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ABSTRACT 

 

 Tetrachloroethylene (PCE) is a contaminant that has been frequently detected in 

ground water, surface water, air and soil. Advanced reduction processes (ARP) make up 

a set of wastewater treatment technologies that have been proposed recently. This project 

has conducted research on degrading PCE with an ARP that combines dithionite and 

ultraviolet activation.  The purpose of the project is to provide knowledge for the 

development of potential wastewater treatment technologies. 

 Several control experiments (blank control, reagent control and UV control) were 

conducted to prove the feasibility of applying the dithionite/UV ARP to degrade PCE. 

ARP degradation of PCE was studied under different pH (5, 7, 8, 9) and light intensities 

(2, 4, 7.3 mW/cm
2
). The results showed that the fastest degradation was observed at pH 

7 and that degradation becomes faster at higher light intensities. Combining dithionite 

and UV light resulted in a faster degradation of PCE than only using UV light to 

photolyze PCE.  
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CHAPTER I 

INTRODUCTION 

 

 Tetrachloroethylene (PCE) is a solvent that commonly used in industries such as 

dry cleaning, textile processing, and metal-cleaning. It has been frequently detected in 

ground water, surface water, air, and soil. Exposure to PCE may cause damage to 

neurologic function, the kidney, liver and immune system. Also, the United States 

Environmental Protection Agency (EPA) classifies PCE as a contaminant that is likely to 

be carcinogenic to humans.
1
 Therefore, efforts should be made to remove PCE from the 

environment. Several treatment methods have been investigated and developed for PCE 

removal including chemical oxidation-reduction and biological degradation. However, 

most of those conventional treatment methods have limitations when applied in the field, 

such as high cost and toxic byproducts.
2, 3

 

The group of advanced reduction processes (ARPs) is a set of wastewater 

treatment technologies that have been proposed recently. ARPs are potential alternatives 

to traditional water and wastewater treatment methods. They have a similar mechanism 

as advanced oxidation processes (AOPs) in that they combine reagents with activation 

methods to produce highly reactive free radicals that can destroy target compounds. In 

our lab, ARPs have been shown effective in degrading contaminants such as perchlorate 

and vinyl chloride that are difficult for traditional treatment methods to degrade well. 

However, the ability of using ARP to degrade PCE has not yet been studied.
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The goal of this project is to evaluate the potential of an ARP that combines 

sodium dithionite with ultraviolet (UV) light activation to degrade PCE. To achieve the 

goal of this project, the following objectives will be pursued. 1) Develop experimental 

and analytical procedures 2) Test effectiveness of dithionite with UV activation in PCE 

degradation under different pH and light intensities 3) Investigate the kinetics and 

determine the degradation rate of PCE degradation.  
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CHAPTER II 

BACKGROUND 

 

PCE is a colorless, nonflammable and volatile chlorinated solvent that is widely 

used in various industrial processes. For example, PCE is the most common dry cleaning 

solvent currently in use.
4
 The EPA reported that the production of tetrachloroethylene 

was 184 million kilograms in 1986.
1
 Usually PCE will not easily enter surface water due 

its high volatility and low aqueous solubility. Also, PCE is a liquid that does not bind 

well to soil, so it can easily move through the ground to groundwater. Therefore, 

groundwater usually has a higher concentration of PCE than surface water. However, 

spills, leaks or improper disposal of PCE would bring PCE into surface water, which 

could result in high concentrations.
1
 Because the density of liquid PCE is larger than 

water, it is known as a dense non-aqueous phase liquid (DNAPL), after entering water it 

has the tendency to accumulate at the bottom of an aquifer. Consequently it will become 

a long-term source of contamination and make cleanup activities more difficult to 

conduct.
5, 6

 Besides, due to its high oxidation state, PCE can only be biodegraded under 

anaerobic conditions.   

So, PCE is one of the most diffuse pollutants in the environment and it has been 

detected in the air, soil, surface water as well as groundwater. One report showed PCE 

can be found in up to 25% of U.S. drinking water supplies.
7
 Short exposure to PCE such 

as is common for dry-cleaning machine operators would have negative impacts on 

neurological functions and the immune system. Long exposure to PCE would damage 
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the liver, kidney and cause impartment to neurological functions like cognition. Also, 

studies have shown that exposure to PCE will cause an increased incidence of liver 

tumor in mice, so EPA has classified PCE as likely to be carcinogenic to humans by all 

routes of exposure. Based on its high frequency of occurrence at National Priorities List 

(NPL) sites, high toxicity and high potential for human exposure at NPL sites, PCE is 

ranked as number 33 on the Priority List of Hazardous Substances that has been 

prepared in accordance with the Comprehensive Environmental Response, 

Compensation, and Liability Act (CERCLA).
8
 EPA set the maximum contaminant levels 

(MCLs) of PCE to be 5 parts per billion (ppb) in drinking water.
9
 

Biological methods are often used to treat organic contaminants due to their low 

costs and environmentally friendly characteristics. However, the application of 

biodegradation to removing PCE is often limited due to the toxicity and high oxidation 

state of PCE. Only bacteria belonging to the Dehalococcoides genus are known have the 

capability to completely reduce PCE to ethane, while other microorganisms can produce 

byproducts of PCE degradation, such as dichloroethylenes (DCEs) and vinyl chloride 

