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ABSTRACT 

 

  This study provides the most updated stratigraphic, depositional and diagenetic 

histories of the Early Cretaceous Biyadh and Shu'aiba formations. Carbon isotope data 

were integrated with core descriptions and well logs to define the age model beyond the 

resolution of biostratigraphy; they were also used as a geochronology tool for correlating 

between wells and across platform to basin transitions.  

 The Biyadh Formation consists of one 3rd-order sequence of four high-frequency 

sequences (S1-S4). S1 and S2 are the TST, composed of deep chalky limestone facies. 

S3 and S4 are the HST composed of skeletal rudist grainstone deposited in shallow 

water environments. The Biyadh sequence is capped by a regional subaerial boundary 

(SB1) corresponding to a global sea level fall. The Shu'aiba Formation consists of one 

2nd-order sequence of four 3rd-order sequences and ten HFS's (S1-S10). S1 records the 

initial TST, followed by the regional MFS (K70) of S2. S3 is the late TST and is 

dominated by Lithocodium aggregatum/coral facies. S4 to S6 formed the early HST and 

are dominated by rudist buildups that transitioned basinward into fore-bank, slope and 

basinal settings with pronounced clinoform geometries. S7 and S8 are composed of 

shallow lagoonal milliolid packstone, representing the late HST. S9 and S10 are new 

identified Upper Aptian prograding sequences that formed during forced regression on 

the northern-block within platform edge and slope settings.  

 The correlation between the Arabian Plate stratigraphic record and the standard 

Tethys isotope record and eustatic sea-level suggests a direct influence of the 3rd-order 
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sea-level fluctuations on the Biyadh and Shu'aiba formations. This correlation also 

suggests that the Aptian were mainly controlled by glacio-eustatic fluctuations 

associated with eccentricity cycles. The Barremian records low magnitude sea-level 

changes and thinner sequences likely reflecting obliquity cycles. The Shu'aiba Formation 

records major subaerial hiatus reflecting glacial intervals, interrupted by flooding units 

reflecting global warming intervals.  

 Trace elements, microprobe analysis, Cathodoluminescence (CL) and stable 

isotope data were used to define the diagenetic history of the Shu'aiba Formation within 

the sequence stratigraphic framework. The Shu'aiba Formation was mainly affected by 

meteoric diagenesis associated with the major unconformity at top of Shu'aiba.  
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CHAPTER I 

INTRODUCTION 

 

 The Cretaceous carbonate platforms are some of the largest and most widespread 

sedimentary successions in the stratigraphic records (Simo et al., 1993). They contain 

approximately 16% of the world's hydrocarbon reserves (Carmatt and St. John, 1986; 

Klemme and Ulmishek, 1991 in Scott et al., 1993). The Lower Cretaceous Barremian 

and Aptian, Biyadh and Shu'aiba formations are one of the main prolific oil reservoirs in 

the Middle East (Alsharhan and Nairn 1986; Alsharhan, 1995; van Buchem et al. 2010; 

AL-Ghamdi and Read, 2010). The Shu'aiba and Biyadh formations are composed mainly 

of pure carbonate successions and are separated by dense argillaceous carbonate units 

that act as a seal between the two reservoirs. These carbonate successions contain 

distinctive buildup facies of rudists, corals, stromatoporoids and Lithocodium algal 

platform with distinct dominance of certain organisms according to their stratigraphic 

and depositional settings. The Aptian Shu'aiba Formation is one of the largest and most 

geologically and petrophysically complex hydrocarbon reservoir in the Middle East, due 

to facies heterogeneities, syn-depositional faulting and diagenetic overprints. 

Understanding the distribution of these facies within stratigraphic framework is the key 

for developing better 3-D reservoir and simulation models.  

 This study focuses on developing a high-resolution core-based 

chronostratigraphic model using an integrated approach, where stable-isotope data are 

linked to well-logs and core descriptions to constrain the age model of the Biyadh and 
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Shu'aiba formations. Therefore, this study provides the most updated and accurate high-

resolution sequence and chemostratigraphic frameworks that cover the entire Shu'aiba 

platform using all available cored wells (50 wells), including carbon isotope profiles 

from 26 wells. This study identified new Upper Aptian prograding sequences that 

occurred within the northern platform edges. The study also analyzed and interpreted a 

wide range of lithofacies and depositional settings. The Shu'aiba Formation records 

complex facies architectures that changed laterally from lagoonal settings on the western 

flank to platform interiors and rudist margin in the middle to slope and open marine 

settings on the eastern flank.  

 Carbonate platforms contain wealth of information about paleoenvironments, 

paleoclimate, ocean chemistry and sea level fluctuations. Therefore, they represent an 

archive for these global changes along with processes that are driving them. The early 

Cretaceous successions of Biyadh and Shu'aiba formations provides a good opportunity 

for analyzing these changes using excellent core converges along with wireline logs and 

stable-isotope data. The integration of stable-isotope geochemistry with sequence 

stratigraphy help analyze the effects of the perturbation of carbon cycles occurred during 

these times that expressed by carbon-isotope excursions. It also helps evaluate the effect 

of rapid climate changes during the Early Cretaceous. These changes include warming 

events associated with global transsgressive related to the global methane disassociation, 

followed by the development of the global Oceanic Anoxic Event 1a and then followed 

by cooling intervals associated with global regressions of sea level.  
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 This dissertation is divided into three main projects, each of which presents a 

complete individual paper design for journal publication. However, these projects are 

directed into three major objectives. These major objectives includes; (1) developing a 

new detail high-resolution stratigraphic and facies architectures for the Biyadh and 

Shu'aiba formations for reservoir characterization and development; (2) understanding 

the diagenesis history and porosity evolution to define flow units and barriers within the 

reservoir; (3) evaluating the effect of global eustatic sea level fluctuations and stable-

isotope geochemistry with their implications on global correlations and paleoclimate 

changes within the Barremian and Aptian stages.  

 Chapter two is focusing on the descriptions of lithofacies with their relationship 

to depositional environments and sequence stratigraphy. Five detail depositional models 

were constructed to illustrate the evolution of the Biyadh and Shu'aiba platforms within 

the sequence stratigraphic framework. Four detailed stratigraphic cross sections were 

generated to illustrate the new refined stratigraphic frameworks with new additional 

Upper Aptian sequences identified on the north-eastern flank of the platform edge. 

Facies maps of each sequence were generated showing the distribution of lithofacies and 

the evolution of the rudist buildups. These maps are significant in generating reservoir 

model and will also be used in predicting the spatial and temporal variations of 

lithofacies with their implication on reservoir quality. A refined global correlation 

between the Lower Cretaceous stratigraphic records and the global sea level curve, 

global isotope profile and orbital sea level model has been established. This correlation 

provides better correlation that fit with the global stratigraphic records including the 
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oceanic anoxic event 1a and repositioning the major maximum flooding surfaces K70 

and K80.   

 Chapter three is focusing on the stable isotope chemostratigraphy analysis and 

how carbon isotope data were integrated with core data to  develop a higher resolution 

age model, especially within the slope and open marine settings. The integration of 

carbon isotope data with core data suggest that the carbon isotope record of the Shu'aiba 

platform represents the original marine signature and their fluctuations represents the 

global signature. Oxygen and strontium isotope data were also incorporated into this 

study, but were not as useful as the carbon isotope data due to the effect of the 

diagenesis. The effects of depositional environments and lithofacies on the carbon and 

oxygen isotope data were also analyzed and interpreted. The relationship between 

carbon isotope profiles and global sea level changes were also investigated to evaluate 

the hypotheses of using the isotope data as a proxy of global sea level fluctuations.  

 Chapter four is focusing on the diagenesis history of the Shu'aiba Formation with 

some emphasize on trace element variations, and microprobe analysis and their 

relationships with sequence stratigraphy and depositional settings.  Trace elements from 

five wells representing different facies and depositional settings were plotted against 

depth and superimposed by major sequence boundaries to analyze their variations and 

determine the major diagenetic environments. Microprobe analysis were done on 

selective samples to investigate different type of cements and diagenetic features and 

then linked to cathodoluminescence stages. Other data such as petrography, 
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cathodoluminescence and stable isotope data were analyzed and incorporated to define 

paragenetic sequences and understanding how porosity formed.  

