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ABSTRACT 

 

The urban heat island effect is considered one of the main causes of global 

warming and is contributing to increasing temperatures in the urban United States.  This 

phenomenon enhances the intensity of summer heat waves and the risk to public health 

due to increased exposure to extreme thermal conditions.  

Characteristics of spatial development patterns can significantly affect urban 

temperature because they are related to the arrangement of development and land surface 

materials, which are crucial elements needed to determine land surface temperature. While 

previous studies revealed that the effect of the urban heat island varies depending on 

different land use types and surface characteristics, few have considered the overall 

development patterns of urban form. I address this under-studied aspect of heat hazards 

by analyzing the relationship between spatial development pattern and urban heat island 

effect across a sample of 353 metropolitan regions of the U.S. Specifically, I employ a 

series of landscape metrics to measure urban development patterns using a national land 

cover dataset from the U.S. Geological Survey. Linear regression models are used to 

statistically isolate the effect of different spatial development patterns on increasing the 

urban heat island effect while controlling for multiple contextual variables including built-

environment, environmental, and demographic characteristics. 

The result of this study showed that the daytime mean surface urban heat island 

effect (4.04˚F) is higher than that of nighttime (2.41˚F). Ecological context (i.e. 
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Ecoregions) has proved to be a statistically significant modulator that helps to explain the 

spatial distribution of the urban heat island effect.  

Regarding the main research question of this study, the results indicate that specific 

categories of urban development pattern including density, continuity, and clustering are 

statistically associated with increasing the urban heat island effect. This initial evidence 

suggests that the overall development patterns are an important issue to consider when 

mitigating the adverse impacts related to the urban heat island effect. In addition, when 

contextual heat contributors are held constant, the intensity of the urban heat island effect 

can differ depending on the configuration of development in urban areas.  

This study can be used as a starting point for a comprehensive approach to both 

spatial land development and hazard-resistant planning by providing alternative ways of 

measuring and modeling spatial development patterns. 

 



 

iv 

 

DEDICATION 

 

To my husband, Taeho 

 

 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Brody for his constant guidance and 

support. He is an amazing mentor and teacher. He always encourages and supports me, 

which helped me to get this point. Since moving to the U.S. for graduate school, I have 

felt very lucky and blessed to have him in my life. I would also like to thank my committee 

members, Dr. Peacock, Dr. Lee, and Dr. Highfield for their constant and thoughtful advice.   

My gratitude also extends to my wonderful friends and colleagues for making my 

time at Texas A&M University a great experience. Boah, you have been my best friend 

since the start of graduate school, and I am so happy that we were able to share all of our 

experiences while in the United States. I would also like to thank to my friends at the 

Hazard Reduction and Recovery Center and the Master of Urban Planning and Urban and 

Regional Science program. I hope and believe that we can work together as a researchers 

and urban planners in the near future.  

I am very grateful to my parents, my sister and her family, and my brother. My 

gratitude also goes to my in-laws. They have always encouraged me to move forward in 

my life with their constant support, understanding and patience. I believe my achievement 

was sincerely rooted in their love. 

Most importantly, thanks from the bottom of my heart to my husband Taeho. You 

always stand by my side, whatever I do and wherever I am. Without your endless love, 

support, and trust, I would have never completed this dissertation. I promise to support 

everything you do for the rest of our lives. Thank you for being a good friend, thoughtful 

listener and wonderful husband. I love you. 

 

 



 

vi 

 

NOMENCLATURE 

 

UHIE Urban Heat Island Effect 

USGS U.S. Geological Survey 

NLCD National Land Cover Dataset 

AVHRR  Advanced Very High Resolution Radiometer 

MODIS Moderate Resolution Imaging Spectroradiometer 

MWCF Marine West Coast Forest 

NFM Northwestern Forested Mountain 

MC Mediterranean California 

NAD North American Desert 

GP Great Plain 

NF Northern Forest 

ETF Eastern Temperate Forest 

TWF Tropical Wet Forest 

 

 



 

vii 

 

TABLE OF CONTENTS 

 

 Page 

CHAPTER I  INTRODUCTION ....................................................................................... 1 

1.1 Research Background ............................................................................................... 1 
1.2 Research Purpose and Objectives  ............................................................................ 2 

CHAPTER II LITERATURE REVIEW ............................................................................ 4 

2.1 Understanding Urban Heat Island Effect .................................................................. 4 
2.2 Spatial Development Patterns and Landscape Metrics  .......................................... 10 
2.3 Urban Heat Island Effect (UHIE) and Urban Development Patterns  .................... 20 
2.4 Summary of and Gaps in the Literature  ................................................................. 23 

CHAPTER III RESEARCH FRAMEWORK AND HYPOTHESES  ............................. 25 

3.1 Dependent Variable: Urban Heat Island Effect  ..................................................... 26 
3.2 Independent Variable: Urban Development Patterns ............................................. 27 

3.2.1 Desity of Development .................................................................................... 27 
3.2.2 Continuity of Development  ............................................................................ 28 
3.2.3 Clustering of Development .............................................................................. 29 
3.2.4 Diversity of Land Covers  ................................................................................ 30 
3.2.5 Proximity of Land Covers  ............................................................................... 31 

3.3 Control Variables  .................................................................................................. 32 
3.3.1 Impervious Surface .......................................................................................... 32 
3.3.2 Percentage of Vegetation Cover  ..................................................................... 32 
3.3.3 Percentage of Watered Surface ........................................................................ 33 
3.3.4 Population  ....................................................................................................... 33 
3.3.5 Ecoregions  ...................................................................................................... 34 

CHAPTER IV RESEARCH METHODS......................................................................... 37 

4.1 Study Area (Spatial Sample Frame) ....................................................................... 37 
4.2 Measurement  ......................................................................................................... 40 

4.2.1 Dependent Variable: Urban Heat Island Effect ............................................... 40 
4.2.2 Independent Variables: Spatial Development Patterns  ................................... 46 

4.2.4 Control Variables  ............................................................................................ 59 
4.3 Data Analysis  ......................................................................................................... 62 
4.4 Validity Threats  ..................................................................................................... 64  

4.2.3 Reclassifying the National Land Cover Database .......................................... 56 



 

viii 

 

CHAPTER V RESULTS  ................................................................................................ 67 

5.1. Descriptive Statistics and Preliminary Analysis  ................................................... 67 
5.1.1 Day and Night UHIE  ...................................................................................... 67 
5.1.2 Spatial Development Patterns  ......................................................................... 72 

5.2. Examining Impact of Development Patterns on UHIE  ........................................ 77 
5.2.1 Individual Impact of Each Spatial Development Pattern on UHIE  ................ 77 
5.2.2 Combined Impact of Spatial Development Patterns on UHIE ........................ 91 

CHAPTER VI DISCUSSIONS AND CONCLUSIONS  ................................................ 95 

6.1 Key Findings Regarding Research Objectives  ...................................................... 95 
6.2 Planning Implications and Recommendations ..................................................... 104 

6.2.1 Reducing Impervious Surface through Reconfiguring the Development ...... 104 
6.2.2 Limiting Continuity of Development Through a Clustering Strategy  .......... 105 
6.2.3 Placing Vegetation and Water Appropriately ................................................ 106 

6.3 Limitations and Future Research  ......................................................................... 107 
6.4 Conclusions and Contributions on Planning Research  ........................................ 109 

REFERENCES ............................................................................................................... 111 

APPENDIX A ................................................................................................................ 122 

APPENDIX B  ............................................................................................................... 124 

APPENDIX C ................................................................................................................ 134 

APPENDIX D ................................................................................................................ 135 

APPENDIX E ................................................................................................................. 136 

APPENDIX F ................................................................................................................. 138 

APPENDIX G ................................................................................................................ 140 

 

 

 

 



 

ix 

 

LIST OF FIGURES 

 Page 

Figure 2.1 Profiles of Urban Heat Island  .................................................................... 6 

Figure 2.2 Conceptual Diagram of the Four Levels of Analysis Provided in the 
Metrics: Cell, Patch, Class/Land Cover Type (LCT), and Landscape  .... 14 
 

Figure 3.1 Research Framework  ............................................................................... 25 

Figure 3.2 Ecoregions and Metropolitan Regions in U.S. ......................................... 35 

Figure 4.1 Metropolitan Regions in Continuous U.S. ............................................... 39 

Figure 4.2 Mean Temperature of Urbanized and Rural Areas at Night  ................... 40 

Figure 4.3 Average Temperature Trend in Summer Season (1991-2012) ................ 44 

Figure 4.4 Mosaic Images of Nighttime Temperature by MODIS  ........................... 45 

Figure 4.5 Mean Temperature of Urbanized and Rural Areas Excluding Boundary  
of Urbanized  Area  .................................................................................. 46 
 

Figure 4.6 Concept of Queen and Rook Contiguity  ................................................. 48 

Figure 4.7 Hypothetical Landscapes of Density of Development  ............................ 50 

Figure 4.8 Hypothetical Landscapes of Continuity of Development  ....................... 52 

Figure 4.9 Hypothetical Landscapes of Clustering of Development  ........................ 53 

Figure 4.10 Hypothetical Landscapes of Diversity of Land Covers  .......................... 55 

Figure 4.11 Hypothetical Landscapes of Proximity of Land Covers  ......................... 56 

Figure 5.1 Day and Night UHIE by Ecoregions  ....................................................... 70 

Figure 5.2 Spatial Patterns of Day and Night UHIE  ................................................ 71 

Figure 5.3 Examples of Density of Development  .................................................... 73 

Figure 5.4 Examples of Continuity of Development  ................................................ 74 



 

x 

 

Figure 5.5 Examples of Clustering of Development  ................................................ 75 

Figure 5.6 Examples of Diversity of Land Covers  ................................................... 76 

Figure 5.7 Examples of Proximity of Land Covers  .................................................. 77 



 

xi 

 

LIST OF TABLES 

 Page 

 

Table 2.1 Measuring Urban Form and Growth Patterns Using Landscape  
Metrics  ..................................................................................................... 19 

 
Table 3.1 Variables, Definitions, and Expected Impact  .......................................... 36 

Table 4.1 Basic Characteristics of Surface and Atmospheric Urban Heat Island  ... 41 

Table 4.2 Intensity of Development Class and Impervious Surface  ....................... 47 

Table 4.3 Dimensions of Development and Related Landscape Metrics  ................ 49 

Table 4.4 Reclassification of Land Covers  ............................................................. 58 

Table 4.5 Correlations Between Spatial Development Pattern Indexes ................... 59 

Table 4.6 Hypothetical Example of Calculating Control Variables ......................... 60 

Table 5.1 The Results of Paired T-test  .................................................................... 67 

Table 5.2 Descriptive Statistics for Variables  ......................................................... 68 

Table 5.3 The Effect of Spatial Development Patterns on Day and Night UHIE .... 78 

Table 5.4 Density of Development and UHIE  ........................................................ 81 

Table 5.5 Continuity of Development and UHIE  .................................................... 83 

Table 5.6 Clustering of Development and UHIE  .................................................... 85 

Table 5.7 Diversity of Land Covers and UHIE  ....................................................... 88 

Table 5.8 Proximity of Land Covers and UHIE  ...................................................... 90 

Table 5.9 Single and Combined Models for Day UHIE .......................................... 93 

Table 5.10 Single and Combined Models for Night UHIE ........................................ 94 

  



1 

 

CHAPTER I  

INTRODUCTION 

 

1.1. Research Background 

 Extreme heat waves (EHW) are the leading cause of weather-related deaths across 

the U.S. (NCDC, 2004). Although EHWs do not often appear to be as serious as other 

weather-related hazards, the number of deaths caused by EHWs in the U.S. in the past 20 

years (1991-2010) is higher than those by any other hazard (Weather Fatalities by NWS, 

NOAA).  

 The summer of 1995 was the most severe heat wave disaster in U.S history, and is 

described in detail in Heat Wave: A Social Autopsy of Disaster in Chicago by Eric 

Klinenberg (2002). The book stated that over 700 people died due to extended periods of 

high temperatures. Also, extreme heat waves are associated with other natural hazards such 

as drought, wildfire, and flooding, which are also very harmful to both the environment 

and humans. There are two major expected causes that increase the frequency and intensity 

of heat waves: climate change (i.e. global warming) and urban heat island effects (Guest 

et al., 1999; Kalkstein and Greene, 1997; Smoyer et al., 2000). While climate change is a 

global phenomenon, urban heat island effect is a regional or local phenomenon limited to 

metropolitan and urban areas. 

 In the U.S., over 80% (80.7%) of the population live in urban areas (U.S. Census 

2010). Urban areas not only contribute to the creation of heat through increased 

development, but are also locations at risk for heat hazards. Thus, researchers in various 
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fields have attempted to examine the relationship between urban heat island effect and 

urban physical and social characteristics including city size, populations, and land 

cover/uses (Clarke, 1972; Oke, 1973; Landsberg, 1981; Quattrochi et al., 2000; Streutker, 

2002; Rosenziweig et al., 2005; Stone et al., 2006; Chen et al. 2006; Jenerette et al., 2007; 

Hu and Jia, 2010).  

 Characteristics of spatial development patterns can be some of the most significant 

factors to affect urban temperature because they are related to the arrangement and land 

surface materials, which are crucial elements needed to determine land surface temperature. 

Because of this indissoluble relationship between spatial development patterns and 

temperature, smart and sustainable spatial planning strategies play key roles in attempting 

to reduce and prevent extreme heat waves, including urban heat island effect. However, 

there are very few empirical studies that have explored spatial development patterns to 

better understand the urban heat island effect on a regional scale. 

 

1.2. Research Purpose and Objectives 

 The goal of this study is to better understand the impacts of spatial development 

patterns on urban heat island effect, which are major contributors to the intensity of 

summer heat waves. This study will analyze in detail the composition and configuration 

of development patterns in urbanized areas using landscape metrics. Then, it will examine 

the relationship between measured development patterns and urban heat island effect 

(UHIE). The main research question for this study is “What characteristics of spatial 
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development patterns influence the UHIE?”  

The specific objectives of this study are to: 

1. Investigate UHIE at a regional scale in a metropolitan region in the U.S. by 

comparing the temperature difference between urbanized and non-urbanized 

areas utilizing thermal remote sensing data; 

2. Measure spatial patterns of development on a regional scale in urbanized 

areas of the metropolitan region in the U.S. based on the concepts of 

landscape metrics; 

3. Examine the relationship between spatial development patterns and UHIE by 

employing statistical models; and 

4. Suggest the policy implications and design guidelines for reducing UHIE 

considering spatial development patterns. 
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CHAPTER II 

LITERATURE REVIEW 

 

 This section provides an understanding of the main concepts of this study, 

including the UHIE, spatial development patterns, and landscape metrics. The first part of 

this section explains UHIE and reviews previous studies on UHIE. The second part of this 

section outlines the spatial patterns of development and reviews previous research on 

measuring spatial development patterns. Also, this section explains the basic concepts of 

landscape metrics and its implications in measuring spatial development patterns.  The 

third part of this section lists previous research on urban heat island effect and development 

patterns. A summary of research findings and gaps in the literature concludes this section.  

  

2.1.    Understanding Urban Heat Island Effect 

 Urban heat island effect (UHIE) is a well-known phenomenon that is one of the 

most prevailing consequences of increasing temperatures due to urban development 

(Landsberg, 1981).  The urban heat island (UHI) was first documented by Luke Howard 

in his climate research in London in 1833. Based on “Recent Advances and Issues in 

Meteorology,” the UHIE is detailed as “an area of higher temperatures in an urban setting 

compared to the temperature of the suburban and rural surroundings. It appears as an 

“island” in the pattern of isotherms on a surface map” (p.264). This effect can be measured 

as both surface and atmospheric phenomena. Figure 2.1 shows the temperature profile 

illustrating surface temperature and near-surface (measured 1-2 meters from the ground) 
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air temperature across varying intensities of urbanized land uses (Stone & Rodgers, 2001).  

 UHIE has also been a rising issue in various study fields including climatology, 

geography, and public health because UHIE exacerbates existing environmental threats to 

human health through thermal stress (Oke, 1973; Katsoulis, 1985; Lee, 1992). This 

phenomenon contributes to the rising intensity of summer heat waves and the risk of death 

due to increased exposure to extreme thermal conditions. As a result, those who live in a 

city center have a higher heat-related mortality rate than those living in suburban or rural 

areas (Lo and Quattrochi, 2003; Conti et al., 2005; Tan et al., 2010). Another concern of 

UHIE is air pollution. Higher temperatures increase ozone pollution (Lo and Quattrochi, 

2003) because it can trigger the chemical reactions that form ozone (Cardelino and 

Chameides, 2000).  

 Numerous researchers have studied UHIE. These efforts began in the early 1970s 

and the research of Clarke (1972) is one of the starting points. In his study entitled “Some 

Effects of the Urban Structure on Heat Morality,” he argued that higher death rates in cities 

are due to climate modification (temperature, wind speed, radiant heat, and microclimatic 

effect) accompanied by urbanization. Based on case studies of historic heat waves in U.S., 

he concluded that:  

The urban thermal environment can be partially controlled through appropriate 

urban land use. The adequate provision of green areas judiciously spaced over the 

metropolitan region is one example. The effect of green areas on the nocturnal 

thermal climate of cities is substantial.  Siting of urban activities with respect to 
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micro- and mesoclimates is another avenue open to the planner; the heat stress on 

occupants of housing units without air conditioning would be considerably less in 

suburban areas or on the fringe of a large park than if they are located in the heat 

of the urban complex. (p.103) 

  

Figure 2.1. Profiles of Urban Heat Island (EPA, 2008b) 

 

 Another early researcher, Oke (1973), asserted that city size (measured by 

population) and UHIE are related. In his study, results indicated that the intensity of UHIE 

under calm and clear weather conditions is related to the inverse of regional wind speed 

and the logarithm of the population.  He concluded that restricted land use in large cities 

can reduce climate change. He also explained in his book, Boundary Layer Climate (1987), 

that urban construction and deforestation are sufficient to raise the average temperature of 

a city by several degrees over that of peripheral non-urbanized areas.  
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 Heat islands develop in areas that have a high percentage of non-reflective, water-

resistant surfaces and a low percentage of vegetated and moisture-trapping surfaces. In 

particular, materials such as stone, concrete, and asphalt can trap heat at the surface 

(Landsberg, 1981; Quattrochi et al., 2000). Thus, some studies on UHIE emphasize the 

importance of land use planning to control urban temperature.  For instance, Kalnay and 

Cai (2003) examined the impact of urbanization and land use change on climate. Their 

study revealed that the estimated surface warming per century because of changes in land 

use is at least twice as high as previous estimates based on urbanization alone. Hu and Jia 

(2010) showed that each land use category contributes different amount of heat on urban 

temperature. They also argued in same study that the fraction of vegetation cover is 

negatively correlated with land surface temperature. 

 Further research has continued to uncover relationships between temperature and 

urban natural and built environment in various study areas utilizing different methods. For 

example, Streutker (2002) argued that increasing amounts of dark and impervious surfaces 

that absorb relatively more sunlight can be one significant cause of UHIE. Yoshida et al. 

(2004) pointed out that diminished green areas, low wind velocity due to a high density of 

buildings, and changes in street surface coating materials are the main factors that increase 

air temperature. Rosenziweig et al. (2005) explained that population shifts, urban and 

suburban growth, land-use change, and production and dispersal of anthropogenic 

emissions and pollutants interact with regional climates as well as influence the frequency 

and intensity of specific weather events. Additional recent research on physical structure 

and UHIE, conducted in metropolitan Phoenix, Arizona, analyzed the relationship between 
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mean surface temperatures, vegetation density, and socioeconomic characteristics across 

census tracts. They include socioeconomic variables since residential segregation of 

neighborhoods is strongly influenced by vegetation and surface temperature. This research 

established a statistically significant link between vegetation density and daytime surface 

temperature based on various determinants of neighborhood surface temperature (Jenerette 

et al., 2007).   

 Sometimes, a study area has been narrowed down to the parcel-level. Stone et al. 

(2006), for example, studied residential parcel design and surface heat island formation in 

a major metropolitan region of the southeastern U.S. They argued that parcel-based 

research about surface warming can lead to parcel-specific land use policies such as zoning 

regulations, subdivision regulations, and building codes. 

 Urban heat island-related studies are rapidly expanding due to remote sensing 

technologies, which is able to detect surface temperature. The surface temperature is the 

most important element in the study of urban climatology (Voogt and Oke, 2003). To 

overcome the limitations of ground-based temperature measurement, satellite-derived 

surface temperature data have been utilized for urban climate analysis. The first satellite-

based surface temperature observation in urban areas was reported by Rao (1972) in his 

surface urban heat island study.  Since then, a variety of sensor-platform combinations 

(satellite, aircraft, ground-based) have been used to generate remote observations of the 

surface urban heat island in many studies (Voogt and Oke, 2003).  

 Voogt and Oke (2003) explained that there are three main research themes in 
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thermal remote sensing for urban climate. The first theme is the examination of the 

relationship between urban thermal patterns and urban surface characteristics. This type of 

research has utilized AVHRR (Advanced Very High Resolution Radiometer) or Landsat 

thermal imagery combined with land uses or land cover maps to examine the spatial 

patterns of surface temperature. The second theme is the application of thermal remote 

sensing to analyze the urban surface energy balance. This type of study is accomplished 

by pairing urban climate models of the urban atmosphere with remotely sensed 

observations. The third major research theme of thermal remote sensing is the study of the 

relation between atmospheric urban heat islands and surface urban heat islands. 

Traditionally, urban heat island effect was analyzed based on ground-based observation, 

which represents atmospheric urban heat islands. After developing various satellite sensors 

for thermal data, several studies have analyzed surface-air temperature relations. Also, 

satellite observations have been used to detect and correct for air temperature if there is 

contamination from any urban influence (Voogt and Oke, 2003).  

 There are three major sensors on the satellite platform to analyze surface 

temperature: AVHRR, Landsat TM/ETM+, and MODIS Terra/Aqua. Although all three 

sensors detect surface temperature, each of the sensors has different temporal and spatial 

resolution as well as different temperature calibration methods. AVHRR (Advanced Very 

High Resolution Radiometer) has 1.1km of spatial resolution and the repeat cycle is twice 

a day.  Thermal band of Landsat TM/ETM+ have 120m and 60m respectively with a 16-

day repeat cycle. Both AVHRR and Landsat TM/ETM+ need atmospheric correction and 

thermal calibration to estimate surface temperature. Land surface temperature calculated 
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from MODIS Terra and Aqua have 1km spatial resolution and the repeat cycle is twice a 

day. MODIS datasets provide atmospheric corrected and calibrated temperature readings 

(Kelvin). Thus, AVHRR and MODIS Terra/Aqua are suitable for large study areas with 

frequent observation and Landsat TM/ETM are better suited to small study areas and detail 

analysis.   

 

2.2. Spatial Development Patterns and Landscape Metrics 

 Spatial development patterns in urban areas are one of the most important elements 

used to determine the urban form of a built environment. The forms and footprints of urban 

built environments ultimately shape the environmental and social conditions within which 

we live (Brody et al., 2012). Spatial development pattern can describe various aspects of 

built environment and its characteristics are determined depending on research fields or 

subjects. In this study, spatial development pattern refers to spatial arrangement of physical 

development on land surface.  

 Urbanization is fundamentally a spatial process (Wu et al., 2011). Thus, the 

importance of urban and suburban development patterns have been documented by 

previous studies. Development patterns are responsible for the environmental, social, and 

economic conditions of local communities (Porter, 2000; Squires, 2002; Ewing, 2008; 

Freilich et al. 2010; Brody et al. 2012). 

 The development patterns based on densities in the U.S can be characterized by 

two ends of the spectrum: sprawl and compact. Sprawling development patterns currently 
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dominate much of the American landscape, yet there is no universally accepted definition 

of sprawl (Brody et al. 2012). Despite this limitation, there are widely referred literatures 

that defined conceptual characteristics of sprawl (Burchell et al, 1998; Galster et al. 2001; 

Ewing et al. 2003).  Burchell et al. (1998) listed characteristics of sprawl in terms of three 

distinct types: spatial patterns, root causes, and main consequences of sprawl. 

Characteristics of spatial patterns include low density, unlimited outward expansion, land 

uses spatially segregated, leapfrog development, and widespread commercial strip 

development. Two causes of sprawl listed in his book are no central ownership or planning 

and highly fragmented land-use governance. Finally, the three consequences of sprawl are 

explained as transport dominance by motor vehicles, great variance in local fiscal 

capability, and reliance on filtering for low-income housing.  

 While the study of Burchell et al. (1998) considers various aspects of sprawl, the 

studies of Galster et al. (2001) and Ewing et al. (2003) are more focused on the spatial 

characteristics of sprawl. Galster et al. (2001) argued in their research that sprawl is 

identified as eight distinct dimensions of land use patterns: density, continuity, 

concentration, clustering, centrality, nuclearity, mixed uses, and proximity. They tested 

thirteen large urbanized areas from different regions of the U.S. based on six out of eight 

indicators (except continuity and diversity) to analyze housing sprawl and then ranked 

them to see if these indexes can explain sprawl development patterns correctly. Ewing et 

al. (2003), in their research about the relationship between urban sprawl and physical 

activity, obesity, and morbidity, suggested four dimensions of large scale (i.e. metropolitan 

region) urban form extracted from several observed variables via principal components 
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analysis: residential density, mix of land uses, degree of centering, and street accessibility. 

Otherwise, they employed six additional sprawl index variables for the county level that 

reflect residential density and street accessibility: (1) gross population density; (2) 

percentage of the county population living at low suburban densities; (3) percentage of the 

county population living at moderate to high urban densities; (4) the net density in urban 

areas; (5) average block size; and (6) percentage of blocks with areas less than 1/100 square 

mile, the size of a typical traditional urban block bordered by sides just over 500 feet in 

length.  

