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ABSTRACT

In this dissertation, we investigate the supersymmetric completion of curvature

squared invariants in five and six dimensions as well as the construction of off-shell

Poincaré supergravities and their matter couplings.

We use superconformal calculus in five and six dimensions, which are an off-

shell formalisms. In five dimensions, there are two inequivalent Weyl multiplets:

the standard Weyl multiplet and the dilaton Weyl multiplet. The main difference

between these two Weyl multiplets is that the dilaton Weyl multiplet contains a

graviphoton in its field content whereas the standard Weyl multiplet does not. A

supergravity theory based on the standard Weyl multiplet requires coupling to an

external vector multiplet.

In five dimensions, we construct two new formulations for 2-derivative off-shell

Poincaré supergravity theories and present the internally gauged models.

We also construct supersymmetric completions of all curvature squared terms in

five dimensional supergravity with eight supercharges. Adopting the dilaton Weyl

multiplet, we construct a Weyl squared invariant, the supersymmetric combination

of Gauss-Bonnet combination and the Ricci scalar squared invariant as well as all

vector multiplets coupled curvature squared invariants. Since the minimal off-shell

supersymmetric Riemann tensor squared invariant has been obtained before, both

the minimal off-shell and the vector multiplets coupled curvature squared invariants

in the dilation Weyl multiplet are complete. We also constructed an off-shell Ricci

scalar squared invariant utilizing the standard Weyl multiplet. The supersymmetric

Ricci scalar squared in the standard Weyl multiplet is coupled to n number of vector

multiplets by construction, and it deforms the very special geometry. We found
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that in the supersymmetric AdS5 vacuum, the very special geometry defined on the

moduli space is modified in a simple way. We study the vacuum solutions with

AdS2 × S3 and AdS3 × S2 structures. We also analyze the spectrum around a

maximally supersymmetric Minkowski5, and study the magnetic string and electric

black hole.

Finally, we generalize our procedure for the construction of an off-shell Ricci

scalar squared invariant in five dimensions to N = (1, 0), D = 6 supergravity.
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1. INTRODUCTION, MOTIVATION AND BACKGROUND∗

Extensive investigation on the quantum mechanical behaviour of gravity has led

us to conclude that a consistent quantum gravity may not be understood from a

classical point particle viewpoint, but the dynamical theory of one dimensional ex-

tended objects, the string theory, is needed [1] - [5]. This viewpoint has numerous

advantages including

1. Strings can vibrate in space-time, and different vibrational modes of strings

lead to very rich structures

2. String theory only has one meaningful parameter, the string length ls. The

string tension is given by T = (2πα′)−1 where α′ = l2s ,

3. Open strings can join to form closed strings, but closed strings can exist without

open strings. Thus, a realistic open string theory would contain closed-string

states,

4. The spectrum of the closed string contains a massless spin-2 particle, the gravi-

ton,

5. At low energies, string theory reduce to the known conventional field theories;

the Yang Mills theory, and general relativity. When supersymmetry is in pres-

ence as in superstring theory, then the low enery limit is given by supergravity

[6]

∗Portions of this chapter are reprinted from An off-shell formulation for internally gauged D=5,
N=2 supergravity from superconformal methods by Frederik Coomans and Mehmet Ozkan, 2013.
JHEP 1301, 099 (2013), Copyright 2013, with permission from SISSA; Supersymmetric Completion
of Gauss-Bonnet Combination in Five Dimensions by Mehmet Ozkan and Yi Pang, 2013. JHEP
1303, 158 (2013), Copyright 2013, with permission from SISSA.
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Aside from Einstein supergravites, effective superstring actions also originate

higher curvature terms in all orders in α′, the small slope parameter. The first

higher derivative term in a supergravity theory in 10 dimensions was introduced by

Green and Schwarz [7] as a Lorentz - Chern - Simons 3-form for the cancellation

of anomalies in Yang-Mills gauge currents and gravitational gauge currents in 10

dimensional supergravity coupled to Yang-Mills matter

ω3L = tr(dω ∧ ω − 1

3
ω ∧ ω ∧ ω) . (1.1)

Because of that anomaly cancellation mechanism, the 10 dimensional supergavity

Lagrangian [7] was modified by adding (1.1) to the definition of the field strength of

the two form B

Ĥ = dB + tr(A ∧ F − 1

3
A ∧ A ∧ A)− tr(dω ∧ ω − 1

3
ω ∧ ω ∧ ω) (1.2)

As this modification is desirable from the field theory side, it is highly undesirable

from the supersymmetry side since it breaks the supersymmetry of the model. Also,

since the addition of such a higher curvature term is lacking its supersymmetric com-

pletions., it is not clear how the modified theory is a low energy approximation of a

superstring theory. It is therefore necessary to understand how to restore supersym-

metry, and what the supersymmetric completion terms are. To this end, different

methods from both string theory side (string amplitudes in tree level [8, 9] and at

one loop level [10, 11, 12]) and supergravity side (superspace methods [13, 14, 15]

and Noether procedure [16]) was employed in order to obtain the supersymmetric

completion of the modified model.
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This interplay between anomaly cancellation and supersymmetric completion had

led to new bosonic terms in the Lagrangian, and most importantly the square of

Riemann tensor [17] - [31]

RµνρσR
µνρσ . (1.3)

There is, however, an obvious problem with this modification. The modified La-

grangian contains ghost particles due to addition of Riemann squared term, whereas

string theory itself is ghost-free. In [32], Zweibach showed that such ghost states

can be avoided when the curvature square terms take the form of Gauss-Bonnet

combination

RµνρσR
µνρσ − 4RµνR

µν +R2 . (1.4)

However, there are ambiguities in the argument on the inclusion of Riemann tensor

square and the ghost freedom as the 10 dimensional model is on-shell, thus, one

can add or remove terms proportional to Ricci tensor and Ricci scalar by a field

redefinition

g′µν = gµν + aRµν + b gµνR . (1.5)

Also, the terms proportional to Ricci tensor and Ricci scalar cannot be derived from

the string theory side as no off-shell formulation of string theory is known. As

far as the supersymmetric completion of the modified Lagrangian is concerned, both

Riemann tensor squared model and the Gauss-Bonnet extended model are compatible

with the modification of Ĥ, (1.2), since neither the supersymmetric completion of

Ricci tensor square nor supersymetrization of Ricci scalar square contains such a
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Chern-Simons term.

The investigation of the supersymmetric completion in the 10 dimensional model

takes place up to lowest order in α′ as the model is on-shell. The situation becomes

more interesting when exact supersymmetry is considered. In N = 1, D = 4 su-

pergravity, the full answer to the exact supersymmetric model was achieved since

the off-shell formulation of supergravity is known [33, 34]. In the minimal off-shell

field formulation , it was shown that in the presence of the higher derivatives, the

auxiliary fields of the model do not give rise to algebraic equations, but results in

differential equations instead. However, in the form of Gauss-Bonnet combination,

the dynamical terms in the higher derivatives are removed and the equations become

first order, thus, the theory contains no ghost in its spectrum. This fact is essential

in the construction of a supersymmetric Gauss-Bonnet combination.

Similar to the 4 dimensional N = 1 case, 6 dimensional N = (1, 0) [35] and 5

dimensional N = 2 supergravities are also known off-shell [36, 37, 38]. Therefore,

exact supersymmetric R2 supergravity models were constructed in 6 dimensions as

the supersymmetric completion of Riemannn tensor square [39], and 5 dimensions

as the supersymmetric completion of Weyl tensor square [40].

Since the supersymmetric completion of curvature square terms requires many

other bosonic terms, these supersymmetric constructions are also important to dis-

cuss compactification as they may modify the allowed vacuum solutions to the two-

derivative theory. Possible modifications to maximally symmetric vacuum solutions

in 5 dimensions for the Weyl tensor squared extended model, and 6 dimensions for

the Riemann tensor squared extended model were investigated in [41] and [42] in the

respective order.

In addition to modifications to vacuum solutions and finding the supersymemtric

complete structures for higher curvature extended models, 5 and 6 dimensionalN = 2
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models are of special interest due to various reasons.

There has been lots of interest in the study of five-dimensional N = 2 super-

gravity in past years. On one hand, the solutions in this theory have rich structures

including black holes, black rings and black strings [43]-[50]. On the other hand,

this theory can come from string/M theory via Calabi-Yau compactifications [51, 52]

which provides a platform for a detailed comparison between the microscopic and

macroscopic descriptions of black holes in string theory [53, 54]. A further compact-

ification of the 5D theory on a circle gives rise to 4D N = 2 supergravity which is

important for the study of string triality [55, 56].

In 6 dimensions, Weyl multiplets, Yang-Mills multiplet and linear multiplet are

known off-shell formulation, therefore construction of exact curvature square invari-

ants is possible. Also, the D = 6 Yang-Mills coupled supergravity resembles the

Yang-Mills coupled D = 10 supergravity. Also, the six dimensional model may be

the low energy limit of a heterotic string theory [57].

In this thesis, we consider the supersymmetric completion of curvature squared

terms in 5 and 6 dimensional supergravities with 8 real supercharges. The rest of this

thesis is organised as follows. In the next section we review the systematic approach

that we use in the construction of curvature squared invariants: Superconformal

tensor calculus. In Section 3, we introduce the superconformal multiplets of the

N = 2, D = 5 superconformal theory, which includes the Weyl multiplets of the

theory as well as Yang-Mills and linear multiplets that will be used as compensating

multiplets when constructing Poincaé supergravity theories.

In Section 4, we introduce the superconformal actions for the linear and the

vector multiplets. The construction procedures are based on superconformal tensor

calculus, and we use these superconformal actions to constuct Poincaré supergravities

upon gauge fixing procedure.
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In Section 5 we construct different off-shell formulations ofN = 2, D = 5 Poincaré

supergravity. This is a consequence of our Weyl multiplet choices and our gauge

choices. We first consider standard Weyl multiplet and introduce a superconformal

supergravity for that choice by combining superconformal vector and linear multi-

plet actions. We then gauge fix the redundant symmetries and obtain a Poincaré

supergravity for standard Weyl multiplet choice. In the final step, we introduce the

R-symmetry gauging of the theory and show that our model indeed give rise to the

known minimal on-shall gauged model. Upon completing our construction for the

standard Weyl multiplet, we construct a superconformal supergravity for the dilaton

Weyl multiplet. In this case, a superconformal theory can be achieved by only using

the linear multiplet action. We then introduce two different gauge fixing conditions

for the dilaton Weyl multiplet. The first choice give rise to canonical Einstein-Hilbet

term, whereas the second choice leads us to a Poincaré theory that is of Brans-

Dicke type. We introduce a detailed analysis of both cases, and investigate their

R-symmetry gauging.

In Section 6, we introduce all curvature squared invariants of five dimensional

N = 2 supergravity for the dilaton Weyl multiplet and the dilaton Weyl coupled to

n-number of vector multiplet choices. In order to do so, we first construct the Rie-

mann squared invariant using the Yang-Mills coupled supergravity action, and a map

between dilaton Weyl multiplet and the Yang- Mills multiplet. Then, we consider

the construction of the supersymmetric completion of Gauss-Bonnet combination.

The crucial observation in our construction of supersymmetric Gauss-Bonnet com-

bination is that such a construction might be possible with only two independent

curvature squared super-invariants. This observation is based on the fact that the

Riemann squared invariant obtained contains an ordinary kinetic term for the aux-

iliary vector field V ij
µ . Thus the theory consisting of the Einstein-Hilbert action and

6



a Riemann squared invariant contains a dynamical massive auxiliary vector in its

spectrum which forms the same multiplet with the massive graviton generated by

the Riemann squared term. By counting degrees of freedom, we notice that it might

always be the case (except for the pure Ricci scalar squared invariant) that when

formulated in terms of dilaton Weyl multiplet, the curvature squared super-invariant

includes an ordinary kinetic term for the auxiliary vector field V ij
µ . Therefore, if

there exist two independent curvature squared super-invariants, a particular com-

bination of them can be formed in which the kinetic term for the auxiliary vector

vanishes. This implies that there is no massive graviton since the massive vector and

massive graviton fall into the same multiplet, suggesting that the curvature squared

terms comprise Gauss-Bonnet combination. Finally, we present the supersymmetric

completion of Ricci scalar square in 5 dimensions, thus, completing all the off-shell

curvature squared actions in five dimensions and complete our analysis on the dilaton

Weyl multiplet.

We then extend our analysis to the standard Weyl multiplet and introduce an

off-shell Weyl squared invariant, and construct and off-shell Ricci scalar squared in-

variant for that choice. We observe that an important contribution of the Ricci scalar

squared invariant is that compared with the Weyl squared invariant, the supersym-

metric Ricci scalar squared invariant modifies the very special geometry defined on

the moduli space of n vector multiplets.

In Section 7, we investigate the vacuum solutions of the curvature squared ex-

tended Poincaré supergravity for the dilaton Weyl multiplet, and show that the

spectrum of Gauss-Bonnet combination is ghost-free as expected. In Section 8, we

investigate supersymmetric magnetic string and electric black hole solutions for the

gauged Ricci scalar squared model for the standard Weyl multiplet.
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In Section 8, we discuss the superconformal multiplets of D = 6, N = (1, 0)

model, possible off-shell Poincaré supergravities and their gauging. Our construction

in that section resembles the five dimensional construction. Finally, we discuss the

Ricci scalar square invariant extension of the six dimensional model. We summerize

in Section 10.

This thesis is based on the works [58], [59] and [60] in collaboration with Frederik

Coomans and Yi Pang.
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2. INTRODUCTION TO CONFORMAL TENSOR CALCULUS

As discussed in the previous section, there are various methods and techniques

for the construction of off-shell supergravity theories. In 5 and 6 dimensions, such

constructions most conveniently take place via superconformal tensor calculus [61, 62]

since the superconformal multiplets are known. In this section, we explain the basic

idea of the superconformal calculus as we shall use the method extensively in the

rest of this thesis.

2.1 Conformal Symmetry and Conformal Algebra

Conformal transformations are defined as general coordinate transformations that

leave the geometry invariant up to a scaling factor

gµν −→ g′µν(x) = e2ω(x)gµν(x). (2.1)

When considering infinitesimal transformations, the infinitesimal replacement, kµ(x)

satisfies the conformal Killing equation

δgct(k)gµν = 2∇(µkν)(x) = e2ω(x)gµν(x), (2.2)

where we have defined the covariant derivative with respect to Levi-Civita connec-

tion. If we are to restrict ourselves a D-dimensional flat geometry, the conformal

Killing equation (2.2) implies

∂(µkν)(x)− 1

D
ηµν∂ρk

ρ = 0. (2.3)
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Excluding the special case D = 2, this equation has the following general solution

kµ(x) = ξµ + λµνM xν + λDx
µ + (x2Λµ

K − 2xµx · ΛK). (2.4)

In the equation above, the right hand side terms describe translations, Lorentz ro-

tations, dilatations and conformal boost in the respective order. The corresponding

generators are Pµ,Mµν , D and K. Therefore, a conformal transformation is expressed

as

δC = ξµPµ + λµνMMµν + λDD + λµKKµ . (2.5)

In D dimensions, we have the following simple representations for the conformal

generators

Pµ = ∂µ, Mµν = x[µ∂ν]

D = xµ∂µ, Kµ = x2∂µ − 2xµx
ν∂ν . (2.6)

It follows that they form an SO(D, 2) algebra

[Pµ,Mνρ] = ηµ[νPρ] , [Mµν ,M
ρσ] = −2δ

[ρ
[µMν]

σ] ,

[Kµ,Mνρ] = ηµ[νKρ] , [Pµ, Kν ] = 2(ηµνD + 2Mµν) , (2.7)

[D,Pµ] = Pµ , [D,Kµ] = −Kµ , (2.8)

which includes the Poincaré symmetry as a subalgebra. This fact is the essential

ingredient to go from a conformal model to a Poincaré model. An explicit embedding

of the D-dimensional generators into (D+2)-dimensional objects satisfying SO(D, 2)

10



can be found as 
Mµν

1
4
(Pµ −Kµ) 1

4
(Pµ +Kµ)

−1
4
(Pµ −Kµ) 0 −1

2
D

−1
4
(Pµ +Kµ) 1

2
D 0

 (2.9)

In order to specify for each field, φi its transformations under conformal group one

has to specify the followings

• Transformations under the Lorentz group: The explicit form for Lorentz

transformation matrices is for vectors should satisfy

Mµν
ρ
σ = −δρ[µην]σ , (2.10)

while for spinors,

Mµν = −1

4
γµν . (2.11)

• The dilatational transformation: Excluding the scalars, we have

kiD = wφi , (2.12)

where w is the Weyl weight of the field φi. However, for scalars in a non-trivial

manifold with affine connection Γij
k, these are the solutions of

∂ik
j
D + Γik

jkkD = wδji (2.13)

For Γij
k = 0, the situation reduces to (2.12).
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• Special conformal transformations: Possible extra parts apart from those

in (2.4) connected to translations, rotations and dilatations. These are denoted

as (kµφ)i. The commutator between the special conformal transformations and

dilations gives the restriction

(kµφ)j∂jk
i
D − k

j
D∂j(kµφ)i = kµφ

i (2.14)

For the simple form of the dilatations (2.12) his means that, this means that

the Weyl weight of kµφ
i should be one less than that of φi.

In this way, the algebra (2.8) is realized on the felds as

[δC(ξ1), δC(ξ2)] = δC(ξµ = ξν2∂νξ
µ
1 − ξν1∂νξ

µ
2 ) (2.15)

After this brief introduction on conformal symmetry, we are now ready to proceed

with superconformal tensor calculus.

2.2 Superconformal Tensor Calculus

The purpose of superconformal tensor calculus is to construct supersymmetric

Poincaré invariant theories by using superconformal symmetries. Although such

(super)conformal symmetries are not realized in nature, such extra symmetries are

extremely helpful in theoretical constructions. The advantage of having extra sym-

metries is that those redundant symmetries restricts the system in such a way that

one simply avoids all complications faced in direct off-shell constructions. The pro-

cedure ends with gauge-fixing the unwanted symmetries. The superconformal tensor

calculus, therefore, runs according to the following algorithm

1. Introduce as many symmetries as possible,

12



2. Introduce compensating fields (multiplets) to compensate new degrees of free-

dom,

3. Construct superconformally invariant actions,

4. Gauge fix the redundant symmetries.

In the rest of the thesis, we will apply this algorithm to construct off-shell 2-derivative

Poincaré supergravity theories as well as their off-shell supersymmetric curvature

squared extensions.
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3. SUPERCONFORMAL MULTIPLETS OF N = 2, D = 5

SUPERGRAVITY∗

In this section, we introduce the superconformal multiplets of N = 2, D = 5 su-

pergravity. In the first two subsections, we discuss the Weyl multiplets of the theory.

A superconformal Weyl multiplet contains all the gauge fields of the superconformal

algebra as well as proper matter fields. The latter is included in order to balance the

bosonic and fermionic degrees of freedom and to implement the off-shell closure of

the algebra. In the N = 2, D = 5 supergravity, there are two possible Weyl multiplet

choices: the standard Weyl multiplet and the dilaton Weyl multiplet. We investigate

these two multiplets in detail in the first two subsections. The last two subsections

of this section are devoted to the introduction of the superconformal matter multi-

plets including the vector multiplet and the linear multiplet, which will be utilized

as compensating multiplets in the construction of off-shell Poincaré theories.

3.1 Standard Weyl Multiplet

The N = 2, D = 5 superconformal tensor calculus is based on the superconformal

algebra1 F 2(4) with the generators

Pa, Mab, D, Ka, Uij, Qαi, Sαi , (3.1)

where a, b, . . . are Lorentz indices. Here Mab and Pa are the usual Poincaré gen-

erators, D is the generator for dilatations, Ka generates special conformal boosts,

Uij is the SU(2) generator and Qαi and Sαi are the supersymmetry and conformal

∗Portions of this chapter are reprinted from An off-shell formulation for internally gauged D=5,
N=2 supergravity from superconformal methods by Frederik Coomans and Mehmet Ozkan, 2013.
JHEP 1301, 099 (2013), Copyright 2013, with permission from SISSA.

1The notation F p(4) refers to a compact form of F (4) with bosonic subalgebra SO(7− p, p).
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supersymmetry generators respectively.

For each of the generators above we now introduce the following gauge fields

hµ
A ≡ {eµa, ωµ

ab, bµ, fµ
a, V ij

µ , ψiµ, φiµ} , (3.2)

where µ, ν, . . . are world vector indices. Using the structure constants fAB
C of the

superconformal algebra (given e.g. in appendix B of [37]) and the basic rules

δhAµ = ∂µε
A + εChBµ fBC

A ,

Rµν
A = 2∂[µh

A
ν] + hCν h

B
µ fBC

A , (3.3)

one can easily write down the linear transformation rules and the linear curvatures

Rµν
A of the superconformal gauge fields given in (3.2). The linear transformations

given in [37] satisfy the F 2(4) superalgebra, thus resulting in a gauge theory of F 2(4)

since we have not related the generators Pa,Mab to the diffeomorphisms of space-

time. This problem can be solved by imposing the so-called curvature constraints

[37]. These constraints determine the gauge fields ωµ
ab, φiµ and fµ

a in terms of the

independent gauge fields eµ
a, ψiµ, bµ, V ij

µ and, in addition, achieve maximal irre-

ducibility of the superconformal gauge field configuration.