 



 

CHAPTER II 

STRATIGRAPHIC ARCHITECTURE, FACIES ANATOMIES AND THEIR 

IMPLICATIONS ON GLOBAL CORRELATION AND PALEOCLIMATE 

EVALUATION OF THE EARLY CRETACEOUS BARREMIAN AND APTIAN 

(BIYADH AND SHU'AIBA FORMATIONS) IN A GIANT OIL FIELD, SAUDI 

ARABIA 

 

Overview 

 

 A high-resolution core-based sequence stratigraphic framework with new facies 

and depositional anatomies are constructed for the Lower Cretaceous Barremian-Aptian 

Biyadh and Shu'aiba Formations in a giant hydrocarbon reservoir in Saudi Arabia. The 

integrated dataset, including fifty-five cored wells calibrated with gamma ray logs, 

biostratigraphy and stable isotope chemostratigraphy, constrains the internal correlation 

of this field and indicates a platform-to-basin transition and prograding clinoform 

geometries during falling sea level. This model will be used for constructing a new 

higher resolution 3-D reservoir models and when integrated with petrophysics, should 

enhance the simulation model and provide a better production plan for the reservoir. The 

Shu'aiba platform is divided into two distinct blocks (north and south) by syn-

depositional fault systems. Each block has distinctive reservoir and facies characteristics. 

 The Biyadh Formation consists of one 3rd-order sequence composed of four high-

frequency sequences (S1-S4). Sequences 1 and 2 formed the TST of the composite 
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sequence with a deeper subtidal platform of chalky mudstone/wackestone facies. 

Sequences 3 and 4 formed the HST and are composed of high-energy shallow subtidal 

facies dominated by Caprotinid rudists and peloidal grainstone. The entire Shu'aiba 

Formation forms a 2nd-order composite sequence, comprised of four 3rd-order sequences 

and ten high-frequency sequences (S1-S10). 3rd-order sequence 1 is comprised of S1-S3; 

3rd-order sequence 2 is comprised of S4-S6; 3rd-order sequence 3 is comprised of S7 and 

S8 and 3rd-order sequence 4 is comprised of S9 and S10. S1 records the initial TST with 

the deposition of Hawar Member, followed by deposition of the deepest water facies 

during S2 including the regional MFS (K70). S3 is the late TST of the Shu'aiba 

composite sequence and is characterized by the extensive Lithocodium aggregatum/coral 

facies. During this sequence the platform differentiated producing platform to basin 

settings with slight clinoform and backstepping geometries. S4-S6 marks the onset of 

rudist buildup facies with a well established platform-margin setting that changed 

laterally from back-bank and lagoonal settings into bank-crest then the fore-bank, slope 

and basinal settings with a pronounced basinward clinoform geometry. 3rd-order 

sequence 2 has a transgressive lag at the base dominated by glossomyophorus rudists 

that deepen upward to the MFS of the Shu'aiba 2nd-order composite sequence (K80) and 

is overlain by massive high-energy bank-crest facies of in situ caprinid rudist rudstone 

that passes upward into  well-rounded rudist fragments formed in beach environments. A 

subaerial exposure surface (SB 7) caps sequence 6 on top of the rudist buildups. S7 and 

S8 are dominated by shallow lagoonal peloidal milliolid packstone facies associated with 
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local Agriopleura floatstone, deposited during the HST of the Shu'aiba composite 

sequence. 

 The Upper Aptian sequences S9 and S10 are newly identified sequences recorded 

on the northern-block within the platform edge and slope settings recording 

progradational systems formed during a major forced regression. These sequences were 

determined on the basis of chemostratigraphic analysis calibrated with available 

biostratigraphy. These sequences compose a lowstand wedge of argillaceous mudstone 

facies that may act as a reservoir baffle zone, changing upward to high-energy marginal 

facies of mixed rudist and stromatoporoid/coral facies. Regional correlation suggest that 

more prograding sequences likely formed basinward during the prolonged exposure of 

the platform.  

 A proposed correlation between the Arabian Plate and global stratigraphic 

records has significant implications on the evaluation of paleoclimate and glacio-eustatic 

controls of the Lower Cretaceous Barremian and Aptian. Of particular importance in this 

study is the refined position of the regional flooding events K70 and K80 and their 

relation with the global sea-level changes and perturbations in the global Earth's system 

during the Aptian stage. Evidences of glacial events during the Aptian are recorded 

within the Shu'aiba sequences alternating with warming events associated with 

nannoconids crisis and Oceanic Anoxic Event (OAE 1a). The stratigraphic record in this 

study and their global correlation suggests that the Barremian stage was dominated by 

warm greenhouse interval, followed by rapid climate change of possibly more 

transitional interval in the Aptian associated with glacial events.  
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Introduction 

 The Lower Cretaceous Shu’aiba Formation is one of the main oil producers in 

the United Arab Emirates, Oman, Qatar and Saudi Arabia (Alsharhan and Nairn 1986; 

Alsharhan, 1995; Hughes, 2000; Borgomano et al, 2002; van Buchem et al. 2002; 

Immenhauser et al. 2004; van Buchem et al. 2010; AL-Ghamdi and Read, 2010). The 

Lower Cretaceous Barremian and Aptian successions of Biyadh and Shu’aiba 

Formations (Figures 1 and 2), are NE-trending carbonate rudist build-up with average 

thickness of 600 ft (183 m) located in a remote area within the Empty Quarter. The 

Shu’aiba carbonate build-up in the study area formed on the edge of a shallow ramp 

bordering the adjacent intra-shelf basin (Figure 1). The Shu'aiba Formation has complex 

facies architecture with heterogeneous reservoir quality, due to the development of rudist 

banks, syn-depositional faulting and later diagenetic overprinting. Sequences within the 

build-up are difficult to map, likely because of growth faulting, depositional topography, 

rapid facies changes and stacking and shingling of rudist banks. The Shu'aiba reservoir 

in the study area has been producing for 14 years and a high-resolution sequence 

stratigraphic framework is essential to build a secondary development plan for this giant 

oil field. 

 Early description for the Shu’aiba Formation was conducted by Ziegler (1976). 

The first geological model for reservoir modeling was produced by Aktas and Hughes 

(1998). However, the descriptive framework was mainly in terms of depositional setting 

rather than rock types. A detailed description of biofacies and their environments was 

provided by Hughes (2000). A higher resolution stratigraphic model and detailed  
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Figure 1. Aptian paleogeographic map for the Arabian Plate showing the location of
study area and the intrashelf basins. Modern plate boundaries are shown with red lines.  
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Figure 2. Barremian to Aptian chronostratigraphy of the study area, showing the general  
sequence stratigraphy. Modified from van Buchem et al. (2010).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

description, including the first clinoform geometries on the platform margin was 

outlined by AL-Ghamdi and Read (2010). However, this model was only based on 14 

wells, limited stable isotope and biostratigraphic data. This study presents a new high-

resolution rock-based, sequence-stratigraphic model, refining the 2-D reservoir facies 

anatomy using 55 cored-wells, gamma ray logs and extensive isotope data (26 wells). 

This detailed framework will be integrated with petrophysical and engineering data to 

build new 3-D reservoir and simulation models and it should provide insights for new 

horizontal drilling locations and secondary and tertiary hydrocarbon recovery.  

 The Aptian stage provide one of most prominent time in geological history that 

records dramatic changes in biota and environmental conditions associated with the 

perturbation of global carbon cycles (Föllmi et al., 1994; Jenkyns, 2003; Weissert and 

Erba, 2004,). The Lower Cretaceous Barremian and Aptian record global high sea-level 

changes, that greatly influenced the stratigraphic records (Matthews and Frohlich, 2002; 

Immenhauser and Matthews, 2004; Al-Husseini and Matthews, 2010; Droste, 2010). 

High-resolution orbital cyclostratigraphy of the Aptian suggests that the main driving 

mechanism are the ~ 400 and ~ 100 k.y eccentricity orbital cycles (Al-Husseini and 

Mathews, 2010; Huang et al., 2010). The high-resolution rock-based stratigraphic 

framework in this study will be tied to and compared with global sea-level charts (Rohl 

and Ogg, 1998; Hardenbol et al., 1998; Haq and Schutter, 2005), the standard carbon 

isotope curve (Follmi et al., 2006) and cyclostratigraphy (Al-Husseini and Mathews, 

2010) to evaluate the influence of global sea-level changes on the evolution of the 

Shu'aiba platform. This global correlation is the key to understand and evaluate the 
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regional stratigraphic framework and hierarchy of the Early Cretaceous Arabian Plate 

presented in van Buchem et al. (2010). It also help refine our understanding of global 

climate during the Early Cretaceous Barremian and Aptian, because it was suggested 

that the Aptian may record a time of global cooling interval, within the prevailing 

Cretaceous greenhouse system, possibly associated with glaciation in the poles (Frakes 

et al., 1999; Alley and Frakes, 2003; AL-Ghamdi and Read, 2010). The global 

correlation will help improve our understanding of the Biyadh and Shu’aiba stratigraphic 

architecture, thus providing a better chronostratigraphic model for reservoir development 

and possible exploration potential in the area and around the world.  