 Techniques of Geographic Information System (GIS) and Remote Sensing (RS) 

have allowed researchers to measure spatial development patterns more quantitatively. For 

example, Song and Knaap (2004) measured urban form to analyze the spatial pattern of 

urban sprawl in the metropolitan regions of Portland, Oregon. They used GIS to analyze 

various physical characteristics representing urban form, including the number of street 

intersections, median perimeter of blocks, lot size, acres of mixed-use land, median 

distance to commercial sites/ bus stops/parks, and so on. Additional research at the micro-

urban level was conducted by Emily (2005). This research examined good urban form for 

an inner-city neighborhood. She used layering, which is a basic concept of GIS with eight 

measurements that represent urban form, including the enclosure, lost space, sidewalks, 

public space, incompatible streets, lot width, proximity and mixed-use.  

 On the other hand, some studies that use up-to-date measuring development 

patterns utilized the public domain statistical package FRAGSTATS (McGarigal et al., 

2002), which measures landscape or development patterns with various landscape indices 
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based on raster (e.g. remote sensing data) and vector datasets (Herold et al., 2003; Wu et 

al., 2011). These measurements have been widely used by ecologists and conservation 

biologists as well as geographers (Brody et al., 2012; Wei Ji et al., 2006).  

 Landscape metrics are numeric measurements that quantify the spatial patterning 

of land cover patches, land cover classes, or entire landscape mosaics within a geographic 

area (McGarigal & Marks, 1995; See Fig 2.2). A patch refers to a relatively homogeneous 

area that differs from its surroundings. Patch-level metrics calculate characteristics of 

individual patches including size, shape, and distance from the nearest neighbor. In many 

applications, patch-level measures are not directly interpreted. Class-level metrics quantify 

characteristics of an entire class including total extent, average patch size and degree of 

aggregation or clumping, and return a unique value for each class. Thus, class-level indices 

provide spatial characteristics for a particular class. For example, this study is interested 

in knowing the total area of developed patches (i.e. impervious areas), average distance 

between high intensity developed patches, and aggregation of developed patches.  On the 

other hand, landscape-level indices are a set of all patches within the area of interest. In 

raster data, a landscape is the entire collection of cells, regardless of class value. 

Landscape-level indices are is useful to quantify the overall composition and configuration 

of the patch mosaic and thus it can be interpreted as broad landscape pattern.  
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Figure 2.2.  Conceptual diagram of the four levels of analysis provided in the metrics: cell, patch, 
class/land cover type (LCT), and landscape (Adopted from Leitão, 2006) 

  

  

 Landscape structure represents the composition and spatial distribution patterns of 

landscape elements. While composition refers to the number, type and extent of landscape 

elements, configuration refers to the spatial character arrangement, position, or orientation 

of landscape elements (Leitão, A., et al., 2006). In planning, the number and proportion of 

each land cover type can be measures of composition while the placement and distribution 

of each land cover type can be measures of configuration. 

 When considering a city as a large social organism, landscape metrics, which 

measure ecological landscape patterns, can definitely be used to measure forms of urban 

structure. However, only recent planning studies have attempted to analyze the dynamics 
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of an urban setting (i.e. development patterns) using landscape metrics to explain 

heterogeneous urban areas effectively (Herold et al., 2003; Ji et al., 2006; Schneider and 

Woodcock, 2008; Thapa and Murayama, 2009; Brody et al. 2012). The use of spatial 

metrics has provided a new platform for describing the spatial land use and land cover 

heterogeneity and morphological characteristics within the urban environment (Thapa and 

Murayama, 2009). Moreover, landscape metrics have found important applications in 

quantifying urban growth, sprawl, and fragmentation (Hardin et al. 2007). 

 Also, since GIS and RS techniques are being employed by a rapidly increasing 

number of users, landscape metrics have become a useful tool to measure urban form and 

development patterns.  There have been efforts to employ concepts of landscape metrics 

in urban planning studies to analyze and quantify spatiotemporal change in terms of urban 

development patterns, built environment, and land use change (See Table 2.1).  

 Although every study analyzes different research areas and in various scales (e.g. 

spatial resolution or unit of analysis), a large portion of research is focused on a time series 

analysis for the same study area in order to see temporal changes. For example, Herold et 

al. (2002) considered landscape metrics pertinent information on image spatial form and 

utilized it to analyze urban land use structure and land cover changes that account for urban 

growth. They applied several landscape metrics to two test sites in California across three 

different land uses in order to detect changes and growth processes. Seto and Fragkias 

(2005) quantified the annual rate of land-use change using remote sensing imageries (i.e. 

Landsat TM) for four cities in southern China. This study also calculated landscape metrics 

scores spatiotemporally across three buffer zones to understand and compare the shapes 
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and trajectories of urban expansion. The result showed that the four cities exhibited 

common patterns in their shape, size, and growth rates despite their different economic 

development and policy histories. Thapa and Murayama (2009) analyzed spatiotemporal 

urbanization patterns in Kathmandu Valley, Nepal. They also utilized remote sensing data 

and selected spatial metrics to quantify and monitor landscape fragmentation, land-use 

complexity, proximity, dominancy, and diversity in both landscape and class levels. These 

five measurements of landscapes (composition and configuration of landscape pattern 

changes) are calculated by selected spatial metrics including patch density (PD), the largest 

patch index (LPI), edge density (ED), area weighted mean patch fractal dimension 

(AWMPFD), Euclidian nearest neighbor distance mean (ENNMN), cohesion 

(COHESION), contagion (CONTAG), and Shannon’s diversity index (SHDI). 

 Unlike the above studies, Huang et al. (2007) applied landscape metrics to cross 

sectional analysis for seventy-seven large metropolitan regions in Asia, the U.S., Europe, 

Latin America and Australia. They calculated five spatial metrics for distinct dimensions 

of urban form. The result of this study clearly indicated that urban form of metropolitan 

regions differs across regions. Particularly, urban forms of metropolitan regions in the 

developing world are more compact and dense than their counterparts in either Europe or 

North America.  

 Some studies examined scale issues including grain size and unit of analysis in 

calculating landscape metrics with remote sensing imageries. Ji et al. (2006) examined 

trends and patterns of urban land-use change at the metropolitan, county, and city levels 

using remote sensing imageries and landscape metrics as spatial analytical methods. They 
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employed three landscape metrics, including patch density (PD), the largest patch index 

(LPI), and the aggregation index (AI) to understand and examine urban sprawl dynamics 

by calculating the built-up patch density and forest aggregation indices across 

jurisdictional levels. The result of this study revealed a scale effect in which the landscape 

response of urbanization can be better detected within a larger spatial unit (e.g. a 

metropolitan region or county as compared to a city). Wu et al. (2011) also mentioned 

scale issues in their research which quantified the spatiotemporal patterns of urbanization 

for two of the fastest growing metropolitan regions to understand the process of 

urbanization. This study analyzed landscape metrics in four different grain sizes (i.e. 

spatial resolution of remote sensing images) for two cities—Phoenix and Las Vegas— to 

figure out the scale issue. The result indicated that general patterns of urbanization are not 

be significantly affected by changing grain size. 

 Very recent research by Brody et al. (2012) utilized the landscape metrics concept 

from different angle. They employed flood loss as dependent variable to examine the 

impact of development patterns on flooding. Five landscape metrics are measured—total 

class area (CA), number of patches (NP), patch density (PD), proximity (PROX), and 

connectivity (CONNECT)— as indicators of urban development patterns across three 

development intensities (high, medium and low) to examine the effect of urban form on 

flood risk along the coast of the Gulf of Mexico.  They found that a greater overall area of 

compact, high-intensity impervious surface reduces flood losses (i.e. insured property 

damage) except in the case of dense urban development that is situated in flood-prone 

areas. Also, areas with medium-intensity development (50-79 percent impervious surface 
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cover which is typical of dense suburban setting) showed more significant impact on 

property damage from floods than other development intensities.  Specifically, an increase 

in the number and density of medium-intensity patches is the most influential combination 

in terms of significantly increasing insured property damage from flooding events. Finally, 

they concluded that regional planners should promote high-intensity, clustered 

development rather than low-density sprawling development patterns to foster flood-

resilient communities. 

 Table 2.1 shows the summary of literatures that measure built environment and 

urban growth patterns using landscape metrics. 

 

 

 

 

 

 

 

 

 

 

 

 



 

19 

 

Table 2.1. Measuring urban form and growth patterns using landscape metrics  

Authors Year Subject Study Area  Landscape Metrics 

Herold et al. 2002 
Spatial Urban 

Growth Pattern 
Santa Barbara/ 

Goleta, CA 

FRACT (Fractal 
Dimension), %LAND (Percent 
of Landscape), 
PD (Patch Density), PSSD 
(Patch size standard 
deviation), ED (Edge Density), 
AWMPFD (Area weighted 
mean patch Fractal 
Dimension), CONTAG 
(Contagion Index) 

Seto and 
Fragkias 

2005 

Spatiotemporal 
patterns of 

urban land use 
change 

Four cities in China 

ED, AWMPFD, NP (Number 
of Patches), MPS (Mean 
Patch Size), PSCOV (Patch 
size coefficient of variation) 

Ji et al. 2006 
Trends and 
Patterns of 

urban sprawl 

Kansas 
Metropolitan 

region, County, 
City 

PD, LPI (Largest Patch Index), 
AI (Aggregation Index) 
 

Yu and Ng 2007 

Spatial and 
Temporal 

dynamics of 
urban sprawl 

Guangzhou City, 
China 

NP, MPS, LPI, AWMSI (Area 
weighted mean shape index), 
AWMPFD, SHDI, CONTAG, 
COHISION 

Haung et al. 2007 
Comprehensive 

Urban form 

77 metropolitan 
regions in the 

world 

AWMSI (Area Weighted 
Mean Shape Index), 
AWMPFD, Centrality, CI 
(Compactness Index), CILP 
(Compactness index of the 
largest patch) 

Thapa and 
Murayama 

2009 
Spatiotemporal 

patterns of 
urbanization 

Kathmandu Valley 

PD, LPI, ED, AWMPFD, 
ENNMN (Euclidian nearest 
neighbor distance mean), 
COHESION, CONTAG, SHDI 
(Shannon’s Diversity Index) 

Wu et al. 2011 
Spatiotemporal 

patterns of 
urbanization 

Phoenix and Las 
Vegas 

metropolitan 
regions 

AWMFD, CONT, ED, LSI 
(Landscape Shape Index), 
MPS, PD, %Class, SHDI, Sqp 
(Square Pixel) 

Brody et al. 2013 

Impact of 
development 
patterns on 

flooding 

Coastal Counties 
along Gulf Coast 

CA (Class Area), NP, PD, 
PROX (Proximity), CONNECT 
(Connectance) 
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2.3. Urban Heat Island Effect (UHIE) and Urban Development Patterns 

 Urban growth and sprawl development pattern have significantly altered the 

biophysical environment. The replacement of soil and vegetation with impervious surfaces 

such as concrete, asphalt, and buildings is a major change in urban areas (Lo and 

Quattrochi, 2003). A most notable phenomenon that has arisen as a result of the expansion 

of development is that urban climates are warmer and more polluted than their rural 

counterparts (Lo and Quattrochi, 2003). Hence, temperature patterns of urban areas appear 

as an “island,” which is known as an Urban Heat Island (UHI) (Sailor, 1995; Stevermer, 

2002). As mentioned in the previous section, many preceding researchers have suggested 

that the UHI distribution is linked with complex urban components and is dependent on a 

number of factors (Jenerette et al., 2007; Weng, Lu, & Liang, 2006). Surface 

characteristics of urban areas appear to be the main contributor to the increased 

temperature (Jenerette al., 2007; Voogt&Oke, 2003). For example, UHIE is strongly 

related to a lack of vegetation, the materials used in the built environment, and urban 

canyon geometry (Oke, 1981; Rosenzweig et al., 2005).  

 Recently, there have been attempts to find relationships between urban form and 

temperature. Most of these attempts are focused on measuring land use or land cover 

patterns using GIS and RS datasets to discover their relationships with temperature. The 

following three studies explained how they measured the urban form regarding UHIE for 

the same study area, a metropolitan region of Atlanta, GA. In their study, “Urban Form 

and Thermal Efficiency,” Stone and Rodgers (2001) analyzed the relationship between a 

single family residential urban form and thermal conditions in Atlanta, GA. They 
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constructed a database that included urban design elements that are related to the surface 

heat island—tree canopy cover, year of construction, number of bedrooms, impervious 

surface area, pervious surface area, and street intersection density— and measured them. 

They utilized GIS to build various datasets on a parcel-based map. Also, they described 

how they used an overlay function to measure the percentage of tree canopy cover in each 

single family parcel (which was a unit of analysis).  

 Lo and Quattrochi (2003) analyzed land use and land cover change in order to 

examine their relationships with temperature change. They calculated the amount and 

percentage of each land use category extracted from Landsat images over a period of 

twenty-five years (1973-1998). Also, they calculated the NDVI (Normalized Difference 

Vegetation Index), which measures the greenness of the environment as well as the amount 

of vegetation or biomass. The variations in the percentage of land use and the NDVI 

demonstrated how the urban form has changed throughout time.  

 More recently, empirical research on UHIE and impervious surfaces was 

conducted in the Atlanta metropolitan region by Lee and French (2009). They predicted 

the Atlanta metropolitan region’s future amount of reduced impervious surface as a 

mitigation measure for UHIE in a metropolitan region. They utilized high-resolution aerial 

photography to divide impervious surfaces into different land use categories. Then, each 

land use category was multiplied by the land cover coefficient to estimate the current 

impervious surface area. Based on the estimated current impervious surface area, 

population, and employment rate, they predicted a future amount of impervious surfaces 

using regression models. Although this research is simply focused on impervious surfaces 
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in terms of urban form, it is meaningful because the amount of impervious surfaces is one 

of the critical factors that exacerbate the UHIE. 

 Another study of Stone et al. (2010) analyzed the relationship between the urban 

form of a metropolitan area and the mean annual rate of change for extreme heat events 

between 1956 and 2005. They employed the sprawl index created by Ewing et al. (2003), 

which includes centeredness, connectivity, density and land-use mix. They utilized GIS to 

measure each attribute. For example, connectivity was measured by average block size and 

the percentage of blocks less than approximately 500 feet on one side. In other words, as 

block size increased, the number of street intersections per unit of area decreased, which 

indicated street network density. Their results showed that “the most sprawling cities in 

top quartile experienced a rate of increases in extreme heat events that was more than 

double that of the most compact cities in the bottom quartile (Ewing, 2003)” 

 Most recently, Junxiang Li et al. (2011) conducted a case study of Shanghai, China 

that examined the impacts of landscape structure on surface UHIs using the NDVI, 

vegetation fraction, and the percentage of impervious surface area. They found that surface 

temperature had a large range of variations at a given level of NDVI, percent vegetation, 

and impervious surface area. Thus, they employed landscape metrics and analyzed 

correlations between landscape metrics and surface temperature to find the reason behind 

the temperature variations. They showed that the urban land surface temperature (LST) is 

not only influenced by land cover composition but also by its spatial configuration. Five 

metrics were measured at the class-level across land use categories: percent of land use 

(PLAND), edge density (ED), patch density (PD), landscape shape index (LSI), and 
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clumpiness. The following three metrics were measured at the landscape level: Shannon’s 

evenness index (SHEI), Shannon’s diversity index (SHDI), and contagion (Contagion). 

LST is generally negatively correlated with clumpiness on the pixel-by-pixel scale and 

Shannon's diversity index on the landscape scale, indicating that a mixture of impervious 

surfaces with other land cover types reduces surface UHIE. 

 

2.4. Summary of and Gaps in the Literature    

 The literature above shows that urban built environments driven by development 

have clear impacts on UHIE. A large portion of the literature made efforts to examine the 

relationship between urban components and UHIE in order to find the factors that increase 

temperature. As a result, previous research suggested various factors that increase urban 

temperature in terms of land use, land cover, and surface characteristics. Although every 

study employs different variables and analytical methods, their results share the general 

consensus that increasing impervious surface area has a positive effect on urban 

temperature and the presence of vegetation and water in urban built environments reduces 

urban temperature. One gap in the research is that most of studies have analyzed one 

specific study area (ranging from a neighborhood to a metropolitan region) to examine the 

relationship between development characteristics and UHIE. This research is limited to 

the given conditions of that particular UHIE study area. The findings of one particular 

study are thus difficult to apply to other places. In contrast, my study covers multiple 

metropolitan regions in the continuous U.S. to provide a more comprehensive and 
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externalizable  understanding of the relationship between UHIE and development patterns. 

 In recent years, some researchers have begun to pay more attention to urban 

development patterns as one of the factors that affect urban temperature. They attempted 

to analyze spatial development pattern by employing various indicators such as the sprawl 

index and landscape matrix. Both the sprawl index and landscape matrix provide an 

understanding of spatial characteristics of development patterns. Especially, landscape 

metrics are considered by researchers as a useful way to describe urban landscapes in terms 

of composition and configuration. Another research gap is that landscape metrics are 

traditional measurements in ecological studies, but only recently have planning studies 

discussed and utilized landscape metrics to quantify physical urban development patterns. 

Moreover, the spatial analysis of development patterns in relation to UHIE has been 

surprisingly limited, with some exceptions, including Stone et al. (2010) and Junxiang Li 

et al. (2011).   
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CHAPTER III 

RESEARCH FRAMEWORK AND HYPOTHESES 

 

 Based on the literature review in the previous chapter, this study proposes the 

conceptual framework in Figure 3.1. In order to develop this framework, I extracted three 

potential factors that affect the UHIE: the built environment, natural environment, and 

demographic characteristics.  

 

 

 

 

 The main set of independent variables is associated with spatial development 

patterns based on five criteria: density, continuity, clustering, diversity and proximity. 

Control variables include the percentage of vegetation cover, percentage of water surface 

Figure 3.1. Research Framework 
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cover, regional climate and population characteristics. The following sub-sections provide 

an understanding of key variables including UHIE and urban development patterns leading 

to specific research hypotheses to test the effect of development patterns on the UHIE. 

  

3.1. Dependent Variable: Urban Heat Island Effect  

 The dependent variable for this study is UHIE, specifically the difference in surface 

temperature between urbanized and rural areas. Many previous studies on the topic of 

UHIE have used temperature differences (e.g. mean, daily maximum, and daily minimum) 

between urban and surrounding rural areas or between the inside and outside of a city to 

examine the degree and magnitude of UHIE. Since this study focuses on the regional UHIE, 

UHIE can be captured at the metropolitan level by comparing the temperatures of an 

urbanized area and a rural area in the same metropolitan regions. 

 There are two types of UHIEs: surface UHIE and atmospheric UHIE. It is known 

that atmospheric UHIE is observed to be larger at night while surface UHIE is observed to 

be larger during the day (Roth et al, 1989).  While atmospheric UHIE is measured by the 

air temperature provided by weather station networks, the surface UHIE is obtained 

through surface temperature gathered by airborne or satellite thermal infrared remote 

sensing, which allows researchers to study surface UHIE on a regional scale (Yuan and 

Bauer, 2007). As a result, this study employs surface UHIE in the summer season as a 

dependent variable and uses both day and night temperatures to observe diurnal and 

nocturnal UHIE patterns (Detailed in Section 4.2.1). 
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3.2. Independent Variable: Urban Development Patterns 

 As discussed in the literature review of Section 2, previous studies have attempted 

to investigate the relationship between urban components and temperature. Although they 

used various methods for different study areas, there is a general consensus that the 

temperature or thermal efficiency level vary depending on the characteristics of the land 

surface, including imperviousness, vegetation, and surface of water on land. In considering 

the characteristics of land surface as components, the spatial development pattern is how 

these components are arranged. In other words, spatial development pattern refers to a 

configuration of various components and is an important concept used to describe urban 

land surface. Thus, this study employs spatial patterns of development as independent 

variables to examine the effect of spatial configuration of development on UHIE.  

 As mentioned earlier, there are two typical types of spatial development patterns 

in the U.S.: sprawl and compact. Using concepts (sprawl and compact) and characteristics 

to separate these two major development patterns, this study sets a main hypothesis and 

several sub-hypotheses to answer the research question posed above. 

 Main Hypothesis: Metropolitan regions with a sprawling development pattern in 

urbanized area will have a higher Urban Heat Island Effect than the metropolitan 

regions with a compact development pattern in urbanized area. 

 

3.2.1. Density of Development 

Density is the most cited indicator of sprawl in previous studies (Burchell et al., 
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1998; Gordon and Richardson, 1997a, b; Sierra Club, 1998; Galster et al., 2001). It is 

usually measured by the relationship between population or residential units and land area. 

Alternatively, density, in terms of development patterns, is computed using the ratio of 

developed area to the total land size of urbanized area, which could provide relative 

degrees of development for each metropolitan region.  

The density of development could be interpreted in various ways. In this study, the 

density of development is equal to the density of impervious surface since the “developed” 

category in land cover dataset refers to impervious surfaces. As mentioned in literature 

review section, increasing the amount of impervious surfaces has a positive relationship 

with urban temperature. Thus, the first sub-hypothesis is: 

 Sub-Hypothesis 1: Metropolitan regions with a higher ratio of development in 

urbanized area will have a larger Urban Heat Island Effect than metropolitan regions 

with a lower ratio of development in urbanized areas. 

 

3.2.2. Continuity of Development 

 Continuity refers to the degree to which development has occurred in an unbroken 

fashion (Galseter et al. 2001). Continuity is also frequently cited as a controvertible 

dimension of development. There are two major forms of sprawl that are related to 

continuity: low-density continuous development and ribbon development (Harvey and 

Clark, 1965). Low density sprawl is less offensive and the lowest order of sprawl but the 

most ubiquitous type of development pattern. It displays a land consumptive development 
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pattern as opposed to one that is more planned and concentrated. Ribbon development 

usually refers a continuous development pattern coupled with high ways. This type of 

sprawl is composed of compact segments within development, but is extended in a line 

shape. Connected and wide-spreading development patterns create a large amount of 

impervious surfaces which produce heat in various ways: increasing automobile use 

increases air pollution and losing vegetation cover. Thus, this study measures the 

connectivity of developed areas to examine the degree of continuity of development which 

includes both concepts of low-density continuous development and ribbon development 

patterns. 

 Sub-Hypothesis 2: Metropolitan regions with higher continuity of development in 

urbanized areas will have a larger Urban Heat Island Effect than metropolitan regions 

with a lower continuity of development in urbanized areas. 

 

3.2.3. Clustering of Development 

 Clustering is one of the compact development strategies in which land is developed 

in a tightly bunched area to minimize the amount of land consumed. This approach allows 

for compact developments while still protecting environmentally sensitive areas and 

agricultural lands. Moreover, clustering reduces the costs of site development involving 

the construction of roads and water/sewer infrastructure (Blaine and Schear, 1998). 

Clustering development can minimize the amount of impervious surface in urban areas. 

On the contrary, disaggregated development aggravates greater landscape heterogeneity 
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and fragmentation (Torrens and Alberti, 2000). Reducing overall impervious surface and 

protecting natural environment should therefore decrease urban temperature.  

 Sub-Hypothesis 3: Metropolitan regions that contain a more clustered development 

pattern in urbanized areas will have a smaller Urban Heat Island Effect than the 

metropolitan regions with a less-clustered development pattern in urbanized areas. 

 

3.2.4. Diversity of Land Covers 

 The diversity of urban development indicates a land use mix, which means that at 

least two different land uses exist within the same spatial planning unit. Another attribute 

of sprawl-oriented development is the separation of different kinds of land uses from each 

other (Vermont Forum on Sprawl, 1999). A mixture of land uses in urban areas, including 

residential, business, commercial, and open space, decreases travel time and distance for 

those who live or work there (Galster et al., 2001). When this concept is applied to land 

covers, diversity can be measured by the number of land cover types in an urbanized area. 

Coexistence of development and other natural land covers (e.g. vegetation, water) allows 

an urban area to better control temperature (thermal comfort). In this sense, diversity of 

land cover in urban areas could reduce the impact of the UHIE.  

 Sub-Hypothesis 4: Metropolitan regions with a greater diversity of land cover types 

in urbanized areas will have a smaller Urban Heat Island Effect than the metropolitan 

regions that have less diverse land covers in urbanized areas. 
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3.2.5. Proximity of Land Covers 

 The proximity of urban development refers to the degree to which different land 

uses are physically close to each other within an urbanized area. Conceptually, proximity 

is the average distance people must travel on daily basis (Galster et al., 2001). One of the 

most important indicators of reduced proximity is poor accessibility because it affects the 

efficiency of household travel patterns (Ewing, 1997). Residents may commute far from 

home for out-of-home activities (i.e. residential accessibility) or out-of-home activities 

may be far from each other (i.e. destination accessibility). Thus, the urban areas where 

people have to travel long distances have lower proximity between land uses, and therefore 

can be considered as a sprawling type of development.  When applied to land cover, 

proximity refers to how well development and natural environments are interspersed.. 

Sharing the borders of development with natural environments could attenuate the heat 

generated from developed areas.  