A simple counting argument shows that the superconformal gauge fields, after

imposing the conventional constraints, represent 21 + 24 off-shell degrees of freedom

and therefore cannot represent a supersymmetric theory. Additional matter fields

Tµν(10), D(1) and χi(8) must be added to the gauge fields in order to obtain an

off-shell closed multiplet [36, 37]. This multiplet is known as the standard Weyl

multiplet.

Starting from the linear transformation rules of the superconformal fields, the
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linear curvatures Rµν
A and the matter fields Tµν , D, and χi we can construct the

full nonlinear N = 2, D = 5 Weyl Multiplet by applying an iterative procedure

(described in detail for 6 dimensions in [35]). The results are [37] (we only give Q,

S and K transformations)

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = (∂µ + 1
2
bµ + 1

4
ωµ

abγab)ε
i − V ij

µ εj + iγ · Tγµεi − iγµη
i ,

δVµ
ij = −3

2
iε̄(iφj)

µ + 4ε̄(iγµχ
j) + iε̄(iγ · Tψj)

µ + 3
2
iη̄(iψj)

µ ,

δTab = 1
2
iε̄γabχ− 3

32
iε̄R̂ab(Q) ,

δχi = 1
4
εiD − 1

64
γ · R̂ij(V )εj + 1

8
iγab /DTabεi − 1

8
iγaDbTabεi

−1
4
γabcdTabTcdε

i + 1
6
T 2εi + 1

4
γ · Tηi ,

δD = ε̄ /Dχ− 5
3
iε̄γ · Tχ− iη̄χ ,

δbµ = 1
2
iε̄φµ − 2ε̄γµχ+ 1

2
iη̄ψµ + 2ΛKµ , (3.4)

where

Dµχi = (∂µ − 7
2
bµ + 1

4
ωµ

abγab)χ
i − V ij

µ χj − 1
4
ψiµD + 1

64
γ · R̂ij(V )ψµj

−1
8
iγab /DTabψiµ + 1

8
iγaDbTabψiµ + 1

4
γabcdTabTcdψ

i
µ − 1

6
T 2ψiµ − 1

4
γ · Tφiµ ,

DµTab = ∂µTab − bµTab − 2ωµ
c
[aTb]c − 1

2
iψ̄µγabχ+ 3

32
iψ̄µR̂ab(Q) . (3.5)

The relevant modified curvatures are

R̂µν
ab(M) = 2∂[µων]

ab + 2ω[µ
acων]c

b + 8f[µ
[aeν]

b] + iψ̄[µγ
abψν] + iψ̄[µγ

[aγ · Tγb]ψν]

+ψ̄[µγ
[aR̂ν]

b](Q) + 1
2
ψ̄[µγν]R̂

ab(Q)− 8ψ̄[µeν]
[aγb]χ+ iφ̄[µγ

abψν] ,
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R̂µν
ij(V ) = 2∂[µVν]

ij − 2V[µ
k(iVν] k

j)−3iφ̄
(i
[µψ

j)
ν] − 8ψ̄

(i
[µγν]χ

j) − iψ̄
(i
[µγ · Tψ

j)
ν] , (3.6)

R̂i
µν(Q) = 2∂[µψ

i
ν] + 1

2
ω[µ

abγabψ
i
ν] + b[µψ

i
ν] − 2V ij

[µ ψν]j − 2iγ[µφ
i
ν] + 2iγ · Tγ[µψ

i
ν] .

As mentioned before, the dependent fields, which relate the generators Pa,Mab to the

diffeomorphisms of spacetime, are completely determined by the following curvature

constraints

Rµν
a(P ) = 0 ,

eνbR̂µν
ab(M) = 0 ,

γµR̂µν
i(Q) = 0 . (3.7)

Notice that our choices for the above constraints are not unique, i.e. one can im-

pose different constraints by adding further terms to (3.7). However such additional

terms only amount to redefinitions of the dependent fields defined below. Using the

curvature constraints we identify ωµ
ab, φiµ and fµ

a in terms of the other gauge fields

and matter fields

ωµ
ab = 2eν[a∂[µe

b]
ν] − e

ν[aeb]σeµc∂νe
c
σ + 2e [a

µ bb] − 1
2
ψ̄[bγa]ψµ − 1

4
ψ̄bγµψ

a ,

φiµ = 1
3
iγaR̂′µa

i(Q)− 1
24

iγµγ
abR̂′ab

i(Q) , (3.8)

faµ = −1
6
Rµ

a + 1
48
eµ
aR ,

where Rµν ≡ R̂′ ab
µρ (M)eb

ρeνa and R ≡ Rµ
µ. The notation R̂′(M) and R̂′(Q) indi-

cates that we have omitted the fµ
a dependent term in R̂(M) and the φiµ dependent

term in R̂(Q). The constraints imply through Bianchi identities further relations
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between the curvatures. The Bianchi identities for R(P ) imply [37]

Rµν = Rνµ , e[µ
aR̂νρ](D) = R̂[µνρ]

a(M) , R̂µν(D) = 0 . (3.9)

The full commutator of two supersymmetry transformations is

[δQ(ε1), δQ(ε2)] = δcgct(ξ
µ
3 ) + δM(λab3 ) + δS(η3) + δU(λij3 ) + δK(Λa

K3) , (3.10)

where δcgct represents a covariant general coordinate transformation2. The parame-

ters appearing in (3.10) are

ξµ3 = 1
2
ε̄2γ

µε1 ,

λab3 = −iε̄2γ
[aγ · Tγb]ε1 ,

λij3 = iε̄
(i
2 γ · Tε

j)
1 ,

ηi3 = −9
4
i ε̄2ε1χ

i + 7
4
i ε̄2γcε1γ

cχi

+1
4
i ε̄

(i
2 γcdε

j)
1

(
γcdχj + 1

4
R̂cd

j(Q)
)
,

Λa
K3 = −1

2
ε̄2γ

aε1D + 1
96
ε̄i2γ

abcεj1R̂bcij(V )

+ 1
12

iε̄2
(
−5γabcdDbTcd + 9DbT

ba
)
ε1

+ε̄2
(
γabcdeTbcTde − 4γcTcdT

ad + 2
3
γaT 2

)
ε1 . (3.11)

For the Q,S commutators we find the following algebra

[δS(η), δQ(ε)] = δD(1
2
iε̄η) + δM(1

2
iε̄γabη) + δU(−3

2
iε̄(iηj)) + δK(Λa

3K) ,

[δS(η1), δS(η2)] = δK(1
2
η̄2γ

aη1) , (3.12)

2The covariant general coordinate transformations are defined as δcgct(ξ) = δgct(ξ)− δI(ξµhIµ),
where the index I runs over all transformations except the general coordinate transformations and
the hIµ represent the corresponding gauge fields.
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with

Λa
3K = 1

6
ε̄
(
γ · Tγa − 1

2
γaγ · T

)
η . (3.13)

3.2 Dilaton Weyl Multiplet

In [37], it was established that there exist another Weyl multiplets for N = 2

conformal supergravity in five dimensions: the dilaton Weyl multiplet. This multiplet

has the same contents of gauge fields as the standard Weyl multiplet, but different

in matter fields. However, the matter fields of the standard multiplet can be built

from the fundamental fields in the dilation Weyl multiplet as composite fields. The

gauge sector of the dilaton Weyl multiplet consists of a fünfbein eµ
a, a gravitino ψµ

i,

the dilatation gauge field bµ, and the SU(2) gauge field V ij
µ . Matter. For the dilaton

Weyl multiplet, the matter sector consists of a physical vector Cµ, an antisymmetric

two-form gauge field Bµν , a dilaton field σ and a dilatino ψi. The Q, S and K

transformation rules for the dilaton Weyl Multipet are given by [37]

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = (∂µ + 1
2
bµ + 1

4
ωµ

abγab)ε
i − V ij

µ εj + iγ · Tγµεi − iγµη
i ,

δVµ
ij = −3

2
iε̄(iφj)µ + 4ε̄(iγµχ

j) + iε̄(iγ · Tψj)µ + 3
2
iη̄(iψj)µ ,

δCµ = −1
2
iσε̄ψµ + 1

2
ε̄γµψ,

δBµν = 1
2
σ2ε̄γ[µψν] + 1

2
iσε̄γµνψ + C[µδ(ε)Cν],

δψi = −1
4
γ · Ĝεi − 1

2
i /Dσεi + σγ · Tεi − 1

4
iσ−1εjψ̄

iψj + σηi ,

δσ = 1
2
iε̄ψ ,

δbµ = 1
2
iε̄φµ − 2ε̄γµχ+ 1

2
iη̄ψµ + 2ΛKµ , (3.14)
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where

Dµ σ = (∂µ − bµ)σ − 1
2

iψ̄µψ , (3.15)

Dµψi = (∂µ − 3
2
bµ + 1

4
ωµ

abγab)ψ
i − V ij

µ ψj + 1
4
γ · Ĝψiµ

+1
2
i /Dσψiµ + 1

4
iσ−1ψµjψ̄

iψj − σγ · Tψiµ − σφiµ , (3.16)

and the supercovariant curvatures are defined according to

Ĝµν = Gµν − ψ̄[µγν]ψ + 1
2
iσψ̄[µψν],

Ĥµνρ = Hµνρ − 3
4
σ2ψ̄[µγνψρ] − 3

2
iσψ̄[µγνρ]ψ . (3.17)

In above expressions, Gµν = 2∂[µCν] and Hµνρ = 3∂[µBνρ] + 3
2
C[µGνρ]. Note that Ĝµν

and Ĥµνρ are invariant under following gauge transformations

δCµ = ∂µΛ , δBµν = 2∂[µΛν] − 1
2
ΛGµν . (3.18)

The commutator of Q-transformations picks up the following modifications

[δ(ε1), δ(ε2)] = . . .+ δU(1)(Λ3 = −1
2
iσε̄2ε1) + δB(−1

4
σ2ε̄2γµε1 − 1

2
CµΛ3) ,(3.19)

where the ellipses refer to the standard commutation rule and δB is a vector gauge

transformation for the field Bµν . The Q- and S- transformations of the field strengths

Ĝµν and Ĥabc are presented in [37]

δĜab = −1
2
iσε̄R̂ab(Q)− ε̄γaDb]ψ + iε̄γ[aγ · Tγb]ψ + iη̄γabψ ,

δĤabc = −3
4
σ2ε̄γ[aR̂bc](Q) + 3

2
iε̄γ[abDc]ψ + 3

2
iε̄γ[abψDc]σ

−3
2
σε̄γ[aγ · Tγbc]ψ − 3

2
ε̄γ[aĜbc]ψ − 3

2
ση̄γabcψ . (3.20)
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The underlined expressions T ab, χi and D, which are the fundamental auxiliary fields

in the standard Weyl multiplet, become composite expressions in the dilaton Weyl

multiplet [37]

T ab = 1
8
σ−2
(
σĜab + 1

6
εabcdeĤcde + 1

4
iψ̄γabψ

)
,

χi = 1
8
iσ−1 /Dψi + 1

16
iσ−2 /Dσψi − 1

32
σ−2γ · Ĝψi + 1

4
σ−1γ · Tψi

+ 1
32

iσ−3ψjψ̄
iψj,

D = 1
4
σ−12cσ + 1

8
σ−2(Daσ)(Daσ)− 1

16
σ−2ĜµνĜ

µν

−1
8
σ−2ψ̄ /Dψ − 1

64
σ−4ψ̄iψjψ̄iψj − 4iσ−1ψχ

+
(
− 26

3
Tab + 2σ−1Ĝab + 1

4
iσ−2ψ̄γabψ

)
T ab , (3.21)

where the superconformal d’Alambertian for σ is given by

2cσ = (∂a − 2ba + ωb
ba)Daσ − 1

2
iψ̄aDaψ − 2σψ̄aγ

aχ

+1
2
ψ̄aγ

aγ · Tψ + 1
2
φ̄aγ

aψ + 2fa
aσ . (3.22)

These composite expressions define a map from the dilaton Weyl multiplet to the

standard Weyl multiplet.

3.3 Yang-Mills Multiplet

The off-shell non-abelian D = 5, N = 2 vector multiplet consists of 8n (bosonic)

+ 8n ( fermionic) degrees of freedom (where n is the dimension of the gauge group).

Denoting the Yang-Mills index by Σ (Σ = 1, · · · , n), the bosonic sector consists of

vector fields AΣ
µ , scalar fields ρΣ and SU(2)-triplet auxiliary fields Y ij Σ = Y (ij) Σ.

SU(2)-doublet fields λiΣ constitute the fermionic sector.

In the background of the standard Weyl multiplet, the Q- and S-transformations
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of the fields in the vector multiplet are given by [38]

δAΣ
µ = −1

2
iρΣε̄ψµ + 1

2
ε̄γµλ

Σ ,

δY ij Σ = −1
2
ε̄(i /Dλj)Σ + 1

2
iε̄(iγ · Tλj)Σ − 4iρΣε̄(iχj) + 1

2
iη̄(iλj)Σ − 1

2
igε̄(ifΛΥ

ΣρΛλj)Υ ,

δλiΣ = −1
4
γ · F̂Σεi − 1

2
i /DρΣεi + ρΣγ · Tεi − Y ij Σεj + ρΣηi ,

δρΣ = 1
2
iε̄λΣ . (3.23)

The superconformally covariant derivatives used here are

Dµ ρΣ = (∂µ − bµ)ρΣ + gfΛΥ
ΣAΛ

µρ
Υ − 1

2
iψ̄µλ

Σ , (3.24)

DµλiΣ = (∂µ − 3
2
bµ + 1

4
ωµ

abγab)λ
iΣ − V ij

µ λ
Σ
j + gfΛΥ

ΣAΛ
µλ

iΥ

+
1

4
γ · F̂Σψiµ + 1

2
i /̂DρΣψiµ + Y ijΣψµ j − ρΣγ · Tψiµ − ρΣφiµ , (3.25)

where the supercovariant Yang-Mills curvature is given as

F̂Σ
µν = 2∂[µA

Σ
ν] + gfΛΥ

ΣAΛ
µA

Υ
ν − ψ̄[µγν]λ

Σ +
1

2
iρΣψ̄[µψν] . (3.26)

The local supersymmetry transformation rules given in (3.23) are obtained by cou-

pling the rigid supersymmetric theory to a Weyl multiplet [38]. In the above transfor-

mation rules, we utilized the standard Weyl multiplet. If the dilaton Weyl multiplet

is considered, the supersymmetry tranformation rules can be obtained straightfor-

wardly by replacing Tab, D and χi by their composite expressions according to (3.21).
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3.4 Linear Multiplet

The off-shell D = 5, N = 2 linear multiplet contains 8 (bosonic)+8 (fermionic)

degrees of freedom carried by the following fields

(Lij, Ea, N, ϕi). (3.27)

The bosonic fields are an SU(2) triplet Lij = L(ij), a constrained vector Ea and a

scalar N . The fermionic fields are given by an SU(2) doublet ϕi. In the background

of the standard Weyl multiplet, the Q- and S- transformations of the fields in the

linear multiplet are given by [58]

δLij = iε̄(iϕj) ,

δϕi = −1
2
i /DLijεj − 1

2
iγaEaε

i + 1
2
Nεi − γ · TLijεj + 3Lijηj ,

δEa = −1
2
iε̄γabDbϕ− 2ε̄γbϕTba − 2η̄γaϕ ,

δN = 1
2
ε̄ /Dϕ+ 3

2
iε̄γ · Tϕ+ 4iε̄iχjLij + 3

2
iη̄ϕ , (3.28)

where the super-covariant derivatives are defined as

DµLij = (∂µ − 3bµ)Lij + 2Vµ
(i
kL

j)k − iψ̄(i
µϕ

j) ,

Dµϕi = (∂µ − 7
2
bµ + 1

4
ωµ

abγab)ϕ
i − V ij

µ ϕj + 1
2
i /DLijψµ j + 1

2
iγaEaψ

i
µ

−1
2
Nψiµ + γ · TLijψµ j − 3Lijφµ j ,

DµEa = (∂µ − 4bµ)Ea + ωµabE
b + 1

2
iψ̄µγabDbϕ+ 2ψ̄µγ

bϕTba + 2φ̄µγaϕ .(3.29)

The closure of the superconformal algebra requires that the following constraint must

be satisfied
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DaEa = 0 . (3.30)

Thus Ea can be solved in terms of a 3-form Eµνρ as

Eµ = − 1
12
εµνρσλDνEρσλ, (3.31)

where Eµνρ is invariant under the following gauge transformation

δΛEµνρ = 3∂[µΛνρ] . (3.32)

We can also express Eµ and Eµνρ in terms of a 2-form potential according to [58]

Eµ = DνEµν , Eµνρ = εµνρσλE
σλ . (3.33)

The supersymmetry transformations of the 2-form gauge field Eµν and 3-form gauge

field Eµνρ are given in [58]

δEµν = −1
2
iε̄γµνϕ− 1

2
ψ̄iργ

µνρεjLij − ∂ρΛ̃µνρ ,

δEµνρ = −ε̄γµνρϕ+ iψ̄i[µγνρ]ε
jLij . (3.34)

With these results in hand, we conclude our discussion on the superconformal multi-

plets of N = 2, D = 5 superconformal theory. Similar to the Yang-Mills multiplet, if

the dilaton Weyl multiplet is adopted, the supersymmetry transformation rules for

the linear multiplet can be obtained by using the map (3.21).
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4. SUPERCONFORMAL ACTIONS∗

In this section, we construct superconformal actions for the linear multiplet and

for the vector multiplet coupled to Weyl multiplet. Our starting point is the density

formula for the product of a vector multiplet and a linear multiplet. This will be pre-

sented in subsection 4.1. In subsection 4.2 we will use this formula, after embedding

the linear multiplet into a vector multiplet to construct the superconformal action

for the linear multiplet. In the last subsection 4.3 we construct the elements of linear

multiplet in terms of the fields in vector multiplet, thus obtain a superconformal

action for vector multiplet.

4.1 Density Formula

We need an expression constructed from the components of the linear and vector

multiplet that can be used as a superconformal action. In [63] a density formula is

given for the product of a Vector Multiplet and a linear multiplet

e−1LV L = Y ijLij + iψ̄ϕ− 1
2
ψ̄iµγ

µψjLij + CµP
µ

+σ(N + 1
2
ψ̄µγ

µϕ+ 1
4
iψ̄iµγ

µνψjνLij) , (4.1)

where Pµ, the pure bosonic part of the supercovariant field Eµ, is defined as

P a = Ea + 1
2
iψ̄bγ

baϕ+ 1
4
ψ̄ibγ

abcψjcLij . (4.2)

∗Portions of this chapter are reprinted from An off-shell formulation for internally gauged D=5,
N=2 supergravity from superconformal methods by Frederik Coomans and Mehmet Ozkan, 2013.
JHEP 1301, 099 (2013), Copyright 2013, with permission from SISSA; Supersymmetric Completion
of Gauss-Bonnet Combination in Five Dimensions by Mehmet Ozkan and Yi Pang, 2013. JHEP
1303, 158 (2013), Copyright 2013, with permission from SISSA.
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Using (3.31), we can express P a as

P a = − 1
12
eµ
ae−1εµνρσλ∂νEρσλ . (4.3)

Using (4.3) and (3.34), one can rewrite LV L as

e−1LV L = Y ijLij + iψ̄ϕ− 1
2
ψ̄iµγ

µψjLij + 1
2
GµνE

µν

+σ(N + 1
2
ψ̄µγ

µϕ+ 1
4
iψ̄iµγ

µνψjνLij) . (4.4)

4.2 Linear Multiplet Action

We want to use the density formula (4.1) to construct an action for the linear

multiplet. Hence, we start with embedding the components of the linear multiplet

(Lij, ϕ
i, Ea, N) into the components of the vector multiplet (Y ij, Aµ, ρ, λ

i). Such

embeddings are already considered in 4 and 6 dimensions [64, 35] and here we will

follow the same procedure.

As mentioned, the linear multiplet consists of a triplet of scalars Lij, a constrained

vector Ea, a doublet of Majorana spinors ϕi and a scalar N . One starts the construc-

tion of the vector multiplet with the identification ρ = N , where ρ is the scalar of the

vector multiplet. There is, however, a mismatch between the Weyl weights of these

fields. Therefore one needs another scalar field to compensate for this mismatch. For

this we will use

L2 = LijL
ij . (4.5)

We can then identify the scalar of the vector multiplet as ρ = 2L−1N + iϕ̄iϕjL
ijL−3.

