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ABSTRACT

The Madden-Julian Oscillation (MJO), a tropical phenomenon that exists on

the time scale of 30-90 days, commonly initiates over the Indian Ocean and slowly

propagates into the western Pacific as a series of convective events, which have time

scales on the order of hours or days. These events and the overall MJO convective

envelope may interact with convectively coupled waves such as Kelvin waves that

propagate more rapidly eastward with time scales of 3-5 days. Radar and sound-

ing data collected during the DYNAMO/AMIE/CINDY2011 field campaign from

October 2011 to February 2012 in the central Indian Ocean are used to study the

interaction between Kelvin waves and the MJO in terms of atmospheric and cloud

properties. The focus is on characterizing the precipitation characteristics, convec-

tive cloud spectrum, and atmospheric profiles of Kelvin waves during the active and

suppressed phases of the MJO to gain insight on MJO initiation.

Characteristics of waves identified using different satellite thresholds and filtering

methods are compared. Composites of the radar and sounding observations are cal-

culated for a total of ten Kelvin waves and three MJO events that occurred during

the field campaign. Analyzed radar products include convective-stratiform classi-

fication of rain rate, rain area, and echo-top heights, as well as cloud boundaries.

Sounding data includes profiles of wind speed and direction and relative humidity.

Kelvin waves that occur during the suppressed MJO are convectively weaker than

Kelvin waves during the active MJO, but display previously documented structure of

low-level convergence and a moist atmosphere prior to the wave passage. During the

active MJO, Kelvin waves have stronger convective and stratiform rain, and the entire

event is longer, suggesting a slower moving wave. The Kelvin wave vertical structure
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is somewhat overwhelmed by the convective envelope associated with the MJO. When

the MJO is developing, the Kelvin wave displays a moisture-rich environment after

the passage, providing deep tropospheric moisture that is postulated to be important

for the onset of the MJO.

The convective cloud population prior to MJO initiation shows increased mois-

ture and a population of low- to mid-level clouds. The moisture precedes shallow

convection, which develops into the deep convection of the MJO, supporting the

discharge-recharge theory of MJO initiation. Additionally, enhanced moisture after

the passage of the pre-MJO Kelvin wave could also support the frictional Kelvin-

Rossby wave-CISK theory of MJO initiation. With a better understanding of the

interaction between the initiation of the MJO and Kelvin waves, the relationships

between the environment and the onset of the convection of the MJO can be im-

proved.
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NOMENCLATURE

AMIE ARM Madden-Julian Oscillation Investigation Ex-

periment

ARM Atmospheric Radiation Measurement

CINDY2011 Cooperative Indian Ocean Experiment on Intrasea-

sonal Variability in the Year 2011

DYNAMO Dynamics of the Madden Julian Oscillation

KAZR Ka ARM Zenith Radar

RH Relative Humidity

SMART-R Shared Mobile Atmospheric Research and Teaching

Radar

U-Wind/Zonal Wind East -West component of wind

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 The Madden Julian Oscillation . . . . . . . . . . . . . . . . . . . . . 3
2.2 Kelvin Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Theories of MJO Initiation . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Past Field Campaigns . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Wave Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. DYNAMO/AMIE/CINDY2011 DATA . . . . . . . . . . . . . . . . . . . . 16

3.1 Field Campaign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 SMART-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 KAZR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Soundings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4. EVENT IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Wave Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Filtered MJO Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Filtered Kelvin Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Latitude Domain Comparison . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Choosing Kelvin Wave Dates . . . . . . . . . . . . . . . . . . . . . . . 28

5. COMPOSITE METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Calculating Composites . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 SMART-R Composites . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 KAZR Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



5.4 Sounding Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 MJO Composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.1 Rain Rate and Area Composite . . . . . . . . . . . . . . . . . 39
6.1.2 Echo-Top Composite . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3 Relative Humidity Composite . . . . . . . . . . . . . . . . . . 43
6.1.4 Zonal Wind Anomaly Composite . . . . . . . . . . . . . . . . 45
6.1.5 Evolution of Cloud Population . . . . . . . . . . . . . . . . . 46

6.2 Kelvin Wave Composites . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.1 Rain Rate and Area Composites . . . . . . . . . . . . . . . . . 48
6.2.2 Echo-Top Composites . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.3 Relative Humidity Composites . . . . . . . . . . . . . . . . . . 55
6.2.4 Zonal Wind Anomaly Composites . . . . . . . . . . . . . . . . 59
6.2.5 Evolution of Cloud Population . . . . . . . . . . . . . . . . . . 61

7. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 MJO Initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Kelvin Waves and the MJO . . . . . . . . . . . . . . . . . . . . . . . 67

7.3.1 Suppressed MJO . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.2 Active MJO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3.3 Pre-MJO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vii



LIST OF FIGURES

FIGURE Page

2.1 Original phase schematic of the MJO . . . . . . . . . . . . . . . . . . 4

2.2 New MJO phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Schematic of the Kelvin wave . . . . . . . . . . . . . . . . . . . . . . 8
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1. INTRODUCTION

The Madden-Julian Oscillation (MJO; Madden and Julian, 1972, 1994) is a large-

scale tropical convective event that initiates in the Indian Ocean and propagates

eastward into the western Pacific Ocean. The dynamics behind its onset are unclear,

although there are many theories. In this same tropical region, convectively coupled

Kelvin waves frequently occur (Gill, 1980; Wheeler and Kiladis, 1999; Straub and

Kiladis, 2002; Masunaga, 2007). Kelvin waves are fast, eastward moving, equatori-

ally trapped atmospheric waves that can be associated with convective events. Since

MJO initiation and Kelvin waves both occur in the tropical Indian Ocean, recog-

nizing their convective interactions is potentially important in characterizing and

understanding MJO onset.

The Dynamics of the Madden-Julian Oscillation (DYNAMO), the Atmospheric

Radiation Measurement (ARM) Madden-Julian Oscillation Investigation Experiment

(AMIE), and the Cooperative Indian Ocean Experiment on Intraseasonal Variabil-

ity in the Year 2011 (CINDY2011) were international field experiments that took

place in the Indian Ocean from October 2011 to February 2012. The goal of these

campaigns was to collect consistent observations of MJO onset to better understand

its initiation. Texas A&M University deployed a C-band, Doppler radar called the

Shared Mobile Atmospheric Research and Teaching Radar (SMART-R), which ob-

served precipitating clouds on Addu Atoll, Maldives. At another site on Addu Atoll,

the United States Department of Energy (DOE) launched eight soundings per day

to observe the vertical profiles of the atmosphere. A vertically pointing cloud radar

called the Ka ARM Zenith Radar (KAZR) was also located at this site to observe

non precipitating clouds over Addu Atoll.
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Data from SMART-R, KAZR, and the soundings collected during the field cam-

paign are used in this thesis to observe and analyze the precipitation and environmen-

tal properties of Kelvin waves during the active and suppressed phases of the MJO.

Chapter 2 is a literature review of MJO and Kelvin waves that includes background

on MJO initiation theories, past field campaigns, and event identification using wave

filters. Chapter 3 provides a description of the data products used. Three wave filters

are analyzed and compared to identify the strongest events during the field campaign

in Chapter 4. Next, the procedures used to analyze the radar and sounding data are

explained in Chapter 5. Finally, Chapters 6 and 7 provide results and analysis to

show the relationship between Kelvin waves and MJO initiation in the Indian Ocean

and overall conclusions are made, leading to the summary of this research in Chapter

8.
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2. LITERATURE REVIEW

2.1 The Madden Julian Oscillation

The MJO (Madden and Julian, 1972, 1994) is a large-scale, convective event

that initiates in the Indian Ocean and propagates eastward into the Western Pacific

Ocean. An MJO event typically occurs in a period of 30 to 90 days and is associated

with deep convection and intense, heavy convective rainfall that develops into large

amounts of less intense stratiform rain (Zhang, 2005).

The deep convection and dynamics of the MJO not only affects the tropical

Indian Ocean and western Pacific Ocean, but because the MJO is a planetary scale

disturbance, studies have shown that its effects also extend to both the tropics and

the extratropics (see Zhang, 2005). Within the tropics, the large amplitude of the

MJO has arguably the biggest variations besides the seasonal cycle. Studies have

shown that the MJO can be linked to tropical cyclone activity in both the Pacific

Ocean basin and the Atlantic Ocean basin Barrett and Leslie (2009). The active

MJO provides a favorable environment for tropical cyclogenesis and more intense

events while the suppressed MJO provides an unfavorable environment for tropical

cyclones to exist. Additionally, strong MJO events switch from south of the equator

to north of the equator as the seasonal cycle changes from austral summer to boreal

summer, and this shift affects the Australian monsoon in austral summer and the

Asian monsoon in boreal summer (see Zhang, 2005 and references therein). The

MJO’s reach also extends to the extratropics and can work with the polar jet to

bring heavy rainfall and flooding to the west coast of the United States. These

Pineapple Express events occur when the MJO propagates into the western Pacific

Ocean and its associated moisture extends into the northeast Pacific, across Hawaii.
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The polar jet stream splits forming a mid latitude trough, which carries the MJO

moisture to the west coast of the US and casues several days of heavy rain and

flooding (Bond and Vecchi, 2003).

Figure 2.1: Original phase schematic of the MJO. Convection begins over the Indian
Ocean and propagates eastward until is dissipates in the Pacific Ocean. Lower-level
easterlies exist out in front of the MJO with westerlies behind it. Winds converge at
the convective center and diverge at upper levels. From Madden and Julian (1972).
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The deep convection during an MJO event can be observed from remotely re-

trieved outgoing longwave radiation (OLR) measurements (Wheeler and Kiladis,

1999). These measurements are used as a proxy for convection where the lower OLR

values are considered deeper convection, i.e. colder cloud tops. Upper and lower

zonal wind signatures are another significant feature of MJO events. In the lower

troposphere and near the surface, strong westerly winds are present to the west of

the convective MJO center. To the east of the convective center there are easterly

winds in the lower troposphere, consistent with low-level convergence at the con-

vective center. At upper levels, winds to the west of the MJO center are easterly,

and winds to the east of the center are westerly (Zhang, 2005). This overturning

circulation is illustrated in Figure 2.1 (from Madden and Julian, 1972).

Also demonstrated in Figure 2.1 are the eight phases of the MJO, labeled A

through F. This is the original phase diagram used by Madden and Julian (1972),

which centers the MJO over Canton Island in the Central Pacific Ocean (convection

location in phase A; 3◦S, 172◦W), but it has since evolved. The phase indices typically

used today are based on the Wheeler and Hendon (2004) index and begin with

negative OLR anomalies over Africa and the Western Indian Ocean (Phase 1), which

move eastward over the Indian Ocean (Phase 2 and 3), to the Maritime Continent

(Phase 4 and 5), to the Western Pacific (Phase 6 and 7) and end where it originated in

the western hemisphere and Africa (Phase 8) (Figure 2.2; from Wheeler and Hendon,

2004). The MJO is considered to be in an active phase when deep convection and

precipitation occurs. Regions around the deep convection are considered inactive or

suppressed phases, and are associated with low precipitation and decreased cloud

cover. The Wheeler and Hendon (2004) phase index is determined using empirical

orthogonal functions (EOFs) of OLR, 850 hPa zonal winds and 200 hPa zonal winds

and provides a consistent index of the daily location of the MJO.

5



Figure 2.2: New MJO phases. Shaded (hatched) contours are negative (positive)
OLR anomalies. Arrows denote magnitude and direction of 850 hPa wind anomalies.
MJO initiation begins over Africa in phase 1 and moves eastward to the Pacific Ocean
by phase 8. From Wheeler and Hendon (2004).