 Sub-Hypothesis 5: Metropolitan regions with a higher proximity between different 

land covers in urbanized areas will have a lower Urban Heat Island Effect than 

metropolitan regions that have a lower proximity between different land covers in 

urbanized areas. 
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3.3. Control Variables 

3.3.1. Impervious Surface 

 The percent (amount) of impervious surface is a primary indicator used to estimate 

surface UHIE since most of the heat created derives from it. Impervious surfaces are 

covered surfaces which water cannot infiltrate and are highly associated with 

transportation features (streets, highways, parking lots and sidewalks) and building 

rooftops (Yuan and Bauer, 2007). Also, the amount of impervious surface is related to 

population growth and urbanization (Stankowski, 1972) and is an important indicator of 

environmental quality (Arnold & Gibbons, 1996). Thus, the amount or percent of 

impervious surface is often employed as a major predictor of urban expansion and used to 

analyze the relationship between land surface urban temperature and urban development. 

Previous studies have shown that a higher urban development intensity or imperviousness 

will, generally have a higher land surface temperature (Oke, 1976; Weng, 2001; Yuan and 

Bauer, 2006). Therefore, this study hypothesizes that an area containing a higher 

percentage of impervious surfaces will experience significantly greater UHIE. 

 

3.3.2. Percentage of Vegetation Cover 

 Vegetation cover has shown to be an important factor in influencing urban 

temperature (Landsberg, 1981; Quattrochi et al., 2000.; Yoshida et al., 2004). Vegetation  

reduces air temperature through the evapotranspiration process, in which plants release 

water to the surrounding air, dissipating ambient heat (EPA, 2008b). Thus, numerous 
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studies have included the amount of vegetative cover as an important variable that affects 

UHIE. Vegetation cover represents the percentage of vegetated areas including forest, 

shrubland, and herbaceous sections in an urbanized area. As urban areas expand, more 

vegetation is lost and more surfaces are paved or covered with human-made structures 

(EPA, 2008b). This study hypothesizes that an area containing a higher percentage of 

vegetation cover will experience a significantly smaller UHIE.  

 

3.3.3. Percentage of Watered Surface 

 Watered surface is another important variable related to UHIE. Water has a 

relatively low temperature during the daytime; therefore it reduces the average urban 

temperature. Watered landscapes affect surface temperature (Gober et al., 2010) and were 

discovered to be one of the coolest features among land use types with vegetation (Weng 

et al., 2006). Also, proximity to large bodies of water and mountain terrain may influence 

local wind patterns and urban heat island formation (EPA, 2008b). Thus, this study 

hypothesizes that an area containing a higher percentage of watered surfaces will 

experience a significantly smaller UHIE. 

 

3.3.4. Population 

 Although UHIE is generally related to the physical elements of urban areas, 

population is an exceptional consideration. Population can be an indicator of various 

activities in a particular place including business, transportation, and energy consumption. 
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Oke (1973) found evidence that UHIE increases with population. He suggested the formula 

“UHI = 0.73log10 (pop), where pop denotes population. An example of this would be that 

a place with a population of ten has a warm bias of 0.73 °C, a place with a population of 

one thousand has a warm bias of 2.2 °C, and a large place with one million people has a 

warm bias of 4.4 °C. Therefore, this study hypothesizes that an area with a large population 

will experience a significantly larger UHIE. 

 

3.3.5. Ecoregions 

 Ecological regions (Ecoregions) were developed by commission for environmental 

cooperation (CEC) in 1997 to assess the nature, condition and trends of the major 

ecosystems in North America (ECE, 1997) (See Figure 3.2). Ecoregions are the area of 

general similarity in ecosystems and in the type, quality, and quantity of environmental 

resources. They are used as a spatial framework for the research, assessment, management, 

and monitoring of ecosystems and ecosystem components. Ecological regions can be 

applied to various research, such as national and regional state of the environment reports, 

environmental resource inventories and assessments, setting regional resource 

management goals, determining carrying capacity, as well as developing biological criteria 

and water quality standards. This classification is especially important for evaluating the 

ecological risk, sustainability, and health of regional and large continental ecosystems. 

Ecological land is classified using a process of delineation and classification in 

ecologically distinctive areas of the Earth’s surface. Each area can be considered as a 
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discrete system which has resulted from the mesh and interplay of the geologic, landform, 

soil, vegetative, climatic, wildlife, water and human factors that may be present. The 

dominance of any one or a number of these factors varies with the given ecological land 

unit.  

 

 

Figure 3.2. Ecoregions and Metropolitan regions in U.S. 
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Table 3.1. Variables, definitions, and expected impact 

Variable Name Variable Definitions Source 
Relationship 

Expected 
with UHIE 

Dependent Variables 

UHIE 

Day 

Temperature difference 

between urban and 

rural at day time 
MODIS dataset 

(MOD11A2 v.5) 

July 12, 2006 

 

Night 

Temperature difference 

between urban and 

rural at night time 

Independent Variables: Spatial Development Patterns 

Development 

Patterns 

Density 

Degree to which total 

land development ratio 

in urbanized area 

Analysis Result by 

Fragstat 4.0 using 

USGS, NLCD (2006) 

+ 

Continuity 

 

Degree to which 

development has been 

occurred in an unbroken 

fashion 

+ 

Clustering 

 

Degree to which 

development has been 

clustered or aggregated 

_ 

Diversity 

 

A number of land covers 

exists  _ 

Proximity 

Degree to which various 

land cover types has 

been close each other 
_ 

Control Variables: Built, Natural Environments & Demographic Characteristic 

Impervious surface Impervious surface area USGS, NLCD(2006) + 

Vegetation Vegetation covers USGS, NLCD(2006) _ 

Water surface Watered surfaces USGS, NLCD(2006) _ 

Population Population U.S. Census (2010) + 

Ecoregions Ecological regions 

ECE, Ecological 

Regions Level I 

(1997) 

Dummy 
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CHAPTER IV 

RESEARCH METHODS 

 

 This section outlines and discusses the research methods used in this study. It 

includes three sub-sections. First, the study area chosen for this research is identified and 

described. Second, concept measurement is explained for employed dependent and 

independent variables. The third sub-section details data analysis methods used in this 

research. Finally, the last section discusses threats to the validity of this study. 

 

4.1. Study Area (Spatial Sample Frame) 

The spatial sample frame for this research comprises 353 metropolitan regions in 

the continuous U.S. (See Figure 4.1).  Previous research suggests that metropolitan regions, 

containing two-thirds of the U.S. population and nearly three-quarters of its economic 

activities, need to be priority targets for climate change management action (Brown, 

Southworth & Sarzynski, 2008; Grover, 2010).  Also, heat islands are more easily and 

clearly observed based in metropolitan regions than within any other cartographic 

boundaries such as counties or cities. 

In the contiguous U.S., there are a total of 947 CBSAs (Core Based Statistical 

Areas) which are divided into two types of regions including metropolitan and 

micropolitan statistical areas (Census 2003).  CBSAs are defined by the federal Office of 

Management and Budget (OMB) based on a set of official standards published in the 

Federal Register. Metropolitan statistical areas are usually referred to as metropolitan 



 

38 

 

regions in many previous studies. The Census Bureau set the definition of the concept of 

a metropolitan region as “A large population nucleus (50,000 or more), together with 

adjacent communities having a high degree of social and economic integration with that 

core. Metropolitan regions comprise one or more entire counties, except in New England, 

where cities and towns are the basic geographic units”. In other words, counties in the 

same metropolitan region share their industry, transportation, infrastructure, and housing. 

Thus, within this unit of a metropolitan region, it is important to analyze regional 

characteristics in terms of socio-economic and population characteristics.  

There are 358 metropolitan regions in the continuous U.S (2006), and these include 

about eighty-three percent of the U.S. population. The metropolitan areas have a much 

higher population density than the rest of U.S. regions could be clear evidence that most 

land development occurs in metropolitan regions. Ultimately, this study includes the 

sample of 353 metropolitan regions, omitting five metropolitan regions because they were 

dropped from the Census 2010 (for the population variable) data. 
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Figure 4.1. Metropolitan regions in Continuous U.S. 
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4.2. Measurement 

4.2.1. Dependent Variable: Urban Heat Island Effect 

 UHIE can be determined by temperature difference between urbanized and non-

urbanized areas in each metropolitan region. The larger values represent the larger 

magnitude of UHIE. 

UHIE = Avg. Temperature urbanized area - Avg. Temperature non-urbanized area 

 

Figure 4.2. Mean temperature of urbanized and rural areas at night  
 

 There are still ongoing debates about whether to select ground temperature or air 

temperature when measuring UHIE since it can be measured as both surface and 

atmospheric phenomena (Stone and Rodgers, 2001)(See Table 4-1).  
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Table 4.1. Basic Characteristics of Surface and Atmospheric Urban Heat Island (EPA, 2008b) 

 

 

 This study will use surface temperature to quantify the influence of urban form on 

UHIE for the following reasons: first, air temperature is unstable because of the fluid 

properties of the atmosphere. Due to this characteristic, the correspondence between 

surface and air temperature is known to decrease with increasing altitude (Carlson et al., 

1977). Therefore, air temperatures may vary depending upon the height of the measuring 

weather station and cannot be used as a reliable source to represent urban temperature. 

Second, weather stations, which are the most commonly used tool to measure air 

temperature, are very limited in terms of time and space. The third reason to choose surface 

temperature is that it can utilize remote sensing data and techniques. An advantage of 

remote sensing data is that it encompasses a very large number of thermal observations. 

This large number of observations allows for the measurement of the thermal properties 

of small surface features with much greater precision (Stone and Rodgers, 2001). 

Feature Surface UHI Atmospheric UHI 

Temporal 

Development 

Present at all times of the day and night 

Most intense during the day and in the 

summer 

May be small or non-existent 

during the day 

Most intense at night or predawn 

and in the winter 

Peak Intensity 

(Most intense 

UHI conditions) 

More spatial and temporal variation: 

Day: 18 to 27 F (10 to 15 C) 

Night: 9 to 18 F (5 to 10 C) 

Less variation: 

Day : -1.8 to 5.4 F (-1 to 3 C) 

Night: 12.6 to 21.6 F (7 to 12 C) 

Typical 

Identification 

Method 

Indirect measurement: 

Remote sensing 

Direct measurement: 

Fixed weather stations 

Mobile traverses 

Typical 

Depiction 
Thermal Image 

Isotherm map 

Temperature graph 



 

42 

 

 The magnitude of surface UHIE varies with seasons, due to changes in the sun’s 

intensity as well as ground cover and weather.  Also, surface UHIE with the greatest 

frequency of occurrence and intensities, is captured in the warmer half of the year, 

especially summer and autumn (Chandler, 1965; Lee, 1979; Unwin, 1980; Oke, 1982; 

EPA, 2008). As a result of these variations, surface urban heat islands are typically largest 

during the summer season (EPA, 2008b). 

 As mentioned above, UHIE will be captured by the temperature difference 

between urbanized and non-urbanized (i.e. rural) areas for each metropolitan region in the 

study area. Previous studies of land surface temperatures and thermal remote sensing of 

urban areas have been conducted by using various thermal imageries. This study used 

MODIS (Moderate Resolution Imaging Spectroradiometer) to analyze surface 

temperature in metropolitan regions. MODIS is a key instrument for global studies of 

atmosphere, land and ocean process, which is boarded the Terra Earth Observing System 

(EOS AM) and Aqua (EOS PM) satellite (Wan and Li, 1997). Terra MODIS and aqua 

MODIS are observing the entire Earth’s surface every one to two days, acquiring data in 

36 spectral bands, or groups of wavelengths with 1,000m, 500m and 250m spatial 

resolutions. Also, MODIS has various combinations in terms of spatial and temporal 

resolutions of land surface temperature that allows for selecting appropriate images for 

each research purpose. This study has utilized the MOD11A2 v.5 dataset which provides 

eight-day average values of clear sky land surface temperature based on daily 1-kilometer 

MODIS/Terra Land Surface Temperature/Emissivity product (MOD11A1). MOD11A2 is 

comprised of daytime and nighttime land surface temperatures, quality assessment, 
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observation times, view angles, bits of clear sky days and nights, and emissivity estimated 

in Band 31 and 32 from land cover type.  

 The reasons to choose this V.5 MODIS/Terra land surface temperature/emissivity 

products for this study are as follows: first, it was validated to Stage 2, which means that 

the accuracy has been assessed over a widely distributed set of locations and time periods 

via several ground-truth and validation efforts. Also, MOD11A2 dataset is retrieved from 

clear-sky (99% confidences) observations at 10:30AM (daytime) and 10:30PM (nighttime) 

using a generalized split-window algorithm (Imhoff et al, 2010; Wan & Dozier, 1996).  In 

other words, this dataset is ready for use in scientific publications without further 

preprocessing. Second, the spatial resolution of 1,000m is quite coarse but enough to 

observe surface temperature patterns in metropolitan regions. Although there are much 

higher resolution imageries such as Landsat TM/ ETM (120m/60m) or ASTER, fine 

spatial resolution imageries have coarse temporal resolutions. Both datasets have a 16 day 

repeat interval. Since the spatial sample frame of this study covers the continuous U.S., it 

is hard to find specific (common) date without cloud covers for all 353 metropolitan 

regions. Thus, fine temporal resolution (12hr; twice a day) and an eight-day average value 

of temperature are key characteristics in the decision to select MODIS to measure land 

surface temperature. 

 NCDC (National Climatic Data Center) provides an online mapping service to 

observe the U.S. climate variability and change (U.S. Climate at a Glance). This service 

allows users to see the trends of average temperature and precipitation based on locations 

(national, regional, statewide, and cities) and periods (from 1900-2012). 



 

44 

 

 

Figure 4.3. Average Temperature Trend in Summer Season (1991-2012) 

 

To compare three candidate years, average temperatures of the summer period 

(June- August) for 1990-2010 are displayed as a chart (See Figure 4.3).  Base temperature, 

72.07 degrees Fahrenheit, is the average summer temperature from 1901-1990.The 

summer temperature trend for the years 1991-2010 indicates that the temperature 

increased 0.80 degrees Fahrenheit every decade during the summer season. The graph 

shows that the year 2006 records the highest average temperature among the three 

candidate years as well as for the last twenty years. Based on the temperature records, this 

study will employ the eight-day average land surface temperature of July 12, 2006 from 

the MODIS dataset (MOD11A2 v.5). 

 A total of fifteen images downloaded from USGS Global visualization viewer 

website and the following steps were conducted to calculate the land surface temperature 

of study areas. 
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 First, a developed batch model of the MODIS Re-projection Tool (MRT tool) was 

used to process the re-projection of images from native MODIS projection (Sinusoidal) to 

Alber's Equal Area Conic Conformal to match the NLCD (National Land Cover Dataset) 

dataset. (See Figure 4.4). Second, fifteen downloaded MODIS images were mosaicked 

using ArcGIS 9.3 and their boundaries were clearly matched with each other. Third, 

MODIS data value was converted to temperature. MODIS provides temperature value as 

five-digit numbers, and these numbers were converted to real temperature (Kelvin) by 

multiply the scale factor of 0.02. Then, this temperature converted again from Kelvin to 

Fahrenheit.  

 
 

Figure 4.4. Mosaic images of nighttime temperature by MODIS 
(Left: Sinusoidal projection; Right: Alber’s projections) 

  

 Based on converted temperatures, temperature differences between urbanized and 

rural areas are calculated. To make clear (maximize) differences between urban and rural 

temperature, the cells on the boundaries of urbanized areas are excluded as urban-rural 

transition zones when calculating the average temperature.  (See Figure 4.5) 
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Figure 4.5. Mean temperature of urbanized and rural areas  
    excluding boundary of urbanized area 

 

 

4.2.2. Independent Variables: Spatial Development Patterns 

 As mentioned earlier, spatial development patterns can be measured using 

landscape metrics. Five landscape metrics representing spatial development patterns were 

selected to be measured for developed areas (i.e. impervious surfaces) (See Table 4.2). 

The amount of impervious surfaces is an important indicator of environmental quality 

(Arnold and Gibbons, 1996; Yuan and Bauer, 2007) and shows the overall footprint of 

development patterns.  Thus, analyzing development patterns of impervious surface areas 

provides an alternative method for studies of urban development patterns and related 

surface UHIE.  
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Table 4.2. Intensity of development class and impervious surface 
                  (Adopted and revised from legend of NLCD 2006 dataset) 

Class Descriptions 
Percentage of 

Impervious 
Surface 

Reclassify 
(Aggregation) 

High 

Highly developed area where people 
reside or work in high numbers. Examples 
include apartment complexes, row 
houses and commercial/industrial.  

80-100 

Developed 
Areas 

Medium Areas with a mixture of constructed 
materials and vegetation. These areas 
most commonly include single-family 
housing units. 

50-79 

Low 20-49 

Open 
Space 

Areas with a mixture of some constructed 
materials, but mostly vegetation in the 
form of lawn grasses. These areas most 
commonly include large-lot single-family 
housing units, parks, golf courses, and 
vegetation planted in developed setting 
for recreation, erosion control, or 
aesthetic purpose.  

Less than 20 

Excluded 
from 

Development 
since this 

area is 
describe as 

mostly 
vegetation. 

 

 This study measures class-level and landscape-level metrics to analyze spatial 

development patterns. In this study, a class is a set of land cover types and the landscape 

level is the metropolitan region. Since landscape metrics are commonly used to conduct 

an empirical analysis of landscape patterns, selecting which set of landscape metrics to 

utilize is an important precursor to analyzing spatial pattern. Also, it is important to select 

an appropriate set of metrics based on the particular purpose of each measure and the 

interdependence among measures because each level of landscape metrics has its own 

purpose and value of measurement. The measures share limited numeric information such 

as area and perimeter of a landscape (patch, class), and thus we should consider their 

correlation effect when employing two or more metrics in a statistical model.  



 

48 

 

 While there are hundreds of known landscape metrics introduced and developed 

in the literatures, this study selected the following five metrics (See table 4.3) to measure 

development patterns based on the five typical characteristics of urban sprawl: PLAND 

(percent of land), COHESION, GYRATE_AM, PRD (patch richness density) and IJI 

(interspersion and juxtaposition index). A major challenge in selecting metrics was 

matching the concepts of development patterns to appropriate landscape metrics which 

traditionally measure ecological features.  Metrics associated with shape, core area, and 

contrast can be important when targeting ecological processes, but are more difficult to 

relate to the notion of development patterns. However, some metrics under the concepts 

of area, aggregation, and diversity can be logically applied to the notion of development 

patterns when considering the characteristics of sprawl. If similar metrics are used to 

measure same concept, this study selects the simpler metric in terms of its calculation 

method to reduce (limit) complexity of interpretation.  

 

 

Figure 1.6. Concept of queen and rook contiguity 
 



 

49 

 

The Queen contiguity index was selected to analyze continuity-related index. There are 

two types of weight matrix that calculated based on contiguity of neighbors (See Figure 

4.6). A queen weights matrix defines a location's neighbors as those with either a shared 

border or vertex (in contrast to a rook weights matrix, which only includes shared borders)1.  

 

Table 4.3. Dimensions of Development and Related Landscape Metrics  

Dimensions of 

development 
Related landscape metrics (Level) 

Density PLAND (Class) 

Continuity COHESION (Class) 

Clustering GYRATE_AM (Class) 

Diversity IJI  (Landscape) 

Proximity PRD  (Landscape) 

 

 

Density of Development: PLAND Index 

Development density can be measured by PLAND. The PLAND metric represents 

the sum of all the areas corresponding to a patch type, divided by total landscape area, 

multiplied by 100 (to convert to a percentage). PLAND measures relative amounts of 

developed areas (i.e. impervious surface areas) based on the size of the urbanized area. 

When it is applied to the built environment or impervious surface, it provides a measure 

of the overall extent of urban form or the community imprint on a landscape (Brody et al., 

                                                 

1 GEODA, Glossary of Key Terms: https://geodacenter.asu.edu/node/390#queen 
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2012). A high value of PLAND in development category indicates that the proportional 

abundance of development areas in urbanized area. The PLNAD index ranges between 0 

and 100, as it is calculated as a percentage. PLAND approaches 0 when the corresponding 

class becomes rare in the landscape. Since PLAND is a relative measure, it is a more 

appropriate index of landscape composition than total class area: PLAND is regardless of 

varied size of landscape. Fragstat calculates PLAND based on the following formula: 

 

PLAND = P𝑖 =  
∑ 𝑎𝑖𝑗

𝑛
𝑗=1

𝐴
(100) 

 

Where P𝑖 is proportion of the landscape occupied by patch type (class); 𝑎𝑖𝑗 (m2) is area of 

patch ij; A is total landscape area (m2). 

 Figure 4.7 shows the hypothetical landscape transformation to explain the concept 

of percent landscape. The PLAND values of A, B, and C are 16%, 36%, and 81% 

respectively.     

 

Figure 4.7. Hypothetical landscapes of density of development 
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Continuity of Development: COHESION Index 

 Continuity of development can be measured by the COHESION index. The 

COHESION index measures the physical connectedness of corresponding patch types. 

Patch cohesion increases as the patch type becomes more aggregated or clumped in its 

distribution. In other words, a high value of patch cohesion indicates a more physically 

connected landscape. It is actually a standardized perimeter-area ratio and it is bounded 

between 0 and 1, which makes it easier to interpret as well as robust enough to changes in 

the cell size. Therefore it has been used as a measure of continuity (Schumaker, 1996). 

Cohesion index is calculated for developed area using Fragstats based on the formula: 

  

COHESION =  

[
 
 
 

1 − 
∑ 𝑝𝑖𝑗

∗𝑛
𝑗=1

∑ 𝑝𝑖𝑗
∗ √𝑎𝑖𝑗

∗𝑛
𝑗=1 ]

 
 
 

[1 −
1

√𝑧
]
−1

(100) 

 

where 𝑝𝑖𝑗
∗  is perimeter of patch ij in terms of number of cell surface; 𝑎𝑖𝑗

∗  is area of patch 

ij in terms of number of cells; and Z is total number of cells in the landscape.  

 Cohesion approaching 0 means that the class patches are increasingly subdivided 

and less physically connected. On the other hand, cohesion increases when 

corresponding patch types becomes more connected and aggregated.  

 Figure 4.8 shows the example landscapes of connectivity. Landscape A has the 

lowest connectivity value since all three patches are separated (Cohesion: 68.2%). The 

COHESION index value of landscape B is 70% and landscape C has 100% of cohesion 
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with a single connected patch.  

 

 

Figure 4.8. Hypothetical landscapes of continuity of development 
 

Clustering of Development: GYRATE_AM Index 

Clustering of development can be measured by the radius of gyration (GYRATE). 

It is the mean distance between each cell in a cluster of continuous cells (i.e. a patch) and 

the patch centroid (red square in Figure 4.8). GYRATE is a useful measure to analyze 

patch extensiveness. In other words, it provides how far across the landscape a patch 

extends. If the area is equal, the more elongated or far-reaching patch has the larger radius 

of gyration.  Although GYRATE is not an explicit measure of patch shape, it can be 

affected by patch shape. For example, an elongated patch shape has a higher value of 

GYRATE than a compact and clustered patch shape, even if their patch size is same. When 

applied to ecological research, the value can be interpreted as the traversability of single 

patch (Leitao, 2006).  
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  This study used the Area-Weighted Mean Radius of Gyration to standardize patch 

size, which is calculated by following equation: 

 

GRATE_AM = ∑ [∑ (
ℎ𝑖𝑗𝑟

𝑧
) (

𝑎𝑖𝑗

∑ 𝑎𝑖𝑗
𝑛
𝑗=1

)𝑧′

𝑟=1 ]𝑛
𝑗=1  

 

where,  ℎ𝑖𝑗𝑟 is a distance (m) between cell ijr (located within patch ij) and the centroid 

(red square point in Fig 4.9) of patch ij (the average location), based on cell-center-to-cell-

center distance, z is number of cells in patch ij. The unit is meter and the range of values 

is larger than 0 without limit.  

 

Figure 4.9. Hypothetical landscapes of clustering of development 
                                            (Adopted and revised from Leitão, 2006)  

 

Figure 4.9 shows the examples of different GYRATE values in three hypothetical 

landscapes. Landscape A has the lowest GYRATE value at 68 since it has a square 
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configuration, which is the most compact shape possible in the grid. Landscape B 

(GYRATE = 92) and C (GYRATE=118) become progressively more irregular in shape 

and more extensive. The value of GYRATE is 0 when the patch consists of a single cell, 

and it reaches the maximum value when the patch comprises the entire landscape.  

GYRATE is calculated for each patch and can be summarized at class and landscape levels.  

 

Diversity of Land Covers: Patch Richness Density Index 

Patch richness density equals the number of different patch types present within 

the landscape divided by the total landscape area (m2), then multiplied by 10,000 and 100 

(to convert to 100 hectares). Patch richness is the number of different patch types present 

within the landscape boundary and is the simplest index showing landscape composition. 

It refers standardized richness to a per-area basis that facilitates comparison among 

landscapes.  

PRD =  
𝑚

𝐴
 (10,000)(100) 

 

 Where 𝑚 is number of class present in the landscape, excluding the border of 

landscape if present;  𝐴 is total landscape area (𝑚2). Figure 4.10 follows hypothetical 

landscapes, each representing different value of patch richness. Landscapes A, B, and C 

have the values of PRD as 2, 3, and 5 respectively.  
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Figure 4.10. Hypothetical landscapes of diversity of land covers 
 

Proximity of Development: Interspersion and Juxtaposition (IJI) Index  

 Proximity of development can be measured by the IJI index. It is based on patch 

adjacencies and measure the interspersion or intermixing of patch types. This index 

considers the neighborhood relations between patches and broadly refers to the overall 

texture of the landscape mosaic. This index also measures the extent to which patch types 

are interspersed; higher values result from landscapes in which the patch types are well 

interspersed, whereas lower values characterize landscapes in which the patch types have 

a disproportionate distribution of patch type adjacencies.  

