
Figure 5-3. Continued 
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Figure 5-3. Continued 
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Figure 5-3. Continued 
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Figure 5-3. Continued 
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Figure  5-4. A Typical Soil Boring Data Sheet 
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Figure  5-5. Skin Friction versus TCP for Left) TCP < 100 blows/ft, Right) TCP > 100 blows/ft 
(TxDOT 2006)  

 

Methodology 

Figure  5-6 presents the flowchart for the proposed deterministic method. The 

deterministic approach first determines the type of a foundation and whether the 

foundation is deep or shallow. It then follows to determine the embedment of the 

foundation, if it is classified as a deep foundation (i.e., for piling or drilled shafts). The 

method selects the appropriate ANN model (based on the foundation type and 

availability of soil boring data) to predict the depth of the foundation. Therefore, this 

method allows for calculating the scour risk of the foundation by determining if the 

foundation is shallow or otherwise determining the embedment depth of the foundation. 

The steps shown in Figure  5-6 are: 

Step 1: Data Collection. Acquire the required parameters, as listed below. These 

items can be found in the NBI or in bridge inspection documents. More details on the 

description of each item can be found in the NBI's coding guide (Weseman 1995): 

 Item 3: County  
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 Item 16: Latitude  

 Item 17: Longitude 

 Item 27: Year built 

 Item 31: Design load 

 Item 44.1-D1: Substructure type above ground for main spans 

 Item 46: Total number of spans in bridge 

 Item 48: Max span length 

 Item 51: Roadway width 

 Average TCP and skin friction along the piles (from soil boring data, if available) 

 Average span length for the bent (from bridge inspection documents) 

Step 2: Determining the Foundation Type Using ANNs. The type of foundation 

is predicted using two ANN classifier models. The ANN models were trained with a 

number of bridge examples to learn the existing patterns in the relation between bridges’ 

input parameters and their foundation type. One of the proposed ANN classifiers was 

designed to predict any of the common foundation types, whereas the other one can be 

used solely to distinguish between deep or shallow foundations. The second model is 

recommended in a condition when an engineer can identify the foundation type from the 

substructure above ground with a high confidence level. This model also allows for 

identifying deep foundations without knowing exactly what the foundation type is 

(whether it is a concrete pile, steel pile, or a drilled shaft). 

Step 3: Determining the Depth of the Hard Layer. If soil boring data is available 

adequately close to the foundation, then it is recommended to identify whether a hard 
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layer (such as rock or shale) exists in the soil profile, and then determine the depth of 

that hard layer. Based on the TxDOT Geotechnical Manual (2006), drilled shafts should 

penetrate into a hard layer at least for one shaft diameter, if that hard layer is more than 

three shaft diameters below the surface. Otherwise, if the hard layer is close to surface, 

shafts are recommended to have a minimum length of three shaft diameters into the hard 

layer. However, in case of driven piles, they are normally stopped upon refusal when 

reaching a layer with TCP >100 (blows/ft) (TxDOT 2006). The plans for over-river 

bridges in the Bryan District’s database also show that driven piles and drilled shafts are 

generally extended up to the hard layer as a precaution and safety measure, when 

appropriate.  

Step 4: Calculating Dead Load and Live Load. A simple, fast method is 

proposed in this study to estimate, with reasonable accuracy, the dead load and live load 

for bridge foundations. This procedure was designed based on the standard bridge design 

sheets that the TxDOT uses (TxDOT 2011). The total load for a bridge bent is obtained 

using the standard tables, depending on the roadway width and span length. The live 

load is calculated based on the standard design vehicles specified by the AASHTO-

LRFD. The dead load is then calculated by subtracting the live load from the total load. 

Figure  5-7 presents the steps of the total load calculation procedure. The method is 

elaborated upon in the following sections. 



 

91 

 

 

Figure  5-6. Deterministic Approach Flowchart
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Figure  5-7. Total Load Calculation’s Flowchart 
 

Step 5: Obtaining the Foundation Properties. Acquiring those properties of the 

foundation that can be observed above the ground (such as size and number of piles for a 

bridge bent) can serve to enhance the performance of the ANN models. 

Step 6: Predicting the Pile Depth Using ANN Models. Depending on the 

availability of soil boring data and foundation type information, four scenarios are 

defined in the following sub-steps: 

Step 6-1: If the foundation type is known to be deep, but neither the foundation 

type nor the soil data are available, the ANN model MLP-PL00 is recommended for 

predicting the foundation depth. This scenario assumes that the foundation type cannot 
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be inferred, with the desired level of confidence, from the ANN classifier or by site 

investigation. More simply, it may also be used because the user is only interested in 

inferring the depth. 

Step 6-2: This step addresses a scenario in which the foundation type is known to 

be deep, the exact foundation type is unknown (or cannot be inferred, with the desired 

confidence level, from the ANN classifier), but the soil boring data is available.  

Step 6-2-1: Compute the average ultimate skin friction (fu) based on the TCP 

values along the piles from the nearest soil data, using the graphs presented in 

Figure  5-5. 

Step 6-2-2: Implement the ANN model MLP-PL01 to predict the foundation (pile 

or shaft) embedment depth. 

Step 6-3: This step addresses a scenario in which the foundation type is known 

and soil boring data is available. 

Step 6-3-1: Compute the average soil skin friction (fu) of piles. 

Step 6-3-2: Implement MLP-PL11 to predict the foundation embedment depth. 

Step 6-4: If the foundation type is known or is inferred using the ANN classifier 

or by site investigation, but the soil boring data is not available, then implement the 

ANN model MLP-PL10 to infer the foundation embedment depth.  

The minimum value between the depth of the hard layer and the predicted 

foundation depth by the ANN model is considered to be the embedment depth. 
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Dead Load and Live Load Calculations 

The dead load for a foundation in an interior bent is obtained by adding up all permanent 

loads that are sustained by the foundation from all components of the superstructure, 

including the deck, girders (beams), bent cap, column, and railing weights. However, 

this procedure requires the collection of a number of details from the superstructure, 

which makes the process very time-consuming. Therefore, another method is proposed 

to make the process faster. As mentioned earlier, TxDOT provides standard design 

sheets that can be used for the design of bridges. The total foundation load can be 

estimated with an acceptable level of accuracy using these sheets.  

The load assessment process begins with identifying the superstructure type and 

finding the corresponding standard design sheet based on the bridge roadway width and 

skew. The different types of superstructures, as defined by the TxDOT, are:  Prestressed 

I-Girder; Cast-In-Place Concrete Slab Span; Steel Beam; Prestressed Slab Beam; 

Prestressed Box Beam; Prestressed Concrete Double T-beam; and Concrete Slab and 

Girder (Pan Form). 

The next step is to determine the roadway width from Item 51 of NBI. The 

standard sheets have been prepared for typical roadway widths varying from 7 m (24 ft) 

to 13 m (44 ft) (Note that all the items in NBI are in English units, therefore the typical 

roadway widths are in feet). However, the roadway widths among the bridges in the 

Bryan District vary between 5.8 m (19 ft) to 27 m (90 ft).  The load estimates were 

extrapolated for widths greater than 13m (44 ft). 
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Finally, the bridge skew can be found in Item 34 of NBI. The bridge skews vary 

among 0, 15, 30, and 45 (deg). Once the superstructure type, the roadway width, and the 

bridge skew are defined, the corresponding TxDOT standard design sheet can be found 

for the bridge. The value provided by the bridge standard sheet for the load per pile/shaft 

should be adjusted according to the number of piles/shafts per bent for the desired 

bridge. The span length for each bent is obtained by averaging the left and right span 

lengths. The foundation load table obtained from a standard bridge design sheet for a 7.3 

m (24 ft), prestressed concrete I-beam, 15 (deg) skewed is presented in Table  5-4. 

A set of regression lines were developed based on the loads versus span lengths 

for both column (shaft) and pile bents given by the bridge standard sheets. Figure  5-8 

presents the regression lines generated for a prestressed I-beam bridge with 7.3 m (24 ft) 

roadway width with 0, 15, 30, and 45 (deg) skews. Based on the regression results, a 

table of coefficients was developed that includes the regression coefficients associated 

with different typical values of roadway widths and bridge skews for each of the existing 

superstructure types. Table  5-5 shows the corresponding table of coefficients for a 

column bent of a prestressed concrete I-beam bridge versus typical roadway widths. A 

code was developed to automate the process of load assessment for the bridges in the 

database. This program inputs the table of coefficients, as well as a table containing the 

roadway widths, average span lengths, and the skews for a bridge bent, and then outputs 

the total load for the bent. 
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Table  5-4. Foundation Loads for 24 (ft) PSC I-Beam Bridge with a 15 (deg) Skew 
Foundation Loads  

Span 
Average 

(ft) 

Drilled 
Shaft Loads 
(Tons/shaft) 

Pile Load (Tons/Piles)  

  
3 Pile 

Footing 
 4 Pile 

Footing 
5 Pile 

Footing 
30 96 35 27 22 
35 106 39 30 24 
40 115 42 32  26 
45 125  45 34 28 
50 134  48 37 30 
55 143 51 39 32 
60 152 54 41 34 
65 161 57 43 35 
70 169 60 46 37 
75 178 63 48 39 
80 187 66 50 41 
85 196  68 52 42 

 

 

 

Figure  5-8. Load versus Average Span Length for a Prestressed Concrete I-Beams Bridge with 24 
(ft) Roadway Width 
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Table  5-5. Load Estimation Coefficients for a Column  
Bent of a Prestressed Concrete I-Beam Bridge 

Roadway 
(ft) 

Skew 
(deg) 

a b 

24 0 3.59 86.98 
24 15 3.59 86.98 
24 30 3.59 88.98 
24 45  3.57 102.93 
28 0 3.90 98.59 
28 15 3.90 98.59 
28 30 3.89 101.92 
28 45 3.79 106.23 
30 0 4.07 98.29 
30 15 4.04 100.91 
30 30 4.03 103.15 
30 45 3.90 107.59 
38 0 4.89 122.60 
38 15 4.89 122.60 
38 30 4.87 127.13 
38 45 4.80 140.00 
44 0 5.48 133.87 
44 15 5.39 141.24 
44 30 5.48 137.87 
44 45 5.37 157.44 

 

 

Prior to the adoption of the LRFD specifications, there were at least four 

different versions of AASHTO live-load standard computation methods. The H series 

modeled single unit trucks, while the HS series modeled semi-trucks. Note that the HS 

series has a variable dimension shown between the rear two axles. For the purpose of 

foundation load determination, this dimension will always be set at 4.26 m (14 ft), which 

serves to concentrate the maximum load over the interior bent. Figure  5-9 shows 

diagrams of the various load configurations. The lane loading (the uniform load) 

generally controls bridges with longer spans (> 21.3 m (70 ft)). Most structures on 

unknown foundations are locally owned with relatively short span lengths, so the truck 

loadings will generally control.  
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Since the LRFD design has been applied to structures built only in the past 10 

years, there should not be as many LRFD-designed bridges on unknown foundations. 

However, the current TxDOT bridge standard sheets are all designed with the HL‐93 

live load. The live-load model for the LRFD code uses heavier loading conditions than 

the live-load models used in previous design specifications. Consequently, the resulting 

total number of loads will be higher. In order to adjust the total loads for the design 

vehicle and also to split the contributions for the dead and live loads, the following 

procedure is proposed: 

 Assess the total load (live load + dead load) using the bridge's design standard 

sheets. 

 Assess the live load based on the design vehicle HL93. 

 Subtract the live load obtained from the previous step from the total load to 

obtain the dead load. 

 Obtain the live load based on the real design vehicle of the bridge designated in 

Item 31 (Design Load) using the equations given in Figure  5-9. 
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Figure  5-9. Standard AASHTO Design Loads and Maximum Reaction of an Interior Bridge Bent 
with Single Spans 

 

 

In order to validate the proposed dead load estimation method, a number of 

bridges with different superstructure types were selected (see Table  5-6). The average 

error between the estimated values given by the proposed approximate method and the 

exact loads was about 11%.  
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Table  5-6. Load Estimation Error for Five Sample Bridges 

Bridge Error (%)
17-82-2144-01-002 2.56 
17-21-0050-02-123 18.13 
17-21-0050-01-001 8.33 
17-239-0315-08-016 15.22 
17-21-0049-09-43 12.80 

Avg. Error 11.41 

 

The exact dead loads for the interior bents of these bridges were calculated by 

summing the weights of different structural elements including the bent caps, 

slab/beams, shafts/piles, and railings. These details were found in the estimated table of 

quantities in the bridges’ as-built plans. A sample calculation for the bridge 17-82-2144-

01-002 is presented here (see Figure  5-10): 

 

 

Sample Calculations: 

L1=75 ft (22.9 m), L2=45 ft (13.7 m), RW=32 ft (9.8 m) 
Estimated total load per shaft using the proposed method =228 kips (1014.5 kN)  
Dead load = Total weights of the superstructure items: 
Interior bent cap = 1/2 × (38.1 × 4.05) = 77.2 kips (343.54 kN)  
Drilled shafts = 1/2 (168 × 0.15 × л × (30/12) 2/4) = 61.9 kips (275.5 kN)  
Concrete slab = 8/12 × 32 × (75 + 45)/2 × 0.15 = 192 kips (854.4 kN) 
Railing = (75 + 45) × 0.38 = 45.6 kips (202.9 kN) 
Beams = 4 × (75 + 45)/2 × 0.516 = 123.8 kips (550.9 kN) 
Sum = 500.5 kips (2227.2 kN) 
 

Figure  5-10. Estimated Quantities for Bridge ID: 17-82-2144-01-002 
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Live load-HL93: 
2 × (0.32 (75 + 4) − (448/75 + 112/45) +72) = 203.9 kips (907.4 kN) 
Total load: 
500.5+203.9 = 704.4 kips/bent (3133.33 kN/bent) = 704.4/3 = 234.8 kips/shaft (1044.44 
kN/shaft)  
Error of estimation: 
(234.8 − 228)/228 = 2.98% 

Figure 5-10. Continued 

 

Deterministic Models 

Artificial Neural Networks  

ANN models were developed to predict the type and embedment depth of unknown 

foundations. Radial Basis Function (RBF), Multi-Layer Perceptron (MLP), and 

Generalized Regression Neural Network (GRNN) were implemented to evaluate the 

foundation embedment depth, whereas the foundation type was predicted by 

Probabilistic Neural Networks (PNNs) and MLP classifiers. 

Finding the best network type and configuration for the purpose of foundation 

type and depth prediction required considering different aspects of designing a neural 

network model. These aspects included the selection of: the network type and 

architecture, learning algorithm, input parameters, transfer functions, and the data-

sampling method. 

Neural Network Type and Algorithm 

Foundation Type 

ANN classifiers are powerful tools used to classify categorical data. Identifying the 

foundation type can be very helpful for determining the foundation embedment depth 
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and scour vulnerability. Two ANN classifier models are proposed here for classifying a 

foundation based on the relevant information of the bridge. One determines the 

foundation type of bridges among all the common categories in the Bryan District. The 

other ANN classifier specializes only in determining if the foundation is either deep or 

shallow, because, for the proposed deterministic method in this study, it is important to 

know if the foundation is deep or not before making predictions about the foundation 

depth. Figure  5-11 shows the architecture of the MLP classifier used in this study. 

 

 

Figure  5-11. Architecture of the MLP Classifier 
 

 

The classifier performance is measured by the classification accuracy (CA), 

which is defined as the ratio of the correctly classified examples over the total number of 
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examples. A preliminary analysis demonstrated that MLP has greater classification 

accuracy than PNN.  Table  5-7 shows the performance of each classifier.  

 

                                                CA = 
ܛ܍ܔܘܕ܉ܠ܍	܌܍ܑ܎ܑܛܛ܉ܔ܋	ܡܔܜ܋܍ܚܚܗ܋	܎ܗ		.ܗۼ

ܛ܍ܔܘܕ܉ܠ܍	܎ܗ		.ܗܖ	ܔ܉ܜܗ܂
                                     ( 5-1) 

 

 

Table  5-7. Classification Results for PNN and MLP 

Model 
PNN MLP 

Training Test Training Validation Test 

CA 0.69 0.71 0.9 0.76 0.75 

 

Foundation Depth 

A preliminary analysis was performed to find the best network type using only a fraction 

of the database. MLP, RBF, and GRNN networks were developed and their 

performances were compared. The evaluation of the networks’ performances was based 

on the root mean square error (RMSE) and the coefficient of determination (R2) between 

the measured values (targets) and the predicted values (outputs) of the networks. The 

MLP networks were trained using two distinct optimization algorithms: Levenberg-

Marquardt and Bayesian regularization, where the former is referred to as MLP-LM and 

the latter is referred to as MLP-BR. Before training, the database was pre-processed, 

meaning that the duplicated data points and the data points missing the pile depth value 

were eliminated. Also, both input and output data were normalized regarding the 



  

104 

 

minimum and maximum values for each parameter, so that all parameters fell within the 

range [−1, 1].  

In order to train the MLP-LM network, the data set was divided into three parts: 

60% for training, 20% for validation, and 20% for test. The data points for training, 

validation, and test were sampled randomly. The network was trained using training data 

points and the performance of the network was monitored over the validation data 

points. The training was stopped when one of the following criteria was reached: the 

minimum mean squared error over the training data, maximum number of iterations, 

minimum gradient of the error function, and when the error over the validation dataset 

started to increase. The performance of the model was examined using the test data 

points, which had not been presented to the network.  