The cloud population varies throughout the phases of the MJO. Prior to MJO

initiation, the cloud spectrum is mostly dominated by shallow, non-precipitating

clouds, which serve to increase lower tropospheric moisture (e.g., Blade and Hart-

mann, 1993). As the shallow clouds deepen and begin precipitating, the moistening
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from shallow cloud detrainment and moisture convergence due to low-level diabatic

heating helps to precondition the atmosphere for deep convection to occur (Blade

and Hartmann, 1993; Lau and Wu, 2010). Hence, the distribution of cloud types

and their properties will determine how well the clouds supply moisture and heat to

the lower troposphere. In the latter stages of the MJO, the deep convective clouds

organize into larger systems with widespread stratiform rain regions, which elevates

the heating profile (Houze, 2004; Lau and Wu, 2010).

2.2 Kelvin Waves

Similar to the MJO, the convectively coupled Kelvin wave is an eastward moving

tropical convective event (Gill, 1980; Wheeler and Kiladis, 1999; Straub and Kiladis,

2002). Kelvin waves travel at a much faster speed than the MJO, moving at ap-

proximately 17 ms−1, while the MJO moves at about 5 ms−1 (Straub and Kiladis,

2003). These disturbances are much more frequent than the MJO and are present

at all longitudes in the tropics, though they are most prevalent during the boreal

summer in the central Pacific and Indian Ocean (Masunaga, 2007). Like the MJO,

the location of the Kelvin wave can be identified using a combination of OLR and

zonal winds. Low-level westerly anomalies are present within and to the west of the

region of lowest OLR, while low-level easterly anomalies occur to the east. Figure

2.3 illustrates this in a schematic of the Kelvin wave by Straub and Kiladis (2003).

The structure of humidity and temperature in the Kelvin wave is also illustrated in

Figure 2.3. To the east of the Kelvin wave warm, moist anomalies exist at lower

levels and continue up to 300 hPa within the convective envelope. To the west of the

Kelvin wave cool, dry anomalies exist at lower levels.
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Figure 2.3: Schematic of the Kelvin wave. C (W) signifies cold (warm) anomalies and
arrow and text size represent strength of the anomalies. From Straub and Kiladis
(2003).

Kelvin waves occur near the equator in the Indian Ocean and produce a combi-

nation of convective and stratiform rain. A previous case study in the East Pacific

showed that stratiform precipitation is responsible for more than 50% of the total

rain area during a Kelvin wave (Straub and Kiladis, 2002). In addition, these fast-

moving, short-lived waves can exist during periods of both active and suppressed

MJO. A study by MacRitchie and Roundy (2012) calculated a 10-year climatology

of MJO and Kelvin wave using rainfall data from the Tropical Rainfall Measuring

Mission (TRMM) satellite in the Indian Ocean (5◦N to 5◦S, 65◦ to 115◦E). They

showed that 62% of total rainfall during an active MJO occurred during a Kelvin

wave. Furthermore, rain rates were 60% higher when a Kelvin wave is present during

an active MJO, and that Kelvin waves were responsible for 46% of the total rainfall

area.
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Another composite study looked at Kelvin waves during the active and suppressed

phases of the MJO in the Indian Ocean (from 5◦N to 5◦S, at 80◦E) using OLR and

reanalysis data (Roundy, 2008). This study showed that Kelvin waves move faster

during the suppressed MJO than during an active MJO. They also found that waves

in both MJO phases showed a similar wind structure to the Straub and Kiladis

(2003) schematic (Figure 2.3), where low-level westerlies coincide with convection,

although the low-level easterlies of Kelvin waves during the active MJO were much

weaker than during the suppressed MJO. Roundy (2008) suggested that during the

suppressed MJO, the raining stratiform clouds, or nimbostratus, were deeper and

more amplified. However, during active MJO, these clouds were weaker and reduced.

2.3 Theories of MJO Initiation

The mechanisms behind the initiation of the MJO have been attributed to dif-

ferent environmental characteristics such as radiation, surface evaporation, water

vapor, SSTs, and other wave events (see Zhang, 2005 and references therein). There

are three main types of theories regarding MJO initiation: stochastic processes, ex-

ternal forcings, and internal forcings. Stochastic processes are random fluctuations

in energy such as momentum and heating, which could generate an MJO event (e.g.,

Majda and Biello, 2004). External forcings are drivers from perturbations in the ex-

tratropics, which have been thought to provoke MJO initiation (e.g., Lau and Peng,

1987; Hsu et al., 1990; Lau et al., 1994). These extratropical triggers include Rossby

wave forcing, where Rossby wave trains travel into the Indian Ocean and cause a

rapid increase in upward motion, which initates MJO convection (Hsu et al., 1990).

Internal forcings are triggers within the tropics that could initiate MJO convec-

tion. The wave-CISK (Conditional Instability of the Second Kind) theory explains
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a positive feedback between convection and large-scale equatorial waves (Yamasaki,

1969; Hayashi, 1970; Lindzen, 1974; Seo and Kim, 2003). In this theory, a frictional

convergence of moisture occurs at the leading edge of deep convection during the

developing stage of the MJO. A second area of surface convergence also exists to

the east of the convection center that pulls the convection eastward. Boundary-layer

moisture convergence is provided by globally circling Kelvin waves from the previ-

ous active MJO cycle and by Rossby waves from the suppressed convection regions.

Figure 2.4 (from Seo and Kim, 2003) illustrates the Kelvin and Rossby propagation.

Figure 2.4: Hovmöller plots of zonal convergence by a) Kelvin waves and b) Rossby
waves. Dark shading indicates convergence. Dotted lines contour negative OLR
anomalies. From Seo and Kim (2003).
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The convergence zone is formed around 50◦E at 20 days, east of the MJO convection.

These waves also work to suppress convection to the west of the MJO event. This

theory is formally referred to as the frictional Kelvin-Rossby wave-CISK theory (Seo

and Kim, 2003).

An alternate theory of MJO initiation is known as the discharge-recharge hy-

pothesis (Blade and Hartmann, 1993; Kemball-Cook and Weare, 2001) in which both

internal and external forcings could cause the MJO. This theory suggests that MJO

events are initiated from the combination of mid-troposphere drying and low-level

moistening as illustrated in Figure 2.5 (from Kemball-Cook and Weare, 2001). The

low-level moistening promotes the formation of shallow convection, which enhances

instability and preconditions the atmosphere for deep convection. Once the atmo-

sphere is unstable, an external forcing like extratropical Rossby waves could initiate

the next MJO event.

Figure 2.5: Schematic of discharge-recharge MJO initiation theory. Black arrows are
wind anomalies. Gray solid arrows are moistening of the boundary layer and gray
dashed arrows are drying by entrainment of upper dry air. From Kemball-Cook and
Weare (2001).
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2.4 Past Field Campaigns

There have been various tropical field campaigns in the past that have ob-

served MJO events and Kelvin waves. The Tropical Ocean-Global Atmosphere

Coupled Ocean-Atmosphere Response Experiment (TOGA COARE, Webster and

Lukas, 1992) took place from November 1992 to February 1993 in the tropical West-

ern Pacific. Instruments used for observations included moorings, buoys, radars,

and soundings. Although TOGA COARE was specifically designed to study the

El Niño-Southern Oscillation (ENSO), the observations provided a strong basis for

studying the MJO once it propagated into the Pacific Ocean. During this program,

two strong MJO events occurred. A study by Yanai et al. (2000) used a combina-

tion of the TOGA COARE, reanalysis, and OLR data to study the structure of the

MJO. They found that the MJO signal in zonal winds was evident before the deep

convection emerged. Once the deep convection formed, the cloud envelope moved

eastward with low-level westerlies and upper-level easterlies, along with warm air in

the upper troposphere. They suggested that the interaction between the MJO and

equatorial waves be investigated to understand their relationships.

A second smaller, but more recent field campaign took place in the Indian Ocean

from October to December 2006. This program, called the Mirai Indian Ocean cruise

for the Study of the MJO-convection Onset (MISMO; Yoneyama et al., 2008), set

out to specifically observe the MJO and its initiation processes. MISMO took ob-

servations using radar, soundings, lidar, surface meteorological stations, and ocean

measuring instruments. Their findings support the idea that low- and mid-level con-

vection precondition the atmosphere for the deep convection of the MJO. Individual

studies have examined the structure of eastward-propagating convective events and

compared them with Kelvin waves (e.g., Katsumata et al., 2009; Yamada et al.,
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2010), but studies on the interaction of Kelvin waves and the MJO are limited.

2.5 Wave Filtering

The MJO and Kelvin waves are located in space and time using a wavenumber-

frequency spectrum analysis, as demonstrated by Wheeler and Kiladis (1999, here-

after WK99). This filtering method uses OLR from all longitudes and tropical band

latitudes with satellite-derived deep-layer tropospheric temperatures to identify equa-

torial waves. These waves are characterized by four parameters: meridional mode

number, frequency, planetary zonal wavenumber, and equivalent depth. Meridional

mode number is odd for waves that are symmetric and even for waves that are anti-

symmetric about the equator. Frequency refers to the number of days that the event

occurs. Planetary zonal wavenumber is the number of waves around a latitude circle

and equivalent depth is a constant that links vertical structure to the shallow water

wave equation.

In order to filter waves out of satellite-retrieved OLR, WK99 performed a space-

time spectra analysis, which decomposes OLR based on time and longitude into

wavenumber and frequency components. OLR power is then calculated by using suc-

cessive overlapping segments of spectral quantities from the OLR dataset. A series

of fast Fourier transforms are performed and the OLR power is averaged, summed by

tropical latitudes, and the degrees of freedom are reduced to symmetric and antisym-

metric components. Similarly, cross-spectra are calculated using the same method

and a different number of overlapping segments. The background spectrum is found

by averaging the antisymmetric and symmetric power OLR and smoothing it with a

1-2-1 filter.
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Figure 2.6: Antisymmetric (a) and symmetric (b) wave dispersion curves. MJO (blue
outline) is evident in both antisymmetric and symmetric modes, while the Kelvin
wave (green outline) is only a symmetric mode. From Wheeler (2013).
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The antisymmetric and symmetric power OLR spectra are then divided by the

background spectrum to obtain the wave dispersion curves, as shown in Figure 2.6

(from WK99). The wave dispersion curves illustrate the wavenumbers and frequen-

cies that correspond to eastward and westward propagating waves. The MJO (blue

outline) has signals in both the antisymmetric and symmetric OLR, and ranges from

eastward wavenumbers 1 to 7 and a period from about 30 to 96 days. Kelvin waves

(green outline) have only a symmetric OLR signal, with eastward wavenumbers from

about 1 to 14 and a period from about 2.5 to 20 days. Once the wavenumbers and

frequencies of each wave are determined, the waves can be filtered out from a global

OLR dataset. Changing the values of wavenumbers and/or frequency of waves being

filtered will alter the number of waves and dates of waves identified, thus provid-

ing numerous distributions of waves using the same initial data. Since there are no

universal wavenumber-frequency values for equatorial waves, taking a global OLR

dataset, extracting specific waves during a specific time period, and analyzing the

characteristics of those waves is complex and variable and is addressed in Chapter 4.
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3. DYNAMO/AMIE/CINDY2011 DATA

3.1 Field Campaign

The DYNAMO/AMIE/CINDY2011 experiments were recent field campaigns with

the goal of understanding the dynamics of the MJO. The multi-nation project focused

on collecting data to understand the initiation of the MJO in the equatorial Indian

Ocean, and its evolution eastward into the western Pacific Ocean. From October 2,

2011 to February 9, 2012, continuous radar observations and soundings were made in

the equatorial Indian Ocean and western Pacific Ocean. Figure 3.1 illustrates the at-

mospheric sounding array, which spans from about 10◦N to 10◦S and 70◦E to 80◦E.

Within this array, ground, ship, and aircraft radars, along with radiosondes were

used to observe MJO initiation. During this time, three clear MJO events occurred

along with various Kelvin waves (Gottschalck et al., 2013). The data products used

for this study were located on Addu Atoll, Maldives (0.6◦S, 73◦E), as shown by the

star in Figure 3.1. Observations at this location are positioned in phase 2 and 3 of

the MJO (see Figure 2.2), during the initiation.