(VC), which may be even more toxic than PCE.
10

 However Dehalococcoides are very 

sensitive to oxygen and the reaction needs strictly anaerobic conditions. Furthermore, the 

degradation rates are slow so the time for biodegradation in situ is usually long, typically 

ranging from several days to months. Also, the concentration of PCE in a contaminated 

area is usually very high, which could inhibit microbial degradation due to toxic 

effects.
11
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Sometimes chemical methods are also used to treat contamination by chlorinated 

solvents. Zerovalent metals such as Fe(0) or Cu(0) have the ability to reduce organic and 

inorganic compounds with high oxidation state like PCE. However, the decrease in 

surface activity of zerovalent metals over time may inhibit the reaction and decrease the 

efficiency of metals in removing PCE.
12

 Also, the additives used to enhance this reaction 

include trace metals like platinum, which may increase the costs.
13

 Some laboratory 

studies also reported success in using permanganate as an oxidant to degrade PCE.
14, 15

 

However, manganese dioxide was produced during the reactions and it might reduce the 

permeability of soil and lower the rate of degradation by catalyzing the decomposition of 

permanganate. So, the effectiveness of this treatment method is conditional and further 

research is needed before it can be widely used in the field.
16, 17

 

In addition to those traditional treatment methods, thermal decomposition of PCE 

has also been investigated and the technical feasibility of the process has been proven. 

Results showed PCE started to decompose at near 400 
o
C and fully decomposed at 800 

o
C.

18
 However, the energy cost of thermal decomposition of PCE is much higher than 

that for current treatment methods, so it is not widely applied. Besides, photosonolysis 

that combines ultraviolet irradiation with ultrasonication is also proven to be a potential 

treatment method for PCE. The efficiencies of photosonolysis are larger than using 

ultraviolet or ultrasonication separately in most cases. However, it is a new water 

treatment technology so more work needs to be done before it can be applied in 

practice.
19
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A group of treatment methods called advanced oxidation processes (AOPs) has 

been successfully developed and applied in wastewater treatment for decades. In an 

AOP, the combination of an oxidant with an activating method will produce highly 

reactive free radicals such as the hydroxyl radical that are able to effectively destroy 

chlorinated organic compounds in wastewater at ambient temperature and atmospheric 

pressure.
20, 21

 Common oxidants include ozone, hydrogen peroxide, as well as Fenton’s 

reagent. Common activation methods include ultraviolet irradiation, ultrasonication and 

electron beam irradiation. The application of AOP to PCE treatment has been proven 

successful. O3/H2O2 and H2O2/UV are two common AOPs that have been applied in the 

U.S. to treat PCE in groundwater for decades.
21

 The effectiveness of these AOPs was 

high and no toxic byproducts were generated.
22, 23

 However, the cost of its application is 

high, so more economical but effective technologies need to be developed. 

ARP is a new group of treatment methods that is based on producing highly 

reactive free radicals to reduce contaminants. Although AOP has been proven to be a 

successful group of treatment methods, little research has been done on ARP 

development. However, recent studies showed ARP can be successfully applied to 

remove pharmaceutical compounds in an aquatic environment. In this research, aqueous 

electrons (   
 ) were selected as the radicals to react with pharmaceutical compounds 

such as tetracyclines and diclofenac.
24, 25

 ARP could also be a promising technology to 

degrade highly oxidized contaminants, especially when the performance of biological 

treatment or traditional chemical treatment is limited.  The feasibility of using ARPs to 

degrade contaminants such as perchlorate, nitrate, vinyl chloride (VC) and 1,2-



 

 

7 

 

dichloroethane (DCA) has been investigated.
 26, 27

 Several combinations of reducing 

agents and activation methods have been used, but most of the research has investigated 

the sulfite/UV-L ARP. The results of this research showed the effectiveness of ARP 

towards degrading those highly oxidized contaminants and also validated the theory 

motivating ARPs, i.e. that combing activation methods and reducing agents to produce 

free radicals is an effective way to degrade target contaminants.
26, 27

 

In addition to aqueous electrons and sulfite radicals, there are also some other 

radicals that can be used in ARP. Dithionite (S2O4
2-

) is an effective reductant used in 

several studies. Because of its high reducing potential in basic solutions (E
0
 = -1.12 V), 

dithionite is able to reduce heavy metals and dechlorinate chlorinated organic pollutants. 

For example, it can be used to reduce Fe(III) and thus improve long term performance in 

zero-valent iron treatment systems, which are applied to remove chlorinated 

contaminants.
28

 Reports also showed that chloroacetanilides such as propachlor can be 

rapidly dechlorinated in the presence of dithionite.
29, 30

 Dithionite has been proven to 

generate reducing radicals and their generation can be increased by activating methods.
31

 

Also, dithionite is a cheap and commonly used bleaching agent that can be easily 

obtained. Dithionite contains a long but weak S-S bond that is easily decomposed to give 

the sulfur dioxide radical anion (SO2
-.
). Numerous experiments have shown that the 

sulfur dioxide radical anion rather than dithionite is the primary reductant in dithionite 

solutions, even though the amount of SO2
-.
 is relatively small.

