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ABSTRACT

This work aims to understand how cosmic inflation embeds into larger models of particle physics
and string theory. Our work operates within a weakened version of the Landscape paradigm,
wherein it is assumed that the set of possible Lagrangians is vast enough to admit the notion
of a generic model. By focusing on slow-roll inflation, we examine the roles of both the scalar
potential and the space of couplings which determine its precise form. In particular, we focus
on the structural properties of the scalar potential, and find a surprising result: inflection point
inflation emerges as an important — and under certain assumptions, dominant — possibility in
the context of generic scalar potentials.

We begin by a systematic coarse graining over the set of possible inflection point inflation mod-
els using V.I. Arnold’s ADE classification of singularities. Similiar to du Val’s pioneering work
on surface singularities, these determine structural classes for inflection point inflation which
depened on a distinct number of control parameters. We consider both single and multifield
inflation, and show how the various structural classes embed within each other. We also show
how such control parameters influence the larger physical models in to which inflation is embed-
ded. These techniques are then applied to both MSSM inflation and KKLT-type models of string
cosmology.

In the former case, we find that the scale of inflation can be entirely encoded within the super-
potential of supersymmetric quantum field theories. We show how this relieves the fine-tuning
required in such models by upwards of twelve orders of magnitude. Moreover, unnatural tuning
between SUSY breaking and SUSY preserving sectors is eliminated without the explicit need for
any hidden sector dynamics. In the later case, we discuss how structural stability vastly gener-
alizes — and addresses — the Kallosh-Linde problem. Implications for the spectrum of SUSY
breaking soft terms are then discussed, with an emphasis on how they may assist in constraining
the inflationary scalar potential.

We then pivot to a general discussion of the FLRW-scalar phase space, and show how inflection
points induce caustics — or dynamical fixed points — amongst the space of possible trajectories.
These fixed points are then used to argue that for uninformative priors on the space of cou-
plings, the likelihood of inflection point inflation scales with the inverse cube of the number of
e-foldings. We point out the geometric origin for the known ambiguity in the Liouville measure,
and demonstrate of inflection point inflation ameliorates this problem.

Finally we investigate the effect of the fixed point structure on the spectrum of density pertur-
bations. We show how an anomaly in the Cosmic Mircowave Background data — low power at
large scales — can be explained as a by product of the fixed point dynamics.
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CHAPTER I

INTRODUCTION

I.1 Invitation

As a paradigm, Inflationary Cosmology [1, 2, 3] attempts to explain the initial conditions for the
Big Bang [4] model of cosmology. Given that even the simplest models of inflation reproduce
features of the observed universe, grosso moto, it has become by far the most popular explanation
for these phenomena.

In essence, inflation employs a condensate of scalar fields to generate an approximately de Sit-
ter spacetime. Dynamical, cosmological matter typically breaks the de Sitter isometries down to
spatial rotations. Therefore, one may view inflation as kin to the Higgs mechanism: time diffeo-
morphism invariance in the metric is restored by the fluctuations of the scalar field. From today’s
perspective, this would appear as an exponential expansion of distances in space. Physically, this
symmetry restoration can be understood as an extremely slow evolution of the scalar conden-
sate. Indeed, at its most extreme —the infrared limit of a scalar field at rest at a minimum of its
potential with positive energy — inflation coincides with de Sitter space.

Attempting to theorize beyond Standard Model of Fundamental Interactions [5] has lead to a
proliferation in the number of hypothetical scalar fields. These scalars are particularly abun-
dant in string theory, where the so-called moduli fields of Calabi-Yau compactification can easily
number in the thousands [6, 7]. It is unsurprising, then, that decades of investigation have led
to an analogous zoo of inflationary scenarios. Many of these models have included smoking-gun
signatures of novel, ultraviolet physics [8].

As of late, these models have been ruled out.

With the release of the Planck Collaboration’s analysis [9], the universe appears to prefer the
relatively anonymous scenario of a single, canonically normalized scalar field semi-classically
rolling down a shallow potential. This fact has somewhat exacerbated complaints that Inflation-
ary Cosmology is not sufficiently predictive and theoretically incomplete. While new theories
have been put forth to address these issues [10, 11], it is not unreasonable to argue that such
questions are moot until ultraviolet embeddings are better understood [12]. In spite of these
concerns, the present work describes progress on this front. The uncertain identity of the inflaton
is tied to uncertain knowledge of the initial conditions both of which are central themes of this
dissertation.

Exceptional models may certainly exist. It may turn out that String Theory has a distinguished
candidate inflaton. Future observations may motivate a particular model of inflation. At the
time of writing, such is not our fortune. In the absence of experimental guidance, we choose to
employ the assumption that our universe — and the inflationary model which best describes it
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— is generic.

More precisely, we assume that inflation can be described by canonically normalized scalar fields
under the influence of a suitably generic potential. The former condition is in line with the non-
observation of primordial deviation from Gaussian statistics in the cosmic microwave background
data. The latter condition is taken to mean generic within the set of smooth functions, i.e. no a
priori correlation between coefficients in the Taylor series. In some sense, genericity of a scalar
potential is analogous to the Wilsonian notion of naturalness of an effective field theory.

This approach immediately makes the problem with inflation manifest: there is a fine tuning.
As we will argue, the observed sixty e-foldings of expansion has effectively made such a tuning
mandatory in realistic models: either concretely in terms of couplings or vaguely in terms of
initial conditions.

Our work localizes around the scenario of inflection point inflation, where a degenerate criti-
cal point of the scalar potential generates the phenomenologically observed expansion of space.
Owning to the tuning between couplings, the inflection point scenario was simultaneously la-
belled “accidental” [13] and yet vigorously employed by model builders. In addition to devel-
oping a systematic framework, we shall argue inflection point inflation is favored amongst a
landscape of possible models, a point that is (indirectly) supported by Monte Carlo calculations
[14, 15].

I.2 Structural Stability and Universality

Critical points of a smooth function degenerate in universal ways. The simplest of these degener-
ations — including those relevant for inflection point inflation — were classified in V.I. Arnold’s
Singularity Theory [16]. This classification scheme is the mathematical structure beneath the
physical phenomena of spontaneous symmetry breaking, a fact we shall exploit in this work.
Indeed, the fine tuning required to bring two critical points together can be traced to the tuning
required to bring a thermal system to its critical state. From this perspective, the scaling behavior
of the spectrum of density perturbations generated during inflation is no surprise.

Physically, inflection point inflation occurs in the vicinity of a field configuration where the po-
tential is locally cubic. Therefore the inflationary details of all models have some degree of
universality. To make this statement precise consider a potential V in a scalar field φ which as a
nearly degenerate critical point. By field redefinition, V may always be brought locally to a form,

V = V0

(
1+ λ1φ+

λ3
3
φ3 + · · ·

)
, (I.1)

where λ1 � λ1/3
3 . In such a case the universe expands by a factor expNe, where the universal

value of the number of e-foldings is
Ne ≈

π

2
√
λ1λ3

.
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Such cubic behavior is familiar from the study of a van der Waals gas: a maximum and a min-
imum degenerate at the critical end-point of the isotherm in a pressure/specific volume phase
diagram. We may extend this analysis further. Having a third critical point degenerate means V
is locally a quartic function. Such a degeneration would occur at the electroweak phase transition.
Let us examine this case in detail.

For inflation, a simple quartic potential is not phenomenologically viable as it does not afford an
exit to the standard big bang cosmology. A slight deviation from quartic to cubic behavior may
be parametrized by α,

V = V0

(
1

4
φ4 +αφ3 +

27

4
α4 + · · ·

)
. (I.2)

In the limit where α → 0, this form is also universal. Here the constant term is added to
assure a phenomenologically valid solution: the minimum value of V is vanishingly small. As
α grows, the universality of this result gets distorted, but the structural properties of V remain
the same. In particular, the energy density during inflation scales with the distance between the
inflection point and the local minimum. The universal quartic scaling for small α can pick up
an “anomalous” dimension as α grows, which may eventually dominate and spoil the validity
of the effective field theory. Arnold’s classification scheme merely tells us that there exists a field
redefinition which will bring the potential back to (I.2), at the expense of having non-canonical
kinetic terms in the Lagrangian.

This is a peculiar sort of flow in the space of couplings, were the boundary conditions change
rather than the energy scale. For the case of flow in α, the stability structure of the theory,
however, remains intact. This is not generally true. Flow towards negative λ1 in (I.1) will break
the cubic point into a maxima and minima.

In this dissertation, we study this phenomena systematically in the context of inflation. We derive
both universal properties and a classification of inflection point models based on the stability
structures alluded to above. These structures are generic and allow for an organized way to
discuss the embedding of inflation into string theory or particle physics models. This new clarity
deepens physical insight, and we describe new results based this new perspective. We also study
how the trajectories behave under flow in the space of couplings. In turn, this leads to a flow in
the space of effective Lagrangians for the cosmological perturbations. We finish our discussion
by describing some observational implications in this framework.

I.3 Selections from the Literature

Inflation dates back to the work of Starobinsky [17], where the idea of a universe born from a de
Sitter state was shown to be consistent with a nearly scale-invariant spectrum of perturbations.
The idea that exponential expansion could resolve a number of problems with big bang cosmol-
ogy was really put together first by Guth [1]. This work was quickly revised in [2, 3]. A number
of scenarios were envisioned to explain the gravity-scalar system. Notable amongst these was
Chaotic Inflation [18], which took a first stab at the issue of initial conditions by suggesting that

3



a sufficiently large fluctuation in vacuum expectation value (VEV) of the scalar field could exist
near the Planck scale. Hyrbid inflation [19], was an alternative proposal which took aim at ex-
plaining the end of inflation. Here a second scalar field was employed as a spectator, and inflation
ended with the phase transition induced decay of this spectator or waterfall field condensate. All
of these models attempted to explain the required sixty or so e-foldings of expansion required
by observations. A curious fact about such models is that the duration of inflation depended
primarily on the excursion in field space, rather than the actual energy scales. This lead naturally
to the issue of transplanckian field VEVs, which made the effective field theory models of such
physics difficult to interpret.

Inflection point inflation was devised as a simple means of embedding inflation into larger phys-
ical models. While fine tunings are problematic in physics, a tuning in the potential was at least
a well defined problem, easy to postulate and under parametric control.

So far all of these models of inflation have invoked details of the scalar potential. Changing
the kinetic terms of the Lagrangian can also induce a period of quasi-de Sitter expansion [20].
D-brane dynamics, replete with their Dirac-Born-Infeld (DBI) action were used to study inflation
in [21]. More exotic scenarios from the kinetic sector were also considered, notably Ghost Infla-
tion [22]. Aside from finding novel scenarios or embeddings into string models, these models
primarily sought to construct new observables. Non-canonical kinetic terms have the potential
to produce a spectrum of fluctuations that deviates from that expected by Gaussian statistics in
a measurable way. Much work has gone into observing and quantifying such deviations [23].
Maldaecena’s seminal calculation [24] is the classic reference for nongaussianity.

There are, of course, other ways to arrange for this. As demonstrated with hybrid inflation,
allowing for multifield dynamics can open new possibilities. The Curvaton mechanism [25, 26,
27] allowed the adiabatic perturbations generated during inflation to be transferred to spatial
curvature via a second, curvaton field. Significant nongaussianity could be generated by such a
transfer.

More recent develops in inflation have focused on systematizing the various results and zoo of
inflationary models. The δN formalism allows one to compute correlators of the primordial cur-
vature perturbation in terms of the scalar field correlators. For a particularly crisp treatment —
and the original references — see Ref. [28]. Effective field theory techniques where first system-
atically applied to inflation in Ref. [29] and slightly generalized by Weinberg [30].

In spite of the large number of new observables — and the possible window into near Planck-
scale physics, results from Planck suggest that nature insists on a very nearly Gaussian distribu-
tion of fluctuations. Many of these phenomenologically interesting models have now been ruled
out.

Baumann’s lectures [31] comprise an extensive and accessible introduction to inflation. Wein-
berg’s textbook [32] is a fairly complete introduction to modern cosmology.
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I.4 Preview

This dissertation is arranged as follows. We review the basics of inflation in chapter II. We
pay particular attention to the attractor dynamics while reviewing a number of the different
inflationary scenarios. We close the chapter by a discussion of linear perturbations of the gravity-
scalar system.

Our discussion of genericity amongst inflationary models is framed by a discussion of the land-
scape of string vacua in chapter III. We review the basics of Calabi-Yau compactification, the re-
sulting effective supergravity models and the possible realization of meta-stable de Sitter vacua.
We close with a brief discussion of Weinberg’s proposed explanation of the small cosmological
constant [33].

In Chapter IV we begin our classification program in earnest. Studying the critical points of
scalar potentials as functions of the space of couplings allows us to classify the structural classes
of inflection point inflation using Arnold’s ADE classification of singularities. This classification
is our first major result and lays the foundation for the rest of our analysis. It is based primarily
on Ref. [34].

Chapter V looks at how inflation embeds into supersymmetry particle physics through a pair
of case studies. First, we apply these techniques to the MSSM-inflation scenario. This new
approach to embedding inflation in supersymmetric quantum field theories eliminates technically
unnatural tuning in the SUSY breaking sector while preserving weak scale supersymmetry. The
scale of inflation comes entirely from the superpotential, which improves the required tuning by
nearly twelve orders of magnitude. This was first discussed in Ref. [35]. Second, we discuss how
the stability classes dictate how details of the inflationary scalar potential embed into the SUSY
breaking soft-terms in the context of a KKLT moduli stabilization scenario, which was also dealt
with in Ref. [34].

Chapter VI investigates the effects of inflection points in phase space. Expanding on the discovery
in Ref. [36], we show how inflection points can generate caustics amongst the set of trajectories.
These caustics act as inflationary fixed points and are used to bolster the attractor-as-predictor
argument for inflation. We extend the ensemble of universes to include all possible couplings
in the potential, which leads to an analytic derivation of an inverse cubic power law for the
likelihood of inflation observed by a number of Monte Carlo computations. This is based on the
work in Ref. [37].

In Chapter VII we employ properties of the fixed point dynamics of inflection point inflation to
explain an anomaly in the power spectrum of the CMB. The low power observed at the lowest
(` . 20) angular modes on the sky can be explained by a temporary deviation from slow-roll
which generally arises as the inflaton approaches the inflection point. Importantly, this deviation
scales with the structural parameters discussed in Chapter IV. This chapter is based on our work
in Ref. [38]. Finally, we draw our conclusions in Chapter VIII.
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CHAPTER II

INFLATIONARY COSMOLOGY

We review the basics of inflation and establish notation that will be used throughout this work.
A more extensive treatment can be found in either of [31, 32].

II.1 Scalar Fields in Cosmology

II.1.1 Dynamics

The dynamics of the early universe are assumed to be determined by a canonical scalar field
minimally coupled to the metric. The action for this theory is

S =
1

2

∫
d4x
√
−g (R+ gµν∂µφ∂νφ− 2V) .

The spacetime metric consistent with the cosmological principles of spatial uniformity is,

ds2 = c2dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
. (II.1)

It is often referred as the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. The single,
dynamical degree of freedom is the scale factor, a. The parameter k takes values ±1 or zero
and is the normalized spatial curvature. Spatial uniformity restricts the dynamics to a changing
notion of distance. The Euler-Lagrange equations which minimize S are traditionally written in
terms of the Hubble parameter, H = ȧ/a. The temporal equation is a constraint,

H2 +
k

a2
=
1

3

(
φ̇2 + V

)
, (II.2)

whereas the spatial equations uniformly represent the dynamics of the scale factor,

Ḣ = −
1

2
φ̇2 +

k

a2
. (II.3)

The field equation for φ itself is
φ̈+ 3Hφ̇+ Vφ = 0. (II.4)

The generalization of these equations to multiple fields is straight forward.

There are two (partial) gauge choices which simplify calculations. Both involves reparametriza-
tion of time. The first is so-called conformal time,

t 7→ η(t) =def

∫t dt′

a(t′)
.
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The second is
t 7→ N(t) =def loga(t),

the use of which is sometimes referred to as the gradient expansion method. In general, for a
smooth function of time q(t),

dq

dt
= a

dq

dη
= H

dq

dN
.

Let us rewrite (II.4) in terms of these two reparametrizations of time. In conformal time we have,

φ?? + 2aHφ? + Vφ = 0, (II.5)

where superscript stars represent derivatives with respect to η. In terms of N we have

φ′′ = −3(1−
1

6
φ′2)

(
φ′ +

∂ logV
∂φ

)
, (II.6)

where primes denotes derivatives with respect to N. Note also that the Hubble parameter in this
coordinates is given by

H2 =
a2φ?2 + 2V

6
=

V

3(1− 1
6φ
′2)

. (II.7)

II.1.2 Accelerated Expansion

Inflation is defined to be accelerated expansion of spacetime. In terms of the FLRW scale factor,
this means positive ä. Traditionally, it is computed in terms of the deceleration parameter q,

(−q) =
äa

ȧ2
= 1−

Ḣ

H2
, (II.8)

In terms of N, accelerated expansion occurs for any |φ′| <
√
2. We now demonstrate how the

stability of spatial flatness depends on the sign of q. For a given value of H, the critical energy
density — that energy density at which k vanishes — is ρC = 3H. The magnitude of the curvature
of space is given by the quantity

Ωk =def
k

a2ρC
=

k

3a2H2
.

Let us compute Ωk,

Ω′k = −2
k(a′H+ aH′)

(aH)3
= 2qΩk.

Therefore
Ωk ∝ e2qN. (II.9)

As made explicit in (II.9), accelerated expansion forces spatial curvature decays exponentially.
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II.1.3 Attractor Dynamics

The attractor properties of the gravity-scalar system is was discussed in detail in Salopek and
Bond’s work [39], as well as Liddle, et. al. [40]. While some of these technical details were known
— especially to Kofman [41] — to the best of our knowledge they were first presented in this
manner in [37]. In any case, there appears to be some confusion in the community, so we wish to
stress one important fact:

The slow-roll trajectory can be an attractor regardless of whether the universe is inflating or not.