 

Geological Setting 

 The present Arabian Plate (Figure 1) is bordered to the north by a convergent 

margin with the Eurasian Plate, forming the fold and thrust belt of the Taurus and Zagros 

Mountains. To the west and southwest, are the divergent rift zones in the Gulf of Aden 

and Red Sea. The northwestern margin is bounded by strike-slip faults in the Gulf of 

Aqaba and the Dead Sea region. The Arabian Shield, a block of Precambrian basement, 

in the western part of the Arabian Peninsula, periodically provided siliciclastic sediments 

to the Arabian shelf, that formed on the eastern Arabian Peninsula. The Arabian shelf 

thus consists of both siliciclastic and carbonates rocks and started as an intra-cratonic 

phase from Proterozoic to Middle Permian, followed by a passive margin phase in the 

Mesozoic. This culminated in the active margin phase in the Cenozoic that persists to the 

present-day (Harris et al., 1984; Christian, 1997; Sharland et al., 2001).  
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 The Early Cretaceous is marked by rifting of the Indian, Australian and Antarctic 

plates away from the African and Arabian plates. The Arabian Plate separated from 

Africa and moved toward the Neo-Tethys Ocean and developed passive margins on its 

north, northeast, and southeast margins. The eastern margin of the Arabian Plate faced 

the open Neo-Tethys Ocean, and lay several degrees south of the equator. Early 

Cretaceous intra-shelf basins were created by infra-Cambrian Hormuz salt movement 

(Sharland et al., 2001; Ziegler, 2001). Rudist banks, such as those in the Shaybah region, 

were deposited on the margins of these intra-shelf basins during the Aptian. The intra-

shelf basins were separated from the open Neo-Tethys Ocean by a narrow carbonate 

barrier system (Christian, 1997; Sharland et al., 2001; Ziegler, 2001; Greselle and Pittet, 

2005).  

 The Shu'aiba Formation described in this field study is located on a northeast-

trending, doubly plunging anticline, and is divided by a zone of EW-trending faults into 

northern and southern blocks (Figure 3). The regional structure was mainly affected by 

northeast-trending faulting parallel to the Dibba Lineament, and sub-parallel to the trend 

of Shaybah field. The field is located on a basement uplift that appears to have 

influenced the growth of the build-up, implying syn-sedimentary tectonics (AL-Ghamdi 

and Read, 2010). This syn-depositional faulting influenced the stratigraphic framework, 

the thickness and facies distribution of the Shu’aiba successions. The field was divided 

into two depositional blocks by an E-NE-trending growth fault zone; each block has its 

own distinctive facies architecture and sequence-stratigraphic development. The present-

day Shaybah structure was developed during the Cenomanian in response to intra-  
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Figure 3. Base map and facies distribution at S6 of Shu'aiba platform showing three 
cross-section traverses (A-A', B-B' and C-C') and 55 cored-wells used in this study.  



 

oceanic compressional tectonics in the Neo-Tethys region, and was truncated by pre-

Aruma erosion (Middle Turonian unconformity) related to uplift of ophiolitic nappes in 

Oman (Aktas and Hughes, 1998).  

 

Methodology and Data Sets 

 Fifty five cored wells, averaging 450 ft (140 m) each, totaling 16142 ft (4,920 m) 

of cores, penetrating the Shu’aiba Formation were logged bed-by-bed and examined 

using a binocular microscope. Three Wells (12, 11 and 9) penetrate deeper into the 

Barremian Biyadh Formation, providing the first opportunity to describe and evaluate 

this succession. Core descriptions included gross lithology (shale, limestone and 

dolomite), rock type, grain-size, shape and sorting, vertical succession of lithologies, 

location of bounding surfaces, types of biotic constituents and pore system distribution. 

Microfacies analysis were examined using thin sections during the core logging to 

confirm the types of constituents (including foraminifera) and diagenetic modifications 

of grains and matrix. Stable carbon and oxygen isotope data from 26 wells also were 

collected and calibrated with core descriptions to constrain the age model of the Shu'aiba 

Formation especially in the slope and open marine settings where the Lower/Upper 

Aptian boundary occurred (Figure 4).  

 A generalized type core description of the entire study interval (Figure 4) 

calibrated to its gamma ray log provides the basis for a 1-D interpretation of lithofacies 

and sequence stratigraphy. Sequence boundaries, maximum flooding surfaces and 

various scales of sequences and parasequences were picked on the logged sections 
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(Figure 4). Sequence boundaries were picked at significant erosional surfaces above 

successions of parasequences that progressively shallowed and or thinned up-section. 

Maximum flooding surfaces (MFS) or units (MFU) were placed at the base of the 

deepest water facies within a sequence and at the tops of upward deepening trends of 

parasequence sets. Where possible, parasequence boundaries and maximum flooding 

surfaces were traced across the build-ups, to generate a depositional model. Facies cross-

sections within this sequence-stratigraphic framework were made by interpolating 

between cored wells using Walther’s law within the conceptual ramp depositional 

model.   

 In order to correlate the sequences, the base of the Shu’aiba Formation (the top of 

Hawar unit) was used as a datum for the cross-sections because it has distinctive high 

gamma-ray response in all wells associated with a thin stylolitic shale layer. The 

northern and southern blocks were correlated using the top Shu’aiba unconformity to 

bridge the medial fault zone. Seismic data were examined to constrain the sequence 

picks along the margin of the build-up where clinoform development was likely (e.g 

Yose et al., 2010); however, it proved of limited value, due to the absence of a clear 

reflector at the top of the Shu'aiba Formation, and the occurrence of multiple artificial 

reflections within this unit. 
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Figure 4. Type composite core description showing general lithofacies description, sequence stratigraphy and gamma ray logs 
within the marginal setting.  



  

Facies Description  

 The lithofacies of the Shu'aiba Formation were previously described and 

interpreted by AL-Ghamdi and Read (2010); using 14 cored wells. A detail biofacies and 

depositional environment study was conducted by Hughes (2000). This paper presents 

more updated lithofacies descriptions using cores and petrographic analysis from 55 

cored-wells located across the entire field (Figure 3). This extensive data set resulted in 

newly recognized facies (e.g shoal facies complex and the upper Aptian facies; Figures. 

5 - 8) and also helped refine the interpretation of depositional environments and 

produces more accurate facies maps and depositional cross-sections of the Biyadh and 

Shu'aiba Formations. The detail facies descriptions are summarized in Tables 1A & B 

and the facies are illustrated in Figures (5 - 8). Figures 9 - 13 illustrates the position of 

each lithofacies within a low angle ramp model. These depositional models especially, 

Figure 12 show lateral facies transition from inner ramp/lagoon, back-bank, bank-crest, 

fore-bank, slope to basin settings in the Far East. Seventeen significant lithofacies were 

determined in this study on the basis of fossil assemblages, rock type, texture and 

sediment constituents. These lithofacies were grouped into four major facies associations 

(lagoonal facies, shelf marginal facies, Open marine/slope facies and basinal facies) that 

are linked to major depositional environments (Tables 1A & B). However, smaller-scale 

lithofacies also were recognized and interpreted, such as platy coral versus branching 

coral or rudist in situ floatstone versus rudist in situ rudstone facies. These facies with 