This identification has the correct Weyl weight, and the second term is the supersym-
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metric completion that is determined by the S-invariance of ρ. Using this expression

and applying a sequence of supersymmetry transformations, we obtain the full ex-

pressions for the components of vector multiplets in terms of elements in the linear

multiplet [58]

ρ = 2L−1N + iL−3ϕ̄iϕjLij ,

λi = −2i /DϕiL−1 + (16Lijχ
j + 4γ · Tϕi)L−1 − 2NLijϕ

jL−3

+2i( /DLijLjkϕk − /ELijϕ
j)L−3 + 2iϕjϕ̄iϕjL

−3

−6iϕjϕ̄kϕlL
klLijL

−5,

Yij = L−12CLij −DaLk(iDaLj)mLkmL−3 −N2LijL
−3 − EµEµLijL

−3

+8
3
L−1T 2Lij + 4L−1DLij + 2EµLk(iDµLj)kL−3 − 1

2
iNL−3ϕ̄(iϕj)

−4
3
L−5NLk(iLj)mϕ̄

kϕm − 2
3
L−3ϕ̄(i /Eϕj) − 1

3
L−5Lk(iLj)mϕ̄

k /Eϕm

−8iL−1χ̄(iϕj) + 16iL−3Lk(iLj)mχ̄
kϕm + 2L−3Lk(iϕ̄

k /Dϕj)

+2iL−3Lijϕ̄γ · Tϕ− 2
3
L−3ϕ̄(i /DLj)kϕk − L−5LmnL

k
(iϕ̄

m /DLj)kϕn

−1
6
L−5Lkmϕ̄iγ

aϕjϕ̄
kγaϕ

m + 1
12
L−7LijLkmL

pqϕ̄kγaϕ
mϕ̄pγ

aϕq,

F̂µν = 4D[µ(L−1Eν]) + 2L−1R̂µν
ij(V )Lij − 2L−3LlkD[µL

kpDν]Llp

−2D[µ(L−3ϕ̄iγν]ϕ
jLij)− iL−1ϕ̄R̂µν(Q) . (4.6)

Substituting above composite expressions into the vector-linear Lagrangian (4.4),

one obtains the superconformal action for the linear multiplet [58]

e−1LSL = L−1Lij2
cLij − LijDµLk(iDµLj)mLkmL−3 +N2L−1

−EµEµL−1 + 8
3
LT 2 + 4DL− 1

2
L−3EµνLlk∂µL

kp∂νLpl

+2Eµν∂µ(L−1Eν + V ij
ν LijL

−1), (4.7)
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where the complete expression for the superconformal d’Alembertian is defined as

Lij2
cLij = Lij(∂

a − 4ba + ωb
ba)DaLij + 2LijVa

i
kDaLjk + 6L2fa

a

−iLijψ̄aiDaϕj − 6L2ψ̄aγaχ− Lijϕ̄iγ · Tγaψja + Lijϕ̄
iγaφja . (4.8)

Fermionic contribution to above action can be straightforwardly read from the for-

mulae given in (4.6). The linear multiplet action (4.7) can be transferred to an action

describing the linear multiplet coupled to the dilaton Weyl multiplet by replacing

the Tab, D and χi by their composite expressions (3.21) in the action (4.7).

4.3 Vector Multiplet Action

The elements of linear multiplet can be written in terms of the elements of a

vector multiplet and a Weyl multiplet [36]

Lij = 2ρYij − 1
2
iλ̄iλj

ϕi = iρ /Dλi + 2ργ · Tλi − 8ρ2χi − 1
4
γ · F̂ λi + 1

2
/Dρλi − Yijλj

Ea = Db
(
− ρF ab + 8ρ2T ab − 1

4
iλ̄γabλ

)
− 1

8
εabcdeFbcFde

N = ρ2Cρ+ 1
2
DaρDaρ− 1

4
F̂abF̂

ab + Y ijYij + 8F̂abT
ab

−4ρ2
(
D + 26

3
T 2
)
− 1

2
λ̄ /Dλ+ iλ̄γ · Tλ+ 16iρχ̄λ (4.9)

where, once again we have utilized the standard Weyl multiplet. Adopting the stan-

dard Weyl multiplet, an action for n vector multiplets is given by [36, 38]

e−1LSV = CIJK

(
− 1

4
ρIF J

µνF
K µν + 1

3
ρIρJ2CρK + 1

6
ρIDµρJDµρK

+ρIY J ijY K
ij − 4

3
ρIρJρK(D + 26

3
TµνT

µν)

+4ρIρJFK
µνT

µν − 1
24
εµνρσλAIµF

J
νρF

K
σλ

)
, (4.10)
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where we have generalized the single vector multiplet action to n-vector multiplets

action, I = 1, . . . n. The coefficient CIJK is symmetric in I, J,K and determines the

coupling of n vector multiplets. The complete expression of the superconformal

d’Alembertian for ρI is [38]

2cρI = (∂a − 2ba + ωb
ba)DaρI − 1

2
iψ̄aDaλI − 2ρIψ̄aγ

aχ

+1
2
ψ̄aγ

aγ · TλI + 1
2
φ̄aγ

aλI + 2fa
aρI . (4.11)

Similar to the linear multiplet action, the fermionic contribution to above action

can be straightforwardly read from the composite expressions given in (4.9), and

the vector multiplet action (4.10) can be transferred to an action describing vector

multiplets coupled to the dilaton Weyl multiplet by replacing the Tab, D and χi with

their composite expressions according to (3.21) in the action (4.10).

4.4 Intermezzo: The Map Between Weyl Multiplets

In the previous section, we discussed that the matter fields of the standard Weyl

multiplet can be written in terms of the elements of the dilaton Weyl multiplet,

hence, and action that is written in standard Weyl multiplet language can easily be

translated to the dilaton Weyl multiplet language (3.21). In this section, we shall

investigate how to derive such a map. In order to do so, let us consider a vector

multiplet with the following fields

(σ, Cµ, Y
ij, ψi) (4.12)

In that case, an action for a single abelian vector multiplet coupled to the standard

Weyl multiplet can be given up to 4-fermion terms as [38]
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e−1LAV = −1
4
σGµνG

µν + 1
3
σ22cσ + 1

6
σDµσDµσ + σYijY

ij

−4
3
σ3
(
D + 26

3
T 2
)

+ 4σ2GµνT
µν − 1

24
e−1εµνρσλCµGνρGσλ

−1
2
σψ̄ /Dψ − 1

8
iψ̄γ ·Gψ − 1

2
iψ̄iψjYij + iσψ̄γ · Tψ − 8iσ2ψ̄χ

+1
6
σψ̄µγ

µ
(
iσ /Dψ + 1

2
i /Dσψ − 1

4
γ·Gψ + 2σγ·Tψ − 8σ2χ

)
−1

6
ψ̄µγνψ

(
−2σGµν − 8σ2T µν

)
− 1

12
σψ̄λγ

µνλψGµν

+ 1
12

iσψ̄µψν
(
−2σGµν − 8σ2T µν

)
+ 1

48
iσ2ψ̄λγ

µνλρψρGµν

−1
2
σψ̄iµγ

µψjYij + 1
6
iσ2ψ̄iµγ

µνψjνYij , (4.13)

The equation of motion for the auxiliary Y ij, and the field equations for σ and ψi

allow us to express the Standard Weyl matter fields Y ij, D and χi in terms of the

fields of the vector multiplet [37].

Y ij = 1
4
iσ−1ψ̄iψj ,

χi = 1
8
iσ−1 /Dψi + 1

16
iσ−2 /Dσψi − 1

32
σ−2γ · Ĝψi + 1

4
σ−1γ · Tψi

+ 1
32

iσ−3ψjψ̄
iψj,

D = 1
4
σ−12cσ + 1

8
σ−2(Daσ)(Daσ)− 1

16
σ−2ĜµνĜ

µν

−1
8
σ−2ψ̄ /Dψ − 1

64
σ−4ψ̄iψjψ̄iψj − 4iσ−1ψχ

+
(
− 26

3
Tab + 2σ−1Ĝab + 1

4
iσ−2ψ̄γabψ

)
T ab , (4.14)

where we have underlined the fields to indicate that they are now composite expres-

sions. The equation of motion for Cµ implies a Bianchi identity for an antisymmetric
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2-form tensor gauge field Bµν

D[aĤbcd] = 3
4
Ĝ[abĜcd] , (4.15)

where the 3-form curvature tensor Ĥabc is defined as

1
6
εabcdeĤ

cde = 8σ2Tab − σĜab − 1
4
iψ̄γabψ . (4.16)

This equation allows us to identify Tab in terms of the elements of the vector multi-

plet and the supercovariant field strength Ĥµνρ. Therefore, using the fields σ,Cµ, Bµν

and ψi along with the gauge fields eµ
a, ψiµ, bµ, Vµ

ij we form an alternative Weyl mul-

tiplet: the dilaton Weyl multiplet, and the equations (4.14) and (4.16) present a map

between the standard Weyl multiplet and the dilaton Weyl multiplet (3.21).
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5. N = 2, D = 5 OFF-SHELL POINCARÉ SUPERGRAVITIES∗

In the previous section, we have constructed superconformal actions for the linear

multiplet and for n number of vector multiplets. In this section, we concentrate on

the construction of off-shell Poincaré supergravity theories for the standard Weyl

multiplet and the dilaton Weyl multiplet. In order to do so, we shall first find

appropriate superconformal supergravities such that when the redundant symmetries

are fixed, they give rise to off-shell Poincaré supergravity theories. Once we construct

an off-shell Poincaré supergravity, we discuss its R-symmetry gauging and show that

it corresponds to the conventional minimal gauged on-shell N = 2, D = 5 Poincaré

supergravity.

5.1 Poincaré Supergravity in the Standard Weyl Multiplet

In [40, 65], a Poincaré supergravity was constructed by coupling the standard

Weyl multiplet to a hypermultiplet and n number of vector multiplets. However, as

our choices for the compensating multiplets are vector and linear multiplets, we shall

devote this section to the construction of an off-shell Poincaré supergravity in the

standard Weyl multiplet with vector and linear multiplet compensators.

A consistent superconformal supergravity is given by combining the linear mul-

tiplet action and vector multiplet action

LSR = −LSL − 3LSV , (5.1)

∗Portions of this chapter are reprinted from An off-shell formulation for internally gauged D=5,
N=2 supergravity from superconformal methods by Frederik Coomans and Mehmet Ozkan, 2013.
JHEP 1301, 099 (2013), Copyright 2013, with permission from SISSA; Supersymmetric Completion
of Gauss-Bonnet Combination in Five Dimensions by Mehmet Ozkan and Yi Pang, 2013. JHEP
1303, 158 (2013), Copyright 2013, with permission from SISSA.
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where LSL is given in (4.7) and LSV is given in (4.10), and the superscript S refers to

the fact that this action is designed for the standard Weyl multiplet. This action has

redundant superconformal symmetries needed be fixed in order to obtain an off-shell

Poincaré supergravity. The gauge fixing conditions adopted in this section are

Lij = 1√
2
δij, bµ = 0, ϕi = 0, (5.2)

where the first one breaks SU(2)R to U(1)R and fixes dilatation by setting L = 1.

The second one fixes the special conformal symmetry, and the last choice fixes the

S-supersymmetry. To maintain the gauge (5.2), the compensating transformations

are required. Here we only present the compensating special supersymmetry and the

compensating conformal boost with parameters

ηk = 1
3

(
γ · Tεk − 1√

2
Nδikε

i + 1√
2
i /Eδikε

i + iγaV
′(i
a lδ

j)lδikεj

)
, (5.3)

ΛKµ = −1
4
iε̄φµ − 1

4
iη̄ψµ + ε̄γµχ. (5.4)

Using the gauge fixing conditions, the bosonic part of the corresponding off-shell

Poincaré supergravity is given by

e−1LSR = 1
8
(C + 3)R + 1

3
(104C − 8)T 2 + 4(C − 1)D −N2 − PµP µ + V

′ij
µ V

′µ
ij

−
√

2VµP
µ + 3

4
CIJKρ

IF J
µνF

µν K + 3
2
CIJKρ

I∂µρ
J∂µρK − 3CIJKρ

IY J
ij Y

ij K

−12CIJKρ
IρJFK

µνT
µν + 1

8
εµνρσλCIJKA

I
µF

J
νρF

K
σλ, (5.5)

where we have defined C = CIJKρ
IρJρK . In the context of M-theory, the theory

of five-dimensional N = 2 supergravity coupled to Abelian vector supermultiplets

arise by compactifying eleven-dimensional supergravity, the low-energy theory of M-
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theory, on a Calabi-Yau three-folds [51, 52]. STU model corresponds to C = STU ,

where S, T and U are three vector moduli.

5.1.1 Gauged Model

As a result of our gauge choices (5.2), the U(1)R symmetry of the off-shell Poincare

theory (5.5) is gauged by the auxiliary vector Vµ, i.e. the full U(1)R covariant deriva-

tive for gravitino is given by,

∇µψ
i
ν =

(
∂µ + 1

4
ωµ

abγab

)
ψiν − 1

2
Vµδ

ijψν j . (5.6)

where V
′ij
µ , the traceless part of V ij

µ does not appear in the U(1)R covariant derivative

for gravitino as a consequence of our gauge fixing choices (5.2). In this section, we

discuss the U(1)R gauging of the Poincaré the theory by physical vectors AIµ. In the

rest of the paper, we use the following notation

C = CIJKρ
IρJρK , CI = 3CIJKρ

IρK , CIJ = 6CIJKρ
K . (5.7)

The off-shell gauged model is given by

e−1LSgR = e−1(LSR − 3gILIV L)|L=1

= 1
8
(C + 3)R + 1

3
(104C − 8)T 2 + 4(C − 1)D −N2 − PµP µ + V

′ij
µ V

′µ
ij

−
√

2PµV
µ + 1

8
CIJF I

µνF
µν J + 1

4
CIJ∂µρI∂µρJ − 1

2
CIJY I

ijY
ij J − 4CIF I

µνT
µν

+1
8
εµνρσλCIJKA

I
µF

J
νρF

K
σλ − 3√

2
gIY

I
ijδ

ij − 3gIP
µAIµ − 3gIρ

IN . (5.8)
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where L = 1 indicates the gauge fixing condition (5.2). As the field equation of Vµ

implies that Pµ = 0, we can immediately see that the Pµ equation implies that

Vµ = − 3√
2
gIA

I
µ , (5.9)

hence, the auxiliary vector Vµ is replaced by a linear combination of physical vectors

AIµ

∇µψ
i
ν =

(
∂µ + 1

4
ωµ

abγab

)
ψiν + 3

2
√

2
gIA

I
µδ

ijψν j . (5.10)

Therefore, the U(1)R symmetry is gauged by the physical vectors. The equations of

motion for D,Tab, N and Y I
ij lead to

0 = C − 1,

0 = 2
3
(104C − 8)Tab − 4CIF I

ab,

0 = 2N + 3gIρ
I ,

0 = CIJY J
ij + 3√

2
gIδij. (5.11)

The field equation for D implies the constraint for very special geometry

CIJKρ
IρJρK = 1. (5.12)

Eliminating Tab, N and Y I
ij according to their field equations gives rise to the following

on-shell action

e−1LSgR|on−shell = 1
2
R + 1

8
(CIJ − CICJ)F I

µνF
µν J + 1

4
CIJ∂µρI∂µρJ

+1
8
εµνρσλCIJKA

I
µF

J
νρF

K
σλ + Λ(ρ), (5.13)
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with

Λ(ρ) = 9
4
(gIρ

I)2 + 9
2
CIJgIgJ , (5.14)

where CIJ is the inverse of CIJ since ρI satisfies ρIρI = 1. One can proceed further and

truncate the on-shell vector multiplets to obtain the minimal gauged supergravity.

In order to do so, we consider a single graviphoton via

ρI = ρ̄I , AIµ = ρ̄IAµ, gI = ρ̄Ig, (5.15)

where ρ̄I is VEV of the scalar at the critical value of the scalar potential (5.14). The

truncation conditions in (5.15) are consistent with the supersymmetry transformation

rules and lead to

e−1Lmin
gR = 1

2
R− 3

8
FµνF

µν + 1
8
εµνρσλAµFνρFσλ + 3g2, (5.16)

which reproduces the conventional minimal on-shell supergravity in five dimensions.

5.2 Poincaré Supergravity in the Dilaton Weyl Multiplet

As opposed to the construction of an off-shell Poincaré supergravity in standard

Weyl multiplet, where both vector and linear multiplets are required to compen-

sate the redundant superconformal symmetries, a single compensating multiplet, is

sufficient for constructing an off-shell Poincaré supergravity upon gauge fixing

LDR = LDL (5.17)

where the superscript D emphasise the fact that this action is written in dilaton

Weyl multiplet language. However, as discussed in the section 4.4, and described
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Figure 5.1
The schematic description of how to obtain off-shell N = 2, D = 5 Poincaré Supergravity

Vector Multiplet
{Y ij, Cµ, σ, ψ

i}
Standard Weyl Multiplet
{eµa, ψiµ, V ij

µ , Tab, χ
i, D, bµ}

Dilaton Weyl Multiplet
{eµa, ψiµ, V ij

µ , Cµ, Bµν , ψ
i, σ, bµ}

EOM for Y ij, Cµ, σ, ψ
i

Linear Multiplet
{Lij, ϕ, Ea, N}

Off-Shell Poincaré Supergravity
{eµa, Cµ, Bµν , σ, Ea, N, V

ij
µ , ψ

i
µ, ψ

i}

bµ = 0 (K-Gauge)

ϕi = 0 (S-Gauge)

Lij = − 1√
2
δijL (SU(2) → U(1)R)

L = −1 (D-Gauge)

schematically in Figure 5.1, one can find a map between the Weyl multiplets by

considering the field equations for the elements of the vector multiplet in the vector

multiplet action (4.13). Therefore, a Poincaré theory in dilaton Weyl multiplet can

also be given as

LDR = LSL − 3LAV (5.18)

where LAV is given in (4.13). Thus, once the field equations for the elements of

the vector multiplets are solved, one goes back to (5.17). Therefore, we give the
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superconformal supergravity for the dilaton Weyl multiplet as

e−1LDR = L−1Lij2
cLij − LijDµLk(iDµLj)mLkmL−3 +N2L−1

−EµEµL−1 + 8
3
LT 2 + 4DL− 1

2
L−3EµνLlk∂µL

kp∂νLpl

+2Eµν∂µ(L−1Eν + V ij
ν LijL

−1) , (5.19)

where the underlined composite equations are given in (3.21). At this stage, one may

choose to apply two different gauge fixing conditions, as we shall discuss in detain in

the following subsections.

5.2.1 L = −1 Gauge Fixing

The first gauge fixing choice we adopt here is

Lij = − 1√
2
δij, bµ = 0, ϕi = 0 . (5.20)

The first gauge condition breaks the SU(2) symmetry down to U(1)R, and fixes

the dilatation symmetry by the choice L = −1. The second condition fixes the

special conformal symmetry whereas the last one fixes the S-supersymmetry. In

order for these gauge conditions to be invariant under supersymmetry, one needs to

add compensating conformal boost transformations with parameter

ΛKµ = −1
4
iε̄φµ − 1

4
iη̄ψµ + ε̄γµχ (5.21)

and compensating S-supersymmetry transformations with parameter

ηk = 1
3

(
γ · Tεk + 1√

2
Nδikε

i − 1√
2
i /Eδikε

i − iγµVµ
(i
lδ
j)lδikεj

)
. (5.22)
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Performing all the steps of gauge fixing, and using the expressions for the dependent

gauge fields (3.8) into the Lagrangian (5.19), we end up with the following off-shell

Lagrangian for N = 2, D = 5 Poincaré supergravity (up to 4-fermion terms)

e−1L0,DW |L=−1 = 1
2
R− 1

4
σ−2GµνG

µν − 1
6
σ−4HµνρH

µνρ − 3
2
σ−2∂µσ∂

µσ

−N2 − PµP µ +
√

2PµV
µ + V ′µ

ijV ′µij

−1
2
ψ̄µγ

µνρDνψρ − 3
2
σ−2ψ̄ /D

′
ψ − 3

2
iσ−2ψ̄γµγρψµ∂ρσ

−1
8
iσ−1ψ̄µγ

µνρσψνGρσ − 1
4
iσ−1ψ̄µψνG

µν − 1
4
σ−2ψ̄µγ

µνρψGνρ

+1
2
σ−2ψ̄µγνψG

µν − 1
8
iσ−3ψ̄γ ·Gψ + 1

2
√

2
ψ̄iµγ

µνρψjνPρδij

− 1
24
σ−2ψ̄µγ

µνρσλψνHρσλ + 1
4
σ−2ψ̄µγνψρH

µνρ (5.23)

−1
6
iσ−3ψ̄µγ

µνρσψHνρσ + 1
2
iσ−3ψ̄µγνρψH

µνρ − 5
24
σ−4ψ̄γ ·Hψ ,

where the subscript L = −1 is shorthand for the gauge fixing described in (5.20).

Notice that we have decomposed the field V ij
µ into its trace and traceless part, i.e.