We now qualify “can” and see how this comes about. To manifest the attractor dynamics, consider
first the case of a single, canonical scalar field, φ. With simple algebra, the flow equation (II.6)
reads,

φ′′ =
1

2

(
φ′ +

√
6
) [
φ′ +

∂ logV
∂φ

] (
φ′ −

√
6
)

. (II.10)

This second order, nonlinear differential equation has two singular solutions, where

φ′ = ±
√
6.

These solutions are unphysical; our assumptions about monotonicity of a break down since H
vanishes here. Despite the singularity in (II.7), configurations with φ′ very close to ±

√
6 can be

considered to be kinetic energy dominated.

Now the full equation (II.10) is solved easily if κ =def −Vφ/V is a constant. In this case (II.10)
becomes,

φ′′ = (φ′ −
√
6)(φ′ − κ)(φ′ +

√
6),

which is a first order differential equation in φ′. A third singular solution appears, φ′ = κ, in
which

φ = κN+ constant, φ = ±κ
√
6+ constant.

All other solutions interpolate between these three. As it turns out, two are repulsor solutions,
and one is an attractor. For a general first order differential equation with three constants A <

B < C,
x′ = (x−A)(x−B)(x−C),

all trajectories started between A and C will exponentially approach B. Other trajectories will
run off to ±∞.

κ may be a constant either if the potential is an exponential, V ∝ eκφ or, if Vφ/V is very close to
zero. The latter is clearly the case of interest, for then −

√
6 < κ <

√
6, which implies that

φ′ = −
Vφ
V (II.11)
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is the attractor trajectory.

“Very close to zero” can be qualified by recursively checking the solution. If κ ≈ 0, then the RHS
of (II.10) vanishes. This requires that the LHS vanish also, which amounts to the condition

Vφφ
V −

(Vφ
V

)2
≈ 0. (II.12)

This condition is the precise statement of what is usually meant by the “slow-roll conditions”. An
alternative definition in terms of the Hubble parameter can be defined similarly, although with
somewhat reduced precision.

While we explore various scenarios in the next section, these equations represent fundamental
idea behind inflation: kinetic energy is redshifted with expansion, slowing the towards potential
energy dominance, i.e. de Sitter space. The conditions on V for this to happen are given in (II.11).
Such behavior is generic, as either the potential may have small derivatives or an extremely large
value, which is certainly easy to arrange for any polynomial in φ.

The attractor dynamics of inflation are important since we have little technical understanding of
the earliest moments of the universe. Nevertheless, a large fraction of initial conditions appear
to give rise to a period of inflation. There is, however, a wrinkle. Qualifying large has proven
difficult, since we cannot access an ensemble of universes for a suitable experiment. The measure
on the space of possible universes — to the extend that such a thing is sensible — is not well
understood. Therefore, associating attractor dynamics with predictability may be premature. We
shall return to this point in some detail in Chapter VI. In the meantime, we investigate different
ways inflation can arise.

II.2 Some Inflationary Scenarios

II.2.1 Old Inflation

Old inflation models simply allow the inflaton to be at rest at some reasonably short-lived
metastable vacuum, generating inflation staying put. Since de Sitter space is unstable to vacuum
decay, the model involved tunnelling into the present, nearly Minkowski spacetime. Like a first
order phase transition, inflation would end when bubbles of non-expanding universe percolated
through spacetime.

Percolation never happens in an exponentially expanding background, although it not required
a priori. Were our universe to be a bubble adrift in an exponentially expanding background, we
might never be the wiser. From similiar arguments old inflation has found new traction in the
context of eternal inflation [42, 43]. There are even attempts to construct cosmological observables
along these lines [44].

In any case, the power spectrum of perturbations generated during a period of false-vacuum
inflation should be scale invariant. Observations by WMAP [45] and more recently Planck [9]
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have put strong constraints on the spectrum, which rules out exact scale invariance at the 5σ
level in favor of a slightly tilted spectrum favoring longer wavelength modes. Such deviations
are generic to dynamical models of inflation slow-roll inflation.

II.2.2 Chaotic Inflation

For our purposes chaotic inflation is synonymous with large excursion, slow-roll inflation. Al-
though depending on the scalar potential, the initial conditions have to be chosen carefully to
ensure enough expansion occurs. The main thrust of the original work [18] on chaotic inflation
was to explain these initial conditions.

Consider a simple quadratic potential,

V =
1

2
m2φ2. (II.13)

The slow-roll trajectory (II.11) is,

φ′ = −
2

φ
, (II.14)

which satisfies the slow-roll conditions (II.12) when φ� 1.

The number of e-foldings of inflation can be computed by integrating (II.14),

−

∫φf
φi

φdφ

2
=

∫Ne
0

dN,

which gives

Ne =
1

4

(
φ2i −φ

2
f

)
. (II.15)

Inflation ends when φ′ = −
√
2, or

√
2 =

2

φ
⇒ φ =

√
2.

So a phenomenologically viable fifty e-foldings would requires that

200 = φ2i − 2⇒ φi ≈ 14.

Such a number would appear to be reasonable until units are replaced. Set the mass scale of φ
to be be Λ, and let m = µλ. Using the Planck scale as an upper bound to the energy density,

M4P =
N2e
2
µ2Λ4. (II.16)

If Λ is near the Planck scale — which seems to be a reasonable requirement for the earliest
moments of the universe, then µ has to be fine-tuned to one part in Ne.
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Particle physics has a number of techniques for dispatching fine tuning problems. For example,
a quartic potential whose coupling is kept small by an shift symmetry could lead to a viable
potential. Despite such field theoretic mechanisms, attempts to embed chaotic inflation models
in to supergravity or string theory have been stymied by higher dimensional, Planck suppressed
operators. They typically spoil the slow-roll conditions (II.12) by contributing to the scalar poten-
tial in uncontrollable ways. This has become known as the η-problem [46]. Although there has
been progress on this front [47, 48].

But there is more. This is the minimal tuning required of the potential to allow for fifty e-
foldings of inflation. One must also explain how the field managed to start at a VEV near the
Planck scale. Linde’s original work remarks that this can simply happen at some random point
in spacetime owning to the potentially violent effects of Planckian quantum dynamics. In other
words, the universe just needs one large fluctuation among a huge ensemble of possibilities
to inflate which, although rare, is certainly possible. This perspective is amplified in Kofman,
Linde, and Mukhanov [49], but no quantitative calculations are given. Other attempts at such
calculations have been ambiguous, and some have given precisely the opposite answer to [50]!
We return to these arguments in detail in Chapter VI.

In short, there are two tunings to resolve, the couplings and the initial conditions. The former is
a tractable problem, the latter is considerably less so.

II.2.3 Inflection Point Inflation

Where chaotic inflation solved the slow-roll conditions (II.12) at a large value of V , inflection point
inflation solves these conditions by assuming the first and second derivatives of the potential
vanish at a particular field value, φ?. In short, φ? is a degenerate, real critical point of V .

The slow-roll trajectory has vanishing kinetic energy at a precisely degenerate critical point, so
it may slow the field down considerably and generate a sizable amount of inflation over a short
distance in field space. This is in stark contrast to the case of chaotic inflation discussed above,
and helps to alleviate the problem of initial conditions, since the field must only start somewhere
above the inflection point.

Near the inflection point, the inflaton potential has the universal form,

V = V0

(
1+ λ1φ+

λ3
3
φ3
)
+O(φ4), (II.17)

since any φ2 can be removed by a shift. Here λ1 must be very small; it is the same qualitative
tuning as in the mass parameter of (II.13). Once again we can compute the number of e-foldings,

Ne = −

∫φf
φi

dφ
V
Vφ

.

For simplicity, let us assume that φ initially starts at the inflection point. Then the minimal
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number of e-foldings will be

Ne = −

∫φf
0
dφ
1+ λ1φ+ λ3

3 φ
3

λ1 + λ3φ2
.

If λ1 is indeed small, this integral is dominated by the contribution near the inflection point, i.e.
where φ ≈ 0. Therefore,

Ne = −

∫φf
0
dφ

1

λ1 + λ3φ2
, (II.18)

which is approximately,
Ne ≈

π

2
√
λ1λ3

. (II.19)

Notice that fifty e-foldings of inflation require that λ1 is indeed quite small.

Inflection point inflation has been studied extensively in the context of string theory and particle
physics models. This is largely because models are easy to construct. Blind application of the
slow-roll conditions in this context have lead to a number of problems which we resolve in this
work. In the following chapters, we shall also discuss how inflection point inflation helps soften
the problem of initial conditions in cosmology, how it is in solid agreement with observations
and will make scenario specific predictions that can be tested in the CMB data.

II.3 Cosmological Perturbation Theory

At scales below 100h−1 Mpc, fluctuations about the FLRW background are statistically significant
at around the ten percent level [51]. Below this scale, the distribution of matter in the universe
is self similar. These fluctuations are thought to have been sourced by primordial fluctuations
in the energy density, which the theory of inflation seeks to explain. Statistical studies of these
fluctuations have driven much of modern Cosmology, so we spend some time to develop their
main theoretical framework: cosmological perturbation theory.

II.3.1 The General Framework

So far a cosmology has been specified by the FLRW scale metric, gµν and two fluid parameters
ρ and p. To study perturbations around them, we write the metric as,

gµν = gµν + hµν,

where ḡµν is the background FLRW metric (II.1), and hµν is referred to as its perturbation. We
similarly write the stress energy tensor as

Tµν = Tµν + δTµν.

One difficulty in this analysis is the differomorphism invariance of the action, S. Not all pertur-
bations of the metric or matter will be physically distinct from the background. Fixing a gauge
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removes this problem at two costs. First, gauge covariant notation may be simpler to work with.
Second, intuition in one gauge may not hold in another gauge, and different gauge choices are
useful for different purposes or perspectives. Since physical observables are gauge invariant, one
must take care to define and work with gauge invariant variables such as those introduced by
Bardeen [52].

The physical perturbation of spacetime is an admixture of a metric and matter perturbation.
“How much” of “which part” is a matter of perspective; it depends on choice of gauge. This can
be confusing, so we shall attempt to be as organized as possible about the physics. To that end
we employ the Arnowitt-Deser-Misner (ADM) formalism [53], which expand the full metric gµν
as,

ds2 = N2dt2 − γij

(
dxi +Nidt

) (
dxj +Njdt

)
. (II.20)

Here N and Ni are called the lapse function and shift vector, respectively. They can be viewed as
Lagrange multipliers that impose constraints on the dynamics, although they are both functions
of spacetime coordinates.

The main idea is to consider space on fixed time slices so that the Hamiltonian formalism of
dynamics can be applied. To that end the four-dimensional Einstein-Hilbert action splits in terms
of the three-dimensional intrinsic and extrinsic curvatures,

SEH =
1

2

∫
d4x

1

N

[
N2R(3) + EijE

ij − E2
]

, (II.21)

where the extrinsic curvature is Kij = Eij/N, so K = E/N and

Eij =
1

2
γ̇ij −∇{iNj}. (II.22)

E = γijEij. (II.23)

The equations of the lapse and shift are,

R(3) −KijK
ij +K2 = 2T00, (II.24)

∇i
(
γimKmj − δ

i
jK
)

= ∇iTij, (II.25)

respectively. Note that the lapse constraint (II.24) would be the Friedmann constraint in the
unperturbed metric.

Let us now focus on a single, canonical scalar field. In keeping with the spirit of the ADM
formalism, we now fix a gauge to port all the perturbed dynamics into γij by using the so-called
comoving gauge. We take δφ to vanish, and γij to be

γij = a
2
[
(1+ 2R)δij + qij

]
,

where qij is transverse-traceless, and R is the curvature perturbation.
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The standard [24, 31] thing to do is to solve the constraint equations to each order in perturbation
theory by writing

N = 1+ n, Ni = ∂iψ+NiT,

where NiT is transverse, i.e. ∂iNiT vanishes. Here each of n, ψ and NiT are formally expanded
about zero. For example,

n = εn(1) + ε2n(2) + ε3n(3) · · · ,

where ε plays double duty as the formal “small” bookkeeping parameter which counts the order
of perturbations and the order of R-dependence. Clearly, this is an approximation scheme which
requires R to remain small.

II.3.2 The Linear Perturbations

To study the linear perturbations, it remains to solve these constraint equations and plug into the
action at the order ε2. After some work — detailed in [31] — we find,

SR =
1

2

∫
d4x a3φ′2

(
Ṙ2 − 1

a2
δij∂iR∂jR

)
. (II.26)

To apply our intuition from Minkowski quantum field theory, we push to the conformal gauge,

SR =
1

2

∫
d4x a2φ′2

(
R?2 − δij∂iR∂jR

)
. (II.27)

The Euler-Lagrange equations for this action are,

(aφ′)2
(
R?? + 2H

[
1+

φ′′

φ′

]
R? −4R

)
= 0.

The R? term can be eliminated by opting for a canonical normalization of (II.26). A standard
Liouville transformation

R→ Q = aφ′R,

brings us to the field equation for the Mukhanov-Sasaki variable Q,

Q?? −

(
4+

z??

z

)
Q = 0. (II.28)

Here z = aφ′. In terms of φ,

Q?? −

(
4+ (aH)2

[
2(1−

1

2
φ′2)(1+

φ′′

φ′
) + (

φ′′

φ′
+

(
φ′′

φ′

)′
+
φ′′2

φ′2
)

])
Q = 0. (II.29)

Let use define the slow-roll parameter,

Ξ =def
φ′′

φ′
, (II.30)
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so that (II.29) becomes,

Q?? −
(
4+ (aH)2

[
(2−φ′2 + Ξ)(1+ Ξ) + Ξ′

])
Q = 0. (II.31)

Alternatively, we may employ the flat gauge, where hµν vanishes. In this case the quadratic
action for the scale fields is

Sδφ =
1

2

∫
d4x a2

(
δφ?2 − |~∇δφ|2 − a2Vφφδφ2

)
.

Again, opting for canonical normalization leads to the variable,

δφ→ ψ = aδφ.

So we find,

ψ?? −

(
4+ (aH)2[2−

Vφφ

H2
−
1

2
φ′2]

)
ψ = 0,

which becomes,

ψ?? −

(
4+ (aH)2[2− 3(1−

1

6
φ′2)

Vφφ

V
−
1

2
φ′2]

)
ψ = 0. (II.32)

II.3.3 The de Sitter Limit

In the de Sitter limit, both (II.31) and (II.32) reduces to the same form,

ψ?? −4ψ− 2(aH)2ψ = 0.

Note that in this limit H is constant and

η =

∫t
e−Hτdτ =

1

aH
. (II.33)

Fourier transforming ψ,

ψ =

∫
d3k

(2π)3

(
a~kψke

i~k·~r + a†
~k
ψke

−i~k·~r
)

,

we find
ψ??
k +

(
k2 −

2

η2

)
ψk = 0.

Solutions to this equation can be written in terms of spherical Hankel functions,

ψk(kη) =
kη√
2k

(
Ah

(1)
1 (kη) +Bh

(2)
1 (kη)

)
.
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A feasible quantum vacuum for the earliest moments of the universe should only include outgo-
ing waves, so Bmust vanish. Peculiar effects may persist if this is not the case [54, 55, 56, 57], some
of which are still not entirely ruled out observationally. Also, we have include the normalization
factor

√
2k in the mode functions to ensure that

[a~k,a†
~k
] = δ(3)(~k~k′). (II.34)

Now,

h
(1)
1 (kη) =

eikη

(kη)2
(1− ikη) , h(2) = h(1).

At late times,

|ψk|
2 = a2

H2

k3
,

where we have applied (II.33). In terms of our original variables,

|δφk|
2 =

H2

k3
.

Similarly,

|R|2 =
1

φ′2
H2

k3
.

Since we have defined properly normalized mode operators a~k and a†
~k

, an immediate conse-
quence of (II.34) is the traditional result for de Sitter perturbations

〈R~k
(t)R~k′(t)〉 =

(2π)3

φ′2
H2

k3
δ(~k+~k′). (II.35)

II.3.4 Deviations from de Sitter

Owing to the large number of e-foldings, the physical power spectrum will differ from (II.35)
only slightly. These deviations in terms of both φ′ and the Ξ parameter. Since (II.31) can similarly
be solved in terms of spherical Hankel functions, one can follow precisely the same steps as in
Sec. II.3.3 to find the slow-roll correlators. We close this chapter by establishing some conventional
notation to parametrize and interpret such results.

The power spectrum of density perturbations, PR(k) is defined by the relation,

〈R~k
(t)R~k′(t)〉 = PR(k)(2π)

3δ(~k+~k′). (II.36)

The power spectrum normalization, ∆2R is defined by

∆2R(k) =def
k3PR(k)
(2π)2

.
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These computational acrobatics are meant to clarify observations, as the real space statistical
variance of density perturbations can then be written as a Fourier transform,

〈RR〉 ∝
∫∞
0
d logk ∆2R(k).

Notice that the angular degrees of freedom have been integrated over.

The spectral index of density perturbations is defined to be

ns = 1−
d log∆2R
d logk

,

so that in the de Sitter case ns = 1. Slow-roll inflation that ns is typically only slightly smaller
than unity. Given that observations peg ns near 0.96 [9], its prediction is considered a success of
inflation.

We now briefly consider R away from the de Sitter limit. From (II.31), the Fourier components
of the Mukhanov-Sasaki variable Q can also be written in terms of spherical Hankel functions,

Qk =
xh

(1)
ν (x)√
2k

,

with
x =def k(η− η?). (II.37)

Here η? is the conformal time when the perturbations relevant for the CMB left the horizon.
Similarly, it is convenient to define the parameter

u =def aH(η− η?) (II.38)

To maintain the Minkowski-like vacuum with no “outgoing” modes, the coefficient of h(2)ν is set
to zero.