The MLP-BR network was generated with the same architecture as the MLP-LM 

but trained using the Bayesian regularization algorithm. In this algorithm, weights and 

biases are assumed to be random variables, and the regularization parameters are 

associated with the variance of these distributions. Further, there is no validation error in 

this method, and the network will stop training when the effective number of weights 

and biases has converged (Demuth et al. 2009).  

For RBF and GRNN networks, the working database was divided into training 

(70%) and test (30%) subsets. The weights and biases in the network were adjusted 

using the training set, and the generalization of the network was evaluated using the test 

set. Although both the RBF and GRNN networks showed relatively good performance 
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for the training data, the small R2 over the test dataset (particularly for the RBF network) 

indicated that these networks could not generalize well in this problem.  

Table  5-8 presents the performances of different networks. The best 

generalization belongs to MLP-LM, followed by MLP-BR. The results show that both 

MLP networks outperformed the GRNN and RBF networks. Also, the GRNN network 

showed a better performance comparing to the RBF network, because only a small 

number of data points were presented to the models in the preliminary analysis. 

According to these results, the MLP network with the Levenberg Marquardt algorithm 

was selected for the prediction of pile depth. 

 

Table  5-8. Comparison of Different ANN Models 

 RBF GRNN MLP-LM MLP-BR 

 Training Test Training Test Training Test Training Test 

R2 1.00 0.11 0.60 0.38 0.76 0.79 0.90 0.66 

RMSE 0.029 1800 8.29 10.26 7.56 9.99 4.00 8.08 

 

Input Parameters 

Foundation Type  

The input parameters for foundation type prediction emerged from the factors 

participating in the decision making process for selecting the type of foundation.  These 

factors included the location of the bridge, loading, soil type, depth of the hard layer, and 

flow characteristic under the bridge. A preliminary analysis was performed to select a set 

of items from the NBI that could contribute to the prediction of foundation types. Out of 
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many items (more than 300), 12 input parameters were identified as presented in 

Table  5-9. The target parameter is Item 44-1-D2 of the NBI, which is the substructure 

type below ground for the main span. 

A stepwise parameter selection method was implemented to select the relevant 

parameters that contributed the most to the foundation type classification.  This method 

included Forward Stepwise Selection (FSS) and Backward Stepwise Elimination (BSE) 

of the input parameters based on their significance to the performance of the network. At 

each step, a number of networks were trained with the selected sets of input parameters. 

In FSS, parameters competed with each other to be added to the model, one by one. The 

process started with creating a network with only one input parameter and gradually 

adding the statistically significant parameters until no additional parameter could be 

added. A parameter was added to the model only if the adjusted R2 for the model became 

larger than the adjusted R2 of the reduced model. In the BSE, the process started with a 

network containing all the parameters and gradually removed parameters, one by one. 

The parameters competed with each other to be removed from the model. A parameter 

was removed when the adjusted R2 for the reduced model became larger than the present 

model. This method also provides a ranking of the input parameter with respect to their 

significance to the prediction of the foundation type as will be explained later in Results 

section. 
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Table  5-9. Input Parameters for Foundation Classification 

Input Parameters

Item 3: County
Item 26: Function Class
Item 27: Year Built
Item 29: AADT
Item 31: Design Load 
Item 43-1: Main Span Type
Item 44-1-D1: Substructure Type above Ground for Main Span
Item 46: Total Number of Spans
Item 48: Max Span Length (m)
Item 51: Roadway Width (m)
Item 71: Water way adequecy
Item 107-1: Deck Type Main Span 

Target Parameter
Item 44-1-D2: Substructure Type below Ground for Main Span

 

 
 

Foundation Depth 

The criteria for selecting the relevant input parameters for pile depth prediction is based 

on the limit state design method of foundations which requires the foundation load and 

allowable bearing capacity to be equal. The parameters that contribute to the design of a 

bridge foundation include those associated with the superstructure, substructure, load, 

and location of the bridge. Several networks with different combinations of parameters 

were created and compared to determine the most relevant input parameters. Table  5-10 

lists the final selected input parameters. 
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Table  5-10. Input Parameters for Pile-Depth Prediction 

Input Parameters 
Load 

Dead Load per bent/ per pile (kN) 
Live Load per bent/pile (kN) 

Geometry 
Item # 51: Roadway Width (m)  

Soil Properties 
Avg. TCP (blows/ft) 
Skin Friction (MPa) 

Time and Location 
Item 3: County  
Item 27: Year Built 
Item 16: Latitude (deg) 
Item 17: Longitude (deg) 

 

Hidden Neurons and Transfer function 

Based on a preliminary analysis on the number of hidden units, 20 hidden neurons were 

selected for this study. The transfer function, or activation function, maps the input of a 

neuron to its output in a computational network. Transfer functions can be linear, 

sigmoidal, Gaussian, or step functions. As explained earlier in Chapter II, MLPs apply 

either a log-sigmoid or a tan-sigmoid transfer function in the hidden neurons (Eq. 2-10 

and Eq. 2-11) and a linear function in the output neurons.  

In order to observe the influence of the transfer function on the performance of 

MLPs, a network with log-sigmoid and another with tan-sigmoid were trained. The 

results showed that the R2 values for training, test, and validation sets were not 

significantly different for the two MLP networks. Based on this analysis, the MLP 

models for pile depth were designed with tan-sigmoid transfer functions in the hidden 

neurons.  
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Training  

The working database was split into three groups: training, validation, and test, with 

3:1:1 proportions. The weights of the network were adjusted using training examples. 

The network performance was monitored during training using validation examples. The 

learning process continued until one of the stopping criteria was met, as described earlier 

in Chapter II.  

The way the data points are sampled for training, validation, and test datasets, or 

in other words, how the database is partitioned can affect the model performance.  The 

only way to estimate a model's true error is to test the model error on an entire 

population, meaning that one would need to have access to an unlimited number of 

samples.  However, this is not possible due to the costly process of data collection. 

In order to make a reasonable estimate of model performance, the random 

subsampling method was implemented. In this method, data points were randomly 

selected for a fixed number of examples in training, validation, and test datasets. This 

process was performed iteratively a large number of times (10,000), and each time a new 

network is generated from scratch and the model performance is measured.  As a result, 

an ensemble of networks were generated that can work in parallel to make predictions. 

The best estimation is the average of the predictions by all networks in the ensemble. 

The cross-validation method allows one to make use of all examples in the database for 

both training and testing purposes, and thus provides a more reasonable estimate of the 

true error. It also helps reduce the bias of predictions by providing ensembles of 

networks trained by different subsamples of the same population. 



  

110 

 

In this study, the ANN models in the ensemble with R2 (Test) < 0.7 were 

removed from the ensemble. This allows for the forming of an ensemble of networks 

with best-performances to be used as a predictive model. 

Nonlinear Least Squares Method 

In order to compare ANNs with a nonlinear least square approach, a Nonlinear (NL) 

model similar to MLP output function was defined as described in Eq. 2-27. A nonlinear 

least square approach was then taken to compute the weights and biases. Similar to the 

MLP model, the LM algorithm was implemented to perform the optimization, as was 

previously explained.  

Results and Discussion 

Foundation Type Classification 

The FSS and BSE procedures were repeated fifty times to ensure the repeatability of the 

ranking of the input parameters. Based on this experiment, the input parameters were 

ranked by their significance in predicting the foundation type. Table  5-11 presents the 

ranking of the input parameters. The parameters that were eliminated through FSS and 

BSE are highlighted. Both the reduced (7 input parameters) and full (12 input 

parameters) models were implemented and their prediction accuracies were compared. 
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Table  5-11. Ranking of the Parameters through FSS and BSE Methods  
(the highlighted parameters are eliminated from the model) 

FSS BSE 
Ranking Item No. Ranking Item No. 
1 44_1 1 44_1 
2 27 2 27 
3 48 3 48 
4 46 4 51 
5 31 5 3 
6 51 6 46 
7 3 7 31 
8 26 8 71 
9 29 9 43-1 
10 71 10 107-1 
11 43-1 11 29 
12 107-1 12 26 

 

 

Figure  5-12 and Figure  5-13 show the predicted versus actual foundation types 

generated by one of the reduced MLP classifiers in the ensemble.  Figure  5-12 presents 

the classifications among eight possible foundation types (FT8) and Figure  5-13  shows 

the classifications between deep and shallow foundations (FT2). In addition, Figure  5-12 

shows the number of records in the working database and the classification accuracy for 

different types of foundation. Table  5-12 presents the total classification accuracy for the 

full and reduced MLPFT8 and MLPFT2 models. 
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a) 

       

                                            b)                                                                          c) 
Figure  5-12. Foundation Classification Using MLP-FT8, a) Predicted vs. Actual Scatter Plot, b) 

Histogram of Foundation Types, c) CA for each Foundation Type 
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Figure  5-13. Foundation Classification MLP-FT2 
 

 

Table  5-12. Results of Foundation Type Classification 
Model MLP-FT2 MLP-FT8 

Subset Training Validation Test Training Validation Test

No. of data points 22 7  7 290  97 97 

Ave. CA - Reduced Model 1  0.91  0.90 0.91 0.75 0.75 

Ave. CA - Full Model 1  0.9 0.89 0.93 0.71 0.70  

 

 

It can be observed that both the MLP-FT8 and MLP-FT2 were able to classify 

the foundations with a fairly good level of accuracy. The CA over the test subset was 

0.90 and 0.75 for MLP-FT2 and MLP-FT8, respectively. This result shows that it is 
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significantly more accurate to classify a foundation as deep or shallow rather than to 

identify the exact foundation type. Also, by comparing the full and reduced models, it 

was observed that the proposed parameter selection method improved the classification 

accuracy of the model. This improvement was more significant for MLP-FT8. 

Foundation Depth Prediction 

ANN Prediction Results 

Eight different MLP models were developed to predict pile depth based on the 

availability of soil data and foundation type information. The coding of each of these 

models was described earlier in the Approach section. Note that for the scenarios 

assuming that the soil data is not available the soil strength parameters were eliminated 

from the list of input parameters, leaving seven input parameters to be used. For the 

scenarios assuming that the soil data is available, all the nine input parameters were used 

to train the models.  

Table  5-13 presents the performances of MLPPL models for the eight different 

scenarios. Note that R2
ave and RMSEave present the average performance of the best 

networks selected. Therefore, the number of the networks in the ensembles varied for 

different scenarios. Figure  5-14 shows the MLP ensemble predictions for all the data 

points in the corresponding databases. This figure shows each network's prediction as 

well as the average predictions over all the networks in the ensemble.  R2 and RMSE for 

the average ensemble predictions are also presented in this figure. The performances of 

the models can be compared through the R2 of the average predictions. After comparing 
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MLPPL00 with MLPPL01 and MLPPL10 with MLPPL11, it was observed that adding 

the soil strength parameters as inputs to the model significantly improved the 

performance of the models.  

It can be observed that for all eight MLP models, except for steel piling, the order 

of magnitude of R2 of the average predictions, for the examples in the working data set, 

was 0.8 or above. Due to the limited amount of data for steel piling, the steel piling 

models could not perform as good as the two other types of piling.   

 
 

      Table  5-13. Results of MLP Ensembles for Pile Embedment Depth Prediction 
Subset  

 
Model

No. of Data  
Training  Test 

R2
ave RMSEave R2

ave RMSEave

MLP-PL00 378 0.84 1.41 0.72 1.95 

MLP-PL01 378 0.88  1.18 0.71 1.92 

MLP-PL10-Conc 217  0.88 0.85 0.71 1.39 

MLP-PL10-DrSh 80 0.87 1.39 0.76 1.93 

MLP-PL10-Steel 35  0.75 0.85 0.77 0.94 

MLP-PL11-Conc 259 0.93 0.64 0.72 1.42 

MLP-PL11-DrSh 91 0.98 0.54 0.75 1.97 

MLP-PL11-Steel 35 0.84 0.65 0.79 0.89  
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a) b)  

c) d)  

e)   f)  

Figure  5-14. Pile Depth Predictions by the MLP Ensembles: a) MLPPL00, b) MLPPL01, c) 
MLPPL10-Conc, d) MLPPL11-Conc, e) MLPPL10-DrSh, f) MLPPL11-DrSh, g) MLPPL10-Steel, h) 

MLPPL11-Steel 
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g)   h)  

Figure 5-14. Continued 
 
 
 

Figure  5-15 shows the average predictions of the networks in the ensembles for 

the eight MLP models. Also, Figure  5-16 presents the average of the ensemble 

predictions along with the 95% prediction intervals and the 10th percentiles of the pile 

depth distributions generated for each example in the database. The prediction interval 

provides a range that the predicted pile depth would be within that range with 95% 

probability. Also, the 10th percentile provides a value for which the predicted pile depth 

would be less than that value with a 10% probability. This could provide a conservative 

value to compute the probability of failure due to scour.  
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                            a)                                                                                  b) 

 
                             c)                                                                                d) 

 
                               e)                                                                                f) 

 
Figure  5-15. Average Pile Depth Predictions by the MLP Ensembles: a) MLPPL00, b) MLPPL01, c) 
MLPPL10-Conc, d) MLPPL11-Conc, e) MLPPL10-DrSh, f) MLPPL11-DrSh, g) MLPPL10-Steel, h) 

MLPPL11-Steel 
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                                  g)                                                                                 h) 

Figure 5-15.Continued 

 

Figure  5-17 shows the Probability of Exceedance (PoE) curves obtained from the 

predicted pile depths by each MLP models versus the actual pile depths. The horizontal 

axis corresponds to a correction factor C that was multiplied by the predicted values of 

the pile depths: 

                                  

( )

(Predicted)

Pr( (Corrected) (Actual))

p

p

p p

d Corrected
C

d

PoE d d



 

                         (5-2) 

The probability of exceedance graphs for each model was obtained by taking the 

following steps: 

- Taking a range for the correction factor C between 0 to 5 

- For each value of C multiply the predicted pile depths by the correction factor  

- Count the number of data points that fall above the 1:1 line (considering the y 

axis to represent the predicted values) 
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                                  a)                                                                                   b) 

 

      
                                  c)                                                                                   d) 
 

        
                                          e)                                                                                    f) 
 
 
Figure  5-16. 95% Prediction Interval and 10 Percentile of Pile Depth Predicted by a) MLPPL00, b) 

MLPPL01, c) MLPPL10-Conc, d) MLPPL11-Conc, e) MLPPL10-DrSh, f) MLPPL11-DrSh, g) 
MLPPL10-Steel, h) MLPPL11-Steel 
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                                          g)                                                                                    h) 
Figure 5-16. Continued 

 

- Divide the number of points above the line over the total number of data to 

obtain the probability that the predicted pile depth will be more than the actual pile depth 

(probability of exceedance)  

- Plot the PoE values versus the corresponding correction factors  

These graphs allows for estimating the pile depth with the desired level of 

confidence from the proposed MLP models. For a desired PoE one can use the graphs in 

normal or log scale to determine the appropriate correction factor. The predicted pile 

depth by the model needs to be multiplied by this factor to satisfy the desired probability 

of exceedance. It is evident that the lower probability of exceedance, the smaller 

correction factor is required for a specific model. 
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        a) 

 
      b) 

 

 
     c) 

 
Figure  5-17. Probability of Exceedance Curves for Pile Depth in the Normal and Log Scales  a) 

MLPPL00, b) MLPPL01, c) MLPPL10-Conc, d) MLPPL11-Conc, e) MLPPL10-DrSh, f) MLPPL11-
DrSh, g) MLPPL10-Steel, h) MLPPL11-Steel 
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    d) 

 

    
 e) 

 

 
        f) 

Figure 5-17. Continued 
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        g) 

  
      h) 

Figure 5-17.Continued 

 
Figure  5-18 presents the average of the weights and biases of each ensemble, 

along with the 95% confidence interval for these parameters. The weights and biases of 

all connections are sorted in a vector presented as Weights. The total number of weights 

and biases is 221 for models with soil parameters and 181 for models without soil 

parameters. Note that the last 21 of the weights presented in this figure corresponds to 

the biases of the 20 neurons in the hidden layer and the output neuron. It seems that most 

of the weights and biases are between -1 and 1. Also, biases are relatively larger than 

weights. 
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                                            a)                                                                                 b) 

 

      
                                         c)                                                                                     d) 
 

     
                                         e)                                                                                      f) 

 
Figure  5-18. Weights and Bias of the MLP Models: a) MLPPL00, b) MLPPL01, c) MLPPL10-conc, 
d) MLPPL11-conc, e) MLPPL10-DrSh, f) MLPPL11-DrSh, g) MLPPL10-steel, h) MLPPL11-steel 
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                                           g)                                                                                    h)          

 
Figure 5-18. Continued 

 

Nonlinear Least Squares Results 

The NL model was trained using the whole database.  Similar to the MLP model, 1,000 

models were generated by the random subsampling of data points for training and test 

subsets. Also, the data was normalized before training the model. According to the 

results, none of the models had an R2 greater than 0.7 for the test dataset. Table  5-14 

provides the performance of the best NL model. The results of the nonlinear least square 

method for prediction of the pile embedment depth is presented and compared with the 

MLP in Figure  5-19. 
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Figure  5-19. Comparison of NL and MLP Models 
 

Table  5-14. Results of the Best NL Model  
Subset 

 
Model 

No of Data  
Training Test 

R2 RMSE R2 RMSE 

NL 378 0.63 0.0978 0.68 0.11 

 

 

Although the function of both MLP and NL models were the same and the same 

optimization method (Levenberg-Marquardt) was implemented for the both models, the 

MLP network highly outperformed the NL model. This indicated that the BP algorithm 

was more successful in finding the minimum of the objective function. 
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Conclusions 

The deterministic approach proposed in this study allows an engineer to make 

predictions about the substructure type and embedment depth of unknown foundations 

with a reasonable level of accuracy without performing time-consuming, costly in situ 

experiments. The predicted embedment depths can be used to evaluate the scour 

vulnerability of bridges; therefore, the proposed methodology can assists DOTs to 

reclassify the U coded bridges in the NBI by updating Item 113 (the scour-critical 

index).   