32, 33
 There are several 

potential methods that can be used to promote production of sulfur dioxide radical 

anions. One of them is exposing dithionite to UV light. UV irradiation has been 
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identified to have impacts on sulfur dioxide radical anion formation and wavelength for 

maximum absorption of dithionite has been reported to be 315 nm.
31, 33
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CHAPTER III 

METHODOLOGY 

 

The goal of this research is to evaluate the feasibility of applying an advanced 

reduction process to treat PCE. To achieve this goal, three objectives will be pursued: 

1) Develop experimental and analytical procedures 

2) Test effectiveness of dithionite with UV activation for PCE degradation under 

different pH and light intensities  

3) Investigate the kinetics and determine the rate of degradation reactions.  

Experimental plan 

Constant conditions 

Kinetic experiments were conducted in batch reactors. PCE was used as the 

target organic compound, dithionite was used as the reductant, and low-pressure UV 

light was used as an activating method. The initial concentrations of PCE and dithionite 

were 0.151 mM and 1 mM, respectively, and they were same for all the experiments The 

concentration ratio between dithionite and PCE was 5 times the stoichiometric ratio, 

which provided enough dithionite to degrade all of the PCE to ethene. The low-pressure 

mercury lamp produced UV light primarily at one wavelength (254 nm). 254nm lamp 

was used because it has been widely used in industry for disinfection. A phosphate 

buffer was used in all experiments to maintain pH. All experiments were conducted at 

room temperature, i.e. approximately 23 °C.  
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Variable conditions 

In the first set of experiments that studied the effect of pH on PCE degradation, 

experiments were conducted at a fixed light intensity of 7300 µW/cm
2
, which showed 

the capability of degrading PCE in preliminary experiments. Experiments were 

conducted at 4 different pH values (5, 7, 8, 9). The second set of experiments was 

conducted to study the effect of light intensity on PCE degradations at pH 7, which 

showed the best degradation efficiency in pH-effect experiments. Experiments were 

conducted at 3 different light intensities (2000 µW/cm
2
, 4000 µW/cm

2
, 7300 µW/cm

2
). 

Experimental system and procedures 

Equipment 

All major experiments were conducted in an anaerobic chamber (Coy Laboratory 

Products Inc). The anaerobic chamber was filled with a gas mixture containing 95% 

nitrogen and 5% hydrogen. Before taking samples out of chamber, the containers were 

sealed to prevent the evaporation of sample and leakage of air. A reaction area 

established in the anaerobic chamber and an UV-L lamp (254nm) was set on the top of 

reaction area. A lab scissor lift was used to adjust the length of light path before reaching 

reactors. There were two fan boxes in the corners of the chamber to maintain the gas 

flow and minimize dead zones. Covers that contained palladium catalysts were installed 

in the front of fan boxes to convert the oxygen in the chamber into water by reacting 

with hydrogen. The catalysts were heated once a week to reactivate them. The chamber 

was vacuumed and purged with mixed gases five times before every experiment in order 

to maintain optimal conditions. Three vials that contain different concentrations of a 
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colorimetric redox indicator solution (Resazurin, 89%, Aldrich) were put inside the 

chamber to indicate the level of oxygen. The solutions would turn pink when oxygen 

concentrations increase. An electric oxygen and hydrogen indicator were also put inside 

the chamber to give the concentrations of oxygen and hydrogen. Under normal 

conditions, the oxygen concentration was 0 ppm and the hydrogen concentration was 

around 2%. 

The UV light source used in this research was a low-pressure UV lamp (Phillips, 

TUV PL-L36W/4P) that produces light primarily at one wavelength (254 nm). The light 

intensity was measured by a UV meter that was calibrated by ferrioxalate actinometer. 

The main instrument used in the extraction process was an orbital shaker (Thermolyne) 

installed with a vial rack.  

Reagents 

Tetrachloroethylene (99.9%, Fluka) was the target contaminant used in this 

research. Sodium dithionite (analytical standard, Fisher) was used as the reductant to 

degrade PCE. Methanol (HPLC grade, EMD) was used as the solvent to prepare PCE 

stock solution. The PCE stock solution was prepared once a week by adding 30.8 µL 

pure PCE into 100 ml of methanol to achieve a concentration of 500 ppm. Hexane (98% 

halocarbons free grade, Acros) was used as the solvent to extract PCE from the water 

solution. Dibromomethane (DBM, 99%, Aldrich) was used as an internal standard in the 

gas chromatographic analysis of PCE. Phosphate buffer (analytical standard, Alfa Aesar) 

was used as a pH buffer solution. All chemicals were used as received without further 

purification unless otherwise noted. The deionized water (Milli-Q, Millipore) used in 
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experiments was deoxygenated by purging with ultra-high purity nitrogen for 4 hours, 

and then transferred into the chamber and further purged with the gas mixture in the 

chamber for 6 hours.  

Solution preparation 

Dithionite solution 

Sodium dithionite powder was stored inside the anaerobic chamber. Before 

taking it out of chamber for weighing, the powder was transferred to a 15-ml vial and 

sealed with cap to prevent any contact with oxygen. The weight of this vial was 

measured before adding dithionite. After weighing the vial containing dithionite and 

determining the mass of dithionite, the calculated volume of deoxygenated deionized 

water was added to the vial to prepare the sodium dithionite solution. 