 

IJI =
−∑ ∑ [(

𝑒𝑖𝑘

𝐸 ) ln (
𝑒𝑖𝑘

𝐸 )]𝑚
𝑘=𝑖+1

𝑚
𝑖=1

ln(0.5[𝑚(𝑚 − 1)]
 (100)  

 

Where, 𝑒𝑖𝑘 is total length (m) of edge in landscape between classes i and k; E is total length 

(m) of edge in landscape, excluding background; m is number of classes present in the 
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landscape, including the landscape border, if present. IJI approaches 0 when the 

distribution of each patch type becomes increasingly uneven. If all patches are equally 

adjacent to all other patches, the value of IJI will be 100 %.  

 Figure 4.11 illustrates the concept of IJI. Landscape A (IJI=60.2%) shows that 

every patch type shares very limited borders with each other.  Different patch types in 

landscape B share their borders more so than in landscape A, which that allows for a higher 

value in IJI (72.6%). In landscape C, each patch type is interspersed and shares its borders 

a lot more than landscape A and B. As a result, landscape C has the highest value of IJI 

(96.6%) and it can be interpreted as “higher proximity between land covers” in this study.  

 

Figure 4.11. Hypothetical landscapes of proximity of land covers 
 

 

4.2.3. Reclassifying the National Land Cover Database 

 The National Land Cover Database is a sixteen-class land cover classification 

scheme that has been applied consistently across the conterminous U.S. at a spatial 

resolution of 30 meters. NLCD 2006 is based primarily on the unsupervised classification 
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of Landsat Enhanced Thematic Mapper+ (ETM+) circa 2006 satellite data.2 As shown in 

Table 4.2, the NLCD has four class of development based on the percentage of impervious 

surface. This study employs three class of development excluding open space as a 

developed area. Based on this aggregated land cover data, selected landscape metrics were 

calculated by Fragstat 4.0. 

 Scale is one of the most important considerations in landscape structure analysis 

(Forman, 1995a; McGarigal and Marks, 1995; Turner et al., 2001).The spatial data 

encompasses both extent and grain. Extent is the overall area of an investigation or the 

area included within the landscape boundary. Grain is the size of the individual units of 

observation (i.e. cell size). It may not be possible to know what the appropriate resolution 

should be. Spatial resolution of the NLCD dataset is 30m x 30m, and the size of each cell 

is 900m2. Considering that the minimum size of census block is 30,000 ft2 (2,787.1m2) - 

40,000 ft2 (3716.1m2) 3 , the spatial resolution of NLCD data is adequate to analyze 

development patterns.  

 The NLCD dataset was reclassified by aggregation to analyze clear impact of 

development pattern. In other words, total seven major land cover classes were aggregated 

into 5 classes. (See Table 4.4) Density, continuity, and clustering of development were 

analyzed using “Developed” category, while diversity and proximity of development were 

analyzed using all the five aggregated categories including water, open space, developed, 

                                                 

2http://www.mrlc.gov/nlcd2006.php , Also see Appendix B 
3 http://www.census.gov/geo/reference/pdfs/GARM/Ch11GARM.pdf 
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vegetation, and others. Since the value of diversity index (i.e. patch richness density) can 

be affected by the number of categories, this index was also analyzed based on original 

NLCD classification scheme (first order), which includes water, developed, forest, shrub 

land, herbaceous, planted, and wetland categories. (See Appendix C). The following table 

shows original and aggregated categories that were utilized in this study. 

 

Table 4.4. Reclassification of land covers 

NLCD Classification Aggregated 

Categories used in 

this study 

Class 

(First order) 

Sub-Class 

(Second order) 

Water 
Open Water 

Water 
Perennial Ice/Snow 

Developed 

Open Space Open Space 

Low Intensity 

Developed Medium Intensity 

High Intensity 

Forest 

Deciduous Forest 

Vegetation 

Evergreen Forest 

Mixed Forest 

Shrub land 
Dwarf Scrub 

Shrub/Scrub 

Herbaceous 

Grassland/Herbaceous 

Sedge/Herbaceous 

Lichens 

Moss 

Planted 
Pasture/ Hay 

Others 

Cultivated Crops 

Wetland 

Woody Wetlands 

Emergent Herbaceous 

Wetland 
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 Previous studies have pointed out the problem of correlation among different 

landscape metrics (Ritter et al.. 1995; Hargis et al., 1998; Seto and Fragkias, 2005). The 

five landscape metrics, which are the main independent variables of this study, are also 

highly correlated with each other since they have calculated by using same information 

such as patch size and perimeter (See Table 4.5). Density, continuity, and clustering are 

positively correlated each other, while diversity and proximity are negatively correlated 

to previous three measures. Thus, I analyzed different models for each development type 

to reduce the threat of multicorrelation. As a result, a total 10 models will be estimated: 

five development patterns were regressed on both day and night UHIEs, controlling for 

the same set of variables specified below.   

 

       Table 4.5. Correlations between spatial development pattern indexes 
 Density Continuity Clustering Diversity Proximity 

Density 1.0000     

Continuity 0.6937* 1.0000    

Clustering 0.4919* 0.7339* 1.0000   

Diversity -0.0124 -0.2613* -0.6647* 1.0000  

Proximity -0.6390* -0.4210* -0.3425* 0.0800 1.0000 

* p < 0.05 

 

4.2.4. Control Variables 

 All control variables except ecoregions (dummy variables) are calculated based on 

the difference of percentage between urban and rural area. Since urban and rural area have 

physically different land size, comparing two areas based on the percentage is more 



 

60 

 

appropriate than based on their actual size. Table 4.6 is a hypothetical logic to calculate 

difference in percentage between urban and rural to generate control variables. For 

example, rural area has larger amount of vegetation than urbanized area in terms of its 

actual land size. However, the percentage of vegetation in urbanized area is higher than 

that of rural area since they are standardized by their total land size. As a result, we can 

compare the condition of vegetation in urbanized and rural areas based on the difference 

in percentage. Finally, based on the result of calculation, we can say that urbanized area 

has 23.3% more impervious surface, 3.4% more vegetated area and 1.67% less watered 

surface than rural area.  

 

   Table 4.6. Hypothetical example of calculating control variables 

  
Actual Amount 

Standardized Amount 
(percentage) 

Difference in 
Percentage 

(Urban-Rural) Urbanized Rural Urbanized Rural 

Impervious 
surface 

100 60 33.3% 10% +23.3% 

Vegetation 60 100 20% 16.6% +3.4% 

Water 10 30 3.33% 5% -1.67% 

Total Land Size 300 600  

 

 

Amount of Vegetation Cover and Watered Surfaces 

 The amount of vegetation is calculated as the sum of forest, shrub land, and 

herbaceous, Planted/Cultivated categories under the land cover dataset from the NLCD 
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(2006). The percentage of watered surface is also calculated as the percent of the area 

water category under the land cover dataset from the NLCD (2006). Vegetation cover 

includes three land cover classes: forest, characterized by areas covered by trees generally 

greater than 6 meters tall and where trees canopy accounts for 25-100% of the cover; shrub 

land, characterized by natural or semi-natural woody vegetation with aerial stems, 

generally less than 6 meters tall; and herbaceous, which are areas characterized by natural 

or semi-natural herbaceous vegetation that accounts for 75- 100% of the cover. Percentage 

of vegetation was also calculated by Fragststs 4.0.  

 

Population Density 

Population density is calculated based on 2010 census data and the total size of urbanized 

area in each metropolitan region. Since study year is 2006, the population in 2006 is the 

most appropriate data for this study. Although there is ACS (American Community 

Survey) data provides population in 2006, the geographic boundary of population 

estimated is the metropolitan region. Only the 2010 census counts the population of 

urbanized and rural areas separately for each metropolitan region and thus, this study used 

the population of 2010 to calculate population density.  

 

Ecoregions  

Ecoregions were coded as dummy variables in regression models to control for the spatial 

effect regarding the geographic location of each metropolitan region. As mentioned earlier, 
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an ecoregion includes characteristics related to geologic, landform, soil, vegetative, 

climatic, wildlife, water and human factors. Some metropolitan regions are situated over 

two or three ecoregions, and in that case each part calculated its individual percentage. 

Finally, the ecoregion which has the highest percentage was selected as the main ecoregion 

for the metropolitan region.  

 

4.3. Data Analysis 

Data analysis for this research will focus on detecting the impact of different 

development patterns on UHIE. The unit of analysis is metropolitan region (n=353) and 

the analysis took place in two major phases. The first phase of analysis aims to better 

understand the pattern of UHIE during the summer of 2006 and spatial development 

patterns in U.S. metropolitan regions based on the basic descriptive statistics and 

cartography. This part also provides basic descriptive statistics of development pattern 

analysis based on values of landscape metrics, which are calculated by Fragstats 4.0, and 

allow overall examination of development patterns in U.S. metropolitan regions.  

Phase 2 of data analysis includes a series of regression models that were estimated 

to examine the relationship between development patterns and UHIE. This phase seeks to 

test the hypotheses mentioned in section 3.2 through the use of ordinary least square (OLS) 

based multivariate regression analysis. Each development pattern metric is modeled for a 

developed area (i.e. impervious surfaces) based on the measurements in the regression 

model, controlling for the same set of other variables as already specified. Additionally, 
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five hypotheses will be tested again using iteratively reweighted least square (IRLS) 

approach.  STATA4 provides the IRLS method to conduct robust regression which control 

potential outliers or unusual observation in my dataset (See Appendix B for more details). 

The following equation represents the regression model for the dependent variable, 

UHIE for both day and night in 2006. The coefficients B1 represent unique effects of each 

independent variable (i.e. spatial development pattern) on the dependent variable. 

 

𝐷𝑉 =  𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽5𝑋5 + 𝛽6𝑋6 + ⋯+ 𝛽12𝑋12 + 𝜀 

 

where, 

𝐷𝑉 ∶ Dependent variables – UHIE (Day and Night: July 12, 2006) 

𝛼 : Regression intercept 

𝛽𝑖: Partial Regression coefficients 

𝑋1: Urban development pattern 

𝑋2: Impervious surface 

𝑋3: Water covered 

𝑋4: Vegetation covered 

𝑋5: Population Density 

𝑋6 − 𝑋12: Ecoregions: dummy variables 

𝜀: Error term 

 

                                                 

4 Statistical Analysis Package which is used in this study 
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A total of five urban development pattern variables were plugged in separately in 

each regression model to capture each variable’s unique influence on UHIE. F-statistics 

were be conducted to check the statistical significance of the model. Post-regression 

specification tests of normality, multicollinearity, and heteroskedasiticity were carried out 

to make sure that there were no violations of the OLS regression assumptions (See 

Appendix F). Spatial autocorrelation was tested to check spatial autocorrelation exists in 

the independent variables using weight metrics based on inverse distance method since 

some metropolitan regions do not have neighbors, which condition is unable to create 

neighboring-based weight matrix.  

 

4.4. Validity Threats 

Every study design contains threats to validity and this research is no exception. 

Although all efforts will be made to reduce these threats, perfect study rarely can be 

achieved.  Following is the discussions about the validity threats of this study based on 

four types of validity threats outlined by Cook and Campbell (1979): Statistical conclusion 

validity; construct validity; internal validity; external validity. 

Statistical conclusion validity is important to address statistical conclusion validity 

because of the potential Type I and Type II error. This study may experience a lower level 

of statistical power due not perfectly large sample size (n = 353) and it is possible that the 

relationship between the independent and dependent variable may be inappropriately 

declared insignificant or significant (Type I or II error). In terms of potential sample size 

limitation, type II error–“accepting the null hypothesis when it is false”—is of more 
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concern because of the wider confidence interval and therefore critical region is more 

likely to overlap zero. In other words, this error can be presented as there are no 

statistically significant relationship between development patterns and UHIE even though 

urban development patterns are related to UHIE actually. To minimize this threat and 

additional issues on type I and II errors, this study analyzes all metropolitan regions of 

entire U.S. instead of selecting particular samples. 

Internal validity may be caused when trying to control for all of the factors that 

may contribute to UHIE. The primary threat to internal validity in this study is that not all 

relevant variables influencing UHIE could be included in the statistical model. 

Temperature is determined by complex interrelations of natural and manmade 

environments and affected by various factors.  Thus, this study employed control variables 

based on the literatures to increase internal validity.  

Construct validity is perhaps the biggest validity threat of this study. Landscape 

metrics which is employed to measure urban development patterns is usually utilized in 

the ecological studies. Although applying these metrics to urban built environment is a 

novel approach, however, it can be a threat depends on how well these landscape metrics 

reflects the actual development patterns. The use of five different indices of landscape 

metrics with careful matching with characteristics of development pattern alleviate this 

threat and, to some extent,  may provide insight into how well landscape metrics perfume 

as indicators of development patterns of urban built environment. 
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External validity refers to the ability to which results of this study can be 

generalized to other places and situation. As most of climate research, geographic location 

and weather condition including seasonal effect can threat to external validity when 

extending the outcomes of research. Since this study limited the UHIE in metropolitan 

regions during summer season, it is probably best generalized to the highly populated 

metropolitan regions in high temperature season.  Another external validity threat of this 

research is the scale of measuring UHIE which may impose limitations on the ability to 

generalize the results of this study, that are based on the geographic extent of unit of 

analysis. The patterns and formation of urban heat island can vary by the geographic extent 

of observation. This study examines regional UHIE at the county level to examine and 

thus, the result of this study may be hard to apply to the smaller scale of UHIE (i.e. local 

UHIE). 
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CHAPTER V 

RESULTS 

 

5.1. Descriptive Statistics and Preliminary Analysis 

5.1.1. Day and Night UHIE 

 In order to assess the statistical significance of the temperature differences between 

urbanized and rural areas, a paired t-test was conducted between UHIE is calculated by 

every paired urban-rural set for each metropolitan region. This could be a logical first step 

to build a dependent variable for this study. Results of the t-test between the two groups 

of urban and rural areas revealed statistically significant differences in their mean 

temperature.  

 Results of the t-test showed that urbanized areas had significantly higher 

temperatures than rural areas during both daytime and nighttime. During the day, the 

temperature difference is estimated at 4.04 F˚, while the temperature difference at night is 

2.41 F˚ (See Table 5.1). 

 

     Table 5.1. The results of paired t-test  

Variable T df 
Sig 

(1-tailed) 

Mean 

Difference 

Std. Error 

Difference 

DAY 16.75 353 0.0000 4.04 0.24 

NIGHT 20.81 353 0.0000 2.41 0.12 
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Table 5.2 presents the descriptive statistics for each variable of the 353 

metropolitan regions in U.S. UHIE (the mean temperature difference5 between urbanized 

area and rural area in each metropolitan region) was calculated in both the daytime and 

nighttime.  

 
Table 5.2. Descriptive statistics for variables 

 Variable Obs. Mean Std. Dev. Min Max 

Dependent  

Urban Heat Island Day (F) 353 4.04 4.53 -20.82 18.85 

Urban Heat Island Night (F) 353 2.41 2.18 -6.78 10.66 

Independent  

Density (%) 353 45.21 13.02 18.66 81.04 

Continuity (%) 353 99.45 .45 97.08 99.97 

Clustering (m) 
 (Log transformed) 

353 
4361.05 

(8.17) 
3622.09 

(.60) 
886.71 
(6.79) 

30035.25 
(10.31) 

Proximity (%) 353 56.74 6.83 37.78 75.06 

Diversity (n/100 ha) 353 .08 .06 .00 .30 

Control  

Impervious surface (%) 
(difference in Urban & Rural) 

353 43.23 13.74 15.62 84.62 

Vegetation (%) 
(difference in Urban & Rural) 

353 -29.02 22.34 -88.73 56.01 

Water surface (%)  
(difference in Urban & Rural, %) 

353 -1.98 4.62 -49.87 4.52 

Population Density (Pop/km2)  
(difference in Urban & Rural) 

353 924.31 402.16 -41.80 2902.753 

 

                                                 

5 See Page 40, the formula of calculating UIHIE and Figure 4-2 
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The mean UHIE during the daytime was 4.04 F˚, with a standard deviation of 

4.53F F˚ and a range of 38.03 F˚. On the other hand, the mean UHIE during night was 

2.41 F˚ with a standard deviation of 2.18 F˚ and a range of 17.4 F˚.  The average UHIE is 

about 1.63 F˚ higher during the daytime than at nighttime6. This is expected since the 

temperature obtained by remote sensing represents surface temperature. In other words, 

impervious surfaces are directly affected by the sun lights and their temperature increases 

rapidly, which contribute to UHIE during day. Daytime UHIE also has a larger standard 

deviation than nighttime UHIE, which also can be explained by the different amount of 

sunshine depending on geographic location and geologic characteristics of each 

metropolitan region.  

Figure 5.1 shows the overall patterns of UHIE for daytime and nighttime. In the 

daytime, the larger UHIE is observed more in the northwestern and eastern U.S. than in 

the central U.S. This spatial pattern of daytime UHIE is briefly matched with ecoregion 

boundaries. On the other hand, there is no particular spatial pattern observed during 

nighttime. There are forty-four metropolitan regions that have negative values of UHIE 

during the day and seventeen have a negative value at night (colored as yellow in Figure 

5.1). Negative UHIE values, indicating that an urbanized area has a lower temperature 

compared to surrounding rural areas (sometimes, it is called inverse UHIE), are mostly 

observed in the North American Desert, Mediterranean California, and some parts of Great 

Plains regions. Therefore, when comparing UHIE by ecoregion (Figure5.2), these three 

                                                 

6 Mean difference is statistically significant based on the result of paired t-test (t =   8.0986, Pr(|T| > |t|) = 
0.0000). 
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regions mark comparably smaller UHIE than other regions. Actually, the average UHIE 

of eight ecoregions for daytime (10:30 AM) and nighttime (10:30 PM) show a statistically 

significant difference. The Northwestern Forested Mountain region has the highest UHIE 

during both day (12.87 F˚) and night (5.28 F˚), while the Mediterranean California (MC), 

the Grate Plain (GP), and the North American Deserts have comparably lower UHIE.   

 

 

Figure 5.1. Day and night UHIE by ecoregions 
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Figure 5.2. Spatial patterns of day and night UHIE 
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5.1.2. Spatial Development Patterns 

The main independent variables, spatial development patterns, are measured by 

Fragstats 4.0 based on the development in urban area. The followings are the descriptive 

and visual results of spatial development pattern analyses. 

 

Density of Development 

Density refers to the percentage of developed land in urbanized areas in each 

metropolitan region.  Urbanized areas in the 353 metropolitan regions studied have 

developed an average of 45.21% of their entire land area. Figure 5-3 shows examples of 

low and high density development in urban areas. The image on the left indicates low 

density development at 21.33% and the image on the right represents high density 

development at 81.04% of the entire urbanized area. This measure could also explain how 

urbanized areas become fully and densely developed. 
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Figure 5.3. Examples of density of development 

(Left: Tallahassee, FL; Low density of development  
Right: Las Vegas-Paradise, NV; High density of development) 

 

 

Continuity of Development 

Continuity of development has a very small range between 97.08% and 99.97%, 

which means most of developed patches are connected together. This was expected 

because linear developed patches including roads can connect each separated development. 

Also, this study used the “8-cells rule,” as neighboring cell options may affect this result 

of continuity. This “8-cells rule” option considers all eight adjacent cells as neighbors, 

including the four orthogonal and four diagonal neighbors. As shown in figure 5.4, an 

urban area with high connectivity has well-developed road systems, while only major 

roads are observed in urban area with low continuous development patterns.  It is true that 

higher density of development in urban areas could have a higher continuity of 

development since they have larger possibility of being connected to developed patches 
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and thus, these two measures—density of development and continuity of development— 

are highly correlated with each other. (Table 5.3) However, they still have different 

distinctive characteristics to be explained as spatial development patterns. Therefore, each 

measure was examined in separate regression models while controlling for the same 

contextual variables.  

  
Figure 5.4. Examples of continuity of development 
(Left: Jackson, TN; Low continuity of development  

Right: Lansing-East Lansing, MI; High continuity of development) 
 

Clustering of Development 

Clustering of development is measured by the radius of gyration. Thus, a higher 

value of clustering index (i.e. GYRATE_AM) actually indicates a lower level of clustered 

development. In other words, when developments are not clustered, the radius of gyration 

will be increased, while clustered development will have a short radius of gyration. The 

average value of clustering index is 4361.05(m) and the maximum value is 30035.25 (m), 

which means that development patches in urban areas are dispersed. Figure 5.5 shows the 



 

75 

 

examples of low and high clustered development in urban areas. More clustered 

developments, image on the right, can minimize impervious surfaces in urbanized areas, 

which is probably preserving less fragmented open space and the natural environment. 

  

Figure 5.5. Examples of clustering of development 
(Left: San Antonio, TX; Low clustering of development 
 Right: Greeley, CO; High clustering of development) 

 

Diversity of Land Covers 

Diversity in an urban area refers to how many land cover types exist together in 

the urbanized area. This index simply calculates the number of land cover type in each 

unit area (10 ha). When this index is used for ecological study, higher diversity (i.e. 

biodiversity) indicates a healthier ecological system. When applied to an urban area, 

diversity of land cover shows that the urban area includes various land cover types (e.g. 

vegetation, water, and wetlands) other than development. Figure 5.6 shows two urbanized 

areas with different patch richness densities. Supposing that two regions in the figure 5.6 

have same size of urbanized area as 10,000 hectares, there will be two types of land cover  
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in the left region and thirty types of land cover  in the right images, conceptually (because 

the unit area is 100ha). In this sense, although the actual value from PRD index looks 

small, it reflects meaningful information in terms of diversity of land covers.  

  
Figure 5.6. Examples of diversity of land covers 

(Left: Salt Lake City; Low diversity of land covers  
Right: Ames, IA; High diversity of land covers) 

 

Proximity of Land Covers 

The proximity index refers that how well each land cover types are connected with 

each other. Thus, an urbanized area with a high value of proximity provides good 

accessibility between the built and natural environments. Figure 5.7 shows the examples 

of urbanized areas with high and low proximities of land covers. Although two urban areas 

include a pretty good amount of vegetation, they have different spatial distributions 

(configurations) of vegetation. The area with high proximity (the image on the right) has 

good accessibility to natural environments from development and development and other 

land covers share these boundaries frequently.  In contrast, the urban area with a low 
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proximity value (the image on the left) has very poor accessibility to other land covers 

from developed areas. 

  
Figure 5.7. Examples of proximity of land covers 

(Left: Pocatello, ID; Low proximity of land covers 
 Right: Pittsfield, MA; High proximity of land covers) 

 

 

5.2. Examining Impact of Development Patterns on UHIE 

5.2.1. Individual Impact of Each Spatial Development Pattern on UHIE 

As mentioned briefly in the methods section (Data Analysis), this study tries to use 

two different versions of robust regression techniques to analyze the impact of 

development patterns on UHIE: OLS regression and IRLS approach. However, I decided 

to focus on and interpret the results of robust regression models since post estimations of 

OLS regression analyses did not detect any violations of OLS regression assumptions 

except heteroscedasticity and spatial autocorrelation which exists only for day UHIE 

models (Moran’s I value for daytime UHIE: 0.12, p-value < 0.01). To be consistent for 
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both daytime and nighttime models in terms of comparing day and night UHIE, this study 

employs regional dummy variables instead of using spatial regression models to control 

for the spatial effect on the dependent variable (i.e. UHIE). Also, I believe that robust 

regression is able to handle the heteroscedasticity issue in OLS regression models with the 

use of robust standard error. The results and discussions of the IRLS approach will be 

presented in Appendix B.  

Multiple regression analyses for UHIE illustrate the impact of different 

development patterns on day and night UHIE, while controlling for the amount of 

impervious surface and environmental variables. Generally, the five independent variables 

representing development patterns show the expected results in terms of their impact on 

UHIE (See Table 5.3). 

 

     Table 5.3. The effect of spatial development patterns on day and night UHIE 

 
OLS regression 

with robust standard error 

UHIE Day Night 

Density .0691*** 0.0285*** 

Continuity 1.0524** 0.4319* 

Non-Clustering 0.5531* 0.2276 

Diversity -3.4378 -2.2247 

Proximity -0.0467 0.0021 

                                                                                            ***P< 0.01 **p< 0.05 *p< 0.1 
       All significance tests are one tailed because the hypotheses of this study clearly indicated the direction  
       of effect for the independent and control variables. 
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The followings provide the closer examination of the robust regression analysis 

results for each index of spatial development pattern. 

 

Density of Development and UHIE 

Table 5.4 shows the effect of density of development on day and night UHIE.  Due 

to impervious surface variable has detected as variance inflation factor (VIF=80.89), it is 

excluded in density models. Density models are significant overall and explain nearly 33 

percent and 19 percent of the variance in day and night UHIE respectively. The density of 

development acts to increase UHIE during both day and night. Increasing the percent of 

development in urban areas significantly (p < 0.01) increases both day and night UHIE in 

metropolitan regions. Results indicate that development density is a more effective factor 

involved in increasing UHIE during day than night. A 1 percent increase in developed area 

leads to a 0.07 F˚ and 0.03 F˚ higher day and night UHIE respectively. Sub-Hypothesis 1, 

Metropolitan regions with a higher ratio of development in urbanized areas will have a 

higher UHIE than metropolitan regions that have a lower ratio of development in 

urbanized areas, is supported by this density model.  