3.2 SMART-R

SMART-R is a truck-mounted C-band Doppler radar that was deployed by Texas

A&M University on Addu Atoll, Maldives (Figure 3.2). Radar is an active sensor,

which radiates a pulse of electromagnetic radiation at a specific wavelength. Once

the signal makes contact with an object (i.e., precipitation, cloud particles, etc.) in

its path, the radiation is scattered back towards the radar and is collected by its

receiver. Reflectivity, or echo, is dependent on the size distribution of the objects

detected in a given sampled volume and is proportional to the sixth power of the
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Figure 3.1: Field observation network of DYNAMO/CINDY2011/AMIE. The red
star denotes Gan Island, where SMART-R, KAZR, and 3-hourly soundings were
located. From the DYNAMO Operations Plan.

particle’s diameter. Radars are particularly sensitive to the size of the hydromete-

ors versus number. High values of reflectivity (i.e., > 40 dBz) indicate an intense

storm. Additionally, the transmitted wavelength will determine the sensitivity of

the radar. Longer (i.e., cm) wavelengths can detect larger, raindrop-sized particles,

and have better transmissivity through the atmosphere. SMART-R is a 5-cm wave-

length radar, which is ideal for observing precipitation, but misses non-precipitating

and lightly precipitating clouds. In addition, SMART-R is Doppler-capable and can

measure the radial velocity of particles towards or away from the radar within the

sample volume. Once the transmitted pulse of energy makes contact with a moving

particle (i.e., rain drop or cloud particle) the reflected frequency is shifted higher

or lower depending on the movement of the particle. The velocity of the particles

can then be calculated by comparing the original transmitted frequency and the new

returned frequency.

SMART-R ran on a 10-min scan cycle that included three range-height indicator

scans (RHI) at various azimuths out to 100 km, a low-level surveillance scan out to
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300 km, and two volume scans wit 13 elevation angles each out to 150 km from the

radar. Due to beam blockage at low levels from trees in the west, radar products have

been analyzed to only include the 180 degree sector between 338◦ and 158◦, which

limits the data products to a smaller area. These analyzed radar products include

echo-top heights, rain rate, rain area, and convective-stratiform classification. Echo-

top heights are a measure of the vertical structure of the rain event, which serves to

detect the height of the precipitation echoes based on reflectivity thresholds. Rain

rates are calculated using a reflectivity to rain rate relationship, also known as a Z-R

relationship. The Z-R relationship used to calculate rain rate from SMART-R is the

same one used for the MISMO campaign (see Fliegel, 2012 for more information).

Rain area is the fraction of the echoes’ coverage of the radar area. Rain rates and

Figure 3.2: Map of field observations on Gan Island, Maldives (0.6◦S, 73◦E). Red
arrows denote the location of SMART-R and the ARM site where the KAZR and
soundings were located. (Base map available from maps.google.com)
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area are separated into convective and stratiform rain by classifying the reflectivity

using a modified algorithm based on Steiner et al. (1995). In the tropics, convective

rain is most common and occurs in intense storms with higher reflectivity (e.g., 40

dBz). Stratiform rain typically develops after a convective event as rain covering a

large area and has a lower value of reflectivity (e.g., 10-20 dBz). A reflectivity thresh-

old along with a texture test to assess peakedness thus separates the SMART-R rain

rates. The modification to the Steiner et al. algorithm uses echo-top information to

reclassify shallow, isolated cells as convective (Fliegel, 2012).

3.3 KAZR

The vertically pointing KAZR was located at the ARM site on Addu Atoll (Figure

3.2). Like SMART-R, KAZR is an active sensor that remotely detects cloud particles

in the atmosphere. KAZR is more sensitive than SMART-R because it radiates at

an 8.6 mm-wavelength, allowing it to detect smaller cloud-sized droplets. However,

this shorter wavelength is attenuated more quickly when it travels through larger

precipitation-sized particles. In addition, KAZR is a vertically pointing Doppler

radar, meaning it only observes the atmosphere directly above it, as opposed to a

scanning radar like SMART-R, which moves horizontally and vertically. This limits

the observations of KAZR such that it will only record clouds that move directly

over the radar, and hence can miss clouds observed by SMART-R.

KAZR began radiating on October 8, 2011 and continued through February 8,

2012, recording observations at 4-second intervals. The radar has a resolution of

about 30 m from the ground to almost 20 km in altitude. Due to the sensitivity

of the radar, cloud base height and cloud top height measurements are used in this

thesis to obtain the cloud evolution of convective events. The data product used is

19



the KAZR Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP),

which combines observations from other instruments with the KAZR cloud observa-

tions for a more accurate measure of cloud boundaries. The other instrument used

for the cloud boundary product is the mircopulse lidar (MPL), also located at the

ARM site. Similar to radar, the MPL sends a pulse of energy through the atmosphere

to determine the height of cloud bases and tops. The MPL can detect optically thin

clouds, but it gets attenuated quickly through precipitation. The combination of the

KAZR observations with observations from the MPL improves the measurements of

cloud boundaries up to ten levels of clouds.

3.4 Soundings

Atmospheric soundings were deployed at the six locations in the sounding array

(Figure 3.1) and launched up to eight times per day. Meteorological radiosondes

attached to a weather balloon were released into the atmosphere and recorded atmo-

spheric data every few seconds. Soundings from DOE’s second ARM mobile facility

(AMF2) site on Gan Island are used in this study (Figure 3.2). These soundings

provide profiles of wind speed and direction, temperature, relative humidity, and

pressure.
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4. EVENT IDENTIFICATION

4.1 Wave Filters

To identify specific wave events from October 2, 2011 to February 9, 2012, three

wavenumber-frequency filters are used. These include the original Wheeler and Ki-

ladis (1999) filter, a similar filter used by Carl Schreck (Schreck, 2013), and the

DYNAMO-specific filter developed by a group of DYNAMO scientists (Gottschalck

et al., 2013). Each filter obtains the wavenumber-frequency regions the same way as

WK99, but the actual ranges of wavenumber and frequency vary between the filters,

as displayed in Table 4.1. Compared to the Wheeler filter, the Schreck filter is more

liberal with MJO filtering in both frequency and wavenumber, but slightly more con-

servative with Kelvin filtering in frequency. The DYNAMO method is much more

generous with MJO filtering in frequency and wavenumber, but also more conserva-

tive with Kelvin filtering in frequency than the Wheeler filter.

Table 4.1: Wavenumber and frequency differences in three filters used to identify
wave events during DYNAMO.

Filter: Wheeler Schreck Dynamo

MJO

Wavenumber: 1-5 eastward 0-9 eastward 0-9 eastward

Frequency: 30-96 days 30-100 days 20-100 days

Kelvin Wave

Wavenumber: 1-14 eastward 1-14 eastward 1-14 eastward

Frequency: 2.5-30 days 2.5-17 days 2.5-20 days

21



Once the global OLR anomalies are filtered to identify wave events, the filtered

data must be averaged by latitude to view the zonal propagation of the waves, which

is typically displayed in a Hovmöller plot. Figure 4.1 illustrates interpolated satellite-

retrieved OLR averaged from 10◦S to 10◦N. The Advanced Very High Resolution

Radiometer (AVHRR) onboard the National Oceanic and Atmospheric Administra-

tion’s (NOAA) polar-orbiting satellites collects the OLR data which is provided by

the National Center for Environmental Prediction (NCEP). The eastward propaga-

tion of the three MJO events (at the end of October, November, and December) is

evident where the OLR minimums are located (blue shading). The wider the latitude

domain that is averaged, the less variability is preserved. In addition, wider bands

decrease the strength of filtered events by washing out the OLR minima. Hence,

the latitude domain and wave threshold (OLR minimum) will further vary the waves

that are identified. Because this thesis is focused on the precipitation and atmo-

spheric characteristics of these wave events, onset dates and wave passage dates are

extremely important when using radar and sounding observations at Gan Island.

4.2 Filtered MJO Events

The filtered MJO events are displayed in Figure 4.2 and include variations based

on latitude domain averaging choices. All three filters identify the first two MJO

events that occurred during the field campaign at all latitude domains. As the lati-

tude domains widen and the threshold remains at -10 Wm−2, the filtered MJO events

become smaller. The DYNAMO filter is the only one of the three that identifies the

December event as an MJO, due to its wide range in frequency. In addition, all

three filters identify an MJO event that occurred in January. However, there was no

rainfall near Addu Atoll during this time. The negative OLR anomalies associated
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Figure 4.1: Total daily OLR averaged from 10◦S to 10◦N. Lower OLR values are
areas of deep convection. The dotted line locates Gan Island.
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with this event are located south of the equator, away from the equatorial Addu Atoll

location. MJO onset date and duration at Gan Island varies between the three filters.

In Figure 4.2, the dotted line is the location of Gan Island. Each of the first two

MJOs begin and end on different days based on filter. For the purpose of this the-

sis, the three MJO events identified by the DYNAMO filter will be used for analysis

for consistency with other studies using the DYNAMO/AMIE/CINDY2011 datasets.

4.3 Filtered Kelvin Waves

Kelvin waves identified by the different filters and domain size are plotted in Fig-

ure 4.3. More Kelvin events are identified at smaller latitude domains than wider

domains at a common threshold. Table 4.2 lists the number of events identified by

each filter at the different latitude domains. The Wheeler filter identifies the most

Kelvin waves at smaller latitude domains, due to its wider range in frequency. All

three filters are in good agreement for the strongest and longest Kelvin wave events.

In addition, note the distribution of Kelvin events that occurred during the field

campaign. There is a higher density of Kelvin events during the first half of the

campaign (during the first two MJO events) than the second half.

4.4 Latitude Domain Comparison

Maintaining an event threshold of -10 Wm−2 demonstrates the importance of

choosing latitude domains. At smaller domains, longer and more numerous waves

are identified, especially in the Kelvin band for all three filters (Figure 4.3). Because

this thesis utilizes radar and sounding data at Gan Island, it is important to illustrate

the differences in rain statistics that arise from varying latitude domains. Figures

4.4 and 4.5 display bar graphs of average convective and stratiform rainfall from
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Figure 4.2: MJO filtered OLR at a -10 Wm−2 threshold. The Wheeler filter is in blue, Schreck is in red, and DYNAMO
is in black. Plotted with three different latitude domains, (a) 15◦S to 15◦N, (b) 10◦S to 10◦N, and (c) 5◦S to 5◦N. The
dashed line is the longitude of Gan Island.
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Figure 4.3: Kelvin wave filtered OLR at a -10 Wm−2 threshold. The Wheeler filter is in blue, Schreck is in red, and
DYNAMO is in black. Plotted with three different latitude domains, (a) 15◦S to 15◦N, (b) 10◦S to 10◦N, and (c) 5◦S to
5◦N. The dashed line is the longitude of Gan Island.
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Table 4.2: Number of MJO and Kelvin waves filtered using three filters at three
different wave thresholds.

a. Latitude averaged from -5◦S to 5◦N

Filter: Wheeler Schreck Dynamo # In Common

Threshold: -10 Wm−2

# MJO 3 3 4 3

# Kelvin 11 8 10 6

Threshold: -12 Wm−2

# MJO 3 3 4 3

# Kelvin 10 7 8 5

Threshold: -15 Wm−2

# MJO 3 2 3 2

# Kelvin 6 4 7 4
b. Latitude averaged from -10◦S to 10◦N

Filter: Wheeler Schreck Dynamo # In Common

Threshold: -10 Wm−2

# MJO 3 2 3 2

# Kelvin 6 5 8 4

Threshold: -12 Wm−2

# MJO 3 2 3 2

# Kelvin 5 3 3 2

Threshold: -15 Wm−2

# MJO 1 1 3 0

# Kelvin 1 1 1 1
c. Latitude averaged from -15◦S to 15◦N

Filter: Wheeler Schreck Dynamo # In Common

Threshold: -10 Wm−2

# MJO 2 2 3 2

# Kelvin 2 2 2 1

Threshold: -12 Wm−2

# MJO 1 2 3 1

# Kelvin 0 1 1 0

Threshold: -15 Wm−2

# MJO 0 0 2 0

# Kelvin 0 0 0 0
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SMART-R during MJO and Kelvin wave events, respectively, separated by filter

and latitude domain. Stratiform rain percent is noted at the top of each bar pair.