The index ν is determined from (II.31),

ν± = −
1

2
± 1
2

(
1+ 4u2

[
(1+ Ξ)(2+ Ξ−

1

2
φ′2) + Ξ′

])1/2
. (II.39)

Since h(1)ν± are complex conjugates of one another, and we are only interested in the modulus, we
take ν = ν+ unless otherwise specified. In this case, the de Sitter limit implies ν = 1. We may
then compute the normalization of the power spectrum, converting from Q to R = Q/aφ′,

∆2R = k3
∣∣∣xh(1)ν (x)

aφ′
√
2k

∣∣∣2.
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Let us use our conventions to convert k to x,

k→ x

η− η?
→ x(uaH),

so that ∆2R becomes,

∆2R = x4
∣∣∣h(1)ν (x)

∣∣∣2 ( (uH)2

φ′2

)
. (II.40)

Since we are interested in modes on the largest scale, x � 1, we can approximate the Hankel
Functions,

|h
(1)
ν (x)|2 → x−2ν−2, ν > 0,

|h
(1)
ν (x)|2 → x−2ν, ν < 0.

Therefore, if ν = 1+$,

∆2R = x−2$
(
(uH)2

φ′2

)
,

which means that the spectral index,
ns = 1− 2$.

Let us compute $ from (II.39). For small φ′2 and Ξ, u ≈ 1, so to first order in these parameters,

ν = 1+
1

3

[
(Ξ−

1

2
φ′2) + Ξ′

]
,

so

$ =
1

3

[
(Ξ−

1

2
φ′2) + Ξ′

]
. (II.41)

Note that the traditionally presented approximation,

ns ∼ 1− 2η− 4ε,

comes from
Ξ = η− 2ε,

but does not quite represent the correct limit of (II.41), as 12φ
′2 → ε as Ξ→ 0.

Let’s close this chapter by illustrating the properties of ∆R for various ν. In Fig. II.1, we see the
transitioning between a redshifted and a blueshifted spectrum occurs as ν passes through unity.

For large k, the normalization of the power spectrum is parabola, ∆2RdS ∝ 1+ k2. The minimum
of this quantity is shifted as ν increases above unity, as seen in Fig. II.2.
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Figure II.1: The behavior of ∆R, continued into R to emphasize behavior. The dashed black
line corresponds to the de Sitter solution, with ν = 1. For ν > 1, the continued function is
discontinuous at the origin and the spectrum of perturbations is redshifted. For ν < 1, the
function is continuous, but the spectrum is blueshifted.
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Figure II.2: The power spectrum and spectral index for ν = 1.5, 1.3 and 1.1. In both cases k/aH is
normalized for clarity. Note that for observationally relevant scales, inflation pushes the k � 1,
making ns slightly less than one a self-consistent prediction. This is illustrated in the shaded
region for ν = 1.1.
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CHAPTER III

INTERLUDE ON THE STRING LANDSCAPE

III.1 A Vast Solution Space

The traditional definition of a quantum vacuum is the the lowest energy state of a system. For
a quantum field theory, a simple example would be a zero-particle state. Systems which admit
scalar fields have a more complex vacuum structure, although one typically searches for the
global minimum of the scalar potential. This search may lead to straight forward interpretation.
Among a set of not-necessarily degenerate local minima, a system may reside in a higher energy
state before tunnelling into the true vacuum [58, 59]. Direct computation of these effects are
rather delicate given the difference between Lagrangian and Hamiltonian path integrals [60].

Given the unsolved problem of quantum gravity, what is meant by a gravitational vacuum is
less clear. This issue is further obfuscated by dynamic evolution of the observed universe. The
classical vacuum is certainly one with maximal symmetry, typically Minkowski space. For con-
stant, negative spacetime curvature, a quantum theory of gravity has been defined in terms of the
conjectured AdS/CFT correspondence [61]. With the observation of late-time cosmic acceleration
[62, 63], it is plausible that we exist in a matter-filled, de Sitter universe. The presence of matter
breaks the de Sitter isometries of spacetime down to the FLRW metric, but following our notion
of a particle vacuum above, one could define the gravitational vacuum today blithely with the de
Sitter metric.

String theory is the dominant paradigm for studying the effects of quantum gravity, and the pre-
ceding observations are certain motivation to look for time-independent, de Sitter backgrounds.
This is not easy. Time-independent string theory backgrounds which admit a geometric interpre-
tation — i.e. those we are most equipped to handle — are ten-dimensional and supersymmetric.
Kaluza-Klein [64] compactification to four dimensions is possible, although fraught with compli-
cations. These technical details can be subverted with the aid of supersymmetry, providing the
added benefit of stability. Unfortunately, four-dimensional, de Sitter, N = 1 supersymmetry does
not exist [65].

Given our present understanding of string theory and the universe, a construction of the latter
within the framework of the former appears to be necessarily complicated. For a clear and
detailed discussion of why this should be — and for further reference on string vacua — see
Ref. [7]. In what follows we discuss one particular scenario for realizing de Sitter vacua in string
compactifications. It is conjectured to afford an extremely large quantity of plausible solutions,
which allows us to approach some notion of a “generic” de Sitter compactification [66, 67].
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III.2 Kachru-Kallosh-Linde-Trivedi Moduli Stabilization

In their seminal work, Kachru, Kallosh, Linde and Trivedi (KKLT) [68] drew from a large body
of different results in string theory and quantum gravitational effects to stabilize all the moduli
in IIB supergravity compactifications. Their final result was a meta-stable, four dimensional de
Sitter vacuum whose lifetime to decay was consistent with cosmological observations. Much of
the subsequent work in string phenomenology has been based on this construction.

In the KKLT approach, the complex structure moduli and axio-dilaton are assumed to be fixed
by G3 ∈ H(2,1)(X, Z)⊕H(0,3)(X, Z) flux by means of the Gukov-Vafa-Witten superpotential [69],

W0 =

∫
X
G3 ∧Ω,

here Ω is the holomorphic three-form associated to Calabi-Yau manifold X. SUSY solutions
require that G belong to H(2,1)(X, Z), so the fluxes need to be tuned such that the H(3,0) contri-
bution is small. This has the added benefit of stabilizing the volume modulus at large VEVs large
enough suppress α′ terms and otherwise maintain the supergravity approximation.

The superpotential is fleshed out by nonperturbative corrections which may either come from D3

instantons or strong gauge dynamics on D7 branes wrapping four-cycles in X. In either case, the
resulting superpotential is

W =W0 +
∑
i

Aie
−aiσ,

where the Gukov-Vafa-Witten contributionsW0 is effectively a small constant. The exponent ai is
either 2π or 2π/N, whereN is the rank of theD7worldvolume gauge theory undergoing gaugino
condensation. In the presence of additional magnetic flux, such a term may be generalized to

e−aiσ → e−aiσ+f, (III.1)

where f is a phenomenological parameter O(100) which represents the extra size supported by
the energy density of additional flux threading the four-cycle populated with D7-branes.

These nonperturbative contributions to the superpotential is crucial, as a shift-symmetry in the
volume modulus σ prevents perturbative contributions to the superpotential. For the volume
superfield T ,

σ = −i(T − T).

Note that we have implicitly assumed that the axionic part of T , CT = T + T is stabilized at zero.

All that remains to be stabilized is the Kähler moduli. In KKLT models, it is typically assumed
there is but a single such modulus, although generalizations have been studied. The effective
Kähler potential for a single-field model is of no-scale form,

K = −3 log
[
−i(T − T)

]
,
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which leads to the scalar potential,

V = eK
(
KTTDTWDTW − 3|W|2

)
.

Here the Kähler covariant derivative is DTW = ∂TW +KTW and the Kähler metric in field space
is

KTT = ∂T∂TK,

to which KTT is the inverse.

Finally, SUSY is broken explicitly by the addition of D3 branes [70] — D3-branes which preserve
a different set of the thirty-two, ten-dimensional supersymmetry generators. In the presence
of imaginary-self dual 3-form fluxes, their contribution can be made small by warping of the
type found in “throat” geometries constructed by Klebanov and Strassler [71], and thereby under
parametric control. A phenomenological parametrization of the scalar potential is then

V = eK
(
KTTDTWDTW − 3|W|2

)
+
8c

σ3
. (III.2)

III.3 The Kallosh-Linde Problem

III.3.1 Scales of SUSY Breaking and Inflation

The KKLT paradigm of lifting the vacuum energy to de Sitter space with an explicit SUSY break-
ing term in the scalar potential manifestly introduces a new energy scale into the system. For
the simplest models, this uplifting is used implicitly to dial in an inflection point for the scalar
potential. In such a scheme, the scales of inflation and SUSY breaking are related.

As pointed out in a paper by Kallosh and Linde [72], this creates a tension between high scale
inflation and weak scale SUSY. For inflation to exist near the Planck scale, as one might naı̈vely
expect, the scale of introduced by uplifting must be substantial. To maintain the conventional
phenomenology favored by weak-scale SUSY breaking, such an uplifting seems to exclude the
possibility of an inflection point.

Kallosh and Linde effectively argued that minimal KKLT scenarios could not work, and proposed
that at least some extension was required. They demonstrated that this problem could be solved
in Racetrack Inflation [73], where a Minkowski vacuum and high scale inflection point could be
generated by the interplay of nonperturbative terms in the superpotential.

III.3.2 A Simple Realization

Of course, this phenomena can be anticipated on physical grounds. In simple models, the uplift-
ing term is the relevant scale for both inflation and SUSY breaking. To separate these effects, one
must introduce a new scale into the problem. Kallosh and Linde effectively managed this with
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two nonperturbative terms. As we shall see, this is not enough. For a hierarchy between inflation
and SUSY breaking requires a hierarchy in couplings.

Indeed, the fundamental mathematics which underpins these effects can be modelled by a simple
quintic polynomial,

V =
1

5
x5 +

1

3
ax3 +

1

2
bx2 + cx+ constant, (III.3)

where a (Tschirnhaus) shift in x is used to eliminate the quartic term. To demonstrate the effect
of the Kallosh-Linde problem, let us fix a = −1 and examine the behavior of V for various b and
c. We will indeed fine that the set of physically viable inflection points is indeed limited.

-0.4 -0.2 0.2 0.4
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0.1

0.2

0.3

0.4

0.5

0.6

c
Various Domains of Swallowtail Parameter Space Ha=-1L

Figure III.1: Plot of the parameter space of the potential from (III.3). The behavior of V in different
regions of parameter space is superimposed for reference.

The purple, piecewise smooth curve in Fig. III.1 represents the set of b and c which allow for
simultaneous solutions to the equations

dV

dx
= 0,

d2V

dx2
= 0.

In particular, each point on the curve corresponds to a potential with an inflection point. This
curve divides the parameter space into three domains. The domain inside the triangle has two
local minima. The Domain below the diverging “wings”, but outside the triangle have a sin-
gle minimum. The upper domain has none. Another way to interpret the curve is the set of
marginally stable configurations of V which interpolate between these domains.
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Figure III.2: Plot of a IIB “Racetrack” potential in blue. It has the same structural behavior as V
from (III.3). The purple feature is the same parameter space from Fig. III.1. The specific point in
this parameter space is highlighted for rerefence.

To maintain the phenomenologically desirable combination of an inflection point above a local
minimum — with a barrier to a runaway — the potential must take values on the left hand side
of the triangular region only. That we only have access to a single segment of a curve of possible
inflection points is a precise restatement of the observation of Kallosh and Linde. For example, if
one chooses a point above the apex of the triangular region, the physical vacuum and its barrier
to runaway vanish. As critical points of V , they collide at the apex and become complex-valued.
This is illustrated in Fig. III.2.

We have an additional degree of freedom at our disposal. The size of the triangle region scales
with |a| in (III.3). To separate the scales of inflation and SUSY breaking — in this case the
difference in V between the inflection point and the local minimum — one must increase a. This
amounts to separating these two critical points in field space. In other words, the hierarchy of
scales is generated by a hierarchy in critical point VEVs.

This discussion would be a cute toy model if not for some powerful theorems of V.I. Arnold
[16] regarding the normal forms of smooth functions. As we discuss in the next chapter, the
relationship between the quintic polynomial (III.3) and the supergravity scalar potential (III.2)
is no coincidence. For a smooth, real function with three parameter to vary, such behavior is
completely generic. We use this fact as a starting point for our analysis: to classify and study the
set of all generic inflection point inflationary models.

III.4 What We Talk About When We Talk About the Landscape

The Landscape of String vacua is most often discussed in terms of local minima to an effective
potential arising from a Kaluza-Klein compactification.
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III.4.1 A Pointillist Solution Space

In the early days of string theory, conventional wisdom held that there as a single background
solution — a unique vacuum — which would give rise to all the observed physics. Consistency
relations required the vanishing of the four-dimensional cosmological constant, which was her-
alded as a success. Then in 1998 the High-z Supernovae Search team announced evidence for
late-time, cosmic acceleration [62]. This finding was followed up shortly by the release of similar
results by The Supernova Cosmology Project [63]. The existence of a small, but non-vanishing
cosmological constant — or approximation thereof — is an extreme fine-tuning problem and a
major open problem.

Meanwhile, the study of moduli stabilization in string theory had revealed an extremely large, but
discrete space of supersymmetric solutions using magnetic flux background. The discrete nature
of the solution space comes from quantization conditions on the fluxes when integrated over
compact manifolds, not unlike Dirac’s quantization condition in his study of magnetic charges.

Calabi-Yau 3-folds are often characterized by the dimensions of two Dolbeault cohomology
groups: h1,2 = dimH(2,1) and h1,1 = dimH(1,1). Compactness, Ricci flatness, Complexity and
Hodge and Poincaré duality constrain the rest of cohomology groups to depend on these two
numbers. In general, these numbers — and the number of associated internal cycles — can be in
the hundreds. In string theory, different types of magnetic flux can thread these various cycles
in configurations numbered by integers as per the quantization conditions. Counting the vast
number of possible models based on such a set up has lead to numbers on the order of O(10500)
or higher.

The conjectured Landscape of flux vacua starts with the existence of a similarly enormous set of
anti-de Sitter vacua. These can be any number of the well motivated examples in F-theory [74, 75],
but perhaps also orientifold compactifications [76, 77, 78]. Despite some recent investigations
[79, 80], the details of uplifting the vacuum energy to de Sitter space is not well understood, and
there is compelling evidence that it may be a flawed concept [81]. Allowing for uplifting and
meta-stable vacua leads one to the study of Eternal Inflation, which is reviewed in this context in
[82] and the references therein.

Our philosophy on the uplifting issue is semi-ambivalent: while we do need positive vacuum
energy, we do not need it to come from a consistent string compactification of a particular type.
Our dealings with the landscapes is predicated on its numerosity. The approach we advocate
is that inflation — whatever drives it — can be used as a tool to coarse grain over such a large
solution space.

Nevertheless, given the phenomenological success of Weinberg’s anthropic explanation of the
cosmological constant [33] a few comments are in order.

The conjectured landscape of string theory vacua brings together two ideas. The first is the
discretuum of (also conjectured) phenomenologically viable meta-stable flux vacua. The second
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is the possibility of integrating out all the six-dimensional, stringy physics into an effective, four
dimensional scalar potential. Perhaps echoing the Reid conjecture1, the conventional wisdom
surrounding the landscape seems to suggest that each of the nearly infinite, discrete possibilities
may correspond to a different local minimum of the effect potential. With a huge ensemble
of possible states, one can then invoke the Weinberg argument [33] to postdict the existence
of an incredibly small cosmological constant from string theory. The main issue [81] with this
assumption is whether or not different somehow-deformed Calabi-Yau vacua can be considered
different vacua of the theory, viz. the Coleman-de Luccia transitions [85].

In any case, given an intractably large landscape of candidate vacuum solutions to string theory,
our goal is to paint over it with different classes of inflationary models. Aside from giving
a handle to deal with such an potentially unruly ensemble, it also takes a first step towards
thinking about vacuum selection.

III.4.2 Our Takeaway

The main insight we take from these ideas is that a large solution set of possible universe should
be taken seriously. Since 10500 − 101500 amounts to infinity in phenomenological terms, it is
fair to look for a “generic universe” and compare ours to it. The required sixty or so e-foldings
of inflation suggests some sort of fine tuning. While the main goal is uncover new physics
responsible for such a tuning, we must first attempt to make the notions of generic and tuning
precise.

The analysis put forth in this work is largely based on semi-classical analysis. Given our as-
sumptions, spelled out below, we conclude that inflation is generically absent. The number of
e-foldings amounts to a tuning between couplings in the scalar potential to bring about inflec-
tion point inflation. This result hinges on the fixed point dynamics enjoyed by inflection points.
We essentially expand the minisuperspace analysis to include all possible couplings in the scalar
potential.

Without detailed knowledge of the ultraviolet physics, it is impossible to determine the correct
measure on phase space. Regardless, our analysis demonstrates that the choice of scalar potential
and inflection point inflation both play important roles in any statistical analysis — and are
sometimes deeply related.

1The mathematician Miles Reid conjectured that moduli spaces of topologically distinct
Calabi-Yau 3-folds may be connected [83] by means of conifold transitions [84].

26



CHAPTER IV

STRUCTURAL CLASSES FOR INFLECTION POINT INFLATION

In this chapter we introduce a classification of inflection point models based on the stability
properties of the scalar potential. By restricting our focus to critical points, this classification
affords a coarse-grainning over possible embeddings of inflection point inflation. This analysis is
based on the work in Ref. [34].

IV.1 Motivation for a Classification

Doubly degenerate critical points of a function can always be modelled by cubic functions. This
simple fact means that results like the number of e-foldings (II.19) are universal amongst inflec-
tion point models. Such universality descends from universal prescriptions for the local expan-
sion of smooth functions.

These ideas were first studied as surface singularities by Patrick du Val[86] in the Thirties. Ap-
plications of these ideas to more general situations were studied en masse by René Thom [87].
Thom’s Catastrophe Theory studied how critical points of real functions degenerate. Here Thom
and others emphasized how the changes to the stability structure of a physical system could
be modelled by catastrophe’s like the Swallowtail studied above. This classification scheme was
considerably extended and made rigorous by V.I. Arnold [16].