Sample solution 

The dithionite solution was mixed in a 245-ml amber glass bottle. 12.3 ml of 

PCE stock solution and calculated volume of pH buffer, dithionite solution, and 

deoxygenated deionized water were added to this bottle to achieve an initial PCE 

concentration of 25.1 ppm. The total volume of solutions was approximately 245 ml, so 

there was no space left inside the bottle for air. Then the solution was transferred to a 

200-ml glass syringe to use to fill the reactors. Each solution prepared in this way was 

able to fill 12 quartz cells.  

Syringes and labware  

Due to the volatility of PCE, syringes were used as the main method to transfer 

PCE solution. The following syringes were used in this research: 20-ml and 10-ml 
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syringes with Luer-Lok (BD), 5-µL gas tight syringes (Hamilton 7000 series) and 100-

ml and 200-ml glass syringes (Tomopal Inc). Most of these syringes used disposable 

needles, the 5-µL gas tight syringes did not, so they were cleaned by heating in a syringe 

cleaner that removed any residual chemical after each use. Inorganic solutions were 

prepared in 15-ml or 45-ml centrifuge tubes made of polypropylene (VWR International 

LLC) and organic solutions were prepared in 20-ml or 40-ml clean amber glass vials 

(National Scientific). Glass vials were capped with triple-layer closures (rubber, septa, 

lead foil and Teflon film) to prevent leakage of PCE. All UV irradiation experiments 

were carried out in 17-ml cylindrical quartz cells capped with Polytetrafluoroethylene 

(PTFE) stoppers. The volume of each cell was 17 ml, the path length was 10mm and the 

exterior diameter was 50 mm (Starna Cells, Inc). An oxygen meter (Extech), pH meter 

(Hach) and pipettes (Eppendorf) were also used in experiments.  

Sampling 

All steps in sampling were conducted inside the anaerobic chamber. The samples 

were taken at 10 to 12 different times, which were chosen based on the expected reaction 

rate. Due to the volatility of PCE, once the cap of quartz cell was opened, the solution in 

the reactor cannot be used in following degradation experiment, so each quartz cell can 

only obtain one sample. In each sampling, 5 ml sample solution was transferred from the 

17-ml quartz cell to the 20-ml extraction vial with a 10-ml syringe. Then extraction vial 

was placed on the orbital shaker for extraction. After extraction, the vial was directly 

taken for gas chromatographic (GC) analysis. 
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Analytical procedures 

PCE was extracted from samples by a liquid-liquid extraction method prior to 

GC analysis. Based on the results of preliminary experiment, the extraction was 

conducted by adding 5 ml of solution containing PCE to a 20-ml glass vial filled with 10 

ml of hexane and 2 ml of dibromomethane. This vial was directly mounted on an orbital 

shaker that was operated at 300 rpm for 1 hour. After extraction, the vial was taken for 

gas chromatographic (GC) analysis. 

A 2.5 µL volume of sample solution was injected into a GC (Hewlett Packard 

5890 series II) for PCE analysis. Standard curves were prepared for quantification. This 

GC is equipped with a DB-VRX column (60 m × 0.25 mm × 1.4 µm) and ECD detector. 

The GC inlet temperature was set at 225 °C. The carrier gas was ultra-high purity 

nitrogen, and its flow rate was controlled at 1.8 ml/min with a split ratio of 36:1. The 

oven temperature was programmed as starting at 35 °C for 5 min, and then ramped to 

200 °C at 10 °C/min, followed by a constant temperature of 200 °C for 1 min. So, the 

total run time for each GC analysis was 22.5 min. A PCE calibration curve was obtained 

by comparing known PCE concentration with the ratio of PCE peak to DBM peak. 

Data analysis 

A kinetic model of PCE degradation was developed based on the data collected 

in previous steps and research. Different reaction orders such as zero-order, pseudo-first-

order were applied to fit the collected data. Those data were analyzed by non-linear 

regression using the Solver tool in Excel to determine the parameters in the kinetic 
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model that best fit the measured data. An equation to calculate the observed rate constant 

(Kobs) was determined at the end of data analysis. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

Control experiments 

Three control experiments were conducted before doing degradation kinetic 

experiments. Considering the character of volatility of PCE, a blank control was 

necessary to measure how much PCE will be lost during an experiment without addition 

of UV light or dithionite. It was also necessary to do a reagent control experiment to 

measure the amount of PCE that would be degraded with dithionite only. A UV control 

experiment was needed to measure the removal of PCE with UV light, but without 

dithionite.  

Blank control 

Methanol was added to the PCE stock solution to reduce volatilization and the 

loss of PCE during preparation and transfer was found to be 1%. The average measured 

initial concentration of PCE in the reactors was 22.3 ppm compared to the calculated 

concentration of 25.1 ppm during ARP experiments. Figure 1 shows the concentration of 

PCE at different time when stored in the quartz cells over a time period of 5 hours.  
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Figure 1. PCE concentration during blank control experiment 

 

 

 

The results show that the loss of PCE was very small when compared with the 

concentration itself.  

Reagent control 

The reagent control experiment was conducted to measure the loss of PCE due to 

reaction with dithionite at pH 7 without UV light. The concentration of dithionite used 

was 1.01 mM, which was 5 times the stoichiometric amount required to react with PCE. 