The proposed approach first determines the type of foundation, and then, if the 

foundation is recognized to be deep (either concrete, steel piling, or drilled shafts), it 

selects the appropriate ANN model based on the foundation type and the availability of 

soil data to predict the embedment depth. Finally the minimum between the predicted 

pile depth and the depth of the hard layer under the bridge is selected as the pile 

embedment depth. According to the results, the foundation type was successfully 

determined using ANN classifiers.  

A stepwise parameter selection method was implemented to optimize the model 

performance by eliminating the redundant input variables from the model. The ANN 

classifier accommodates the categorization of an unknown foundation as either deep or 

shallow. It also can accurately classify the foundation among different possible types. 

The ANN models developed in this study approximated the pile embedment 

depth based on the bridge load, soil properties, location, and year built. The R2 of 

predicted versus actual pile depth values for the ANN models was greater than 0.8. 
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Clustering the data based on the type of foundation resulted in better model performance 

for concrete and drilled shaft types, for which there existed a sufficient number of data 

points. Adding skin friction and average TCP as input parameters to the ANN models 

significantly improved the performance of the models. This result confirms the 

significant effect of soil type and soil strength on pile embedment depth. Also, 

comparing the results of the nonlinear least square method with the MLP 

backpropagation algorithm indicates that BP outperforms the nonlinear least squares 

algorithms of optimization. The ANN ensembles proposed in this study generate 

distributions for pile depth that take into account the randomness in the predictions, and 

in this sense provide a prediction band for pile depth in addition to point estimates. 

Although the present study was based on a working database populated in the 

TxDOT Bryan District, the proposed methodology can be applied to make predictions of 

any unknown foundation in any other district, as long as the models are trained using the 

evidence about known foundations characteristics in that district.  
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6. CHAPTER VI 

DETERMINATION OF UNKNOWN FOUNDATIONS FOR 

BRIDGE SCOUR: A PROBABILISTIC APPROACH 

Introduction  

The predictions generated by the deterministic method do not address the uncertainties 

in the foundation characteristics initiated from the soil properties, bearing capacity 

calculations, and load estimations. Considering also the uncertain nature of scour, there 

is an inherent need to define a probabilistic approach that can provide the level of 

uncertainty in the prediction of unknown foundations’ characteristics, by making use of 

available evidence of known foundations.  

A probabilistic methodology and modeling approach are proposed in this study, 

incorporating Artificial Neural Networks (ANNs) and the Bayesian inference method. 

The equations of Bearing Capacity (BC) of foundations are considered as the forward 

models, as they control the physics of bridge stability by satisfying the static equilibrium 

between foundation load and allowable bearing capacity. The loads are first calculated 

for a bridge, and then the BC of the foundation is approximated using ANN models 

based on load, soil resistance (if known), location, and year the bridge was built. Given 

the BC and loads, the inverse problem can be solved for the unknown parameters of the 

bridge using the Bayesian solution. This method provides posterior joint probability 

distributions for the unknown foundation dimensions and soil characteristics that allow 

for generating point estimations and determining the uncertainty of the estimations. 
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The proposed methodology was implemented using the data collected for bridges 

located in the TxDOT’s Bryan District (Briaud et al. 2011). The characteristics of the 

database were explained in Chapter V. This method can further be extended to be used 

in other districts in Texas, as well as in other states. The proposed method was validated 

by a case study performed on a bridge in the Bryan District. 

Approach 

Methodology 

Figure  6-1 depicts the basic components of the evaluation of unknown foundations using 

the proposed probabilistic approach. This method is composed of two stages, where each 

stage includes two basic procedures. Figure  6-2 presents a flowchart of the probabilistic 

method. The steps are described below: 

Step 1: Data Extraction. The items required for implementing the probabilistic 

approach are retrieved from the NBI. These parameters are used as input data for the 

ANN models to estimate the BC: 

 Item 3: County (code). 

 Item 16: Latitude (to be converted to degrees). 

 Item 17: Longitude (to be converted to degrees). 

 Item 27: Year built. 
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Figure  6-1. Diagram of the Two Main Steps Required for the Probabilistic Determination of 
Unknown Foundations  
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Figure  6-2. Flowchart of the Probabilistic Approach 
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The soil boring data were found in the bridge inspection folders and bridge plans, 

and provides the type and strength of soil based on the results of the Texas Cone 

Penetration (TCP) test. The ultimate skin friction (fu) and point bearing (qp) of the piles 

were computed from the TCP values using the correlation graphs (see Figure  5-5 and 

Figure  6-3) provided by TxDOT Geotechnical Manual.  

 

 

                                      a)                                                                                   b) 

Figure  6-3. (a) Point Bearing versus TCP for a) TCP < 100 blows/ft, and b) for TCP > 100 blows/ft 
(TxDOT 2006) 

 

Step 2: Dead Load and Live Load Calculation. The method proposed to 

estimate with reasonable accuracy the dead loads and live loads for bridge foundations 

was earlier explained in Chapter V (Briaud et al. 2012). This procedure was designed 

based on the standard bridge design sheets that the TxDOT uses (TxDOT 2011). The 

total load for a bridge bent was obtained using the standard tables, depending on 

roadway width and span length. The live load was calculated based on the standard 

design vehicles specified by the AASHTO-LRFD. The dead load was then calculated by 

subtracting the live load from the total load.  
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Step 3: Obtaining Foundation Properties. In a situation where foundation type 

is known, the size and number of piles (columns) for a bridge bent are required. If the 

foundation type is unknown, at least the number of piles per bent needs to be estimated 

based on the roadway width of the bridge or by other means such as visiting the bridge. 

Step 4: Predicting Bearing Capacity Using the ANN Models. Depending on the 

soil boring data and foundation type information availability, one of the following sub-

steps is implemented: 

Step 4-1: If the foundation type is unknown and soil boring data is not available, 

the ANN model MLP-BC00 is recommended to predict the BC for the interior bent of 

the bridge.  It is assumed here that the foundation type cannot be inferred with the 

desired level of confidence using a classifier model or by visiting the site. 

Step 4-2: This step addresses a situation where the foundation type is unknown 

but the soil boring data is available:  

Step 4-2-1: Compute the average ultimate skin friction (fu) and the average TCP 

value along the piles from the nearest borehole data. 

Step 4-2-2: Implement the ANN model, MLP-BC01, to predict the BC of the 

bridge interior bent. 

Step 4-3: This step addresses a situation where the foundation type is known and 

the soil bore data is available. 

Step 4-3-1: Compute the average ultimate skin friction (fu) and the average TCP 

value along the piles from the nearest borehole data. 

Step 4-3-2: Implement MLP-BC11 to predict the BC of the bridge interior bent. 



  

136 

 

Step 4-4: If the foundation type is known but the soil bore data is not available, 

then one can implement the ANN model MLP-BC10 to predict the BC of the bridge 

interior bent. 

Step 5: Implementing the Bayesian Paradigm. The probabilistic solution to the 

inverse problem is implemented by the use of the Bayesian paradigm and MCMC 

simulations. This process finds samples from predefined distributions for the unknown 

variables (prior distributions) and generates posterior distributions by keeping only those 

samples that minimize the difference between BC function and the ANN-predicted 

value. Finally, this method provides posterior probability distributions for the foundation 

type, foundation dimensions, and soil resistance, depending on what the unknowns are.  

Load and Bearing Capacity Calculations 

The load and BC of the foundations of the bridges included in the working database 

were calculated based on the standards of AASHTO and the TxDOT Geotechnical 

Manual. As explained earlier, a simple, efficient method was proposed by the authors to 

obtain the dead and live loads of the bridges based on the standard bridge sheets 

provided by the TxDOT. As a result of this process, the dead load, live load, and BC 

were calculated for the known bridges in the database. This database served to train the 

ANNs to predict the BC.  

As of 2000, Load Factor Design (LFD) has been used for on-system bridges in 

Texas; however, either Allowable Stress Design (ASD) or LFD may have been used for 

off-system bridges (AASHTO 2002a; TxDOT 2002). The BCs of deep foundations were 

calculated based on the standards given by the TxDOT’s Geotechnical Manual. 
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However, this  manual does not include any standards for the design of spread footings; 

therefore, the AASHTO LRFD standards (AASHTO 2002b) were followed.  

The allowable bearing capacity equations used in this study for the four 

foundations types are presented below:  
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where, 

 (kN) : Allowable Bearing Capacity

 : Number of Piles/Shafts in a Bent

 (kPa) :  Point Bearing Capacity of Piles

 (kPa) :  Skin Friction of Piles
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3

 ( ) : Width of Spread Footings

 ( ) : Length of Spread Footings

 (m) : Spread Footings Embedment Depth

 (deg) :  Soil Friction Angle

' (kN/m ) : Soil Buoyant Density

f

B m

L m

D





 

A resistance factor of 0.5 was applied to obtain the allowable bearing capacity. 

For drilled shafts, in addition to the resistance factor, a reduction factor of 0.7 was 

applied to the skin friction to take into account the soil disturbance during the drilling. 

Also, for drilled shafts and piles in interior bents of river crossing bridges, the first 3 m 

of piles were disregarded in the BC calculations. This procedure is due to the potential 

erosion from scour, future excavation, and seasonal soil moisture variations. Also, the tip 

area for the steel piling was calculated assuming that a soil plug was formed at the tip. 

The friction angles of cohesion less soils were obtained using the graphs recommended 

by the TxDOT’s Geotechnical Manual based on the TCP value at the bottom of the 

spread footings. Also, the density of soil was obtained based on the TCP values and their 

relation to the SPT values (Touma and Reese 1972). 

ANN Models for Bearing Capacity Prediction 

A set of MLP networks were developed and trained using the working database to 

predict the BC of a bridge's foundation based on the relevant features of that bridge. The 

networks included one hidden layer containing 20 neurons with tan-sigmoid activation 

functions. Table  6-1 presents the input parameters for the MLP models.  For those cases 

where the soil properties were not available, the average TCP and skin friction were 
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removed from the input parameters. The input parameters selected for BC approximation 

were those that participated in the design of the bridge foundation, including dead load, 

live load, soil resistance, year built, and location. The longitude and latitude of the 

bridges correlated with the soil characteristics and were particularly informative when 

the soil bore data was not available. Also, the year built and county of location took into 

account the typical construction and design criteria of bridges in different counties 

throughout the years. 

 

Table  6-1. Input Parameters of the MLP Models for BC Prediction 
Parameter   Min Max Mean Std. Dev. Median 

Load Elements 
Dead Load (per bent) (kN) 562.26 10324.80 1824.22 1687.44 1312.40 
Live Load (per bent) (kN) 229.53 1323.90 449.05 223.89 409.91 

Soil Properties 
Ave. TCP (blows/ft) 10.50 1414.75 140.83 149.86 107.40 
Skin Friction (kPa) 28.73 1942.97 207.54 170.28 166.62 

Location and Time 
County 21 239 141.58 69.82 154 
Year Built 1925 2008 1968 25 1963 
Latitude (deg) 30.06 31.97 30.87 0.45 30.83 
Longitude (deg) 95.42 97.25 96.24 0.46 96.16 

 

 

The MLP networks weights and biases were adjusted by BP algorithm using the 

LM optimization method. The performances of the networks were evaluated using R2 

and RMSE. The random subsampling method was performed by iteratively sampling 

data points for training, validation, and test data sets, generating a new network each 

time. The networks were trained using the training datasets, and their performances were 

monitored using the validation datasets. The training was stopped following the criteria 
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described earlier in Chapter II. The performances of the networks were examined using 

the test datasets that had not been presented to the networks. Ten thousand networks 

were generated using the random subsampling method to form an ensemble of MLP 

networks for the prediction of the BC.  The networks with R2 < 0.8 over the test datasets 

were removed from the ensemble. 

Ten ensembles of the MLP networks were developed to predict the BC based on 

the availability of soil and foundation type information, named as MLP-BC 11, 10, 01 

(Conc, DrSh, Steal, Spread), 00 (Conc, DrSh, Steal, Spread). The first index represented 

the information regarding foundation type and the second index represented the soil bore 

data availability. An index value of 0 implied that the information was unavailable for 

the corresponding parameter or that it was unknown, whereas an index of 1 implied the 

opposite case.  

Bayesian Inference 

As explained earlier in Chapter III, Bayesian inference is a methodology used to 

estimate the probability of a vector of variables when new evidence becomes available. 

In this study, Bayesian inference method was coupled with MCMC method to generate 

posterior probability distributions for the unknown parameters of a bridge foundation. 

The data collected from the bridges in the Bryan District served to construct prior 

probability distributions for the unknown parameters, and the BC of the foundation 

predicted using the ANN models was considered as a measurement or observation.   

The Metropolis algorithm was implemented and the candidate samples were 

drawn from a multivariate normal distribution. The convergence of the Markov chains 
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were evaluated using diagnostic plots, including plots of the samples' cumulative mean 

and standard deviation with respect to the sample sequence. Also, the autocorrelation of 

the sample chain and the acceptance rate of the sampler were observed to ensure that the 

chain was not sticky and had a good mixing. 

Model Parameters and Prior Distributions 

Four types of problems were defined based on possible scenarios of the foundation type 

and soil characteristics information, including problems 11, 10, 01, and 00. For each of 

the four scenarios, the unknown parameters associated with the bridge foundation and 

soil were considered to be model parameters and defined as random variables (see 

Table  6-2). 

 

Table  6-2. Problem Types and Unknown Parameters 

 Problem Model Parameters
Problem11-Conc dpCn 
Problem11-DrSh dpDr 
Problem11-Steel dpSt 
Problem11-Spread B, L, Df 
Problem10-Conc dpCn, fu, qp 
Problem10-DrSh dpDr, fu, qp 
Problem10-Steel dpSt, fu, qp 
Problem10-Spread B, L, Df, C, φ 
Problem01 *FT, dpCn, DCn, dpDr, DDr, dpSt, ASt, B, L, Df 
Problem00 FT, dpCn, DCn, dpDr, DDr, dpSt, ASt, B, L, Df, fu, qp, φ 

   *FT: Foundation Type 

 

The lognormal distribution was considered to be the prior distribution of the 

model parameters (except for foundation type) according to their data distributions. 

Also, for all problem scenarios, the unknown parameters were assumed to be 



  

142 

 

independent. Table  6-3 presents the prior distribution of the unknown parameters. The 

histograms and the fitted prior distributions of some of the model parameters are 

presented in Figure  6-4. The histograms were created using the database of bridges in the 

Bryan district. 

 

Table  6-3. Definition of the Model Parameters and Their Corresponding Prior Distributions 

Parameter Explanation Prior 
Foundation Type  

FT 1 = Conc, 2 = DrSh, 3 = Steel, 4 = Spread Discrete distribution 
Concrete Piling  

dpCn (m) pile depth for concrete piles Lognorm (2.07,0.30) 
DCn (cm) dimension of pile (cross section) Lognorm (3.64,0.06) 

Drilled Shafts  
dpDr (m) pile depth for a drilled shafts Lognorm (2.53,0.30) 
DDr (cm) diameter of drilled shafts Lognorm (4.41,0.17) 

Steel Piling  
dpSt (m) pile depth for steel piles Lognorm (1.97,0.26) 
ASt (cm2) cross section area for steel piles Lognorm (6.80,0.08) 
 Spread Footing  
B (m) width of a spread footing Lognorm (0.45,0.20) 
L (m) length of a spread footing Lognorm (2.09,1.13) 
Df (m) embedment depth for spread footings Lognorm (0.77,0.86) 

Soil Resistance  
fu (kPa) skin friction Lognorm (5.13,0.74) 
qp (kPa) point-bearing capacity Lognorm (7.58,0.98) 
φ (deg) friction angle of soil (for spread footings) Lognorm (3.70,0.21) 
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                                        a)                                                                           b)                  

 

                                               c )                                                                           d)                  
Figure  6-4. Histograms and Prior Distributions of a) FT, b) dpDr, c) fu, and d) qp 

 
 

Likelihood Function 

Likelihood was defined as the probability distribution of the model prediction error, and 

error was defined as the difference between the predicted BC by the ANN models and 

the estimated BC from the analytical equations (Qa). The Probability Density Function 

(PDF) of the error was considered to be a normal distribution.  Therefore, the likelihood 

function can be written as: 
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where µ is the mean and σ is the standard deviation of the error distribution.  Note that 

the error function depends upon the BC equation; thus, four different likelihood 

functions were incorporated for the four types of foundation. Figure  6-5 shows the 

Cumulative Density Function (CDF) of the prediction error generated by MLP-BC10-

DrSh and MLP-BC11-DrSh models.   