subtle differences in their characteristics or their environments were lumped with other  
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Figure 5. Core sample photographs of typical facies in Biyadh Formation. (A) 
Argillaceous black, dense mudstone, overlain by sharp contact and white carbonate of 
Biyadh Formation. (B) clean chalky mudstone facies within the Lower part of Biyadh 
Formation, representing the maximum flooding unit (K60). (C) Sharp erosional contact 
at top of cycle within HFS 3 of Biyadh Formation, separating subtidal wackestone 
facies, from the peloidal grainstone facies. (D) Oncoidal coral skeletal grainstone facies 
in HFS 3 of Biyadh Formation. (E) Glassomyophorus rudist floatstone facies from HFS 
4 of Biyadh Formation, overlain by sharp contact (cycle top) and skeletal peloidal 
grainstone facies. (F) Glassomyophorus rudist floatstone facies, capped by a scalloped 
surface and major sequence boundary (SB1) at the top of the Biyadh Formation, overlain 
by dark-gray argillaceous Palorbitolina packstone of Hawar unit. Arrows indicate karst 
fill from Hawar unit infiltrated into the rudist facies of Biyadh Formation.   
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Figure 6. Core sample photographs of typical deep subtidal and Lithocodium facies in 
Shu'aiba Formation. (A) Karst fill (arrows) from Hawar unit infiltrated into the rudist 
facies of Biyadh Formation at SB1. (B)  Dark gray Palorbitolina packstone of Hawar 
"dense" unit. Burrowing and bioturbation occurred on the right hand side (arrow). (C) 
Bioturbated oncoidal Lithocodium miliolid packstone facies at basal Shu'aiba Formation 
(shallow subtidal, upper ramp environment). (D) Black, wispy-laminated 
mudstone/wackestone facies (deep lagoon/deep restricted environments). (E) 
Lithocodium aggregatum wackestone/boundstone facies, columnar-laminated 
morphology (open-marine algal platform). (F) Platy coral floatstone includes extensive 
leaching (open-marine algal platform).  
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Figure 7. Core sample photographs of typical rudist facies in Shu'aiba Formation. (A) 
Caprotinid Glassomyophorus floatstone (back-bank). (B) Agriopleura floatstone 
(shallow lagoon/inner ramp). (C) Skeletal debris grainstone (shoal/channel). (D) Well 
rounded, cemented Offneria rudstone (high-energy beach/shoal). (E) Caprinid rudist 
debris Offneria rudstone (high-energy bank-crest/shoal). (F) In-situ (life position) 
caprinid Offneria floatstone (bank-crest). Arrow points out to live-position Offneria 
rudist.  
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Figure 8. Core sample photographs of typical deep ramp facies and sequence boundaries 
in Shu'aiba Formation. (A) Palorbitolina wackestone (deep open-marine). (B) Massive 
stromatoporoid boundstone, (Upper Aptian marginal setting). (C) Dark wispy-stylolite 
argillaceous mudstone (Upper Aptian Boundary). (D) Sequence boundary 3 (SB3), 
separating Lithocodium facies below from the overlying rudist facies. (E) Sequence 
boundary 7 (SB7) at top of the rudist buildups, marking the termination of the Lower 
Aptian Caprinid rudist associated with subaerial exposure surface. (F) Nahr Umr green 
shale (arrows) infiltrated into the upper part of Shu'aiba during karstfication associated 
with the major late Aptian unconformity.  
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Figure 9. Depositional model of Late Barremian Biyadh Formation shows the position of each facies on a low angle 
homoclinal ramp platform.  
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Figure 10. Depositional model for the Hawar unit showing restricted shallow subtidal/tidal flat environment (condensed unit).  
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Figure 11. Depositional model for the Lithocodium algal platform of Lower Shu'aiba Formation, HFS's 2 and 3.  
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Figure 12. Depositional model for HFS's 4-6 within the rudist buildups, showing the position of each facies in a barrier-bank 
low angle ramp.  
 

 
 



 

 

 

 
 

Figure 13. Deposition
sequences. The pre-existing Earl

al model for the Upper Aptian HFS's 9 and 10 showing the shelf marginal edge within the prograding 
y Aptian platform was subaerially exposed during this time. 
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Table 1A. Summary of Lithofacies in shelf margin settings. 
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Table 1B. Summary of Lithofacies in open marine and basinal settings. 

 



  

similar facies to simplify the stratigraphic cross sections and to make facies distribution 

less complicated in the 3-D reservoir modeling. In addition, these 17 lithofacies also 

were sub-divided on the basis of their significant petrophysical properties and hence 

their impact on reservoir performance. The following is a brief summary of these four 

major facies associations:  

1. Inner ramp/lagoonal facies association (Table 1A). This facies association occurs 

mainly in the upper part of Biyadh Formation and in the upper part of the 

Shu'aiba Formation. These facies were deposited in moderate-to-low energy 

inner ramp/lagoonal setting with a maximum of 10-15 m water depth in a 

moderate to low energy (Hughes, 2000; AL-Ghamdi and Read, 2010). These 

lithofacies include: peloidal milliolid packstone/wackestone, Agriopleura 

floatstone and deep lagoonal mudstone/wackestone facies. However, the deeper 

lagoonal facies were deposited in restricted deeper water environments, or in  

restricted ponds within the platform interior.  

2. Shelf marginal rudist buildup facies association (Table 1A). This facies 

association formed mainly within the middle part of the Shu'aiba Formation 

forming thick and massive rudist buildups. It also formed in the uppermost part 

of the Biyadh Formation. Lithofacies includes; in situ and rudist facies (mainly 

Offneria type) within bank-crest, reworked rudist debris rudstone/grainstone, 

Caprotinid rudist floatstone (back-bank) and skeletal grainstone/packstone of 

fore-bank/shallow slope.  
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3. Open marine algal platform facies association (Table 1B). This facies association 

includes the algal platform of Lithocodium/coral facies, oncoidal Lithocodium 

packstone facies, argillaceous packstone of Hawar unit and the Palorbitolina 

wackestone. These units are generally characterized by mud-dominated matrix 

and high diversity of associated biota, including foraminifera. These facies were 

deposited in a relatively deep open marine setting within the lower part of the 

Shu'aiba Formation. The exception of these lithofacies is the Palorbitolina 

argillaceous packstone of the Hawar unit that was deposited in a more restricted 

shallow marine subtidal environment (van Buchem et al., 2002; 2010).  

4. Deep open marine basinal facies association (Table 1B). This facies association 

is the deepest water facies within the Shu'aiba and Biyadh formations. 

Lithofacies include chalky pelagic mudstone within the deep open-marine 

settings occurred far east toward the basin, planktonic Hedbergella mudstone 

within the lower part of the Shu'aiba Formation representing a major flooding 

unit (K70) and the argillaceous intrashelf basin that formed far to the east within 

the Bab basin.  

 

 

 



  

Sequence Stratigraphy 

Introduction 

 The sequence stratigraphic framework presented here builds on the rock-based 

stratigraphic framework of AL-Ghamdi and Read (2010), using more core data, stable 

isotope chemostratigraphy and available biostratigraphic data. This study also presents 

the first stratigraphic framework for the Biyadh Formation in Saudi Arabia with new 

core data (Figures 4 and 15). The stratigraphic frameworks of the Biyadh and Shu'aiba 

formations in this study are compared with the regional Lower Cretaceous 2nd- and 3rd-

order sequence stratigraphic model of van Buchem et al. (2010). However, some 

differences occurred between the frameworks presented here and van Buchem et al., 

(2010), such as the location of the major MFS of Shu'aiba sequence and the hierarchy of 

the Shu'aiba Formation. This study presents a more detailed high-resolution stratigraphic 

framework on the order of 400 k.y (HFS's) and higher-scale parasequences that control 

the reservoir facies anatomy and hence, reservoir quality. The type core description with 

associated gamma ray logs, interpreted sequences are shown in Figure 4, summarizing 

the sequence stratigraphic framework of the Biyadh and Shu'aiba Formations. Integrated 

carbon isotope data, gamma ray and sequence stratigraphy were integrated to better 

define the age model of the Shu’aiba Formation, particulary defining the Lower/Upper 

Aptian boundaries on the platform edges (Figure 14). Four detailed stratigraphic cross 

sections (Figures 15-18) were constructed; one in Biyadh Formation (Figure 15), two 

west-east dip trending sections in Shu'aiba Formation (Figures 16 and 17) and one 
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Figure 14. West-East type chronostratigraphic cross section of the Shu'aiba Formation correlating gamma ray logs and δ13C 
isotope curves. The carbon isotopes are correlated with the Tethyan pelagic curve of Föllmi et al., (2006). Major sequence 
boundaries are shown in red. The purple shaded zone is the Lithocodium algal platform facies that corresponds to major global 
positive excursion in the early Aptian that is related to Oceanic Anoxic Event 1a. Upper Aptian prograding sequences are 
shown in orange and green. Red star indicates late Aptian rudist Horiopleura of the Polyconitidae family, while black stars 
indicate early Aptian rudist Caprinid Offneria below SB6 and Caprotinid Agriopleura above SB6.  
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Figure 15. Detail N-S stratigraphic cross section (D-D') of Biyadh Formation and Hawar Member on the Northern block. This cross section illustrates the layer-cake stratigraphy of these units along with high  
scale parasequences. See figure 3 for location. 
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Figure 16. Detail W-E dip oriented stratigraphic cross section of Shu'aiba Formation on the Northern block. The prograding Upper Aptian sequences produced clinoform geometries on the eastern platform edge.  
Note the lateral facies changes across the platform to basin transition. Ramp crest commonly grew more than surrounding area leading to differential accommodation. See figure 3 for location. 
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Figure 17. Detail W-E stratigraphic cross section of Shu'aiba Formation on the Southern block. This cross section shows thicker Lithocodium facies and less stratigraphic complexity than the northern block. See figure 
3 for location. 
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Figure 18. Detail N-S stratigraphic cross secti
debris packstone surrounding by rudist 
 

 

 

 

on of Shu'aiba Formation from Southern and Northern blocks across the intraplatform depression. Note how the intraplatform depression is dominated by skeletal  
buildups. See figure 3 for location. 