Figure 2 shows that after 6 hours, the concentration of PCE in the reactor decreased to 

12.9 ppm from 18.3 ppm. 
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Figure 2. PCE concentration during reagent control experiment 

 

 

 

The results show that dithionite is able to degrade a part of the PCE in the first 1 

hour. After that, the degradation rate becomes much slower. A low degradation rate was 

also reported by Nzengung et al, who described the reaction between dithionite and PCE 

as lasting for several days.
34

 But that paper did not study the change of PCE 

concentration during the first one hour, nor did it explain the mechanism of PCE 

degradation by dithionite. Although the mechanism of reaction in the first one hour is 

still unclear, one possible explanation for the difference between degradation rates is the 

hydrolysis of dithionite. Dithionite has been reported to hydrolyze at pH 7.
35

 It is 

possible that most of the dithionite was consumed during the first 1 hour by hydrolysis 

and reaction with PCE, so that the degradation of PCE becomes much slower after about 

1 hour. So, in addition to the loss of PCE during preparation, dithionite by itself will also 
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cause the loss of PCE. In order to compare the kinetics of this control experiment with 

the kinetics of ARP experiments, the initial rate and pseudo-first-order rate constant 

were calculated using data for the first hour and the results are listed in Table 1. 

 

 

 

Table 1. Initial rate and pseudo-first-order rate constant for reagent control experiment 

 

 

 

If a zeroth-order model fits ARP degradation of PCE better than a pseudo-first-

order model, then the initial rate of the reagent control experiment will be compared to 

the zeroth-order rate constant, because the rate equals the rate constant in zeroth-order 

reaction. If a first-order model fits better, the pseudo-first-order rate constants will be 

compared. 

UV control 

Figure 3 shows that 23.1 ppm of PCE was degraded to 2.20 ppm by photolysis 

within 7 minutes. The light intensity was controlled around 7.3 mW/cm
2
 and pH was 

maintained at 7. 

Initial rate (ppm/min) Initial CPCE (ppm) Initial rate constant (min
-1

) 

0.0600 18.3 0.00328 
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Figure 3. PCE concentration during UV control experiment 

 

 

 

The data from the UV control experiment was fitted with first-order and zeroth-

order degradation models. Non-linear regressions were conducted on the experimental 

data of PCE concentration and reaction time to obtain the rate constants and initial 

concentrations. The regressions were conducted to choose the unknown coefficients that 

minimized the sum of squared errors for PCE concentrations that is defined by Equation 

1.  Calculations were made with Solver in EXCEL. The standard error was used as 

measure of the goodness of fit and it is defined by Equation 2. The results of the 

regressions are shown in Table 2.  

 

        ∑                            
 

 

   

 (1) 
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    √
      

   
 (2) 

 

 

 

Table 2. Results of fitting two reaction models for UV control experiment 

Fitting model 
Initial CPCE 

(ppm) 
Rate Constant SSEPCE SE 

zeroth-order reaction 23.1 3.41 (ppm/min) 47.6 3.98 

First order reaction 23.1 0.302 (min
-1

) 10.7 1.89 

 

 

 

The data shows that the first-order reaction model fitted the data better than the 

zeroth-order model as indicated by its smaller standard error. This indicates that the 

photolysis of PCE is close to being a first-order reaction. In the UV control experiment, 

PCE is degraded by a photolysis reaction in which PCE is the only reactant. A first-order 

model describes a reaction that depends on the concentration of only one reactant, so the 

first-order reaction is expected to be able to describe the photolysis of PCE. Several 

reports have confirmed this result. 
36, 37

 

Experiments on effect of pH 

Degradation data and curves 

A series of experiments were conducted to test the effect of pH on ARP 

degradation of PCE. Experiments were performed at pH 5, pH 7, pH 8 and pH 9. The pH 

was measured before and after each experiment to make sure the pH was unchanged. 

Light intensity was maintained around 7.3 mW/cm
2
. Figure 4 shows the results of pH 

effect experiments and the data can be found in Appendix A. 
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Figure 4. PCE concentrations (symbols) and predictions by a pseudo-first-order reaction 

model (lines) during experiments on the effect of pH and the UV control experiment 

(photolysis). 

 

 

 

Figure 4 shows that using the combination of dithionite and UV results in faster 

PCE degradation than by direct photolysis, except at pH 5, which was faster than direct 

photolysis around the first two minutes, and then approached and slower than the 

photolysis curve. One possible explanation for the inability of dithionite to enhance 

degradation is that dithionite rapidly hydrolyzes at low pH. Read et al. reported that 

dithionite readily forms thiosulfate and hydrogen sulfite ions in acidic solutions and 

forms sulfite and sulfide ions somewhat more slowly in basic solutions.
38
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Decomposition occurs very fast at lower pH values. So, it is possible that 

dithionite might be converted to thiosulfate and hydrogen sulfite at pH 5, and would not 

be able to form radicals that could degrade PCE. It can be hypothesized that in the 

beginning of PCE degradation at pH 5, some of the dithionite was being converted to 

radicals that were reacting with PCE, while the rest was hydrolyzing, and all of the 

dithionite were consumed within 2 minutes. Therefore, the degradation curve was 

closing to the photolysis curve. The reason for the degradation at pH 5 after 2 min 