V ij
µ = V

′ij
µ + 1

2
δijVµ with V

′ij
µ δij = 0. The 2- and 3-form field strengths are defined as

Gµν = 2∂[µCν] ,

Hµνρ = Bµνρ + 3
2
C[µGνρ] , (5.24)

where Bµνρ = 3∂[µBνρ], and the U(1)R covariant derivative Dµψ
i
ν and full SU(2)

covariant derivative D′µψ
i are defined as

Dµψ
i
ν =

(
∂µ + 1

4
ωµ

abγab

)
ψiν − 1

2
Vµδ

ijψν j ,

D′µψ
i =

(
∂µ + 1

4
ωµ

abγab

)
ψi + V ′µ

i
jψ

j − 1
2
Vµδ

ijψj . (5.25)
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The N = 2 off-shell supergravity that we constructed above by means of supercon-

formal tensor calculus has the following field content

(eµ
a, ψiµ, Cµ, Bµν , ψ

i, σ, Eµ, N, Vµ, V
′ij
µ ) (5.26)

with (10, 32, 4, 6, 8, 1, 4, 1, 4, 10) off-shell degrees of freedoms respectively. Therefore

our off-shell Poincaré multiplet has 40 + 40 off-shell degrees of freedom. The super-

symmetry transformations, up to 3-fermions, are

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = (∂µ + 1
4
ωµ

abγab)ε
i − V ij

µ εj + iγ · Tγµεi − iγµη
i ,

δVµ = −3
2
iε̄iφjµδij + 4ε̄iγµχ

jδij + iε̄iγ · Tψjµδij + 3
2
iη̄iψjµδij ,

δV ′µ
ij = −3

2
iε̄(iφj)µ + 4ε̄(iγµχ

j) + iε̄(iγ · Tψj)µ + 3
2
iη̄(iψj)µ + 3

2
iε̄kφlµδklδ

ij

−2ε̄kγµχ
lδklδ

ij − 1
2
iε̄kγ · Tψlµδklδij − 3

4
iη̄kψlµδklδ

ij ,

δCµ = −1
2
iσε̄ψµ + 1

2
ε̄γµψ,

δBµν = 1
2
σ2ε̄γ[µψν] + 1

2
iσε̄γµνψ + C[µδ(ε)Cν],

δψi = −1
4
γ ·Gεi − 1

2
i/∂σεi + σγ · Tεi − 1

4
iσ−1εjψ̄

iψj + σηi ,

δσ = 1
2
iε̄ψ ,

δEa = − 1
2
√

2
ε̄iγabγ

cV ′c(i
kδj)kψ

bj + 1
4
ε̄γabγ

cEcψ
b + 1

4
iε̄γabNψ

b

− 1
2
√

2
iε̄iγabγ · Tψbjδij + 3

2
√

2
iε̄iγabφ

bjδij ,

δN = − 1
2
√

2
iε̄iγaγbV ′b(i

kδj)kψ
j
a + 1

4
ε̄γaγbEbψa − 1

4
ε̄γaNψ

a

+ 1
2
√

2
ε̄iγaγ · Tψjaδij − 3

2
√

2
ε̄iγaφjaδij − 2

√
2iε̄iχjδij , (5.27)

where the parameter ηi is as described in (5.22), and the composite expression for

Y ij can be found for the ungauged scenario in (4.14). Note that the U(1)R symmetry
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of the off-shell supergravity is gauged via the auxiliary Vµ

δλVµ = ∂µλ, δλψ
i
µ = 1

2
δijλψµj, δλψ

i = 1
2
δijλψj , (5.28)

where λ is the parameter of the U(1)R symmetry. Also note that the CS term,

which is characteristic of the N = 2, D = 5 formulation is hidden inside the term

HµνρH
µνρ, and it becomes manifest in the action in the on-shell formalism due to

the dualization of Hµνρ as we shall discuss in the following section.

5.2.2 Gauged Model

Our starting point for the construction of the internally gauged supergravity is

the following Lagrangian

LDg = LVL − 3LAV − 3gLV L , (5.29)

The field equations for Y ij, σ, ψi and Cµ give rise to the following map between the

standard Weyl multiplet and the dilaton Weyl multiplet

Y ij
g = 1

4
iσ−1ψ̄iψj − 1

2
gσ−1Lij , (5.30)

χig = 1
8
iσ−1 /Dψi + 1

16
iσ−2 /Dσψi − 1

32
σ−2γ ·Gψi

+1
4
σ−1γ · Tψi + 1

8
σ−2Y ijψj +

1

8
gσ−2ϕi , (5.31)

Dg = 1
4
σ−12cσ + 1

8
σ−2(Daσ)(Daσ)− 1

16
σ−2GµνG

µν

−1
8
σ−2ψ̄ /Dψ + 1

4
σ−2Y ijYij − 4iσ−1ψ̄χ+ 1

8
σ−2ψ̄µγνψG

µν

− 1
16
iσ−1ψ̄µψµG

µν +
(
− 26

3
Tab + 2σ−1Ĝab + 1

4
iσ−2ψ̄γabψ

)
T ab

+1
4
gσ−2N ,

D[aĤbcd] = 3
4
Ĝ[abĜcd] + 1

2
gD[aEbcd] , (5.32)
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where

−1
6
εabcdeĤedc = 8σ2Tab − σĜab − 1

4
iψ̄γabψ . (5.33)

The subscript g in the equations (5.30), (5.31) and (5.32) indicates that the expres-

sions for Y ij, χi and D now pick up g dependent terms. Note that the expressions

for χig and Dg are given up to 3- and 4-fermion terms respectively. Comparing the

above map with the one in the ungauged case, (3.21), it is clear that the map gets

deformed by the gauging. The Bianchi identity (5.32) implies that

Ĥµνρ = 3∂[µBνρ] + 3
2
C[µGνρ] + 1

2
gEµνρ − 3

4
σ2ψ̄[µγνψρ] − 3

2
iσψ̄[µγνρ]ψ . (5.34)

The above equation for Ĥµνρ is clearly not gauge invariant since Eµνρ has the gauge

invariance δΛEµνρ = 3∂[µΛνρ]. In order to balance that out, Bµν needs to have the

additional gauge invariance, δΛBµν = 2∂[µΛν] − 1
2
ΛGµν − 1

2
gΛµν .

Using the above expressions for Y ij, D, Tab and χi in the Lagrangian (5.29) and

imposing the gauge fixing conditions (5.20) we obtain the following off-shell Poincaré

Lagrangian

e−1LDg = 1
2
R− 1

4
σ−2GµνG

µν − 2gCµP
µ − 1

6
σ−4HµνρHµνρ

−N2 − gN(σ−2 + 2σ)− g2(1
4
σ−4 − σ−1)

−P µPµ +
√

2P µVµ + V ′µ
ijV ′µij − 3

2
σ−2∂µσ∂

µσ

−1
2
ψ̄µγ

µνρDνψρ − 3
2
σ−2ψ̄ /D

′
ψ − 3

2
iσ−2ψ̄γµγρψµ∂ρσ

−1
8
iσ−1ψ̄µγ

µνρσψνGρσ − 1
4
iσ−1ψ̄µψνG

µν − 1
4
σ−2ψ̄µγ

µνρψGνρ

+1
2
σ−2ψ̄µγνψG

µν − 1
8
iσ−3ψ̄γ ·Gψ + 1

2
√

2
ψ̄iµγ

µνρψjνPρδij

− 1
24
σ−2ψ̄µγ

µνρσλψνHρσλ + 1
4
σ−2ψ̄µγνψρHµνρ
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−1
6
iσ−3ψ̄µγ

µνρσψHνρσ + 1
2
iσ−3ψ̄µγνρψHµνρ − 5

24
σ−4ψ̄γ · Hψ

+ 1
4
√

2
igσ−2ψ̄iµγ

µνψjνδij + 1
2
√

2
igσψ̄iµγ

µνψjνδij − 1√
2
gψ̄iµγ

µψjδij

+ 1√
2
gσ−3ψ̄iµγ

µψjδij − 1
4
√

2
igσ−1ψ̄iψjδij − 5

4
√

2
igσ−4ψ̄iψjδij , (5.35)

where Hµνρ is defined as

Hµνρ = Bµνρ + 3
2
C[µGνρ] + 1

2
gEµνρ . (5.36)

This Lagrangian is invariant under the transformation rules given in (5.27), where

the underlined fields are now to be evaluated using the deformed expressions, (5.30)

to (5.33).

This theory has a U(1)V × U(1)C gauge group parametrized by λ and η respec-

tively. The fermion covariant derivatives are defined in (5.25) and contain Vµ. The

gauge transformations of the relevant fields are given by

δλVµ = ∂µλ , δηCµ = ∂µη ,

δλψ
i
µ = 1

2
λδijψµj , δλψ

i = 1
2
λδijψj . (5.37)

Let’s now eliminate the auxiliaries Vµ, V
′
µ
ij, N and Pµ, and present the dualiza-

tion of the 2-form gauge field Bµν to a vector field C̃µ and discuss the resulting

on-shell theory. We will show that the on-shell theory describes Einstein-Maxwell

supergravity as constructed in [66, 67].

Let us start with the field equations for N and V ′µ
ij

0 = 2N + g(σ−2 + 2σ) , (5.38)

0 = V ′µ
ij − 3

4
σ−2ψ̄iγµψ

j . (5.39)
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Using these two field equations in (5.35), we obtain the following Lagrangian (up to

4-fermion terms)

e−1L2 = 1
2
R + g2(2σ−1 + σ2)− 3

2
σ−2∂µσ∂

µσ − 1
4
σ−2GµνG

µν

−1
6
σ−4HµνρHµνρ − P µPµ +

√
2P µVµ − 2gCµP

µ

−1
2
ψ̄µγ

µνρDνψρ − 3
2
σ−2ψ̄ /D

′
ψ − 3

2
iσ−2ψ̄γµγρψµ∂ρσ

−1
8
iσ−1ψ̄µγ

µνρσψνGρσ − 1
4
iσ−1ψ̄µψνG

µν − 1
4
σ−2ψ̄µγ

µνρψGνρ

+1
2
σ−2ψ̄µγνψG

µν − 1
8
iσ−3ψ̄γ ·Gψ + 1

2
√

2
ψ̄iµγ

µνρψjνPρδij

− 1
24
σ−2ψ̄µγ

µνρσλψνHρσλ + 1
4
σ−2ψ̄µγνψρHµνρ

−1
6
iσ−3ψ̄µγ

µνρσψHνρσ + 1
2
iσ−3ψ̄µγνρψHµνρ − 5

24
σ−4ψ̄γ · Hψ

+ 1
4
√

2
igσ−2ψ̄iµγ

µνψjνδij + 1
2
√

2
igσψ̄iµγ

µνψjνδij − 1√
2
gψ̄iµγ

µψjδij

+ 1√
2
gσ−3ψ̄iµγ

µψjδij − 1
4
√

2
igσ−1ψ̄iψjδij − 5

4
√

2
igσ−4ψ̄iψjδij , (5.40)

where

Dµψ
i =

(
∂µ + 1

4
ωµ

abγab

)
ψi − 1

2
Vµδ

ijψj . (5.41)

Before proceeding it is useful to dualize the 2-form Bµν to a vector C̃µ. We do

this by adding a Lagrange multiplier term

L′ = −1
6
εµνρσλBµνρ∂σC̃λ . (5.42)

This Lagrange multiplier introduces another U(1) symmetry in the theory which

we will denote U(1)C̃ and which is parametrized by η̃. Since the Bianchi identity

∂[µBνρσ] = 0 is now imposed by the field equation for C̃µ, we can treat Bµνρ as an

independent field and compute its field equation. Taking both the Lagrangian (5.40)
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and the Lagrange multiplier term into account, the field equation for Bµνρ reads

Hµνρ = −1
2
σ4εµνρσλ∂σC̃λ − 1

8
σ2ψ̄σγ

µνρσλψλ + 3
4
σ2ψ̄[µγνψρ]

+1
2
iσ−3ψ̄σγ

µνρσψ + 3
2
iσψ̄µγνρψ − 5

8
ψ̄γµνρψ (5.43)

or, using (5.36),

Bµνρ = Hµνρ − 3
2
C [µGνρ] − 1

2
gEµνρ

= −1
2
σ4εµνρσλ∂σC̃λ − 3

2
C [µGνρ] − 1

2
gEµνρ − 1

8
σ2ψ̄σγ

µνρσλψλ

+3
4
σ2ψ̄[µγνψρ] + 1

2
iσ−3ψ̄σγ

µνρσψ + 3
2
iσψ̄µγνρψ − 5

8
ψ̄γµνρψ . (5.44)

From (5.43) we can read of the transformation rule for C̃µ can be given as δC̃µ =

−1
2
iσ−2ε̄ψµ + 1

2
σ−3ε̄γµψ . Using (5.44), the Lagrangian now reads (up to 4-fermion

terms)

e−1(L2 + L′) = 1
2
R + g2(2σ−1 + σ2)− P µPµ +

√
2P µVµ − 3

2
σ−2∂µσ∂

µσ

−1
4
σ−2GµνG

µν − 1
2
σ4∂[µC̃ν]∂

µC̃ν − 2gCµP
µ + 1

4
εµνρσλGµνCρ∂σC̃λ

+ 1
12
gεµνρσλEµνρ∂σC̃λ − 1

2
ψ̄µγ

µνρDνψρ − 3
2
σ−2ψ̄ /Dψ

−3
2
iσ−2ψ̄γµγρψµ∂ρσ − 1

8
iσ−1ψ̄µγ

µνρσψνGρσ − 1
4
iσ−1ψ̄µψνG

µν

−1
4
σ−2ψ̄µγ

µνρψGνρ + 1
2
σ−2ψ̄µγνψG

µν − 1
8
iσ−3ψ̄γ ·Gψ

+ 1
2
√

2
ψ̄iµγ

µνρψjνPρδij − 1
4
iσ2ψ̄[µψν]∂

µC̃ν − 1
8
iσ2ψ̄µγ

µνρσψν∂ρC̃σ

−σψ̄[µγν]ψ∂
µC̃ν + 1

2
σψ̄µγ

µνρψ∂νC̃ρ + 5
8
iψ̄γµνψ∂

µC̃ν

+ 1
4
√

2
igσ−2ψ̄iµγ

µνψjνδij + 1
2
√

2
igσψ̄iµγ

µνψjνδij − 1√
2
gψ̄iµγ

µψjδij

+ 1√
2
gσ−3ψ̄iµγ

µψjδij − 1
4
√

2
igσ−1ψ̄iψjδij − 5

4
√

2
igσ−4ψ̄iψjδij . (5.45)
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Let us now consider the field equations for Vµ and Eµνρ

0 = P µ + 1
4
√

2
ψ̄iνγ

µνρψjρδij − 3
4
√

2
σ−2ψ̄iγ

µψjδ
ij , (5.46)

0 = εµνρσλ∂µ

(
−Pν + 1√

2
Vν − gCν − 1

2
gC̃ν + 1

4
√

2
ψ̄τi γντξψ

ξ
jδ
ij
)
. (5.47)

The latter equation implies that

Pµ = ∂µφ+ 1√
2
Vµ − gCµ − 1

2
gC̃µ + 1

4
√

2
ψ̄τi γµτξψ

ξ
jδ
ij, (5.48)

where φ is a Stueckelberg scalar that transforms under U(1)V × U(1)C × U(1)C̃ as

δgφ = − 1√
2
λ+ gη + 1

2
gη̃ . (5.49)

We can break the gauge group down to U(1)2 by fixing the Stueckelberg scalar to a

constant φ = φ0 . If we now use (5.48) in combination with (5.46) we obtain

Vµ = −
√

2g(Cµ + 1
2
C̃µ) + 3

4
σ−2ψ̄iγµψ

jδij (5.50)

and find a decomposition law for the U(1) parameters

λ = −
√

2g(η + 1
2
η̃) . (5.51)

Using this in the Lagrangian given in (5.45) we find that the on-shell theory is given,

up to 4-fermion terms, by
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e−1LEM = 1
2
R + g2(2σ−1 + σ2)− 3

2
σ−2∂µσ∂

µσ − 1
4
σ−2GµνG

µν

−1
2
σ4∂[µC̃ν]∂

µC̃ν + 1
4
εµνρσλGµνCρ∂σC̃λ

−1
2
ψ̄µγ

µνρ∇̃νψρ − 3
2
σ−2ψ̄ /̃∇ψ

−3
2
iσ−2ψ̄γµγρψµ∂ρσ − 1

8
iσ−1ψ̄µγ

µνρσψνGρσ − 1
4
iσ−1ψ̄µψνG

µν

−1
4
σ−2ψ̄µγ

µνρψGνρ + 1
2
σ−2ψ̄µγνψG

µν − 1
8
iσ−3ψ̄γ ·Gψ

−1
4
iσ2ψ̄[µψν]∂

µC̃ν − 1
8
iσ2ψ̄µγ

µνρσψν∂ρC̃σ − σψ̄[µγν]ψ∂
µC̃ν

+1
2
σψ̄µγ

µνρψ∂νC̃ρ + 5
8
iψ̄γµνψ∂

µC̃ν

+ 1
4
√

2
igσ−2ψ̄iµγ

µνψjνδij + 1
2
√

2
igσψ̄iµγ

µνψjνδij − 1√
2
gψ̄iµγ

µψjδij

+ 1√
2
gσ−3ψ̄iµγ

µψjδij − 1
4
√

2
igσ−1ψ̄iψjδij − 5

4
√

2
igσ−4ψ̄iψjδij , (5.52)

where

∇̃µψ
i
ν =

(
∂µ + 1

4
ωµ

abγab

)
ψiν + 1√

2
g(Cµ + 1

2
C̃µ)δijψνj ,

∇̃µψ
i =

(
∂µ + 1

4
ωµ

abγab

)
ψi + 1√

2
g(Cµ + 1

2
C̃µ)δijψj . (5.53)

From (5.37) we find that ψiµ transforms under the remaining gauge symmetry as

δgψ
i
µ = − 1√

2
g(η + 1

2
η̃)δijψµj ,

δgψ
i = − 1√

2
g(η + 1

2
η̃)δijψj . (5.54)

The theory given in (5.52) describes Einstein-Maxwell Supergravity constructed

in [66]. It consists of the fields {eµa, Cµ, ψµi, σ, C̃µ, ψi} accounting for 20+20 on-shell

degrees of freedom. The supersymmetry transformation rules, up to 3-fermion terms,
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are

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = (∂µ + 1
4
ωµ

abγab)ε
i + 1√

2
g(Cµ + 1

2
C̃µ)δijεj − 1

6
√

2
ig(σ−2 + 2σ)γµδ

ijεj

+ 1
12
iσ−1(γµ

νρ − 4δνµγ
ρ)(Gνρ + σ3∂[νC̃ρ])ε

i ,

δCµ = −1
2
iσε̄ψµ + 1

2
ε̄γµψ,

δσ = 1
2
iε̄ψ ,

δC̃µ = −1
2
iσ−2ε̄ψµ + 1

2
σ−3ε̄γµψ ,

δψi = −1
2
i/∂σεi − 1

12
γµν(Gµν − 2σ3∂µC̃ν)ε

i + 1
3
√

2
g(σ2 − σ−1)δijεj . (5.55)

The theory has a U(1)×U(1) gauge symmetry parametrized by η and η̃. The gauge

transformation rules for the gauge vectors and the fermions are given in (5.37) and

(5.54) respectively.

5.2.2.1 Truncation to Minimal Gauged On-Shell Supergravity

In this subsection we show that we can consistently truncate the fields (σ, ψi, C̃µ)

to obtain on-shell pure gauged D = 5, N = 2 supergravity [66].

Consider the field equation for σ

0 = 3σ−22σ − 3σ−3∂µσ∂
µσ + 1

2
σ−3GµνG

µν − 2σ3∂[µC̃ν]∂
µC̃ν

+1
8
iσ−2ψ̄µγ

µνρσψνGρσ + 1
4
iσ−2ψ̄µψνG

µν − 1
2
iσψ̄[µψν]∂

µC̃ν

−1
4
iσψ̄µγ

µνρσψν∂ρC̃σ + 2g2(σ − σ−2)− 1
2
√

2
igσ−3ψ̄iµγ

µνψjνδij

+ 1
2
√

2
igψ̄iµγ

µνψjνδij + (ψi-terms) (5.56)
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and the field equation for ψi

0 = −3
2
iσ−2γµγνψiµ∂νσ − 1

4
σ−2γµνρψiµGνρ + 1

2
σ−2γµψ

i
νG

µν

+1
2
σγµνρψiµ∂νC̃ρ − σγ[µψ

i
ν]∂

µC̃ν + 1√
2
gγµψ

µ
j δ

ij

− 1√
2
gσ−3γµψ

µ
j δ

ij + (ψi-terms) , (5.57)

both up to 4-fermion terms. From these equations and from the transformation rules

of σ and ψi in (5.55), we observe that one can consistently eliminate the matter fields

(σ, ψi, C̃µ) by setting σ = 1, ψi = 0 and C̃µ − Cµ = ∂µa, where a is a Stueckelberg

scalar. The gauge transformation of a is given by

δga = η − η̃ . (5.58)

We can break the U(1) × U(1) gauge symmetry down to U(1) by setting a to a

constant a = a0. This implies

Cµ = C̃µ , η = η̃ . (5.59)

Performing this truncation in (5.52) we obtain the on-shell Lagrangian for pure

gauged D = 5, N = 2 supergravity

e−1LEM |σ=1,ψ=0 = 1
2
R + 3g2 − 3

8
GµνG

µν + 1
8
εµνρσλCµGνρGσλ

−1
2
ψ̄µγ

µνρ∇νψρ − 3
8
iψ̄µψνG

µν − 3
16

iψ̄µγ
µνρσψνGρσ

+ 3
4
√

2
igψ̄iµγ

µνψjνδij , (5.60)
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where we defined

∇µψ
i
ν =

(
∂µ + 1

4
ωµ

abγab

)
ψiν + 3

2
√

2
gCµδ

ijψνj . (5.61)

This Lagrangian is invariant under the transformation rules for eaµ, ψiµ and Cµ given

in (5.55) with σ = 1, ψi = 0 and C̃µ = Cµ. The Lagrangian (5.60) agrees completely

with the result obtained in [66]

5.2.3 σ = 1 Gauge Fixing

If we do not insist on the canonical Einstein-Hilbert term in the action, there

exists a set of gauge choices facilitating the derivation of curvature squared invariant.