  

north-south strike trending section in Shu'aiba Formation (Figure 18).  

 The stratigraphic successions of Biyadh and Shu'aiba Formations are part of one 

large scale second order super sequence with a duration of about 17 My. This super 

sequence is bounded at the base by the Late Valanginian unconformity and is capped by 

the Late Aptian unconformity (Sharland et al., 2001). The Biyadh Formation occurs 

within the TST, while the Shu'aiba Formation occurs within the HST of the super 

sequence.  

 

Biyadh and Shu'aiba Sequence Stratigraphy 

 The following are brief descriptions of each sequence within the Biyadh and the 

Shu'aiba Formations, focusing on the high-frequency sequences (HFS type sequence). 

The term "sequence, or S" refers here to the high-frequency sequences that range in 

duration from 400 k.y to 1 m.y at maximum, whereas the longer-term 3rd-order 

sequences and smaller-scale parasequences will be specified when mentioned.  

 

Late Barremian Sequence  

 The Late Barremian Biyadh Formation is penetrated in three wells beneath the 

Shu'aiba Formation (Wells 11, 12 and 9). It is equivalent to the Arabian Plate Barremian 

2 sequence of the Barremian supersequence of van Buchem et al., (2010). The Late 

Barremian succession is composed of one 3rd-order composite sequence and four high-

frequency sequences (Figure 15). S 1 starts with a TST of black argillaceous dense 

mudstone (Figure 5A) at the base of Biyadh Formation characterized by its high gamma 

ray values representing the initial TST of the composite sequence. This dense unit is 
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similar in sedimentology and log charactistics to the Hawar unit at the base of the 

Shu'aiba Formation, but it does not contain abundant Palorbitolina. Due to the limited 

core materials in this interval, it is not clear if this argillaceous unit is dominated by 

Palorbitolina deposited in a shallow restricted environment similar to the Hawar unit or 

if this is deeper basinal facies without Palorbitolina. Abundant Palorbitolina occur in 

equivalent units in the region (van Buchem et al., 2010).  

 S 2 contains a thick bioturbated marly lime mudstone facies representing the late 

TST with the maximum flooding interval of the 3rd-order composite sequence. This is a 

deep shelf or open marine facies of uniform thickness that is interbedded with thin 

Palorbitolina wackestone units. The MFS of S 2 occurs in the middle part of the 

sequence containing abundant deep chalky mudstone (Figure 5B). This MFS also is the 

major MFS for the late Barremian composite sequence, corresponding to MFS K60 of 

Sharland et al. (2001). This high frequency sequence is capped by shallow skeletal 

packstone facies with common gastropods and Textularid foraminifera.  

 Sequences 3 and 4 record changes in facies and depositional environment from 

deeper open marine pelagic mudstone to shallow subtidal rudist caprotinid facies. These 

sequences start with initial flooding unit ~10 ft (3 m) of lower shoreface mudstone that 

gradually shallows upward to peloidal/oncoidal grainstone/packstone facies associated 

with branching corals. These sequences are capped by thick upper shoreface rudist 

barrier facies composed mainly of caprotinid Glassomyophorus rudist floatstone. In 

addition, these S3 and S4 are characterized by meter- to decimeter scale parasequences, 

possibly fifth-order cycles or higher (Figure 15). These small-scale parasequences have 

sharp, erosional, irregular surfaces at their base with clean coarse grainstone facies 
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composed of Palorbitolina, peloids, oncoidal and skeletal fragments deposited during 

flooding events (Figures 5C and 5D). These grainstone facies deepen upward to fine 

skeletal packstone/wackestone facies and are capped by another sharp and irregular 

contact overlain by the next parasequence. The correlation between different wells 

suggests that these parasequences can extend for long distances (up to ~ 5 km), and can 

be mapped on their log characteristics (Figure 15). These small-scale parasequences are 

unique in the Barremian Biyadh Formation and do not occur in the Shu'aiba Formation.  

 The upper part of Late Barremian sequence is dominated by the 

Glassomyophorus and Agriopleura floatstone associated with clean peloidal miliolid 

grainstone matrix (Figure 5E). These rudists do not form colonial rudstone buildups as in 

the Shu'aiba Formation; they form a uniform barrier bank facies possibly developed in 

the shallow upper shoreface or beach environment (Figure 9) that can be traced field 

wide. No Caprinid Offneria rudist occurred in the Barremian Biyadh Formation. 

 

Lower Aptian Sequence 1 (S1)  

 This sequence overlies the regional sequence boundary and exposure surface of 

sequence boundary 1 (SB1) that separates the underlying Late Barremian Biyadh 

Formation and the overlying Early Aptian Hawar unit of the Shu'aiba Formation (Figure 

5F). This boundary represents a subaerial exposure surface that is mapped regionally 

(van Buchem eta l., 2010; Droste, 2010). This boundary also is significant because it 

corresponds to one of the major global depletion of carbon isotope values during the 

Early Cretaceous (Figure 14). The Hawar unit, previously known as "Biyadh dense unit" 

in Saudi Arabia was lithostratigraphiclly separated from the Shu'aiba Formation and 
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grouped with the Barremian Biyadh Formation (Ziegler, 1976; Aktas and Hughes; 1998; 

Hughes, 2000). However, this unit should not be tied to the Biyadh Formation, because 

it is genetically related to the composite sequence of the Shu'aiba Formation as the TST 

of sequence 1 and has unique lithological and petrophysical characteristics, acting as a 

seal between the Shu'aiba and Biyadh formations (Witt Gokdag, 1994; van Buchem et 

al., 2002). Therefore, this unit is considered here as a separate unit rather than a unit 

within the Biyadh Formation as interpreted previously.  

 S1 began with the deposition of a dark-colored argillaceous Palorbitolina 

packstone facies of the base at the Hawar unit. This unit is characterized by abundant 

black Palorbitolina, glauconite, pyrite, reddish oxidized material and marine-cemented 

hardgrounds (Figures 6A & B). This facies records the regional initial transgression (TS) 

following platform exposure at the end of the Barremian. This transgression was 

deposited in relatively shallow water ranging from ~ 10 - 20 m water depth (Figure 10), 

based on its associated fauna and grainy texture, despite the abundant argillaceous 

content. Shallow tidal flat facies with subaerial exposure surfaces were documented in a 

coeval sequence from Oman outcrops (van Buchem et al., 2002 ; 2010). This TS unit has 

a sheet-like geometry with nearly uniform thickness that is correlated regionally (Figure 

16). Moreover, this regional transgression coincides with a global depletion in carbon 

isotope signature (Figure 14) and it is correlated globally (AL-Ghamdi and Pope, 2011). 

The MFS of this sequence is a clean, pelagic chalky mudstone facies (brown facies), 

characterized by low Palorbitolina abundance, and lower gamma ray values. This 

suggests that as water deepened across the platform, fewer or no Palorbitolina were 

deposited, resulting in a clean skeletal facies of predominatly planktonic and pelagic 
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foraminifera. At the top of Hawar unit, gamma ray values record the highest value in all 

the Shu’aiba Formation associated with deposition of a thin (few centimeters thick) 

black argillaceous mudstone. This marker is regionally correlated and used here as a 

datum for all stratigraphic correlations (Figure 16). This sequence is capped by a sharp 

contact and abrupt change in facies from the dark argillaceous Palorbitolina packstone 

of the Hawar unit to the shallow subtidal, low density white-oncoidal 

Lithocodium/peloidal packstone of basal Shu'aiba Formation. This oncoidal Lithocodium 

facies has a uniform thickness across the platform and records the onset of the porous 

Shu'aiba successions and it represents the HST of S1 (Figure 6C).   

 Five high-frequency, decimeter-scale parasequences were identified and mapped 

throughout the field within the transgressive Hawar unit. These parasequences begin 

with highly argillaceous bioturbated Palorbitolina packstone marking a flooding surface 

and they deepen upward to lighter-colored, less argillaceous wackestone capped by a 

marine cemented hardground or firmground surface. 