became slower than photolysis may because the products of dithionite hydrolysis 

absorbed part of light, which leads to the less light energy received by PCE when 

compared with UV control experiment. Or the difference may come from the error from 

experimental data.  Besides, Figure 4 shows that the degradation rate reached a 

maximum at pH 7. The slower degradation rate at basic condition can be explained by 

higher concentration of scavengers, which is reported in the research on using an ARP to 

degrade vinyl chloride at pH 9 and pH 11.
26

 High concentrations of scavengers reduces 

the concentration of radicals that can react with the target contaminant, thereby reducing 

the rate of degradation of the target. The reagent control experiment (Figure 2) showed 

that dithionite without UV activation could degrade PCE. However, ARP degradation of 
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PCE primarily happened in the first few minutes, while degradation of PCE over that 

time period by dithionite without UV was small compared the loss due to ARP. 

Treatment of data 

Table 3 and Table 4 summarize the results of fitting two reaction models to data 

from experiments to determine the effect of pH with regression analysis. 

 

 

 

Table 3.  Results of fitting data with different pH using a pseudo-first-order reaction 

model. 

 Initial CPCE 

(ppm) 

Rate Constant 

(min
-1

) 
SSEPCE SE 

pH 5 23.3 0.301 27.5 1.75 

pH 5(before 2 min) 23.3 0.396 5.11 1.13 

pH 5(after 2 min) 11.5 0.166 1.50 0.612 

pH 7 21.7 0.767 1.79 0.546 

pH 8 21.3 0.588 3.92 0.660 

pH 9 21.1 0.459 1.67 0.431 

 

 

 

Table 4.  Results of fitting data with different pH using a zeroth-order reaction model. 

 
Initial CPCE 

(ppm) 

Rate Constant 

(ppm/min) 
SSEPCE SE 

pH 5 23.3 3.51 150 4.08 

pH 5(before 2 min) 23.3 6.81 11.0 1.66 

pH 5(after 2 min) 11.5 1.42 0.514 0.358 

pH 7 21.7 5.73 183 4.51 

pH 8 21.3 5.36 141 3.96 

pH 9 21.1 4.78 67.7 2.74 
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The results for pH 7, 8 and 9 show that the pseudo-first-order model fits the data 

better than the zeroth-order model as indicated by smaller standard errors. Degradation 

of PCE at pH 7-9 is close to being a pseudo-first-order reaction. 

The data in Table 3 and Table 4 show that the pseudo-first-order reaction model 

fit the data for pH 5 better than the zeroth-order reaction model as indicated by a smaller 

standard error. But the pseudo-first-order is not a perfect fit to the data as shown in 

Figure 5. This can be explained by the hydrolysis of dithionite that occurred around the 

first 2 minutes. Based on the hypothesis, most of the dithionite was consumed after 2 

minutes and then photolysis was the primary reaction degrading PCE. To examine the 

behavior in these two time periods, the kinetic models were fitted to data before and 

after 2 minutes separately. The fitting of both models were improved. The data shows 

the reaction in the first 2 minutes can be better described by pseudo-first-order reaction 

as indicated by a smaller standard error. Although the zeroth-order model provided a 

better fit, both models were able to describe the data well after 2 minutes, as indicated by 

the small standard errors. This may because the change of concentration becomes small 

during the later period, which leads to a small difference between standard errors for the 

first-order and zeroth-order models. The rate constant in the ARP degradation at pH 5 

before 2 minutes (0.396 min
-1

) is larger than rate constant in direct photolysis (0.302 

min
-1

). The rate constant in the ARP degradation at pH 5 after 2 minutes (0.166 min
-1

) is 

smaller than rate constant in direct photolysis (0.302 min
-1

).  The results confirmed that 

there are probably two different degradation mechanisms before and after 2 minutes.  
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Figure 5. PCE concentrations (symbols) and predictions by a pseudo-first-order reaction 

model (lines) during experiments on the effect of pH at pH 5 

 

 

 

Experiments on effect of light intensity 

Degradation data and curves 

A series of experiments were conducted to measure the effect of light intensity 

degradation of PCE by the UV/dithionite ARP. Experiments were performed at 2, 4 and 

7.3 mW/cm
2
. The pH was maintained at 7, because degradation at pH 7 showed the 

fastest removal rate. Data for 7.3 mW/cm
2 

was obtained from the degradation 

experiment at pH 7 as described previously.  

Figure 6 compares the degradation curves at different light intensities.   
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Figure 6. PCE concentrations (symbols) and predictions by a pseudo-first-order model 

(lines) during experiments on the effect of light intensity 

 

 

 

The figure shows that degradation becomes faster with the increase of light 

intensity. This can be explained by the fact that energy will be transferred to the 

dithionite in reactors more rapidly at higher light intensity, which leads to a faster 

production of reactive radicals and thus a faster degradation rate of PCE. 