 

 

 

Figure  6-5. Empirical CDF of the Error Distributions for Left) MLP-BC10-DrSh, Right) MLP-
BC11-DrSh 
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Results and Discussion 

ANN Models for Bearing Capacity Prediction 

The ensemble predictions, as well as the average predictions for the bridge piers in the 

database, are shown in Figure  6-6 for the ten MLP-BC models. Note that the R2 and 

RMSE presented for each model correspond to the average predictions. Also, the BC 

represents the allowable bearing capacity of a bridge interior prier (bent). Table  6-4 

summarizes the average performances of the MLP-BC ensembles for the train and test 

datasets. The performances of the models can be compared through the R2 of the average 

predictions presented in Figure  6-6. Comparing MLP-BC10 with MLP-BC11, it was 

observed that adding the soil strength parameters as inputs to the models significantly 

improved the performances of the models for the four foundation types.  

It can be observed that for all ten MLP-BC models, except for MLP-BC-Spread, 

the order of magnitude of R2 of average predictions was around 0.8 or above. Due to the 

limited amount of data for spread footing, the MLP-BC-Spread could not perform as 

good as the other models.    
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a)    b)  

c)   d)  

e)    f)  

                            
Figure  6-6. a) MLPBC00, b) MLPBC01, c) MLPBC10-Conc, d) MLPBC11-Conc, e) MLPBC10-

DrSh, f) MLPBC11-DrSh, g) MLPBC10-Steel, h) MLPBC11-Steal, i) MLPBC10-Spread, j) 
MLPBC11-Spread (R2 and RMSE Refer to the Average Predictions) 
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g)    h)  

                                                                                 

i)     j)                                  

Figure 6-6. Continued 
 

Table  6-4. Performances of the MLP-BC Models for Prediction of Bearing Capacity 
                     Subset 

Model 
No of Data 

Train Test 
Rave

2  RMSEave  Rave
2  RMSEave  

MLP-BC00 279 0.87 4712.11 0.87 5334.54 
MLP-BC01 279 0.90 4119.76 0.87 5002.68 
MLP-BC10-Conc 278 0.89 439.64 0.88 539.40 
MLP-BC11-Conc 278 0.96 265.21 0.88 534.95 
MLP-BC10-DrSh 79 0.85 1923.00 0.84 1943.83 
MLP-BC11-DrSh 79 0.98 658.56 0.85 2503.87 
MLP-BC10-Steel 30 0.92 183.86 0.91 224.45 
MLP-BC11-Steel 30 1.00 21.89 0.91 213.59 
MLP-BC10-Spread 9 0.78 17250.08 0.89 14433.74 
MLP-BC11-Spread 9 0.76 17756.91 0.90 14146.91 
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Validation of the Bayesian Probabilistic Method 

In order to validate the proposed probabilistic approach a case study was performed on a 

bridge in the Bryan District. The bridge was analyzed under the four possible scenarios 

of Problems 11, 10, 01 and 00. Pier 2 of the bridge with ID 17-166-0209-05-075 was 

selected for this purpose.  This bridge founded on drilled shafts over Big ELM creek and 

is located one mile south of FM 485. Table  6-5 shows the actual values of the bridge's 

parameters.  The BC for this bridge was first predicted by the ANN models, and then the 

foundation and soil characteristics were estimated through the MCMC simulations and 

compared with the actual values. 

 

Table  6-5. Actual Values of Parameters for Bridge 17-166-0209-05-075 - Pier 2 
Parameter Actual Value 

FT 1 (DrSh) 

DDr 76 cm (30 in)  

dpDr 11.28 m (37 ft) 

GN 3 

qp 3,255.9 kPa (34 tsf) 

fu 157.1 kPa (1.64 tsf) 

BCANN 6,638.3 kN (746.17 tons) 

Qa 5475.9 kN (615.51 tons) 

 kN/m3 (0.075 tcf ) 24.72 ߛ												

												߮	 30  deg 
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Problem 11: Known Foundation Type and Soil Resistance Parameters 

The MCMC simulations were performed for 1,000,000 iterations. Figure  6-7 shows the 

sample chain for the pile depth (dpDr), along with the cumulative mean and standard 

deviation of the samples (convergence analysis plots). The autocorrelation function 

(ACF) for the chain is also presented.  

 

 

 

Figure  6-7. a) MCMC Samples for dpDr, b) Cumulative Mean, c) Cumulative Standard Deviation, 
and d) Autocorrelation Function of the Samples - Problem 11 

 

 

The convergence analysis plots demonstrated that the Markov chain achieved a 

stationary state, as the samples had a good mixing over the range of the parameter, and 

a) b) 

c) d) 
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the cumulative mean and standard deviation became stationary after a number of initial 

samples. Also, it was observed that the autocorrelation between the samples was fairly 

small indicating that the samples were independent and could represent the posterior 

probability distribution. Figure  6-8 shows the posterior marginal empirical Cumulative 

Density Function (CDF) of dpDr. The CDF provides a confidence interval for the 

prediction of depth. It also allows for determining the probability of exceeding a specific 

minimum foundation depth (e.g., calculated depth of scour) which is equivalent to the 

probability that the scour vulnerability of the bridge foundation will be more than a 

threshold value. Figure  6-9 compares the prior and marginal posterior distributions of the 

pile depth. It was observed that the effect of the new evidence (foundation BC) on the 

mean and the uncertainty of the foundation depth were remarkable. 

  

  

Figure  6-8. CDF of Marginal Posterior Distribution of dpDr - Problem11 
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Figure  6-9. Prior and Marginal of the Posterior Distributions for dpDr - Problem11 
 

 

Table  6-6 presents the expected value (E), standard deviation (Std), 95% 

confidence interval (CI95%), mode value (i.e., the most frequently occurring value), and 

the 10th quantile of the posterior distribution for dpDr. It was observed that the mean of 

the marginal posterior distributions for dpDr were close to the actual pile depth. 

According to these statistics, the expected value (mean) of the pile depth was 13 m; 

considering the 10th quantile of the distribution, the probability that the pile depth would 

be less than 10 m was only 10 %. Thus, 10 m would be a sufficiently conservative 

estimation for the embedment depth. 

 

Table  6-6. Statistics of the Posterior Distribution of the Model Parameter - Problem11 
Statistics Value 

dpDr (m) 
E 13.53  
Std  2.56  
CI 95% [8.86  18.84] 
Mode 12.90 
10th quantile 10.32  
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Problem 10:  Known Foundation Type and Unknown Soil Resistance Parameters 

The MCMC simulations were performed for 1,000,000 iterations for the same bridge 

pier, this time considering the scenario of Problem 10. Figure  6-10 shows the 

simulations for all the model parameters (dpDr, fu, and qp). 

 

 

Figure  6-10. Sample Chains for the Model Parameters - Problem10 
 

 

The convergence analyses indicated that the sample chain converged to the target 

distribution as the mean, and standard deviation became constant after some point in the 

sample chain. The posterior CDF of the drilled shaft depth as well as the skin friction 

and point bearing capacity at the tip of shaft are presented in Figure  6-11. A comparison 

between the priors and the marginal of the posterior distributions of all the model 

parameters are presented in Figure  6-12. It was observed that the uncertainty of the 
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parameters estimations was reduced by introducing the BC of the foundation. Also, the 

maximum likelihood value (mode of the posterior distribution) approached the actual 

value for all three parameters.  

 

 

Figure  6-11. CDF of the Marginal Posterior Distribution of dpDr, fu, and qp - Problem10 
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Figure  6-12. Prior and Marginal Posterior Distributions for dpDr, fu, and qp - Problem10 
 

 

Figure  6-13 shows the prior and posterior joint relative frequency density for 

dpDr and fu. The prior joint distribution confirmed that the two parameters were assumed 

independent; whereas the posterior joint distribution illustrated that there was actually a 

negative nonlinear correlation between them. Figure  6-14 shows the posterior joint 

relative frequency for dpDr versus qp, and fu versus qp.   
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                                 a)                                                                                    b) 
Figure  6-13. Prior (a) and Posterior (b) Joint Relative Frequency Density of dpDr vs. fu - Problem 10 

 

 

a)                                                                               b) 

Figure  6-14. Posterior Joint Relative Frequency Density of a) dpDr vs. qp, b) fu vs. qp - Problem 10 
 

 

Table  6-7 provides the statistics of the posterior distribution. It was observed that 

the mean of the marginal posterior distributions for dpDr, fu, and qp were close to the 

actual values. 
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Table  6-7. Statistics of the Posterior Distribution of Model Parameters - Problem10 
         Parameter     
Statistics             

dpDr (m) fu (kPa) qp (kPa) 

E 11.72 228.87 4194.29 
Std  3.16 97.68 2087.57 
CI 95% [6.72 18.98] [90.97 463.48] [1179.76 9166.15] 
Mode 12.56 189.60 3297.97 
10th quantile 8.05 123.53 1826.14 

 

 

Problem 01: Unknown Foundation Type and Known Soil Resistance Parameters 

As for Problems 11 and 10, the MCMC simulations were performed considering the 

scenario of Problem 01. The MCMC simulations were performed for 2,000,000 

iterations. Figure  6-15 shows the simulations for the ten model parameters. Note that in 

this scenario, the foundation type (FT) was a discrete variable that took values 1, 2, 3 

and 4, corresponding to DrSh, Conc, Steal, and Spread, respectively.  The value of the 

FT sample at each iteration of the MCMC simulations determined the likelihood 

function to be used among the four possible functions.  

The convergence analysis plots (i.e., the cumulative mean and standard 

deviation) showed that the chains achieved a stationary state. Figure  6-16 shows the 

prior and posterior distributions for FT. Notice that the relative frequency for DrSh 

(which is the actual foundation type) significantly increased as compared to the other 

foundation types, which indicated that the foundation was a drilled shaft. 
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Figure  6-15. Sample Chains for the Model Parameters- Problem 01 

 

 

                                               a)                                                                                b) 
Figure  6-16. Prior (a) and Posterior (b) Distributions for FT- Problem01 

 
 

The empirical CDF of the posterior distributions for the unknown parameters 

including the dimensions of the foundations (dpCn, dpDr, dpSt, and Df) are shown in 

Figure  6-17. 
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Figure  6-17. Empirical CDF of the Marginal Posterior Distributions of the Foundation’s Dimensions 
for Conc, DrSh, Steal, and Spread – Problem01 
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Figure 6-17. Continued 

 
 
 

Figure  6-18 shows the prior and the marginal of the posterior PDFs for the depth 

and size of the drilled shaft. Similar plots were generated for all other model parameters. 

It was observed that the posterior distributions were more certain (lower standard 

deviation) compared to the prior distributions. However, the uncertainty reduction was 

not as significant as those obtained for Problems 11 and 10. The reason for this could be 

due to the fact that there was only one data point used as evidence, while there were ten 

unknown parameters. Also, the large standard deviation of the error distribution made 

the posterior lean more on the prior distribution. The same simulation with a small 
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standard deviation of error distribution was performed, and a significant decrease was 

observed in the uncertainty of the parameters. 

 

 

Figure  6-18. Prior (a) and Posterior (b) Joint Relative Frequency Density of dpDr and fu - Problem 01 
 

Figure  6-19 presents the prior and posterior joint relative frequency densities for 

dpDr and DDr. The prior joint distribution demonstrates the independence of the two 

model parameters, while a slight negative correlation was observed between the dpDr and 

DDr in the posterior joint distribution.  

  

a) b) 
b)  

Figure  6-19. Prior (a) and Posterior (b) Joint Relative Frequency Density of dpDr vs. DDr - Problem 
01 
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Figure  6-20 shows the posterior joint relative frequency density of the foundation 

dimensions for Conc, Steal, and Spread footing.  

a)  b)                                  

c)        d)  

e)  

Figure  6-20. Posterior Joint Relative Frequency Density of Foundation Dimensions for a) Conc, b) 
Steal, and c, d, e) Spread - Problem 01 
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Table  6-8 summarizes the statistics of the posterior distributions for the model 

parameters. It was observed that the mean of the marginal posterior distributions for the 

dpDr and DDr were close to the actual values. 

 
 

Table  6-8. Statistics of the Posterior Distributions of the Model Parameters - Problem01 
Parameter 

 
Statistics         

FT=1 (Conc) FT=2 (DrSh) FT=3 (Steal) FT=4 (Spread) 
dpCn 
(m) 

DCn 
(cm) 

dpDr 
(m) 

DDr 
(cm) 

dpSt 
(m) 

ASt 
(cm2) 

B 
(m) 

L 
(m) 

Df 
(m) 

E 9.22 38.35 13.47 84.66 7.93 909.68 1.48 2.53 2.89 
Std 2.60 2.34 3.53 13.49  1.88  71.16  0.26  1.17 1.78 
CI 95% [5.06 

15.13] 
[33.99 
43.15]

[7.67 
21.38]

[60.81 
113.46]

[4.80 
12.05]

[778.45 
1056.26] 

[1.01 
2.07] 

[0.74 
5.22]

[0.63 
7.27]

Mode 9.70 38.38 10.63 80.21 6.25 886.58 1.65 2.57 3.86 
10th quantile 6.16 35.38 9.26 68.02 5.66 819.93 1.16 1.17 1.09 

 

Problem 00: Unknown Foundation Type and Unknown Soil Resistance Parameters 

Herein, the worst case scenario was assumed where there was no information about the 

foundation type or soil. 1M samples were generated by MCMC simulations. Figure  6-21 

shows the sample chains for the 14 model parameters. The convergence analysis plots 

showed that the chains for all the model parameters converged to stationary 

distributions, except for the spread footing parameters. By looking at the FT simulations 

it was observed that only a limited number of samples of FT=4 (spread footing) were 

accepted through the Markov chain sampler which indicates that the foundation was 

very unlikely to be a spread footing. 
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Figure  6-21. Sample Chains for the Model Parameters - Problem 00 
 

The posterior CDFs of the unknown parameters are provided in Figure  6-22 

including the foundation’s dimensions for Conc, DrSh, Steal, and Spread, as well as the 

point bearing capacity and skin friction for DrSh, and the friction angle for Spread.  
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Figure  6-22. Empirical CDF of the Marginal Posterior Distributions of the Foundation Dimensions 

for Conc, DrSh, Steal, and Spread, and the Soil Parameters – Problem00 
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Figure 6-22. Continued 

 
 

Figure  6-23 compares the prior and posterior marginal distributions for dpDr, DDr 

and FT. The increase in the probability of having DrSh in the posterior distribution of 

the FT indicated the actual foundation type.  Also, the results of this problem reflected 

only a small difference between the prior and posterior distributions, due to the total lack 
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of information about the substructure characteristics of this bridge, as compared to other 

problem types. 

 

 

                                               a)                                                                               b) 
 

            

                                                                                        c)                                                                                             

Figure  6-23. Prior and Marginal Posterior Distributions for a) dpDr, b) DDr, and c) FT - Problem00 
 

 

The joint relative frequency distributions of the prior and posterior distributions 

for the DDr and dpDr are presented in Figure  6-24. It was observed from this figure that 

the uncertainty of the parameters was reduced in the posterior, as compared to the prior 

distributions. Also, a slight negative correlation between the depth and size of the drilled 
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shafts was observed in the joint posterior distribution. Figure  6-25 presents the posterior 

joint probability distributions for the foundation depth versus foundation size and soil 

resistance parameters for DrSh, Conc, and Steal. A negative correlation was observed 

between the depth of the drilled shaft, and the skin friction and point bearing capacity. A 

similar trend was also observed between the fu and qp, which confirmed that in softer 

layers of soil near surface, foundations need to go deeper to reach harder layers for 

gaining more BC.  

 Table  6-9 provides the statistics for the model parameters obtained from the 

corresponding posterior marginal distributions. Notice that the expected values of the dpDr, 

DDr, fu, and qp were fairly close to the actual values for the given bridge. 

 

 

 

                                        a)                                                                                   b) 
 

Figure  6-24. Prior (a) and Posterior (b) Joint Relative Frequency Density of dpDr vs. DDr - Problem00 
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                                         a)                                                                                   b) 

  
                                        c)                                                                                 d) 

 
e) 

Figure  6-25. Posterior Joint Relative Frequency Density of  a) Foundation Depth vs. Skin Friction, 
b) Foundation Depth vs. Point Bearing Capacity, c) Skin Friction vs. Point Bearing Capacity, for 

DrSh, and Foundation Depth vs. Foundation Size for d) Conc, e) Steal - Problem 00 
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Table  6-9. Statistics of Posterior Distributions of the Model Parameters - Problem00 
       Parameter 
 
Statistics         

dpCn (m) DCn (cm) fu (kPa) qp (kPa) 

FT=1, Conc 
E 8.75 38.25 310.26 6591.16 
Std  2.38 2.26 186.73 5558.87 
CI 95% [4.98  

14.3] 
[34.04 42.85] [75.65 788.10] [874.29 21628.35] 

Mode 10.68 35.84 229.82 1691.12 
10th quantile 5.97 35.41 118.74 1629.84 

FT=2, DrSh 
       Parameter 

 
Statistics         

dpDr (m) DDr (cm) fu (kPa) qp (kPa) 

E 12.67 81.81 211.63 4261.32 
Std  3.36 12.65 113.00 3245.31 
CI 95% [7.33 

20.36] 
[59.82 109.09] [60.33 495.08] [727.78 12030.33] 

Mode 16.94 93.98 119.70 6735.76 
10th quantile 8.74 66.29 90.97 1314.78 

FT=3, Steel 
       Parameter 

 
Statistics         

dpSt (m) ASt (cm2) fu (kPa) qp (kPa) 

E 7.90 907.29 312.18 5640.26 
Std  1.66 65.23 160.88 4502.64 
CI 95% [5.10 

11.55] 
[786 1042.19] [80.44 710.54] [817.79 16958.14] 

Mode 6.85 907.48 242.27 3354.47 
10th quantile 5.86 824.13 130.23 1535.03 

FT=4, Spread 
       Parameter 

 
Statistics         

B (m) L (m) Df  (m) fu (kPa) φ (deg) 

E 1.96 2.45 3.05 238.44 42.33 
Std  1.17 2.16 3.05 183.86 22.26 
CI 95% [1.14 5.21] [0.35 9.30] [0.65 14.29] [59.37 730.65] [22.27 89.98] 
Mode 1.19 2.89 1.13 118.74 34.46 
10th quantile 1.18  0.80 1.13  93.84 27.84 
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Conclusions 

A probabilistic method incorporating ANNs and the Bayesian inference method was 

proposed in this study. A step by step guideline also was provided that can be used to 

infer the unknown characteristics of a bridge foundation based on the bridge's 

superstructure, load, soil, location, and year built. This method can generate point 

estimations, as well as confidence interval estimations, for both the foundation and soil 

characteristics of the bridge. Thus, this method can be used by DOTs to predict the 

foundation type and foundation embedment depth to determine the scour vulnerability of 

bridges with unknown foundations in order to reclassify these bridges.  