 

Lower Aptian Sequence 2 (S2)  

 This sequence begins with a thin flood unit of lime mudstone above SB2 (Figures 

16, 17, 18) occurs within the oncoidal Lithocodium facies of S1. AL-Ghamdi and Read 

(2010) picked SB2 higher, at the top of oncoidal Lithocodium facies at the base of the 

pelagic chalky Hedbergella mudstone unit that is here interpreted to be the maximum 

flooding unit (MFU) of S2 rather than both the flooding surface and MFU. This flooding 

surface is thin but it extends throughout the field and also can be picked on the basis of 

its thin, high gamma ray value. The TST of this sequence is the oncoidal 
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Lithocodium/Bacinella packstone facies that deepen upward to the extensive sheet-like 

deep planktonic Hedbergella chalky lime mudstone. This facies is one of the deepest 

water facies in the Early Aptian Shu'aiba succession and was interpreted to be the MFU 

of the Shu'aiba composite sequence (AL-Ghamdi and Read, 2010). However, it is 

interpreted here only as the MFU of S2; equivalent to the regional MFS K70 of Davies 

et al. (2002). This facies has the lowest gamma ray values in the entire Shu'aiba 

Formation, due to its clean matrix with no argillaceous or clay materials. This facies 

grades upward to Palorbitolina wackestone with local Lithocodium aggregatum, which 

represent the HST of sequence 2 and is capped by a relatively higher energy facies of 

Lithocodium/Palorbitolina packstone. The top of this facies is a significant time marker 

associated with high gamma ray signal that is correlatable across the field. This gamma 

ray marker represents the termination of the sheet-like uniform layers associated with a 

low angle carbonate ramp, and the onset of a transitional carbonate platform with 

extensive algal Lithocodium aggregatum/coral  mounds on the margin passing into an 

intrashelf basin on the eastern side (Figure 16).  

 

Lower Aptian Sequence 3 (S3)  

 The base of sequence 3 (SB3) is picked above the Palorbitolina packstone 

associated with of high gamma ray time marker (Figures 16, 17, 18). S3 records a 

change in platform setting from uniform homogeneous strata to more heterogeneous and 

mounded like strata with more prounounced lateral changes of depositional settings. 

This sequence is distinguished by its extensive Lithocodium aggregatum 

wackestone/boundstone interbedded with platy coral floatstone (Figure 6E). The coral 
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facies have a more grainy texture relative to the Lithocodium facies, and are interpreted 

as parasequence caps (Figure 6F). However, Lithocodium aggregatum facies is the 

dominant facies in this sequence, forming a mound-like topographic high on the middle 

of the field that builds clinoforms toward the eastern basinal setting (Figure 16). The 

southern block has a thicker Lithocodium aggregatum unit compared to the northern 

block with columnar growth morphology that extends into the overlying S4 (e.g Wells 

21, 22 and 25) (Figure 17). The extensive Lithocodium facies shows subtle shallowing 

upward to Palorbitolina wackestone or platy coral floatstone representing the HST of 

this sequence. This sequence has thicker strata with backstepping geometries on the 

platform (Figure 16) and thinner strata on the eastern side associated with clinforms 

geometry toward the basinal settings where deeper wackestone/mudstone facies were 

deposited (e.g well 13 on the north, well 17 on the eastern flank). 

 

Lower Aptian Sequences 4-6 (S4-S6)  

 SB4 is picked at the base of the first occurrence of the rudist buildup facies or its 

coeval detrital skeletal wackestone facies (Figures 16 and 18). SB4 records a major 

change in depositional environment with an abrupt change in facies from the algal 

dominated facies (Lithocodium/coral platform) to the shallow water rudist 

floatstone/rudstone facies on the margin (Figure 8D) and fine skeletal wackestone on the 

slope and open marine settings. Carbon isotopes record a significant chronostratigraphic 

marker in all depositional settings at SB4 with an almost constant value of  ~ 4.5 ‰ 

representing an abrupt change in the carbon cycle related to abrupt change in global 

climate associated with a recovery of carbonate production and the development of 
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rudist buildup facies (Figure 14);(Follmi et al., 2006, Jynkens 2003; AL-Ghamdi and 

Pope 2012). Sequences 4-6 are equivalent to the 3rd-order Early Aptian sequence 3 of 

van Bucum et al. (2002; 2010), which represent the main rudist buildups of the Shu'aiba 

Formation. S4-S6 form one large 3rd-order shallowing upward sequence capped by 

subaerial exposure surface of SB6, but this larger 3rd-order sequence is here divided into 

three HFS's on the basis of  the detail core descriptions and stacking patterns. During the 

deposition of these sequences, a syn-depositional fault system was reactivated creating 

the intraplatform depression that divided the Shu'aiba platform into northern and 

southern blocks (Figure 18). These two blocks records different depositional histories, 

sequence geometries and diagenetic histories (AL-Ghamdi and Read, 2010, Aktas and 

Hughes, 1998).  

 On the northern-block marginal setting, the TST of S4 is dominated by the 

caprotinid type rudist Glassomyophorus costatus floatstone (Figure 7A), that deepens 

slightly upward to the MFS of thin skeletal packstone and then shallows upward into the 

HST of rudist rudstone at the top of S4. On the eastern flank, lateral facies change occur 

with equivalent interbedded platy coral floatstone and Lithocodium boundstone (e.g well 

16), changing laterally to open marine wackestone and then to deep basinal mudstone 

facies farthest to the east. On the southern block, S4 has only a thin transgressive 

caprotinid rudist facies that deepen upward to extensive Lithocodium aggregatum facies 

and then shallow upward into thin caprotinid rudist floatstone (Figure 17). Caprinid 

rudists do not occur in the southern block in this sequence.  

 Sequence 5 records major deepening indicated by the presence of Palorbitolina 

wackestone within the rudist buildups (e.g wells 14, 10, and 2) (Figures 16 - 18). On the 

 46



  

flanks, major deepening is recorded by extensive black mudstone facies (e.g wells 21 

and 26), representing the regional maximum flooding unit of the large scale Shu'aiba 

composite sequence (Figure 6D). This composite MFS is different than the composite 

Shu'aiba MFS picked previously (AL-Ghamdi and Read, 2010) in the lower chalky 

mudstone facies and is also different than the MFS picked by van Buchum et al. (2010) 

at the uppermost part of "AP 2 sequence" near the contact between the Lithocodium 

facies and the rudist buildups. Regional stratigraphic correlation suggests that this MFS 

is most likely equivalent to the K80 MFS of Sharland et al. (2001) and Davis et al. 

(2002), but higher resolution biostratigraphy is required to accurately determine the age 

of this surface.  

 On the northern block, the intraplatform depression of S5 is dominated by 

skeletal peloidal grainstone that was shed from the surrounding rudist buildups (Figure 

18). This intraplatform depression formed a channel-like body with high-energy currents 

winnowing the sediments and forming clean grainstone facies (Wells 7 and 8);(Figure 

7C). The northern block platform interior (e.g wells 10, 12 and 11);(Figure 18) is more 

likely a shoal or back-shoal setting dominated by high-energy environments rather than a 

restricted back bank as previously interpreted (Aktas and Hughes, 1998; Hughes, 2000; 

AL-Ghamdi and Read, 2010). This skeletal grainstone facies is similar to the grainstone 

in the intraplatform depression, however, the location of the grainstone in the 

intraplatform depression was controlled by syn-depositional faulting rather than a 

depositional shoal setting. S5 on the southern block also records massive in situ rudist 

buildups, but they are not as abundant as on the northern block. Restricted ponds or a 

low-energy lagoonal platform interior of Palorbitolina wackestone/mudstone facies was 
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deposited locally between these rudists (e.g Wells 25, 22 and 2). This makes the 

southern block a low reservoir quality compare to the northern block.  

 Sequence 6 represents an overall shallowing upward trend within the rudist 

buildups in all wells, with the development of thick, massive shallow water rudist facies. 