Treatment of data 

Table 5 and 6 summarize the results of fitting two reaction models to data from 

experiments on the effect of light intensity. The data for 7.3 mW/cm
2
 is from the 

experiment conducted to evaluate the effect of pH and was conducted at pH 7.  
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Table 5.  Results of fitting data with different light intensities using a pseudo-first-order 

reaction model 

 Initial CPCE (ppm) Rate Constant (min
-1

) SSEPCE SE  

2 mW/cm
2
 22.5 0.164 7.71 1.05 

4 mW/cm
2
 22.9 0.367 5.77 0.908 

7.3 mW/cm
2
 21.7 0.767 1.79 0.546 

 

 

 

Table 6. Results of fitting data with different light intensities using a zeroth-order 

reaction model 

 Initial CPCE (ppm) 
Rate Constant 

(ppm/min) 
SSEPCE SE 

2 mW/cm
2
 22.5 2.28 14.0 1.41 

4 mW/cm
2
 22.9 4.62 47.8 2.61 

7.3 mW/cm
2
 21.7 5.73 183 4.51 

 

 

 

The data shows that the pseudo-first-order model fits the data for all light 

intensities better than the zeroth-order model as indicated by smaller standard errors. So, 

the degradation of PCE at 2-7.3 mW/cm
2
 is close to being a pseudo-first-order reaction. 

Figure 7 shows the effect of light intensity on the pseudo-first-order rate 

constants. 
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Figure 7. Effect of light intensity on pseudo-first-order rate constants 

 

 

 

Based on the previous research of ARP degradation, important reactions in ARP 

degradation have been identified by previous work with other target compounds and are 

described in Equations 5-19 for PCE. The initial pseudo-first-order rate constant in 

equation 14 (0.00328 min
-1

) is much smaller than rate constants discussed here and 

shown in figure 7 (0.164, 0.367 and 0.767 min
-1

), so the loss of PCE due to reacting with 

dithionite is neglected in this model. Observed pseudo-first-order rate constant of ARP 

degradation of PCE is described in Equation 19.
26
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Table 7: Nomenclature. 

P5, P9, P11, P13 Products of reaction (5), (9), (11) and (13), respectively 

   UV light 

r5, r7, r9, r11, r13 Reaction rates of reaction (5), (7), (9), (11) and (13), 

respectively 

φ5, φ7 quantum yield of PCE and dithionite (mol/einstein), 

respectively 

Iavg Average light intensity in solution (µW/cm
2
 ) 

ԑln, PCE, ԑln, dithionite Molar absorptivity of PCE and dithionite (M
-1

cm
-1

, defined on 

natural logarithm basis), respectively 

CPCE, Cdithionite , CR, 

Cs 

Molar concentration of PCE, dithionite, radicals and 

scavenger (mol/L), respectively  

k9, k11, k13 Second-order rate constant of reaction (9) , (11) (M
-1

min
-1

) 

and pseudo-first-order  rate constant of reaction (13) (min
-1

), 

respectively 

kobs Observed pseudo-first-order rate constant in PCE degradation 

L Total thickness of reactor in direction of light path (cm), 

which is 1 cm in this research 
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(15) 

The direct reaction between dithionite and PCE was much slower than ARP 

reactions that degrade PCE, so equation 15 can be simplified to equation 16 as shown 

below.  The net rate of removal of PCE can be expressed by a pseudo-first-order rate 

equation using an observed rate constant (equation 17). 

      

  
        (16) 

      

  
           (17) 

   

 
     

        ( (                                     ) ) 

                                        
 (18) 

   

Combing equations 6,8,10,12,16, 17 and 18 produces the following result for 

the observed pseudo-first-order rate constant for PCE degradation. 

 
                   

                                 

              
 

(19) 

Equation 5 shows the photolysis reaction of PCE, which has been shown to be 

able to degrade a part of the PCE in the UV control experiment (Figure 3). Equations 7 

and 9 describe the theory of ARP degradation, i.e. that UV light can activate dithionite 

so that it produces highly reactive radicals, which are able to degrade target 

contaminants. Equation 11 presents another possible reaction in the PCE degradation in 

which the radical reacts with a scavenger compound. Previous research on the ARP 

degradation of vinyl chloride (VC) showed that the scavenging effect is important in 

ARP degradation, because it affects the amount of radicals available to react with 

contaminants.
26

 Equation 13 describes the reaction that occurred in the reagent control 
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experiment (Figure 2), i.e. the direct reaction of dithionite with PCE. But as discussed 

previously, the rate of degradation of PCE by dithionite without UV was small compared 

the rate of loss due to degradation by the ARP.  

According to equation 18 and 19, pseudo-first-order rate constant for PCE 

degradation has a proportional relationship with light intensity.  However, a linear 

regression on the data (Figure 7) gives an intercept of -0.075.  This intercept is non-zero, 

probably due to errors in experimental data. The results of regression analysis are 

presented in table 8 and they show that zero is included within the 95% confidence 

interval of the intercept. The P value of intercept (0.212) is larger than 0.05. Therefore, 

the data does not demonstrate that light intensity has a non-proportional relationship 

with Kobs and the model described above cannot be rejected as appropriate for ARP 

degradation. This regression analysis was conducted with the Data Analysis tool in 

EXCEL. 