The control variables are also significant predictors of UHIE and generally 

behaved as expected. Control variables that represent the natural environment have a 

significant impact on UHIE. For example, vegetation has a negative effect on UHIE but 

is only significant (p < 0.01) during nighttime. However, water shows an interesting result 

in that it reduces UHIE during daytime but increases UHIE during nighttime.  
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This could be possible because water has large “specific heat” than any other materials 

that covered urban surface. Thus, water should be cooler than other surface materials 

during daytime but warmer than others during nighttime. Population density is non-

significant regression coefficient in both day and night robust regression models. All 

dummy variables of ecoregions are all statistically significant. Based on the reference 

category, the Northwestern Forest Mountain (NFM) region, all other ecoregions have 

significantly lower values of UHIE. In other words, NFM has the largest UHIE during 

both daytime and nighttime compared to all other regions in the U.S. (See Figure 3.2 and 

Figure 5.2) 
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 Table 5.4. Density of development and UHIE 

UHIE Day Night  

 
Coefficient 

(Robust Std. Error) 
P-value 

(One-tailed) 
95% confidence 

 Interval 
Coefficient 

(Robust Std. Error) 
P-value 

(One-tailed) 
95% confidence 

Interval 
VIF 

Density 
.0691 

(0.0241) 
0.00 .0217 .1166 

0.0285 
(0.0116) 

0.0070 0.0058 0.0513 2.60 

Impervious    

Vegetation 
-.0215 

(0.0235) 
0.18 -0.0677 0.0248 

-0.0290 
(0.0119) 

0.0080 -0.0525 
-

0.0055 
1.60 

Water 
-.2546 

(0.1117) 
0.01 -0.4743 -0.0349 

0.0831 
(0.0696) 

0.1165 -0.0538 0.2201 1.17 

Population 
Density 

.0002 
(0.0008) 

0.42 -0.0014 0.0018 
0.0000 

(0.0005) 
0.4970 -0.0009 0.0009 2.35 

Marine West 
Coast Forests 

-6.415 
(1.4061) 

0.00 -9.1808 -3.6494 
-2.5100 
(1.0734) 

0.0100 -4.6213 
-

0.3987 
1.31 

Mediterranean 
California 

-12.2287 
(2.1294) 

0.00 
-

16.4171 
-8.0403 

-4.2239 
(1.2239) 

0.0005 -6.6312 
-

1.8166 
2.51 

North American 
Deserts 

-12.1843 
(1.8663) 

0.00 
-

15.8553 
-8.5133 

-2.1900 
(1.0224) 

0.0165 -4.2009 
-

0.1790 
2.57 

Northern 
Forests 

-6.2908 
(1.2494) 

0.00 -8.7483 -3.8332 
-2.7178 
(0.7891) 

0.0005 -4.2699 
-

1.1658 
1.48 

Great Plains 
-11.2006 
(1.2763) 

0.00 
-

13.7110 
-8.6901 

-2.5280 
(0.7414) 

0.0005 -3.9863 
-

1.0697 
3.51 

Northern 
Forests 

-7.2346 
(1.1732) 

0.00 -9.5423 -4.9270 
-2.4977 
(0.7353) 

0.0005 -3.9439 
-

1.0515 
5.83 

Tropical Wet 
Forests 

-6.4882 
(1.3677) 

0.00 -9.1783 -3.7980 
-4.6020 
(0.8638) 

0.0000 -6.3010 
-

2.9030 
1.14 

Constant 
9.6116 

(1.9082) 
0.00 5.8583 13.3649 

4.0499 
(1.0397) 

0.0000 2.0049 6.0949 
 

 
Number of obs = 353 
R-squared  = 0.3283 

F( 11,   341) =  11.68 
Prob > F      =  0.0000 

Number of obs =     353 
R-squared     =  0.1907 

F( 11,   341) =   5.61 
Prob > F      =  0.0000 

 

* All significance tests are one tailed because the hypotheses of this study clearly indicated the direction of effect for the independent and control variables 
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Continuity of Development and UHIE 

Continuity is one of the typical spatial forms related to the sprawl development 

pattern. Continuity models are significant overall and explain nearly 33 percent and 19 

percent of the variance in day and night UHIE respectively. As shown in Table 5.5, the 

continuity of development also appears to have a significant effect on UHIE in both 

daytime (p < 0.05) and nighttime (p < 0.1). As expected, the increasing continuity of 

development in urban areas contributes to the creation of more heat, which results in a 

large UHIE. A positive percent change in the continuity of development significantly 

increases day UHIE at 1.05 ˚F but only marginally increases night UHIE at 0.43˚F. Sub-

Hypothesis 2, Metropolitan regions with a higher continuity of development in urbanized 

areas will have a higher Urban Heat Island Effect than the metropolitan regions with a 

lower continuity of development in urbanized area, is supported by this continuity model.  

As listed in Table 5.5, estimates of control variables in the continuity models 

remain essentially unchanged when compared to density models. Impervious surface area 

has a positive effect on UHIE, but is only marginally significant in both day and night 

UHIE models. Vegetation and water both reduce UHIE, but vegetation is a strong 

predictor of night UHIE while water is a significant predictor of day UHIE.  Population 

density is still non-significant factor to estimate UHIE. 
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     Table 5.5. Continuity of development and UHIE  
UHIE Day Night  

 
Coefficient 

(Robust Std. Error) 
P-value 

(One-tailed) 
95% confidence 

Interval 
Coefficient 

(Robust Std. Error) 
P-value 

(One-tailed) 
95% confidence 

Interval 
VIF 

Continuity 
1.0524 

(0.5919) 
0.04 -0.1118 2.2166 

0.4319 
(0.3185) 

0.09 -0.1945 1.0584 
1.99 

Impervious 
0.0380 

(0.0233) 
0.05 -0.0078 0.0838 

0.0137 
(0.0114) 

0.11 -0.0086 0.0361 
3.30 

Vegetation 
-0.0229 
(0.0236) 

0.17 -0.0693 0.0235 
-0.0305 
(0.0119) 

0.01 -0.0538 -0.0071 
1.55 

Water 
-0.2556 
(0.1063) 

0.01 -0.4647 -0.0465 
0.0842 

(0.0716) 
0.12 -0.0566 0.2251 

1.17 

Population 
Density 

0.0002 
(0.0008) 

0.42 -0.0014 0.0018 
0.0000 

(0.0005) 
0.47 -0.0009 0.0010 

2.33 

Marine West 
Coast Forests 

-6.5490 
(1.4318) 

0.00 -9.3652 -3.7327 
-2.5751 
(1.0774) 

0.01 -4.6944 -0.4559 
1.31 

Mediterranean 
California 

-12.1327 
(2.1357) 

0.00 -16.3337 -7.9318 
-4.2002 
(1.2315) 

0.00 -6.6225 -1.7780 
2.53 

North American 
Deserts 

-12.2096 
(1.8841) 

0.00 -15.9156 -8.5036 
-2.2016 
(1.0265) 

0.02 -4.2208 -0.1824 
2.58 

Northern Forests 
-6.4566 
(1.2810) 

0.00 -8.9764 -3.9369 
-2.8028 
(0.7929) 

0.00 -4.3623 -1.2432 
1.49 

Great Plains 
-11.3022 
(1.3130) 

0.00 -13.8848 -8.7197 
-2.5716 
(0.7459) 

0.00 -4.0387 -1.1046 
3.55 

Northern Forests 
-7.3575 
(1.1978) 

0.00 -9.7134 -5.0015 
-2.5653 
(0.7426) 

0.00 -4.0260 -1.1046 
5.89 

Tropical Wet 
Forests 

-6.7787 
(1.4680) 

0.00 -9.6660 -3.8914 
-4.7406 
(0.8298) 

0.00 -6.3728 -3.1083 
1.15 

Constant 
-93.5276 
(58.3732) 

0.06 
-

208.3457 
21.2905 

-38.1920 
(31.3684) 

0.11 -99.8926 23.5085 
 

 
Number of obs = 353 
R-squared  = 0.3321 

F( 12,   340) =  10.23 
Prob > F      =  0.0000 

Number of obs =     353 
R-squared     =  0.1919 

F( 11,   341) =   5.72 
Prob > F      =  0.0000 

 

* All significance tests are one tailed because the hypotheses of this study clearly indicated the direction of effect for the independent and control variables 
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Clustering of Development and UHIE 

Clustering models are significant overall and it explains nearly 33 percent and 19 

percent of the variance in day and night UHIE respectively. Non-clustering of 

development appears to have a positive impact on UHIE, but it is a significant predictor 

only for day UHIE. In other words, more clustered development patterns can decrease day 

UHIE. Thus, sub-Hypothesis 3, Metropolitan region with a higher clustering of 

development in urbanized area will have a lower Urban Heat Island Effect than the 

metropolitan region has a lower clustering of development in urbanized area, is partially 

supported by this clustering model. The index of clustering development patterns is 

GYRATE_AM which is calculate by the radius of gyration of each development patch. 

Since the value of GYRATE_AM is mean distance between each cell in a cluster of 

continuous cells (i.e. a patch) and the patch centroid, and the GYRATE_AM is a logged 

variable, the regression coefficient of clustering can be interpreted as a 0.006% increase 

in the GYRATE_AM increase 1°F of day UHIE and a 0.002% increase in the 

GYRATE_AM increase 1°F of day UHIE.7 (See Table 5.6) 

Impervious surfaces in urbanized areas are a significant factor in the amplification 

of UHIE in daytime (p < 0.01) and nighttime (p < 0.05). As expected, vegetation reduces 

day and night UHIE. Water has negatively significant impact on day UHIE while its effect 

is positive for night UHIE even though it is no longer significant factor at night.  

                                                 

7 Level(Y)-Log(X) Interpretation: ∆UHIE=(Coefficient/100)% ∆non-clustering 
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Table 5.6. Clustering of development and UHIE 

 

UHIE Day Night  

 
Coefficient 

(Robust Std. Error) 
P-value 

(One-tailed) 
95% confidence 

Interval 
Coefficient 

(Robust Std. Error) 
P-value 

(One-tailed) 
95% confidence 

Interval 
VIF 

Non-Clustering 
0.5531 

(0.4161) 0.09 -0.2653 1.3716 
0.2276 

(0.2635) 0.19 -0.2906 0.7459 
1.54 

Impervious 
0.0517 

(0.0220) 0.01 0.0085 0.0949 
0.0193 

(0.0102) 0.03 -0.0006 0.0393 
2.66 

Vegetation 
-0.0269 
(0.0232) 0.12 -0.0726 0.0187 

-0.0321 
(0.0115) 0.00 -0.0547 -0.0096 

1.55 

Water 
-0.2929 
(0.1092) 0.00 -0.5076 -0.0782 

0.0689 
(0.0709) 0.17 -0.0706 0.2083 

1.19 

Population Density 
-0.0001 
(0.0009) 0.46 -0.0018 0.0016 

-0.0001 
(0.0005) 0.45 -0.0011 0.0010 

2.58 

Marine West 
Coast Forests 

-6.4815 
(1.4257) 0.00 -9.2858 -3.6772 

-2.5475 
(1.0784) 0.01 -4.6687 -0.4263 

1.31 

Mediterranean 
California 

-12.0845 
(2.1540) 0.00 -16.3213 -7.8478 

-4.1803 
(1.2382) 0.00 -6.6159 -1.7447 

2.53 

North American 
Deserts 

-12.1442 
(1.8760) 0.00 -15.8342 -8.4542 

-2.1748 
(1.0258) 0.02 -4.1925 -0.1571 

2.57 

Northern Forests 
-6.3557 
(1.2530) 0.00 -8.8204 -3.8911 

-2.7614 
(0.7922) 0.00 -4.3196 -1.2032 

1.48 

Great Plains 
-11.2005 
(1.2872) 0.00 -13.7325 -8.6686 

-2.5300 
(0.7436) 0.00 -3.9926 -1.0673 

3.53 

Northern Forests 
-7.3783 
(1.1779) 0.00 -9.6952 -5.0614 

-2.5741 
(0.7438) 0.00 -4.0372 -1.1110 

5.93 

Tropical Wet 
Forests 

-7.1416 
(1.3777) 0.00 -9.8514 -4.4317 

-4.8902 
(0.9091) 0.00 -6.6782 -3.1021 

1.17 

Constant 
6.3522 

(3.4928) 0.04 -0.5180 13.2224 
2.7982 

(2.0701) 0.09 -1.2736 6.8700 
 

 
Number of obs = 353 

R-squared  = 0.3302 

F( 12,   340) =  10.70 
Prob > F      =  
0.0000 

Number of obs =     353 
R-squared     =  0.1905 

F( 11,   341) =   5.02 
Prob > F      =  0.0000 

 

* All significance tests are one tailed because the hypotheses of this study clearly indicated the direction of effect for the independent and control variables 



 

86 

 

Diversity of Land Covers and UHIE 

Diversity models are significant overall and it explains nearly 33 percent and 19 

percent of the variance in day and night UHIE respectively. Diversity of development 

refers to standardized patch richness (i.e. number of land cover types existing) per unit 

area (100 hectares). Thus, this measure includes all land cover types based on the 

reclassification of NLCD dataset. (See Table 4.4)  

Shown in Table 5.7, increasing the number of land cover types has a negative effect 

on UHIE during both day and night. However, this indicator is not significant for daytime 

UHIE and only marginally significant for nighttime UHIE. This weak relationship may be 

caused because the diversity index only counts the number of land cover types and does 

not consider the size and amount of each land cover type. For example, although there are 

very small amounts of vegetation and large amounts development in urbanized areas, they 

only count as two different types of land covers. Therefore, Sub-Hypothesis 4, 

Metropolitan regions with a higher diversity of land covers in urbanized areas will have 

a lower Urban Heat Island Effect than metropolitan regions with a lower diversity of land 

covers in urbanized area, is not statistically supported by this diversity model.  

As with previous models, control variables in the diversity models are also 

significant predictors of day and night UHIE. Impervious surface area significantly 

increases day (p < 0.01) and night UHIE (p < 0.05). Vegetation is still a good source in 

decreasing day and night UHIE although the impact is more statistically significant during 

nighttime. Water significantly reduces day UHIE but shows a positive effect on night 
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UHIE like in the previous models. Population density remains insignificant factor in this 

model as it is predicted in previous models. Ecoregions are all significant although they 

have slightly changed their coefficient from previous models. 

To test the robustness of the diversity index depending on land cover classification, 

this study analyzed an additional regression model using a more detailed land cover 

classification scheme (i.e. first order classification of NLCD). The land cover categories 

of first order classification include water, developed, forest, shrub land, herbaceous, 

planted, and wetland. Shown in Appendix C, the result indicates that this alternate 

diversity index measure is still insignificant for both day and night UHIE.   
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   Table 5.7. Diversity of land covers and UHIE  

UHIE Day Night  

 
Coefficient 

(Robust Std. Error) 
P-value 

(One-tailed) 
95% confidence 

 Interval 
Coefficient 

(Robust Std. Error) 
P-value 

(One-tailed) 
95% confidence 

Interval 
VIF 

Diversity 
-3.4378 
(3.5134) 0.16 -10.3484 3.4729 

-2.2247 
(2.1099) 0.15 -6.3749 1.9254 

1.09 

Impervious 
0.0609 

(0.0224) 0.00 0.0168 0.1050 
0.0232 

(0.0105) 0.01 0.0025 0.0439 
2.46 

Vegetation 
-0.0265 
(0.0235) 0.13 -0.0727 0.0196 

-0.0323 
(0.0116) 0.00 -0.0552 -0.0094 

1.55 

Water 
-0.2850 
(0.1118) 0.01 -0.5049 -0.0650 

0.0673 
(0.0710) 0.17 -0.0723 0.2070 

1.19 

Population Density 
0.0001 

(0.0008) 0.45 -0.0015 0.0018 
0.0000 

(0.0005) 0.49 -0.0010 0.0009 
2.39 

Marine West 
Coast Forests 

-6.5005 
(1.4401) 0.00 -9.3332 -3.6678 

-2.5680 
(1.0849) 0.01 -4.7019 -0.4341 

1.31 

Mediterranean 
California 

-12.2870 
(2.1439) 0.00 -16.5040 -8.0700 

-4.2822 
(1.2279) 0.00 -6.6975 -1.8670 

2.53 

North American 
Deserts 

-12.2047 
(1.8816) 0.00 -15.9058 -8.5035 

-2.2135 
(1.0241) 0.02 -4.2280 -0.1991 

2.58 

Northern Forests 
-6.2689 
(1.2437) 0.00 -8.7152 -3.8227 

-2.7176 
(0.7947) 0.00 -4.2807 -1.1545 

2.58 

Great Plains 
-11.1999 
(1.2884) 0.00 -13.7342 -8.6656 

-2.5479 
(0.7382) 0.00 -3.9999 -1.0960 

3.53 

Northern Forests 
-7.3637 
(1.1804) 0.00 -9.6855 -5.0418 

-2.6010 
(0.7352)) 0.00 -4.0471 -1.1549 

5.97 

Tropical Wet 
Forests 

-6.7927 
(1.4281) 0.00 -9.6016 -3.9837 

-4.8096 
(0.8555) 0.00 -6.4924 -3.1268 

1.15 

Constant 
10.5265 
(1.9263) 0.00 6.7375 14.3156 

4.6432 
(1.0473) 0.00 2.5832 6.7033 

 

 
Number of obs = 353 

R-squared  = 0.3286 
F( 12,   340) =  10.55 

Prob > F      =  0.0000 
Number of obs =     353 

R-squared     =  0.1914 
F( 11,   341) =   5.08 

Prob > F      =  0.0000 
 

* All significance tests are one tailed because the hypotheses of this study clearly indicated the direction of effect for the independent and control variables 
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Proximity of Land Covers and UHIE 

Proximity models are significant overall and explain nearly 33 percent and 19 

percent of the variance in day and night UHIE respectively. Shown in Table 5.9, the results 

of robust regression analysis indicates that increasing value of proximity between different 

land cover types reduces daytime UHIE, but increases UHIE during the nighttime. 

However, the effect of proximity is not statistically significant for both day and night 

UHIE. Therefore, Sub-Hypothesis 5, Metropolitan region with a higher proximity among 

different land covers in urbanized area will have a lower Urban Heat Island Effect than 

the metropolitan region has a lower proximity among different land covers in urbanized 

area, is not supported by this proximity model.  

 Shown in Table 5.8, control variables remain essentially unchanged when 

compared to previous models. Impervious surface area has a positive impact on both day 

and night UHIE. Vegetation has a negative effect but is only a statistically significant 

coefficient of daytime UHIE. On the contrary, water is only statistically significant 

coefficient of nighttime UHIE with a negative effect.  Population density and regional 

dummies act same as previous models. 
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  Table 5.8. Proximity of land covers and UHIE 

UHIE Day Night  

 
Coefficient 

(Robust Std. Error) 
P-value 

(One-tailed) 
95% confidence  

Interval 
Coefficient 

(Robust Std. Error) 
P-value 

(One-tailed) 
95% confidence 

Interval 
VIF 

Proximity 
-0.0467 
(0.0382) 0.11 -0.1219 0.0284 

0.0021 
(0.0216) 0.46 -0.0404 0.0446 

1.93 

Impervious 
0.0507 

(0.0234) 0.02 0.0048 0.0967 
0.0234 

(0.0103) 0.01 0.0031 0.0437 
2.79 

Vegetation 
-0.0200 
(0.0240) 0.20 -0.0672 0.0271 

-0.0316 
(0.0121) 0.00 -0.0554 

-
0.0078 

1.61 

Water 
-0.2247 
(0.1135) 0.02 -0.4480 -0.0013 

0.0788 
(0.0744) 0.15 -0.0675 0.2252 

1.22 

Population 
Density 

0.0002 
(0.0008) 0.39 -0.0014 0.0018 

0.0001 
(0.0005) 0.44 -0.0009 0.0010 

2.33 

Marine West 
Coast Forests 

-6.3996 
(1.4562) 0.00 -9.2639 -3.5353 

-2.5352 
(1.0815) 0.01 -4.6624 

-
0.4079 

1.31 

Mediterranean 
California 

-12.3485 
(2.1395) 0.00 -16.5569 -8.1401 

-4.2249 
(1.2293) 0.00 -6.6428 

-
1.8070 

2.54 

North American 
Deserts 

-12.4672 
(1.9385) 0.00 -16.2801 -8.6542 

-2.1612 
(1.0676) 0.02 -4.2611 

-
0.0613 

2.71 

Northern Forests 
-6.2461 
(1.2601) 0.00 -8.7247 -3.7675 

-2.7424 
(0.7877) 0.00 -4.2917 

-
1.1930 

1.48 

Great Plains 
-11.2848 
(1.3063) 0.00 -13.8543 -8.7153 

-2.4907 
(0.7488) 0.00 -3.9637 

-
1.0178 

3.57 

Northern Forests 
-7.3015 
(1.1966) 0.00 -9.6552 -4.9478 

-2.5070 
(0.7426) 0.00 -3.9676 

-
1.0465 

5.88 

Tropical Wet 
Forests 

-6.8362 
(1.4490) 0.00 -9.6864 -3.9861 

-4.6228 
(0.8704) 0.00 -6.3348 

-
2.9108 

1.15 

Constant 
13.0502 
(3.2146) 0.00 6.7271 19.3732 

4.1586 
(1.7375) 0.01 0.7409 7.5762 

 

 
Number of obs = 353 

R-squared  = 0.3293 
F( 12,   340) =  10.55 

Prob > F      =  0.0000 
Number of obs =     353 

R-squared     =  0.1879 
F( 11,   341) =   5.08 

Prob > F      =  0.0000 

 

* All significance tests are one tailed because the hypotheses of this study clearly indicated the direction of effect for the independent and control variables 
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5.2.2. Combined Impact of Spatial Development Patterns on UHIE 

In this section, I explore additional regression models to see if there are other 

scenarios that include all of the independent variables (spatial development patterns) 

together in the model. The previous section employs only one key independent variable at 

a time because of high correlations among independent variables, but this approach could 

omit variables based on assumed potential multicollinearity. Thus, this section tested an 

additional three models which attempt to include all of the key independent variables in 

one single model, and then selectively dropped one variable at a time to reduce 

multicollinearity issues. Also, the robust regression method was used for an additional 

three models since heteroscedasticity was detected in these models (See Appendix F).  

Table 5.9 presents the results of daytime UHIE regression models with several 

combinations of key independent variables. Model 1 is significant overall, with F (16,336) 

=7.96; Prob > F = 0.00, and it explains thirty-four percent of the variance. Among the five 

spatial pattern variables tested in Model 1, only continuity was marginally significant at 

the 0.1 level. Water is still a significant factor that decreases daytime UHIE, as it has also 

done in previous models. Some variables in the model, including density (93.27), 

clustering (5.80), and impervious surface (85.18), showed high VIF8. Thus, I selectively 

dropped impervious surface 9  and then potentially one other variable to reduce 

                                                 

8 Except dummy variable (i.e. EFT region) 
9 Model 1 was also tested with dropping density instead of impervious surface but the net results of other 
variables are not changed with when density was dropped in the model. Thus, I decided to drop 
impervious surface to reduce multicollinearity issues since density is one of the key independent variables 
in this study.  
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multicollinearity issues. Model 2 was also significant overall, with F (15,337) =8.45; Prob 

> F = 0.00, although this model excludes impervious surface. The VIF value of density 

was clearly dropped from 93.27 to 4.27; however there were not substantial changes in 

coefficients and significance for other variables in the Model 1. In Model 2, clustering still 

has a high VIF at 5.79, and thus it was dropped in Model 3. As a result, there no critical 

multicollinearity issues were detected in Model 3. This model was also statistically 

significant, with F (14,338) =9.06; Prob > F = 0.00. The result of Model 3 indicated that 

density and continuity show marginal significance (0.097 and 0.07 respectively) at the 0.1 

level. Similar to previous models with single independent variables, water is a very 

significant factor in decreasing UHIE during the daytime across all models. 