These gauge choices are

Lij =
1√
2
δijL, σ = 1, ψi = 0, bµ = 0. (5.62)

The first gauge choice breaks the SU(2)R down to U(1)R whereas the second one

fixes dilatations, the third one fixes special supersymmetry transformations and the

last one fixes conformal boosts. After fixing the gauge, the remaining fields are

eµ
a(10), ψiµ(32), Cµ(4), Bµν(6), ϕi(8), L(1), Eµνρ(4), N(1), Vµ(4), V

′ij
µ (10). (5.63)

To maintain the gauge (5.62), the compensating transformations are required

including a compensating SU(2), a compensating special supersymmetry and a com-

pensating conformal boost with parameters (up to cubic fermion terms)

λij = − 1√
2L

(
Sk(iδj)lεkl

)
, Sij = ε̄(iϕj) − 1

2
δij ε̄kϕlδkl,

ηi =
(
− γ · T + 1

4
γ · Ĝ

)
εi, ΛKµ = −1

4
iε̄φµ − 1

4
iη̄ψµ + ε̄γµχ. (5.64)
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Imposing the gauge fixing conditions (5.62) in the linear multiplet action (5.19), one

can obtain a consistent Poincaré supergravity whose action is given by1

e−1LDLR = 1
2
LR + 1

2
L−1∂µL∂

µL− 1
4
LGµνG

µν − 1
6
LHµνρH

µνρ

−L−1N2 − L−1PµP
µ −
√

2PµV
µ + LV

′ij
µ V

′µ
ij (5.65)

The Poincaré supergravity presented above is invariant under the following super-

symmetry transformation rules (up to cubic fermion terms)

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = Dµ(ω−)εi − 1
2
iĜµνγ

νεi ,

δVµ
ij = 1

2
ε̄(iγνψ̂j)µν − 1

6
ε̄(iγ · Ĥψj)µ − 1

4
iε̄(iγ · Ĝψj)µ + ∂µλ

ij + λ
(i
kV

j)k
µ ,

δCµ = −1
2
iε̄ψµ ,

δBµν = 1
2
ε̄γ[µψν] + C[µδ(ε)Cν] ,

δL = 1√
2
iε̄iϕjδij ,

δϕi = − 1
2
√

2
i/∂Lδijεj − 1√

2
iV ′µ

(i
kδ
j)kLεj − 1

2
i /Eεi + 1

2
Nεi + 1

4
√

2
Lγ · Ĝδijεj

− 1
6
√

2
iLγ · Ĥδijεj,

δEµνρ = −ε̄γµνρϕ+ 1√
2
iLψ̄i[µγνρ]ε

jδij ,

δN = 1
2
ε̄γµ
(
∂µ + 1

4
ωµ

bcγbc

)
ϕ+ 1

2
ε̄iγaVa ijϕ

j − 1
4
√

2
iε̄iγa/∂Lψjaδij

+ 1
4
√

2
iε̄iγaγbV ′b(i

kδj)kψ
j
a + 1

4
iε̄γa /Eψa − 1

4
Nε̄γaψa + 1

8
√

2
Lε̄iγaγ · Ĝψjaδij

−
√

2Lε̄iγaφjaδij + 1
8
iε̄γ · Ĥϕ, (5.66)

where we have used the torsionful spin connection, defined as ωµ
ab
± = ωµ

ab ± Ĥµ
ab ,

and the supercovariant curvatures under the gauge (5.62) are [68]

1The action directly coming from (5.19) by imposing (5.62) is equal to−e−1LLR.
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ψ̂µν = 2D[µ(ω−)ψν] + iγλĜλ[µψν] , (5.67)

Ĝµν = 2∂[µCν] + 1
2
iψ̄[µψν] , (5.68)

Ĥµνρ = 3∂[µBνρ] − 3
4
ψ̄[µγνψρ] + 3

2
C[µGνρ] . (5.69)

Finally, we note that the gauging procedure described for the L = 1 case can be

repeated exactly to gauge the σ = 1 gauge fixing choice.
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6. CURVATURE SQUARED INVARIANTS IN FIVE DIMENSIONAL

N = 2 SUPERGRAVITY∗

In this section, we use five dimensional to construct off-shell curvature squared

invariants in five dimensions. As mentioned before, in five dimensions, there are

two inequivalent Weyl multiplets: the standard Weyl multiplet and the dilaton Weyl

multiplet. The main difference between these two Weyl multiplets is that the dilaton

Weyl multiplet contains a graviphoton in its field content whereas the standard Weyl

multiplet does not. A supergravity theory based on the standard Weyl multiplet

requires coupling to an external vector multiplet.

In section 6.1 we first review the previously constructed minimal off-shell curva-

ture squared invariant purely based on the dilaton Weyl multiplet: the supersym-

metric Riemann squared action. Then, we construct the supersymmetric completion

of Gauss-Bonnet combination and minimal off-shell Ricci scalar squared invariant.

In section 6.2, we derive the vector multiplets coupled Rieman tensor squared and

Ricci scalar squared invariants and review the vector multiplets coupled Weyl ten-

sor squared for a complete discussion. Starting from section 6.3 we begin to use

the standard Weyl multiplet, and after a brief discussion about the supersymmetric

Weyl tensor squared, we construct an off-shell vector multiplets coupled Ricci scalar

squared invariant.

∗Portions of this chapter are reprinted from Supersymmetric Completion of Gauss-Bonnet Com-
bination in Five Dimensions by Mehmet Ozkan and Yi Pang, 2013. JHEP 1303, 158 (2013),
Copyright 2013, with permission from SISSA.
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6.1 Minimal Curvature Squared Actions in Dilaton Weyl Multiplet

The five dimensional minimal off-shell Poincaré supergravity multiplet consists

of the fields

eµ
a(10), ψiµ(32), Cµ(4), Bµν(6), ϕi(8), L(1), Eµνρ(4), N(1), Vµ(4), V

′ij
µ (10), (6.1)

where the number in the bracket denotes the off-shell degrees of freedom carried by

the fields. The map from the dilaton Weyl multiplet to the standard Weyl multi-

plet (3.21) plays a crucial role in the construction of curvature squared actions. In

particular, the composite expression for D contains a curvature term. Thus, the

existence of a D2 term in a curvature squared action means the curvature terms get

an extra R2 contribution from the composite expression of D. As we shall see, this

fact is essential in the construction of supersymmetric completion of Gauss-Bonnet

combination [59].

6.1.1 Riemann Squared Action

In this section, we construct the supersymmetric Riemann squared action. To

begin with, we shall review a map between the Yang-Mills super-multiplet and a set

of fields in the Poincaré multiplet (6.1).

In establishing the map between Yang-Mills and Poincaré multiplets, it is im-

portant to consider the full supersymmetry transformations, including the cubic

fermion terms which have been omitted so far. In the following, we shall need the

full supersymmetry transformation rules for the fields (eµ
a, ψiµ, V

ij
µ , Cµ, Bµν). Up to

cubic fermions, the transformation rules of (eµ
a, ψiµ, V

ij
µ , Cµ, Bµν) are already given

in (5.66). In this section, we will, however, keep the complete SU(2) symmetry, i.e.

we do not impose Lij = 1√
2
Lδij. In this way we do not need to accommodate for
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the compensating SU(2) transformations proportional to λij1. The full version of the

supersymmetry transformations, in the σ = 1 gauge fixing (5.62), are given by [68]

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = Dµ(ω−)εi − 1
2
iĜµνγ

νεi ,

δVµ
ij = 1

2
ε̄(iγνψj)µν − 1

6
ε̄(iγ · Ĥψj)µ − 1

4
iε̄(iγ · Ĝψj)µ ,

δCµ = −1
2
iε̄ψµ ,

δBµν = 1
2
ε̄γ[µψν] + C[µδ(ε)Cν] . (6.2)

Next, we consider the following supersymmetry transformations [68]

δωµ
ab
+ = −1

2
iĜabε̄ψµ − 1

2
ε̄γµψ̂

ab,

δψ̂iab = 1
4
γcdR̂cdab(ω+)εi − V̂abijεj + 1

2
iγµDµ(ω+)Ĝabε

i − 1
4
Ĝabγ · Ĝεi,

δĜab = −1

2
iε̄ψ̂ab,

δV̂ab
ij = −1

2
ε̄(i /D(ω, ω−)ψ̂

j)
ab − 1

24
ε̄(iγ · Ĥψj)ab − iε̄(iĜd

[aψ̂
j)
b]d , (6.3)

where R̂abcd(ω+) denotes the super-covariant curvature of the torsionful connection

ω+. In Dµ(ω+)Ĝab, the connection ω+ rotates both the indices a and b, and in

Dµ(ω, ω−)ψ̂jab the connection ω rotates the spinor index, while the connection ω−

rotates the Lorentz vector indices. V̂µν
ij is the supercovariant curvature of V ij

µ under

the gauge choices (5.62)

V̂µν
ij = Vµν

ij − ψ̄(i
[µγ

ρψ̂
j)
ν]ρ + 1

6
ψ̄(i
µ γ · Ĥψj)ν + 1

4
iψ̄(i

µ γ · Ĝψj)ν . (6.4)

1After we construct the action, we can still impose the gauge Lij = 1√
2
Lδij . This will not affect

the Riemann squared invariant.
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We now compare the above transformation rules with those of the D = 5, N = 2

Yang-Mills multiplet in σ = 1 gauge fixing (5.62) [68]

δAΣ
µ = −1

2
iρΣε̄ψµ + 1

2
ε̄γµλ

Σ ,

δY ij Σ = −1
2
ε̄(i /Dλj)Σ − 1

24
ε̄(iγ · Ĥλj)Σ − 1

2
igε̄(ifΛΥ

ΣρΛλj)Υ ,

δλiΣ = −1
4

(
γ · F̂Σ − ρΣγ · Ĝ

)
εi − 1

2
i /DρΣεi − Y ij Σεj ,

δρΣ = 1
2
iε̄λΣ , (6.5)

where F̂Σ
µν and Dµ ρΣ can be found in (3.26) and (3.25) by imposing the gauge choices

(5.62)

DµλiΣ = (∂µ + 1
4
ωµ

abγab)λ
iΣ − V ij

µ λ
Σ
j + gfΛΥ

ΣAΛ
µλ

iΥ

+1
4

(
γ · F̂Σ − ρΣγ · Ĝ

)
ψiµ + 1

2
i /DρΣψiµ + Y ij Σψµ j . (6.6)

We observe that the transformations (6.3) and (6.5) become identical by making the

following identifications [68]

(AΣ
µ , Y ij

Σ , λiΣ, ρΣ) ←→ (ωabµ+, −V̂abij, −ψ̂iab, Ĝab). (6.7)

Therefore, upon constructing a Yang-Mills action, and gauge fixing by using the

conditions (5.62), one can construct a Riemann tensor squared invariant.

At this stage, we have three options leading to the same Yang-Mills action: the

superconformal tensor calculus, a special choice of very special geometry (4.10), and

dimensional reduction from the six dimensional theory [68].

From the superconformal tensor calculus viewpoint, we start from the following
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identification

Lij = Yij. (6.8)

This identification, again, has the wrong Weyl weight and fails to satisfy the S-

invariance of Lij. The one with the right Weyl weight and invariant under the

S-transformation can be given by

Lij = σYij + 1
4
iρσ−1ψ̄(iψj) − 1

2
iλ̄(iψj). (6.9)

since this time we use the dilaton Weyl multiplet, thus can utilize the scalar of the

dilaton Weyl multiplet, σ. After employing a sequence of Q-and S-transformations

to (6.9), we obtain the full expressions for the components of linear multiplet in

terms of the fields in the vector multiplet and dilaton Weyl multiplet

Lij = σYij + 1
4
iρσ−1ψ̄(iψj) − 1

2
iλ̄(iψj),

ϕi = 1
2
iσ /Dλi + 1

2
iρ /Dψi + ργ · Tψi + σγ · Tλi − 8σρχi − 1

8
γ · Ĝλi

−1
8
γ · F̂ψi + 1

4
/Dσλi + 1

4
/Dρψi − 1

2
Yijψ

j − 1
8
iσ−1λjψ̄iψj,

Ea = Db(−1
2
σF̂ ab − 1

2
ρĜab + 8σρT ab − 1

8
iλ̄γabψ)− 1

8
εabcdeGbcFde,

N = 1
2
ρ2Cσ + 1

2
σ2Cρ+ 1

2
DaρDaσ − 1

4
ĜabF̂

ab − 4ρσ
(
D + 26

3
T 2
)

+4σF̂ abTab + 4ρĜabTab + 8iσχ̄λ+ 8iρχ̄ψ − 1
4
λ̄ /Dψ − 1

4
ψ̄ /Dλ

+iψ̄γ · Tλ. (6.10)

Inserting above expressions into density formula (4.1), we derive an action for an

abelian vector multiplet coupled to a dilaton Weyl multiplet. Generalization of the

action for abelian vector multiplet to that for Yang-Mills multiplet is straightforward.
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The result is given by

e−1LYM = aΣΛ

(
σY Σ

ij Y
ij Λ − 1

4
σFΣ

µνF
µν Λ − 1

2
ρΣFΛ

µνG
µν + 8σρΣFΛ

µνT
µν + 1

2
ρΣρΛ2Cσ

+1
2
σρΣ2CρΛ + 1

2
ρΣDaρΛDaσ − 4σρΣρΛ(D + 26

3
T 2) + 4ρΣρΛGµνT

µν

−1
8
εµνρσλFΣ

µνF
Λ
ρσCλ

)
. (6.11)

Then, if we apply the gauge fixing conditions (5.62), we obtain

e−1LYM|σ=1 = Y Σ
ij Y

ijΣ − 1
2
Dµρ

ΣDµρΣ − 1
4
(FΣ

ab − ρΣGab)(F
abΣ − ρΣGab)

−1
8
εabcde(FΣ

ab − ρΣGab)(F
Σ
cd − ρΣGcd)Ce

−1
2
εabcde(FΣ

ab − ρΣGab)BcdDeρ
Σ . (6.12)

One can also start from the vector multiplet action (4.10), and use the map between

the Weyl multiplets (3.21). In that case, if we make the following choice for CIJK ,

CIJK =

 C1IJ = aIJ

0 otherwise.
(6.13)

we obtain the same action given in (6.12) upon gauge fixing (5.62). Finally, using the

map (6.7) in above action (6.12), we obtain the supersymmetric Riemann squared

action. Its purely bosonic part is given as

e−1LDRiem2 = −1
4

(
Rµνab(ω+)−GµνGab

) (
Rµνab(ω+)−GµνGab

)
−1

2
Dµ(ω+)GabDµ(ω+)Gab + Vµν

ijV µν
ij

−1
8
εµνρσλ

(
Rµνab(ω+)−GµνGab

) (
Rρσ

ab(ω+)−GρσG
ab
)
Cλ

−1
2
εµνρσλBρσ (Rµνab(ω+)−GµνGab)Dλ(ω+)Gab . (6.14)
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Finally, we notice that the actions (6.12) and (6.14) obtained via superconformal ten-

sor calculus match with those derived through the circle reduction of six-dimensional

actions [68].

6.1.2 Supersymmetric Gauss-Bonnet Combination

In this section, we shall construct the supersymmetric completion of Weyl squared

invariant in order to obtain the supersymmetric completion of the Gauss-Bonnet

combination

e−1LGB = RµνρσR
µνρσ − 4RµνR

µν +R2. (6.15)

According to the usual routine, one may think of constructing three independent cur-

vature squared super-invariants first, then combining them with proper coefficients

to form a supersymmetric Gauss-Bonnet combination. However, as we mentioned

before, two independent curvature squared invariants may be enough to obtain the

supersymmetric completion of Gauss-Bonnet combination based on counting the de-

grees of freedom and the cancelation of the kinetic term for the auxiliary vector V ij
µ .

This section is devoted to construct another curvature squared invariant.

We start from the conventional constraint imposed on the supercovariant curva-

ture of ωµ
ab [36, 37]

eνbR̂µν
ab(M) = 0, (6.16)

where R̂µν
ab(M) is defined in (3.7). The conventional constraint (6.16) implies that

the supercovariant curvature of ωµ
ab gives the Weyl Tensor, which is defined as
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Cµνρσ = Rµνρσ − 1
3
(gµρRνσ − gνρRµσ − gµσRνρ + gνσRµρ)

+ 1
12

(gµρgνσ − gµσgνρ)R. (6.17)

Its square is

CµνρσC
µνρσ = RµνρσR

µνρσ − 4
3
RµνR

µν + 1
6
R2. (6.18)

In the rest of this paper, we use Ĉµνρσ to denote the superconformally covariant Weyl

tensor instead of R̂µν
ab(M). Because the off-shell supersymmetric Riemann squared

invariant is known, the Gauss-Bonnet super-invariant can be obtained by combining

the Riemann squared invariant with another curvature squared invariant in which

the curvature squared terms take the form

CµνρσC
µνρσ + 1

6
R2. (6.19)

Although, none of the terms in (6.19) is a supercovariant quantity, we can replace

(6.19) by the following supercovariant expression

ĈµνρσĈ
µνρσ + 512

3
D2, (6.20)

since the composite field D (3.21) under the gauge choices (5.62) reads

D = − 1
32
R− 1

16
GabGab − 26

3
T abTab + 2T abGab + fermions. (6.21)

Therefore, if (6.20) can be supersymmetrized, we will get the desired the curvature
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squared terms in (6.19). When carrying out the supersymmetrization of (6.20),

we find that in fact, the D2 term is indispensable to the supersymmetrization of

the Weyl tensor squared term, moreover, the relative coefficient between the Weyl

squared term and the D2 exactly matches with the one in (6.20), the magical 512
3

.

Let us first supersymmetrize the square of Weyl tensor by using (4.1) in which

the fields of linear multiplet are expressed as composites in terms of fields in dilaton

Weyl multiplet. We notice that to obtain the Weyl tensor squared term, N should

begin with ĈµνρσĈ
µνρσ. The complete expression for N include a term 512

3
D2. After

expanding D in terms of independent fields, we find that the curvature squared terms

take the form of CµνρσCµνρσ + 1
6
R2, which is different from those in the supersym-

metric completion of ĈµνρσĈ
µνρσ considered in [40] by using standard Weyl multiplet

where D is merely an auxiliary field. We obtain full composite expressions for the

fields of linear multiplet in terms of fields in the dilation Weyl multiplet as

Lij = 1
4
i
¯̂
R

(i
ab(Q)R̂j)ab(Q) + 256

3
iχ̄(iχj) + 16

3
R̂ab

ij(V )T ab,

ϕi = −1
8
γcdR̂

i
ab(Q)Ĉabcd − 4iγcR̂

i
ab(Q)DaT bc + 128

3
χiD

+8iγcDcR̂i
ab(Q)T ab + 8iγaDcR̂i

bc(Q)T ab − 64
3

iγabγcDaTbc χi + 1024
9
T 2 χi

+128
3

iγaDbχiT ab + 16
3
γabR̂

i
cd(Q)T abT cd + 1

2
R̂ab i

j(V )R̂j
ab(Q)

−8
3
R̂ab i

j(V )γabχ
j,

Ea = 1
16
εabcdeC

bcfgCde
fg − 1

12
εabcdeV

bc
ijV

de ij

+Db
(

4CabcdT
cd − 64

3
DTab − 128

9
TabT

2 − 512
3
Tac T

cd Tbd

)
−32εabcdeDb

(
2
3
T cfDfT de + T cfDdT ef

)
+ fermions,

N = 1
8
CabcdCabcd + 64

3
D2 + 1024

9
T 2D − 16

3
CabcdT

ab T cd − 1
3
Vab

ijV ab
ij

−64
3
DaTbcDaT bc + 64

3
DbTacDaT bc − 128

3
TabDbDcT ac

−128
3
εabcdeT

abT cdDfT ef + 1024T 4 − 2816
27

(T 2)2 + fermions. (6.22)
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where the following notations are introduced for simplicity

T 4 ≡ TabT
bcTcdT

da, (T 2)2 ≡ (TabT
ab)2. (6.23)

Under the gauge choices (5.62) TabDbDcT ac is given by

TabDbDcT ac = Tab∇b∇cT
ac + 2

3
RbcTabT

a
c − 1

12
T 2R + fermions, (6.24)

where ∇µ only contains the usual spin connection

∇µTab = ∂µTab − 2ωµ
c
[aTb]c. (6.25)