Our analysis centers on critical points of the scalar potential. We will be interested in their
behavior as the couplings in the potential are varied. As we discuss below, the maximum number
of local extrema accessible by variation of the couplings determines the stability structure of the
potential. This sets up our arena. Our game is then to find all possible ways two critical points
can degenerate — all possible models of inflection point inflation within said arena. We then
extract whatever information we can from these structures alone.

We have two goals in this analysis. First, we aim to facilitate a better understanding of how
inflation embeds into larger theories like string theory and particle physics. Second, we look for
observational signatures distinct to each structural class. Later chapters in this dissertation spell
out progress on both these fronts. First, however, we must develop the relevant technology.

IV.2 Arnold’s Classification of Normal Forms of Smooth Functions

In this and what follows, we make extensive use of the qualifier generic. Mathematically, we take
generic to mean “all but a set of measure zero”. For points in Euclidean space, this is a sensible
notion. For a particular function among a set of smooth functions it may be less so. A smooth
function is at least locally diffeomorphic to a finite polynomial whose coefficients are generic
as above. We may, however, assume the existence of a discrete symmetry, like the Z3-invariant
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potentials in Chapter V. Hence, one may consider polynomials in φ3. Generic then has a natural
meaning modulo that symmetry.

Physically, we mean to avoid hidden conspiracies or fine-tuning. Without a guiding notion of
what string theory, particle physics, or whatever model bests describes the earliest moments of
the universe, we take take a philosophy of non-exceptionalism, not unlike the modern approach
to cosmology. While all models of inflation seem to require some fine-tuning, we prefer to keep
the tuning explicit and therefore under control.

Given a generic, smooth function V of finitely many variables and control parameters which has
no more than two vanishing eigenvalues of the Hessian, Arnold proved that at a critical point, a
diffeomorphism exists which can bring to one of the following generic forms or “germs”:

VAk =
1

k+ 1
xk+1 +Q2, (IV.1)

VDk =
1

k− 1
xk−1 + xy2 +Q2, (IV.2)

VE6 = y3 + x4 +Q2, (IV.3)

VE7 = y3 + yx4 +Q2, (IV.4)

VE8 = y3 + x5 +Q2. (IV.5)

Here Q2 represents a standard quadratic form, perhaps in the other variables. There is a “split-
ting” lemma which states than there is always a smooth change of variable which allows one to
locally split into non-Morse variables and the standard Morse part. Recall that a Morse function
is one whose critical points are (Hausdorff) separated.

Arnold’s proof went further: if the space of control parameters is less than six dimensional, V
must take one of these forms; a third eigenvalue of the Hessian cannot be made to vanish. Higher
singularity germs all contain moduli: a diffeomorphism of the manifold near the critical point
will bring you back to the same family of germs, perhaps with different values for the moduli.
The one-moduli families of germs were studied extensively by Arnold, and can be found in [16].

An important extension of this classification is that the germs are deformed in a universal1 way.

1Arnold called such universal deformations “versal” to emphasize the fact that they are
generic. In general there are “versal”, “mini-versal” and “universal” deformations. See [16]
for details.
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δVAk =

k−1∑
n=1

an
n
xn, (IV.6)

δVDk =

k−2∑
n=1

an
n
xn + cy, (IV.7)

δVE6 = c3x
2y+ c2xy+ c1y+ a2x

2 + a1x, (IV.8)

δVE7 = c2xy+ c1y+

4∑
n=1

an
n
xn, (IV.9)

δVE8 = y

3∑
n=0

cn
n
xn +

3∑
n=1

an
n
xn. (IV.10)

Note that not all possible terms have been written. For example, xk is absent from δVAk and xy is
absent from δVDk . These can be removed by a shift, changing the overall constant term in V . This
term is accounted for in the quadratic form Q2. Since we are interested in the functional form of
V , we can leave such terms implicit. Physically, the constant term is related to the cosmological
constant. This is a different matter, and in this work we assume that this issue is unrelated.

IV.3 A-type

IV.3.1 The Fold

The prototype for structural stability comes with the A2 Model, known first by Thom as the
“fold”. Here

VA2 =
1

3
x3 + ax+ constant. (IV.11)

For negative a, VA2 has two local extrema. For positive a there are none. A degenerate criti-
cal point exists if and only if a vanishes. When a � 1, this behavior is universal to a nearly
degenerate critical point of any smooth function. This behavior is shown in Fig. IV.1.

IV.3.2 The Cusp

The A3 potential, known to Thom as the “cusp”, yields more complete model.

VA3 =
1

4
x4 +

1

2
ax2 + bx+ constant.

Here there are at most three critical points. For positive a, VA3 has only one minimum; two
critical points are complex-valued. To obtain three local extrema from one by varying the (real)
parameters a and b , VA3 must pass through a degenerate critical point. This amounts to the
condition, (a

3

)3
+
(b
2

)2
= 0. (IV.12)
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Figure IV.1: The Fold potential from (IV.11). For a = −1, there is a local minimum. VA2 becomes
metastable as a vanishes. The dotted curve corresponds to a = 1, where the critical points have
become imaginary.

Eqn. (IV.12) represents a co-dimension one subvariety of parameter space. Call this space MA3

This is represented by the bold curve in Fig. IV.2. The cusp feature near the origin gives rise to
Thom’s name for this singularity germ. MA3 serves as domain wall in parameter space, dividing
the one-minimum family of potential from the two-minimum family by a those with a degenerate
critical point.
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- 0.5
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Cusp Parameter Space

Figure IV.2: The cusp parameter space cut by the piece-wise smooth curve MA3 . The shaded
region has two local minima, while the unshaded region has only one. MA3 comprises the subset
of points for which VA3 has a degenerate critical point.

Let α parametrize this curve so that α vanishes at the origin of parameter space. Then by (IV.12),
a = −3α2 and b = 2α3. Then α ∈ R defines a one-parameter family of inflection point models
based on VA3 . The constant in VA3 can be chosen to that the energy density at the local minimum
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vanishes. Then,

Vcusp =
1

4
x4 +αx3 +

27

4
α4. (IV.13)

Here we have shifted x to x+ α so that x vanishes at the degenerate critical point. The global
minimum occurs at x = −3α. Notice that the energy scale of inflection point inflation scales by
α4, as shown in Fig. IV.3.
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Figure IV.3: The cusp potential from (IV.13) for various α. Notice that as the seperation between
the inflection point and the local minimum increases, so too does that value of the potential.

As with the fold, VA3 is universal for small α. Since inflation requires a non-vanishing vacuum
energy, we would expect α to be finite and (IV.13) to only be a qualitative description of the true
potential. While the “critical” scaling of the energy density during inflation, α4 will certainly
change as α grows large, the parametric relationship between the seperation of scales and the
seperation of critical points should remain.

As with the fold, the cusp can be deformed away from a degenerate critical point by moving
off the subvariety VA3 . Near the degenerate critical point — i.e. near x = 0 — the physics is
well modelled by the fold potential. Put differently, since a large amount of inflation is required
physically, the deviation from locally cubic behavior can be parametrized by the relevant operator
x with a small coupling, λ� α3.

The deformed potential is then

Vcusp =
1

4
x4 +αx3 + λx+

27

4
α4, (IV.14)

and by (II.19), the number of e-foldings of inflection point inflation is approximately,

Ne ≈
π

2
√
3αλ

.
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This behavior is demonstrated in Fig. IV.4.
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Figure IV.4: The deformed cusp potential from (IV.14). The same sign dependence of the tadpole
coupling, λ appears as with the fold.

The point is important so we stress it again. The A3 germ unfolds by deformation to a one
parameter family of A2 germs. In the language of spontaneous symmetry breaking, α is the
order parameter for the SU(4) → SU(3) breaking, and all the physics induced by this breaking
depends the value of α.

Note that most simple model of hybrid inflation [19] also fall into this category, although they
are two field models. The A3 germ corresponds to the critical value of the inflaton where the
so-called waterfall phase transition takes place.

IV.3.3 The Swallowtail

To drive home these ideas and make contact with string compactifications, we consider finally
the A4 model known to Thom as the “swallowtail”. Here the potential is

VA4 =
1

5
x5 +

1

3
ax3 +

1

2
bx2 + cx+ constant. (IV.15)

There are four critical points and three control parameters. Therefore the codimension-one sub-
variety of points leading to degenerate critical points of VA4 will be two dimensional. This space,
MA4 , is parametrized by two parameters α and β. To determine this parametrization, let

∂VA4
∂x

= (x−α)2(x−β)(x− γ).

The critical point γ will be fixed by same shift in x used to cancel quartic term in (IV.15). Now,

(x−α)2(x−β)(x− γ) = x4 + ax2 + bx+ c,
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so by matching coefficients of x, we find,

2α+β+ γ = 0, (IV.16)

α2 +α(β+ γ) +βγ = a, (IV.17)

α2(β+ γ) + 2βγα = −b, (IV.18)

α2βγ = c. (IV.19)

Eliminating γ, we find

a = −2α2 − (α+β)2, (IV.20)

b = 2α(α+β)2, (IV.21)

c = −α2β(α+β). (IV.22)

Note that these equations include scaling relationships,

b

a3/2 = −4α2 + 2α,
c

a2
= 3α4 −α2, (IV.23)

which allows us to examine a cross-section of MA4 in R3. Effectively, we need only consider
the cases where a = ±1 or 0, the rest are related by scaling. This simplification facilitates the
discussion of A4 phenomena.

- 1.0 - 0.5 0.5 1.0
b

0.2

0.4

0.6

0.8

1.0
a

Swallotail Parameter Space Ha =-1L

Figure IV.5: A cross section of the A4 parameter space, with a = −1. As with Fig. IV.2, the
piecewise smooth curve represents the subset of couplings for which VA4 has a degenerate critical
point. The shaded region corresponds to a V two local minima, the bottom connected component
has one, and the top has none.

Eqn. (IV.23) represents a family of curves in the space of couplings in which V has a degenerate
critical point. For positive a, this curve divides a single metastable state from a runaway, not
unlike the fold singularity. Indeed, it can be locally approximated as such, with the strength

33



of the cubic coupling depending on α and β. Since we are typically interested in stabilized2

scalar fields, this is not a case of physical interest. For vanishing a this holds true, except in the
vicinity of vanishing α, where a local quartic model is appropriate. Finally, negative a allows for
inflection point inflation and a meta-stable vacuum. Potentials with both features exist for the left
half of the triangular region shown in Fig IV.5. The right half of the triangle involves inflection
point inflation towards a runaway. At the midpoint of the base the barrier degenerates to form
an inverted quartic, while at the apex the local minimum degenerates to form a second inflection
point. This finite region (relative to β) of physically relevant models explains quantitatively
the Kallosh-Linde phenomena. This is illustrated in terms of the potential on the left side of
Fig. IV.6. The right side compliments this by showing a deformation away from the triangular
boundry illustrated in Fig. IV.5. The hierarchy of the scales between inflation and SUSY breaking
is explained with simple algebra; it merely requires a hierarchy between the values of α and β.
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Figure IV.6: The swallowtail family of potentials under the variation of various couplings. On
the left, note the strong dependence of the barrier height on the coupling β, compared with the
tadpole coupling λ on the right.

IV.4 D-type

IV.4.1 On Multiple Fields

When multiple scalar fields have a mass lighter than the Hubble scale during inflation, the dy-
namics are substantially enriched. The set of real critical points now include saddle points, which
can degenerate to form a variety of potential energy landscapes for the inflaton to roll through.

The perturbations are also effected. If the mass of a spectator scalar field ϕ is larger than the
Hubble scale, that is Vϕϕ � H2, the perturbations are strongly suppressed. From (II.32), we find

2Quintessence models of Dark Energy utilize a slowly-rolling scalar field to drive accelerated
expansion, not unlike inflation. Such considerations may be relevant here, although the process
of reheating and our cosmic history obfuscate any relation between the inflaton and a possible
quintessence field. For a short review of Quintessence, see Ref. [88].
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that the modes can be solved in terms of spherical Hankel functions δϕ ∼ xhiν(x), whose index
in this limit becomes

ν→ −i
Vϕϕ

H2
,

which implies that |δϕ| → 0.

Once ϕ becomes light two things can happen. First, the spectator perturbations can also become
important. These are isocurvature perturbations because they disturb the mixing of matter, not
its density. They seed entropy perturbations, not curvature perturbations. Second, the naı̈ve
inflaton and φ can mix. Not only does this open parameter space, but they mixing can change
over the course of inflation. In such a case the would-be entropy perturbations can be transmuted
into curvature perturbations. These nonlinear effects can have a sizable impact on the statistical
distribution of observed thermal fluctuations in the CMB. Such effects have not been observed
[9], giving an important constraint on such models.

As with single field degenerate critical points, there are only so many ways a function may exhibit
two extremely light, massless fields in a generic fashion. For an additional field which interacts
very weakly with itself, we find the D-type models. Stronger self-interacting fields are discussed
in the next section.

IV.4.2 D-type Generalities

The Dk-type potential is

VDk(x,y) =
xk−1

k− 1
+ xy2 +

k−2∑
n=1

anx
n + cy+ constant. (IV.24)

While we have little use for such an a priori distinction, for even k, one often distinguishes between
D±2k by the germs,

VDk = x2k−1 ± xy2.

In this language, the D−2n germs are known as a monkey saddles, a moniker which can be
visualized in Fig. IV.8. These should be contrasted to the D+2n cases, which behave rather
differently. The case of D4 is illustrated in Fig. IV.9. The D2n+1 germs behave as a mixture of
the two, as seen for the specific case of Fig. IV.7.

We now analyze the general possibility of inflection point inflation in D-type models. Starting
from (IV.24), and defining,

V(x) = VDk(x, 0),

the set of critical points solve

y2 = −Vx, (IV.25)

y = −
c

2x
. (IV.26)
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Figure IV.7: The D5 model scalar potential plotted vs. field space on the left, and as contours
in field space on the right. Note the concave approach towards a degenerate critical point at the
center with two runaway directions to the left.

Figure IV.8: The D−4 model scalar potential plotted vs. field space on the left, and as contours in
field space on the right. This is the archetype monkey saddle function. Note the convex approach
towards a degenerate critical point at the center with two runaway directions to the left.

The Hessian matrix associated to VDk is

H =

(
Vxx 2y,
2y 2x

)
. (IV.27)
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Figure IV.9: The D4 model scalar potential plotted vs. field space on the left, and as contours
in field space on the right. Note the concave approach towards a degenerate critical point at the
center with single, convex runaway to the left.

The condition for a degenerate critical point is then the vanishing of detH:

y2 =
xVxx

2
(IV.28)

As seen in Figs. IV.10, IV.11 three curves (IV.25), (IV.26), (IV.28) generically intersect pairwise, at
least in a connected subset of parameter space. Therefore, there is one fine tuning required to
force a degenerate critical point, as with the A-type case. This is illustrated in the right side of
Fig. IV.10. While a domain structure similar to the cusp and swallowtail certainly exist for D-type
models, their dimensionality can rapidly get out of hand. Instead it is easier to work directly with
these curves to plot out the various domains.

As Fig. IV.11 shows, (IV.25) is an elliptic curve. Such a curve can always be brought to Weier-
strassß form,

y2 = x3 + Px+Q. (IV.29)

For for negative P, the curve defined by (IV.29) is disconnected in the plane. For such a case, the
curve passes between one-to-one and one-to-two as Q becomes positive. As the rank of the germ
increases, so too do the possibilities. In any case, the study of critical points amount to the study
of intersecting curves. For D-type germs, degenerate critical points require that the c parameter
be tuned to bring the hyperbola of (IV.26) to the intersection point.
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Figure IV.10: Curves in field space representing solutions to Eqns. (IV.25) (solid black), (IV.26)
(dashed grey) and (IV.28) (solid red) for k = 4. The black and grey curves meet at critical points
of VD4 . A generic configuration of parameters (a2, a1, c) = (−1,−12 , 13 ) is on the left. A set tuned
for an approximate degenerate critical point (a2, a1, c) = (−1,−12 , 15.5 ) is on the right.
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Figure IV.11: Curves in field space representing solutions to Eqns. (IV.25) (solid black), (IV.26)
(dashed grey) and (IV.28) (solid red) for k = 5 on the left, and k = 6 on the right. The black and
grey curves meet at critical points. These plots represent a generic configuration of parameters
(a3, a2, a1, c) = (−32 , 0, 150 , 13 ) on the left and (a4, a3, a2, a1, c) = (−2, 13 , 35 , 0, 310 ) on the right.

IV.4.3 The D5 Model

For concreteness, we consider the D5 potential, whose germ is 14x
4 + xy2. This models has four

deformation parameters, has a local extremum and allows us to understand breaking to the D±4
and A3 models.

38



A one parameter deformation of the D5 germ can be borrowed from (IV.13).

V =
1

4
(x−α)4 +α(x−α)3 + y2(x−α) +αy2 +

27

4
α4.

This effectively breaks D5 down to A3, as the eigenvalues of H are zero and 2α. During inflation,
y is pinned near zero with mass α. y also serves double duty as the tadpole for x, which needs
to be small for inflection point inflation. This brings us to an important conclusion:

For large α, the D5 potential admits a single field limit in x to the A3 model.

For this deformation, x is the inflaton. If, in addition, one also requires a metastable vacuum at
the end of inflation, further deformation is necessary. The addition of a mass term 1

2m
2α does

not affect the inflection point and stabilizes the vacuum so long as m2 > 3α. While this is not
one of the canonical deformations listed in (IV.7), it can be obtained by a deformation followed
by a suitable shift in x.

IV.5 E-type

Ek-type models complete the zoo of potentials that admit limits where two eigenvalues of the
Hessian matrix vanish. For each k = 6, 7, 8, the germ is of cubic or higher order in both fields.
This suggests use in models where self-interaction between the spectator are important.

VE6 =
1

3
y3 +

1

4
x4 + ax2y+ bxy+

m2x
2
x2 + λxx+ λyy+ constant.