The ANNs proved to be successful in estimating the BCs of bridges with various 

foundation types based on load, soil resistance, location, and year built. The Bayesian 

paradigm and the MCMC sampling method were incorporated to quantify the 

uncertainty in the unknown foundation determination process. This was achieved by 

conditioning estimates of the characteristics of the unknown foundation on the 

superstructure characteristics and the estimate of the corresponding BC. The generated 

marginal posterior CDFs for the unknown parameters allow for the making of 

probabilistic inferences for these parameters. For instance, using the CDFs it is possible 

to determine the probability of having an embedment depth less than the calculated 

depth of scour, and consequently to assess the scour failure risk.  

The proposed method was cross-validated by a case study on a bridge located in 

the Bryan District. The results showed that the actual values of the bridge parameters 
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(assumed to be unknown) were close to the predicted mode and the expected values of 

the corresponding posterior distributions.  

The results of this study showed that the proposed methodology and guidelines 

could be used to evaluate unknown bridge foundations with a reasonable level of 

accuracy and a very low cost and therefore, allowing for making better decisions 

regarding countermeasures and plans of action. This method could be implemented by 

DOTs in any district so long as the models are trained using the evidence from known 

foundations characteristics in that region. 
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7. CHAPTER VII 

UNCERTAINTY QUANTIFICATION FOR ONE-DIMENSIONAL 

DIFFUSION PROCESSES 

Introduction and Literature Review 

As discussed in Chapter I, a physical system or phenomena is described through a 

forward model, which is often formulated in the form of an ordinary differential 

equation (ODE) or a partial differential equation (PDE). An inverse problem arises when 

one is interested in estimating the parameters of the forward model given the 

observations or measurements of the system. Given a value for the vector of model 

parameters (m), the solution of a forward problem is unique. However, given a vector of 

observations (d), often the solutions for the inverse problem is not unique, as many 

values of the parameters may fit the model through the observations (Kaipio and 

Somersalo 2005; Tarantola 2005).  

In this sense, the uncertainties in the solution of an inverse problem initiates from 

the measurement (observational) uncertainties and the modeling imperfections 

(modelization uncertainties) (Tarantola 2005). In a more general categorization, these 

uncertainties can be either aleatoric or epistemic. Aleatoric uncertainties are defined as 

the inherent variability in outcome of experiments that cannot be reduced by more 

accurate measurements. On the contrary, epistemic uncertainties are not inevitable and 

can be reduced by more accurate models and measurements and therefore, include the 

uncertainties related to the definition and calibration of forward models.  
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In this study, the uncertainties are defined by a Gaussian distribution imposing a 

covariance operator. Thus, the modelization uncertainty is described as (Tarantola 

2005): 

                             
11

p( | ) exp ( ( )) ( ( ))
2

T      
 

Td m d g m C d g m                               ( 7-1) 

 

where CT is the covariance matrix representing the modelization uncertainty, and α 

represents the normalizing constant. Likewise, considering Cd as the covariance matrix, 

the measurements (observational) uncertainty can be represented as: 

                                       
11

p ( ) exp ( ) ( )
2

T
D obs obs      

 
dd d d C d d                              ( 7-2) 

 
where dobs is the vector of measured (observed) values, and d represents the true value of 

the measurements. Using the Bayesian paradigm, as described earlier in Chapter III, the 

uncertainty of the model parameters can be represented by a posterior distribution that 

can be written as: 

                     
11

p( | ) p ( )exp ( ( ) ) ( ( ) )
2

T
M obs obs      

 
Dm d m g m d C g m d               ( 7-3) 

 

where CD= Cd+CT, a combination of model and observational uncertainties, and p ( )M m  

is the prior distribution over the model parameters’ space M. It can be shown, 

mathematically, that this is valid even for nonlinear forward problems (Tarantola 2005). 

As opposed to frequentist methods, Bayesian inference allows for incorporating 

the current beliefs and state of knowledge about the unknown parameters through prior 

probability distributions. Besides, it is the only method allowing for conditioning on the 
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observations by updating the current beliefs when new information becomes available 

(Robert 2007). The prior distributions are often selected in an ad-hoc manner or as to 

simplify the computations. Nevertheless, even if a prior distribution does not exactly 

reflect our prior information, the corresponding posterior distribution can still provide 

useful information about the parameter for situations where limited amount of 

observations are available (Hoff 2009). 

Computing the posterior statistics often require solving difficult integrals over 

the corresponding density function, thus numerical methods are applied to approximate 

the posterior quantities. These methods include asymptotic, deterministic (e.g. 

quadrature), and random sampling (Monte-Carlo) methods. However, for non-conjugate 

prior distributions, the posterior distributions are often computed up to the normalizing 

constant (due to the complicated integral evaluation), which makes the direct sampling 

impossible (Hoff 2009). Also, for high-dimensional posterior distributions, Monte Carlo 

methods are often inefficient. In such cases, the Markov Chain Monte Carlo (MCMC) 

method is utilized to generate samples and construct the posterior probability 

distributions of the model parameters (Tarantola 2005; Gamerman and Lopes 2006; 

Marzouk et al. 2007). This method has been widely applied to solve the inverse 

problems in variety of fields including geophysics and geotechnical engineering (Wang 

and Zabaras 2004; Medina-Cetina 2006; Gallagher et al. 2009; Briaud et al. 2011). 

The forward model estimation is an essential part in the Bayesian solution of 

inverse problems. In many problems, especially those described by partial differential 

equations, the analytical solution is not available. In such cases, numerical solutions are 



  

175 

 

applied to approximate the forward model and give rise to the numerical uncertainty. 

There are various techniques to propagate the uncertainty from the model parameters to 

the forward model predictions, including Monte-Carlo (MC) simulation and the 

stochastic Polynomial Chaos (PC) and Karhunen-Loeve (KL) expansion methods 

(Marzouk et al. 2007). For complex forward models running the MC uncertainty 

propagation method can be computationally intensive, as it requires the forward model 

to be evaluated for each sample. An alternative approach to avoid evaluating the forward 

model for each sample is to represent the stochastic process using series analogues to 

Fourier-type such as the KL and the PC expansion methods. The KL method, first 

derived by Karhunen (1946) and Loeve (1963), expands the process function by the 

spectral decomposition of the corresponding covariance function of the process. Wiener 

(1938) first introduced the theory of the Homogenous Chaos and Ghanem and Spanos 

(2003) implemented the Polynomial Chaos method into the finite element context. This 

method suggests the spectral expansion of random variables and stochastic processes 

using a set of orthogonal polynomials and has been successfully applied for uncertainty 

assessment in various fields including structural mechanics (Ghanem et al. 2000), flow 

and transport in porous media (Ghanem 1998, 1999; Yang et al. 2004; Dostert et al. 

2008), fluid dynamics (Mathelin et al. 2005; Najm 2009), and diffusion problems (Xiu 

and Em Karniadakis 2002; Elman et al. 2011).  

The purpose of this study is to evaluate the epistemic uncertainties initiated from 

model (parameters) calibration, also known as parametric uncertainty, and the numerical 

uncertainty (associated with the numerical solution of the forward problem) in the 
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solution of one-dimensional diffusion processes, under varying conditions of 

observations. The effects of the number of measurements (observations) and the 

correlation between the measurements on minimizing the uncertainty in the solution of 

the inverse diffusion problem were investigated.  

The ordinary differential equation (ODE) of diffusion equation has been widely 

applied to model various processes such as radioactive decay, heat transfer, and 

chemical reactions. In geotechnical engineering in particular, the transport of 

contaminants in saturated soils is modeled by the diffusion equation, which controls the 

design of waste containment barriers (Goodall and Quigley 1977; Gillham et al. 1984; 

Quigley and Rowe 1986; Daniel and Shackelford 1988; Desaulniers and Cherry 1989; 

Johnson et al. 1989; Shackelford 1990; Shackelford and Daniel 1991a, b; Shackelford 

1993) . Also, the movement of water (moisture) in unsaturated soils is described by a 

diffusion-type water-flow equation (Gardner and Mayhugh 1958a; Gardner and 

Mayhugh 1958b; Bresler and Hanks 1969; Warrick et al. 1971; Bresler 1973; Goodall 

and Quigley 1977; Quigley and Rowe 1986; Daniel and Shackelford 1988; Desaulniers 

and Cherry 1989; Shackelford 1990, 1993). 

Three scenarios depicting three different observations conditions were defined, 

focusing on the effect of number of data and the correlation structure. The data was 

synthesized using a benchmark model. The inverse problem was then solved based upon 

both the analytical and numerical solution of the forward model. The numerical 

uncertainty was evaluated by comparing the corresponding results of the two solutions. 
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Upon solving the inverse problem, the uncertainty was propagated using the MC 

method. Figure  7-1 presents the steps of the proposed approach. correlated 

 

 

Figure  7-1. Flowchart of the Approach 
 

Problem Definition 

The one-dimensional diffusion (decay) process is modeled with the following ODE 

which serves as the forward model in this study:  

                                                                     ( ) ( ) 0u t cu t c                                                             ( 7-4) 
                                                      

                                                                      (0)u I I R                                                                   ( 7-5) 
where I is the initial condition and c is the coefficient of diffusion. The analytical 

solution for this ODE can be written as:   
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                                                                          ( ) ctu t I c Ie                                                              ( 7-6) 
A numerical solution based on the Forward Euler method is introduced to 

estimate 1 1( ) :i iu u t   

                                                                           
1

(0)

i i i

u I

u u c tu


  

                                                          ( 7-7)

  
where it i t   and t  is the time step size, which can be defined as a hyper parameter.  

Based on this solution, ku  for an arbitrary time step k  can be written as:  

                                                                          
(1 )k

ku I c t  
                                                          ( 7-8) 

The total error between the analytical estimation of the process and the actual 

value consists of two different error parts (assuming zero measurement error):  

                                                             0total k F Ne u U e e                                                     ( 7-9) 

  

1. Numerical Error: 0( )k Nu u T I c e      

2. Fitting Error: 0 0( ) Fu T I c U e      

where 0U  is the actual or measurement value.  

The inverse problem is defined as solving the forward problem given a set of 

observations 1( )nu u  for I and c.  

Data Synthesis  

In this study, the following benchmark model is considered and a set of observations 

were synthesized based on this model:  

                                                                               
0 21

( )

t

i

u e

E u u

 


                                                              ( 7-10) 
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The following domains are assumed for both generating the data and later on, for 

implementing the Bayesian solution of the inverse problem:  

                                                                            

0 10

0 10

0 5

0

I

c

t

u I

 
 
 
 

                                                               ( 7-11) 

 

Table  7-1 presents the definition of the three scenarios of observations conditions 

that were considered for the assessment of uncertainty. The uncertainty in the solution of 

the inverse problem were compared for the case with only limited data available (Single 

Observation) with the case with substantial amount of data (Many Observations). Also, 

the effect of data correlation on the inverse problem solution was explored when all 

other conditions remain the same (Correlated Observations). N denotes the number of 

data per location, T denotes the number of locations in the t domain, L is the location of 

data (t), and  denotes the correlation structure of the data.  

In order to investigate the effect of data correlation, the correlation structure of 

the data is first defined arbitrarily as the following function:  

                                                                       
(1 )( ) e                                                                  ( 7-12) 

 

where   is called the correlation length and   is the lag distance for a stationary 

random process. The correlation function is presented in Figure  7-2 for 0 2  1  5     , 

which represent slightly, moderately and highly correlated structure respectively.  
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Table  7-1. Definition of the Observational Scenarios 
Observational Scenario Definition 

Single Observation (SO) 1N  , 1T  , 1 25L    

Many Observations (MO)
10N  , 10T  , 0 5L  , 

0 
Correlated Observations (CO) 10N  , 10T  , 0 5L  , 1   

 

 

Figure  7-2. Correlation Functions for Different Values of the Correlation Length 
 

Uncorrelated Observations 

Data is first generated by drawing independent samples from a normal distribution 

considering the expected value to be defined by the benchmark model at the specific t 

locations. For cases with multiple data locations, the locations (t) are randomly selected 

from a uniform distribution. The variance of the normal distribution at each location is 

considered to be equal to 0.01:  

                                         
0 2

1 . ( 0 1)it
n{u u } i i d N e                                                    ( 7-13) 
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 Figure  7-3 presents the synthetic data with the benchmark model for the SO and 

MO cases. 

 

 

      a)                                                                           b) 
Figure  7-3. Synthetic Data and the Benchmark for Uncorrelated Observations, a) SO, b) MO 

 

Correlated Observations 

The data is synthesized using the Karhunen-Loeve (KL) expansion which admits the 

following equation:  

                                                             0

( ) ( ) ( ) ( )n n n
n

u t u t f t   




  
                                    ( 7-14) 

 

where n{ }  is a set of random variables that are selected using Monte-Carlo sampling 

from a standard normal distribution, n  and ( )nf t  are the eigenvalues and eigenvectors 

of the covariance kernel, respectively. In order to compute the covariance matrix and its 

eigenvalues and eigenvectors, the t domain was finely discretized and 1000 KL 

realizations were generated along the domain of t. Afterwards, 10 KL realizations were 
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sampled at each of the specific locations (t) defined earlier as in the MO case. The 

synthesized data generated in this way are presented in Figure  7-4. The eigenvalues and 

eigenvectors corresponding to the covariance function are shown in Figure  7-5 and 

Figure  7-6, respectively. The surface representation of the correlation function is also 

presented in Figure  7-7.   

 

 

Figure  7-4. KL Synthesized Data for 1   
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Figure  7-5. Eigenvalues of the Covariance Matrix 
 

 

 

Figure  7-6. Eigenvectors of the Covariance Matrix 
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Figure  7-7. Correlation Function Representation 
 

 
For the purpose of the Bayesian inversion using the MCMC method, the 

covariance of the likelihood distribution was initially defined as the empirical covariance 

matrix computed from the synthetic data. Figure  7-8 and Figure  7-9 represent the 

empirical covariance and correlation of the synthetic data. The empirical covariance 

matrix was not positive definite, therefore computing the likelihood of the data was not 

possible. In order to address this problem, the covariance matrix was computed based on 

the actual correlation function defined earlier by Eq. 7-12.  
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Figure  7-8. Empirical Covariance Function Obtained from the 10 KL Realizations 
 

 

Figure  7-9. Empirical Correlation Function Obtained from the 10 KL Realizations 
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Methodology  

The parametric uncertainty was evaluated through the Bayesian inversion method. 

Considering {I c} θ , the vector of model parameters and 1 m{u u }  d  , the vector of 

new observations of the process then  p θ  represents the prior distribution and  p d θ  

represents the likelihood. According to the Bayes’ theorem, the posterior probability 

density of model parameters, given the observed data, can be written as:  

                                                             
   

p p
p

p p d


 


θ d θ

θ d
θ d θ θ

                                                    ( 7-15) 

        

The Markov Chain Monte Carlo (MCMC) method is used to sample from the 

posterior distribution and approximate the corresponding statistics.  

The standard deviation of the error (σ) and the step size (Δt) are two parameters 

that can be assumed to be known a priori; or can be considered as hyper-parameters and 

evaluated through the Bayesian inference.  Assuming the prior distributions to be known 

and all the model parameters to be independent a priori, the following equation holds:  

                   
                                 p( ) p( ) p( ) p( ) p( ) p( )I c t I c t I c t             d d                         ( 7-16) 

     

The effects of the numerical error (associated with domain discretization) on the 

overall uncertainty in the solution of inverse problem were studied by performing three 

groups of numerical experiments:  

1) Analytical solution of the ODE (Ana),  

2) Numerical solution of the ODE with constant 0 001t   (Const), and  
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3) Numerical solution of the ODE, assuming that t  is a hyper-parameter (Var).  

These numerical experiments were performed considering the three observations 

scenarios: SO, MO, and CO. 