 Table 5.10 presents the results of the nighttime UHIE regression model. The same 

steps are performed for the nighttime UHIE models as with the daytime UHIE models 

based on the post-regression test of VIF.  Model 1 was significant overall, with F (16,336) 

=4.47; Prob > F = 0.00. Density was a significant factor at the 0.05 level, and impervious 

surface was also significant at the 0.10 level.  However, similar to the results of the 

daytime UHIE model, density, clustering, and impervious surface showed high values of 

VIF. Thus, impervious surface was dropped in Model 2 and clustering was later dropped 

in Model 3.  Model 2 was significant overall, with F (15,337) =4.91; Prob > F = 0.00, as 

was Model 3, with F (14,338) =5.00; Prob > F = 0.00. Density was significant at the 0.05 

level in both Model 2 and Model 3.  In addition, vegetation was a very significant factor 

in decreasing nighttime UHIE across all models.  
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Table 5.9. Single and combined models for day UHIE 

Day UHIE 
Density 

Coefficient 
(P-value) 

Continuity 
Coefficient 
(P-value) 

Clustering 
Coefficient 
(P-value) 

Diversity 
Coefficient 
(P-value) 

Proximity 
Coefficient 
(P-value) 

Model 1 
Coefficient 
(P-value) 

VIF 
Model 2 

Coefficient 
(P-value) 

VIF 
Model 3 

Coefficient 
(P-value) 

VIF 

Density 
0691 

(0.002) 
    0.1115 

(0.245) 
93.27 

0.0365 
(0.097) 

4.27 
0.0365 
(0.097) 

4.27 

Continuity 
 1.0524 

(0.038) 
   1.0166 

(0.095) 
3.80 

0.9907 
(0.102) 

3.78 
0.9617 
(0.070) 

2.30 

Clustering 
  0.5531 

(0.093) 
  -0.0502 

(0.471) 
5.80 

-0.0427 
(0.476) 

5.79 
 

 

Diversity 
   -3.4378 

(0.165) 
 -1.2496 

(0.400) 
2.67 

-1.2503 
(0.400) 

2.67 
-1.0402 
(0.394) 

1.28 

Proximity 
    -0.0467 

(0.111) 
-0.0380 
(0.174) 

2.15 
-0.0426 
(0.135) 

2.06 
-0.0425 
(0.137) 

2.05 

Impervious 
surface 

 0.0380 
(0.052) 

0.0517 
(0.010) 

0.0609 
(0.004) 

0.0507 
(0.016) 

-0.0698 
(0.318) 

85.18 
 

 
 

 

Vegetation 
-.0215 

(0.181) 
-0.0229 
(0.166) 

-0.0269 
(0.124) 

-0.0265 
(0.130) 

-0.0200 
(0.202) 

-0.0151 
(0.271) 

1.72 
-0.0166 
(0.251) 

1.69 
-0.0167 
(0.253) 

1.67 

Water 
-.2546 

(0.012) 
-0.2556 
(0.009) 

-0.2929 
(0.004) 

-0.2850 
(0.006) 

-0.2247 
(0.025) 

-0.2092 
(0.032) 

1.30 
-0.2203 
(0.025) 

1.28 
-0.2217 
(0.024) 

1.25 

Population 
Density 

.0002 
(0.422) 

0.0002 
(0.417) 

-0.0001 
(0.458) 

0.0001 
(0.446) 

0.0002 
(0.391) 

0.0001 
(0.466) 

2.79 
0.0001 
(0.461) 

2.78 
0.0001 
(0.466) 

2.42 

MWCF 
-6.415 

(0.000) 
-6.5490 
(0.000) 

-6.4815 
(0.000) 

-6.5005 
(0.000) 

-6.3996 
(0.000) 

-6.4935 
(0.000) 

1.31 
-6.4970 
(0.000) 

1.31 
-6.4937 
(0.000) 

1.31 

MC 
-12.2287 

(0.000) 
-12.1327 

(0.000) 
-12.0845 

(0.000) 
-12.2870 

(0.000) 
-12.3485 

(0.000) 
-12.3548 

(0.000) 
2.65 

-12.3091 
(0.000) 

2.64 
-12.2964 

(0.000) 
2.55 

NAD 
-12.1843 

(0.000) 
-12.2096 

(0.000) 
-12.1442 

(0.000) 
-12.2047 

(0.000) 
-12.4672 

(0.000) 
-12.5554 

(0.000) 
2.74 

-12.5405 
(0.000) 

2.73 
-12.5341 

(0.000) 
2.71 

NF 
-6.2908 
(0.000) 

-6.4566 
(0.000) 

-6.3557 
(0.000) 

-6.2689 
(0.000) 

-6.2461 
(0.000) 

-6.4016 
(0.000) 

1.49 
-6.3665 
(0.000) 

1.49 
-6.3687 
(0.000) 

1.49 

GP 
-11.2006 

(0.000) 
-11.3022 

(0.000) 
-11.2005 

(0.000) 
-11.1999 

(0.000) 
-11.2848 

(0.000) 
-11.5791 

(0.000) 
3.68 

-11.5023 
(0.000) 

3.62 
-11.4981 

(0.000) 
3.60 

ETF 
-7.2346 
(0.000) 

-7.3575 
(0.000) 

-7.3783 
(0.000) 

-7.3637 
(0.000) 

-7.3015 
(0.000) 

-7.5055 
(0.000) 

6.01 
-7.4593 
(0.000) 

5.96 
-7.4588 
(0.000) 

5.96 

TWF 
-6.4882 
(0.000) 

-6.7787 
(0.000) 

-7.1416 
(0.000) 

-6.7927 
(0.000) 

-6.8362 
(0.000) 

-7.0437 
(0.000) 

1.19 
-7.0711 
(0.000) 

1.19 
-7.0945 
(0.000) 

1.16 

Constant 
9.6116 
(0.000) 

-93.5276 
(0.055) 

6.3522 
(0.035) 

10.5265 
(0.000) 

13.0502 
(0.000) 

-87.4159 
(0.118) 

 -84.4122 
(0.127) 

 -81.8907 
(0.101) 

 

 R-squared 
=0.3286 

R-squared 
=0.3321 

R-squared 
=0.3302 

R-squared 
=0.3286 

R-squared 
=0.3293 

R-squared 
=0.3361 

 R-squared 
=0.3356 

 R-squared 
=0.3356 

 

* All significance tests are one tailed because the hypotheses of this study clearly indicated the direction of effect for the independent and control variables 



 

94 

 

Table 5.10. Single and combined models for night UHIE 

Night UHIE 
Density 

Coefficient 
(P-value) 

Continuity 
Coefficient 
(P-value) 

Clustering 
Coefficient 
(P-value) 

Diversity 
Coefficient 
(P-value) 

Proximity 
Coefficient 
(P-value) 

Model 1 
Coefficient 
(P-value) 

VIF 
Model 2 

Coefficient 
(P-value) 

VIF 
Model 3 

Coefficient 
(P-value) 

VIF 

Density 
0.0285 
(0.007) 

    0.1479 
(0.041) 

93.27 
0.0253 
(0.030) 

4.27 
0.0250 
(0.031) 

4.27 

Continuity 
 0.4319 

(0.088) 
   0.4348 

(0.149) 
3.80 

0.3923 
(0.177) 

3.78 
0.2533 
(0.224) 

2.30 

Clustering 
  0.2276 

(0.194) 
  -0.2176 

(0.322) 
5.80 

-0.2053 
(0.331) 

5.79 
  

Diversity 
   -2.2247 

(0.146) 
 -2.8098 

(0.177) 
2.67 

-2.8109 
(0.178) 

2.67 
-1.8010 
(0.210) 

1.28 

Proximity 
    0.0021 

(0.462) 
0.0153 
(0.245) 

2.15 
0.0078 
(0.358) 

2.06 
0.0084 
(0.350) 

2.05 

Impervious 
surface 

 0.0137 
(0.114) 

0.0193 
(0.029) 

0.0232 
(0.014) 

0.0234 
(0.012) 

-0.1141 
(0.071) 

85.18 
 

 
  

Vegetation 
-0.0290 
(0.008) 

-0.0305 
(0.006) 

-0.0321 
(0.003) 

-0.0323 
(0.003) 

-0.0316 
(0.005) 

-0.0271 
(0.027) 

1.72 
-0.0295 
(0.011) 

1.69 
-0.0302 
(0.010) 

1.67 

Water 
0.0831 
(0.117) 

0.0842 
(0.120) 

0.0689 
(0.166) 

0.0673 
(0.172) 

0.0788 
(0.145) 

0.0911 
(0.120) 

1.30 
0.0729 
(0.164) 

1.28 
0.0666 
(0.186) 

1.25 

Population 
Density 

0.0000 
(0.497) 

0.0000 
(0.468) 

-0.0001 
(0.448) 

0.0000 
(0.488) 

0.0001 
(0.443) 

0.0000 
(0.485) 

2.79 
0.0000 
(0.498) 

2.78 
-0.0001 
(0.435) 

2.42 

MWCF 
-2.5100 
(0.010) 

-2.5751 
(0.009) 

-2.5475 
(0.010) 

-2.5680 
(0.009) 

-2.5352 
(0.010) 

-2.5811 
(0.008) 

1.31 
-2.5868 
(0.008) 

1.31 
-2.5712 
(0.008) 

1.31 

MC 
-4.2239 
(0.001) 

-4.2002 
(0.001) 

-4.1803 
(0.001) 

-4.2822 
(0.001) 

-4.2249 
(0.001) 

-4.3536 
(0.000) 

2.65 
-4.2790 
(0.001) 

2.64 
-4.2179 
(0.001) 

2.55 

NAD 
-2.1900 
(0.017) 

-2.2016 
(0.017) 

-2.1748 
(0.018) 

-2.2135 
(0.016) 

-2.1612 
(0.022) 

-2.2312 
(0.019) 

2.74 
-2.2069 
(0.020) 

2.73 
-2.1760 
(0.021) 

2.71 

NF 
-2.7178 
(0.001) 

-2.8028 
(0.000) 

-2.7614 
(0.001) 

-2.7176 
(0.001) 

-2.7424 
(0.001) 

-2.7917 
(0.000) 

1.49 
-2.7344 
(0.001) 

1.49 
-2.7446 
(0.001) 

1.49 

GP 
-2.5280 
(0.001) 

-2.5716 
(0.001) 

-2.5300 
(0.001) 

-2.5479 
(0.001) 

-2.4907 
(0.001) 

-2.7238 
(0.000) 

3.68 
-2.5982 
(0.001) 

3.62 
-2.5781 
(0.001) 

3.60 

ETF 
-2.4977 
(0.001) 

-2.5653 
(0.001) 

-2.5741 
(0.001) 

-2.6010 
(0.000) 

-2.5070 
(0.001) 

-2.6634 
(0.000) 

6.01 
-2.5879 
(0.000) 

5.96 
-2.5855 
(0.001) 

5.96 

TWF 
-4.6020 
(0.000) 

-4.7406 
(0.000) 

-4.8902 
(0.000) 

-4.8096 
(0.000) 

-4.6228 
(0.000) 

-4.5880 
(0.000) 

1.19 
-4.6328 
(0.000) 

1.19 
-4.7454 
(0.000) 

1.16 

Constant 
4.0499 
(0.000) 

-38.1920 
(0.112) 

2.7982 
(0.089) 

4.6432 
(0.000) 

4.1586 
(0.009) 

-38.1715 
(0.166) 

 
-33.2582 

(0.200) 
 -21.1349 

(0.259) 
 

 R-squared 
=0.1907 

R-squared 
=0.1919 

R-squared 
=0.1905 

R-squared 
=0.1914 

R-squared 
=0.1879 

R-squared 
=0.2024 

 R-squared 
=0.1963 

 R-squared 
=0.1958 

 

* All significance tests are one tailed because the hypotheses of this study clearly indicated the direction of effect for the independent and control variables 
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CHAPTER VI 

DISCUSSIONS AND CONCLUSIONS 

 

Results from the statistical analyses lead to topics that are worthy of further 

discussion. This section examines and expands on the results of the multivariate regression 

analyses and discusses the key findings as the answers for the research objectives of this 

study.  The policy implications of these research findings are discussed and synthesized 

into recommendations. Finally, I describe research limitations and conclusions of the 

study.  

 

6.1. Key Findings Regarding Research Objectives 

Although there are several previous studies that examine UHIE, this study is one 

of the few that explore the overall patterns of regional UHIE across the U.S. This study 

uses the basic concept of UHIE, the temperature difference between urban and rural areas, 

to compare these regions while adjusting for different climates and natural environments. 

The key findings regarding the first research objective, which is to investigate 

UHIE at a regional scale in the metropolitan regions, are as follows: 

First, the descriptive analysis of UHIE shows that the mean UHIE is 4.04˚F during 

day and 2.41˚F at night. Although there are variations of UHIE depending on the location 

and ecological context of each metropolitan region, the results of this study reveal that 

generally the magnitude of day UHIE and night UHIE are different, and daytime UHIE is 
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larger than nighttime UHIE. This finding is consistent with previous research on surface 

UHIE suggesting that surface UHIE is most intense during the day and in the summer 

(Roth et al., 1989; EPA, 2008; Imhoff et al., 2010). Moreover, this result can be a 

reasonable justification of this study in that examining the impact of spatial patterns of 

development on surface UHIE is relevant since surface temperature is directly affected by 

sun-light and the surface materials that cover urban areas.  

Second, the results indicate that ecological context is a statistically significant 

modulator that helps to explain the spatial distribution of the UHIE. When summarizing 

UHIE by ecoregions, each ecoregion shows different patterns for daytime and nighttime 

(See Figure 5.2).  Although the average UHIE of daytime is larger than that of the 

nighttime, there are some exceptional regions which have larger nighttime UHIE than 

daytime UHIE. For example, two ecoregions have larger UHIE at nighttime: the Great 

Plains region and the North American Desert region. These two regions have similar 

characteristics in terms of summer climate. The climate of the Great Plains region is dry 

and continental, characterized by short, hot summers and long, cold winters. Similarly, the 

North American Desert region has a desert and steppe climate: arid to semi-arid, with 

marked seasonal temperature extremes (ECE, 1997). Also, The North American Desert 

region traditionally have small population centers, but some urban areas like Las Vegas 

have recently experienced rapid growth (ECE, 1997). During the daytime, temperature is 

increased in both urban and rural areas by an extremely hot and dry climate as well as 

limited vegetation. However, in the nighttime without sun-light, temperatures in rural 

areas decrease rapidly as compared to the urban areas with development. This discussion 
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can be extended to another finding that some metropolitan regions that have a negative 

UHIE, especially in daytime. Negative UHIE is observed in the North American Desert, 

the Mediterranean California, and the Great Plains regions. With some exceptions of 

coastal metropolitan regions, extremely high temperatures in both urban and rural areas 

due to their climatic, environmental, and demographic settings lead to small or negative 

UHIE in these ecoregions. This finding is supported by a previous study on UHIE and 

biomes, which suggests that UHIE responses for eight different biomes are all 

significantly different (p = 0.01) and clearly show the effect of ecological context on UHIE 

(Imhoff et al., 2010). Although the previous study employs a slightly different ecoregion 

classification scheme by Olson et al. (2001), their results also reveal that urban areas 

surrounded by desert and xeric shrublands show much smaller temperature contrast or 

even a reverse of  UHIE.  

Regarding the results of this study and the findings of Imhoff et al. (2010) that are 

related to ecoregions and UHIE, additional tests were conducted to see if each ecoregion 

has a statistically different effect in the model, in which case regional clusters would exist 

(See Appendix G). The results show that there are three regional clusters of ecoregions 

that differ substantially from each other in the analysis. Except when using the 

Northeastern Forested Mountain region as a base region, two regional clusters were 

generated differently for daytime UHIE and nighttime UHIE.  For daytime UHIE, the 
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ecoregions of the MWCF10, NF, ETF, and TWF showed the same pattern for daytime 

UHIE, and the ecoregions of the MC, NAD, and GP had a similar effect in the regression 

model. On the other hand, the ecoregions of the MWCF, NAD, NF, GP, and ETF showed 

similar patterns for nighttime UHIE, and TWF and MC were grouped as another regional 

cluster in the nighttime UHIE model. Regional clusters for daytime UHIE are affected by 

the geographic location of ecoregions, while regional clusters for nighttime UHIE are 

more affected by the characteristics of the location. For example, each regional cluster for 

daytime UHIE is geographically linked, however regional clusters for nighttime UHIE, 

especially in Ecoregion 2, are not geographically linked.   Yet both ecoregions are located 

in coastal areas and show similar patterns for nighttime UHIE. 

Although there were no substantive changes in key independent variables when 

three new regional clusters were employed as regional dummy variables instead of eight 

ecoregions of the Level I ecoregion classification (See Appendix G), this additional test 

suggests that we could generate regional clusters when considering UHIE as an additional 

indicator of ecoregions. 

Regarding the second research objective, measuring spatial patterns of 

development in urban areas based on the concepts of landscape metrics, this study 

analyzes spatial development patterns in urban areas using five selected land scape metrics 

to examine not only composition but also configuration. The results indicate that each 

                                                 

10 MWCF: Marine West Coast Forest / NAD: North American Desert / NF: Northern Forests/ GP: Great 
Plains/ ETF: Eastern Temperate Forests/ TWF: Tropical Wet Forests/ NFM: Northeastern Forested 
Mountains/ MC: Mediterranean California 
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urban area has different spatial development pattern even though they are uniformly 

designated as “urbanized areas” in metropolitan regions because of their large population. 

In short, every urbanized area can have different spatial patterns in terms of development.  

There is another discussion point in the selection and measurement process of 

development patterns using landscape metrics. Previous research mentioned that the 

selection of landscape metrics is a critical step, since there are hundreds of landscape 

indexes (Leitão, A. B, 2006; Ji et al., 2006; Wu et al., 2011). The selected metrics in this 

study also correlate with each other, including PLAND (density of development), 

COHESION (continuity of development), GYRATE_AM (clustering of development), 

PRD (diversity of development), and IJI (proximity of development). For example, 

PLAND and COHESION are highly and positively correlated with each other, since the 

large amount of land developed in any given area could lead to connected development. 

As a result, this study builds several individual regression models for each landscape index 

to avoid multicollinearity and complexity of interpretation.  

 With regard the third research objective—examine the relationship between spatial 

development patterns and UHIE—the results of statistical analyses reveal that density, 

continuity and clustering (only for daytime) have significant impacts on UHIE when each 

of the indexes is tested separately in the model.  

Density of development has a positive impact on both day and night UHIE; a 

higher density of development significantly increases day and night UHIE (See Table 5.5). 

Since impervious surface is a crucial element needed to increase urban temperature and 
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UHIE, this result agrees with most of previous studies about UHIE. For example, Streutker 

(2002), and Yoshida et al. (2004) reveal that large amounts of impervious surface and 

dense built environment create more heat, which results in a large UHIE. There is no 

objection to the general consensus of previous studies that reducing and minimizing 

impervious surface are the primary solution to decreased UHIE. However, the population 

is continuously growing and has been more concentrated on urban areas. Therefore, we 

cannot avoid developing land and creating more impervious surfaces in urban areas. Thus, 

we need to think about how we can develop land wisely in terms of reducing UHIE and 

providing a comfortable thermal environment, which is the main research question of this 

study. The following contains several discussions emphasizing which types of spatial 

development pattern can reduce UHIE based on the findings of this study. 

 Increasing continuity of development can also significantly also enhance UHIE. 

Continuity of development is even more informative when it is considered as one 

characteristic of sprawl because it indicates a land consumptive development pattern 

rather than planned and concentrated pattern. Thus, continuous and widespread 

development patterns are major contributors to producing large amounts of impervious 

surface while diminishing the natural environment. Moreover, highly continuous 

development patterns are usually observed in urbanized areas with sophisticated road 

systems. It is true that well-developed road systems are convenient and provide good 

accessibility, but they are also paved by asphalts that create large amounts of heat and 

sometimes aggravate fragmentation of the natural environment.  

 Less clustered development patterns increase UHIE, especially during daytime. 
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The research of Stone and Norman (2006) has also supported the benefit of clustering 

development on UHIE. They conclude that lower density and dispersed patterns of urban 

residential development contribute more surface energy to regional heat island formation 

than do higher density, compact forms. Clustered or stacked development is frequently 

used as an opposite concept of sprawl since it could minimize the ecological footprint in 

the areas of land associated with them (Gordon and Richardson, 1997a). Thus, low 

clustering development has been linked to several negative effects such as flooding and 

erosion because of the creation of impervious surface (Galster et al., 2001; Brody et al., 

2013). For example, Brody et al. (2013) argued that clustered medium-intensity 

development significantly reduces residential flood damage. In this sense, clustering is 

clear evidence of reducing hazard vulnerability and an effective planning strategy to 

minimize impervious surface areas which will contribute in reducing not only UHIE but 

also other natural hazards. 

 While the effect is negative, diversity and proximity of land covers in urbanized 

areas does not significantly impact UHIE. In fact, the diversity index is an insignificant 

predictor under two different land cover classification schemes. One possible reason for 

this weak impact is that the diversity measure (i.e. patch richness density) does not 

consider the size of each land cover but only the number of land covers per unit area 

(100ha). Thus, small hints of vegetation or water can be counted to calculate patch richness 

even though they cannot have much effect on temperature if they are squeezed between 

massive areas of impervious surface. 

 Another expected reason for the result of the proximity index is that this is more 
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related to the functional aspect of land cover (i.e. land uses). For example, high proximity 

between different land uses including residential, commercial, and industrial, should 

minimize construction of roads and reduce travel distance. As a result, UHIE will be 

decreased if high proximity is attained between different land uses.  

 On the other hand, when tests combined the impacts of indexes, density and 

impervious surface are the most important factors that are consistently working in the 

combined models although continuity have potential impacts on UHIEs across regions at 

the metropolitan level of analysis. Since density is measured by the percentage of 

impervious surface in an urban area and the impervious surface variable is measured by 

the difference in percentage of impervious surface between urban and rural areas11, these 

two variables (density and impervious surface) have almost the same values. Therefore, 

the VIF values of both variables are high when they exist together.  

  Based on the results of five landscape indexes, low-density, discontinued, and un-

clustered development patterns are recommended to reduce UHIE when single effect of 

each spatial development pattern were tested in the model. As mentioned earlier, the 

landscape indexes were selected based on the characteristics of sprawl and compact 

development patterns. Visual analysis with maps revealed that each landscape metrics 

clearly describe overall spatial patterns in urbanized area (See Figure 5.3 - 5.7). However, 

there was a particular spatial pattern which represents both sprawl and compact types of 

development. For example, the high continuity is observed in continuous and ribbon types 

                                                 

11 Very few impervious surfaces exist in rural areas. 
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development which is a typical sprawl-type development, and it is also observed in the 

grid pattern of road systems which is preferred road networks of compact-type 

development. In other words, high continuity of development is associated with both 

sprawl and compact development types in opposite direction. Thus, continuous 

development can be rejected in terms of UHIE but it could come with other undesirable 

outcomes such as low accessibility to roads. This finding suggests that we need careful 

considerations to decide and suggest specific spatial development patterns for enhancing 

environmental quality (e.g. thermal comfort) and mobility (e.g. accessibility) at the same 

time.  

 The results of the regression analysis of this study suggest some additional 

interesting findings. First, although both vegetation and water have negative effects on 

UHIE, vegetation is a more significant factor of UHIE at night while water is a more 

significant factor of UHIE during the day. This result is consistent across all regression 

models. Another finding is also about water: although it failures to become significant 

indicator in regression models, it continuously shows a positive sign during the nighttime. 

In other words, water possibly increases temperature in urbanized areas and UHIE at night. 

This result can be explained with the concept of specific heat; water has one of the highest 

specific heats of any substance. Thus, water can be an influential factor in decreasing 

UHIE in daytime, but it seems to be a factor that increases UHIE in the nighttime (although 

it is not statistically significant). These finding can be very useful concepts in terms of 

urban design and land use planning. 
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6.2. Planning Implications and Recommendations 

Spatial planning is considered to be the primary tool used to guide development in 

a sustainable manner and also to safeguard inhabitants from various hazards (Berke, 

Godschalk, Kaiser, & Rodriguez, 2006; Brody & Highfield, 2005; Gadschalk, Edward J. 

Kaiser, & Berke, 1998).  

The results of this study indicate that spatial development patterns can significantly 

affect both daytime and nighttime UHIE, even when controlling for multiple 

environmental, demographic, and regional contextual variables. In other words, UHIE is 

associated with not only the amount of development but also the spatial configuration of 

development. The statistical analyses of the five landscape metrics reveal that specific 

spatial development patterns mitigate UHIE, suggesting a way for regional planners and 

decision-makers to facilitate the emergence of more heat-resilient communities in terms 

of spatial planning. In general, the results of this study support less sprawling development 

patterns in order to be more resilient to regional UHIE. These findings are generalizable 

to U.S. metropolitan regions and thus, this study recommends at least four specific spatial 

planning strategies that may reduce the increased UHIE from both existing and future 

urban development.  

  

6.2.1. Reducing Impervious Surface through Reconfiguring the Development  

The finding of a positive relationship between the amount of impervious surface 

and UHIE confirms the well-established effect of paving materials in UHIE formation. 
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The widely accepted approach to mitigating the thermal impact of impervious surface is 

the reduction in the total amount of paved surface. In the same sense, the findings of this 

study suggest that a 1% increase in development in urbanized areas is associated with a 

0.07 ˚F and 0.03 ˚F higher day UHIE and night UHIE, respectively. Stone (2006) suggests 

several ways to reduce UHIE with no loss in living space, especially for residential 

structures.  For new developments, multistory construction provides a straightforward 

method to minimizing the building footprint area. Another recommended strategy to 

reduce new impervious surface area is infill development. The reuse of abandoned or 

underused areas and renovation and adaptive reuse of existing older structures could 

accommodate future population and housing growth without increasing the total area of 

impervious surface (People for Open Space, 1983; Beatley and Manning, 1997).  

 

6.2.2. Limiting Continuity of Development through a Clustering Strategy 

Continuous development pattern is another contributor to UHIE. This connected 

pattern that spreads outward from urban centers creates large amounts of impervious 

surface, which produce heat in various ways. The results of this study reveal that more 

continuous development increases UHIE while more clustered development reduces 

UHIE. These two findings can be applied together to land development policy. More 

clustered and compact development patterns will lead to a smaller physical footprint for a 

city and less impact on adjacent hinterlands. On the other hand, more sparse and sprawled 

development patterns will need more transportation networks that will produce more heat 
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as well as fragment natural environments. Design guidelines for clustering development 

at the city or even regional level can be established, along with minimum open space and 

density standards. There are a couple of tools and policies that planners and developers 

can choose from to encourage the development of a more concentrated built environment. 

One potentially powerful strategy to reduce sprawl-type development is to create financial 

incentives to build and grow in more compact patterns (Beatley and Manning, 1997). For 

example, overlay zoning is allowed for cluster and compact developed area. Also tax 

incentives and grants for specific development projects can be used   

 

6.2.3. Placing Vegetation and Water Appropriately  

Vegetation and water are traditional elements used to decrease and manage the 

urban thermal environment. The results of this study also reveal that they have a negative 

effect on UHIE. However, each element is more influential at different times of day: water 

becomes a more significant factor during daytime while vegetation becomes a more 

significant factor at night. The impact of these natural features could be used as a good 

guideline when designing urban spaces. For example, water can be used more efficiently 

as a temperature reducer where population congregates during the daytime, such as 

business or commercial districts; Vegetation could be added to the residential areas where 

people usually gather at night. In this way, strategic placement of vegetation and water 

throughout the urban landscape could provide better thermal comfort for residents.  
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6.3 Limitations and Future Research 

While this study provides a greater understanding of regional UHIE across the U.S. 

and offers insights on the effect of spatial development patterns on the intensity of UHIE, 

it should be considered only a starting point for more thorough research on this topic. Thus, 

it is important to highlight several limitations of this study. 