∂VE6
∂x

= x3 + a2xy+ by+m2xx+ λx. (IV.30)

∂VE6
∂y

= y2 + ax2 + bx+ λy. (IV.31)

HE6 =

(
4x3 + 2axy+m2x 2ax+ b

2ax+ b 2y

)
.

Employing the same techniques as with the D-type case, we can understand how degenerate
critical points arise. For positive or negative a, (IV.31) defines an ellipse or hyperbola in field
space, respectively. (IV.30) yields,

(2ax+ b)y = −
(
x3 +m2x + λx

)
.

The Hessian condition amounts to,

(2ax+ b)2 = 2y
(
4x3 + 2axy+m2x

)
. (IV.32)
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In analogy with the D5 case, the critical curves for a sample of E6-class of potential are illustrated
in Fig. IV.12.
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Figure IV.12: Curves in field space representing solutions to Eqns. (IV.30) (solid black), (IV.31)
(dashed grey) and (IV.32) (solid red) for k = 5 on the left, and k = 6 on the right. The black and
grey curves meet at critical points. These plots represent a generic configuration of parameters
(a, b,m2x, λx, λy) = (−2, 14 , 12 , 0, 0, 1).

IV.6 Of Normal Forms and the Simply Laced Lie Groups

We close this chapter with a discussion of the relationship between Arnold’s classification scheme
and the the Lie groupsAk,Dk and Ek. We explicitly construct a representation ofAk-type models
from the characteristic polynomials of the adjoint representation of SU(k+ 1), known by Cartan
as Ak.

If the variables of a smooth function V parametrize a smooth manifold M, then V can be thought
of as a function on M. Let ΓM be the group of diffeomorphisms of M. The subgroup G ⊂ ΓM of
diffeomorphisms which preserve the prescribed normal forms (IV.1)-(IV.5) of V are deeply related
to the Weyl groups associated to the Lie algebras of Ak,DK and EK. The deformations (IV.6)-
(IV.10) can likewise be thought of as symmetry breaking parameters, breaking the symmetry of
the normal form down from one germ to another. Put differently, the germs nest within one
another. The distance of critical points from the degenerate configuration — parameters like α
and β above — can be interpreted as order parameters for this symmetry breaking. Roughly
speaking, properties of the potential, like the height of barriers or the depth of minia, scale with
these parameters. This scaling becomes exact near degeneracy. Since physical quantities depend
on the features of the potential, they inherent these scalings automatically. In this sense Arnold’s
classification immediately generates a classification for inflection point inflation models.
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Recall that the model for perturbed Ak-type potentials is

VAk =
1

k+ 1
xk+1 +

k−1∑
n=1

an

n
xn.

By identifying VAk with the characteristic polynomial of some Mk in Adjoint representation of
the Lie group Ak, we find that the an are related to specific sums of traces of products of M, as
may be familiar from the study of the Cayley-Hamilton theorem. For example,

ak−2 =
1

2

[
(trM)2 − trM2

]
.

Now trM is invariant under conjugation by any g ∈ Ak,

M→ gMg†.

Despite the fact that we focus on real V , generally M is in the complexification of the Lie algebra
of Ak. For one may always bring M to a linear combination of elements in the maximal torus of
Ak,

M =

k∑
i=1

ciλi,

then,

ak−2 = −

k∑
i=1

c2i ,

and we are of course interested in both positive and negative an.
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CHAPTER V

APPLICATIONS TO SUSY PARTICLE PHYSICS

This chapter looks investigates the phenomenological implications of inflation coupled to par-
ticle physics. We begin by describing the minimal supersymmetric standard model (MSSM),
study inflation within the theory, and conclude with an brief example of applying the structural
classification to particle phenomenology: the A4 model in a KKLT-style compactifications.

V.1 The Minimal Supersymmetric Standard Model

V.1.1 The Standard Model of Particle Physics

The standard model of particle physics is a chiral gauge theory based on the group SU(3) ×
SU(2)× U(1) with massless fermions and what recent observations suggest to be a single scalar
field. Fermions in the fundamental representation of the SU(3) (QCD) gauge group are called
quarks. There are six named left-hand/right-hand pairs, ordered in increasing mass to be: up
(U), down (D), strange (S), charm (C), bottom (B) and top (T). The left-handed quarks are also in
the fundamental representation of SU(2). They are paired up in doublets: (U,D), (C,S) and (T,B),
where the U(1) charges of (X,Y) are +2/3 and −1/3, respectively.

Those fermions which do not couple to the SU(3) gauge bosons — those in the trivial represen-
tation — are called leptons. The left-handed leptons are also doublets under SU(2): the electron
pair (e,νe), the muon pair (µ,νµ) and the tau pair (τ,ντ). Right-handed e,µ and τ are known to
exist owning to their Higgs-induced mass couplings, but neutrinos are assumed to be massless,
so their left-handed partners are assumed to be absent.

Of course, neutrino masses have been observed via neutrino oscillations. But it is unclear what
the nature of this mass is — i.e. whether or not it is Higgs induced.

As advertised, there is also a scalar field known as the Higgs. It breaks the SU(3)× SU(2)× U(1)

gauge symmetry down to SU(3)×U(1), with nontrivial mixing between the maximal torus of the
electroweak — that is, non-QCD — sector.

V.1.2 The MSSM sparticles

To each aforementioned Standard Model particle, there is a superpartner or sparticle. This is, of
course, the minimal scenario. The only major complication comes from the Higgs sector. Recall
that the superpotential is holomorphic in chiral superfields. Therefore, giving mass to both the
up and down quarks via superpotential terms like

λUUQ1H+ λDDQ1H
†,

42



while allowed by gauge invariance, would explicitly break SUSY. The simplest way out is to
postulate two Higgs fields, say Hu and Hd which come as a negative-neutral and positive-neutral
doublet, respectively. Thus superpotential terms like

λUUQ1Hu + λDDQ1Hd,

remain holomorphic and SUSY is preserved.

But there is more. SUSY ties weakly and electrically charged fermion to the Higgs. The Adler-

Bell-Jackiw anomaly requires the sum of the electric charges of fermionic particles to vanish
so that quantum effects do not spoil the electromagnetic gauge invariance. In some sense this
explains the pairing of quarks (a doublet of whom has positive charge e) with leptons (whose
doublet charge is −e). For this additional reason, an even number of Higgs doublets — with
opposing total charges — are required by any SUSY extension of the Standard Model. The
minimal choice is, of course, two.

If that were not enough, the Witten anomaly for SU(2) also requires an even number of doublets.

One additional remark about phenomenological MSSM models. Generically, superpartners of
Standard Model particles have the potential to introduce transitions not observed in nature.
Strange quarks don’t typically change into bottom or down quarks, despite having similar gauge
quantum numbers. Similarly, higher dimensional couplings, even though suppressed by the scale
of SUSY breaking, may induce proton decay at rates incompatible with observations. Happily,
these problems can be mitigated by invoke an age-old tradition in particle physics, a new quan-
tum number. Like strangeness or baryon number, R-parity may well be a reasonable symmetry
of an effective MSSM. R-parity assigns a +1 to Standard Model particles, and a −1 to their su-
perpartners. The overall action must be invariant under R-parity, and this simple requirement
suppresses the phenomenologically dangerous couplings like those discussed above. As a bonus,
it implies the existence of a stable superpartner, the lightest supersymmetric particle (LSP). Just
like the electron cannot decay into neutrinos due to charge conservation, R-parity conservation
forbids the LSP to decay. This leads to a natural dark matter candidate that predicts new interplay
between particle physics and cosmology [89].

V.2 MSSM Inflation

In this section we study the embedding of inflection point inflation to supersymmetric quantum
field theories. In particular, we show that the scale of inflation can arise solely from higher order
terms in the superpotential. This greatly alleviates the fine-tuning that plagued applications to
concrete models like MSSM-inflation. This work was originally reported in Ref. [35].

V.2.1 D-flat Directions in the MSSM

There are a number of gauge invariant operators in the MSSM which do not pick up a classical
potential. Such D-flat directions were enumerated in Ref. [90]. In the MSSM they are cubic terms
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in the superpotential, like
LiLjEk, or UiUjDk, (V.1)

where all three flavor indices i, j,k are different.

Extending the MSSM to include right handed neutrinos increases the number of such flat direc-
tions, but will also induce quadratic terms, as such neutrinos are SU(3)× SU(2)× U(1) singlets.

Such flat directions have a number of interesting implications for cosmology. For example, Affleck
and Dine [91] demonstrated that they can be used for Baryogenesis which models the fortunate
absence of antimatter in the universe. Other applications include inflationary cosmology. MSSM-
inflation is an archetypal model for embedding inflation with supersymmetric particle physics.

These flat directions act as effective scalar degrees of freedom, and will be lifted by higher order
terms.

W =
λ

3
Φ3.

V.2.2 Keeping it SUSY

There have been a number of attempts to incorporate inflation within the visible sector. Using a
D-flat direction such as (V.1) for the inflaton, inflation has been successfully embedded within the
MSSM and some simple extensions thereof. Inflation occurs within the inflection point scenario,
and the demands of weak scale SUSY fix the VEV of the inflaton orders of magnitude below MP.
Therefore, these class of models tends to be insensitive to their UV embedding.

Despite this traits, MSSM inflation has been subject to a technically unnatural fine tuning among
the soft SUSY breaking couplings. This tuning can be softened by bringing the VEV closer to MP,
but the cost is a high scale of SUSY breaking. Such a scenario though plausible is not appealing
for SUSY particle phenomenology.

In [35], we addressed the tuning problem directly by offering a general construction for inflection
point inflationary models in supersymmtric field theories at sub-Planckian field VEVs. In partic-
ular, the SUSY preserving sector of the MSSM alone is sufficient to incorporate inflation. Since
soft terms are not used in the construction, the scale of inflation can be made much higher, offer-
ing the benefits of a reduced fine tuning without losing the SUSY solution to the gauge hierarchy
problem.

The construction begins with the superpotential for a fixed flat direction, Φ is

W =
1

2
M2Φ2 +

∑
m

λ3m
3m

Φ3m

M2n−3
.

Here we have explicitly included the cutoff scale M to highlight the dimensionless nature of the
λi. M will typically be chosen to be at the Planck scale, MP.
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Let us first consider the case were W is entirely made of cubic terms, the first three of which are
important. Let φ be the scalar part of Φ. The relevant F -terms are,

F = λ1φ
2 + λ2

φ5

M3
+ λ3

φ8

M6
.

Since V is just |F |2, critical points of V are also critical points of F . Now the derivative of F with
respect to φ is

Fφ = φ

(
2λ1 + 5λ2

φ3

M3
+ 8λ3

φ6

M6

)
,

so critical points of V include φ = 0 and,

(
φ±
M

)3
= −

5λ2
16λ3

± 1

16λ3

(
25λ22 − 64λ1λ3

)1/2
. (V.2)

A degenerate critical point occurs when φ+ = φ−, which means that the discriminant of (V.2)
vanishes,

25λ22 − 64λ1λ3 = 0. (V.3)

Without loss of generality, λ1 can be made real by an appropriate rotation amongst the matter
fields, and λ2 can be absorbed into the definition of φ. This means

λ3 =
25λ22
64λ1

,

is always positive.

The scale of inflation impacts the observed spectrum of density perturbations. For definiteness,
we take M =MP. The degenerate critical points φ? of V = |F |2 are

φ? = φ0e
iα, α =

π

3
,π,

5π

3
,

and

φ0 =

(
5

16

λ2
λ3

)1/3
MP. (V.4)

The Hubble parameter during inflation,

Hinf =
9λ1φ

2
0

2
√
30MP

,

together with the cubic coupling at the inflection point,

1

6
Vφφφ =

27λ21φ0

5
,
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determine the normalization of the observed density perturbations,

∆R =
VφφφNCMB

30πHinf
≈ 10−5.

HereNCMB is the number of e-foldings that took place between the modes which influenced CMB
upon reentery and the end of inflation. Assuming a rapid transition from coherent oscillations to
radiation domination — as one expects in MSSM inflation — one finds,

NCMB = 66.9+
1

4
log
(
V0/M4P

)
.

Putting all this together, agreement with observed normalization of the CMB power spectrum
requires

λ1

(
16

5

λ3
λ2

)1/3
∼ O(10−8).

Since φ0 must be less that MP for the effective field theory to remain sensible, this and (V.4) lead
to the upper bound

λ1 . 10−8.

This bound is saturated in the limit where φ0 approaches MP. Therefore, limit also corresponds
to an upper bound on the scale of inflation,

Hinf . 3× 109GeV.

At or just below this bound, contribution from TeV scale soft terms are clearly negligible. Indeed,
any mass term less than 108 GeV or so will not affect the inflationary portion of V . This is notable,
as previous attempts to embed inflation in the MSSM used soft terms to tune the inflection point.

Let us make this concrete. For the specific choice of λ1 = 10−9 and λ2 = 10−6, we find λ3 ∼

10−3 and φ0 ∼ MP
10 . This VEV is three orders of magnitude larger than previous MSSM-based

scenarios, which helps to reduce the fine tuning in the inflection point. Let us compare more
precisely with [92].

Parametrization the deformation away from a pure critical point by α̃,

α̃ =def 1−
25λ22

128λ1λ3
,

cf. the linear coupling in (II.17),

Vφ =
9

5
α̃λ21φ

3
0.

A slightly redshifted spectrum of density perturbations requires,

0 < α̃� 1

N2CMB

(
φ0
MP

)4
. (V.5)
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In Ref. [92] φ0 was three orders of magnitude smaller, meaning that the upper bound on α̃ given
in (V.5), was twelve orders of magnitude tighter! Therefore, our new prescription for SUSY-sector
inflation offers an enormous improvement in the required fine tuning. The set of possible models
is illustrated in Fig. V.1

Figure V.1: The solid line represents the space of possible models, i.e. Eqn. (V.3). From bottom
up, the dotted lines correspond to constant values of λ1 = 10−8, 0.5× 10−9, 10−9.

But this was just the minimal model. Inclusion of an additional higher order term, so that

F = λ1φ
2 + λ2

φ5

M3
+ λ3

φ8

M6
+ λ4

φ11

M9
,

leads to an upper bound [35] for α̃,

0 < α̃� 1

N3/2
CMB

(
φ0
MP

)3

Since the superpotential is fixed under renormalization group flow, the tuning between the cou-
plings λi is protected. It is possible that the small number used to tune the inflection point could
be related to other physical quantities, perhaps from the neutrino sector. In any case, the unnatu-
ral correlation between the SUSY preserving and SUSY breaking sector of the MSSM is no longer
required. While many solutions to this problem have been proposed, this approach does not re-
quire any hidden sector dynamics, new symmetries or other as-yet any unknown physics. More
importantly, this approach is completely generic within the realm of supersymmetric quantum
field theories.

V.3 KKLT and the MSSM: Mirage Mediation

Models based on IIB flux compactifications have been studied extensively, particularly in KKLT
class of models. Let us summarize the main ingredients. First, before stabilizing the moduli, the
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compact space is assumed to be a compact Calabi-Yau, or an orientifold of the six-torus. There
are technical differences between the two, which introduces extra complications and restrictions
on the ingredients mentioned above. One such example is the one-cycle present in tori that does
not survive when deformed to a proper Calabi-Yau (whose first cohomology group is trivial).

The internal space is assumed to be populated with D3-branes and D7-branes wrapping internal
four-cycles. It is assumed that these branes fill the three spatial dimensions of our observed
universe. The MSSM is comprised of fields restricted to these branes. Brane type will change the
properties of the model.

The SUSY QFT model data for the four dimensional effective theory will be comprised of the
Kähler potential, superpotential and the gauge kinetic function. Again we assume the presence
of a single effective Kähler modulus, T . Respectively, these quantities are

K = −3 log
(
−i(T − T̄)

)
+
∑
i

Zi(T , T̄)ΦiΦi, (V.6)

W = WKKLT +YijkΦiΦjΦk, (V.7)

fg = T + f. (V.8)

Here a wavefunction renormalization factor Z(T , T̄) connects the MSSM fields to the Kähler mod-
ulus T ,

Zi(T , T̄) =
1(

−i(T − T̄)
)ni .

Here ni is the modular weight of the chiral superfield Φi with respect to the SL(2, Z) symmetry
of the IIB theory. It is unity if Φi lives on a D3 brane; on a D7 it vanishes. The maganetic flux
parameter f was found useful in [93] for finding low-scale models of inflation.

Recall that SUSY is broken by the contribution of the phenomenological, uplifting term Vpheno.
This generates an F -term for the scalar field T ,

FT = eK/2DTW. (V.9)

With out the uplift, this is a supersymmetric local minimum of the theory with an negative
vacuum energy — SUSY AdS space. After the uplift, there is a very small, positive amount of
vacuum energy. Therefore, there are two schemes by which SUSY breaking is communicated to
the fields Φi: anomaly mediation and moduli mediation. The former is generically present when
lifting AdS vacua, and the latter derives from the non-vanishing FT in (V.9).

Anomaly mediation gives a soft mass to the gauginos at the EFT cutoff, presumably the GUT
scale, of the form,

Manomaly =
m3/2

16π2
bg2. (V.10)

Here g is the Yang-Mills coupling under which the gaugino is charged. b is the beta function for
that particular coupling and m3/2 is the gravitino mass — the standard proxy for the scale of
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SUSY breaking.

The moduli mediation contribution to SUSY breaking is parametrized by FT . Here the contribu-
tion to the gaugino soft mass is,

MT = FT∂T log Re(fg). (V.11)

There are also soft masses for the scalars and trilinear couplings, which are parametrized in terms
of Zi,

m2i = −FTFT̄∂T∂T̄ log
(
Zie

−K/3
)

, (V.12)

Aijk = FT∂T log
(
e−KZiZjZk

)
. (V.13)

Note that we evaluate K without the contributions of Φ in computing the above quantities — at
least to first order.