The numerical uncertainty in the solution of an inverse problem initiates from the 

numerical solution of the forward problem, therefore it depends on the size of domain 

discretization. In this study, the impact of the time step size on the uncertainty was 

measured by two quantities: the Numerical Bias (NB) and the Numerical Uncertainty 

(NU) given by the following equations:  

                         
     
     

0.2 0.2, , {1,0.2, } , , {1,0.2, }

, , , ,

t t
num ana

num ana

NB E I c u e E I c u e

NU Std I c u Std I c u

    

 
      ( 7-17) 

 

The inverse problem was solved for different values of step size

0.1,0.01,0.001,0.0001t  , and NB and NC were measured for each numerical 

experiment. These experiments were performed twice to ensure repeatability. 

Figure  7-10 presents the design of numerical experiments performed in this study. 

 

 

Figure  7-10. Design of the Numerical Experiments 
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Results and Discussion 

Bayesian Inversion, Unknown Parameters: , ,I c t  

This section presents the results of the MCMC simulations for the three experiments 

explained in the previous section. As the variance of the synthetic data is known to be 

0.01, σ was considered to be known a priori. Also non-informative priors were 

considered for parameters I and c . However for the cases where t  was considered as a 

hyper-parameter, a lognormal prior (see Figure  7-11) was introduced with mean and 

variance equal to 0.0001:  

                                                                       

( )

13 82

3 03

t lognorm  



 
  
 


                                                   ( 7-18) 

 

 

Figure  7-11. Prior Probability Distribution of Δt 
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Single Observation 

A single observation at t=1.25 (one fourth of the t domain) was synthesized following 

the process explained previously, and the inverse problem was solved using the Bayesian 

inference method.  

Figure  7-12 shows the cumulative mean of the simulated Markov-Chains and 

indicates that the chains converged to the stationary distributions. However, the mean of 

the chains did not converge to the true values of I and c (i.e. 1 and 0.2). The reason could 

be the insufficient amount of observations and the fact that the problem was under-

determined (there was only one data, but more than one parameter to infer). For the case 

that Δt was introduced as a hyper parameter, the chain for Δt did not converge, even after 

3 M simulations.  

The posterior distributions of the model parameters were constructed from the 

generated MCMC samples after the burn-in point. As described earlier in Chapter III, the 

burn-in point is referred to the sample in a Markov chain where the sample chain 

converges to a stationary distribution. Figure  7-13 shows the posterior joint distributions 

of the model parameters. It was observed that the inversion results were very similar for 

the different experiments, indicating that the numerical error did not have significant 

impact on the solution of the inverse problem in this case. Also, Figure  7-14 shows the 

empirical CDFs of the marginal posterior distributions. Comparing the experiment 

incorporating constant Δt with the case where Δt was considered as a hyper-parameter, it 

was observed that the constant Δt resulted in more accurate parameterization and less 

uncertain posterior model predictions.  
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a) 

 

b) 

Figure  7-12. Cumulative Mean of the Sample Chains, a) Analytical and Numerical Model with 
Δt=0.001, and b) Numerical Model with Δt=hyper-parameter – SO 
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The uncertainty was propagated from the model parameters to the model 

predictions by taking a large number of samples from the posterior probability 

distributions of the model parameters using the MC method, and then running the 

forward model for each sample. As a result of this process 100 K posterior model 

predictions or realizations of the process were generated. The first and second moments 

(expected value and variance) were then computed to evaluate the uncertainty in the 

model predictions. 

 

   

                                     a)                                                                               b) 

 

           c) 
Figure  7-13. Posterior Joint PDF of I and c for, a) Analytical Model, b) Numerical Model with 

Δt=0.001, and c) Numerical Model with Δt=hyper-parameter – SO 
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Figure  7-14. Posterior CDFs of I and c – SO 
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is around 2×10-5, the standard deviation is 5.3×10-5, and the 95% Confidence Interval is 

[0 0.2×10-5].  

 

 

 

                                                  a)                                                                           b) 

 

      c) 
 

Figure  7-15. Posterior Model Predictions, a) Analytical, b) Numerical Model with Δt=0.001, and c) 
Numerical Model with Δt=hyper-parameter - SO 
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Figure  7-16. Mean and Standard Deviation of the Posterior Model Predictions (Realizations) vs. 
Time – SO 
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Figure  7-17. Posterior Joint PDF of Δt with I and c - SO 
 

 

Figure  7-18. Posterior CDF of Δt - SO 
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chains converged to the true values of I and c (i.e. 1 and 0.2), as opposed to the SO case. 

For the experiment that Δt was introduced as a hyper-parameter, the chain became 

stationary at around 4 M iterations; however, the other two model parameters converged 

to the true values rather quickly.  

Figure  7-20 presents the posterior joint distributions of the model parameters. 

The inversion results were very similar for the different experiments. This indicated that 

the numerical error did not have a significant impact on the solution of the inverse 

problem when there was a substantial amount of data. Also, Figure  7-21 shows the 

empirical posterior CDFs of the model parameters. The posterior CDFs of the model 

parameters for the three experiments showed a slight difference as oppose to the SO 

case. Figure  7-22 presents a sample of realizations of the process. Figure  7-23 presents 

the variation of the mean and the standard deviation of the process with respect to t. 

Figure  7-24 presents the posterior joint PDF of Δt versus I and c. It was observed that, 

similar to SO case, the model parameters were independent from the hyper-parameter. 

Figure  7-25 presents the posterior CDF of Δt. The mean value of Δt is around 5×10-5, the 

standard deviation is 1.7×10-4, and the 95% Confidence Interval is [0 0.5×10-3]. 
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a) 

 

b) 

Figure  7-19. Cumulative Mean of the Sample Chains, a) Analytical and Numerical Model with 
Δt=0.001, and b) Numerical Model with Δt=hyper-parameter – MO 
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a)                                                                               b) 

 

c) 

Figure  7-20. Posterior Joint PDF of I and c, a) Analytical, b) Numerical Model with Δt=0.001, and c) 
Numerical Model with Δt=hyper-parameter – MO 

 

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25  

I

 

c

0

100

200

300

400

500

600

700

800

900

1000

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25  

I

 

c

0

100

200

300

400

500

600

700

800

900

1000

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25  

I

 

c

0

100

200

300

400

500

600

700

800

900

1000



  

199 

 

 

Figure  7-21. Posterior CDFs of I and c – MO 
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a) b) 

  

c) 

Figure  7-22. Posterior Model Predictions, a) Analytical, b) Numerical Model with Δt=0.001, and c) 
Numerical Model with Δt=hyper-parameter - MO 
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Figure  7-23. Mean and Standard Deviation of the Posterior Model Predictions vs. Time - MO 
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Figure  7-24. Posterior Joint PDF of Δt with I and c – MO 
 

 

Figure  7-25. Posterior CDF of Δt - MO 
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However, similar to MO case, the chain associated with the Δt showed slow 

convergence.  

 

 

Figure  7-26. Cumulative Mean of the Model Parameters, a) Analytical and Numerical Model with 
Δt=0.001, and b) Numerical Model with Δt=hyper-parameter – CO 
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Figure  7-27 shows the posterior joint distributions of I and c and Figure  7-28 

shows the posterior empirical CDFs of the model parameters. It was observed that the 

posterior CDFs of the model parameters were not significantly affected by the numerical 

uncertainty.  

 

 

                                          a)                                                                               b) 

 

c) 
Figure  7-27. Posterior Joint PDF of I and c, a) Analytical, b) Numerical Model with Δt=0.001, and c) 

Numerical Model with Δt=hyper-parameter – CO 
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Figure  7-28. Posterior CDFs of I and c - CO 
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100K realizations of the process were generated (Figure  7-29) by sampling from 

the posterior distributions of I and c. Figure  7-30 presents the variation of the mean and 

standard deviation of the posterior predictions versus time. It was observed that the 

correlation in the data caused a bias in the estimation of the initial value (I) of the 

process (note the discrepancy between the trend of the process and the benchmark). It 

was shown that the numerical error and uncertainty due to the time discretization were 

insignificant even under correlated data structure, as long as the time step is substantially 

small. 

As it is observed in Figure  7-31 the joint distributions of Δt versus I and c are 

very similar to the case with uncorrelated observations, and the model parameters show 

independency with the hyper-parameter. Figure  7-33 presents the posterior empirical 

CDF of the time step that shows slightly smaller mean, comparing to the uncorrelated 

case. The mean value of the posterior distribution for Δt is 2.5×10-5, the standard 

deviation is 7.2×10-5, and the 95% CI is [0 0.2×10-3]. 

Figure  7-32 presents the joint posterior distribution for the model parameters 

comparing the uncertainty over the three scenarios of observations. It was observed that 

the uncertainty decreased significantly as more observations become available, also 

correlated observations resulted in more uncertainty in the solution of the inverse 

problem. 
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a)                                                                  b) 

 

c) 
Figure  7-29. Posterior Model Predictions, a) Analytical, b) Numerical Model with Δt=0.001, and c) 

Numerical Model with Δt=hyper-parameter – CO 
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Figure  7-30. Mean and Standard Deviation of Posterior Model Predictions vs. Time - CO 
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Figure  7-31. Posterior Joint PDF of Δt with I and c – CO 
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a) 
 

 
b) 
 

 
c) 
 

Figure  7-32. Comparing the Uncertainty Resulted from the Three Scenarios Using the Same Scales, 
a) SO, b) MO, c) CO. 
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Figure  7-33. Posterior CDF of Δt - CO 
 

Statistical Inference 

Table  7-2 presents a summary of the statistics for the posterior PDFs of the model 

parameters. Also, Table  7-3 presents the statistics associated with the model predictions 

at the one-half (t=2.5) and the end of the domain (t=5). This allows for a better analysis 

of the error and uncertainty changes due to varying evidence conditions. Also, 

Figure  7-34 illustrates the bias (error between the true value and the mean of the 

posterior PDFs) in the estimation of I, c, and u, and the total uncertainty, i.e. the standard 

deviation of their posterior PDFs for the three observations scenarios.  

 

 

 

 

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

0.2

0.4

0.6

0.8

1

Δ t

C
u
m

u
la

tiv
e
 D

e
n
si

ty

Empirical CDF



  

212 

 

Table  7-2. Statistics of the Posterior Distributions of the Model Parameters 
 E (I) Std (I) E (c) Std(c) Corr(I,c) 

  SO-Ana  5.5939 2.5930 1.3444 0.4753 0.9473 

  SO-Const  5.6551 2.6145 1.3515 0.4783 0.9473 

  SO-Var  6.1497 2.6201 1.4254 0.4785 0.9458 

  MO-Ana  1.0142 0.0185 0.2044 0.0107 0.6732 

  MO-Const 1.0141 0.0186 0.2044 0.0108 0.6762 

  MO-Var  1.0145 0.0185 0.2045 0.0108 0.6748 

  CO-Ana  0.9590 0.0314 0.2003 0.0166 0.5989 

  CO-Const  0.9591 0.0315 0.2003 0.0165 0.6006 

  CO-Var  0.9591 0.0311 0.2005 0.0165 0.5946 

 
 

 

Table  7-3. Statistics of the Posterior Distributions of the Model Predictions 
 E(u(2.5)) Std(u(2.5)) E(u(5)) Std(u(5)) 

  SO-Ana 0.2082 0.1593 0.0376 0.1038 

  SO-Const 0.2069 0.1601 0.0378 0.1040 

  SO-Var 0.2360 0.1763 0.0509 0.1245 

  MO-Ana 0.6084 0.0121 0.3653 0.0159 

  MO-Const 0.6083 0.0121 0.3652 0.0160 

  MO-Var 0.6084 0.0121 0.3651 0.0160 

  CO-Ana 0.5812 0.0198 0.3528 0.0241 

  CO-Const 0.5813 0.0197 0.3529 0.0240 

  CO-Var 0.5812 0.0197 0.3526 0.0239 
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Figure  7-34. Bias and Uncertainty of Model Parameters and Predictions for Different Observations 

Conditions, a) SO, b) MO, c) CO 
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Figure 7-34. Continued 
 

According to the results, the most accurate estimations of the model parameters 

belonged to the case with many but uncorrelated Observations (MO), followed by the 

case with correlated data structure (CO), and finally the single observation case (SO). 

This can be observed by comparing the discrepancy between E(I) and E(c) with 1 and 

0.2, respectively, that represents the bias or systematic uncertainty of the solution. Also, 

the difference in Std(I), Std(c), and Std(u) for the three scenarios of observations  shows 

that correlation in the data structure increases the uncertainty of the model parameters 

and predictions. It was observed that increasing the number of observations significantly 

reduces the uncertainty. Also, increasing the correlation and intensity of the observations 

reduced the correlation between the model parameters I and c.  
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The effects of numerical uncertainty can be better observed through comparing 

the results of the analytical model (Ana), numerical model with 0.001t   (Const), and 

numerical model with Δt=hyper-parameter (Var). It was observed that, conditioned on 

having substantial amount of observations, the bias and the uncertainties in the solution 

of the inverse problem were not highly affected by the numerical error. However, to 

achieve this, the step size needs to be sufficiently small or assessed as a random variable 

through the Bayesian inversion. Also, it was noticed that the constant time step resulted 

in less bias and uncertainty. In order to control the Monte-Carlo error, all the statistics 

were computed with the same number of samples.  

Effect of Time Discretization on Numerical Uncertainty and Computational Cost 

Figure  7-35 and Figure  7-36 present the variation of the numerical bias and uncertainty 

with respect to the time step size. It was observed that the numerical bias reached its 

minimum at 0.001t  . Also, the numerical bias for the SO case was much higher than 

the MO and CO cases. The numerical uncertainty for the SO case decreased significantly 

by reducing the time, whereas for the MO and CO cases [0.001 0.01] was the optimum 

range.  

The computational cost was measured by the average time required for executing 

a single MCMC simulation. The average time of simulations vs. the time step size is 

presented in Figure  7-37. These simulations were carried out on a Quad-core CPU 

running at 2.4 GHz, with 64 GB RAM. As it was observed, the computation cost is 

almost the same for the different time steps. However, the cost for the MO experiment 



  

216 

 

was almost 107 times more than SO. Also, the cost of computation for CO was slightly 

more than MO.  

 

    

                                       a)                                                                               b) 

 

      c) 

Figure  7-35. Numerical Bias vs. Time Step for Different Observations Conditions, a) SO, b) MO, c) 
CO 
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            a)                                                                           b) 

 

        c) 

Figure  7-36. Numerical Uncertainty vs. Time Step for Different Observations Conditions, a) SO, b) 
MO, c) CO 
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Figure  7-37. Computational Cost vs. Time Step Size for Different Observation Conditions 
 

Full Bayesian Inversion 
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assumptions about the value of error standard deviation (σ), the prior PDF parameters for 

the time step, i.e. the mean and standard deviation of the normal prior distribution (µ and 
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introduced as hyper-parameters and inferred through the MCMC simulations.  
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another inversion was performed considering a normal prior distribution for σ with a 

mean of 0.1 and standard deviation of 1. Although, the chains did not converge even 

with an informative prior for σ, the sample chain showed a higher convergence rate. The 

third inversion was performed considering σ equal to 0.1 (its true value). Figure  7-38 

shows the cumulative mean of the samples obtained from 8M simulations for this 

experiment. It was observed that considering a constant standard deviation for the error 

made the convergence significantly faster. Figure  7-39 presents the posterior CDFs of 

the parameters. The posterior joint PDFs for some of the parameters are presented in 

Figure  7-40.   

 

 

Figure  7-38. Cumulative Mean of the Samples for the Full Bayesian Inversion - SO (known σ) 
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Figure  7-39. Posterior CDFs of the Parameters for the Full Bayesian Inversion - SO 
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Figure  7-40.  Joint Probability Distributions of the Parameters for the Full Bayesian Inversion - SO 
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Many Observations 

Figure  7-41 shows the cumulative mean of the samples obtained from the full Bayesian 

inversion for the MO scenario. Comparing this with the cumulative mean in Figure  7-19, 

one can observe that the mean of the samples converged to the same values for the 

model parameters, I and c up to three digits precision. Also, the sample chain for σ 

converged to its true value (0.1). However, the sample chains of other hyper-parameters 

did not achieve stationarity. The cumulative mean of Δt varied in a range between 

0.5×10-4 and 6×10-4. This range is slightly higher than the value that the sample 

converged to, in the case where the prior distribution parameters were known a priori. 

Figure  7-42 presents the posterior CDFs of the unknown parameters. Also, Figure  7-43 

presents the posterior joint distributions of the unknown parameters. It was observed that 

the posterior distributions for both Δt and µ were multi-modal.  

 

 
Figure  7-41.  Cumulative Mean of the Samples for the Full Bayesian Inversion – MO 
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Figure  7-42. Posterior CDFs of the Parameters for the Full Bayesian Inversion - MO 
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 Figure  7-43. Joint Probability Distributions of the Parameters for the Full Bayesian Inversion - MO 
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            Figure 7-43. Continued 
 

Correlated Observations 

As indicated earlier, the correlation structure of the observations was modeled based on 

the function given by Eq. 7-12, where τ represents the correlation length parameter that 

controls the amount of correlation between the observations. In this analysis, for the sake 

of simplicity, the inverse of τ was considered and denoted by 1


 . 

Figure  7-44 shows the cumulative mean of the samples obtained from the full 
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and to some extent η show multi-modal joint distributions. The model parameters I and c 

show positive correlation, whereas δ and σ showed negative correlation. This negative 

correlation indicates that as the correlation between the observations increase, the 

standard deviation of the error (the uncertainty in the model predictions) increases as 

well.  