To obtain (6.22) we have used the Q- and S- transformations of supercovariant

curvatures which can be found in [37]. Substituting the composite expressions (6.22)

into the density formula (4.1), we obtain the following action

e−1LρR2 = 1
8
ρCabcdCabcd + 64

3
ρD2 + 1024

9
ρT 2D − 32

3
DTabF

ab

−16
3
ρCabcdT

ab T cd + 2CabcdT
cdF ab + 1

16
εabcdeA

aCbcfgCde
fg

− 1
12
εabcdeA

aV bc
ijV

de ij + 16
3
YijVab

ijT ab − 1
3
ρVab

ijV ab
ij + 64

3
ρDbTacDaT bc

−128
3
ρTabDbDcT ac − 64

3
ρDaTbcDaT bc + 1024ρ T 4 − 2816

27
ρ(T 2)2

−64
9
TabF

abT 2 − 256
3
TacT

cdTbdF
ab − 32

3
εabcdeT

cfDfT deF ab

−16εabcdeT
c
fDdT efF ab − 128

3
ρεabcdeT

abT cdDfT ef , (6.26)

where

Vµν
ij ≡ 2∂[µVν]

ij − 2V[µ
k(iVν]k

j). (6.27)
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This action (6.26) describes the coupling between an external vector multiplet and

dilaton Weyl multiplet. If we simply combine above action with the Riemann tensor

squared invariant, we are not able to obtain the supersymmetric Gauss-Bonnet com-

bination since the curvature squared terms in (6.26) is multiplied by ρ which stays

the same after imposing the gauge choices (5.62). By comparing the superconformal

transformation rules of vector multiplet

δρ = 1
2
iε̄λ,

δAµ = −1
2
σε̄ψµ + 1

2
ε̄γµλ,

δλi = −1
4
γ · F̂ εi − 1

2
i /Dρεi + ργ · Tεi − Y ijεj + ρηi,

δY ij = −1
2
ε̄(i /Dλj) + 1

2
iε̄(iγ · Tλj) − 4iρε̄(iχj) + 1

2
iη̄(iλj), (6.28)

with those of (σ, Cµ, ψ
i) in the dilaton Weyl multiplet

δσ = 1
2
iε̄ψ,

δCµ = −1
2
σε̄ψµ + 1

2
ε̄γµψ,

δψi = −1
4
γ · Ĝεi − 1

2
i /Dσεi + σγ · Tεi − 1

4
iσ−1εjψ̄

iψj + σηi, (6.29)

we notice that there exists a map from vector multiplet to (σ, Cµ, ψ
i)

ρ→ σ, Aa → Ca, λi → ψi, Y ij → 1
4
iσ−1ψ̄(iψj), (6.30)

since

δ(1
4
iσ−1ψ̄(iψj)) = −1

2
ε̄(i /Dψj) + 1

2
iε̄(iγ · Tψj) − 4iσε̄(iχj) + 1

2
iη̄(iψj). (6.31)
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Using (6.30), we obtain the supersymmetrization of CµνρσC
µνρσ purely based on

the fields of dilaton Weyl multiplet

e−1LσC2 = 1
8
σCabcdCabcd + 64

3
σD2 + 1024

9
σT 2D − 32

3
DTabG

ab

−16
3
σCabcdT

ab T cd + 2CabcdT
cdGab + 1

16
εabcdeC

aCbcfgCde
fg

− 1
12
εabcdeC

aV bc
ijV

de ij + 16
3
YijVab

ijT ab − 1
3
σVab

ijV ab
ij + 64

3
σDbTacDaT bc

−128
3
σTabDbDcT ac − 64

3
σDaT bcDaT bc + 1024σ T 4 − 2816

27
σ(T 2)2

−64
9
TabG

abT 2 − 256
3
Tac T

cd TbdG
ab − 32

3
εabcdeT

cfDfT deGab

−16εabcdeT
c
fDdT efGab − 128

3
σεabcdeT

abT cdDfT ef . (6.32)

Imposing the gauge fixing conditions (5.62), we obtain

e−1LDσC2|σ=1 = 1
8
RabcdR

abcd − 1
6
RabR

ab + 1
48
R2 + 64

3
D2 + 1024

9
T 2D

−16
3
RabcdT

ab T cd + 2RabcdT
cdGab + 1

3
RTabG

ab − 8
3
RbdGc

bT cd

−64
3
RbcTabT

a
c + 8

3
RT 2 − 32

3
DTabG

ab + 1
16
εabcdeC

aRbcfgRde
fg

− 1
12
εabcdeC

aV bc
ijV

de ij − 1
3
Vab

ijV ab
ij − 64

3
∇aTbc∇aT bc

+64
3
∇bTac∇aT bc − 128

3
Tab∇b∇cT

ac − 128
3
εabcdeT

abT cd∇fT
ef

+1024T 4 − 2816
27

(T 2)2 − 64
9
TabG

abT 2 − 256
3
Tac T

cd TbdG
ab

−32
3
εabcdeT

cf∇fT
deGab − 16εabcdeT

c
f∇dT efGab , (6.33)

where

D ≡ − 1
32
R− 1

16
GabGab − 26

3
T abTab + 2T abGab + fermions,

Tab ≡ 1
8
Gab + 1

48
εabcdeH

cde + fermions. (6.34)
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So far, we obtained the supersymmetric completion of Einstein-Hilbert, Riemann

tensor squared and Weyl tensor squared actions. Because of the off-shell nature of

these invariants, we can combine them to form a more general theory with two free

parameters

L = LDLR + αLDRiem2 + βLDσC2 |σ=1 . (6.35)

The Gauss-Bonnet combination corresponds to case with β = 3α in which the kinetic

term of auxiliary vector V ij
µ vanishes. Using β = 3α, the purely bosonic part of

Lagrangian (6.35) takes the form

e−1
(
LDLR + αLGB

)
= 1

2
LR + 1

2
L−1∂µL∂

µL− 1
4
LGµνG

µν − 1
6
LHµνρH

µνρ

−L−1N2 − L−1PµP
µ −
√

2PµV
µ + LV

′ij
µ V

′µ
ij

+α
[
− 1

4

(
Rµνab(ω+)−GµνGab

)(
Rµνab(ω+)−GµνGab

)
+3

8
RµνρσR

µνρσ − 1
2
RµνR

µν + 1
16
R2 + 64D2 − 64

3
TµνG

µνT 2

−1
8
εµνρσλ

(
Rµνab(ω+)−GµνGab

)(
Rρσ

ab(ω+)−GρσG
ab
)
Cλ

−1
2
εµνρσλBρσ

(
Rµνab(ω+)−GµνGab

)
∇λ(ω+)Gab

+ 3
16
εµνρσλC

µRνρτδRσλ
τδ − 1

4
εµνρσλC

µV νρ
ijV

σλ ij

−16RµνρσT
µν T ρσ + 6RµνρσG

µνT ρσ +RTµνG
µν + 8RT 2

−64RµνTσµT
σ
ν − 8RµνGσ

µT σν − 32DTµνG
µν + 1024

3
T 2D

−64∇µTνρ∇µT νρ + 64∇µT νρ∇νTµρ − 128Tµν∇ν∇σT
µσ

−1
2
∇µ(ω+)Gab∇µ(ω+)Gab + 3072T 4 − 2816

9
(T 2)2

−256Tµσ T
σρ TρνG

νµ − 128εµνρσλT
µνT ρσ∇τT

λτ

−32εµνρσλG
µνT ρτ∇τT

σλ − 48εµνρσλG
µνT ρτ∇σT λτ

]
. (6.36)

65



We notice that the ratio of the coefficients in front of the Gauss-Bonnet combination

and the Chern-Simons coupling εµνρσλC
µRνρδτRσλ

δτ is 1
2

which is consistent with the

value resulting from the circle reduction of the partial results given in [39, 31] on the

six-dimensional supersymmetric Gauss-Bonnet combination.

6.1.2.1 On-Shell Theory

In this subsection, we shall study the on-shell theory of the Gauss-Bonnet ex-

tended supergravity to first order in α upon eliminating the auxiliary fields. In

order to do so, we first present the minimal ungauged on-shell Poincaré supergravity

by eliminating the the auxiliary fields (Eµνρ, Vµ, N, Vµ
′ij) and truncating the matter

multiplet (Bµν , L, ϕ
i). We then obtain the on-shell Gauss-Bonnet extended Einstein-

Maxwell supergravity to first order in α by using the equations derived from the

two-derivative Lagrangian that is zeroth order in α.

To eliminate the auxiliary fields (N,Pa, Vµ, Vµ
′ij), we use their equations of motion

0 = N, 0 = Pµ, 0 = V
′ij
µ , (6.37)

0 = εµνρσλ∂µ(−L−1Pν − 1√
2
Vν) . (6.38)

Equation (6.38) implies that locally

−L−1Pµ − 1√
2
Vµ = ∂µφ , (6.39)

where φ is a Stueckelberg scalar. Eliminating this scalar by using the shift symmetry

transformation and using the second equation in (6.37), we obtain 2

Vµ = 0 . (6.40)

2In the original Poincaré theory (5.65) U(1)R symmetry is gauged by the auxiliary vector Vµ.
However, in the on-shell theory, the U(1)R symmetry becomes global due to the elimination of Vµ.
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It follows that the corresponding on-shell theory is given by

e−1L′EM =
1

2
LR +

1

2
L−1∂µL∂

µL− 1

4
LGµνG

µν − 1

6
LHµνρH

µνρ . (6.41)

To truncate out the matter multiplet (Bµν , L, ϕ
i), we first dualize Bµν to a vector

field C̃µ by adding the following Lagrange multiplier to (6.41)

∆L = − 1

12
εµνρσλBµνρG̃σλ, G̃µν ≡ 2∂[µC̃ν], (6.42)

and replacing Hµνρ by Bµνρ + 3
2
C[µGνρ]. The field equations of C̃µ and Bµνρ imply

that

Bµνρ = 3∂[µBνρ], Hµνρ = −1

4
L−1εµνρσλG̃σλ . (6.43)

Substituting (6.43) to (6.41), we obtain the on-shell ungauged Einstein-Maxwell su-

pergravity

e−1LEM =
1

2
LR +

1

2
L−1∂µL∂

µL− 1

4
LGµνG

µν − 1

8
L−1G̃µνG̃

µν

+
1

8
εµνρσλCµGνρG̃σλ , (6.44)

where (eµ
a, ψiµ, Cµ) constitute the supergravity multiplet while (C̃µ, ϕ

i, L) comprise

the Maxwell multiplet.

Truncation of the Einstein-Maxwell theory to the minimal on-shell theory can be

implemented by imposing

L = 1, C̃µ = Cµ, ϕi = 0, (6.45)
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which is consistent with the equations of motion

R = 2L−12L− L−2∂µL∂
µL+ 1

2
GµνG

µν − 1
4
L−2G̃µνG̃

µν ,

LRµν = ∇µ∇νL− L−1∂µL∂νL+ LGµ
σGνσ + 1

2
L−1G̃µ

σG̃νσ

−1
4
gµνL

−1G̃ρσG̃
ρσ ,

0 = ∇ν(LGνµ) +
1

4
εµνρσλG

νρG̃σλ,

0 = ∇ν(L−1G̃νµ) +
1

4
εµνρσλG

νρGσλ, (6.46)

and leads to the following transformation

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = (∂µ + 1
4
ωµ

abγab)ε
i + 1

8
i(γµ

νρ − 4δνµγ
ρ)Gνρ,

δCµ = −1
2
iε̄ψµ. (6.47)

The resulting action coincides with the minimal on-shell supergravity in five dimen-

sions [69, 70]

e−1Lmin
EH =

1

2
R− 3

8
GµνG

µν +
1

8
εµνρσλCµGνρGσλ . (6.48)

The canonical kinetic term of Cµ can be recovered by a scaling Cµ → 2√
6
Cµ.

With the Gauss-Bonnet combination added, the duality relation (6.43) and trun-

cation condition must receive corrections proportional to the powers of α, if we

consider a pertubative expansion valid when the energy scale Λ satisfies Λ2 � 1/|α|.

We follow the procedure of [71]. Schematically, the off-shell action (6.36) takes the

form
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Soff-shell[φ] = S0[φ] + αS1[φ] . (6.49)

It follows that the auxiliary field equations (6.37) - (6.38), the field equation for Bµνρ

(6.43) as well as the truncation equation (6.45) must receive corrections proportional

to α. The solution to those equations can be expressed in terms of a series expansion

in α, φ = φ0 +αφ1 +α2φ2 + · · · , where φ0 is the solution to the zeroth order equation

given in previous section. As a consequence, the on-shell action possesses the form

Son-shell[φ] = S0[φ0]+α(S1[φ0]+φ1S
′
0[φ0])+ · · · . In this equation, S ′0[φ0] = 0 when φ0

is an auxiliary field or a Lagrangian multiplier. We eliminate the auxiliary fields and

Lagrangian multiplier Bµνρ by plugging their zeroth order solutions to the action

e−1
(
LEM + αLGB

)
=

1

2
LR +

1

2
L−1∂µL∂

µL− 1

4
LGµνG

µν − 1

8
L−1G̃µνG̃

µν

+
1

8
εµνρσλCµGνρG̃σλ + α

[
3
8
RµνρσR

µνρσ − 1
2
RµνR

µν + 1
16
R2

+64D2 − 1
4

(
Rµνab(ω+)−GµνGab

)(
Rµνab(ω+)−GµνGab

)
−1

8
εµνρσλ

(
Rµνab(ω+)−GµνGab

)(
Rρσ

ab(ω+)−GρσG
ab
)
Cλ

−1
2
εµνρσλBρσ

(
Rµνab(ω+)−GµνGab

)
∇λ(ω+)Gab + 3

16
εµνρσλC

µRνρτδRσλ
τδ

−16RµνρσT
µν T ρσ + 6RµνρσG

µνT ρσ +RTµνG
µν − 8RµνGσ

µT σν

−64RµνT σµT
σ
ν + 8RT 2 − 32DTµνG

µν + 1024
3
T 2 D − 64∇µTνρ∇µT νρ

+64∇µT νρ∇νTµρ − 128Tµν∇ν∇σT
µσ − 1

2
∇µ(ω+)Gab∇µ(ω+)Gab

+3072T 4 − 2816
9

(T 2)2 − 64
3
TµνG

µνT 2 − 256Tµσ T
σρ TρνG

νµ

−128εµνρσλT
µνT ρσ∇τT

λτ − 32εµνρσλG
µνT ρτ∇τT

σλ

−48εµνρσλG
µνT ρτ∇σT λτ

]
+O(α2), (6.50)
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where Tµν and ω+µ
ab are now given by

Tµν = 1
16

(2Gµν + L−1G̃µν), ω+µ
ab = ωµ

ab − 1
4
L−1eµfε

fabcdG̃cd. (6.51)

6.1.3 Supersymmetric Ricci Scalar Squared Action

In this section, we construct the supersymmetric completion of Ricci scalar squared

action using the dilaton Weyl multiplet. The key observation behind the construction

is that the composite expression of Y ij (4.6) contains the Ricci scalar implicitly in

the superconformal d’Alembertian of Lij. Therefore, the supersymmetric Ricci scalar

squared action can be obtained by substituting the composite expressions (4.6) in

the vector multiplet action given in (6.12) since the off-shell vector multiplet action

has a Y ijYij term. The construction of supersymmetric Ricci scalar squared action

completes the off-shell curvature squared actions based on the dilaton Weyl multiplet

in N = 2, D = 5 supergravity.

For the construction of Ricci scalar squared invariant, we first rewrite the vector

multiplet action (6.12) for a single vector multiplet under the gauge fixing conditions

(5.62)

e−1LDV |σ=1 = YijY
ij − 1

2
∇µρ∇µρ− 1

4
(Fµν − ρGµν)(F

µν − ρGµν)

−1
8
εµνρσλ(Fµν − ρGµν)(Fρσ − ρGρσ)Cλ

−1
2
εµνρσλ(Fµν − ρGµν)Bρσ∇λρ . (6.52)

Using the same gauge fixing, the composite expressions (4.6) for the elements of

vector multiplet can be recast into
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ρ|σ=1 = 2NL−1,

Y ij|σ=1 = 1√
2
δij

(
− 1

2
R + 1

4
GabG

ab + 1
6
HabcH

abc − L−2N2 − L−2PaP
a − V ′kl

a V
′a
kl

+L−12L− 1
2
L−2∂aL∂

aL
)

+ 2L−1P aV ′aij −
√

2L−1∇a(LV ′a
m

(iδj)m),

F̂ ab|σ=1 = 2
√

2∂[a

(
Vb] +

√
2L−1Pb]

)
. (6.53)

The fermionic terms in the composite expressions of vector multiplet can be straight-

forwardly figured out by using the complete results given in (4.6). Using the above

formulas in (6.12), we obtain the supersymmetric Ricci scalar squared action in the

dilaton Weyl multiplet whose bosonic part reads

e−1LDR2 = 1
4

(
R− 1

2
GµνG

µν − 1
3
HµνρH

µνρ + 2L−2N2 + 2L−2PµP
µ − 4ZµZ̄

µ − 2L−12L

+L−2∂µL∂
µL
)2

− L−2
∣∣∣2∇µ(LZµ) + 2

√
2iP µZµ

∣∣∣2 − 2∇µ(L−1N)∇µ(L−1N)

−1
2
εµνρσλ

(
∂µC̃ν −NL−1Gµν

)(
∂ρC̃σ −NL−1Gρσ

)
Cλ

−2εµνρσλ
(
∂µC̃ν −NL−1Gµν

)
Bρσ∇λ(L

−1N)

−
(
∂[µC̃ν] −NL−1Gµν

)(
∂µC̃ν −NL−1Gµν

)
, (6.54)

where for simplicity, we have defined

Zµ = V
′12
µ + iV

′11
µ , C̃µ =

√
2Vµ + 2L−1Pµ. (6.55)

The general R+R2 action in the dilation Weyl multiplet can therefore be written as

(
LDLR + αLDRiem2 + βLDσC2 + γLDR2

)
|σ=1. (6.56)
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6.2 Vector Multiplets Coupled Curvature Squared Invariants in the Dilaton Weyl

Multiplet

In the previous section, we have completed the curvature squared invariants

purely based on the off-shell Poincaré multiplet (6.1). In this section, we couple

the external vector multiplets to the curvature squared invariants. The inclusion

of the external vector multiplet gives rise to a mixed Chern-Simons term in the

supersymmetric Riemann squared action

A ∧R ∧R , (6.57)

where the vector Aµ belongs to a vector multiplet, as opposed to the case of minimal

off-shell curvature squared invariants in the dilaton Weyl multiplet where the Chern-

Simons term is purely gravitational (6.14)

C ∧R ∧R , (6.58)

where Cµ is the vector in the Poincaré multiplet. In the following, we directly

present the results for the vector multiplets coupled curvature squared term which

can be straightforwardly obtained from the results for single vector multiplet coupled

curvature squared term.

6.2.1 Vector Multiplets Coupled Riemann Squared Action

In this subsection, we generalize the Riemann squared action purely based on the

off-shell Poincaré multiplet to the vector multiplets coupled Riemann squared action

in which the Chern-Simons term takes the form of A∧R∧R. In order to construct the

vector multiplets coupled Riemann squared action, we consider the following Yang-
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Mills action in the dilaton Weyl multiplet. This action is the Yang-Mills analogue of

the n Abelian vector action

e−1L′D
YM = ρY Σ

ij Y
ij Σ + 2ρΣY Σ

ij Y
ij + ρρΣ∇µ∇µρΣ + 1

2
ρ∇µρ

Σ∇µρΣ

−1
4
ρ(FΣ

µν − ρΣGµν)(F
µν Σ − 3ρΣGµν)− 1

2
(FΣ

µν − ρΣGµν)ρ
ΣF µν

+ 1
12
ρΣρΣεµνρσλ(Fµν − 2ρGµν)Hρσλ + 1

6
ρρΣεµνρσλFΣ

µνHρσλ

−1
8
εµνρσλFΣ

µνF
Σ
ρσAλ , (6.59)

where Σ is the Yang-Mills group index. The construction procedure of the vector

multiplets coupled Riemann squared action is the same as before. Upon applying

the map between the Yang-Mills multiplet and the dilaton Weyl multiplet, we obtain

the vector multiplets coupled Riemann squared action

e−1L′D
Riem2 = αI

[
− 1

4
ρI(Rµνab(ω+)−GµνGab)(R

µνab(ω+)− 3GµνGab)

−1
2
(Rµνab(ω+)−GµνGab)F I

µνGab + ρIVij
µνV ij

µν − 2GµνVij
µνY ij I

+ρIGab∇µ(ω+)∇µ(ω+)Gab + 1
2
ρI∇µ(ω+)Gab∇µ(ω+)Gab

+ 1
12
εµνρσλ(F I

µν − 2ρIGµν)HρσλGabG
ab + 1

6
ρIεµνρσλRµνab(ω+)GabHρσλ

−1
8
εµνρσλRµνab(ω+)Rρσ

ab(ω+)AIλ

]
. (6.60)

Note that this action recovers the Riemann squared invariant (6.14) upon consider-

ing a single vector multiplet, I = 1, and applying the map from the dilaton Weyl

multiplet to the vector multiplet (6.30).

6.2.2 Vector Multiplets Coupled C2
µνρλ + 1

6
R2 Action

The n-vector multiplets coupled C2
µνρλ + 1

6
R2 action can be straightforwardly

obtained from the Weyl squared action [40] in standard Weyl multiplet by underlining
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D, Tab and χi

e−1L′D

C2+
1
6
R2

= βI

[
1
8
ρICµνρσCµνρσ + 64

3
ρID2 + 1024

9
ρIT 2D − 32

3
DT µνF

µν I

−16
3
ρICµνρσT

µν T ρσ + 2CµνρσT
µνF ρσ I + 1

16
εµνρσλAIµCνρτδCσλ

τδ

− 1
12
εµνρσλAIµVνρ

ijVσλ ij + 16
3
Y I
ijVµν

ijT µν − 1
3
ρIVµν

ijV µν
ij

+64
3
ρI∇νT µρ∇µT νρ − 128

3
ρIT µν∇ν∇ρT

µρ − 256
9
ρIRνρT µνT

µ
ρ

+32
9
ρIRT 2 − 64

3
ρI∇µT νρDµT νρ + 1024ρI T 4 − 2816

27
ρI(T 2)2

−64
9
T µνF

µν IT 2 − 256
3
T µρT

ρλT νλF
µν I − 32

3
εµνρσλT

ρτ∇τT
σλF µν I

−16εµνρσλT
ρ
τ∇σT λτF µν I − 128

3
ρIεµνρσλT

µνT ρσDτT λτ
]
. (6.61)

where the composite expressions for D and Tab in σ = 1 gauge fixing are given in

(6.34).