Having multiple sectors of SUSY breaking can lead to phenomenologically interesting conse-
quences. In particular, the ratio of anomaly to moduli mediated SUSY breaking parametrizes can
cause the gaugino masses to unify at much lower energies than the GUT scale. Precision elec-
troweak experiments at the LHC, if gauginos are observed, may serve as boundary conditions
for a renormalization group analysis that can observe such effects. Collectively, these effects are
referred to as mirage mediation.

The ratio of these effects is typically parametrized by the ratio of gaugino soft mass contributions,

αmirage =
Manomaly

MT
. (V.14)

V.4 A4 Parameters and Mirage Mediation

As discussed in Section III.3.2, single field racetrack inflation belongs to the A4 class of models.
The potentials have three independent couplings, and therefore the inflationary models are two-
parameter families governed by the moduli space MA4 . A cross-section of MA4 is depicted in
Fig. IV.5. It is convenient to parametrize this model by its three critical points: the inflection
point α, the meta-stable vacuum at β and the barrier to decompactification at γ. Note that in our
parametrization,

2α+β+ γ = 0.

Now, the height of the potential during inflation scales as

V(α) ∝ (β−α)4(γ−α),
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and the height of the barrier,

V(γ) ∝ α
[
(β−α)3 − (γ−α)3

]
. (V.15)

V(α) serves as a proxy for the scale of inflation and V(γ) serves as a proxy for the scale of SUSY
breaking. Note also that V(α) enters into the normalization of the power spectrum of density
perturbations (II.35),

∆2R =
V(α)
12π2

N4eZ
2(β−α)2(γ−α)2, (V.16)

where H2 ≈ V(α)/3.

While such scaling is only exact when these three critical points nearly degenerate — i.e. at
extremely low scales — it will hold approximately when any of the critical points is too small (i.e.
the VEV σ) is much larger than one, which coincides with the supergravity approximation. This
can be guaranteed, for instance, when f is large.

Assuming the generic case where the critical point VEVs α,β,γ approximately equivalent in
magnitude, one finds that the SUSY breaking order parameter (V.9) is

FT =
16πα3|∆R|

2

3N2e|(β−α)(γ−α)|
,

where (V.16) was employed.

Weak scale SUSY occurs when σ has come to rest in the vacuum at β. The gaugino mass then
picks up a moduli mediation contribution from (V.11),

MT =
8π|∆R|

2α3

3N2e|(β−α)(γ−α)|(β− f)
. (V.17)

The anomaly contribution (V.10) is

Manomaly ∝

√
V(γ)
MP

, (V.18)

so using (V.17) and (V.15) the mirage mediation parameter (V.14) is

αmirage =
β− f

32
.

All together, the gaugino mass should read,

M =
8π|∆R|

2α3

3N2e|(β−α)(γ−α)|(β− f)
(1−

bg2

16π2
αmirage log

[√
V(γ)

]
) (V.19)

A few comments are in order. First, observations place |∆2R| ∼ 10
−5, M0 is around (10−4 −
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10−2)MP. This range runs down to 100-1000 GeV. These values can of course be raised by
increasing the separation β− γ = 2(α+ β). Second, αmirage — a potential precision electroweak
observable at the LHC — is set by the value of β. Therefore, if α can be determined, perhaps by
measuring the scale of inflation in some way, the details of the A4 potential can be observationally
determined. So concludes our example of how to the considerations of Chapter IV can be used
to study, observe and constrain the embeddings of inflation into particle physics.

51



CHAPTER VI

FIXED POINTS IN PHASE SPACE

VI.1 The Likelihood of Inflation

VI.1.1 The Trouble with Attractors

The attractor dynamics which drives the gravity-scalar system towards inflationary trajectories is
sometimes credited with helping inflation become a predictive theory [94]. For a given potential,
the fact that a large portion of parameter space can be drawn to the slow-roll trajectory, as
detailed in Chapter II.1.3, lends support to the generic universe paradigm. Recent Planck results
[9] are consistent with the “vanilla” model of single field, slow-roll inflation. Such observations
can rightly be used to bolster inflation as a predictive theory which explains the origin of our
universe.

Despite these successes, the subject of inflation resists closure. Without meaningful correlation
between inflationary dynamics and particle physics the picture is incomplete; the inflaton is a
hanging gauge singlet. The mystery of how inflation embeds into larger theory of particle physics
— or even string theory — is in itself an interesting open question. But such concerns only hint
at larger questions. Further investigation reveals consistency problems with the attractor-as-
predictor philosophy.

The problem is that successful inflation requires fifty or so e-foldings of inflation; the universe
must have been on the slow-roll trajectory for a sufficient duration. Because we know noth-
ing about the conditions which generated inflation, it is this large number which unravels the
effectiveness of the attractor argument.

Attempts to rigorously determine of the likelihood of successful inflation typically require in-
vestigating entire trajectories. In attractor dynamics, the density of states decreases with proper
time. Therefore any attempt to assign a statistical weight to a collection of trajectories is nec-
essarily time dependent. For macroscopic, open systems, the attractor dynamics can be tied to
energy loss. Therefore it is subject to the laws of thermodynamics, and this phenomena causes
no conceptual problems. Kofman, et. al. argue that inflation is inevitable by draw parallels with
the second law of thermodynamics [49]. Just as the shards of glass below the dining table can be
taken as evidence of a highly entropy generating event, so too is the size of our universe, replete
with its observed perturbations, indicative of a period of inflation.

One could rightly argue that the universe is a closed system, and since its is based on fundamen-
tal, quantum fields, CPT should be respected. Of course, the rolling scalar field spontaneously
breaks time-translation invariance, and the cosmic fluctuations are just those associated to the
Nambu-Goldstone mode associated to this symmetry breaking [29]. Because time translation
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invariance is restored microscopically, a number of authors [95, 96, 97, 50, 98] have studied the
Liouville measure. One is then tasked with picking the appropriate time to evaluate the density
of states and ask statistical questions.

These conflicting perspectives lead to mutually antithetical conclusions, and neither is above
reproach. In the first case, the all important initial conditions must be accounted for — not unlike
the extremely low energy state of a wine glass perched on a table. In the second case, running the
density of states backwards without somehow accounting for the Nambu-Goldstone phenomena
remains to be rigorously justified. Worse, one is left to explain why the likelihood of our own
universe is suppressed by a factor of e−150 [50].

Our discussion will not solve this conceptual problem, but offer instead a third way. The attractor
dynamics special to inflection point inflation reduce the exponential time-dependence of the
density of states to something exponentially close to a Heavyside Θ-function.

VI.1.2 Likelihoods, Probabilities and All That

To facilitate our discussion of genericity in the multiverse ensemble, we briefly discuss the basic
ideas of Bayesian statistics in the context of inflationary cosmology.

The we employ notion of a multiverse from [50]. Denoted by M, the multiverse is defined to be
the set of individual trajectories in the gravity-scalar phase space. To specify M one must also
specify a theory to work in, typically represented by a Lagrangian L. When precision is needed,
we specify this particular multiverse by M(L). To promote M a statistical ensemble, a probability
measure is required. The ambiguity in choosing such a measure is the subject of this chapter,
and we will define and apply different measures in the following sections. For the moment, let
us simply assume that one such measure exists, is well-defined and applied.

Let P(A) denote the probability of a given event A. Often conditional probabilities are of interest.
The conditional probability that an event A occurs given that event B is P(A|B).

P(A|B) and P(B|A) are generally different, and related by Bayes’ equation,

P(A|B) = P(A)P(B|A)P(B) .

In the context of inflation, the probability of successful inflation is a precise quantity, P(U |50).
Namely, what is the conditional probability of finding a universe U ∈M in which fifty e-foldings
have occurred. To define this quantity, we must first define P(50), P(U) and P(50|U).

The probability of living within a specific universe U is P(U). This amounts to specifying the
Cauchy data for the field equations, i.e. the boundary conditions. Without knowledge of the
ultraviolet physics which give rise to inflation, P(U) is unknown. We must put it in by hand. This
is a common feature of Bayesian analysis, and such subjective inputs are called priors. Without
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a large number of universes to empirically study P(U), our only recourse is the democratic one:
all boundary conditions are equally possible. P(U) is constant.

P(50), which can be tautologically expanded as,

P(50) =
∑
u∈M

P(u)P(u|60),

amounts to a normalization of the overall conditional probability P(U |50), as we shall demon-
strate explicitly later in this chapter.

The quantity P(50|U) is a posterior probability; we compute it from the details of the physical
model. It is often called a likelihood function. Therefore, when one asks to compute the likelihood
of fifty e-foldings of inflation, this is the quantity of interest.

VI.1.3 An Escape through the Landscape

So far we have considered U as a distinct trajectory in phase space, with a fixed Lagrangian.
Allowing L to vary represents a significant extension of the ensemble of possible universes. Were
a class of inflationary models with sufficient inflation and without a fine tuning of the initial
conditions to exist, a modification of the conclusions of [50] would be in order. As we shall
demonstrate in this chapter, inflection point inflation is such a class.

Whether or not the landscape exists, it may be very possible that string theory offers a large
number of de Sitter solutions in which inflation could have occurred. At the very least, there is a
plethora of field theory models in which inflation is embedded into particle particle physics like
the MSSM. Coarse-grainning over either of these solution sets is always possible provided infla-
tion can be explained as an effective field theory, which is certainly a conservative assumption.

Because we have limited ourselves to canonical scalar fields, the set of possible Lagrangians
can be reduced to the set of possible scalar potentials. This restriction is well motivated by
the recent results from the Planck Collaboration [9], which suggested that inflation is in good
agreement with single field, slow roll inflation in a shallow potential. Indeed, the non-observation
of significant nongaussanity has ruled out many of the exotic opportunities for new physics.

In what follows we will compute the likelihood of inflation for the various ADE models of
inflection point inflation, and find that the likelihood obeys a power law

P ∝
1

N3e
.

In particular, we derive this scaling behavior as a property as coming from a single field limit of
an inflection point model.
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VI.2 Phase Space of the Gravity-Scalar System

The action for the gravity-scalar system is

S =

∫
d4x L =

∫
d4x
√
−g

(
R

2
+
1

2
gµν∂µφ∂µφ− V

)
.

which can be put into ADM form,

S = SADM + Sscalars.

Here SADM is the Einstein-Hilbert action in ADM form (II.21), and

Sscalar =
1

2

∫
d4x

√
γ

N

[
(
dφ

dt
−Ni∂iφ)

2 −N2γij∂iφ∂jφ− 2N2V

]
.

The generalization to multiple scalar fields is straight forward. The background dynamics are
subject to the usual condition of spatial uniformity, which simplifies this to

Sscalars =
1

2

∫
d4x

√
γ

N

[(
dφ

dt

)2
− 2N2V

]
. (VI.1)

For a single, canonical scalar field, phase space is spanned by the coordinates N, a and φ and the
associated canonical momenta, pN, pa and pφ, respectively. For a coordinate qΣ, the canonical
momentum pΣ is defined by

pΣ =
δL
δq̇Σ

.

The Ricci scalar associated to the FLRW metric is,

R = 6

[
ä

a
+

(
ȧ

a

)2
+
k

a2

]
,

and detg = a3. Integrating the Einstein-Hilbert term by parts,

1

2

∫
d4 R = 3

∫
d4x a3

(
−H2 +

k

a2

)
.

Curiously, the action in terms of the scale factor looks like the kinetic term for a moduli field
— as it should, since it is a geometric modulus — only with the wrong sign. This will play an
important role in what follows.
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We are now in a position to compute the various pΣ,

pN = 0, (VI.2)

pa = −6a2H, (VI.3)

pφ = a3φ̇. (VI.4)

The Hamiltonian of this system is,

H = N

(
−
p2a
12a

+
p2φ

2a3
+ a3V − 3ak

)
.

The equation of motion for N is then,

p2a =
6p2φ

a2
+ 12a4V − 36a2k (VI.5)

So H vanishes, as is often the case for systems with an unfixed gauge symmetry. The resulting
constraint equation is simply the Friedmann equation, (II.2). As above, we set k to zero for
simplicity unless otherwise specified.

VI.3 The Liouville Measure and the Ensemble Multiverse

Knowing that the lapse function N is an auxiliary field, our configuration space for the gravity-
scalar system is the space of all pairings (φ,a). We can model this as the upper half plane of R2,
since we typically consider only positive a.

The canonical one-form on T?Q is
θ = pada+ pφdφ,

which defines the symplectic form
ω = dθ.

The Friedmann constraint means that one of these coordinates in determined in terms of the
other three. This selects a subvariety PQ ⊂ T?Q as the constraint hypersurface or physical phase
space. There is some freedom in choosing where to apply this constraint. When the system is
fast-rolling, it is helpful to fix pφ. For slow-roll inflation, it is more practical to fix pa by explicitly
plugging in (VI.3) and evaluating. This, or alternatively by solving (VI.5).

In this case
θ = −6Ha2da+ pφdφ,

so that
dθ =

∂pa

∂φ
dφ∧ da+

∂pa

∂pφ
dpφ ∧ da+ dpφ ∧ dφ,
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or
dθ = −6a2

∂H

∂φ
dφ∧ da− 6a2

∂H

∂pφ
dpφ ∧ da+ dpφ ∧ dφ.

The density of states is often given by the Liouville measure on phase space, which for a 2n
dimensional phase space is just n wedge products of the symplectic form. In three dimensions
on can integrate by parts to find the volume form on PQ to be

V3 = θ∧ dθ =

(
pa −

∂pa

∂pφ
pφ

)
dpφ ∧ dφ∧ da,

or

V3 =
2a2V
H

dpφ ∧ dφ∧ da.

In terms of the flow coordinate N, we find

V3 = e3N
2V
H
dpφ ∧ dφ∧ dN, (VI.6)

which gives the characteristic dependence of this volume on the number of e-foldings of expan-
sion, N.

When viewed from this perspective, PQ is a contact manifold, with θ being the contact 1-form.
This observation has far-ranging consequences for the ensemble of inflationary universes.

For symplectic manifolds, Liouville’s theorem says that any volume form is invariant under
Hamiltonian flow. The Liouville measure or volume form for a symplectic manifold of dimension
2n is the n-fold wedge product of the symplectic form ω. An analog of Liouville’s theorem exists
for contact manifolds, with one important caveat. Here, the volume form is as in (VI.6). For
higher dimensional contact manifolds, more wedge products of dθ are required. The crucial
caveat in Liouville’s theorem for contact manfolds is that the volume form of a contact manifold
is preserved under Reeb (Hamiltonian) flow up to a conformal factor. This explains the peculiar
feature of (VI.6).

For us, this means that the volume of phase space grows as the universe evolves. This simple
fact helps to explain the observations in [96], where the likelihood of successful inflation was
strongly dependent on when the measure was applied. Indeed, the interpretation of PQ as a
contact manifold immediately gives results which were painstaking derived by analogy with
three dimensional electromagnetism in [50].

In later sections we shall discuss the application of this measure by Gibbons and Turok which
resulted in an exponentially suppressed likelihood of inflation,

P ∝ e−3Ne , (VI.7)

although the ambiguity already appears with the N dependence in (VI.6). With this ambiguity
explained in terms of the natural contact structure on phase space, there is a need to replace it
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with something which admits a reasonable physical interpretation.

VI.4 Dynamical Fixed Points

VI.4.1 Effective Dissipation of Scalar Field Energy

In what follows it is helpful to be slight more general. For N canonical scalar fields, defined the
quantity

Υ =

N∑
A=1

φ′2A,

which is essentially the fraction of the Hubble scale comprised of kinetic energy. The total energy
density of the scalar fields is

ρ =
V

1− 1
6Υ

. (VI.8)

To see how it evolves with metric expansion we compute

ρ′ =
N∑
A=1

VφAφ
′
A(

1− 1
6Υ
) +

Vφ′Aφ
′′
A

3
(
1− 1

6Υ
)2 ,

Making use of (II.3), (II.6) and (VI.8) one finds,

ρ′ =
N∑
a=1

ρφ′A
1− 1

6Υ

[(
1−

1

6
Υ

)
∂ logV
∂φA

−

(
1−

1

6
Υ

)
(φ′A +

∂ logV
∂φA

)

]
,

which simplifies to
ρ′ = −Υρ. (VI.9)

While the total energy is not lost, the expansion of spacetime redshifts the kinetic energy of the
scalar fields. It is possible that the kinetic energy of the fields may be completely redshifted away
before the fields find the global minimum of the potential. In particular, they may come to rest
at an inflection point. As we review below, this is in fact realized in inflection point models, and
lends new physical perspective to the work of Itzhaki and Kovetz.

VI.4.2 The Itzhaki-Kovetz Model

In [36], Itzhaki and Kovetz investigated a curious property of the gravity-scalar system subject to
the inflection point potential,

VIK = βφ3 + 1.

Starting from rest above the degenerate critical point, they let the scalar field roll down the po-
tential and found that the behavior of the trajectories depended strongly on value of the coupling
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β. Specifically, if β is below a certain critical value,

βC ≈ 0.774,

the scalar field asymptotically approaches the critical point in the limit N → ∞. This is an
inflationary solution, for which H asymptotically approaches a constant — i.e. de Sitter space.
For β greater than βC, φ overshoots the inflection point in a finite time and only a small amount
of inflation occurs.

They framed this observation as a phase transition between chaotic and inflection point inflation,
and demonstrated that with 1/Ne e-foldings of inflation being the order parameter, it replicates
the physics of a second order phase transition. In this context, this can be viewed as manifestation
of “critical slowing down” in the gravity-scalar system near an inflection point. What is perhaps
most important is their study deformations to VIK

Irrelevant and marginal operators, like φ4, did not effect the qualitative behavior seen here.
Relevant operators like φ and φ2, did. The former case is just an example of finding an A2
model nested within some larger construction. Indeed, we shall consider the A3 case — and find
similar behavior — shortly. The latter case is important. While any deformation ruins the fixed
point behavior, for sufficiently small relevant couplings, 1/Ne varies parametrically with them.
In other words, the existence of the fixed point has a residual effect in the deformed theory.

This is precisely what you would expect from (II.19), where Ne depend on the linear coupling λ
as

Ne ∝
1√
λ

.