  

 

Figure  7-44. Cumulative Mean of the Samples for the Full Bayesian Inversion - CO  
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Figure  7-45. Posterior CDF of the Parameters for Full Bayesian Inversion - CO 
 



  

228 

 

 

     

 

                
 

Figure  7-46. Joint Probability Distributions of the Parameters in the Full Bayesian Inversion – CO 
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Figure 7-46. Continued 
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Conclusions 

Both parametric and numerical uncertainties in the solution of inverse problems were 

explored using the Bayesian inference method. This study specifically focused on the 

uncertainty induced by the numerical solution of the ODE. The numerical uncertainty 

was evaluated through series of experiments performed under three scenarios of 

observations. The effects of observations’ intensity and correlation, the discretization 

(step) size, and the prior and likelihood formulations were explored.  

It was shown that higher correlation in the structure of the data can increase both 

the parametric and numerical uncertainty in the solution of the inverse problem, 

whereas, increasing the data intensity caused drastic decrease in the uncertainty.  

The numerical uncertainty evaluated was insignificant for the experiments with 

many observations, considering the step size sufficiently small or as a hyper-parameter. 

Comparing the experiment incorporating constant Δt with the cases where Δt was 

considered as a hyper-parameter, it was found that the constant Δt resulted in the more 

accurate parameterization and less uncertain posterior model predictions. However, for 

the case with a single observation the numerical uncertainty was significantly higher and 

decreased by reducing the step size. For the experiments with many observations, the 

numerical uncertainty reached its minimum in the range [0.001 0.01] of the step size, 

whereas, the optimum value for the time step was 0.001 in terms of numerical bias.  

The computational cost for the MCMC simulations was measured for the 

different experiments. The computational cost did not change much by decreasing the 

time step for this problem. However, the computational cost of simulation for the case of 
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many observations was 107 larger than the single observation case. Also, the cost for the 

case with correlated observations was higher than the uncorrelated data.  
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8. CHAPTER VIII 

CONCLUSIONS 

Theoretical and Methodological Conclusions  

Different aspects of developing deterministic and probabilistic solutions for inverse 

problems in geotechnics were explored in this study. A variety of computational 

methods including linear and nonlinear regression, ANNs, Bayesian inference, and the 

MCMC method were implemented. The theoretical and computational merits and 

limitations of these methods were discussed in application to prediction of stiffness and 

strength of organic soils, determination of unknown foundations for bridges subjected to 

scour, and uncertainty quantification for one-dimensional diffusion processes.  

This study showed how ANN modeling can successfully be applied to develop 

nonlinear predictive models for high-dimensional problems, where many factors impact 

the response variables. The generated response graphs demonstrated that ANNs can 

account for the nonlinear relations between the response and the input variables. The 

ANN-based sensitivity analysis techniques that were implemented in this study allowed 

for ranking the input parameters, in terms of their statistical significance, and eliminating 

the redundant parameters. 

Various types of ANN models including MLP, RBF, GRNN, and PNN were 

implemented for both approximation and classification of the target variable. It was 

found that MLP outperforms RBF and GRNN for high-dimensional problems where 

there is limited training data. In classification problems, MLP outperformed PNN in 
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terms of the classification accuracy. The uncertainty of the model predictions was 

assessed by generating an ensemble of networks, using the random subsampling method 

(also known as Monte-Carlo cross-validation). It also allowed for obtaining PDFs and 

making interval estimations for the quantity of interest.  

The Levenberg-Marquardt algorithm proved to be an effective optimization 

technique for MLPs. A comparative analysis between the nonlinear least square 

optimization and the BP algorithm showed that BP outperforms the regular nonlinear 

least square method. Also, the ANN models showed significantly better performances as 

compared to the benchmark LR models. 

The Bayesian probabilistic solution developed for the inverse problems allowed 

for incorporating the current knowledge about the unknown quantities (in terms of prior 

probability distributions) and updating that based on the new observations. This resulted 

in narrower posterior probability distributions for the parameters and reducing the 

uncertainty in the predictions. The Bayesian inference method generated joint 

probability distributions of the unknown parameters. The joint distributions not only 

allowed for making probabilistic inferences (for instance, a value for the embedment of a 

foundation that the actual depth would be less than that with 10% probability), but also 

made it possible to evaluate the correlation between the unknown quantities.  
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Prediction of the Stiffness and Strength of Stabilized Organic Soils 

Conclusions and Remarks 

 ANN modeling was successfully applied to develop nonlinear models for the 

mechanical properties of stabilized organic soils with different organic contents and 

a variety of binder mixes.  

 According to the stepwise parameter selection and the sensitivity analysis method, 

grout to soil ratio, quantity of binder, binder mix type, amount of organic matter, 

water to binder ratio, temperature, and time (aging) were the most influential 

parameters, respectively for the prediction of E and UCS.  

Recommendations for Future Research 

 Investigating the impact of other influential parameters on stiffness and strength of 

the stabilized organic soils that were not considered in this study, for instance soil 

type and grain distribution. 

 Developing a probabilistic predictive model by implementing a Bayesian paradigm 

in computing the weights of the neural networks.  

 Implementing other feature selection methods to identify the most significant 

parameters and developing more effective reduced models. 
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Determination of Unknown Foundations for Bridge Scour 

Conclusions and Remarks 

 The developed ANN classifiers facilitated the categorization of the unknown 

foundations as either deep or shallow. They were also able to accurately classify the 

foundations among the eight different common types. 

 The results of the predicted versus the actual pile depth showed that the ANN models 

were able to predict the embedment depth of deep foundations with R2
ave > 0.80.  

 The generated posterior CDFs for the foundation type, the foundation dimensions, 

and the soil resistance parameters allowed for making probabilistic inferences for 

these parameters, including point estimations and interval estimations.  

 The estimated 10% quantile of the probability distributions for the embedment depth 

of the foundations provided a conservative estimation to calculate the scour failure 

risk.   

Recommendations for Future Research 

 Incorporating the data from geophysical experiments on unknown foundations of 

bridges, such as the resistivity imaging and induced polarization methods, into the 

ANN models to develop more reliable predictive models. 

 Performing finite element analyses to predict the depth of the unknown foundations 

by modeling the superstructure and substructure of bridges.  
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Uncertainty Quantification for One-Dimensional Diffusion Processes 

Conclusions and Remarks 

 The time step size Δt was introduced as a hyper-parameter and was evaluated as a 

random variable through the Bayesian inversion. Except for the single observation 

scenario, the MCMC simulations for Δt converged to stationary distributions.   

 The numerical uncertainty decreased by reducing the step size for the experiment 

with a single observation. However, for the case with many observations the 

numerical uncertainty reached its minimum in the range [0.001 0.01] of the step 

size. The optimum value for the time step was 0.001 in terms of numerical bias. 

 According to results, higher correlation in the structure of the data increased both 

the parametric and numerical uncertainties in the solution of the inverse problem, 

whereas, increasing the data intensity caused drastic decrease in the uncertainties.  

Recommendations for Future Research 

 Investigating the effect of both parametric and numerical uncertainties in the solution 

of the partial differential equation for diffusion, under different observation 

scenarios. 

 Investigating the computational efficiency of stochastic surrogate models in 

representing the two-dimensional diffusion processes in comparison to the MC 

method. 



  

237 

 

9. REFERENCES 

 

AASHTO (2002a). "AASHTO Standard Specifications for Highway Bridges." American 
Association of State Highway and Transportation Officials, Washington, DC. 

AASHTO (2002b). "LRFD Highway Bridge Design Specifications." American 
Association of State Highway and Transportation Officials, Washington, DC. 

Adeli H. (2001). "Neural Networks in Civil Engineering: 1989–2000." Computer-Aided 
Civil and Infrastructure Engineering, 16(2), 126-142. 

Ahnberg H. (2006). "Strength of Stabilised Soils: A Laboratory Study on Clays and 
Organic Soils Stabilised with Different Types of Binder." Department of Construction 
Sciences Lund University, Lund, Sweden. 

Arangio S. and Bontempi, F. (2010). "Soft Computing Based Multilevel Strategy for 
Bridge Integrity Monitoring." Computer-Aided Civil and Infrastructure Engineering, 
25(5), 348-362. 

Basheer I. A. and Najjar, Y. M. (1995). "A Neural-Network for Soil Compaction." 5th 
Int. Symp. Numerical Models in Geomechanics, G. N. Pande and S. Pietruszczak, eds., 
Roterdam: Balkema. 

Basheer I. A., Reddi, L. N. and Najjar, Y. M. (1996). "Site Characterization by 
Neuronets: An Application to the Landfill Siting Problem." Ground Water, 34(4), 610-
617. 

Bateni S. M., Borghei, S. M. and Jeng, D. S. (2007). "Neural Network and Neuro-Fuzzy 
Assessments for Scour Depth around Bridge Piers." Engineering Applications of 
Artificial Intelligence, 20(3), 401-414. 

Bishop C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press, 
Oxford University Press, Oxford. 

Bresler E. (1973). "Simultaneous Transport of Solutes and Water under Transient 
Unsaturated Flow Conditions." Water Resources Research, 9(4), 975-986. 

Bresler E. and Hanks, R. (1969). "Numerical Method for Estimating Simultaneous Flow 
of Water and Salt in Unsaturated Soils." Soil Science Society of America Journal, 33(6), 
827-832. 



  

238 

 

Briaud J.-L., Medina-Cetina, Z., Hurlebaus, S., Everett, M., Tucker, S., Yousefpour, N. 
and Arjwech, R. (2012). "Unknown Foundation Determination for Scour." Report No. 0-
6604-1, FHWA. 

Chew S. H., Kamruzzaman, A. H. M. and Lee, F. H. (2004). "Physicochemical and 
Engineering Behavior of Cement Treated Clays." Journal of Geotechnical and 
Geoenvironmental Engineering, 130(7), 696-706. 

Clare K. E. and Sherwood, P. T. (1956). "Further Studies on the Effect of Organic 
Matter on the Setting of Soil-Cement Mixtures." Journal of Applied Chemistry, 6(8), 
317-324. 

Consoli N. C., Cruz, R. C., Floss, M. F. and Festugato, L. (2010). "Parameters 
Controlling Tensile and Compressive Strength of Artificially Cemented Sand." Journal 
of Geotechnical and Geoenvironmental Engineering, 136(5), 759-763. 

Consoli N. C., Da Fonseca, A. V., Cruz, R. C. and Heineck, K. S. (2009). "Fundamental 
Parameters for the Stiffness and Strength Control of Artificially Cemented Sand." 
Journal of Geotechnical and Geoenvironmental Engineering, 135(9), 1347-1353. 

Consoli N. C., Foppa, D., Festugato, L. and Heineck, K. S. (2007). "Key Parameters for 
Strength Control of Artificially Cemented Soils." Journal of Geotechnical and 
Geoenvironmental Engineering, 133(2), 197-205. 

Daniel D. and Shackelford, C. (1988). "Disposal Barriers that Release Contaminants 
only by Molecular Diffusion." Nuclear and Chemical Waste Management, 8(4), 299-
305. 

Das S., Samui, P. and Sabat, A. (2011). "Application of Artificial Intelligence to 
Maximum Dry Density and Unconfined Compressive Strength of Cement Stabilized 
Soil." Geotechnical and Geological Engineering, 29(3), 329-342. 

Demuth H., Beale, M. and Hagan, M. (2009). "MATLAB Neural Network Toolbox 
User's Guide." The MathWorks. 

Den Haan E. and Kruse, G. (2007). "Characterisation and Engineering Properties of 
Dutch Peats." Proceedings of the Second International Workshop of Characterisation 
and Engineering Properties of Natural Soils, Singapore. 

Desaulniers D. E. and Cherry, J. A. (1989). "Origin and Movement of Groundwater and 
Major Ions in a Thick Deposit of Champlain Sea Clay near Montreal." Canadian 
Geotechnical Journal, 26(1), 80-89. 

Dostert P., Efendiev, Y. and Hou, T. (2008). "Multiscale Finite Element Methods for 
Stochastic Porous Media Flow Equations and Application to Uncertainty 



  

239 

 

Quantification." Computer Methods in Applied Mechanics and Engineering, 197(43), 
3445-3455. 

Edil T. N. and Den Haan, E. J. (1994). "Settlement of Peats and Organic Soils 
Settlement." ASCE Geotechnical Special Publication, 4(2), 1543-1572. 

Elkordy M. F., Chang, K. C. and Lee, G. C. (1994). "A Structural Damage Neural 
Network Monitoring System." Computer-Aided Civil and Infrastructure Engineering, 
9(2), 83-96. 

Ellis G. W., Yao, C., Zhao, R. and Penumadu, D. (1995). "Stress-Strain Modeling of 
Sands Using Artificial Neural Networks." Journal of Geotechnical Engineering, 121(5), 
429-435. 

Elman H. C., Miller, C. W., Phipps, E. T. and Tuminaro, R. S. (2011). "Assessment of 
Collocation and Galerkin Approaches to Linear Diffusion Equations with Random 
Data." International Journal for Uncertainty Quantification, 1(1), 19-33. 

FHWA (2011). "Unknown Foundations." US Department of Transportation, 
<http://www.fhwa.dot.gov/unknownfoundations/>. 

Gallagher K., Charvin, K., Nielsen, S., Sambridge, M. and Stephenson, J. (2009). 
"Markov Chain Monte Carlo (MCMC) Sampling Methods to Determine Optimal 
Models, Model Resolution and Model Choice for Earth Science Problems." Marine and 
Petroleum Geology, 26(4), 525-535. 

Gamerman D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic 
Simulation for Bayesian Inference. Chapman & Hall/CRC, New York. 

Gardner W. and Mayhugh, M. (1958a). "Solutions and Tests of the Diffusion Equation 
for the Movement of Water in Soil." Soil Science Society of America Journal, 22(3), 
197-201. 

Gardner W. R. and Mayhugh, M. S. (1958b). "Solutions and Tests of the Diffusion 
Equation for the Movement of Water in Soil." Soil Sci. Soc. Am. J., 22(3), 197-201. 

Gevrey M., Dimopoulos, L. and Lek, S. (2003). "Review and Comparison of Methods to 
Study the Contribution of Variables in Artificial Neural Network Models." Ecological 
Modeling, 160(3), 249-264. 

Ghaboussi J. and Sidarta, D. E. (1998). "New Nested Adaptive Neural Networks 
(NANN) for Constitutive Modeling." Computers and Geotechnics, 22(1), 29-52. 

Ghanem R. (1998). "Probabilistic Characterization of Transport in Heterogeneous 
Media." Computer Methods in Applied Mechanics and Engineering, 158(3), 199-220. 



  

240 

 

Ghanem R. (1999). "Stochastic Finite Elements with Multiple Random Non-Gaussian 
Properties." Journal of Engineering Mechanics, 125(1), 26-40. 

Ghanem R., Red-Horse, J. R. and Sarkar, A. (2000). "Modal Properties of a Spaceframe 
with Localized System Uncertainties." 8th ASCE Specialty Conference on Probabilistic 
Mechanics and Structural Reliability, Kareem A, Haldar A, Spencer Jr BF, Johnson EA 
(eds). ASCE: New York, 2000. Number PMC200-269. 

Ghanem R. G. and Spanos, P. D. (2003). Stochastic Finite Elements: a Spectral 
Approach. Courier Dover Publications, Mineola, New York. 

Gillham R. W., Robin, M. J. L., Dytynyshyn, D. J. and Johnston, H. M. (1984). 
"Diffusion of Nonreactive and Reactive Solutes through Fine-Grained Barrier 
Materials." Canadian Geotechnical Journal, 21(3), 541-550. 

Goh A. T. C. (1994a). "Nonlinear Modelling in Geotechnical Engineering Using Neural 
Networks." Australian Civil Engineering Transactions, CE, 36(4), 293-297. 

Goh A. T. C. (1994b). "Seismic Liquefaction Potential Assessed by Neural Networks." 
Journal of Geotechnical Engineering, 120(9), 1467-1480. 

Goh A. T. C. (1995). "Empirical Design in Geotechnics Using Neural Networks." 
Empirical Design in Geotechnics Using Neural Networks, 45(4), 709-714. 

Goh A. T. C. (1996). "Pile Driving Records Reanalyzed Using Neural Networks." 
Journal of Geotechnical Engineering., 122(6), 492. 

Goh A. T. C., Kulhawy, F. H. and Chua, C. G. (2005). "Bayesian Neural Network 
Analysis of Undrained Side Resistance of Drilled Shafts." Journal of Geotechnical and 
Geoenvironmental Engineering, 131(1), 84-93. 

Goh A. T. C., Wong, K. S. and Broms, B. B. (1995). "Estimation of Lateral Wall 
Movements in Braced Excavations Using Neural Networks." Canadian Geotechnical 
Journal, 32(6), 1059-1064. 

Goodall D. C. and Quigley, R. (1977). "Pollutant Migration from Two Sanitary Landfill 
Sites near Sarnia, Ontario." Canadian Geotechnical Journal, 14(2), 223-236. 

Grubb D. G., Chrysochoou, M., Smith, C. J. and Malasavage, N. E. (2010a). "Stabilized 
Dredged Material. I: Parametric Study." Journal of Geotechnical and Geoenvironmental 
Engineering, 136(8), 1011-1024. 

Grubb D. G., Malasavage, N. E., Smith, C. J. and Chrysochoou, M. (2010b). "Stabilized 
Dredged Material. II: Geomechanical Behavior." Journal of Geotechnical and 
Geoenvironmental Engineering, 136(8), 1025-1036. 