First, this study considers only a single class of land cover-aggregated developed 

areas which, while representative of urban growth and impervious surfaces, does not fully 

considered the functional aspect of developed areas. Future research could analyze the 

spatial patterns for sub-categories of developed areas (e.g. high, medium, and low 

intensities of development) or more detailed land use data. This approach allows for more 

detailed policy recommended for each different land use.  

Second, this study examines only five landscape metrics as measures of spatial 

development patterns. Although these five indices were selected based on existing 

literature and with careful consideration, it may be that certain measures do not fully 

capture the spatial development pattern across a landscape. For example, diversity of land 

cover in this study was expected to affect UHIE based on the existing literature, but this 

study found it to be an insignificant predictor even under different classification schemes. 

There are many alternate measures of diversity that could be used for future research. 

Examining additional metrics would allow for a more comprehensive understanding of 

the role development patterns play in the UHIE.  
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Third, the scale at which development patterns were measured is another limitation 

of this study. Since the scale of ecological data is defined by extent and grain (Forman and 

Godron, 1986; Turner et al. 1989; Wiens 1989), it is critical that spatial scales are defined 

appropriately to represent the ecological phenomenon (Cushman and McGarigal, 2008). 

Extent and grain size of analysis used in this study are determined by the spatial resolution 

of the USGS land cover dataset (30m x 30m) and technical capabilities of the computing 

environment. However, it is more meaningful to define scale from the perspective of the 

organism or ecological phenomenon under consideration (Cushman and McGarigal, 2008). 

Future research should use data at different spatial scales to allow the selection of 

potentially more appropriate extent and grain sizes.  

Forth, although spatial autocorrelation was tested to detect a potential spatial effect 

in the regression model, it was relevant only for daytime UHIE, not for nighttime UHIE. 

To be consistent for both daytime and nighttime models in terms of comparing day and 

night UHIE, this study employed regional dummy variables instead of using spatial 

regression models to control for the spatial effect on the dependent variable (i.e. UHIE). I 

believe that the spatial effect can be effectively reduced by regional dummies. Future 

research, however, could use more advanced statistical approaches, such as spatially 

weighted regression to identify and deal with potentially confounding spatial effects.  

Fifth, the spatial scale of this study is limited to metropolitan regions since this study 

focuses on examining regional UHIE. However, it is well known that there are finer scales 

of UHIE, such as cities, neighborhoods, and even at the block level. Future study on the 

impact of spatial development patterns should be done at finer spatial scales to detect the 
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more localized impact of spatial development patterns on UHIE, while also considering 

the environmental and social contexts of each particular region. In addition, the 

availability of finer spatial resolution of thermal remote sensing data should create 

additional opportunities to analyze local scale UHIE.  

 

6.4.Conclusions and Contributions on Planning Research 

The results of this study demonstrate that spatial development patterns in 

urbanized areas affect regional UHIE.  There has been a general consensus that 

urbanization with increasing impervious surfaces has a positive effect on urban 

temperature. In addition, land cover and land use are the most significant factors in 

determining surface UHIE. However, most previous studies are more focused on the 

amount and composition of land cover, while there has been very limited research 

attempting to measure how spatial configuration is important to mitigate regional UHIE.  

Despite the limitations noted above, my research addresses this critical gap by 

identifying the statistical variation of regional UHIE across different spatial development 

patterns on a regional scale. I believe the results of this study make three important 

contributions to the planning literature associated with UHIE.  

First, although it is limited to particular spatial patterns of development, regional 

UHIE is associated with not only the amount of development but also its spatial 

arrangement. In other words, when contextual heat contributors are held constant, UHIE 

can differ depending on the configuration of development in urban areas, especially for 
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continuity and clustering. This notion can be used as a policy-relevant measure to guide 

more heat-resilient communities. In this sense, planners can suggest the spatial 

rearrangement of development or regulate land-cover alteration in urbanized areas to 

enhance their thermal performance.  

Second, this study analyzes regional UHIE and spatial development patterns across 

all U.S. metropolitan regions. Although there is variation in the UHIE among different 

ecoregions and some particular metropolitan regions act differently in regression analyses, 

generally, UHIE in metropolitan regions are significantly related to each region’s spatial 

development patterns. Since this finding is not limited to one particular region, it can be 

generalized to spatial planning and urban design guidelines on a regional scale 

development.  

Last, this study uses ecologically-based landscape metrics to examine the 

relationship between spatial development form and UHIE. This is an important 

contribution to the urban planning and natural hazard research field because it provides a 

comprehensive approach on both spatial land development and hazard-resistant planning 

through alternative ways of measuring and modeling spatial development patterns.  
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APPENDIX A 

LEGEND OF NATIONAL LAND COVER DATABASE 2006  

 
Table A.1. Land Cover Classification (Adopted from http://www.mrlc.gov/nlcd06_leg.php) 

Class\ Value Classification Description 

Water Areas of open water or permanent ice/snow cover. 

11 Open Water - areas of open water, generally with less than 25% cover of vegetation 
or soil. 

12 Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, 
generally greater than 25% of total cover. 

Developed Areas characterized by a high percentage (30% or greater) of constructed materials 
(e.g. asphalt, concrete, buildings, etc.). 

21 Developed, Open Space - areas with a mixture of some constructed materials, but 
mostly vegetation in the form of lawn grasses. Impervious surfaces account for less 
than 20% of total cover. These areas most commonly include large-lot single-family 
housing units, parks, golf courses, and vegetation planted in developed settings for 
recreation, erosion control, or aesthetic purposes. 

22 Developed, Low Intensity - areas with a mixture of constructed materials and 
vegetation. Impervious surfaces account for 20% to 49% percent of total cover. 
These areas most commonly include single-family housing units. 

23 Developed, Medium Intensity – areas with a mixture of constructed materials and 
vegetation. Impervious surfaces account for 50% to 79% of the total cover. These 
areas most commonly include single-family housing units. 

24 Developed High Intensity -highly developed areas where people reside or work in 
high numbers. Examples include apartment complexes, row houses and 
commercial/industrial. Impervious surfaces account for 80% to 100% of the total 
cover. 

Barren Areas characterized by bare rock, gravel, sand, silt, clay, or other earthen material, 
with little or no "green" vegetation present regardless of its inherent ability to 
support life. Vegetation, if present, is more widely spaced and scrubby than that in 
the green vegetated categories; lichen cover may be extensive. 

31 Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, 
slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and 
other accumulations of earthen material. Generally, vegetation accounts for less 
than 15% of total cover. 

Forest Areas characterized by tree cover (natural or semi-natural woody vegetation, 
generally greater than 6 meters tall); tree canopy accounts for 25% to 100% of the 
cover. 

41 Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, 
and greater than 20% of total vegetation cover. More than 75% of the tree species 
shed foliage simultaneously in response to seasonal change. 

42 Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, 
and greater than 20% of total vegetation cover. More than 75% of the tree species 
maintain their leaves all year. Canopy is never without green foliage. 
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43 Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and 
greater than 20% of total vegetation cover. Neither deciduous nor evergreen 
species are greater than 75% of total tree cover. 

Shrubland Areas characterized by natural or semi-natural woody vegetation with aerial stems, 
generally less than 6 meters tall, with individuals or clumps not touching to 
interlocking. Both evergreen and deciduous species of true shrubs, young trees, and 
trees or shrubs that are small or stunted because of environmental conditions are 
included. 

51 Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall 
with shrub canopy typically greater than 20% of total vegetation. This type is often 
co-associated with grasses, sedges, herbs, and non-vascular vegetation. 

52 Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy 
typically greater than 20% of total vegetation. This class includes true shrubs, young 
trees in an early successional stage or trees stunted from environmental conditions. 

Herbaceous Areas characterized by natural or semi-natural herbaceous vegetation; herbaceous 
vegetation accounts for 75% to 100% of the cover. 

71 Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, 
generally greater than 80% of total vegetation. These areas are not subject to 
intensive management such as tilling, but can be utilized for grazing. 

72 Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally 
greater than 80% of total vegetation. This type can occur with significant other 
grasses or other grass like plants, and includes sedge tundra, and sedge tussock 
tundra. 

73 Lichens - Alaska only areas dominated by fruticose or foliose lichens generally 
greater than 80% of total vegetation 

74 Moss - Alaska only areas dominated by mosses, generally greater than 80% of total 
vegetation. 

Planted/Cultivated Areas characterized by herbaceous vegetation that has been planted or is 
intensively managed for the production of food, feed, or fiber; or is maintained in 
developed settings for specific purposes. Herbaceous vegetation accounts for 75% 
to 100% of the cover. 

81 Pasture/Hay – areas of grasses, legumes, or grass-legume mixtures planted for 
livestock grazing or the production of seed or hay crops, typically on a perennial 
cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation. 

82 Cultivated Crops – areas used for the production of annual crops, such as corn, 
soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as 
orchards and vineyards. Crop vegetation accounts for greater than 20% of total 
vegetation. This class also includes all land being actively tilled. 

Wetlands Areas where the soil or substrate is periodically saturated with or covered with 
water as defined by Cowardin et al., (1979). 

90 Woody Wetlands - areas where forest or shrubland vegetation accounts for greater 
than 20% of vegetative cover and the soil or substrate is periodically saturated with 
or covered with water. 

95 Emergent Herbaceous Wetlands - Areas where perennial herbaceous vegetation 
accounts for greater than 80% of vegetative cover and the soil or substrate is 
periodically saturated with or covered with water. 
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APPENDIX B 

DATA ANALYSIS USING IRLS APPROACH 

 

Additional phase of data analysis includes a series of regression models using 

alternative robust regression approach. This phase also seeks test five hypotheses use of 

iteratively reweighted least square (IRLS).  STATA12 provides IRLS method to conduct 

robust regression. IRLS analysis begins by estimating OLS and then any observations so 

influential that they have Cook’s D values greater than 1 (i.e. influential outliers) are 

excluded from sample after this first step. Based on OLS estimation, the residuals are 

examined and each observation is given a “weight” between 0 and 1 based on the size of 

its residual. Then, regression equation is re-estimated using weighted least square 

regression method based on Huber weights and Biweights. IRLS employs both weighting 

function because Huber weighting deals with severe outliers, whereas biweights 

sometimes fail to converge or have multiple solutions. These re-estimating processes are 

repeated (i.e. iterations) until the “weights” and parameter estimates change by amounts 

that are so small that the changes are no longer significant.  

Although OLS is an efficient estimator given normally distributed residuals, it 

cannot retain efficiency when there are small violations of assumptions about the 

underlying population, e.g., an error term is not really a “normal distribution”. Robust 

regression using IRLS is an alternative method to Least Square Regression. Treiman (2009, 

                                                 

12 Statistical Analysis Package which is used in this study 
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p. 237) explains  that when “we have no clear basis for modifying or omitting particular 

observations ... we need an alternative way of handling outliers ...One alternative is robust 

regression, which does not in general discard observations [although the approach we will 

use does discard very extreme outliers] but rather downweights them, giving less influence 

to highly idiosyncratic observations. Robust estimators are attractive because they are 

nearly as efficient as OLS estimators when the error distribution is normal and are much 

more efficient when the errors are heavy-tailed, as is typical with high leverage points and 

outliers.” 

Thus, each development pattern metric was modeled using IRLS approaches, 

controlling for the same set of other variables as already specified.  

As mentioned earlier, IRLS works interactively: calculate case weights from 

absolute residuals, and regress again using those weights. In general, cases with large 

residuals are given low weights and the weight can be “0” when residuals are very large. 

To see which observation given weight as “0” and how they are located spatially, the 

calculated weights are joined to each metropolitan region in ArcGIS (See Fig C.1). The 

metropolitan regions that received a weight of “0” for at least one model are colored as 

yellow in the map. Most of them are located in west region in U.S. and they are considered 

as outliers in IRLS models. Although it is better to include all observations in the U.S. to 

explain overall patterns of UHIE, analysis excluding some unusual observations 

(pretended as outliers in IRLS model) allows to estimate general trends of UHIE in U.S.  
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Figure B.1. Unusual observations detected from IRLS models (Weight = 0) 
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Table B.1. – B.5. Show comparisons of robust regression (OLS with robust 

standard error) and IRLS (Iteratively Reweighted Least Square) results. 

When using the IRLS approach, most of the development pattern indexes affect 

both day and night UHIE. (See Table 5.4) For example, a non-clustering pattern of 

development has a positive, but non-significant effect on night UHIE in the robust 

regression model. In contrast, the non-clustering development turns out to be significant 

factor in the increase of night UHIE (p <0.01) in the IRLS model. Except for density (day 

and night) and proximity (night), keep the same significance level in both models, all 

development indexes become more significant indicators to predict UHIE when using the 

IRLS models. Although the IRLS approach enhances the significance of the major 

independent variables (i.e. development patterns), 

When some unusual observations in the western U.S. are controlled (Figure 5.8), 

each development pattern and control variables turned out to be more significant factors 

affecting UHIE. Development density is still a highly significant factor to increase UHIE, 

but their coefficients are reduced. Continuity of development becomes a more obvious 

factor to increase night UHIE in the IRLS models. The coefficient and significance of this 

indicator (i.e. continuity of development) are increased for the night UHIE. Non-clustering 

development patterns becomes a very significant factor that increases both day and night 

UHIE. Despite the limitations associated with the diversity index, it becomes a marginally 

significant factor impacting both day and night UHIE in the IRLS model. Proximity of 

land covers also turns out to be a more significant factor that increases daytime UHIE. 
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Table B.1. Density of development and UHIE 

 
Robust regression 

with robust standard error 
Iteratively Reweighted  

Least Squared 

UHIE Day Night Day Night 

Density 
.0691*** 

(2.87) 
0.0285*** 

(2.46) 
.0443*** 

(2.59) 
0.0261*** 

(3.24) 

Impervious High value of VIF 

Vegetation 
-.0215 
(-0.91) 

-0.0290*** 
(-2.43) 

-.0147 
(-1.00) 

-0.0105* 
(-1.52) 

Water 
-.2546** 
(-2.28) 

0.0831† 
(1.19) 

-.3246*** 
(-2.84) 

0.0994** 
(1.85) 

Population 
Density 

.0002 
(0.2) 

0.0000 
(0.01) 

.0020*** 
(3.71) 

0.0004* 
(1.45) 

MWCF 
-6.415*** 

(-4.56) 
-2.5100** 

(-2.34) 
-7.9770*** 

(-5.97) 
-1.5467*** 

(-2.46) 

MC 
-12.2287*** 

(-5.74) 
-4.2239*** 

(-3.45) 
-17.7667*** 

(-19.63) 
-4.1069*** 

(-9.66) 

NAD 
-12.1843*** 

(-6.53) 
-2.1900** 

(-2.14) 
-17.4893*** 

(-20.64) 
-0.8539** 

(-2.15) 

NF 
-6.2908*** 

(-5.03) 
-2.7178*** 

(-3.44) 
-7.5301*** 

(-6.25) 
-2.4333*** 

(-4.30) 

GP 
-11.2006*** 

(-8.78) 
-2.5280*** 

(-3.41) 
-12.1837*** 

(-16.29) 
-2.2458*** 

(-6.39) 

ETF 
-7.2346*** 

(-6.17) 
-2.4977*** 

(-3.4) 
-8.4986*** 

(-12.25) 
-2.0776*** 

(-6.38) 

TWF 
-6.4882*** 

(-4.74) 
-4.6020*** 

(-5.33) 
-8.1338*** 

(-4.14) 
-4.0125*** 

(-4.35) 

Constant 
9.6116*** 

(5.04) 
4.0499*** 

(3.9) 
10.4845*** 

(9.00) 
3.0773*** 

(5.63) 

 

Number of 
obs =     353 

F( 11,   341) =   
11.68 

Prob > F      =  
0.0000 

R-squared     
=  0.3283 

Number of 
obs =     353 

F( 11,   341) =   
5.61 

Prob > F      =  
0.0000 

R-squared     
=  0.1907 

Number of 
obs =     353 

F( 11,   341) =   
56.99 

Prob > F      =  
0.0000 

Number of 
obs =     353 

F( 11,   341) =   
17.90 

Prob > F      =  
0.0000 

                                                ***P< 0.01  **p<0.05  *p<0.1  †p<0.15 
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                 Table B.2. Continuity of development and UHIE 
 Robust regression IRLS 

UHIE Day Night Day Night 

Continuity 
1.0524** 

(1.78) 
0.4319* 

(1.36) 
0.8897** 

(2.07) 
0.5347*** 

(2.63) 

Impervious 
0.0380* 

(1.63) 
0.0137† 

(1.21) 
0.0189† 

(1.04) 
0.0104† 

(1.22) 

Vegetation 
-0.0229 
(-0.97) 

-0.0305*** 
(-2.57) 

-0.0138 
(-0.96) 

-0.0108* 
(-1.60) 

Water 
-0.2556*** 

(2.40) 
0.0842† 

(1.18) 
-0.3214*** 

(-2.83) 
0.0967** 

(1.81) 

Population 
Density 

0.0002 
(0.21) 

0.0000 
(0.08) 

0.0019*** 
(3.66) 

0.0003* 
(1.37) 

MWCF 
-6.5490*** 

(-4.57) 
-2.5751*** 

(-2.39) 
-8.1986*** 

(-6.19) 
-1.6196*** 

(-2.60) 

MC 
-12.1327*** 

(-5.68) 
-4.2002*** 

(-3.41) 
-17.6274*** 

(-19.63) 
-4.0079*** 

(-9.46) 

NAD 
-12.2096*** 

(-6.48) 
-2.2016** 

(-2.14) 
-17.4981*** 

(-20.84) 
-0.8712** 

(-2.20) 

NF 
-6.4566*** 

(-5.40) 
-2.8028*** 

(-3.53) 
-7.7802*** 

(-6.51) 
-2.4980*** 

(-4.43) 

GP 
-11.3022*** 

(-8.61) 
-2.5716*** 

(-3.45) 
-12.4294*** 

(-16.70) 
-2.2893*** 

(-6.52) 

ETF 
-7.3575*** 

(-6.14) 
-2.5653*** 

(-3.45) 
-8.7166*** 

(-12.61) 
-2.1383*** 

(-6.56) 

TWF 
-6.7787*** 

(-4.62) 
-4.7406*** 

(-5.71) 
-8.4061*** 

(-4.31) 
-4.1153*** 

(-4.48) 

Constant 
-93.5276* 

(-1.60) 
-38.1920† 

(-1.22) 
-76.6510** 

(-1.81) 
-49.3250** 

(-2.47) 

 

Number of 
obs =     353 
F( 12,   340) 
=   10.23 
Prob > F      

=  0.0000 
  R-squared     
=  0.3321 

Number of 
obs =     353 
F( 12,   340) 

=   5.72 
Prob > F      

=  0.0000 
  R-squared     
=  0.1919 

Number of 
obs =     353 
F( 12,   340) 
=   53.03 

Prob > F      =  
0.0000 

 

Number of 
obs =     353 
F( 12,   340) 
=   16.51 

Prob > F      =  
0.0000 

 

                                                ***P< 0.01  **p<0.05  *p<0.1  †p<0.15 

 
 

 

 



 

130 

 

 

                 Table B.3. Non-clustering of development and UHIE 
 Robust regression IRLS 

UHIE Day Night Day Night 

Non-
Clustering 

0.5531* 
(1.33) 

0.2276 
(0.86) 

0.5447** 
(1.92) 

0.3241*** 
(2.45) 

Impervious 
0.0517*** 

(2.36) 
0.0193** 

(1.90) 
0.0294** 

(1.80) 
0.0170** 

(2.22) 

Vegetation 
-0.0269† 

(-1.16) 
-0.0321*** 

(-2.80) 
-0.0180† 

(-1.25) 
-0.0142** 

(-2.11) 

Water 
-0.2929*** 

(-2.68) 
0.0689 
(0.97) 

-0.3561*** 
(-3.10) 

0.0764* 
(1.43) 

Population 
Density 

-0.0001 
(-0.11) 

-0.0001 
(-0.13) 

0.0016*** 
(2.98) 

0.0001 
(0.51) 

MWCF 
-6.4815*** 

(-4.55) 
-2.5475*** 

(-2.36) 
-8.1202*** 

(-6.11) 
-1.4406** 

(-2.32) 

MC 
-12.0845*** 

(-5.61) 
-4.1803*** 

(-3.38) 
-17.6027*** 

(-19.47) 
-3.8356*** 

(-9.10) 

NAD 
-12.1442*** 

(-6.47) 
-2.1748** 

(-2.12) 
-17.6638*** 

(-20.95) 
-0.7848** 

(-2.00) 

NF 
-6.3557*** 

(-5.07) 
-2.7614*** 

(-3.49) 
-7.6818*** 

(-6.40) 
-2.3604*** 

(-4.22) 

GP 
-11.2005*** 

(-8.7) 
-2.5300*** 

(-3.40) 
-12.3504*** 

(-16.57) 
-2.1384*** 

(-6.15) 

ETF 
-7.3783*** 

(-6.26) 
-2.5741*** 

(-3.46) 
-8.7293*** 

(-12.53) 
-2.0619*** 

(-6.35) 

TWF 
-7.1416*** 

(-5.18) 
-4.8902*** 

(-5.38) 
-8.7937*** 

(-4.44) 
-4.2606*** 

(-4.61) 

Constant 
6.3522* 

(1.82) 
2.7982* 

(1.35) 
7.2683*** 

(3.33) 
1.0948† 

(1.08) 

 

Number of 
obs =     353 
F( 12,   340) 
=   10.70 
Prob > F      

=  0.0000 
  R-squared     
=  0.3302 

Number of 
obs =     353 
F( 12,   340) 

=   5.02 
Prob > F      

=  0.0000 
  R-squared     
=  0.1905 

Number of 
obs =     353 
F( 12,   340) 
=   16.51 

Prob > F      =  
0.0000 

 

Number of 
obs =     353 
F( 12,   340) 
=   15.96 

Prob > F      =  
0.0000 

 

                                               ***P< 0.01  **p<0.05  *p<0.1  †p<0.15 
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                 Table B.4. Diversity of land covers and UHIE 
 Robust regression IRLS 

UHIE Day Night Day Night 

Diversity 
-3.4378 
(-0.98) 

-2.2247† 
(-1.05) 

-3.6885* 
(-1.53) 

-1.6648* 
(-1.48) 

Impervious 
0.0609*** 

(2.72) 
0.0232** 

(2.21) 
0.0378*** 

(2.39) 
0.0219*** 

(2.95) 

Vegetation 
-0.0265† 

(-1.13) 
-0.0323*** 

(-2.78) 
-0.0199* 

(-1.37) 
-0.0138** 

(-2.04) 

Water 
-0.2850*** 

(-2.55) 
0.0673 
(0.95) 

-0.3495*** 
(-3.02) 

0.0867* 
(1.60) 

Population 
Density 

0.0001 
(0.14) 

0.0000 
(-0.03) 

0.0019*** 
(3.52) 

0.0003† 
(1.27) 

MWCF 
-6.5005*** 

(-4.51) 
-2.5680*** 

(-2.37) 
-8.0510*** 

(-6.02) 
-1.4919*** 

(-2.38) 

MC 
-12.2870*** 

(-5.73) 
-4.2822*** 

(-3.49) 
-17.8324*** 

(-19.62) 
-4.1001*** 

(-9.62) 

NAD 
-12.2047*** 

(-6.49) 
-2.2135** 

(-2.16) 
-17.6639*** 

(-20.80) 
-0.8501** 

(-2.14) 

NF 
-6.2689*** 

(-5.04) 
-2.7176*** 

(-3.42) 
-7.5034*** 

(-6.22) 
-2.4119*** 

(-4.26) 

GP 
-11.1999*** 

(-8.69) 
-2.5479*** 

(-3.45) 
-12.2779*** 

(-16.35) 
-2.2232*** 

(-6.32) 

ETF 
-7.3637*** 

(-6.24) 
-2.6010*** 

(-3.54) 
-8.6532*** 

(-12.30) 
-2.1242*** 

(-6.44) 

TWF 
-6.7927*** 

(-4.76) 
-4.8096*** 

(-5.62) 
-8.4650*** 

(-4.28) 
-4.1422*** 

(-4.47) 

Constant 
10.5265*** 

(5.46) 
4.6432*** 

(4.43) 
11.3934*** 

(9.56) 
3.5433*** 

(6.34) 

 

Number of 
obs =     353 
F( 12,   340) 
=   10.55 
Prob > F      

=  0.0000 
  R-squared     
=  0.3286 

Number of 
obs =     353 
F( 12,   340) 

=   5.08 
Prob > F      

=  0.0000 
  R-squared     
=  0.1914 

Number of 
obs =     353 
F( 12,   340) 
=   52.97 

Prob > F      =  
0.0000 

 

Number of 
obs =     353 
F( 12,   340) 
=   16.26 

Prob > F      =  
0.0000 

 

                                                                   ***P<0.01  **p<0.05  *p<0.1  †p<0.15 
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                 Table B.5. Proximity of land covers and UHIE 
 Robust regression IRLS 

UHIE Day Night Day Night 

Proximity 
-0.0467† 

(-1.22) 
0.0021 
(0.10) 

-0.0528** 
(-1.87) 

0.0014 
(0.11) 

Impervious 
0.0507** 

(2.17) 
0.0234** 

(2.26) 
0.0271* 

(1.60) 
0.0219*** 

(2.74) 

Vegetation 
-0.0200 
(-0.84) 

-0.0316*** 
(-2.61) 

-0.0123 
(-0.83) 

-0.0131** 
(-1.88) 

Water 
-0.2247** 

(-1.98) 
0.0788† 

(1.06) 
-0.2886*** 

(-2.46) 
0.0973** 

(1.75) 

Population 
Density 

0.0002 
(0.28) 

0.0001 
(0.14) 

0.0019*** 
(3.68) 

0.0004* 
(1.59) 

MWCF 
-6.3996*** 

(-4.39) 
-2.5352** 

(-2.34) 
-7.9891*** 

(-5.97) 
-1.6072*** 

(-2.54) 

MC 
-12.3485*** 

(-5.77) 
-4.2249*** 

(-3.44) 
-17.8224*** 

(-19.54) 
-4.1542*** 

(-9.62) 

NAD 
-12.4672*** 

(-6.43) 
-2.1612** 

(-2.02) 
-18.1013*** 

(-20.79) 
-0.8291** 

(-2.01) 

NF 
-6.2461*** 

(-4.96) 
-2.7424*** 

(-3.48) 
-7.5532*** 

(-6.25) 
-2.4758*** 

(-4.33) 

GP 
-11.2848*** 

(-8.64) 
-2.4907*** 

(-3.33) 
-12.4150*** 

(-16.42) 
-2.2370*** 

(-6.25) 

ETF 
-7.3015*** 

(-6.1) 
-2.5070*** 

(-3.38) 
-8.6653*** 

(-12.40) 
-2.1065*** 

(-6.37) 

TWF 
-6.8362*** 

(-4.72) 
-4.6228*** 

(-5.31) 
-8.5694*** 

(-4.33) 
-4.0615*** 

(-4.34) 

Constant 
13.0502*** 

(4.06) 
4.1586*** 

(2.39) 
14.3659*** 

(6.64) 
3.2257*** 

(3.15) 

 

Number of 
obs =     353 
F( 12,   340) 
=   10.55 
Prob > F      

=  0.0000 
  R-squared     
=  0.3293 

Number of 
obs =     353 
F( 12,   340) 

=   5.08 
Prob > F      

=  0.0000 
  R-squared     
=  0.1879 

Number of 
obs =     353 
F( 12,   340) 
=   53.05 

Prob > F      =  
0.0000 

 

Number of 
obs =     353 
F( 12,   340) 
=   16.26 

Prob > F      =  
0.0000 

 

 

 

Most of control variables do not change when compared to the results of robust 

regression models, except population density and water. Population density is not 

significant in the robust model but it seems to be a significant factor to increase day UHIE, 
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even though its effect is very small. Water becomes a more significant factor, but still 

shows a different sign for day UHIE and night UHIE.  