Also, the lagoonal and platform interior settings have thin rudist units within this 

sequence. S6 begins with a thin flood of wackestone or Glassomyophorus rudist 

floatstone stacked on the previous rudists buildup of sequences 4 and 5. The rudist 

buildups of S6 are different from those of S4 and S5, being dominated by in situ 

recumbent caprinid rudist Offneria murgensis recording high-energy bank-crest settings 

with colonized rudist barriers (Figuress 7E and F). Sequence 6 is capped by a thin (~1 

m) unit of well-rounded, well-sorted rudist rudstone facies that likely developed in a 

high-energy beach environment and represent the shallowest water facies in the Shu'aiba 

successions (Figure 7D). This facies is very well cemented, possibly due to the influence 

of meteoric waters during the exposure of this platform and may act as a reservoir baffle 

or even barrier zone. A red clay soil content that infiltrates down between the rudist 

fragments (Figure 8E) indicating a subaerial exposure surface developed on top of this 

facies (wells 4, 9 and 46). Oxygen isotope values at this sequence boundary shows 1.5 to 

2 ‰ depletion, suggesting meteoric diagenesis (AL-Ghamdi and Pope, 2012). Sequence 

6 has pronounced lateral facies changes with clinoform geometries from rudist rudstone 

at the margin to skeletal packstone and wackestone on the slope and in open marine 

settings with a correlative conformity surface (Figures 19A and 19B). On the southern 

block, sequence 6 records overall upward shallowing rudist buildups facies, but the high-

energy beach facies on top of the rudists are absent. The absence of this high-energy 
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facies on the southern block suggests that the northern block was influenced by higher 

energy wave that formed the beach deposits but these were not formed or preserved on 

the southern block. On southern block, sequence 6 also records the termination of the 

Offneria rudist buildups, whereas the northern blocks contains rudist buildups in the 

overlying sequences.  

 

Lower Aptian Sequence 7(S7)  

 On the southern block, sequence 7 represents the end of Aptian sequences and it 

is capped by the Late Aptian unconformity at top of the Shu'aiba Formation (Figure 17). 

S7 begins with a thin transgressive unit of deep lagoonal mudstone that shallows upward 

to shallow lagoonal peloidal milliolid packstone facies. The only rudists occurring in this 

sequence is the elongate caprotinid Agriopleura or Pachytraga  that form local patchy 

mounds (Figure 7B). The upper part of this sequence gradually deepens to mudstone 

facies contains infiltrated shale from the Nhr-Umr Formation beneath the top 

unconformity. The deepening trend from shallow miliolidal packstone to 

wackestone/mudstone below the top of the Shu'aiba Formation occurs in most wells. On 

the northern block, S7 begins with a mudstone flooding surface including rip up clasts 

and reworked rudist fragments and deepens upward to deep lagoonal mudstone. This 

mudstone is overlain by the miliolidal packstone facies with local Agriopleura floatstone 

facies. However, thick massive rudist buildups of Offneria rudist rudstone still 

developed local patchy rudist buildups, commonly stacked on rudist buildups that 

formed in sequence 6 (Wells 8, 12 and 16);(Figure 18). This rudist units do not form 

continuous barrier banks, but they are patchy mounds surrounded the lagoonal facies 
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Figure 19A. Schematic stratigraphic profiles of the Shu'aiba Formation showing the evolution of the Shu'aiba platform within 
the depositional profiles and the Shu'aiba stratigraphic hierarchy.  
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Figure 19B. Legend, symbols and color codes of lithofacies used in the above cross sections.  
 



  

with a prograding shingled geometry. These patchy rudist buildups are capped by high 

energy rounded-rudist rudstone formed in a beach environment that was subaerially 

exposed similar to the facies that cap sequence 6. The top of sequence 7 records the 

termination of the in situ rudist buildups within the Shu'aiba Formation and the demise 

of the caprinid Offneria rudist species (Hughes, 2000).  

 

Lower Aptian Sequence 8 (S8)  

 This sequence only occurs on the northern block, due to the influence of the syn-

depositional subsidence that moved the northern block down  and provided 

accommodation space on the northern block when the south block was exposed and 

eroded by the Late Aptian unconformity (AL-Ghamdi and Read, 2010; Figure 18). This 

sequence is the last phase of sedimentation on the Shu'aiba Formation platform margin. 

However, more sequences are still developed on the eastern platform edges. S8 is 

dominated by shallow lagoonal peloidal miliolid packstone/wackestone facies 

interbedded with thin, deeper lagoonal mudstone facies. Agriopleura floatstone facies 

occur as local patchy rudist mounds or as the caps to shallowing upward successions, but 

no colonized rudist occurred in this sequence. This sequence records a deepening trend 

of mudstone facies below the Late Aptian unconformity similar to S7 on the southern 

block. This unconformity formed karst that locally penetrates deeper than 30 ft (10 m) 

into the top of the Shu'aiba Formation (e.g. wells 16 and 52; Figure 8F).  
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Upper Aptian Sequences 9 & 10  (S9 & S10)  

 Sequences 9 and 10 are Upper Aptian sequences identified for the first time in 

this study. They formed only on the northern block as shelf edge prograding sequences, 

during which the interior of the Shu'aiba platform was subaerially exposed and eroded 

(Figures 17 and 19A). These sequences are equivalent to sequences Apt4a and Apt4b of 

van Buchum et al. (2010). The Lower/Upper Aptian boundary is a conformable surface 

and was picked initially on the basis of carbon isotope values (Figure 14) and coincides 

with an abrupt change in facies from fine skeletal and detrital packstone of the Lower 

Aptian slope of S8 to dark dense argillaceous mudstone facies of S9 (Figure 8C). In 

addition, nannofossil data from well 19 confirms the Late Aptian age of these sequences 

with the first occurrence of the nannofossill Lithraphidites houghtonii (AL-Ghamdi and 

Pope, 2012). Thus, biostratigraphy integrated with core description and 

chemostratigraphy constrain the age of these prograding sequences (AL-Ghamdi and 

Pope, 2012). The argillaceous mudstone averages about 20 to 30 ft thick (6-9 m) and 

shallows upward into grainy coral floatstone facies overlain by massive reefal facies 

containing mixed stromatoporoid and rudist rudstone (Figure 8B). The argillaceous 

mudstone facies occurring at the base of these sequences possibly represent a lowstand 

prograding wedge, similar to what has been interpreted by van Buchem et al. (2010) and 

Yose et al. (2010). The Late Aptian rudists mainly are Horiopleura species of the 

Polyconitidae family (Skelton, 2008, Saudi Aramco internal report), quite different type 

than the lower Aptian caprinid and caprotinid rudists. The range of Horiopleura rudists 

extends from the Aptian to the lower Albian (Skelton and Masse, 2000). These shelf 
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edge sequences prograde toward the intrashelf basin with clinoform geometries and 

laterally change facies to open marine skeletal packstone/wackestone and finally to deep 

pelagic basinal mudstone. At least nine high-frequency sequences were described from 

seismic in the coeval Bu-Hasa field, and they prograde > 10 km from the shelf edge 

toward the basin (Pierson et al., 2010). It is possible that more prograding sequences 

formed far to the east in the study area, but more data (e.g seismic data) is necessary to 

confirm this interpretation. The Upper Aptian prograding sequences also occurred in the 

far northern edge of the platform where wells 53, 13 and 54  have similar depositional 

settings to the eastern flank with similar facies and similar stacking patterns. Upper 

Aptian sequences also formed on the northwestern flank as shown in the carbon isotope 

curve in well 45 (Figure 14), but differ from the eastern flank in that they do not have 

shallow water rudist facies or slope and open marine settings, instead the Upper Aptian 

here records restricted lagoonal environments.  

 Finally, the Bab intrashelf basin occurs on the far eastern side in well 20, and is 

thought to be the latest Upper Aptian or early Lower Albian (van Bucum et al., 2010). It 

is the last stage of basin infill and is dominated by organic-rich lime mudstone 

interbedded with sandstone. 

 

Parasequences  

 Parasequences are an important component of the stratigraphic framework and 

reservoir characterization as they control the reservoir properties and hence the 

simulation model and its fluid flow behavior (Kerans and Tinker, 1997). Therefore, 
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higher-scale parasequences of the Biyadh and Shu'aiba Formations were identified and 

mapped to better characterize their reservoirs and to provide a higher-resolution genetic 

layering scheme for the 3-D reservoir model. Also, their stacking pattern, thickness and 

magnitude will provide better understanding on the driving mechanism of the 

stratigraphic records and the effect of climate within a global or regional scale.  

 

Parasequences in Biyadh Formation 

 There are 34 parasequences identified in Biyadh Formation, most of them can be 

traced between wells and throughout the field (Figure 15). Of these 34 parasequences, 

four formed in S1; five formed in S2; 13 formed in S3 and 12 formed in S4. 

Parasequences in S1 occurred within the argillaceous dense unit at basal Biyadh 

Formation. No cores penetrate the entire interval of this unit, but four meter-scale (~ 5 ft 

thick, 1.5 m) cycles can be mapped throughout the area on gamma ray logs. As similar to 

Hawar unit, the higher gamma ray values of this unit indicate highly argillaceous 

mudstone representing flooding surface that change upward to more clean, deeper and 

less argillaceous mudstone. Parasequences within S2 are thicker ~ 15 ft (4.5 m) cycles, 

that begin with a Palorbitolina wackestone and deepen upwards to chalky mudstone 

facies. Major changes in parasequences pattern occurred at S3 where many more (13) 

small scale ~ 2-5 ft (0.6-1.5 m) cycles are delineated within the shallow upward S 3. 