6.2.3 Vector Multiplets Coupled Ricci Scalar Squared Action

To obtain an off-shell Ricci scalar squared invariant coupled to vector multiplets,

we use the same strategy as we construct the minimal Ricci scalar squared invariant.

The starting point is the vector multiplet action (6.59). By choosing the nonvanish-

ing components of CIJK to be CI11 = αI and replacing D, Tab by their composite

expressions (3.21), we obtain the n vector coupled Ricci scalar squared action

e−1L′D
R2 = γI

(
ρIY ijY

ij + 2ρY ijY I
ij − 1

4
ρIF µνF

µν − 1
2
ρF µν(F I

µν − 2ρIGµν)

+1
2
ρ2(F I

µν − 3
2
ρIGµν)G

µν + 1
12
ρ2εµνρσλ(F I

µν − 2ρIGµν)Hρσλ

+1
6
ρIρεµνρσλF

µνHρσλ − 1
8
εµνρσλA

µIF νρF σλ + 1
2
ρI∇µρ∇µρ

+ρIρ2ρ
)
. (6.62)
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The composite expressions for the elements of a vector multiplet are given as

ρ|σ=1 = 2NL−1,

Y ij|σ=1 = 1√
2
δij

(
− 1

2
R + 1

4
GabG

ab + 1
6
HabcH

abc − L−2N2 − L−2PaP
a − V ′kl

a V
′a
kl

+L−12L− 1
2
L−2∂aL∂

aL
)

+ 2L−1P aV ′aij −
√

2L−1∇a(LV ′a
m

(iδj)m),

F̂ ab|σ=1 = 2
√

2∂[a

(
Vb] +

√
2L−1Pb]

)
. (6.63)

At this moment, we have also completed the vector multiplets coupled curvature

squared terms. The general vector multiplets coupled R +R2 theory is given by

(
LDLR + L′D

V + L′D
Riem2 + L′D

C2+
1
6
R2

+ L′D
R2

)
|σ=1, (6.64)

in which the vector multiplet action in σ = 1 gauge is given as

e−1L′D
V |σ=1 = aIJ

(
ρY I

ijY
ij J + 2ρIY J

ij Y
ij + ρρI∇µ∇µρJ + 1

2
ρ∇µρ

I∇µρJ

−1
4
ρ(F I

µν − ρIGµν)(F
µν J − 3ρJGµν)− 1

2
(F I

µν − ρIGµν)ρ
JF µν

+ 1
12
ρIρJεµνρσλ(Fµν − 2ρGµν)Hρσλ + 1

6
ρρIεµνρσλF J

µνHρσλ

−1
8
εµνρσλF I

µνF
J
ρσAλ

)
. (6.65)

The supersymmetric completion of vector multiplets coupled Gauss-Bonnet combi-

nation can be achieved by setting γI = 0, and choosing the and choosing the free

parameters of L′D
Riem2 and L′D

C2+
1
6
R2

to be related to each other according to βI = 3αI .

6.3 Supersymmetric Curvature Squared Actions in the Standard Weyl Multiplet

In this section, we quickly review the Weyl squared action derived in [40] and con-

struct an off-shell Ricci scalar squared action based on the standard Weyl multiplet.
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The procedure for constructing the Ricci scalar squared action in the standard Weyl

multiplet is similar to the one used in the dilaton Weyl multiplet. In the standard

Weyl multiplet, the Ricci scalar squared term can be coupled to n vector multiplets

and alter the very special geometry.

6.3.1 Supersymmetric Weyl Squared Action

Using superconformal tensor calculus, an off-shell Weyl squared action in the

standard Weyl multiplet was constructed in [40], and its bosonic part reads

e−1LSC2 = cI

[
1
8
ρICµνρσCµνρσ + 64

3
ρID2 + 1024

9
ρIT 2D − 32

3
DTµνF

µν I

−16
3
ρICµνρσT

µν T ρσ + 2CµνρσT
µνF ρσ I + 1

16
εµνρσλAIµCνρτδCσλ

τδ

− 1
12
εµνρσλAIµVνρ

ijVσλ ij + 16
3
Y I
ijVµν

ijT µν − 1
3
ρIVµν

ijV µν
ij

+64
3
ρI∇νTµρ∇µT νρ − 128

3
ρITµν∇ν∇ρT

µρ − 256
9
ρIRνρTµνT

µ
ρ

+32
9
ρIRT 2 − 64

3
ρI∇µTνρDµT νρ + 1024ρI T 4 − 2816

27
ρI(T 2)2

−64
9
TµνF

µν IT 2 − 256
3
TµρT

ρλTνλF
µν I − 32

3
εµνρσλT

ρτ∇τT
σλF µν I

−16εµνρσλT
ρ
τ∇σT λτF µν I − 128

3
ρIεµνρσλT

µνT ρσDτT λτ
]
, (6.66)

where the five dimensional Weyl tensor reads

Cµνρσ = Rµνρσ − 1
3
(gµρRνσ − gνρRµσ − gµσRνρ + gνσRµρ)

+ 1
12

(gµρgνσ − gµσgνρ)R. (6.67)

Now, we would like to comment more rigorously on the difference between the Weyl

squared invariant in the standard Weyl multiplet (6.66) and its counterpart in the

dilaton Weyl multiplet (6.33). As mentioned before, one of the main differences be-

tween these actions relies on the definition of D which is an independent field in the
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standard multiplet but a composite field in the dilaton Weyl multiplet. As a compos-

ite field in the dilation Weyl multiplet, D contains a curvature term (3.21). However,

simply replacing D,Tab and χi by their composite expressions does not produce an

action solely based on the dilation Weyl multiplet. The resulting action also depends

on the fields in the vector multiplet. We recall that neither two-derivative Poincaré

supergravity (5.65) nor the Riemann squared action (6.14) has any dependence on

the vector multiplet in the minimal off-shell supersymmetric model. To obtain the

Weyl squared actions solely constructed in terms of the dilaton Weyl multiplet, the

map (6.30) from the dilaton Weyl multiplet to the vector multiplet is indispensable.

The Weyl squared action in (6.66) is invariant under the transformation rules

given in (3.4) and (3.23) with ηi and ΛKµ being replaced according to (5.3) and

(5.4).

6.3.2 Supersymmetric Ricci Scalar Squared Action

To obtain the Ricci scalar squared invariant in the standard Weyl multiplet,

we begin with the composite expressions given in (4.6) after fixing the redundant

symmetries,

ρ|L=1 = 2N,

Y ij|L=1 = 1√
2
δij
(
− 3

8
R−N2 − P 2 + 8

3
T 2 + 4D − V ′kl

a V
′a
kl

)
+2P aV ′a

ij −
√

2∇aV ′a
m(iδj)m,

F ab|L=1 = 2
√

2∂[a
(
V b] +

√
2P b]

)
. (6.68)

From the above expressions, one sees that the Ricci scalar squared can come from

YijY
ij term in the vector action. By choosing CI11 = aI and all other possibilities to
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zero in (4.10), we obtain the following Ricci scalar squared action

e−1LSR2 = aI

(
ρIY ijY

ij + 2ρY ijY I
ij − 1

8
ρIρ2R− 1

4
ρIF µνF

µν − 1
2
ρF µνF I

µν

+1
2
ρI∂µρ∂

µρ+ ρIρ2ρ− 4ρIρ2(D + 26
3
T 2) + 4ρ2F I

µνT
µν

+8ρIρF µνT
µν − 1

8
εµνρσλA

µIF νρF σλ
)
. (6.69)

As we will extensively work on this action in the following section, here we postpone

to plug in the composite expressions given in (6.68). To study the solutions with

vanishing auxiliary fields, we can use a truncated version of above action as we shall

see in the next section. Off-shell supersymmetry allows us to combine the Ricci

scalar squared action with the two-derivative Poincaré supergravity (5.5) and the

Weyl squared action (6.66) to form a more general supergravity theory

LSR + LSC2 + LSR2 (6.70)

where LSR is given in (5.5), LSC2 is given in (6.66) and LSR2 is given in (6.69).

6.3.3 Ricci Scalar Squared Extended Gauged Model and Corrected Very Special

Geometry

In this section, we consider the off-shell Ricci scalar squared extended gauged

model

LSR + LSR2 + gILIV L. (6.71)
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We consider the maximal supersymmetric AdS5 solutions. The ansatz preserving

SO(4, 2) symmetry takes the form

Rµνρλ = −R
2

(gµρgνλ − gµλgνρ), AIµ = 0, Tµν = 0,

ρ = ρ̄, N = N̄ , D = D̄, (6.72)

where R, ρ̄, N̄ and D̄ are some constants. The maximal supersymmetry requires

that

R = 4
9
N̄2, Y I

ij = 1
3
√

2
ρ̄IN̄δij, D̄ = 0. (6.73)

Employing ρI equation and N equation for the Lagrangian (6.71), we obtain

2N̄CIJK ρ̄
J ρ̄K + 3gI − 8

3
aIN̄

3 = 0, 2N̄ + 3gI ρ̄
I = 0. (6.74)

These two equations imply

C̄ = 1 + 4
3
aI ρ̄

IN̄2, (6.75)

which is consistent with D field equation, Y Iij equation and Einstein equation.

Therefore, in the presence of Ricci scalar squared term, AdS5 maintains to be the

maximally supersymmetric solution. However, in this case, the very special geome-

try is modified according to (6.75). Inserting N = −3
2
gI ρ̄

I into (6.75), the quantum

corrected very special geometry on the moduli space of AdS5 vacuum can be written

as

C̃IJK ρ̄
I ρ̄J ρ̄k = 1, C̃IJK = CIJK + 3a(IgJgK). (6.76)
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We emphasize that the inclusion of the Weyl squared action (6.66) also modifies

the definition of very special geometry, however the modification vanishes on the

maximally supersymmetric AdS5 background (6.73).
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7. VACUUM SOLUTIONS AND SPECTRUM ANALYSIS∗

In this section, we investigate the vacuum solutions and spectrum to the general

theory (6.35). The results for Poincaré supergravity extended by Gauss-Bonnet

combination can be obtained as special case when β = 3α.

7.1 Vacuum Solutions with 2-form and 3-form Fluxes

We first consider solutions with AdS3 × S2 structure. To solve the equation of

motion, we make the following ansatz where Greek indices denote the coordinates

on Lorentzian AdS3, while latin indices stand for the coordinates on S2

Rµνρσ = −a(gµρgνσ − gµσgνρ), Rpqrs = b(gprgqs − gpsgqr),

L = L0, Gpq = cεpq, Hµνρ = dεµνρ. (7.1)

In above equation, εµνρ and εrs are the Levi-Civita tensors on AdS3 and S2 respec-

tively. The full set of equations of motion are solved provided that the following

equations are satisfied

6a− 2b+ c2 − 2d2 = 0,

1
2
L0(−a+ d2) +

α

2
(−a2 + b2 − 2bc2 + c4 − 4acd+ 10ad2 + 4cd3 − 9d4)

+
β

6
(a2 + ab− b2 + 2bc2 − c4 + 2acd− 10ad2 − bd2 − 2cd3 + 9d4) = 0,

1
4
L0(b− c2) +

α

2
(3a2 − b2 + 4bc2 − 3c4 − 4bcd+ 4c3d− 6ad2 + 3d4)

+
β

6
(−3a2 + b2 − 4bc2 + 3c4 + 4bcd− 4c3d+ 6ad2 − 3d4) = 0. (7.2)

∗Portions of this chapter are reprinted from Supersymmetric Completion of Gauss-Bonnet Com-
bination in Five Dimensions by Mehmet Ozkan and Yi Pang, 2013. JHEP 1303, 158 (2013),
Copyright 2013, with permission from SISSA.
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The integrability conditions for the Killing spinor equations δεψ
i
µ = 0 and δεϕ

i = 0

are

(
Rµ̂ν̂âb̂(ω−)− 2Gµ̂âGν̂â

)
γâb̂ε = 0,

(
3
2
Gµ̂ν̂ − iHµ̂ν̂λ̂γ

λ̂
)
γµ̂ν̂ε = 0, (7.3)

where µ̂, â = 0, 1, . . . 4. Substituting the ansatz (7.1) into the integrability conditions

(7.3), we find that when

a = d2, b = c2, c = −2d, (7.4)

the integrability conditions are satisfied automatically without imposing any pro-

jection condition on the Q transformation parameter ε. Therefore, this solution

possesses maximum supersymmetry. Remarkably, this solution exists for arbitrary

values of L0, α, β. Thus it seems that the higher derivative correction will not affect

the supersymmetric solutions. A similar phenomenon happens in 6D chiral gauged

supergravity extended by Riemann squared invariant [42]. Next we investigate so-

lutions with AdS2 × S3 structure. We make similar ansatz as previous case except

that Greek indices denote the coordinates on Lorentzian AdS2, while latin indices

are used for the coordinates on S3

Rµνρσ = −b(gµρgνσ − gµσgνρ), Rpqrs = a(gprgqs − gpsgqr),

L = L0, Gµν = cεµν , Hpqr = dεpqr. (7.5)

In this case, the solutions of equation of motion are determined by

6a− 2b+ c2 − 2d2 = 0,

1
2
L0(a− d2) +

α

2
(−a2 + b2 − 2bc2 + c4 − 4acd+ 10ad2 + 4cd3 − 9d4)
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+
β

6
(a2 + ab− b2 + 2bc2 − c4 − 2acd− 10ad2 − bd2 + 2cd3 + 9d4) = 0,

1
4
L0(−b+ c2) +

α

2
(3a2 − b2 + 4bc2 − 3c4 − 4bcd+ 4c3d− 6ad2 + 3d4)

+
β

6
(−3a2 + b2 − 4bc2 + 3c4 − 4bcd+ 4c3d+ 6ad2 − 3d4) = 0. (7.6)

By examining the integrability conditions (7.3), we find that solution with maximum

supersymmetry is given by

a = d2, b = c2, c = 2d, (7.7)

for arbitrary values of L0, α, β.

7.2 Vacuum Solutions without Fluxes

If we set c = d = 0, the solutions are simply

1) AdS3 × S2 : b = 3a, β = 6α, a = −L0

2α
,

2) AdS2 × S3 : b = 3a, β = 6α, a =
L0

2α
,

3) Minkowski5 (7.8)

In this case, the maximally supersymmetric vacuum solution is just Minkowski5. Fol-

lowing the procedure carried out in the spectrum analysis of six-dimensional higher

derivative chiral supergravity [42, 72], we study the bosonic spectrum of the pertur-

bations around the maximally supersymmetric Minkowski5 vacuum. We define the

linearized fluctuations,

gµν = ηµν + hµν , L = L0 + φ, Cµ = cµ,

V ij
µ = vijµ , Bµν = bµν . (7.9)
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The linearized Einstein equation and L field equation take the following form

(
L0 + 2

3
(β − 3α)2

)
R(L)
µν = 1

3
(β − 3α)∂µ∂νR

(L) + L0

2
ηµνR

(L) − ηµν2φ

+∂µ∂νφ, (7.10)

L0R
(L) = 22φ, (7.11)

where R
(L)
µν and R(L) are the linearized Ricci tensor and Ricci scalar. Inserting (7.11)

into the trace of linearized Einstein equation, we get

(
L0 + 2

3
(β − 3α)2

)
2φ = 0. (7.12)

This equation describes a massless scalar and a massive scalar with mass squared

m2 =
3L0

2(3α− β)
. (7.13)

To simplify the linearized Einstein equation, we choose the usual De Donder gauge

in which,

R(L)
µν = −1

2
2hµν . (7.14)

Then using the (7.11) and (7.12), we find

(2−m2)2hµν = −2L−1
0 (2−m2)∂µ∂νφ. (7.15)

Since φ can be solved from (7.12), the right hand side of above equation is known

function. The homogeneous solutions of above equation describe a massless graviton

and a massive graviton with a mass squared the same as that of the massive scalar.
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Equations of motion for the remaining fields can be straightforwardly obtained

by choosing the Lorentz gauge for the gauge fields

(
L0 + 2

3
(β − 3α)2

)
2

 cµ

bµν

 = 0, (L0 + 2
3
(β − 3α)2

)
vijµ = 0. (7.16)

In summary, for generic α, β, the full spectrum consists of the (reducible) mass-

less 12+12 supergravity multiplet with fields (hµν , bµν , cµ, φ, ψ
i
µ, ϕ

i) and a massive

32+32 supergravity multiplet with ghost fields (hµν , bµν , cµ, φ, v
ij
µ , ψ

i
µ, ϕ

i). At the

special point where β = 3α, the curvature squared terms in the action furnish the

Gauss-Bonnet combination, massive particles become infinitely heavy and decou-

ple from the spectrum leaving only the massless excitations as expected from the

ghost-free feature of Gauss-Bonnet combination.

Finally we note that the inclusion of the Ricci scalar squared action does not

affect the existence of maximally supersymmetric Minkowski5 vacuum, however it

brings a massive vector multiplet with m2 = L0

2γ
. The 8+8 degrees of freedom in the

massive vector multiplet are carried by (L,N, ∂µZµ, C̃µ, ϕ
i).
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8. SUPERSYMMETRIC SOLUTIONS WITH AdS3 × S2 AND AdS2 × S3 NEAR

HORIZON GEOMETRIES∗

The strategy for finding regular solutions in higher derivative theory is to first

write an ansatz consistent with the assumed symmetries, and then demand unbro-

ken supersymmetry. The supersymmetric magnetic strings and electric black holes

preserving one half of the supersymmetries have been studied in [43, 44] for the case

of n vector multiplets coupled to Poincaré supergravity and in [73] for the higher

derivative case where only the off-shell Weyl squared invariant is taken into account.

In the presence of Weyl squared, the magnetic strings and electric black holes receive

corrections. In the following, we consider the simplest curvature squared extended

theory adding the Ricci scalar invariant (6.69) into the ungauged two-derivative ac-

tion (5.5). Explicitly, in this section we study the theory

L = LSR + LSR2 , (8.1)

where LSR and LSR2 are given by (5.5) and (6.69) respectively. We are interested in

solutions with vanishing auxiliary fields. It can be checked that Y I
ij = N = Ea =

Va = V
′ij
a = 0, is a consistent truncation of (8.1) leading to a simpler effective action

∗Portions of this chapter are reprinted from Supersymmetric Completion of Gauss-Bonnet Com-
bination in Five Dimensions by Mehmet Ozkan and Yi Pang, 2013. JHEP 1303, 158 (2013),
Copyright 2013, with permission from SISSA.
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describing the very special geometry extended by Ricci scalar squared invariant

e−1L = 1
8
(C + 3)R + 1

3
(104C − 8)T 2 + 4(C − 1)D + 3

4
CIJKρ

IF J
abF

abK

+3
2
CIJKρ

I∂µρ
J∂µρK − 12CIJKρ

IρJFK
abT

ab + 1
8
εabcdeCIJKA

I
aF

J
bcF

K
de

+aIρ
I
(

9
64
R2 − 3DR− 2RT 2 + 16D2 + 64

3
DT 2 + 64

9
(T 2)2

)
. (8.2)

The supersymmetry transformations for the fermionic fields take the following forms

when the auxiliary fields vanish

δψiµ =
(
∇µ − 4iγaTµa + 2

3
iγµγ · T

)
εi,

δχi =
(

1
4
D + 1

8
iγab /∇Tab − 1

8
iγa∇bTab − 1

6
γabcdTabTcd

)
εi,

δλIi =
(
− 1

4
γ · F̂ I − 1

2
i /∇ρI + 4

3
ρIγ · T

)
εi. (8.3)

8.1 Magnetic String Solutions

The metric preserving the symmetry of a static string takes the form

ds2 = e2U1(r)(−dt2 + dx2
1) + e−4U2(r)dxidxi, dxidxi = dr2 + r2dΩ2

2, (8.4)

where i = 2, 3, 4. F I
ab and Tab are chosen to be proportional to the volume form of

S2. A natural choice for the veilbein is given by

eâ = eU1dxa, a = 0, 1, eî = e−2U2dxi, i = 2, 3, 4. (8.5)

Accordingly, the non-vanishing components of the spin connections are

ωa
â̂i = eU1+2U2∂iU1, ωk

îĵ = −2δik∂jU2 + 2δjk∂jU2. (8.6)
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Similar to [73], the supersymmmetry parameter εi is constant along the string and

obeys the projection condition which breaks half of the supersymmetries

γt̂1̂ε = −ε. (8.7)

We first study the gravitino variation which fixes U1 = U2.