The composite MJO graphs show that MJO events always have more stratiform rain

than convective rain, which is consistent with previous studies (e.g., Lin et al., 2004).

Stratiform rain percent is generally consistent at the different latitude domain sizes

for each filter. However, as the latitude domain gets larger, rain amounts increase

because only the largest negative OLR anomalies are filtered (see Figure 4.2).

The composite Kelvin waves display a different trend in stratiform percent when

modifying the latitude domain. At smaller domain sizes, there is almost equal strat-

iform and convective rain and the filters are in good agreement. As the latitude

domain is increased, stratiform precipitation decreases relative to convective rain.

This is most likely due to fewer identified events introducing higher variability in

sampling (see Figure 4.3).

A latitude average of 10◦N to 10◦S is used for the remainder of this thesis be-

cause it encompasses the entire sounding array (Figure 3.1; Gottschalck et al., 2013).

Latitudinal averages between 10 and 20 degrees have been used in other studies of

equatorial waves over the northern tropical Western Pacific Ocean (e.g., Swann et al.,

2006; 0◦-15◦N) and the northern tropical Eastern Pacific Ocean (e.g., Straub and Ki-

ladis, 2002; 2.5◦-15◦N). Using this average also accounts for the shift from boreal

summer to austral summer.

4.5 Choosing Kelvin Wave Dates

Identifying the specific dates of wave passages is important when using hourly

radar and sounding data to analyze the wave features. The filtered data is averaged

in longitude to pinpoint the date of passage by finding the local filtered OLR minimum
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Figure 4.4: MJO convective and stratiform rain amounts by filter and latitude do-
main. Stratiform rain (blue bar) and convective rain (red bar) totals are plotted.
Stratiform rain percent is stated above each stratiform bar.
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Figure 4.5: Kelvin wave convective and stratiform rain amounts by filter and latitude
domain. Stratiform rain (blue bar) and convective rain (red bar) totals are plotted.
Stratiform rain percent is stated above each stratiform bar.
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anomaly. The longitudinal average used in Gottschalck et al. (2013) is 70◦E to

80◦E, which encompasses the sounding array (Figure 3.1). However, since this thesis

focuses on the precipitation at Gan Island, located at about 73◦E, a longitude average

from 72.5◦E to 75◦E is used. This will pinpoint dates of wave passages that should

correlate well with convection located within the radar domain.

One way to extract these dates is by calculating the standard deviation of the

filtered OLR anomalies and dividing each local OLR minimum by the standard

deviation. This provides the distribution of the wave events with a standard deviation

of 1.0. Hence the larger negative values are stronger events. Table 4.3 displays the

dates and values where at least one of the filters has a date less than or equal to

-1.0 standard deviation. Also listed in this table is the daily total convective rainfall

and details about the Kelvin wave including when the wave occurred based on MJO

events and if it is coupled with convection. By calculating Kelvin wave occurrence

using the distribution of standard deviations, dates can easily be compared among

the different filters. Notice that each filter has a negative standard deviation for

all of the dates listed though the magnitude of the deviation differs by filter. The

stronger and more frequent Kelvin waves occur during and around the three MJO

events. In addition, the Schreck filter identifies the least number of waves compared

to the other two filters, due to its constraint on Kelvin wave frequency (see Table

4.1).

For this thesis, only events that are coupled with convection will be used therefore

dates with less than 0.5 mm d−1 rainfall will be excluded. The wave dates that are

in bold face type are the dates used, which have a standard deviation of greater than

-0.6 by all filters. To compare Kelvin waves during the field campaign, three MJO

phases are defined: the active phase (when the MJO filtered OLR anomalies are less

than or equal to -10 Wm−2), the suppressed phase (when the MJO filtered OLR
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Table 4.3: Standard deviations and dates of filtered Kelvin waves. Only dates where
at least one filter has a standard deviation of less than or equal to -1.0 are shown.
Rain total and details about the dates are listed. Kelvin wave dates used for this
thesis are bolded.

Date Wheeler

Filter

Schreck

Filter

DYNAMO

Filter

Total Convec-

tive Rainfall

(mm)

Details

Oct 2 -2.1 -1.9 -1.9 1.86
Not enough data

Oct 3 -1.8 -1.7 -1.9 1.42

Oct 6 -1.6 -1.5 -1.7 0.69 Suppressed MJO

Oct 16 -1.2 -1.7 -1.7 8.10

Suppressed MJO
Oct 17 -1.8 -2.4 -2.2 3.20

Oct 18 -1.3 -1.8 -1.5 13.10

Oct 19 -0.8 -1.2 -1.0 1.99

Oct 30 -1.1 -0.8 -0.9 2.15

Active MJO1Oct 31 -2.3 -2.0 -1.7 7.56

Nov 1 -2.1 -1.9 -1.1 2.09

Nov 9 -0.7 -1.2 -1.7 2.28
Suppressed MJO

Nov 10 -0.3 -0.9 -1.0 5.99

Nov 19 -1.3 -1.7 -1.1 0.80 Pre-MJO2

Nov 24 -1.6 -1.0 -0.7 2.26 Active MJO2

Nov 27 -1.4 -0.7 -1.7 4.16

Active MJO2
Nov 28 -1.4 -0.8 -1.5 2.37

Nov 29 -1.0 -0.8 -0.7 2.29

Nov 30 -1.3 -1.2 -0.6 0.47

Dec 21 -1.4 -0.7 -1.0 8.26
Active MJO3

Dec 22 -1.3 -0.6 -1.0 7.38

Dec 25 -1.4 -1.2 -1.0 1.85 Suppressed MJO

Jan 10 -1.7 -1.4 -1.2 0.0
No rain

Jan 11 -1.6 -1.2 -1.4 0.0

Jan 15 -1.9 -1.9 -2.2 4.54 Suppressed MJO

Jan 21 -0.6 -1.1 -0.5 0.03 Little rain

Jan 25 -1.2 -1.2 -1.2 0.06 Little rain

Jan 28 -0.9 -0.7 -1.0 0.04 Little rain

Jan 29 -1.3 -1.1 -1.5 0.31 Little rain

Feb 4 -0.4 -0.6 -1.3 0.12 Little rain
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anomalies are greater than or equal to 0 Wm−2), and the pre-MJO phase (when the

MJO filtered OLR anomalies are between 0 and -10 Wm−2). The dates that the

filtered Kelvin waves occur will determine which MJO phase they are in (see the last

column in Table 4.3). From October 2 to February 9, there were four Kelvin waves

during an active MJO and five Kelvin waves during a suppressed MJO. November

19, will be examined individually because it was the only event that occurred in the

”pre-MJO” phase.
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5. COMPOSITE METHODOLOGY

5.1 Calculating Composites

To examine the precipitation and atmospheric properties of the Kelvin wave and

MJO, specific cases are composited. The purpose of compositing is to see if there

is a relationship between a set of data and a specific variable (i.e., Kelvin waves

and relative humidity), which is calculated by averaging conditions based on specific

criteria (i.e., hour or day of wave passage). One of strengths of compositing is that

the criteria used can be simple or complex, which allows for a range of analyses. It is

also beneficial because it allows for any variable to be used (Yarnal, 1993). Although

compositing can hide variability or patterns of single events, it can illustrate the

overall characteristics of the dataset, which is its main use for this thesis.

Three MJO events occurred during the study period at Addu Atoll. Each event

has a date of minimum OLR anomaly, which will be referred to as the peak date, and

are listed in Table 5.1. MJO composites are calculated by averaging the three events

from 25 days prior to the peak to 20 days after the peak, where the peak date is day 0.

Table 5.1: Peak dates of the three MJO events.

MJO Event Peak Date

MJO1 Oct 28

MJO2 Nov 25

MJO3 Dec 19

Kelvin waves are documented to have their maximum rainfall occur about one day

prior to the date of wave passage (Straub and Kiladis, 2002, 2003). The date of wave
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passage is based on filtered OLR anomalies, as explained in Chapter 4. Since this

thesis focuses on the precipitation characteristics and interactions of wave events, the

composites are centered on the maximum convective rainfall during a Kelvin wave

passage. This date is located by finding the maximum in the convective-separated

hourly rain rate dataset from SMART-R for each of the ten Kelvin waves. The range

for locating the convective rain maximum is from 48 hours prior to 24 hours after

the date of Kelvin wave passage. Once the hour of maximum convective rainfall is

located, each Kelvin wave time series is centered on that hour between the 48 hours

of rainfall prior to the maximum and the 48 hours of rainfall after the maximum.

Finally, the waves are composited based on their timing during the MJO, i.e., the

active, suppressed, or pre-MJO. The dates of the Kelvin waves used for the compos-

ites are listed as the bold-face dates in Table 4.3. There are four waves composited

during the active MJO and five waves composited during the suppressed MJO. One

wave occurred during the pre-MJO period, which is plotted alongside the composites

for comparison. It is important to recognize that this study is limited to the small

number of cases that occurred during the field campaign.

5.2 SMART-R Composites

SMART-R composites of the active MJO are calculated. For clarity, all hourly

SMART-R data are summed for daily accumulation of rainfall or averaged by day for

rain area and echo-top heights for these composites. Rain accumulation, rain area,

and echo-tops are separated into convective and stratiform types. The retrieved rain

accumulation and echo tops are composited to capture the precipitation character-

istics of the MJO initiation over Addu Atoll. Additionally, SMART-R Kelvin wave

composite time series are calculated for hourly rain rate, rain area, and echo-top
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heights, also separated into convective and stratiform types. This will illustrate the

precipitation features during Kelvin wave passages.

5.3 KAZR Composites

KAZR cloud-base and cloud-top heights are used to observe the cloud evolution

during the MJO events and Kelvin waves during the active, suppressed, and pre-

MJO. The composite of MJO cloud counts is calculated by averaging the data into

ten-minute intervals and centering them at 0 Z on the peak day, with 25 days prior

and 20 days after the peak day. Counts are found by binning the data into 180

m by 3-hour bins for the three MJO events, counting each vertical bin where a

cloud is present from the cloud-base height to the cloud-top height. Composites are

calculated by dividing the counts by the number of sampled events. Profiles are

calculated by summing the cloud counts at each level over a five day period. This

cloud count analysis provides an illustration of the evolution of clouds during the

passage of MJO events and Kelvin waves over Addu Atoll.

For the Kelvin wave counts, the KAZR data are averaged to one-minute inter-

vals. To find the cloud counts, the waves are first centered on the hour of convective

maximum, as for the SMART-R composites, with 48 hours of data before and after

the center hour. Then, the data are totaled into 100 m vertical by 10 min bins and

separated by occurrence during active and suppressed MJO. These bin sizes are dif-

ferent than for the MJO events because the Kelvin waves have a smaller temporal

scale. Composites are then calculated by dividing the counts by the number of sam-

pled events in each phase. Since the KAZR started radiating on October 8, 2011,

it missed the first Kelvin wave during the suppressed phase of the MJO. Hence, the

suppressed MJO KAZR cloud profile composites include only four Kelvin waves, not
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including the October 6th wave. The counts for the single pre-MJO event are found

as well. Counts are plotted as cloud population profiles. Profiles are calculated by

summing the cloud counts at each level over six separate 12-hour periods throughout

the Kelvin waves to observe the temporal evolution of the vertical distribution of

clouds.

5.4 Sounding Composites

The soundings on Gan Island were launched eight times per day, or every three

hours. For the MJO composite, the soundings are averaged by day so that day 0

corresponds to soundings from the peak day. Composites of the relative humidity

are calculated and plotted to examine how the vertical structure of the moisture

associated with the MJO evolves after it is initiated in the Indian Ocean. The com-

posite relative humidity is also used to compute lag correlations of rain accumulation

with upper (200-600 hPa) and lower (700-960 hPa) tropospheric relative humidity

(similar to Sobel et al., 2004, Figure 5.1) using a 1-day lag. The study by Sobel

et al. (2004) looked at intense convective events in the tropical central Pacific Ocean

and the relationship between moisture from soundings and radar derived rain rate.