The point is that inflection points are extremely efficient attractors. So long as couplings like
β are in the appropriate regime, inflation is virtually guaranteed. The number of e-foldings of
inflation varies with couplings such as λ. Note that Ne may be much larger, perhaps if a period
of chaotic inflation occurred before φ approached the inflection point.

Finally we lend a different physical perspective on the existence of these the fixed point. Recall
from (??) that VIK enters the field equations as logarithmic derivative. This means its overall
scaling of is irrelevant for dynamics. Let us then write

VIK = β

(
φ3 +

1

β

)
.

Up to an overall scaling, the energy density of φ is proportional to 1/β. Appealing to (VI.9), we
see that the dissipation of ρ is proportional to ρ itself. Therefore, for sufficiently large 1/β, all
the kinetic energy redshifts from φ as it approaches the inflection point. Sufficiently large here is
then 1/βC. If β is too large, its reciprocal is too small and the kinetic energy does not redshift
enough to avoid overshooting the inflection point.
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VI.4.3 The Basin of Attraction for the A3 Model

The Itzhaki-Kovetz model demonstrated that inflection point inflation is viable for virtually all
initial field configurations. In Ref. [37] we extended this analysis to all of phase space, proving
that under certain assumptions, the likelihood of inflection point inflation occurring is exponen-
tially close to a yes-no question.

We demonstrate these ideas with an A3 class of inflection point model. Repeating the analysis of
Itzhaki and Kovetz with the potential,

V =
1

4
φ4 +αφ3 +

27

4
α4, (VI.10)

one finds a critical value of the cubic coupling

αC ≈ 0.661.

Above αC, the φ attracts to the inflection point. Below αC is overshoots.

Despite this apparent reversal, it is the same physics as in the Itzhaki-Kovetz model. The constant
term in (VI.10) is chosen so that the vacuum energy vanishes at the global minimum of V , located
at φ = −3α. It is also the energy density during inflection point inflation.

Better still, αC is just the tip of the proverbial iceberg. While arbitrary initial position above the
inflection point attracts for all α ≥ αC, the same is not true for arbitrary initial velocity. For a
given value of α, there is a basin of attraction in phase space to the inflection point; sufficiently
large initial φ′ will cause an overshoot. At αC, the basin starts from a line in P along the initial
φ direction. α increases, the basin opens into the initial φ′ direction exponentially.

Owning to the universality associated to the breaking of an A,D or E-type potential down to a
single field, A2 limit, the qualitative features discussed here hold true for all models of inflection
point inflation.

VI.4.4 Multifield Fixed Points

Inflection points can still be fixed points in models were multiple fields are important. While the
phase space enlarges to (2N+ 1)-dimensions for N scalars, the details are only slightly modified.
One interesting feature of multifield fixed points is the existence of a new parameter: the mixing
angle between initial configurations of the two fields.

To see this, let us consider the D5 model with the A3 limit discussed above.

V =
1

4
φ4 +αφ3 +

1

2
χ2φ+αχ2 +

27

4
α4.

To make this potential somewhat more physical, we append two deformations. First, a small
tadpole at the inflection point to ensure finite e-foldings, an in (II.19). Next, we increase the mass
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Figure VI.1: The basin of attraction in a projection of phase space to the (φ,φ′)-plane for the
inflection point of the A3 potential is shown for α = 1 and λ = 0. The horizontal axis shows VEVs
above the point of inflection, which itself is located at the origin. Note that in this parametrization,
φ′ = −

√
6 corresponds to complete kinetic energy domination. Field velocities away from the

inflection point, thought not explicitly shown, are within the basin of attraction.

of the spectator field χ to allow for a stable local minimum.

1

4
φ4 +αφ3 +

1

2
χ2φ+ λφ+

1

2
(6α+m2χ)χ

2 +

(
27

4
α4 − 3λα

)
. (VI.11)

The form of the term 1
2 (6α+m2χ)χ

2 is a convention, chosen so that vanishing mχ corresponds
to a flat direction for χ at the critical point (φ,χ) = (−3α, 0). Note that this is an example of an
exceptional degenerate critical point which would be lifted in general by higher order terms. In
any case, with χ starting from rest at zero VEV, this model exactly replicates the single-field A3
model, at least in term sof the background FLRW and VEV dynamics.

Now let us consider the effect of mixing the initial conditions.

V =
1

4
φ4 +αφ3 +

1

2
χ2φ+αχ2 +βχ+ λφ+

27

4
α4.

Let us parametrize the Cauchy data for the two scalar fields x and y as follows. The initial
position of the fields shall be parametrized by a distance in field space r0 and a mixing angle θ.

x0 = r0 cos θr, y0 = r0 sin θr. (VI.12)

The initial velocities can be similar parametrized,

x′0 = v0 cos θv, y′0 = v0 sin θv, (VI.13)
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where,

x′0 =
dx

dN

∣∣∣
x=x0

, y′0 =
dy

dN

∣∣∣
y=y0

.

Some example trajectories are shown in Fig. VI.2. Here, different angles θr = −0.2π, 0.1π, 0.3π
are shown all to attract towards the approximate inflection point. Upon reaching the inflection
point, all three trajectories merge to to approach the metastable vacuum along the same, slow-roll
trajectory.

Figure VI.2: The D5 model potential is shown with three separate trajectories being attracted
towards the nearly degenerate critical point. There is not mixing, but non vanishing λ from
(VI.11) causes inflation to end by falling in a local minimum.

These effects can also be observed for β ∼ O(1). Allowing for a linear term in χ essentially
rotates the eigenvectors of the Hessian, meaning that the inflaton is a nontrivial mixture of φ and
χ. This can be interpreted as a torsional distortion of the potential in field space, and the basin
of attraction of the inflection point is similarly rotated. This effect is seen in Fig. VI.3, where
various initial angle are employed, and the trajectories are not symmetric under θr → −θr.
Note, however, that those trajectories which are attracted to the inflection point again follow the
same slow-roll trajectory towards a local minimum (or a runaway, depending on the potential).
Whereas those that overshoot necessarily run off in the other direction.

Some previous work on fixed point in cosmological scalars was given in Ref. [99], although
it focused on late-time, runaway scenarios. Unifying the inflection point analysis with these
techniques may be interesting in understanding general features of gravity-scalar dynamics.
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Figure VI.3: Trajectories in the D5 potential starting at rest (v0 = 0) with initial position
parametrized by Eqn. (VI.12) with θr = 0,±0.1π,±0.2π,±0.3π,±0.4π. With nonzero mixing
parameter c, the basin of attraction has shifted slightly clockwise. Notice the asymmetry present
between ±θ. Note that all trajectories within the basin of attraction fall to the lower valley of the
potential.

VI.4.5 Fixed Points Violate Slow-Roll

We close this section with a final observation about the fixed point behavior. In the vicinity of an
inflection point, the slow-roll trajectory

φ′ = −
∂ logV
∂φ

,

brakes abruptly before asymptotically towards the de-Sitter solution. This braking is to sharp
to be physical; the inflaton momentarily hopes out of slow-roll before it begins the asymptotic
approach to the inflection point. Even if said inflection point is slightly deformed by relevant
operators, this breaking is too strong to be physical.

As one might expect, near the boundary of the basin of attraction the disparity between the slow-
roll solution and the physical one grows sharply. Eventually the braking required by slow-roll
becomes too strong, and the system overshoots.

The precise behavior is even more subtle. To visualize this, we define the parameter Ξ as

Ξ =def
φ′′

φ′
.
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Near the boundary of the basin of attraction, the spike in Ξ can be O(1). Curiously, it saturates
at three (precisely the same three in Eqn. (II.10)). Moreover, the duration of the spike can easily
be N ∼ O(1). As such, one must take care as these effects can manifest in the study of the
cosmological perturbations. Indeed, in Chapter VII we shall use this fact to our advantage to
explain an anomaly in the CMB data.

VI.5 The Cosmological Measure Revisited

VI.5.1 Exponential Suppression from the Liouville Measure

In [50] Gibbons and Turok sought to retrofit the Liouville measure first studied in [96, 97]. Aside
from the apparent time dependence of the measure (VI.6), it was also badly divergent. They
employed a natural cutoff on this measure by coarse grainning over observably indistinguish-
able spacetimes. More precisely, all universes whose spatial curvature Ωk was too small to be
observed were identified with k = 0. This suppresses many of solutions which were inflated
to large size, and one might naı̈vely worry that this is the cause of the exponential suppression
(VI.7) of the likelihood. Closer inspection reveals this is not the case. Indeed, the ensemble of
late-time trajectories is dominated by those that were fast-rolling in the recent past. This is just
attractor dynamics in reverse. In their terms, the divergence represented the invariance of the
FLRW metric to a rescaling of a. In this sense their cutoff was a projectiviation of the naı̈ve M.

VI.5.2 Enlarging the Ensemble

The analysis Gibbons and Turok was done for a quadratic potential, although their results hold
most of the time for chaotic inflation on a smooth, monotonic potential. In the same way a
wine glass focuses light, degenerate critical points of the potential can create caustics in phase
space which focus trajectories towards inflection point inflation. These surprising effects were
not considered in [50].

Incorporating these details into the computation of P(Ne|U) extends M to include an ensemble
of possible couplings from a specific class of potentialsMV as studied in Chapter IV. Since each
model has a single parameter which controls the number of e-foldings of inflation (cf. λ1 of
(II.19)), we shall see that the power law likelihood 1/N3e is universal to all ADE model classes, at
least for sufficiently large Ne (i.e fifty).

To make this analysis concrete, we choose V to be of A3 type. Recall that such a potential is given
by

V =
1

4
x4 +

a

2
x2 + bx+ constant.

Recall that for the A3 model, a critical point exists when

(a
3

)3
+

(
b

2

)2
= 0. (IV.12)
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A slight deformation away from this condition gives,

(a
3

)3
+

(
b+ λ

2

)2
= 0. (VI.14)

About the inflection point α, the potential is

V =
1

4
(x−α)4 +α(x−α)3 + λ(x−α) +

27

4
α4 +O(λ).

From (II.19), we can write λ in terms of the number of e-foldings of inflection point inflation, Ne,

λ =
π2

8N2e
√
3a

.

Therefore, we can define a curve of constant Ne inMA3 as

b(a) = −2
(a
3

)3/2
+

π2

8N2e
√
3a

. (VI.15)

Let γNe be the curve which represents lines of constant Ne. In MA3 , γN uniformly bounds all
inflationary trajectories with N > Ne. Define γ∞ to be the curve specified by (IV.12).

Assume for the moment inflection point inflation takes place on V . Since we are assuming
uninformative — that is, constant — priors onMA3 , we can compute the likelihood of having at
least Ne e-foldings of inflation by computing the area between the curves γNe and γ∞.

Using (VI.15), the area bounded between these curves is

AreaNe = lim
A→∞

∫A
0

π2

8N2e
√
3a
da,

so that

lim
A→∞ π2A1/2

4
√
3N2e

. (VI.16)

Just as with the Liouville measure, this quantity is divergent. Just as with the Gibbons-Turok
approach, we will projectivize things. SupposeNe is less than some fiducial number of e-foldings,
N?. Then AreaN? < AreaNe , and the likelihood of having at least Ne e-foldings relative to N? is

AreaNe
AreaN?

=

(
N?

Ne

)2
. (VI.17)

Assuming inflection point inflation in a given universe Uinf ∈M, the relative likelihood of having
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precisely Ne e-foldings — relative to N? is

P(Ne|Uinf) ∝ lim
δN→0

[(
N?

Ne

)2
−

(
N?

Ne − δN

)2]
.

Therefore,

P(Ne|Uinf) ∝
(
N?

Ne

)3
. (VI.18)

Two comments are in order. First, despite monotonic nature of each half γe about b = 0, the ratios
of infinite areas may not be well-defined. Since α parametrizes this curve, these divergences
correspond to the limits where |α| → ∞. As α is tied to the scale of inflation, it cannot be
arbitrarily large.

Parameters like α should be bounded by the effective field theory cutoff, and it is precisely here
that the ultraviolet physics would be invoked. However, if the ultraviolet physics were known, the
statistical approach to the likelihood of inflation would be moot. Therefore, the cutoff supplied
by A in (VI.16) is quite literally tied to our ignorance of the ultraviolet theory, and in the effective
field theory case. Therefore, we continue with this simple regularization.

Second, this is a universal property of degenerate critical points. Since even slightly deformed
inflection points are efficient attractors, the distinction between Uinf and an arbitrary U in M will
be exponentially close to fifty percent, independent of N, and can be incorporated in the overall
normalization of the likelihood.

Given this fact, the result (VI.18) in remarkable agreement with recent Monte Carlo analyses
which scanned over random potentials [14, 15]. In Ref. [14], D-brane inflation was investigated
on the conifold, where up to six fields were employed! The emergence of a universal, inverse
cubic scaling is easily explained in terms of (VI.18). In short, inflection point inflation dominates
in these spaces of random potentials.

VI.5.3 Final Thoughts

By either standard, sixty e-foldings of inflation still appears unlikely. Whether or not these
measures are the appropriate ones to impose on inflation is not the point of such an analysis.
In [50] the point was that the initial conditions of inflation are not well understood. In [37] our
point was not to negate this observation, but rather to show that allowing the Lagrangian itself
to vary in the ensemble of possible universes leads to drastically different results.
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CHAPTER VII

INFLECTION POINTS AND THE LARGEST SCALES

In this chapter we describe a specific application of the fixed point behavior of inflection point
inflation to model an anomaly in the CMB data. We review the anomaly, perform the relevant
computations and describe how inflection point inflation may best fit the data. This chapter is
based on the worked first put forth in Ref. [38].

VII.1 An Anomaly in the CMB

We begin with a telegraphic discussion the angular power spectrum of temperature fluctuations
in the CMB. During inflation, the nearly scale-invariant curvature perturbations expand rapidly
until the reach horizon scales, at which time the “freeze”. Because of the near vanishing mass
of the inflaton during inflation, as now classical features in the spacetime metric, they do not
decay. Rather, they lie in wait for the particle horizon to catch up as the universe proceeds with
decelerated expansion. The radiation and matter that filled the universe subsequent to inflation
now traverse the slightly featured landscape of spacetime. These perturbations had a direct effect
on the thermal dynamics of the various constituents. In particular, during the era where the
universe is filled with a plasma of baryons and electrons, it sourced perturbations between the
oppositely charged fluids in what has become known as the baryon acoustic oscillations (BAO)
of the early universe.

Just as the universe cooled to a point where the gas of photons no longer could efficiently strip
electrons from nuclei, the surface of last scattering because a literal photograph of the quenching
of this plasma. This photograph is the cosmic microwave background we observe today. In
addition to the nearly scale-invariant background of thermal fluctuations, it also contains detailed
information about the BAO. Therefore, the spectrum of temperature fluctuations in the CMB can
be used to test astrophysical models of early universe dynamics.

One important definition is in order. The angular power spectrum is a Fourier transformation
of the power spectrum on to the cosmic sphere, marginalized over the azimuthal directions.
Concretely, it is the set of C`, where

C` =
2

π

∫∞
0
dk k2PR(k)j`(kr◦)2.

In general, this expression is augmented to account for various astrophysical effects.
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VII.1.1 Low Power at Large Scales

The angular power spectrum of thermal fluctuations in the CMB has a giant spike — and har-
monic ringing — associated to the baryonic acoustic oscillations. The fundamental peak occurs at
nearly ` ∼ 200, which corresponds to angular scales of one degree on the sky. These peaks occur
on top of the scale-invariant background, which is flat and normalized by ∆2R/2`(`+ 1). Since
the background is flat, angular scales with ` < 100 — scales before the peak — are predicted by
inflationary theory to be approximately flat.

The data are not. a noticeable reduction of power at the largest scales (` ∼ 3) was observed in
WMAP, and a general trend of lower power through ` ∼ O(20) remained in the Planck analysis.
Perturbations at these scales correspond to the earliest observable moments of inflation, a fact
that can be used to attempt phenomenological explanations.

It is worth point out that the angular power spectrum has an intrinsic theoretical uncertainty
at the largest scales. For each harmonic mode, c`mY`m, the azimuthal modes, m are treated as
independent observables. The theoretical uncertainty therefore scales1 with ` as 1/

√
(2`+ 1)2, as

we live in only one part of the universe. This theoretical limit of precision for the observed values
of c` is known as cosmic variance.

Therefore, the low power observed at scales ` . 20 may just be a statistical down fluctuation. The
best hope for statistical significance of a CMB anomaly like this may be an improved global fit to
all the cosmological data. This was attempted with the first year WMAP data [100] in Ref. [101],
but no significant improvement was made. With the enhanced sensitivity of Planck — and the
apparent enhancement of the anomaly — this issue is worth revisiting.

The origin of this anomaly has been studied before [101, 102, 103, 104, 105, 106], typically in the
context of “just enough” inflation. In particular, if the inflaton dynamics are dominated by kinetic
energy just before the minimum sixty or so e-foldings of inflation occur, the power spectrum
could have a sharp suppression of power at the lowest scales as the system attracts towards the
slow-roll trajectory. Inflection points offer a substantial generalization to this approach.

Inflection point inflation can extend the region of low power over a larger period of e-foldings as
the field approaches the inflection point. It may therefore offer an explanation of not only the first
few moments, but also the full Planck anomaly out to ` ∼ O(20). We now turn to a discussion of
this phenomena.

VII.1.2 Deviations from Slow-Roll

Consider a single scalar field φ under the influence of an inflection point potential V . For con-
creteness, this chapter will focus on the A3 (quartic) model, familiar from (IV.13).

1Note that the errors associated to a two-point function measurement are inversely propor-
tional to the number of measurements, rather than the inverse square-root.
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Well above the inflection point, φ undergoes chaotic inflation (II.15), where

φ(N) ∝
√
φ2i −N.

As φ approaches the inflection point, the dynamics much transfer to inflection point inflation,
where performing the integral in (II.18) yields,

φ(N) ∝ tan
[
λ1λ3(Ni −N)

]
.