 

 

 

 



 

134 

 

APPENDIX C 

 RESULT OF DIVERSITY INDEX MODEL USING FIRST ORDER OF NLCD SCHEME 

Table C.1. Result of diversity index model 
UHIE Day Night 

 
Coefficient 

(Robust Std. 
Error) 

P-value 
(One-
tailed) 

95% confidence Interval 
Coefficient 

(Robust Std. 
Error) 

P-value 
(One-
tailed) 

95% confidence 
Interval 

Diversity 
-0.7118 
(2.3911) 

0.38 -5.4151 3.9915 
-0.8697 
(1.2873) 

0.25 -3.4018 1.6624 

Impervious 
0.0607 

(0.0224) 
0.00 0.0166 0.1047 

0.0232 
(0.0106) 

0.01 0.0024 0.0440 

Vegetation 
-0.0256 
(0.0235) 

0.14 -0.0718 0.0207 
-0.0320 
(0.0116) 

0.00 -0.0548 -0.0091 

Water 
-0.2721 
(0.1136) 

0.01 -0.4955 -0.0486 
0.0714 

(0.0712) 
0.16 -0.0687 0.2114 

Population Density 
0.0002 

(0.0008) 
0.41 -0.0014 0.0018 

0.0000 
(0.0005) 

0.50 -0.0009 0.0010 

MWCF 
-6.4696 
(1.4277) 

0.00 -9.2779 -3.6614 
-2.5613 
(1.0830) 

0.01 -4.6915 -0.4311 

MC 
-12.2217 
(2.1443) 

0.00 -16.4395 -8.0040 
-4.2479 
(1.2306) 

0.00 -6.6684 -1.8273 

NAD 
-12.1507 
(1.8771) 

0.00 -15.8430 -8.4585 
-2.1815 
(1.0226) 

0.02 -4.1929 -0.1700 

NF 
-6.2977 
(1.2496) 

0.00 -8.7556 -3.8399 
-2.7330 
(0.7920) 

0.00 -4.2909 -1.1751 

GP 
-11.1445 
(1.2904) 

0.00 -13.6826 -8.6065 
-2.5247 
(0.7382) 

0.00 -3.9767 -1.0727 

ETF 
-7.2721 
(1.1834) 

0.00 -9.5998 -4.9443 
-2.5695 
(0.7348) 

0.00 -4.0147 -1.1242 

TWF 
-6.6110 
(1.4345) 

0.00 -9.4326 -3.7894 
-4.7413 
(0.8566) 

0.00 -6.4262 -3.0564 

Constant 
10.1678 
(1.9435) 

0.00 6.3450 13.9905 
4.5151 

(1.0385) 
0.00 2.4724 6.5578 

 
Number of obs = 353 

R-squared  = 0.3269 
F( 12,   340) =  10.63 

Prob > F      =  0.0000 
Number of obs =     353 

R-squared     =  0.1893 
F( 11,   341) =   5.06 

Prob > F      =  0.0000 

* All significance tests are one tailed because the hypotheses of this study clearly indicated the direction of effect for the independent and 
control variables 



 

135 

 

APPENDIX D 

  INTERCORRELATION MATRIX 

 

 Variables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 d_uhi 1.00                   

2 n_uhi 0.56* 1.00                  

3 density 0.09* 0.25* 1.00                 

4 continuity 0.11* 0.22* 0.69* 1.00                

5 proximity 0.00 -0.13* -0.64* -0.42* 1.00               

6 clustering 0.09* 0.15* 0.49* 0.73* -0.34* 1.00              

7 diversity -0.01 -0.02 -0.01 -0.26* 0.08 -0.66* 1.00             

8 Impervious 0.10* 0.25* 0.99* 0.69* -0.61* 0.49* -0.01 1.00            

9 Vegetation -0.15* -0.25* -0.56* -0.42* 0.41* -0.26* -0.01 -0.54* 1.00           

10 Water 0.06 0.07 -0.04 -0.02 0.22* 0.10* -0.11* -0.02 -0.09* 1.00          

11 Population -0.05 0.09 0.65* 0.45* -0.47* 0.46* -0.11* 0.64* -0.32* -0.18* 1.00         

12 mwcf 0.04 -0.01 -0.01 -0.01 0.07 -0.02 0.03 0.00 0.06 0.00 0.01 1.00        

13 nfm 0.43* 0.29* 0.15* 0.06 -0.01 0.01 0.11* 0.16* -0.08 0.00 0.06 -0.03 1.00       

14 mc -0.17* -0.16* 0.21* 0.07 -0.17* 0.05 -0.03 0.20* -0.11* -0.18* 0.45* -0.03 -0.06 1.00      

15 nad -0.20* 0.05 0.20* 0.12* -0.30* 0.07 0.03 0.20* 0.08 -0.19* 0.27* -0.03 -0.06 -0.07 1.00     

16 nf 0.03 -0.03 -0.08 -0.05 0.14* -0.05 0.09* -0.07 0.08 0.15* -0.07 -0.02 -0.03 -0.04 -0.04 1.00    

17 gp -0.20* 0.05 0.28* 0.25* -0.22* 0.11* 0.05 0.27* -0.10* -0.11* 0.17* -0.05 -0.09 -0.10* -0.11* -0.06 1.00   

18 etf 0.13* -0.09* -0.47* -0.30* 0.37* -0.15* -0.11* -0.46* 0.11* 0.22* -0.52* -0.16* -0.29* -0.34*  -0.38*  -0.19* -0.54* 1.00  

19 twf 0.04 -0.04 0.06 0.07 -0.09 0.17* -0.08 0.07 -0.12* 0.09* 0.07 -0.01 -0.02 -0.02 -0.02 -0.01 -0.03 -0.10* 1.00 

 
      * P < 0
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APPENDIX E 

RESULT OF FULL REGRESSION MODELS FOR ALL INDEPENDENT 

VARIABLES 

 

Table E.1. Full regression model for Day UHIE 
 

Coefficient 
(Robust Std. Error) 

P-value 

(one-tailed) 
95% confidence Interval VIF 

Density 
0.1115 

(0.1611) 
0.24 -0.2054 0.4283 93.27 

Continuity 
1.0166 

(0.7727) 
0.09 -0.5033 2.5366 3.8 

Clustering 
-0.0502 
(0.6924) 

0.47 -1.4123 1.3118 5.8 

Diversity 
-1.2496 
(4.8991) 

0.40 -10.8863 8.3871 2.67 

Proximity 
-0.0380 
(0.0404) 

0.17 -0.1175 0.0414 2.15 

Impervious 
-0.0698 
(0.1470) 

0.32 -0.3589 0.2194 85.18 

Vegetation 
-0.0151 
(0.0247) 

0.27 -0.0636 0.0335 1.72 

Water 
-0.2092 
(0.1124) 

0.03 -0.4302 0.0119 1.30 

Population 
density 

0.0001 
(0.0009) 

0.47 -0.0016 0.0018 2.79 

MWCF 
-6.4935 
(1.4469) 

0.00 -9.3397 -3.6473 1.31 

MC 
-12.3548 
(2.1468) 

0.00 -16.5777 -8.1318 2.65 

NAD 
-12.5554 
(1.9610) 

0.00 -16.4128 -8.6979 2.74 

NF 
-6.4016 
(1.2848) 

0.00 -8.9288 -3.8744 1.49 

GP 
-11.5791 
(1.3279) 

0.00 -14.1912 -8.9670 3.68 

ETF 
-7.5055 
(1.1946) 

0.00 -9.8553 -5.1556 6.01 

TWF 
-7.0437 
(1.5150) 

0.00 -10.0237 -4.0637 1.19 

Constant 
-87.4159 
(73.4386) 

0.12 -231.8732 57.0414 
MEAN 

VIF=13.61 

Number of obs =     353 
F( 16,   336) =   7.96 

Prob > F      =  0.0000 
  R-squared     =  0.3361 
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Table E.2. Full regression model for Night UHIE 
 

Coefficient 
(Robust Std. Error) 

P-value 

(one-tailed) 
95% confidence Interval VIF 

Density 
0.1479 

(0.0848) 
0.04 -0.0188 0.3146 93.27 

Continuity 
0.4348 

(0.4171) 
0.15 -0.3857 1.2553 3.8 

Clustering 
-0.2176 
(0.4694) 

0.32 -1.1409 0.7057 5.8 

Diversity 
-2.8098 
(3.0227) 

0.18 -8.7556 3.1360 2.67 

Proximity 
0.0153 

(0.0221) 
0.24 -0.0282 0.0588 2.15 

Impervious 
-0.1141 
(0.0772) 

0.07 -0.2660 0.0378 85.18 

Vegetation 
-0.0271 
(0.0140) 

0.03 -0.0546 0.0004 1.72 

Water 
0.0911 

(0.0774) 
0.12 -0.0611 0.2433 1.30 

Population 
density 

0.0000 
(0.0006) 

0.49 -0.0012 0.0011 2.79 

MWCF 
-2.5811 
(1.0512) 

0.01 -4.6488 -0.5133 1.31 

MC 
-4.3536 
(1.2291) 

0.00 -6.7713 -1.9360 2.65 

NAD 
-2.2312 
(1.0703) 

0.02 -4.3364 -0.1260 2.74 

NF 
-2.7917 
(0.8224) 

0.00 -4.4094 -1.1741 1.49 

GP 
-2.7238 
(0.7671) 

0.00 -4.2328 -1.2149 3.68 

ETF 
-2.6634 
(0.7387) 

0.00 -4.1164 -1.2103 6.01 

TWF 
-4.5880 
(0.9350) 

0.00 -6.4272 -2.7488 1.19 

Constant -38.1715 
(39.1935) 

0.17 -115.2671 38.9241 

MEAN 

VIF=13.61 

Number of obs =     353 
F( 16,   336) =   4.47 

Prob > F      =  0.0000 
  R-squared     =  0.2024 
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APPENDIX F 

VALIDITY TESTS FOR VARIABLES 

 

Figure F.1. Normality for dependent variable (Day UHIE) 

 

Figure F.2. Normality for dependent variable (Night UHIE) 
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Table F.1. Heteroskadasticity test: White test  
 Day UHIE Night UHIE 

Density 
Model 

chi2(57)     =    148.22 

Prob > chi2  =    0.0000 

chi2(57)     =    145.73 

Prob > chi2  =    0.0000 

Continuity 
Model 

chi2(57)     =    141.93 

Prob > chi2  =    0.0000 

chi2(57)     =    135.74 

Prob > chi2  =    0.0000 

Clustering 
Model 

chi2(57)     =    149.79 

Prob > chi2  =    0.0000 

chi2(57)     =    136.08 

Prob > chi2  =    0.0000 

Diversity 
Model 

chi2(57)     =    156.34 

Prob > chi2  =    0.0000 

chi2(57)     =    138.53 

Prob > chi2  =    0.0000 

Proximity 
Model 

chi2(57)     =    143.37 

Prob > chi2  =    0.0000 

chi2(57)     =    145.44 

Prob > chi2  =    0.0000 

Model 1 
chi2(108)    =    200.90 

Prob > chi2  =    0.0000 

chi2(108)    =    175.49 

Prob > chi2  =    0.0000 

Model 2 
chi2(94)    =    186.51 

Prob > chi2  =    0.0000 

chi2(94)    =    166.66 

Prob > chi2  =    0.0000 

Model 3 
chi2(81)    =    175.89 

Prob > chi2  =    0.0000 

chi2(81)    =    152.36 

Prob > chi2  =    0.0000 

* White's test for Ho: homoskedasticity against Ha: unrestricted heteroskedasticity 
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APPENDIX G 

TEST DIFFERENCES AMONG ECOREGIONS 

 Day UHIE (H0: Ecoregion A = Ecoregion B, for example H0: MWCF=MC) 
 Gray colored cell means that two ecoregions have statistically same effect in regression model since they cannot reject null hypothesis. 

 
Table G.1. Test results of differences of day UHIE among ecoregion 

 

 

 

 

 

 

 

 
Day Ecoregion 1: MWCF=NF=ETF=TWF 

Day Ecoregion 2: MC=NAD=GP 

Day Ecoregion 3: NFM (Base region)

                                                 

13 MWCF: Marine West Coast Forest / NAD: North American Desert / NF: Northern Forests/ GP: Great Plains/ ETF: Eastern Temperate Forests/ TWF: 
Tropical Wet Forests (Also, see the map of the ecoregion in page 5) 

 MWCF13 MC NAD NF GP ETF 

MC 
F(  1,   336) =    8.14 
Prob > F =    0.0046 

     

NAD 
F(  1,   336) =  11.08 

Prob > F =    0.0010 
F(  1,   336) =   0.01 

Prob > F =    0.9291 
    

NF 
F(  1,   336) =    0.01 
Prob > F =    0.9280 

F(  1,   336) =   8.69 
Prob > F =    0.0034 

F(  1,   336) =  12.15 
Prob > F =    0.0006 

   

GP 
F(  1,   336) =  21.42 

Prob > F =    0.0000 
F(  1,   336) =   0.17 
Prob > F =    0.6841 

F(  1,   336) =    0.36 
Prob > F =    0.5502 

F(  1,   336) =  32.27 
Prob > F =    0.0000 

  

ETF 
F(  1,   336) =    1.28 
Prob > F =    0.2590 

F(  1,   336) =   6.36 
Prob > F =    0.0121 

F(  1,   336) =  10.00 
Prob > F =    0.0017 

F(  1,   336) =    3.42 
Prob > F =    0.0651 

F(  1,   336) =  36.45 
Prob > F =    0.0000 

 

TWF 
F(  1,   336) =    0.15 
Prob > F =    0.6959 

F(  1,   336) =   6.47 
Prob > F =    0.0114 

F(  1,   336) =    9.84 
Prob > F =    0.0019 

F(  1,   336) =    0.26 
Prob > F =    0.6082 

F(  1,   336) =  13.74 
Prob > F =    0.0002 

F(  1,   336) =   0.19 
Prob > F =    0.6640 
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 Figure G.1. New Group of Ecoregions by Day UHIE
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Full model with level I ecoregion as dummies (base region = Northwestern Forested Mountains) 
 

 
 
Full model with new common ecoregions as dummies (base region = Day Ecoregion 3 (NFM)) 

                                                                                 

          _cons    -87.41592   73.43858    -1.19   0.235    -231.8732    57.04139

            twf    -7.043686   1.514957    -4.65   0.000    -10.02368   -4.063692

            etf    -7.505455   1.194604    -6.28   0.000      -9.8553   -5.155611

             gp     -11.5791    1.32794    -8.72   0.000    -14.19122   -8.966973

             nf    -6.401594   1.284754    -4.98   0.000    -8.928769   -3.874419

            nad    -12.55536   1.961031    -6.40   0.000    -16.41281   -8.697918

             mc    -12.35476   2.146833    -5.75   0.000    -16.57768   -8.131829

           mwcf      -6.4935    1.44692    -4.49   0.000    -9.339662   -3.647338

    d_popden_km     .0000729    .000857     0.09   0.932    -.0016128    .0017587

    pct_d_water    -.2091968   .1123757    -1.86   0.064    -.4302453    .0118517

     pct_d_vege    -.0150726   .0246949    -0.61   0.542    -.0636488    .0335035

pct_d_developed    -.0697557   .1469983    -0.47   0.635    -.3589087    .2193973

      proximity    -.0380337   .0404005    -0.94   0.347    -.1175036    .0414361

      diversity    -1.249575   4.899055    -0.26   0.799    -10.88626    8.387108

     clustering    -.0502158   .6924325    -0.07   0.942    -1.412265    1.311833

     continuity     1.016648   .7727159     1.32   0.189    -.5033226    2.536618

        density     .1114646   .1610839     0.69   0.489    -.2053954    .4283246

                                                                                 

          d_uhi        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                Robust

                                                                                 

                                                       Root MSE      =  3.7818

                                                       R-squared     =  0.3361

                                                       Prob > F      =  0.0000

                                                       F( 16,   336) =    7.96

Linear regression                                      Number of obs =     353

                                                                                 

          _cons     -91.8988   72.79501    -1.26   0.208    -235.0826    51.28499

       day_eco2    -11.91398   1.321243    -9.02   0.000    -14.51279   -9.315164

       day_eco1    -7.459696   1.174452    -6.35   0.000    -9.769779   -5.149613

    d_popden_km    -.0001375   .0008505    -0.16   0.872    -.0018104    .0015354

    pct_d_water    -.1835848    .111052    -1.65   0.099     -.402018    .0348484

     pct_d_vege    -.0160031   .0247131    -0.65   0.518    -.0646125    .0326063

pct_d_developed    -.0806327   .1513156    -0.53   0.594    -.3782621    .2169967

      proximity    -.0292323   .0405176    -0.72   0.471    -.1089283    .0504637

      diversity     -.292071   5.127369    -0.06   0.955    -10.37732    9.793182

     clustering     .0551152   .6963204     0.08   0.937    -1.314509    1.424739

     continuity     1.047756   .7652572     1.37   0.172    -.4574626    2.552975

        density     .1247889   .1670805     0.75   0.456    -.2038493     .453427

                                                                                 

          d_uhi        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                Robust

                                                                                 

                                                       Root MSE      =  3.7655

                                                       R-squared     =  0.3320

                                                       Prob > F      =  0.0000

                                                       F( 11,   341) =    9.92

Linear regression                                      Number of obs =     353
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 Night UHIE (H0: Ecoregion A = Ecoregion B, for example H0: MWCF=MC) 
 Gray colored cell means that two ecoregions have statistically same effect in regression model since they cannot reject null hypothesis. 

 
Table G.2. Test results of differences of night UHIE among ecoregion 

 

 

 

 

 

 

 

 

Night Ecoregion 1: MWCF=NAD=NF=GP=ETF 

Night Ecoregion 2: TWF=MC (Actually, MC looks like same as all other regions but I decided MC is more similar to TWF than Night 
Ecoregion 1 group based on its F-value and significance) 

Night Ecoregion 3: NFM (Base region) 

 

                                                 

14 MWCF: Marine West Coast Forest / NAD: North American Desert / NF: Northern Forests/ GP: Great Plains/ ETF: Eastern Temperate Forests/ TWF: 
Tropical Wet Forests/ NFM: Northeastern Forested Mountains/ MC: Mediterranean California (Also, see the map of the ecoregion in page 35) 

 MWCF14 MC NAD NF GP ETF 

MC 
F(  1,   336) =    1.79 
Prob > F =    0.1814 

     

NAD 
F(  1,   336) =    0.09 
Prob > F =    0.7633 

F(  1,   336) =   2.69 
Prob > F =    0.1018 

    

NF 
F(  1,   336) =    0.06 
Prob > F =    0.8041 

F(  1,   336) =   1.85 
Prob > F =    0.1747 

F(  1,   336) =    0.37 
Prob > F =    0.5443 

   

GP 
F(  1,   336) =    0.03 
Prob > F =    0.8642 

F(  1,   336) =   2.41 
Prob > F =    0.1211 

F(  1,   336) =    0.37 
Prob > F =    0.5431 

F(  1,   336) =    0.02 
Prob > F =    0.8833 

  

ETF 
F(  1,   336) =    0.01 
Prob > F =    0.9174 

F(  1,   336) =   2.46 
Prob > F =    0.1176 

F(  1,   336) =    0.29 
Prob > F =    0.5928 

F(  1,   336) =    0.12 
Prob > F =    0.7291 

F(  1,   336) =    0.04 
Prob > F =    0.8377 

 

TWF 
F(  1,   336) =    3.90 
Prob > F =    0.0490 

F(  1,   336) =   0.04 
Prob > F =    0.8450 

F(  1,   336) =    5.65 
Prob > F =    0.0180 

F(  1,   336) =    5.97 
Prob > F =    0.0151 

F(  1,   336) =    6.88 
Prob > F =    0.0091 

F(  1,   336) =   9.57 
Prob > F =    0.0021 
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Figure G.2. New Group of Ecoregions by Night UHIE
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Full model with level I ecoregion as dummies (base region = Northwestern Forested Mountains) 

 

Full model with new common ecoregions as dummies (base region = Day Ecoregion 3 (NFM)) 

 

                                                                                 

          _cons    -38.17148   39.19352    -0.97   0.331    -115.2671    38.92411

            twf    -4.587973   .9350086    -4.91   0.000    -6.427181   -2.748765

            etf    -2.663383   .7387018    -3.61   0.000    -4.116446    -1.21032

             gp    -2.723845   .7671363    -3.55   0.000     -4.23284    -1.21485

             nf    -2.791735   .8223576    -3.39   0.001    -4.409354   -1.174117

            nad    -2.231197   1.070254    -2.08   0.038    -4.336441   -.1259539

             mc    -4.353643   1.229096    -3.54   0.000    -6.771336    -1.93595

           mwcf    -2.581076   1.051203    -2.46   0.015    -4.648845   -.5133075

    d_popden_km    -.0000221   .0005846    -0.04   0.970    -.0011721    .0011279

    pct_d_water     .0910947   .0773574     1.18   0.240    -.0610711    .2432605

     pct_d_vege     -.027108   .0139853    -1.94   0.053    -.0546178    .0004019

pct_d_developed    -.1141007   .0772405    -1.48   0.141    -.2660367    .0378353

      proximity     .0153165   .0221047     0.69   0.489    -.0281645    .0587974

      diversity    -2.809807   3.022705    -0.93   0.353    -8.755617    3.136004

     clustering    -.2175841   .4693708    -0.46   0.643     -1.14086    .7056915

     continuity     .4348314   .4171238     1.04   0.298    -.3856718    1.255335

        density     .1478953   .0847626     1.74   0.082     -.018837    .3146276

                                                                                 

          n_uhi        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                Robust

                                                                                 

                                                       Root MSE      =  1.9896

                                                       R-squared     =  0.2024

                                                       Prob > F      =  0.0000

                                                       F( 16,   336) =    4.47

Linear regression                                      Number of obs =     353

                                                                                 

          _cons    -38.71684   37.16504    -1.04   0.298    -111.8184    34.38475

     night_eco2    -4.445666    1.13583    -3.91   0.000     -6.67978   -2.211551

     night_eco1    -2.625848   .7341791    -3.58   0.000    -4.069938   -1.181758

    d_popden_km     .0000842   .0005811     0.14   0.885    -.0010588    .0012272

    pct_d_water     .0820639   .0754315     1.09   0.277    -.0663057    .2304334

     pct_d_vege     -.024871   .0137101    -1.81   0.071    -.0518381     .002096

pct_d_developed    -.1064602   .0775482    -1.37   0.171    -.2589933     .046073

      proximity     .0105351   .0214465     0.49   0.624    -.0316491    .0527193

      diversity    -2.944266   2.940739    -1.00   0.317    -8.728539    2.840007

     clustering    -.2587165   .4370095    -0.59   0.554     -1.11829    .6008572

     continuity     .4453503     .39589     1.12   0.261    -.3333437    1.224044

        density     .1398568   .0843693     1.66   0.098    -.0260929    .3058065

                                                                                 

          n_uhi        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                Robust

                                                                                 

                                                       Root MSE      =   1.978

                                                       R-squared     =  0.1999

                                                       Prob > F      =  0.0000

                                                       F( 11,   341) =    5.78

Linear regression                                      Number of obs =     353