They found that the lower tropospheric relative humidity precedes the development

of convective rain. Then, the upper tropospheric relative humidity follows the devel-

opment of stratiform rain. The relative humidity and rain rate lag correlations are

used to observe the convective and stratiform evolution with relative humidity of the

MJO and Kelvin wave events.

Zonal wind anomaly composites are also calculated. The anomalies are computed

by averaging the zonal winds at each vertical level for the entire time series. The level

averages are then subtracted from each zonal wind value at that level to calculate
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the anomalies. For MJO composites, these zonal wind anomalies are averaged by

day and then composited over the 46-day time series.

Since the SMART-R rain rate data is hourly, the sounding hour closest to the

hour of convective maximum of the Kelvin waves is used for the Kelvin wave sound-

ing composites. Relative humidity is composited for the Kelvin waves to observe the

vertical structure of the atmospheric moisture as the events pass over Gan Island.

Relative humidity and rain rate lag correlations are also computed for Kelvin waves

during each MJO phase using a 3-hour lag. Zonal wind anomalies are also calculated

for Kelvin wave composites by centering the data at the hour closest to the convec-

tive maximum. Zonal wind anomalies are used to observe the vertical structure of

the low-level east-west wind associated with the Kelvin waves (see Figure 2.3, Straub

and Kiladis, 2003).

Figure 5.1: Lag-correlation coefficients of lower tropospheric and upper tropospheric
relative humidity vs. rain rate at a 6-hourly resolution. From Sobel et al. (2004).
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6. RESULTS

6.1 MJO Composite

The MJO event composites are presented as a 46-day time series centered on the

day of the OLR minimum of each MJO event (day 0). Composites of the rain rate,

rain area, echo-top heights, relative humidity, and zonal wind anomalies are shown

to observe the initiation of MJO events and to provide the background atmosphere

for passing Kelvin waves. Cloud totals are displayed for the time series to show the

evolution of the cloud population during the active MJO.

6.1.1 Rain Rate and Area Composite

Table 6.1 displays the rain totals, percent of stratiform rain, rain area, and max-

imum percent of radar area coverage for the MJO composite. The precipitation

associated with the composited MJO events is presented in Figure 6.1. Lines for

convective (solid red) and stratiform (dashed blue) rain are plotted. Figure 6.2

presents the rain area during the composited MJO events.

At day -20, convective (red solid) and stratiform (blue dashed) rain begins to in-

crease with episodes of enhanced rainfall every 2-3 days. This episodic nature of rain

is caused by 2-day waves within the MJO (discussed further in Chapter 7). Convec-

tive rain reaches its maximum at day -10 and gradually decreases to a minimum at

day 7. Stratiform rain reaches its maximum at day -12 and is generally higher than

convective rain amounts until day 0. After day 0, stratiform rain contributions be-

come quite low and convective rain dominates. Overall, the stratiform rain fraction

is 44.5% during the active MJO (Table 6.1). Stratiform rain area is always greater

than convective rain area with maxima of 39.5% and 4.2%, respectively. These values
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are lower than the Kelvin wave peaks because of the different temporal averaging

(see Section 6.2 and Table 6.1).

Table 6.1: Rain totals during composite MJO event and Kelvin waves.

Total

Rain

(mm)

Stratiform

Percent

Total

Area

(km2)

Max Percent

of Radar Area

Kelvin Wave During Active MJO

Stratiform 18.2 44.6% 146,883 51.4%

Convective 22.6 18,991.4 9.9%

Total Rain 40.7 165,874.4

Kelvin Wave During Suppressed MJO

Stratiform 12.3 47.3% 85,936.1 37.1%

Convective 13.7 13,520.7 6.4%

Total Rain 26.0 99,456.8

Kelvin Wave During Pre-MJO

Stratiform 19.9 39.4% 142,740 66.0%

Convective 30.5 29,648.5 12.6%

Total Rain 50.4 172,388.5

Active MJO

Stratiform 147.9 44.5% 1,204,560 39.5%

Convective 184.3 184,917 4.2%

Total Rain 332.2 1,389,477
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Figure 6.1: Rain accumulation composite of convective (red) and stratiform (blue
dashed) rain during the MJO.

Figure 6.2: Rain area composite of convective (red) and stratiform (blue dashed)
rain during the MJO.

6.1.2 Echo-Top Composite

Echo-top composites are presented in Figures 6.3 (convective) and 6.4 (strat-

iform). The colored contours represent the 10-dBz echo-top counts and indicate
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clouds with precipitation-size hydrometeors. The black contours illustrate the 40-

dBz echoes, signifying more or larger hydrometeors and more intense rain rates. The

tight contours in the convective 40-dBz echo tops represent the most intense convec-

tive rain. The tight contours in the 40-dBz stratiform echo tops represent stratiform

bright bands. As ice particles fall from freezing temperatures to warmer temper-

atures, they melt into raindrops. The level at which they melt is detected by the

radar as a bright band because the water that forms around the (large) melting ice

is highly reflective.

The episodic features seen in the rain rate composite are also evident in the con-

vective and stratiform echo-top counts (Figures 6.3 and 6.4, respectively). Convec-

tive and stratiform 10-dBz echoes increase in height beginning at day -20. However,

strong convective echoes (as represented by the 40-dBz black contours in Figure 6.3)

are present throughout the time series with little noticeable trend. Intense stratiform

bright bands occur before and after day 0.

Figure 6.3: Convective echo-top composite during the MJO. Colored contours are
the number of 10-dBz convective echoes. Black contours are the number of 40-dBz
convective echoes. Echo-tops are averaged by day.
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Figure 6.4: Stratiform echo-top composite during MJO. Colored contours are the
number of 10-dBz stratiform echoes. Black contours are the number of 40-dBz strat-
iform echoes. Echo-tops are averaged by day.

6.1.3 Relative Humidity Composite

The relative humidity MJO composite is displayed in Figure 6.5. The warmer

colors indicate higher relative humidity, or a moist atmosphere. The cooler colors

signify lower relative humidity, or a dry atmosphere. During the active MJO, relative

humidity begins to build at low levels around day -20, while the atmosphere at upper

levels is very dry. The moisture increases in the upper levels until day 5, after which

there is sharp drop in relative humidity throughout most of the troposphere, although

low-level moisture persists.

Figure 6.6 displays the lag correlation of total rain accumulation and relative

humidity. The black line represents the lower tropospheric relative humidity (700 to

960 hPa) and the red dashed line represents the upper tropospheric relative humidity

(200 to 600 hPa). Based on Sobel et al. (2004) (Figure 5.1), lower tropospheric

relative humidity is expected to precede the development of convective rain, while

upper tropospheric relativehumidity isexpectedto followthedevelopmentof stratiform
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Figure 6.5: Relative humidity composite during the MJO. Warm colors signify high
relative humidity (i.e., moist conditions) and cooler colors signify lower relative hu-
midity (i.e., dry conditions).

Figure 6.6: Lag-correlation coefficients of tropospheric relative humidity vs. total
rain for the MJO. Lower (black) and upper (red dashed) tropospheric relative hu-
midity are plotted at a 1-day resolution.

rain. Lower tropospheric relative humidity is positively correlated with rainfall from

day -13 to almost day 10. It peaks right after day 0 and then decreases, consistent
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with the development of the active MJO. The upper tropospheric relative humidity

correlation with rainfall has a somewhat similar time evolution but is shifted a few

days later than the lower tropospheric relative humidity signal.

6.1.4 Zonal Wind Anomaly Composite

Figure 6.7 shows the zonal wind anomalies during the active MJO. Red colors

indicate westerly anomalies and blue colors indicate easterly anomalies. Beginning

at day -20, easterly wind anomalies form. These easterly anomalies persist until day

0 when there is a sharp shift to westerly wind anomalies throughout much of the

troposphere. This signifies the area of convergence. The winds then switch back to

easterly anomalies between day 10 and day 15 at all levels. These dramatic tropo-

spheric shifts in wind are not evident in the Kelvin wave passages, perhaps due to

the strength of the wind anomalies during the MJO.

Figure 6.7: Zonal wind anomaly composite during the MJO. Red contours are posi-
tive westerly wind anomalies and blue contours are negative easterly wind anomalies.
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6.1.5 Evolution of Cloud Population

The KAZR composite MJO cloud population profiles are displayed in Figure 6.8.

From day -25 to day -20, clouds above 5 km are numerous but dissipate by day -20 to

day -15, consistent with the drying of the atmosphere at low levels (see Figure 6.5).

Some upper level clouds are present but significant low-level clouds form after day

-15 corresponding to the increase in rain and relative humidity (Figures 6.1 and 6.5).

Episodes of shallow convection then mature to the deeper convection evident through

day 0. After day 0, deep upper level clouds persist for about 5 days, which corre-

sponds to the high relative humidity present at upper levels (Figure 6.5). Finally,

cloudiness decreases at all levels between day 5 and 10, when rainfall, rain area, echo

tops, and relative humidity all decrease to a minimum. A small population of clouds

between 10-15 days develops at upper levels (most likely stratiform anvil) and lower

levels (most likely cumulus congestus) associated with the convective event after the

MJO dissolves (evident in rain accumulation and echo tops, Figures 6.1 and 6.3, 6.4

respectively).

6.2 Kelvin Wave Composites

All calculated Kelvin wave composites are presented as a 97-hour time series

centered on the hour of maximum convective rainfall for each Kelvin wave. The

figures are divided into the active MJO composite, the suppressed MJO composite,

and the pre-MJO case depending on when the date of Kelvin wave passage occurs

with respect to the MJO events (listed in Table 4.3). Rain rate, rain area, and

echo-top composites are presented to show the precipitation characteristics of the

Kelvin waves. Relative humidity and zonal wind anomaly composites are also shown

to observe the vertical structure of the Kelvin waves. Lag correlations of lower and
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Figure 6.8: Cloud population profiles during the MJO. Computed at 5 days intervals
from -25 days to +20 days.
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upper tropospheric relative humidity with rain rate are presented to observe the re-

lationship between moisture and rain. Lastly, cloud population profiles are shown to

illustrate the evolution of the cloud population.

6.2.1 Rain Rate and Area Composites

Figure 6.9 shows the three rain rate composites and Figure 6.10 shows the three

rain area composites for Kelvin waves that occurred during the active, suppressed,

and pre-MJO. All of the composites are centered at the hour of convective rain

maximum, represented as time zero. Table 6.1 displays the rain totals, percent of

stratiform rain, rain area, and maximum percent of radar area coverage for each

Kelvin wave composite.

During the active MJO, Kelvin wave rainfall reaches a minimum at -18 hours

(Figure 6.9a). At -12 hours, convective rain begins to increase, with a sharp increase

within 6 hours of hour 0. Maximum convective rain rates reach 1.3 mm hr−1, the

highest of the three composites, after which convective rain rapidly decreases. Con-

vective rain area (Figure 6.10a) is generally small (< 10% of the radar domain) and

shows a similar time progression as convective rain rate. Stratiform rain increases

steadily beginning at -12 hours until it reaches a peak 3 hours after the convective

maximum (Figure 6.9a). Stratiform rain is greater than convective rain for the next

24 hours. A second stratiform peak develops 12 hours after the convective maximum.

This peak is associated with less convective rain than the first peak. Although strat-

iform rain is present in each individual Kelvin wave used for the composites, the

two high peaks in stratiform rain are a result of the November 24 and December 22

Kelvin waves. Overall, the stratiform rain fraction during the Kelvin wave is 44.6%

(Table 6.1). As expected, stratiform rain area is higher than convective rain area
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during the entire time series (Figure 6.10a) and the two peaks in stratiform rain

between hour 0 and hour 24 have the largest area (about 40% of the radar domain).

Figure 6.9: Rain rate composites during the Kelvin waves. Red solid lines are con-
vective rain and blue dashed lines are stratiform rain.
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Figure 6.10: Rain area composites during the Kelvin waves. Convective (red) and
stratiform (blue dashed) rain areas shown during the active, suppressed, and pre-
MJO Kelvin waves.
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The magnitude of Kelvin wave rain during the suppressed MJO is noticeably lower

than during the active MJO (Figure 6.9b). Beginning at -12 hours, there is a steady

build up of convective and stratiform rainfall. After hour 0, the convective rain rate

decreases quickly, followed by about 12 hours when there is more stratiform rain than

convective rain. The total rainfall decreases and stays at a minimum at +12 hours.