  

241 

 

Hampton M. B. and Edil, B. (1998). "Strength Gain of Organic Ground with Cement-
Type Binders." Proceedings of Sessions of Geo-Congress 98, Soil Improvement for Big 
Digs, Geotechnical Special Publication, ASCE. 

Hayashi H. and Nishimoto, S. (2005). "Strength Characteristics of Stabilized Peat Using 
Different Types of Binders." Proceedings of the International Conference on Deep 
Mixing, Stockholm, Sweden. 

Haykin S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall 
International Inc., Upper Saddle River, NJ. 

Hernandez-Martinez F. G. (2006). "Ground Improvement of Organic Soils Using Wet 
Deep Soil Mixing." Ph.D. Thesis, University of Cambridge, Cambridge, UK. 

Hoff P. D. (2009). A First Course in Bayesian Statistical Methods. Springer, New York, 
NY. 

Huttunen E. and Kujala, K. (1996). "On the Stabilization of Organic Soils." Proceeding 
of the Second International Conference on Ground Improvement Geosystems, Tokyo. 

Jelisic N. and Leppanen, M. (2003). "Mass Stabilisation of Organic Soils and Soft Clay." 
Proceedings of the Third International Conference on Grouting and Ground Treatment, 
Geotechnical Publication No. 120, ASCE.  

Johnson R. L., Cherry, J. A. and Pankow, J. F. (1989). "Diffusive Contaminant 
Transport in Natural Clay: A Field Example and Implications for Clay-lined Waste 
Disposal Sites." Environmental Science & Technology, 23(3), 340-349. 

Juang C. H. and Chen, C. J. (1999). "CPT-Based Liquefaction Evaluation Using 
Artificial Neural Networks." Computer-Aided Civil and Infrastructure Engineering, 
14(3), 221-229. 

Kaipio J. P. and Somersalo, E. (2005). Statistical and Computational Inverse Problems. 
Springer, New York, NY. 

Karhunen K. (1946). To the Spectral Theory of Stochastic Processes [in German]. 
Finnish Academy of Sciences, Helsinki, Finland. 

Kawamura K., Miyamoto, A., Frangopol, D. M. and Kimura, R. (2003). "Performance 
Evaluation of Concrete Slabs of Existing Bridges Using Neural Networks." Engineering 
Structures, 25(12), 1455-1477. 

Kaya A. (2010). "Artificial Neural Network Study of Observed Pattern of Scour Depth 
around Bridge Piers." Computers and Geotechnics, 37(3), 413-418. 



  

242 

 

Kim S.-H., Yoon, C. and Kim, B.-J. (2000). "Structural Monitoring System Based on 
Sensitivity Analysis and a Neural Network." Computer-Aided Civil and Infrastructure 
Engineering, 15(4), 189-195. 

Kitazume M. (2005). "Technical Session 2a: Ground Improvement." Proceedings of the 
16th International Conference on Soil Mechanics and Geotechnical Engineering, Vol 5, 
Osaka, Japan. 

Lambrechts J. R., Ganse, M. A. and Layhee, C. A. (2003). "Soil Mixing to Stabilize 
Organic Clay for I-95 Widening." Proceedings of the Third International Conference in 
Grouting and Ground Treatment,, Geotechnical Publication No. 120, ASCE. 

Lee I.-M. and Lee, J.-H. (1996). "Prediction of Pile Bearing Capacity Using Artificial 
Neural Networks." Computers and Geotechnics, 18(3), 189-200. 

Lee T. L., Jeng, D. S., Zhang, G. H. and Hong, J. H. (2007). "Neural Network Modeling 
for Estimation of Scour Depth around Bridge Piers." Journal of Hydrodynamics, Ser. B, 
19(3), 378-386. 

Lek S., Delacoste, M., Baran, P., Dimopoulos, I., Lauga, J. and Aulagnier, S. (1996). 
"Application of Neural Networks to Modelling Monlinear Relationships in Ecology." 
Ecological modelling, 90(1), 39-52. 

Loeve M. (1963). Probability Theory. Graduate Texts in Mathematics, Springer-Verlag, 
New York, NY. 

Marzouk Y. M., Najm, H. N. and Rahn, L. A. (2007). "Stochastic Spectral Methods for 
Efficient Bayesian Solution of Inverse Problems." Journal of Computational Physics, 
224(2), 560-586. 

Maser K. R., Sanqeui, M., Lichtenstein, A. and Chase, S. B. (1998). "Determination of 
Bridge Foundation Type from Structural Response Measurements." Proceeding of the 
Nondestructive Evaluation Techniques for Aging Infrastructure and Manufacturing 
Conference. San Antonio, SPIE, 55-67. 

MathWorks. (2013). < http://www.mathworks.com/>. 

Mathelin L., Hussaini, M. Y. and Zang, T. A. (2005). "Stochastic Approaches to 
Uncertainty Quantification in CFD Simulations." Numerical Algorithms, 38(1-3), 209-
236. 

McCulloch W. and Pitts, W. (1943). "A Logical Calculus of the Ideas Immanent in 
Nervous Activity." Bulletin of Mathematical Biology, 5(4), 115-133. 



  

243 

 

McGinn A. J. and O´Rourke, T. D. (2003). "Performance of Deep Mixing Methods at 
Fort Point Channel." Report to Massachussetts Turnpike Authority, Federal Highway 
Administration Bechtel/Parsons Brinckerhoff, Cornell University. 

Mclemore S., Zendegui, S., Whites, J., Sheppard, M., Gosselin, M., Demir, H., Passe, P. 
and Hayden, M. (2010). "Unknown Foundation Bridges Pilot Study." Report to Federal 
Highway Administration & Florida Department of Transportation. 

Medina-Cetina Z. (2006). "Probabilistic Calibration of a Soil Model." A Ph.D. 
Dissertation, Johns Hopkins University, Baltimore. 

Mercado E. J. and O'Neil, M. W. (2003). "Methods to Measure Scour Depth and the 
Depth of Unknown Foundations." 3rd International Conferences on Applied 
Geophysics, Orlando, FL. 

Mitchell J. K. (1981). "Soil Improvement Methods and Their Applications in Civil 
Engineering." Dept. of Civil Engineering, North Carolina State University, Raleigh, NC. 

Najjar Y., Basheer, I. and McReynolds, R. (1996a). "Neural Modeling of Kansas Soil 
Swelling." Transportation Research Record: Journal of the Transportation Research 
Board, 1526(-1), 14-19. 

Najjar Y. M. and Ali, H. E. (1998). "CPT-based Liquefaction Potential Assessment: A 
Neuronet Approach." Geotechnical Special Publication, ASCE, 1, 542-553. 

Najjar Y. M. and Basheer, I. A. (1996). "Utilizing Computational Neural Networks for 
Evaluating the Permeability of Compacted Clay Liners." Geotechnical and Geological 
Engineering, 14(3), 193-212. 

Najjar Y. M., Basheer, I. A. and Naouss, W. A. (1996b). "On the Identification of 
Compaction Characteristics by Neuronets." Computers and Geotechnics, 18(3), 167-187. 

Najm H. N. (2009). "Uncertainty Quantification and Polynomial Chaos Techniques in 
Computational Fluid Dynamics." Annual Review of Fluid Mechanics, 41, 35-52. 

Narendra B. S., Sivapullaiah, P. V., Suresh, S. and Omkar, S. N. (2006). "Prediction of 
Unconfined Compressive Strength of Soft Grounds Using Computational Intelligence 
Techniques: A Comparative Study." Computers and Geotechnics, 33, 196-208. 

Ni S. H., Lu, P. C. and Juang, C. H. (1996). "A Fuzzy Neural Network Approach to 
Evaluation of Slope Failure Potential." Computer-Aided Civil and Infrastructure 
Engineering, 11(1), 59-66. 

Olson L. (2005). "Dynamic Bridge Substructure Evaluation and Monitoring." Report No. 
FHWA-RD-03-089, FHWA. 



  

244 

 

Olson L., Jalinoos, F. and Aouad, M. F. (1998). "Determination of Unknown Subsurface 
Bridge Foundations." NCHRP 21-5 Interim Report Summary, USDOT Geotechnical 
Engineering Notebook, FHWA. 

Pal M. and Deswal, S. (2008). "Modeling Pile Capacity Using Support Vector Machines 
and Generalized Regression Neural Network." Journal of Geotechnical and 
Geoenvironmental Engineering, 134(7), 1021-1024. 

Penumadu D. and Jean-Lou, C. (1997). "Geomaterial Modeling Using Artificial Neural 
Networks." Artificial Neural Networks for Civil Engineers: Fundamentals and 
Applications, ASCE, 160-184. 

Penumadu D. and Zhao, R. (1999). "Triaxial Compression Behavior of Sand and Gravel 
Using Artificial Neural Networks (ANN)." Computers and Geotechnics, 24(3), 207-230. 

Picard R. R. and Cook, R. D. (1984). "Cross-Validation of Regression Models." Journal 
of the American Statistical Association, 79(387), 575-583. 

Poggio T. and Girosi, F. (1990). "Regularization Algorithms for Learning That Are 
Equivalent to Multilayer Networks." Science, 247(4945), 978-982. 

Porbaha A. (2004). "Design Aspects and Properties of Treated Ground." Proceedings of 
the Deep Mixing Workshop, Geo-Trans 2004, Los Angeles, CA. 

Quigley R. M. and Rowe, R. K. (1986). "Leachate Migration through Clay below a 
Domestic Waste Landfill, Sarnia, Ontario, Canada: Chemical Interpretation and 
Modelling Philosophies." Hazardous and Industrial Solid Waste Testing and Disposal, 
ASTM STP, 933, 93-103. 

Rix G. J. (1995). "Interpretation of Nondestructive Tests on Unknown Bridge 
Foundations Using Artificial Neural Networks." Nondestructive Evaluation of Aging 
Structures and Dams, 2457, 102-112. 

Rizzo D. M., Lillys, T. P. and Dougherty, D. E. (1996). "Comparisons of Site 
Characterization Methods Using Mixed Data." Proceeding of Uncertainty in the 
Geologic Environment: From Theory to Practice Conference, Geotechnical Special 
Publication No 1-58, ASCE. 

Robert C. (2007). The Bayesian Choice: From Decision-Theoretic Foundations to 
Computational Implementation. Springer, New York, NY. 

Robinson B. and Webster, S. (2008). "Successful Testing Methods for Unknown Bridge 
Foundations." Fifth Highway Geophysics - NDE Conference, Charlotte, NC. 



  

245 

 

Santagata M., Bobet, A., Johnston, C. T. and Hwang, J. (2008). "One-Dimensional 
Compression Behavior of a Soil with High Organic Matter Content." Journal of 
Geotechnical and Geoenvironmental Engineering, 134(1), 1-13. 

Sayed S. M., Sunna, H. and Moore, P. R. (2011). "Re-Classifying Bridges with 
Unknown Foundations." 5th International Conference on Scour and Erosion, San 
Francisco, CA. 

Schnaid F., Prietto, P. D. M. and Consoli, N. C. (2001). "Characterization of Cemented 
Sand in Triaxial Compression." Journal of Geotechnical and Geoenvironmental 
Engineering, 127(10), 857-868. 

Sebastia M., Fernandez Olmo, I. and Irabien, A. (2003). "Neural Network Prediction of 
Unconfined Compressive Strength Coal Fly Ash–Cement Mixtures." Cement and 
Concerte Research, 33, 1137-1146. 

Shackelford C. D. (1990). "Transit-Time Design of Earthen Barriers." Engineering 
Geology, 29(1), 79-94. 

Shackelford C. D. (1993). "Contaminant Transport." Geotechnical Practice for Waste 
Disposal, Chapman & Hall, London, 33-65. 

Shackelford C. D. and Daniel, D. E. (1991a). "Diffusion in Saturated Soil I: 
Background." Journal of Geotechnical Engineering, 117(3), 467-484. 

Shackelford C. D. and Daniel, D. E. (1991b). "Diffusion in Saturated Soil II: Results for 
Compacted Clay." Journal of Geotechnical Engineering, 117(3), 485-506. 

Shahin M. A., Jaksa, M. B. and and Maier, H. R. (2000). "Predicting the Settlement of 
Shallow Foundations on Cohesionless Soils Using Back-Propagation Neural Networks." 
Research Report No. R 167, The University of Adelaide, Australia. 

Shi J., Ortigao, J. A. R. and Bai, J. (1998). "Modular Neural Networks for Predicting 
Settlements during Tunneling." Journal of Geotechnical and Geoenvironmental 
Engineering, 124(5), 389-395. 

Sivakugan N., Eckersley, J. D. and Li, H. (1998). "Settlement Predictions Using Neural 
Networks." Australian Civil Engineering Transactions, CE, 40, 49-52. 

Specht D. F. (1991). "A General Regression Neural Network." IEEE Transactions on 
Neural Networks, 2(6), 568-576. 

Stegemann J. A. and Buenfeld, N. R. (2002). "Prediction of Unconfined Compressive 
Strength of Cement Paste with Pure Metal Compound Additions." Cement and Concrete 
Research, 32, 903-913. 



  

246 

 

Stegemann J. A. and Buenfeld, N. R. (2003). "Prediction of Unconfined Compressive 
Strength of Cement Paste Containing Industrial Wastes." Waste Management, 23(4), 
321-332. 

Stegemann J. A. and Buenfeld, N. R. (2004). "Mining of Existing Data for Cement-
Solidified Wastes Using Neural Networks." Journal of Environmental Engineering-
Asce, 130(5), 508-515. 

Stein S. and Sedmera, K. (2006). "Risk-Based Management Guidelines for Scour at 
Bridges with Unknown Foundations." National Cooperative Highway Research Program 
(NCHRP), Project 24-25, Springfield, VA. 

Tarantola A. (2005). Inverse Problem Theory and Methods for Model Parameter 
Estimation. Society for Industrial & Applied Mathematics (SIAM), Philadelphia, PA. 

Tikhonov A. N. and Arsenin, V. Y. (1977). Solutions of Ill-posed Problems. Halsted 
Press, New York, NY. 

Touma F. T. and Reese, L. C. (1972). "The Behavior of Axially Loaded Drilled Shafts in 
Sand." FHWA. 

Tremblay H., Duchesne, J., Locat, J. and Leroueil, S. (2002). "Influence of the Nature of 
Organic Compounds on Fine Soil Stabilization with Cement." Canadian Geotechnical 
Journal, 39(3), 535-546. 

Trenn S. (2008). "Multilayer Perceptrons: Approximation Order and Necessary Number 
of Hidden Units." IEEE Transactions on Neural Networks, 19(5), 836-844. 

TxDOT (2002). "Bridge Inspection Manual." Texas Department of Transportation, 
Austin. 

TxDOT (2006). "Geotechnical Manual." Texas Department of Transportaion, Austin.  

TxDOT (2011). <http://www.dot.state.tx.us/insdtdot/orgchart/cmd/cserve/standard/b 
ridge- e.htm#PanForm>. 

Wang J. and Zabaras, N. (2004). "A Bayesian Inference Approach to the Inverse Heat 
Conduction Problem." International Journal of Heat and Mass Transfer, 47(17), 3927-
3941. 

Warrick A., Biggar, J. and Nielsen, D. (1971). "Simultaneous Solute and Water Transfer 
for an Unsaturated Soil." Water Resources Research, 7(5), 1216-1225. 

Weseman W. A. (1995). "Recording and Coding Guide for the Structure Inventory and 
Appraisal of the Nation's Bridges." Office of Engineering, Washington DC. 



  

247 

 

Wiener N. (1938). "The Homogeneous Chaos." American Journal of Mathematics, 
60(4), 897-936. 

Xiu D. and Em Karniadakis, G. (2002). "Modeling Uncertainty in Steady State Diffusion 
Problems via Generalized Polynomial Chaos." Computer Methods in Applied Mechanics 
and Engineering, 191(43), 4927-4948. 

Yang J., Zhang, D. and Lu, Z. (2004). "Stochastic Analysis of Saturated–Unsaturated 
Flow in Heterogeneous Media by Combining Karhunen-Loeve Expansion and 
Perturbation method." Journal of Hydrology, 294(1), 18-38. 

Young-Su K. and Byung-Tak, K. (2006). "Use of Artificial Neural Networks in the 
Prediction of Liquefaction Resistance of Sands." Journal of Geotechnical and 
Geoenvironmental Engineering, 132(11), 1502-1504. 

Yudong C. (1995). "Soil Classification by Neural Network." Advances in Engineering 
Software, 22(2), 95-97. 

Zhu J.-H., Zaman, M. M. and Anderson, S. A. (1998a). "Modeling of Soil Behavior with 
a Recurrent Neural Network." Canadian Geotechnical Journal, 35(5), 858-872. 

Zhu J.-H., Zaman, M. M. and Anderson, S. A. (1998b). "Modelling of Shearing 
Behaviour of a Residual Soil with Recurrent Neural Network." International Journal for 
Numerical and Analytical Methods in Geomechanics, 22(8), 671-687. 

Zounemat-Kermani M., Beheshti, A. A., Ataie-Ashtiani, B. and Sabbagh-Yazdi, S. R. 
(2009). "Estimation of Current-Induced Scour Depth around Pile Groups Using Neural 
Networks and Adaptive Neuro-Fuzzy Inference System." Applied Soft Computing, 9(2), 
746-755. 