 

 

 

Table 8 Regression analysis of light intensities and rate constants 

 Coefficients Standard 

Error 

t Stat P-value Lower 

95% 

Upper 

95% 

Intercept -0.0750 0.0259 -2.90 0.212 -0.404 0.254 

Slope 0.1145 0.00524 21.8 0.091 0.0479 0.181 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

PCE is one of the most diffuse pollutants in the environment. The goal of this project 

was to evaluate the potential of an ARP that combines sodium dithionite with ultraviolet 

(UV) light activation to degrade PCE. The results of this research: 1) demonstrate the 

feasibility of applying the dithionite/UV ARP to degrade PCE, and 2) provide 

information on selecting pH and light intensities in degrading PCE with dithionite/UV 

ARP. This knowledge can be used in the developing this ARP to be an effective 

treatment method for chlorinated contaminants, such as PCE.  

The specific conclusions from this research are: 

1) The blank control and reagent control experiments indicate that a small part of PCE 

may be lost during the preparation of the solutions and by reaction with dithionite in 

the absence of UV activation.   

2) The UV control experiment indicates photolysis is able to degrade PCE within a few 

minutes. 

3) The first-order reaction model fits the photolysis of PCE well. 

4) In pH control experiments, degradation at pH 7 gives the best removal rates. 

5) The combination of dithionite and UV at pH 7, 8, 9 results in faster degradation rates 

than by photolysis. 

6) Degradation of PCE at pH 5 is faster than photolysis in the first 2 minutes, then 

being close to photolysis. 
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7)  In pH control experiments, acidic conditions increase the extent of hydrolysis of 

dithionite and basic conditions increase the concentration of scavengers, both of 

which results in lower degradation rates than degradation of PCE at pH 7. 

8) The pseudo-first-order reaction model fits data for the degradation of PCE at pH 7, 8, 

and 9 well. 

9) Degradation of PCE at pH 5 can be split into two parts.  ARP reactions are the 

primary reactions in the first part and photolysis reactions are the primary reactions 

in the second part.  

10) Increased light intensities results in a faster degradation of PCE. 
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Recommendations 

The specific recommendations for future research in similar experimental systems are: 

1) Experiments can be conducted to test the effectiveness of dithionite with UV 

activation in PCE degradation with different initial concentrations of dithionite 

2) Other potential reductants and activating methods can be tested to degrade PCE.  

3) Lamps that emit light at wavelengths where dithionite absorb more energy than 254 

nm can be tested to degrade PCE. 

4) Experiments that test the impact of scavengers can be conducted. 

5) Products of PCE degradation by dithionite and UV activation can be identified to 

study the mechanism of reactions.  
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APPENDIX A 

TABULATED DATA 

 

Table A-1. The loss of PCE during storage 

Time (min) Concentration of PCE(ppm) 
0 17.7 

30 17.8 

60 17.3 

90 17.7 

120 17.0 

150 17.4 

180 17.8 

300 17.5 

 

 

 

Table A-2. PCE degraded by dithionite only 

Time (min) Concentration of PCE(ppm) 
0 18.3 

5 17.0 

10 16.6 

20 16.5 

30 14.7 

60 14.4 

120 13.6 

180 13.2 

300 13.0 

360 12.9 

 

 

 

 

Table A-3. Photolysis of PCE with 254nm UV light 

Time (min) Concentration of PCE(ppm) 
0 23.1 
1 20.0 
2 11.2 
3 9.30 
7 2.20 

15 Not detectable 
30 Not detectable 
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Table A-4. ARP degradation of PCE at pH 5 

Time (min) Concentration of PCE(ppm) 
0 23.3 

0.5 20.4 
0.75 16.8 

1 14.2 
1.5 13.0 
2 11.5 

2.5 11.4 
3 10.3 
4 8.32 
5 7.21 
7 4.33 

 

 

 

Table A-5. ARP degradation of PCE at pH 7 

Time (min) Concentration of PCE (ppm) 

0 21.7 

0.25 17.0 

0.5 15.1 

1 9.59 

1.5 7.44 

2 5.03 

3 1.83 

5 0.25 

 

 

Table A-6. ARP degradation of PCE at pH 8 

Time(min) Concentration of PCE(ppm) 

0 21.3 

0.25 19.1 

0.5 17.3 

1 12.0 

1.25 10.3 

1.5 9.18 

2 5.54 

2.5 4.41 

3 3.63 

4 1.92 

5 1.00 
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Table A-7. ARP degradation of PCE at pH 9 

Time (min) Concentration of PCE(ppm) 
0 21.1 

0.25 18.3 
0.5 17.4 
0.75 15.2 

1 12.8 
1.5 11.0 
2 8.76 

2.5 6.86 
3 5.06 
4 3.07 
5 1.69 

 

 

 

 

Table A-8. ARP degradation of PCE at 2 mW/cm
2
 

Time (min) Concentration of PCE(ppm) 

0 22.5 

1 19.2 

1.5 19.6 

2 16.8 

2.5 14.9 

3 14.8 

5 9.50 

7 6.16 

9 4.12 

 

 

 

Table A-9. ARP degradation of PCE at 4 mW/cm
2
 

Time (min) Concentration of PCE(ppm) 

0 22.9 

0.25 22.1 

0.5 19.1 

0.75 18.2 

1 14.1 

1.5 14.0 

2 11.0 

3 7.50 

5 3.49 
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Table A-10. ARP degradation of PCE at 7.3 mW/cm
2
 

Time (min) Concentration of PCE (ppm) 

0 21.7 

0.25 17.0 

0.5 15.1 

1 9.59 

1.5 7.44 

2 5.03 

3 1.83 

5 0.25 

 

 