Overall, the stratiform rain fraction during the Kelvin wave is 47.3% (Table 6.1).

In addition, convective and stratiform rain area evolution mimics the rain rate time

series with stratiform rain area higher than convective rain area at all times (Figure

6.10b). Rain totals and area are lower than during the active MJO because of the

drier background atmosphere during the suppressed MJO, which makes convective

development more difficult (more on this in Section 6.2.3 and Chapter 7).

The rain associated with Kelvin waves during the pre-MJO period (Figure 6.9c)

shows a somewhat different time series than Kelvin waves during the active and sup-

pressed MJO. At -8 hours, there is a sharp increase in convective rain, whose peak

is maintained for many hours. A second convective rain peak is seen at +14 hours.

After hour 0, the stratiform rain becomes greater than the convective rain for three

hours. A second stratiform peak develops an hour after the second convective peak.

After the second stratiform peak, stratiform rain is greater than convective rain for

ten hours. Overall, the stratiform rain fraction during the Kelvin wave is 39.4%,

smaller than the active and suppressed MJO Kelvin wave composites (Table 6.1).

Stratiform rain area (Figure 6.10c) is higher than convective rain area during the

entire time series, though from hour -48 to -24 convective and stratiform rain areas

are almost equal. Convective rain area exceeds 10% of the radar domain during peak

convective rain times and the two large stratiform area peaks covering about 60%

of the radar domain are consistent with the two peaks in stratiform rainfall. The

pre-MJO Kelvin wave exhibits the highest amount of stratiform rain and stratiform
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area of the three composites. This individual case occurred before the strongest MJO

event of the field campaign, which may account for the higher values. Also, since the

event is not averaged like the active and suppressed composites, the large variability

across the single Pre-MJO event remains.

6.2.2 Echo-Top Composites

Echo-top composites are presented in Figure 6.11 and 6.12 for the convective

and stratiform separated echoes, respectively. During the active MJO, Kelvin wave

convective 10-dBz echo tops are minimal at -15 hours and increase in occurrence and

height through hour 0 (Figure 6.11a). Intense convective echoes (i.e., the 40-dBz

echo tops) emerge at -10 hours, but have the highest occurrence and height during

the convective rain maximum, suggesting the strongest updrafts and downdrafts

are occurring at this time. The convective echo-top counts decrease over the next 6

hours and stratiform echoes begin to dominate (Figure 6.12a), although the strongest

bright band signature (as evidenced by the tight 40-dBz contours at mid levels) occurs

during the convective rain maximum. The convective echo tops associated with the

next rain peak at +12 hours are lower in height and have a weaker 40-dBz signature.

A strong bright band signature precedes the majority of the stratiform echo tops

(Figure 6.12a), suggesting a different convective system evolution than what occurs

at the convective rain maximum at hour 0.

During the suppressed MJO, the Kelvin wave composite shows periodic intense

convective outbreaks prior to hour 0 (Figure 6.11b). These outbreaks are sometimes

coincident with stratiform rain production or sometimes precede it. Convective 10-

and 40-dBz echoes associated with the convective rain maximum begin to develop

12 hours before and maximize in number and height at hour 0 (similar to the active
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Figure 6.11: Convective echo-top composites during the Kelvin waves. Colored con-
tours are the number of 10-dBz convective echoes. Black contours are the number of
40-dBz convective echoes.
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Figure 6.12: Stratiform echo-top composites during the Kelvin waves. Colored con-
tours are the number of 10-dBz stratiform echoes. Black contours are the number of
40-dBz stratiform echoes.
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MJO composite). Meanwhile, stratiform echoes develop shortly after the strong

convective echoes appear, although the bright band signature lags by a few hours

(Figure 6.12b). Both convective and stratiform echoes are present for almost 12

hours after the convective rain maximum until they dissipate, suggesting a continual

production of convection to support a robust stratiform region.

The Kelvin wave composites prior to the MJO (Figures 6.11c and 6.12c) also

show periodic convective outbreaks before hour 0, but these episodes last longer

than during the suppressed MJO and have weaker stratiform echo counts associated

with them, perhaps because of the drier upper level environment. The strongest con-

vective echoes do not begin to develop until about 6 hours prior to hour 0, followed

by a robust stratiform region. These strong convective echoes weaken and disappear

around +12 hours, while the stratiform echoes weaken around +6 hours. At +12

hours, short-lived convective echoes are present with very intense stratiform echoes

that persist until +24 hours.

6.2.3 Relative Humidity Composites

Relative humidity composites are shown in Figure 6.13. Relative humidity is ex-

pected to be high before the Kelvin wave at low levels and then increase at upper

levels as convection develops. After the wave moves through, low-level relative hu-

midity decreases and upper level relative humidity lingers during the stratiform rain

and anvil clouds (see Figure 2.3 schematic). Figure 6.14 displays the lag correlation

of total rain rate and relative humidity.

The active MJO Kelvin wave composite has high deep tropospheric relative hu-

midity throughout the time series, although relative minima < 70% exist around 700

hPa before hour 0 (Figure 6.13a). Because of the generally moist atmosphere, there
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Figure 6.13: Relative humidity composites during Kelvin waves. Warm colors signify
high relative humidity (i.e., moist conditions) and cooler colors signify lower relative
humidity (i.e., dry conditions).
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Figure 6.14: Lag-correlation coefficients of tropospheric relative humidity vs. rain
rate for the kelvin waves. Lower (black) and upper (red dashed) tropospheric relative
humidity is plotted at a 3 hourly resolution.
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is no clear build up of moisture prior to the convective rain maximum, however,

relative humidity appears to be enhanced at upper levels after hour 0, potentially

coincident with the stratiform cloud cover shown in Figure 6.12a. The overall moist

profile demonstrates the convective envelope that is associated with the active MJO.

Figure 6.14a more clearly shows that the lower and upper tropospheric relative hu-

midity is most negatively correlated (or lowest) 36 to 24 hours before the convective

rainfall maximum and becomes positively correlated (or high) starting at hour -20.

This signal is consistent with the OLR and sounding-observed specific humidity lag

correlations shown in Straub and Kiladis (2002). It is also interesting to note that

the ECMWF model did not observe the low-level negative correlations in their case

study. The lower tropospheric relative humidity correlation peaks at hour -6, while

upper tropospheric relative humidity shows the largest positive correlations with rain

rate around hour 0, consistent with Sobel et al. (2004) (Figure 5.1). Lag correlations

for lower tropospheric relative humidity decrease to zero by hour 15, while the upper

tropospheric relative humidity correlation follows by hour 20.

During the suppressed MJO, there is an apparent moisture increase in the Kelvin

wave composite that begins at -12 hours (Figure 6.13b) and is coincident with the

convective build up seen in Figures 6.9b-6.11b. The troposphere is relatively dry

above 800 hPa until the build up. The atmosphere appears to return to pre-Kelvin

wave conditions soon after +12 hours with little signature of upper level moistening

associated with stratiform rain and anvil clouds. The relatively dry conditions may

be related to the lower rain and rain area coverage produced by the Kelvin wave

convective systems during the suppressed MJO. While the large-scale humidity field

associated with the passage of Kelvin waves during the suppressed MJO is very differ-

ent than during the active MJO, the lag correlation of lower and upper tropospheric

relative humidity with rain rate (Figure 6.14b) is similar after hour 0. However, there
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are no low-level negative correlations before the convective rain maximum and the

largest negative correlation for upper level relative humidity occurs much later (i.e.,

at -12 hours). Thus there appear to be different precursor Kelvin wave interactions

with relative humidity during the suppressed MJO.

Prior to the convective rain maximum in the pre-MJO Kelvin wave case (Figure

6.13c), the atmosphere is moist at low levels up to almost 600 hPa but very dry else-

where. While there is no evident build up much before hour 0, relative humidity is

strongly enhanced aloft after hour 0 for about 36 hours, consistent with the extreme

stratiform rain displayed in the rain rate and echo-top composites. Drier air occurs

at low levels starting at +16 hours. Similar to the suppressed MJO Kelvin wave com-

posite, there is no significant negative low-level relative humidity correlation prior to

hour 0 (Figure 6.14c). The lower tropospheric relative humidity correlation starts to

increase at hour -12 and remains positive past hour +12, thus lasting longer than the

composite Kelvin waves. The lower tropospheric relative humidity correlation also

becomes strongly negative after -12 hours, unlike the composites. The upper tropo-

spheric relative humidity correlation is most negative at -36 hours and is positively

correlated from hour -6 until well after hour 24. This long period of positively corre-

lated upper tropospheric relative humidity is consistent with the high stratiform rain

that exists after hour 0 and differentiates this case from the active and suppressed

MJO Kelvin wave composites.

6.2.4 Zonal Wind Anomaly Composites

Figure 6.15 shows the zonal wind anomaly composites for the active, suppressed,

and pre-MJO Kelvin waves. A shift from easterly anomalies (blue) to westerly

anomalies (red) around 850 hPa is expected and signifies low-level convergence.
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Figure 6.15: Zonal wind anomaly composites during Kelvin waves. Red contours
are positive westerly wind anomalies and blue contours are negative easterly wind
anomalies.
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As shown in Figure 2.1, the low-level winds during an active MJO over the Indian

Ocean are strong westerlies converging with easterlies to form deep convection. Dur-

ing the active MJO, the Kelvin wave composite shows low-level easterly anomalies

at -48 to -36 hours, but low-level westerly anomalies exist throughout the rest of the

composite with some enhancement between -12 and 0 hours (Figure 6.15a). Thus,

the 850-hPa wind shift is very weak during the active MJO.

The suppressed MJO Kelvin wave composite displays low-level easterly anomalies

for most of the time series (Figure 6.15b). The easterly anomalies extend above 800

hPa at -12 hours with a shift to westerly anomalies soon after, signifying low-level

convergence needed for the development of convection. These westerly anomalies are

sustained until about +12 hours when the easterly anomalies strengthen again.

Before an MJO event initiates, the background wind is easterly, as displayed in

Figure 6.7. During the pre-MJO Kelvin wave strong easterly anomalies dominate

most of the troposphere (Figure 6.15c). There is a very subtle surface wind shift

that occurs at -24 hours. The surface zonal winds remain weak until +12 hours when

easterly anomalies take over again such that a definite area of convergence is unclear.

6.2.5 Evolution of Cloud Population

The composites of cloud population profiles from KAZR are displayed in Figure

6.16. Profiles are shown in 12-hour increments from -36 hours to +36 hours.

During the active MJO, the entire Kelvin wave time series is cloudy (Figure

6.16a), and while low-level cloud cover is sometimes intermittent (in part due to

the small spatial scale of shallow convection and the vertically pointing nature of

KAZR), a relative minimum in low-level cloud is seen from -24 to -12 hours before

the convective rain maximum, while upper level clouds persist throughout the wave
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passage. Low level clouds begin to develop from hour -12 to hour 0, followed by an

enhancement of cloud cover above 5 km, consistent with SMART-R’s stratiform echo-

top evolution (Figure 6.11a). Maximum cloudiness throughout the profile persists

through +24 hours and then decreases.

Less overall cloud cover is present during the suppressed MJO, as displayed in

Figure 6.16b. Lower and upper level clouds exist from hour -36 to hour -24. Very

little cloudiness is then evident from hour -24 to hour -12. Clouds develop again from

hour -12 to hour 0, at upper and lower levels, excluding development of midlevel

clouds (between 5 and 8 km). At hour 0, maximum cloudiness occurs at all levels,

consistent with the deep convection and stratiform development seen in rain rate and

echo tops (Figures 6.9b, 6.11b, 6.12b). Upper level cloud cover continues through

hour 36. Midlevel clouds exist from hour 12 to 24 and are likely non-precipitating

altocumulus and altostratus. Cloudiness reaches a minimum after 24 hours where

only thin, upper level clouds like cirrus persist.