The actual solution φ interpolates between these two slow-roll approximations. The “full” slow-
roll solution, −Vφ/V , passes from a power law to a transcendental function, which requires a
sharp reduction — including an inflection point in the graph of φ(N) — in field velocity near
the inflection point in V . This required “braking” is too much for the physical φ, and it bounces
away sharply from the slow-roll trajectory just before inflection point inflation sets in. This can
be quantified by a spike in the graph of Ξ(N), defined in (II.30), shown explicitly in Fig. VII.1.
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Slow -Roll Parameter vs. N

Figure VII.1: The slow-roll parameter Ξ versus N plotted for the cusp potential with α = 1. φ
starts from rest at φ = 10. The field trajectory, φ/10, is plotted for reference. The initial spike in
Ξ comes from the deviation from the (non-vanishing) slow-roll trajectory. The chirp corresponds
to the field breaking upon approach to the inflection point.

The magnitude of the spike in Ξ depends strongly on both the cubic coupling α and the initial
conditions. Close to the boundary of the basin of attraction, the spike Ξ becomes O(1). Indeed,
exponentially close to the boundary, it saturates at Ξ = 3. This is demonstrated in Fig. VII.2.

Recall that the power spectrum of density perturbations depends heavily on Ξ. Small Ξ is required
to match observations. Large Ξ leads to a significant reduction in power, as just discussed.
Therefore, if the inflection point affords only enough inflation to match observations — around
sixty or so — then the spike in Ξ could explain the observed low power at angular scales less
than ` ∼ 20. We make this connection precise in the next section.
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Figure VII.2: Variation of the slow-roll parameter spike, induced by the inflection point, with
changing α. The largest spike corresponds to α = 0.661, while the other curves decrease with
decreasing α, in increments of 0.05.

VII.2 The Linear Perturbations

In this section we consider the effect of the inflaton “braking” as it transitions to inflection point
inflation on the power spectrum. For concreteness, we focus on the A3 potential,

V =
1

4
φ4 +αφ3 + λφ+

(
27

4
α4 + 3αλ

)
.

The shape of the power spectrum defined in (II.40) depends strongly two parameters u and Ξ,
defined in (??) and (II.30), respectively. Let us consider both of these in turn.

The u variable is essentially unity during slow roll inflation, as η ∝ −1/aH, as argued in Sec-
tion II.3.3. However, during the transition, this quantity spikes rapidly before settling back to
unity. At first it might seem surprising, given that η and aH are both monotonic functions of N.
Upon further inspection, one finds that u is essentially a ratio of two transcendental functions.
Thus, such a behavior cannot be discounted. We illustrate this in Fig. VII.3.

We now turn to the behavior of ν. Recall that the spectral index is very sensitive to ν, as illustrated
in Fig. II.1. ν also reacts strongly to the spike in Ξ as with the rest of the variables. For generic α,
it then dips below unity for some time before slowly rising back above for a redshifted spectrum.
This is shown in Fig. VII.4. The long transition shortens dramatically as α approach αC or the
initial conditions approach any other part on the basin of attraction. This is illustrated in Fig. VII.5

Plot and comment about the evolution of the power spectrum. Idea: if the transition occurs at
the appropriate time, the low modes on the power spectrum will be blue shifted, but the higher
modes will be redshifted? this effect can be quiet sharp or shallow, but this is a definite transition.
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Figure VII.3: The u variable, defined in (II.38), plotted again N for slow-roll evolution . During
de Sitter-like expansion u is near unity. The spike in this plot corresponds to the same jump
away from slow-roll illustrated in Fig. VII.1. This trajectory started at rest from φ = 10 in the A3
potential with α = 1 and λ = 0.01.
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Figure VII.4: Effect of the deviation in slow roll near the inflection point on the Hankel Function
index ν from Eqn. (II.39). The de Sitter case with unit ν is plotted for reference as a dashed line.
Note the slow rise from a blueshifted spectrum to a redshifted one aroundN = 80. This trajectory
started at rest from φ = 10 in the A3 potential with α = 1 and λ = 0.01.

VII.3 Timing and the Angular Power Spectrum

VII.3.1 The Origin of the Anomaly

Finally we turn to these effects on the angular power spectrum. A flat spectrum — like the de
Sitter case with ν = 1 — leads to Fourier mode coefficients,

C` =
2

π

∫∞
0
dk

j`(kr◦)
2

k
=

1

2`(`+ 1)
.
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Figure VII.5: Behavior near αC. Here the same system is shown, only with α = 0.659 and
λ = 0.001. On the left, the slow-roll parameter Ξ is plotted versus N. On the right, it is ν versus
N. Notice the rapid exist of the blueshifted phase compared with that of α = 1 in Fig. VII.4.

Here r◦ = 14 Gpc is the comoving scale associated to the density perturbations relevant for the
CMB. It has the important effect of allowing the approximation of the Hankel functions in ∆R by
k1−ns .

For the de Sitter case, the plot of `(`+ 1)C` versus ` constant. Observations lead to a redshifted
spectrum, with ns ∼ 0.96, which tilts this straight line slightly with a negative slope. On top of
this nearly constant background, the effects of the BAO are included to give the CMB’s power
spectrum its familiar harmonic peaks.

The aforementioned CMB anomaly involves low power at large scale. The power in the first
few C` is highly suppressed, and there is an aberration which continues nearly through to the
first BAO peak. Assuming this is not a statistical aberration of cosmic variance — a significant
assumption to be sure — this can happen only if the angular power spectrum is blueshifted for the
first dozen `, before returning to a slightly redshifted distribution at ` ∼ O(20).

From Section VII.2, we see that...

The fixed point dynamics of inflection point inflation gives a novel mechanism for the observed low power
at large scales in the Cosmic Microwave Background.

Unlike previous investigations, [101, 102, 103, 104, 105], resolving this issue with inflection point
inflation allows for shape and breadth (in `) of the effect. While the use of inflection points for
this effect was pointed out in [106], its full effect — particularly the strong enhancement near αC
— was not understood until the analysis in Ref. [38].

Assuming that the slow-roll phase of inflation occurs above the inflection point, the two parame-
ters controlling the anomaly’s effects are α and λ. Generally the full set of initial conditions can
be considered, and the α→ αC enhancement occurs similarly near the boundary of the inflection
point’s basin of the attraction. Let us discuss the effects of α and λ in turn.
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VII.3.2 Varying the Parameters

As previously discussed, low power at large scales amounts to a transition from a blueshifted
spectrum to a redshifted at the largest angular scales — low values of `. Since the modes are
observed after reentering the horizon, the oldest observable perturbations are at the largest scales.
If a transition to inflection point inflation is to account for this CMB anomaly, it must have
happened just prior to the sixty or so e-foldings required by late-time cosmological observations.
Therefore, in this scenario, the spectral index runs strongly with k at large scales.

Let us first estimate the duration of the relevant transition period, parametrized by N. Consider
the modes that are significant for C2 at Ni. As the universe expands, these modes appear to
shrink. Suppose that at Nf, these modes are now observed at C200. Coarsely, the number of
e-foldings relevant for this change of scales — computed as arclengths on the celestial sphere —
can be inferred from

πr◦e
Ni =

π

180
r◦e

Nf ⇒ Nf −Ni = log 180,

suggesting that Nf −Ni is just more than five. Thus, we are interested in the transitions in the
Hankel function index, ν, from below to above unity on the scale of five e-foldings.

As α approaches αC, the transition from a blueshifted spectrum to a redshifted one happens
rapidly, which leads to a sharper transition over a shorter range of scales — alternatively, at
earlier times. This is illustrated in Fig VII.6. It is notable that α parametrizes the class of A3
models, and as discussed in Chapter IV, also sets the scale for a host of other physical quantities.
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Figure VII.6: The power spectrum at horizon exit as a function of N is plotted on the left. On the
right, the corresponding background field trajectories are presented. Each curve corresponds to a
different α ∈ {0.659, 0.665, 0.68, 1, 2}. λ was chosen to so that the initial conditions, φ = 10,φ′ = 0
led an equal number of e-foldings, in this case 150. Colors range from blue to red respectively,
and coordinate between the two plots. Three of the trajectory curves very nearly overlap. Note
the large distortion caused by the transition to inflection point inflation.
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dkk2
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Recall that x = k∆η = ku/aH. Therefore,

∆2R =
k3

(aφ′)2

∣∣∣ ku

aH
√
2k
h
(1)
ν (ku/aH)

∣∣∣.
Evaluated at horizon crossing, k = aH, so

∆2R =
(uk)2

2(aφ′)2

∣∣∣h(1)ν (u)
∣∣∣.

Now, at horizon crossing

dk = d(aH) = aH

(
1−

1

2
φ′2
)
dN.

Notice that the limits coincide, i.e. N(0) = 0 and N(∞) = ∞, at least in a quasi-de Sitter space.
Therefore,

C` =

∫∞
0
dN

(
1−

1

2
φ′2
)
∆2R

aH

k
j`(kr◦)

2,

so that that angular power spectrum may be finally written as

C` =
1

2

∫∞
0
dN

H2
(
1− 1

2φ
′2
)

φ′2
u2
∣∣∣hν(u)∣∣∣j`(ar◦H)2. (VII.1)

The spherical Bessel functions extract out the relevant parts of the power spectrum for the appro-
priate time scale associated to the angular scale on the sky. The integrand is vanishingly small
before

ar◦H ∼ `,

and the integral over the first dozen peaks or so are typically sufficient to give ninety-nine percent
of the full integral. Note that N enters as an expectational here, so even for low ` these dozen
peaks will occur within a few e-folds. The main point here is that the comoving distance to
the surface of last scattering, r◦ sets the scale for these modes. In other words, the integrand is
supported around

N−N0 ∼ log(`/r◦H),

where N0 sets the normalization of the scale factor. Given that u is extremely close to unity
during inflation, (VII.1) is an incredibly simple expression. Indeed, from this expression it is easy
to see how the deviations from unity observed in Fig. VII.3 source the disturbance observed in
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Fig. VII.6. The effect on the angular power spectrum is illustrated in Fig. VII.7.
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Figure VII.7: The lowest moments of the angular power spectrum are plotted. Each set of points
is color coordinated with the those of Fig. VII.6, where the same data set was used. That is, α
takes values in {0.659, 0.665, 0.68, 1, 2}, where color range from blue to dark red. Here, things are
arranged so that r◦aH is of order one at N = 18.

One comment is in order. Applying a time dependent formula such as (VII.1) implicitly assumes
that the background on to which these perturbations — essentially random quantities — are
being laid down is quite flat. In particular, no prior period of inflation, followed by a period of
reentry has happened. Or, if it did happen, these ancient perturbations have somehow decayed
so that a feature such as that seen in Fig. VII.6 might have been observed. Given what we know
about the background dynamics this may not seem entirely unreasonable, although because H
tends to decay with time, one might expect the power spectrum of such ancient perturbations
to have a comparable normalization. While a mechanism for this might exist in some form of
eternal inflation, we continue with the assumption that the perturbations are being laid down on
a relatively flat background.

The duration of early period of blueshifted spectrum also depends on λ. From (II.19), one finds
that very small λ leads to a large total number of e-foldings. If λ is too short, the blueshifted
modes at the onset of inflection point inflation would not yet have reentered the horizon. If it
were too small, sufficient inflation would not have occurred. Therefore, the range of λ required to
explain the low power at large scales amounts to fortunate timing — to within five e-foldings or
so — that we might be able to observe such an effect. Fig. VII.8 demonstrates the effect of varying
λ on various values of α. While there is mild statistical degeneracy between the two parameters,
it is clear from these figures that α determines the strength of the effect and λ determines is
overall observability.

Given that the low modes of the angular power spectrum is subject to cosmic variance, such
effects are best tested by examining the global fit to cosmological data. Given the results of
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Figure VII.8: The lowest moments of the angular power spectrum are plotted with α = 0.659 and
λ ∈ {0.000324, 0.000305, 0.000286, 0.000270, 0.000255}, assuming the that NCMB = 60. The sets of
plotted modes are range from green to black. Notice how the effects shown in Fig. VII.7 dissipates
with time.

Chapter IV, such a fit can be increased to include other specific details of the embedding of
inflation into, for example, SUSY models of particle physics. We leave such a systematic analysis
for future work.
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CHAPTER VIII

CONCLUSION

VIII.1 Discussion

Physics beyond the standard model is a near certainty. Dark matter and dark energy were posited
because of observations that do not fit within the known particle physics models or general rel-
ativity. These indirect observations compel us to search for new physics, but terrestrial experi-
ments have had less than dramatic results. The LHC has observed a Higgs sector consistent with
a minimal standard model, and the results of dark matter direct detection experiments have been
inconclusive at best.

The thirty year old paradigm of weak scale supersymmetry is in ever increasing tension with ob-
servations and the gauge hierarchy problem has taken on renewed urgency. Without experimen-
tal guidance, the anthropic principle has resurfaced, and the possibility of a fine-tuned universe
has become debatable point. The advent of precision cosmology has brought these problems into
sharp relief.

Inflation has come to be the dominant paradigm for understanding the quantum theory behind
the big bang. Its predicted, slightly redshifted spectrum of density perturbations has been ob-
served and tied to both the cosmic microwave background and large scale structure. Despite this,
there appears to be no distinguished manner in which the required scalar field condensate relates
to known the known details of particle physics. Worse, there appears to be limitless possibili-
ties for both the inflaton and the early universe which could give rise to our own whence, the
anthropic debate.

While useful for matching to observations, effective field theory approaches to this problem
cannot effectively determine the full, ultraviolet theory. Without knowledge of the fundamental
Lagrangian and the symmetries it may possess — not to mention other new physical ideas — the
observed universe is bound to look fined tuned. Without experimental guidance, we cannot pin
down these symmetries or new ideas. Since the new Planck analysis suggests that our primordial
universe is consistent with relatively anonymous single field, slow-roll scenario, the prospects for
progress look bleak.

This dissertation blazes a new approach to early universe cosmology which embraces the vast
number of possibilities. In Chapter IV, we reduced the study of the inflection point inflation
scenario to a parametrized set of structural classes and studied their embeddings into various
models of particle physics and string theory in Chapter V.

This approach has a curious duality. On the hand, it minimizes the details needed to study the
physical consequences of the inflationary model in the low energy spectrum. On the other hand,
it observes a fundamental limitation in what can be observed. For example, if our universe is re-
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ally described by a complicated, KKLT-type model, observations gleaned from mirage mediation
may point us towards the appropriate form of the scalar potential, but we will have little hope of
understanding much about the ultraviolet details of the theory, viz. the nonperturbative D-brane
effects or the SUSY breaking sector.

The utility of this approach becomes apparent when these quasi-universal properties applied to
the study of inflation itself. In Chapter VI, we described the fixed point dynamics associated to
inflection points. By expanding on previous studies of the measure problem in cosmology, we
were able to show how inflection point inflation plays an important role once the couplings of
the scalar potential are taken to be random variables. In the Gibbons-Turok construction [50] for
example, the inflection point contribution was dominant. In any case, the fixed point behavior of
inflection point inflation allowed for a 1/N3 scaling in the likelihood of having N e-foldings of
inflation. This agrees well with recent monte carlo simulations of inflation on the conifold [14]
and with random scalar potentials [15]. Finally, phenomenological applications of the fixed point
dynamics were discussed in Chapter VII.

VIII.2 Future Investigations

There are a number of interesting avenues for further research, both theoretical and phenomeno-
logical. With respect to phenomenology, multifield dynamics offer a rich structure of observables.
While the new Planck data excludes what many theorists expected, inflection point inflation pro-
duces a naturally low level — but not infinitesimal — level of “local” nongaussianity. It is entirely
possible the more sensitive experiments will reveal such features, perhaps by probing the matter
power spectrum. We are currently investigating the nongaussianity produced by ADE struc-
tural classes, and preliminary calculations demonstrate that different classes may yield different
predictions for local nongaussianity. Similarly, other features of multifield models such as the
possible creation of dangerous isocurvature perturbations may lead to new constraints on entire
families of inflection point models.

Another interesting extension of this work would be a global fit of the inflection point solution
to the low power anomaly to all the cosmological parameters. Additionally, this global fit can
be extended to include particle physics searches, like the mirage mediation scenario discussed
earlier. Since inflation can influence everything from baryogensis to reheating to nonthermal dark
matter scenarios, there is an enormous opportunity to search for new correlations and constraints.

From a theoretical perspective, our study of the geometry of phase space opens many new lines
of research. The Liouville measure has a natural ambiguity associated to the conformal version
of Liouville’s theorem valid in odd-dimensional phase spaces. Since the contact form associated
to such spaces depends explicitly on the scalar potential, it is clear that a valid statistical measure
on the set of possible trajectories much similarly depend on the scalar potential. A new approach
to understanding the cosmological measure is required. Our approach of uninformative priors
on the space of couplings is only a first step in this direction.
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Canonical scalars lead naturally to slow-roll inflation. Non-canonical kinetic terms can similarly
lead to an exponential expansion of space. This augments the attractor dynamics in Chapter VI.
Trajectories similar in spirit to slow-roll inflation can exist, as seen in the DBI [21] and ghost infla-
tion scenarios [22]. From a geometric perspective, one can interpret such “singular” trajectories
as Legenderian singularities on phase space. The details of such singularities are known to be
tightly restricted by the dimensionality of the contact manifold. Here, Arnold again supplies us
with a classification scheme. It would be interesting to see if such classifications lead to classes
with distinguishable but universal properties. While data suggests that single field slow roll in-
flation is favored, complete knowledge of these individual classes may offer an explanation as to
why they are favored.

Without experimental guidance, early universe cosmology may find itself in the doldrums of an-
thropic reasoning. The main goal of this coarse-grainned approach to inflation is to isolate the
main ideas behind the embedding of an early epoch quasi-de Sitter expansion within contem-
porary particle physics. This dissertation is but a step in this direction towards the proposal of
entirely new ideas and experiments to test them.
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