δψµ =
(
∇µ − 4iγaTµa + 2

3
iγµγ · T

)
ε. (8.8)

The covariant derivative is

∇a = ∂a + 1
2
eU1+2U2∂iU1γâ̂i,

∇i = ∂i + ∂jU2γĵî. (8.9)

Along the string direction, we have

[
1
2
eU1+2U2∂iU1γâ̂i + 2

3
ieU1γâ̂iĵ, T

îĵ
]
ε = 0. (8.10)

We use the convention that γ0γ1γ2γ3γ4 = iε01234 with ε01234 = 1. Therefore (8.7)

implies

γîĵk̂ε = i εîĵk̂ε, γîĵε = εîĵk̂γk̂ε. (8.11)

where ε234 = 1. Using the above conditions, it can be obtained that

[
1
2
eU1+2U2∂kU1 − 2

3
eU1T îĵεîĵk̂

]
γâk̂ε = 0. (8.12)
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The auxiliary field Tab can be solved as

Tîĵ = 3
8
e2U2εîĵk̂∂kU1. (8.13)

The gravitino variatoin along xi direction leads to

[
∂k − i εîĵk̂∂iU2γĵ − 8

3
i γ îTkî − 2

3
εîĵ l̂ e

l̂
kTîĵ

]
ε = 0. (8.14)

The “radial” part and “angular” part result in two conditions

0 =
[
∂k − 2

3
εîĵ l̂e

l̂
kTîĵ

]
ε ,

0 =
[
− εîk̂ĵ∂iU2 + 8

3
Tkĵ

]
γĵε. (8.15)

The second equation restricts

U1 = U2, (8.16)

then the first equation implies Killing spinor is

ε = eU/2ε0, (8.17)

where ε0 is some constant spinor. In cylindrical coordinates, Tab can be expressed as

Tθφ = 3
8
e−2Ur2 sin θ∂rU, Tθ̂φ̂ = 3

8
e2U∂rU. (8.18)

The projection in cylindrical coordinates can be written as

γr̂θ̂φ̂ ε = i ε. (8.19)
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The gaugino variation δλIi on the magnetic background gives

(
− 1

2
γθ̂φ̂F

I θ̂φ̂ − 1
2
iγ r̂er̂

r∂rρ
I + 8

3
ρIγθ̂φ̂T

θ̂φ̂
)
ε = 0. (8.20)

Then

F I
θ̂φ̂

= −e2U1∂rρ
I + 16

3
ρITθ̂φ̂ = −∂r(ρIe−2U)e4U . (8.21)

The supersymmetry variation of χi leads to

(
1
4
D + 1

8
iγab /∇Tab − 1

8
iγa∇bTab − 1

6
γabcdTabTcd

)
ε = 0. (8.22)

Explicit computation shows that auxiliary field D can be solved from the above

equation as

D = 3
8
e6Ur−2∂r(e

−3Ur2∂rU) = − 3
16
e6U∇2e−2U . (8.23)

So far we have exhausted the constraints which can be derived from the varia-

tions of fermions. In the following, we have to use the equations of motion. For

the magnetic string configuration, the equations of motion of gauge potential are

automatically satisfied, however, the Bianchi identity gives rise to

∂rF
I
θφ = −∂r

(
r2∂r(ρ

Ie−2U)
)

sin θ = 0. (8.24)

The solution to the above equation is given by [43]

ρIe−2U = HI = ρI∞ +
pI

2r
, F I =

pI

2
ε2, (8.25)
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where ρI∞ is the value of ρI in the asymptotically flat region where U = 0.

The equation of D derived from action (8.2) is

C = 1 + aIρ
I
(

3
4
R− 8D − 16

3
T 2
)
. (8.26)

After substituting Tab, D and R according to

Tθ̂φ̂ = 3
8
e2U∂rU, D = − 3

16
e6U∇2e−2U , R =

2e4U

r
(4U ′ − 3rU

′2 + 2rU ′′), (8.27)

where “prime” means derivative with respect to r. We find that the higher derivative

corrections to the D equation of motion vanishes. Similarly, there are no higher

derivative corrections to the equations of motion of Tab, gµν and ρI . Therefore, the

magnetic strings do not receive corrections from the Ricci scalar squared invariant.

This result seems to be compatible with the expectation from string theory. From

string theory point of view, the Ricci scalar squared invariant has no effects on the on-

shell quantities since it can just come from a field redefinition of the two derivative

action. This result also suggests that it is the supersymmetrization of curvature

squared terms which captures the correct feature of quantum corrections of N = 2

string vacua, because an arbitrary combination of R2, D and Tab will modify the

equations of motion in general.

8.2 Electric Black Holes

Finding electric black holes follow the procedure as [73]. Given the ansatz

ds2 = −e4U1(r)dt2 + e−2U2(r)dxidxi, dxidxi = dr2 + r2dΩ2
3. (8.28)
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Supersymmetry requires that

U1 = U2, Tti = 3
8
e2U∂iU, AIt = −e2UρI ,

D = 3
16
e2U(3r−1U ′ + U ′′ − 2r−2U

′2). (8.29)

In this case,

R =
2e2U

r
(3U ′ − 3rU

′2 + rU ′′). (8.30)

Again, it can be checked that the higher derivative corrections to the equations of

motion vanish. Therefore, the electric black holes are not modified by the inclusion

of Ricci scalar invariant.
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9. RICCI SCALAR SQUARED EXTENDED D = 6, N = (1, 0) OFF-SHELL

SUPERGRAVITY

In this section, we construct an off-shell Ricci scalar squared action for D =

6, N = (1, 0) supergravity. The construction of the six dimensional model is exactly

the same as the construction of the five dimensional model as we also use supercon-

formal tensor calculus in D = 6 for the off-shell constructions.

In the first subsection, we very briefly review the superconformal multiplets of

D = 6, N = (1, 0) supergravity. Then, we discuss the superconformal actions and

present the composite expressions for describing one multiplet in terms of the others.

Finally, as in 5 dimensional case, we use the superconformal vector multiplet action

and construct the Ricci scalar square extended off-shell Poincaré supergravity in 6

dimensions.

9.1 Superconformal Multiplets of D = 6, N = (1, 0) Theory

The purpose of this section is to introduce the superconformal multiplets of six di-

mensional N = (1, 0) theory that are required for the construction of superconformal

Ricci scalar square invariant.

9.1.1 Dilaton Weyl Multiplet

The gauge sector of dilaton Weyl multiplet consists of a sechsbein eµ
a, a gravitino

ψiµ, a dilatation gauge field bµ and an SU(2) gauge field V ij
µ . The matter sector of

the multiplet contains of a dilaton field σ, a 2-form gauge field Bµν and an SU(2)

Majorana spinor of negative chirality ψi. The full Q, S and K transformation rules
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are given by [35]

δeµ
a = 1

2
ε̄γaψµ,

δψiµ = ∂µε
i + 1

2
bµε

i + 1
4
ωµ

abγabε
i + Vµ

i
jε
j + 1

48
σ−1γ · Ĥγµεi + γµη

i,

δbµ = −1
2
ε̄φµ − 1

24
ε̄γµχ+ 1

2
η̄ψµ − 2ΛKµ,

δVµ
ij = 2ε̄(iψj)µ + 2η̄(iψj)µ + 1

6
ε̄(iγµχ

j),

δBµν = −σε̄γ[µψν] − ε̄γµνψ,

δψi = 1
48
γ · Ĥεi + 1

2
/Dσεi − σηi,

δσ = ε̄ψ . (9.1)

where

Dµσ = (∂µ − 2bµ)σ − ψ̄µψ ,

Dµψi =
(
∂µ − 5

2
bµ + 1

4
ωµ

ab
)
ψi + Vµ

i
jψ

j − 1
48
γ · Ĥψiµ − 1

4
/Dσψiµ . (9.2)

and

Ĥµνρ = 3∂[µBνρ] + 3ψ̄[µγνρ]ψ + 3
2
σψ̄[µγνψρ] . (9.3)

Finally, the composite field χi is defined as

χi = 15
4
σ−1 /Dψi + 3

8
γabR̂

′i
ab(Q)− 5

32
σ−2γ · Ĥψi . (9.4)

where

R̂
′i
ab(Q) = 2

(
∂[µ + 1

2
b[µ + 1

4
ω[µ

abγab

)
ψν] + 2V[µ

i
jψ

j
ν] + 1

24
σ−1γ · Ĥγ[µψ

i
ν] (9.5)
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9.1.2 Linear Multiplet

The linear multiplet consists of a triplet of scalars Lij, an SU(2) Majrana spinor ϕi

of negative chirality, and a constrained vector Ea. The full Q and S transformations

are given by [35]

δLij = ε̄(iϕj) ,

δϕi = 1
2
/DLijεj − 1

4
/Eεi − 4Lijηj ,

δEa = ε̄γabDbϕ+ 1
48
σ−1ε̄γaγ · Ĥϕ− 1

3
ε̄(iγaχ

j)Lij − 5η̄γaϕ (9.6)

where the covariant derivatives are defined as

DµLij = (∂µ − 4bµ)Lij + 2Vµ
(i
kL

j)k − ψ̄(i
µϕ

j) ,

Dµϕi = (∂µ − 9
2
bµ + 1

4
ωµ

abγab)ϕ
i − Vµijϕj − 1

2
/DLijψµj + 1

4
/Eψiµ + 4Lijφµj(9.7)

9.1.3 Vector Multiplet

The vector multiplet consists of a real vector field Wµ, an SU(2) Majorana spinor

Ωi of positive chirality, and a triplet o scalar fields Y ij. The full Q and S transfor-

mation rules are given by [35]

δWµ = −ε̄γµΩ ,

δΩi = 1
8
γ · F̂ εi − 1

2
Y ijεj ,

δY ij = −ε̄(i /DΩj) + 2η̄(iΩj) . (9.8)
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where

F̂µν = 2∂[µWν] + 2ψ̄[µγν]Ω ,

DµΩi = ∂µΩi − 3
2
bµΩi + 1

4
ωµ

abγabΩ
i − 1

2
Vµ

i
jΩ

j − 1
8
γ · F̂ψiµ + 1

2
Y ijψµj (9.9)

9.2 Construction of a Superconformal R2 Invariant

For the construction of an off-shell Ricci scalar square invariant, our starting

point is the following vector multiplet action [35]

e−1LV = σY ijYij − 1
4
σFabF

ab − 1
16
εabcdefB

abF cdF ef (9.10)

The idea of the construction is to find composite expressions for the fields of vector

multiplet. Our only demand is

Y ij = RLij + . . . (9.11)

so that when we plug in the composite expressions, the vector multiplet action gives

rise to a superconformal R2 action. Such composite expressions are already found,

and here we only present the bosonic parts of those superconformal expressions [35]

Y ij = −L−12CLij + L−3LklDaLk(iDaLj)l + 1
4
L−3EaE

aLij

−L−3EaLk(iDaLj)k − 1
3
L−1LijD ,

Fab = 2L−1LijR̂abij(V )− 2D[a(L
−1Eb])− 2L−3LlkD[aL

kpDb]Llp (9.12)
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where the bosonic part of the conformal box 2CLij and the composite expression for

D read

2CLij = (∂a − 5ba + ωb
ba)DaLij + 2V a(i

kDaLj)k − 8fa
aLij ,

D = 15
4
σ−12σ − 3

4
R + 5

16
σ−2HabcH

abc , (9.13)

where the curvature of V ij
µ reads

R̂ab
ij(V ) = 2∂[aVb]

ij − 2V[a
k(iVb]

j)
k − 4ψ̄[a

(iφb]
j) − 1

3
ψ̄[a

(iγb]χ
j) . (9.14)

Notice that in the above expressions we have omitted all the fermionic terms. Finally,

the bosonic part of fa
a is given by

8fa
a = 2

5
R + 1

5
D (9.15)

Using the above definitions, one can read that Y ij = 1
2
L−1LijR + . . . as expected.

Therefore, upon plugging in the composite expressions given in (9.12) into the vector

multiplet action (9.10), one obtains a superconformal R2 action.

9.3 Gauge Fixing and the Off-Shell Action

Our gauge fixing choices to fix the redundant superconformal symmetries are [42]

Lij = 1√
2
δijL, bµ = 0, σ = 1, ψi = 0. (9.16)

Decomposing SU(2) gauge field V ij
µ into

V ij
a = V

′ij
a + 1

2
Vaδ

ij , V
′ij
a δij = 0, (9.17)
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we define the complex vector Zµ

Zµ = V
′12
µ + iV 11

µ . (9.18)

Under the above gauge choices, the vector multiplet action is given by

e−1LV |σ=1 = YijY
ij − 1

4
FµνF

µν − 1
16
εµνλρσδB

µνF λρF σδ, (9.19)

where upon using the composite expression, we obtain the supersymmetric Ricci

scalar squared action

Y ijYij = 1
4
Υ2 − Ξ2,

Υ = R− 1
12
HµνλH

µνλ − 2L−12L+ L−2∂µL∂
µL− 4ZZ̄ + 1

2
L−2EµEµ,

Ξ = 2L−1∇µ(LZµ)− i
√

2L−1EµZµ,

Fµν = 2
√

2∂[µ

(
Vν] − 1√

2
L−1Eν]

)
. (9.20)

Using, the 2-derivative action is given in [42], the Ricci scalar square extended model

is given by [42]

e−1L = 1
2
LR + 1

2
L−1∂µL∂

µL− 1
24
LHµνρH

µνρ − 2LZµZ̄
µ

−1
4
L−1EµE

µ + 1√
2
EµVµ

+α′
[

1
4
(R− 1

12
HµνλH

µνλ − 2L−12L+ L−2∂µL∂
µL− 4ZZ̄ + 1

2
L−2EµEµ)2

−
(

2L−1∇µ(LZµ)− i
√

2L−1EµZµ

)(
2L−1∇µ(LZ̄µ) + i

√
2L−1EµZ̄µ

)
−1

2
εµνλρσδB

µν∂[λ
(
V ρ] − 1√

2
L−1Eρ]

)
∂σ
(
V δ − 1√

2
L−1Eδ

)
−2∂[µ

(
Vν] − 1√

2
L−1Eν]

)
∂µ
(
V ν − 1√

2
L−1Eν

)]
. (9.21)
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This Lagrangian respects the following transformation rules

δeµ
a =

1

2
ε̄γaψµ ,

δψµ
i = (∂µ +

1

4
ωµabγ

ab)εi + Vµ
i
jε
j +

1

8
Ĥµνργ

νρεi ,

δBµν = −ε̄γ[µψν] ,

δϕi =
1

2
√

2
γµδij∂µLεj −

1

4
γµEµε

i +
1√
2
γµV ′(iµ kδ

j)kLεj −
1

12
√

2
Lδijγ · Ĥεj ,

δL =
1√
2
ε̄iϕjδij ,

δEµνρσ = Lε̄iγ[µνρψ
j
σ]δij −

1

2
√

2
ε̄γµνρσϕ ,

δVµ =
1

2
ε̄iγνψ̂µν

jδij +
1

12
ε̄iγ · Ĥψµjδij − 2λ′ikV

′
µ
jkδij ,

δV ′µ
ij =

1

2
ε̄(iγνψ̂µν

j) +
1

12
ε̄(iγ · Ĥψµj) −

1

4
ε̄kγνψ̂µν

`δk`δ
ij

− 1

24
ε̄kγ · Ĥψµ`δk`δij + ∂µλ

′ij − λ′(ikδj)kVµ , (9.22)

where

ψ̂µν
i = 2D[µψ

i
ν] − 2V ′ ij[µ ψν]j +

1

4
γabψ[νĤµ]ab ,

Ea = 1
24
εabcdefDbEcdef . (9.23)
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10. CONCLUSIONS AND OUTLOOK

In this thesis, we have constructed Poincaré supergravity theories and completed

all off-shell curvature squared invariants in D = 5, N = 2 supergravity based on the

dilaton Weyl multiplet for both the minimal and the vector multiplets coupled curva-

ture squared invariants, namely the complete minimal curvature squared invariants

consist of

αLDRiem2 + βLD
C2+

1
6
R2

+ γLDR2 , (10.1)

and the complete vector multiplets coupled curvature squared invariants take the

form

L′D
Riem2 + L′D

C2+
1
6
R2

+ L′D
R2 . (10.2)

A particularly important combination of curvature squared terms, the supersymmet-

ric Gauss-Bonnet extended Poincaré theory corresponds to the case where γ = 0 and

β = 3α in (10.1), and γI = 0 and βI = 3αI in (10.2). Although the auxiliary fields do

not propagate in these models, they can be eliminated order by order in α. We obtain

the on-shell theory of this model to first order in α. The maximally supersymmetric

solutions to the ordinary 2-derivative Einstein-Maxwell supergravity are known in-

cluding Minkowski5, AdS3×S2 and AdS3×S2. We found that these solutions are not

modified by the inclusion of the higher-derivative interactions proportional to α and

β for arbitrary values. The spectrum of this theory around the maximally supersym-

metric Minkowski5 is determined. We show that the spectrum has a ghostly massive

spin two multiplet in addition to a massless supergravity and a Maxwell vector mul-
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tiplet. However, when β = 3α corresponding to the Gauss-Bonnet combination, the

massive spin-2 multiplet decouples.

Adopting the standard Weyl multiplet, we also constructed an off-shell Poincaré

supergravity by using the linear and vector multiplets as compensators and a super-

symmetric Ricci scalar squared coupled to n vector multiplets. In the standard Weyl

multiplet, the curvature squared extended model is generalized to take the form

LSR + LSC2 + LSR2 . (10.3)

It is known that the gauged two-derivative Poincaré supergravity possesses an max-

imally supersymmetric AdS5 vacuum solution. When the Ricci scalar squared is

included, we found that the very special geometry defined on the moduli space gets

modified. We then study the effects of Ricci scalar squared to the supersymmetric

magnetic string and electric black hole solutions which are the 1/2 BPS solutions of

the ungauged two-derivative theory. It is found that neither the magnetic string nor

the electric black hole solutions gets modified by the supersymmetric completion of

the Ricci scalar squared.

A comparison between the results in the dilaton Weyl multiplet and the standard

Weyl multiplet leads to a natural question that what is the analogue of supersym-

metric Riemann squared in the standard Weyl multiplet. At this moment, we do

not know the exact answer. However, if such an invariant exists, one should be

able to recover the Riemann squared invariant based on the dilaton Weyl multiplet

from the Riemann squared invariant based on the standard Weyl multiplet by using

the map between the Weyl multiplets. This argument constrains the form of the

supersymmetric Riemann squared in the standard Weyl multiplet.

The modified very special geometry around the AdS5 vacuum by the Ricci scalar
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squared invariant is very intriguing unlike the supersymmetric completion of the

Weyl tensor squared which does not affect the definition of very special geometry

in the AdS5 vacuum. Interpretation of the modified very special geometry from

string/M theory and its application in the context of AdS/CFT correspondence [73]

- [76] deserve future investigation.

In the final section, we repeated the construction procedure presented in 5 di-

mensions, and obtained the 6 dimensional Ricci scalar squared invariant. Since the

Gauss-Bonnet combination in six dimensions is not known, the curvature squared

invariants in six dimensions are not complete. The construction of Gauss-Bonnet

invariant is technically more difficult as the compensating multiplets, the vector and

the linear multiplets, do not contain a scalar field.
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A. NOTATIONS FOR FIVE DIMENSIONAL MODEL

In this thesis, we use the conventions of [37]. The signature of the metric is

diag(−,+,+,+,+). The SU(2) indices are lowered or raised according to NW-SE

convention

Ai = εijAj, Ai = Ajεji, (A.1)

where ε12 = −ε21 = ε12 = 1. When SU(2) indices on spinors are suppressed, NW-SE

contraction is understood.

ψ̄γa1... anχ = ψ̄iγa1... anχi, (A.2)

where γa1...an is defined as

γa1·an = γ[a1γa2 ...γan]. (A.3)

Changing the order of spinors in a bilinear leads to the following signs

ψ̄iγ(n)χ
j = tnχ̄

jγ(n)ψ
i, (A.4)

where t0 = t1 = −t2 = −t3 = 1. We also used the following Fierz identity

ψjχ̄
i = −1

4
χ̄iψj − 1

4
χ̄iγaψjγa + 1

8
χ̄iγabψjγab. (A.5)
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The Levi-Civitá tensor is real and satisfies

εp1...pnq1...qmε
p1...pnr1...rm = −n!m!δ

[r1...
[q1...

δ
rm]
qm] . (A.6)

Finally, the product of all gamma matrices is proportional to the unit matrix, and

we use

γabcde = iεabcde. (A.7)
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B. MULTIPLETS OF N = 2, D = 5 SUPERCONFORMAL THEORY

In this appdendix, we give the SU(2) representations and Weyl weights of the

fields appearing in this paper.

Table B.1
Multiplets of N = 2, D = 5 Superconformal Theory

Multiplet Field SU(2) reps. Weyl weight

Dilaton Weyl Multiplet eµ
a 1 -1

ψiµ 2 −1
2

bµ 1 0

V ij
µ 3 0

Cµ 1 0

Bµν 1 0

σ 1 1

ψi 2 3
2

Vector Multiplet Aµ 1 0

λi 2 3
2

ρ 1 1

Y ij 3 2

Linear Multiplet Lij 3 3

ϕi 2 7
2

Ea 1 4

N 1 4
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C. MULTIPLETS OF N = (1, 0), D = 6 SUPERCONFORMAL THEORY

In this appdendix, we give the SU(2) representations and Weyl weights of the

fields appearing in this paper.

Table C.1
Multiplets of N = (1, 0), D = 6 Superconformal Theory

Multiplet Field SU(2) reps. Weyl weight

Dilaton Weyl Multiplet eµ
a 1 -1

ψiµ 2 −1
2

bµ 1 0

V ij
µ 3 0

Bµν 1 0

σ 1 2

ψi 2 3
2

Vector Multiplet Wµ 1 0

Ωi 2 3
2

Y ij 3 2

Linear Multiplet Lij 3 4

ϕi 2 9
2

Ea 1 5
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