The single Kelvin wave case during the pre-MJO (Figure 6.16c) shows a different

time series than the other two phases. Very little cloudiness exists from hour -36 to

hour -12, besides some upper level clouds (most likely thin cirrus). By hour -12 to

hour 0, clouds above 5 km begin to develop. Deep convective clouds develop from

hour 0 to hour 12 from low levels up to 15 km. This overall cloudiness is maintained

until hour 24 when the second peaks in convective and stratiform rain occur (see

Figures 6.9c, 6.11c and 6.12c). Clouds dissipate at +24 hours, except for a peak in

midlevel clouds around 5 km, suggesting the formation of thin altostratus clouds.

Note that the cloud counts seem much greater for this case than for the other two

cases. This is because the pre-MJO is not an averaged case, whereas the active and

suppressed cases are composited, which causes them to look relatively weaker.
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Figure 6.16: KAZR cloud population profiles during the Kelvin waves. Plots are
divided into 12 hour sections, from -36 hours to 36 hours.

63



7. DISCUSSION

7.1 Introduction

During the DYNAMO/AMIE/CINDY2011 field experiment from October 2, 2011

to February 9, 2012, three MJO events and ten Kelvin waves occurred. The high

frequency of atmospheric observations during the campaign provided new ways to

study MJO initiation in the Indian Ocean. Using radar and sounding data from the

experiment, the convection present during Kelvin wave events is analyzed to deter-

mine how the waves evolve during the developing, active, and suppressed phases of

the MJO. The following section discusses this interaction and the initiation of the

MJO based on the results presented in Chapter 6.

7.2 MJO Initiation

The MJO composite illustrates the episodic nature of rain that occurs during the

development, maintenance, and dissipation of the MJO as it moves eastward through

the Indian Ocean. Two-day convective events have been documented to occur within

larger eastward-moving cloud clusters and during the MJO (e.g., Nakazawa, 1988;

Madden and Julian, 1994). Figure 7.1a displays the schematic from Nakazawa (1988),

which illustrates the movement of the westward cloud clusters within eastward super

cloud clusters in the large-scale convective envelope. Another possibility, as Zuluaga

and Houze (2013) suggest, is that the episodic nature of the MJO corresponds to

the stretching of the convective lifecycle. The 2-3 day convective episodes could also

be westward moving 2-day inertia-gravity waves propagating during the MJO (e.g.,

Haertel and Kiladis, 2004) or even slow, eastward moving Kelvin waves (Masunaga

et al., 2006).
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Figure 7.1: The movement of cloud clusters within a) a large-scale convective enve-
lope and b) a Kelvin wave. From a) Nakazawa (1988) and b) Masunaga (2009).
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About 15 days prior to the peak MJO date, rainfall, rain area, and echo-top

heights begin to increase. As the MJO strengthens, stratiform rain exceeds convective

rain. The moisture associated with the MJO builds up from the surface to 350 hPa.

The shift in zonal winds is clear at the peak day, signifying convergence. These

features are consistent with previous studies and observations of the MJO (e.g.,

Yanai et al., 2000; Zhang, 2005).

A goal of this thesis is to compare the observations of the MJO onset in the Indian

Ocean with current theories of MJO initiation. The discharge-recharge hypothesis

for MJO initiation (Blade and Hartmann, 1993; Kemball-Cook and Weare, 2001)

suggests that low-level moistening promotes shallow convection, which preconditions

the atmosphere for the development of deep convection. The cloud population com-

posite displays the build up of clouds as the MJO strengthens. Beginning at day -15,

low- to mid-level clouds are numerous (see Figure 6.8). As the MJO intensifies, deep

convection develops and there are more clouds at higher levels. Additionally, the rel-

ative humidity composite illustrates the areas of low-level moisture associated with

the build up of the MJO. The moisture begins to increase at low levels around 20 to

15 days before the peak day and builds to mid levels between day -15 and -5, until it

reaches its peak after day 0. However, the cloud population profiles from the KAZR

show little cloud formation until days -15 to -10, suggesting that moisture leads the

clouds. Lower tropospheric relative humidity is also positively correlated with rain-

fall beginning between -15 and -10 days. From these composites, it is likely that the

low and mid level moisture initiates the shallow convection which then develops into

deep convection present from day -5 to +5.

The convectively coupled Kelvin waves that occurred during suppressed MJO

events have the typical structure documented by previous studies. The active MJO

provides a moisture-rich convective envelope, which supports the development of
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deep convection. The convection of Kelvin waves that occurred during the active

MJO is thus enhanced because of this environment. Additionally, because of the

size and strength of the MJO, the active MJO suppresses the vertical structure of

the passing Kelvin wave. This makes it difficult to identify Kelvin waves during the

active MJO using features like an 850 hPa wind shift or vertical moisture increases.

A more in depth discussion of these events is presented in Section 7.3.

For MJO initiation, the most important Kelvin wave is the one that occurs during

the developing phase of the MJO. The single case examined in this thesis shows an

intense convective event followed by substantial stratiform rain and a second convec-

tive/stratiform event starting 12 hours later. Before the wave, the upper atmosphere

is very dry, and as the wave passed, upper level relative humidity increases and is

maintained after the event. This continued moisture could help provide the large-

scale moisture field necessary to organize convection beyond the mesoscale during

the active MJO. As suggested by the frictional Kelvin-Rossby wave-CISK theory of

MJO initiation, a globally circling Kelvin wave could initiate the MJO by providing

low-level moisture convergence. This pre-MJO Kelvin wave does provide some in-

creased low-level relative humidity after +36 hours, but the winds remain as strong

easterly anomalies.

7.3 Kelvin Waves and the MJO

Kelvin waves that occurred during the suppressed, active, and developing phases

of the MJO display different convective and stratiform rainfall, rain area, and echo-

top height evolution, as well as distinct variations in vertical profiles of relative

humidity and zonal wind anomalies. A comparison with the convectively coupled

Kelvin wave schematic by Straub and Kiladis (2003; hereafter, SK03) is made with
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each phase to demonstrate the differences and similarities of the structures. Results

from the following studies are discussed with respect to the results presented in this

thesis: MISMO observations of eastward propagating convective systems (EPCSs)

that resemble Kelvin waves (Katsumata et al., 2009; Yamada et al., 2010), eastern

Pacific Kelvin wave studies by Straub and Kiladis (2002; 2003), and climatologies

of Kelvin waves during active and suppressed MJO (Roundy, 2008; MacRitchie and

Roundy, 2012).

7.3.1 Suppressed MJO

When the MJO is suppressed, the structure of Kelvin waves in the Indian Ocean

is consistent with the SK03 schematic, shown in Figure 2.3. The shift from easterly

wind anomalies to westerly anomalies at low levels exists, forming an area of low-level

convergence. The same low-level wind shift is evident in the EPCSs during MISMO

(Katsumata et al., 2009; Yamada et al., 2010). This convergence occurs about 12

hours prior to the maximum convective rainfall and helps develop the convection

associated with the Kelvin wave passage. Before the Kelvin wave passes, high relative

humidity extends to upper levels. After the wave passes, relative humidity decreases.

A similar composite is evident from the Yamada et al. (2010) study of four EPCSs

during the MISMO campaign, showing an increase in relative humidity as the systems

pass.

The Kelvin waves during the suppressed MJO are associated with an increase in

both convective and stratiform rain, which lasts for about 24 hours and is centered on

hour 0. For the 12 hours before hour 0, stratiform rain lags convective rain by about

an hour. After hour 0, stratiform rain dominates the total rainfall until both the

stratiform and convective rain dissipates. The large amount of stratiform rain and

68



rain area trailing the convective event is consistent with the evolution of organized

tropical convective systems, also called mesoscale convective systems (Houze, 2004).

In addition, there is less stratiform rain and less pronounced stratiform echoes than

during the active MJO, which is inconsistent with the suggestion that during the

suppressed MJO, the stratiform rain clouds are stronger and more abundant than

during the active MJO, from the Roundy (2008) climatology study. This inconsis-

tency could be due to the Kelvin waves moving slower through the active MJO than

during suppressed conditions, allowing more stratiform rain to develop out of the

high amounts of deep convection. There is also less rain during the suppressed MJO

Kelvin waves than during the active MJO Kelvin waves (see Table 6.1), however, the

stratiform rain percent is higher during the suppressed MJO (47.3%) than during the

active MJO (44.6%), demonstrating that stratiform rain accounts for more of the to-

tal rain during the suppressed MJO. Kelvin waves during the suppressed MJO could

have more stratiform rain than during the active MJO because the suppressed Kelvin

waves initiate in a drier background environment than the active Kelvin waves. This

inhibits the development of large amounts of convective rain, which can otherwise

form more easily during the moist envelope of the active MJO. Kelvin waves are

less frequent and weaker during austral summer (Masunaga, 2007), which could also

account for the small amount of rainfall associated with these Kelvin waves.

There seems to be a distinct relationship between relative humidity and devel-

opment of convective and stratiform rain. Lower tropospheric relative humidity is

positively correlated with the build up of convective rain. The most positive correla-

tion between lower tropospheric relative humidity and rain rate occurs about three

hours before the convective maximum, suggesting that low-level moistening precedes

deep convection by about three hours. Upper tropospheric relative humidity is most

positively correlated with rain rate at hour 0, showing that upper tropospheric rel-
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ative humidity precedes peak stratiform rain by at least one hour (based on the

stratiform rain peak in Figure 6.9b), which is different than the Sobel et al. (2004)

study and the other Kelvin wave composites. This difference could suggest that

the precipitation structure of the Kelvin waves during the suppressed MJO are not

like typical mesoscale convective systems, in that high upper level relative humid-

ity supports the development of stratiform rain, instead of the reverse. However,

the temporal differences when matching the hourly rain rate products to the closest

3-hourly sounding observations could also account for this difference. Hourly sound-

ings in the future field campaigns or utilizing model and reanalysis profiles should

remedy this bias to determine if the lag found here is valid.

7.3.2 Active MJO

During the active MJO, the documented structure of the Kelvin wave (SK03

schematic) is no longer apparent. The winds exhibit consistently strong westerly

anomalies at low levels. Since the active MJO creates a moist convective envelope

that propagates eastward, the relative humidity is high throughout the free tropo-

sphere. However, the lag correlation displays a result similar to Sobel et al. (2004)

for large-scale deep convection, where upper tropospheric relative humidity correla-

tions lag the lower tropospheric relative humidity correlations with rain rate. There

is less of a positive correlation in the build up of convective rain than the suppressed

MJO case. In other words, since the troposphere is very moist throughout the ac-

tive MJO, the gradual increase in positively correlated lower tropospheric relative

humidity and rain rate observed during the suppressed MJO Kelvin wave does not

occur during the active MJO. The most positive correlation in lower tropospheric

relative humidity with rain rate for Kelvin waves during the active MJO is before
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hour 0. This shows that since the relative humidity is high during the active MJO,

the higher values of relative humidity precede the sudden maximum in convective

rain. Upper tropospheric relative humidity is most positively correlated around hour

0, demonstrating that the stratiform rain peaks are likely responsible for keeping the

upper levels of the troposphere moist. The wind anomalies and moisture signatures

typically associated with a convectively coupled Kelvin wave are absent. The large,

strong active MJO events seem to suppress the vertical structure that is expected

with Kelvin waves.

The convective rainfall during the active MJO Kelvin wave composite is much

larger than during the suppressed MJO Kelvin wave composite, and is followed by

two peaks in stratiform rain. This greater convective rainfall could develop because

the MJO provides an already moist atmosphere, which is favorable for convection

formation and maintenance. The rain from the active MJO Kelvin wave passage

lasts for about 36 hours, which is 12 hours longer than the suppressed MJO com-

posite. This suggests that Kelvin waves move slower through an active MJO than

in suppressed conditions, consistent with the findings of the Roundy (2008) clima-

tology study. The dual peaks in stratiform rain during the active MJO Kelvin wave

could be multiple 1-2 day westward-moving cloud clusters that make up the Kelvin

wave convection (Nakazawa, 1988; Straub and Kiladis, 2002; Masunaga, 2009). An

example of how these cloud clusters move through the Kelvin wave is shown in the

schematic in Figure 7.1b, from Masunaga (2009). Since Kelvin waves generally move

slower through the active MJO than in suppressed conditions, more than one cloud

cluster can develop and be observed over Addu Atoll.

However, the amount of convective and stratiform rain during an active MJO that

occurred also during a Kelvin wave is much less than documented in MacRitchie’s

and Roundy’s (2012) climatology study using TRMM rainfall estimates. Table 7.1
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Table 7.1: Composite Kelvin wave rain statistics during the active MJO.

MJO Kelvin wave Kelvin wave Per-

cent of MJO

Average Accumulated Rain

Convective Rain (mm) 47.73 9.75 20.42%

Stratiform Rain (mm) 54.17 9.48 17.49%

Total Rain (mm) 101.89 19.22 18.87%

Average Rain Area

Convective Area (km2) 42,026.16 8,010.15 19.06%

Stratiform Area (km2) 410,607.64 84,720.48 20.63%

Total Area (km2) 452,633.80 92,730.64 20.49%

Average Rain Rate

Percent Higher

than MJO Rate

Convective Rain Rate (mm hr−1) 0.21 0.41 96.14%

Stratiform Rain Rate (mm hr−1) 0.26 0.39 54.51%

Total Rain Rate (mm hr−1) 0.46 0.80 73.07%

shows the convective and stratiform rain totals on days when the filtered OLR is

below the -10 Wm−2 threshold for the three MJO events and the four Kelvin waves.

Using TRMM satellite observations, MacRitchie and Roundy (2012) showed that

62% of total rainfall during an active MJO is attributed to passing Kelvin waves

in the Indian Ocean. Rain from the passing Kelvin waves only accounts for about

19% of the total rainfall during the three DYNAMO MJO events, about two thirds

less than what MacRitchie and Roundy (2012) reported. This difference could be

attributed to the spatial differences between Roundy’s global study and this local
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study. Additionally, Kelvin wave rain area accounts for about 20% of total MJO

rain area whereas MacRitchie and Roundy (2012) found that Kelvin waves were

responsible for 46% of the total MJO rain area. They also reported that rain rates

were 60% higher when a Kelvin wave passed through an active MJO event. Similarly,

this study shows that rain rates are actually about 73% higher when Kelvin waves

occurred during the active MJO. The lower total rainfall and rain area contributed

by Kelvin waves could be attributed to the small number of events sampled for this

thesis as opposed to the ten years of data used in their climatology study, differences

between ground-based radar observations and TRMM satellite rain estimates, or the

different latitude and longitude domains of the two studies (5◦N to 5◦S, 65◦E to

115◦E in Roundy, 2008 vs. 10◦N to 10◦S, 72.5◦E to 75◦E in this thesis).

The cloud population profiles show a more pronounced evolution than during the

suppressed MJO. The overall time series is much cloudier. In addition, cloudiness

peaks at upper levels (between 5 and 13 km) during the active MJO Kelvin wave

composite due to the high relative humidity throughout the profile, which keeps the

atmosphere moist and supports the development of deep convection, stratiform rain,

and anvil cloud. The stratiform clouds are more amplified during the active MJO

than during the suppressed MJO, which disagrees with the suggestion of the opposite

case by Roundy (2008).

7.3.3 Pre-MJO

The pre-MJO case displays a combination of the active and suppressed MJO-

Kelvin wave composites. A sharp increase in convective rain begins at hour -6 and is

followed by two high peaks in stratiform rain, which are greater than the stratiform

rain associated with the two composites. The entire event lasts for about 30 hours,
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which is shorter than during the active MJO and longer than during the suppressed

MJO. This suggests that the speed of the pre-MJO Kelvin wave is slower than

during the active MJO but faster than during the suppressed MJO. Again, the two

convective/stratiform peaks could be due to embedded cloud clusters within the

slower-moving Kelvin wave event, similar to the active MJO case (Figure 7.1b). The

cloudiness observed by the cloud radar shows no low-level cumulus build up to the

convective rain maximum, which may be in part due to the decreased sampling by

the vertically pointing KAZR. The large area of upper level stratiform cloud and deep

convective clouds after hour 0, however, is similar to the observations of stratiform

rain at SMART-R.

The pre-MJO Kelvin wave event displays the expected relative humidity struc-

ture, where moist air exists at low levels before the wave passage and increases at

upper levels after the passage, as shown by the SK03 schematic and by the pre-MJO

event from MISMO (Katsumata et al., 2009; their EP3), though this increase is

rapid. The lower tropospheric relative humidity is most positively correlated with

rain rate three hours prior to the convective maximum, suggesting that relative hu-

midity precedes the onset of intense convective rain by three hours, similar to the

suppressed MJO case. A second smaller peak in positive correlated lower tropo-

spheric relative humidity occurs nine hours after the convective maximum, which

suggests that rain could lead the increase in relative humidity. After the wave pas-

sage, relative humidity remains high except for a dry layer around 800 hPa. This

lingering moisture could precondition the atmosphere for the onset of the MJO. The

upper tropospheric relative humidity is positively correlated with rain rate for the

longest time of the three cases, which closely follows the upper tropospheric relative

humidity correlations from Sobel et al. (2004). As expected, this lag is a result of

stratiform rain (relative humidity lag with stratiform rain not shown).
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Zonal wind anomalies show very little evidence of a low-level wind shift. The aver-

age zonal winds from three sounding locations during MISMO also show no low-level

wind shift for the EPCS that occurred pre-MJO (Katsumata et al., 2009). However,

observations of the bandpass filtered soundings from only Gan Island showed a clear

shift in the winds at low levels.

The Masunaga (2007) climatology study on MJO and Kelvin waves found that

the MJO is typically preceded by a Kelvin wave in boreal winter (December, January,

February). The particular pre-MJO event during DYNAMO occurred in November,

during boreal fall. Additionally, a pre-MJO Kelvin wave was absent before the

December MJO, which disagrees with Masunaga’s (2007) climatology. This difference

is attributed to the small number of events sampled.

The cloud population profiles illustrate little to no clouds at all levels from hour

-36 to hour 0, except for some thin, upper level clouds. There is no shallow con-

vection developing into deep convection. Additionally, 24 hours after the convective

maximum, cloudiness becomes sparse. Although a peak in thin midlevel clouds forms

at the end of the time series, shallow convection provided by the Kelvin wave to ini-

tiate the MJO is absent. Since the lifecycle of convective systems typically ends with

stratiform rain leading to extinction, it is unlikely that shallow convection would

develop due to a Kelvin wave passage.
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8. CONCLUSION

The purpose of this thesis was to examine the MJO onset and the convection

present during Kelvin wave events to determine how they interact with the develop-

ing, active, and suppressed phases of the MJO using recent observations from a field

campaign in the Indian Ocean. MJO events and Kelvin waves were identified using

three wavenumber-frequency filters of satellite-retrieved OLR. The filtered data were

averaged from 10◦N to 10◦S latitude and 72.5◦E to 75◦E longitude to identify the

events that passed over Addu Atoll, Maldives. An OLR threshold of -10 Wm−2 was

applied to choose the strongest events.

Radar and sounding observations from the DYNAMO/AMIE/CINDY2011 field

campaign were used to observe the precipitation characteristics, cloud populations,

and atmospheric profiles associated with the identified events. Composites of four

and five Kelvin waves that occurred during the active and suppressed phases of the

MJO, respectively, were calculated by centering the wave passage on the hour of

maximum radar-observed convective rain. An individual case of a Kelvin wave that

occurred during the pre-MJO phase was also examined. The three MJO events that

occurred in October, November, and December were composited by centering the

events on the minimum OLR day.

Radar products used in this thesis were convective and stratiform separated rain

rate, rain area, and echo-top heights from the SMART-R precipitation radar on Addu

Atoll. The evolution of cloud populations was examined by using the cloud boundary

measurements from the KAZR cloud radar. Atmospheric profiles of relative humidity

and zonal wind anomalies from three-hourly soundings on Gan Island were used to

study the vertical profiles during the events.
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Kelvin waves that occurred during the suppressed MJO displayed a vertical struc-

ture consistent with observations from previous studies. There was a clear low-level

wind shift signifying convergence, along with vertical relative humidity increases and

subsequent atmospheric drying. Maximum convective rain rate lagged lower tropo-

spheric relative humidity by three hours, while upper tropospheric relative humidity

followed the development of stratiform rain. The convective rain lasted for about 24

hours, with the peak at 12 hours. Stratiform rain was present following the convec-

tive rain. These Kelvin waves formed in a drier atmosphere than during the active

MJO. Hence, these waves were convectively weaker.

The moisture-rich atmosphere provided by the active MJO enhanced passing

Kelvin waves. These waves had large amounts of convective rain, and the event

lasted about 36 hours, suggesting a slower moving wave than during suppressed

MJO conditions. Two peaks in stratiform rain followed the convective rain, which

could be evidence of westward moving cloud clusters within the Kelvin wave. More

upper level clouds were present during the active MJO Kelvin waves than during

the suppressed MJO due to the extent of high relative humidity. The strength of

the MJO masked the changes in atmospheric profiles expected for the Kelvin wave

passages.

The pre-MJO Kelvin wave formed in a very dry environment. Relative humidity

built from low levels during this event, although a low-level wind shift was absent.

Convective rain reached its peak quickly, and peaked again after 12 hours. A peak

in stratiform rain followed each convective peak, similar to the active MJO Kelvin

waves, again suggesting embedded cloud clusters. Upper tropospheric relative hu-

midity was positively correlated when it preceded rain rate for the longest of the three

cases, demonstrating that the upper troposphere remained moist, as a result of the

stratiform rain. The moisture from this event was also maintained at low levels after
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the wave passed and provided necessary large-scale humidity to promote convection

and may have influenced the onset of the MJO. To validate this initiation, a closer

look at the MJO onset is needed. For example, identifying the relative humidity

associated with the pre-MJO Kelvin wave and the relative humidity coincident with

MJO initiation, if possible, would support or discount this idea. However, challenges

due to the temporal scale of the soundings make this task difficult. Additionally,

observing atmospheric profiles from different locations within the study domain may

give more insight into the distributions of moisture leading an MJO event.

Two of the many theories of MJO initiation were discussed in this thesis. The

discharge-recharge theory suggests that that low-level moistening promotes shallow

convection, which preconditions the atmosphere for the development of deep con-

vection. The frictional Kelvin-Rossby wave-CISK theory suggests that Kelvin waves

provide boundary-layer moisture convergence to the east of MJO convection. The

moisture remaining after the passage of the pre-MJO Kelvin wave could support

these theories, although evidence of shallow convection forming 24 hours after this

event was absent, as expected for the discharge-recharge theory. However, the cloud

population during the active MJO displayed low- and mid-level clouds leading to

deeper convection and the peak of the MJO. Relative humidity also built from these

low to mid levels as the MJO intensified. The low-level moisture and shallow con-

vection leading the active MJO support the development of the deep convection

associated with the MJO, consistent with the discharge-recharge theory of initiation.

The mechanisms behind the onset of the MJO are becoming clearer due to radar

and sounding observations during DYNAMO/AMIE/CINDY2011, however, a longer

time series of data would provide stronger explanations for this phenomenon. Satel-

lite observations have provided an innovative way to detect convection from space,

but they lack the spatial and temporal resolution of ground-based observations. How-
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ever, to use the observations, a sufficient localized filter is necessary to identify the

MJO and other convective phenomena, such as Kelvin waves. There are currently

various ways to identify waves and no universal index to use, which makes compar-

ing studies difficult. In an effort to understand MJO initiation and its interaction

with passing Kelvin waves, a localized index and unanimous wave filter is crucial.

Advancements in the understanding of MJO initiation will be achieved with improve-

ments in the time series of ground based observations, additional focus on satellite

retrievals, and the establishment of a universal localized wave filter.
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