These cycles are characterized by a sharp erosional contact at the base overlain by 

oncoidal peloid grainstone facies or rudist floatstone representing a flooding surface that 

shallow upward to less grainy packstone/wackestone facies (Figure 5C). Most of these 
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cycles can be correlated between the wells and may have some impact on reservoir 

quality distribution (Figure 15).   

 

Parasequences in Shu'aiba Formation  

 The Shu'aiba Formation contains at least 37 parasequences within the Early and 

Late Aptian sequences, 31 parasequences formed in the Lower Aptian back-bank or 

platform interior settings and at least 6 additional parasequences formed in the Upper 

Aptian prograding wedges on the flanks. Of the 31  parasequences; seven formed in S1 

(including 6 in Hawar unit), whereas S2-S10 include 3-4 parasequences each. 

Parasequences within S1 and S2 are sheet-like units and are calibrated to gamma-ray 

logs, thus they can be mapped throughout the field. Parasequences in S3 within the 

Lithocodium/coral mounds have slightly different geometries due to the development of 

Lithocodium mounds on the platform margin and clinoform prograding toward the basin. 

Therefore, more parasequences are recorded on the platform margin than the slope or 

open-marine settings. Associated fauna were used to pick some these parasequences, 

where the relatively deeper water Lithocodium facies is interbedded with the relatively 

shallower coral facies.  

 Generally, the in situ rudist buildups within the bank-crest at S4 - S6 are poorly 

cyclic and do not record higher-order parasequences, due to their nature as reefal 

buildups geometry with massive framework and higher sedimentation rate. However, 

parasequences are better developed on the back-bank, shoal or fore-bank settings. 

Interbedded of different type of rudists, such as the deeper water Glassomyophorus 
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rudist and the shallow water Offneria rudist within these sequence are used as an 

evidences of cycle changes. These parasequences S4-S6 are locally continued and are 

rarely mappable over the rudist buildups. In addition, these parasequences cannot be 

mapped over the open marine settings, due to the unchanged and uniform lithofacies 

deposited in coeval open marine and basinal settings.  

 The upper part of the Shu'aiba Formation (S7-S8) has seven parasequences at 

maximum that can be mapped locally. These parasequences have deep lagoonal 

mudstone at the base that shallows upward into peloidal miliolid packstone or 

Agriopleura floatstone facies. Exposure surfaces formed locally at the top of these 

parasequences.  

 Parasequences in the Upper Aptian sequences 9 and 10 are characterized by a 

basal dense argillaceous mudstone that changes upward into coral/stromatoporoid 

floatstone or skeletal packstone facies. These parasequences show clinoform geometries 

and can be mapped locally, with a top lap geometry against the Upper Shu'aiba 

Unconformity.  

 

Discussion 

Barremian versus Aptian Sequence Stratigraphy  

 Although there are some similarity in the facies associations between the Late 

Barremian Biyadh Formation and the Aptian Shu'aiba Formation, there are many 

differences between the two units with regards to their depositional settings and facies 

architecture. First, the entire Biyadh Formation is composed of one large scale 3rd-order 
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shallowing up sequence recording a single long-term sea level rise and fall. Conversely, 

the Shu'aiba Formation records a large scale composite sequence/or 2nd-order sequence, 

built by four 3rd-order sequences, built by 10 high frequency sequences. The Biyadh 

Formation was deposited on a shallow subtidal ramp with relatively thin rudist banks at 

the upper shoreface environments (Figure 9). The Shu'aiba depositional platform 

evolved from, restricted subtidal, algal dominated ramp to marginal rudist barrier bank 

(Figures 10-13). The shallow subtidal ramp of the Biyadh Formation formed sheet-like 

layers at all scales (3rd-order sequences to parasequences) because there were no tectonic 

rim developed during this time, therefore, there was no major lateral changes in 

depositional setting and no intrashelf basinal architecture developed at this time. This is 

indicated by the uniform sheet-like strata of all the large and small scale parasequences 

within the Biyadh Formation, they are layer-cake strata and do not have the shingle or 

clinoform geometries like the overlying Shu'aiba Formation (Figure 15). The rudist 

facies in Biyadh Formation also correlate as a layer cake unit and are dominated by the 

elongate caprotinid Glassomyophorus and Agriopleura species with no evidence of the 

high-energy reffal caprinid rudist of Offneria species.  

 In addition, the average thickness of the Biyadh sequence is about 220 ft (67 m) 

whereas the average thickness of the Shu'aiba Formation is about 450 ft (137 m). This is 

due to the absence of extensive Lithocodium aggregatum algal mounds and a colonized 

rudist buildups in the Biyadh Formation.  
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Shu'aiba Formation Hierarchy and Platform Evolution 

 The Shu'aiba Formation, including Hawar unit and the Late Aptian sequences is 

about 530 ft (160 m) thick and is composed one large scale composite 2nd-order 

sequence (spanning ~7 My) comprised of four 3rd-order sequences (~ 1 - 2 My each) and 

10 high frequency sequences (~ 400 ky - 1 My; Figures 19A). Previous study of AL-

Ghamdi and Read (2010), interpreted 7 HFS's in the Shu'aiba platform within the Early 

Aptian, but did not interpret any 3rd-order sequences, due to the lack of biostratigraphic 

markers and poor age control within the Shu'aiba platform. This study used much more 

data than previous study and is also incorporating much more carbon isotope data that 

helps constrain the ages beyond the resolution of biostratigraphy (Figure 14). Thus, eight 

HFS's (S1 to S8) were identified and mapped on the Early Aptian Shu'aiba platform, 

plus two more HFS's (S9 and S10) are mapped on the Late Aptian platform edge, 

compared to seven HFS's in AL-Ghamdi and Read (2010). The extra sequence in the 

Early Aptian in this paper is S3 that is a significant chronostratigraphic marker, in 

addition to its association with a notable change in platform geometry and basin 

configuration. Thus interpreted as an individual HFS rather than parasequence.  

 On the basis of stacking patterns, stratigraphic geometry, facies association and 

carbon isotope curves, the ten HFS's in the Shu'aiba Formation can be grouped into four 

3rd-order sequences with possible duration of ~1 - 2 My each. These 3rd-order sequences 

are abbreviated as 3rd-order S1, 3rd-order S2, 3rd-order S3 3rd-order S4 to differentiate 

them from the HFS's S1-S10. The first 3rd-order S1 consists of S1, S2 and S3 that are 

characterized by a transgressive phase associated with sea-level rise, mud-dominated 
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facies, and open marine algal platform environments, with Lithocodium/coral and 

Palorbitolina facies. This 3rd-order sequence represents a global diminish of carbonate 

production with the absence of rudist buildups that were replaced by extensive 

Lithocodium aggregatum and coral facies (Huck et al., 2012). The second 3rd-order 

sequence (3rd-order S2) is composed of sequences S4, S5 and S6, associated with the 

development of massive rudist buildup facies. This sequence is dominated by aggrading 

geometries and relative sea-level stillstand with high sedimentation rates representing 

the early HST of the Shu'aiba 2nd-order composite sequence. The 3rd-order S2 also 

records an individual shallowing upward sequence where the base is dominated by  

transgressive Glassomyophorus rudist facies that shallow upward into a high-energy 

Offneria rudist facies that is capped by rounded rudist debris rudstone facies formed in a 

beach environment followed by subaerial exposure of the platform. 3rd-S2 here is 

equivalent to "Apt3" in van Buchem et al. (2010) and Yose et al. (2010).  

 3rd-order sequence 3 is composed of S7 and S8 and it overlies the SB7 exposure 

surface that records the termination of the colonized Offneria rudist buildups on the 

southern block. This 3rd-order sequence represents the last stage of deposition on the 

platform margin with shallow lagoonal miliolids peloidal packstone facies interfingering 

with local Agriopleura rudists. The stratigraphic geometry of this sequence is dominated 

by late HST of the Shu'aiba composite sequence with slight progradation of the rudist 

and shallow lagoonal facies toward the basin. This sequence was extensively eroded and 

karstified during the Late Aptian unconformity that formed during a global sea-level fall 

(estimated of ~30 m sea-level drop), possibly due to polar glaciation (Al-Husseini and 
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Matthews, 2010). The fourth 3rd-order sequence (3rd-order S4) is composed of the Upper 

Aptian (S9 and S10) that prograde from the shelf edge into the intrashelf basin. This 

sequence was only deposited on the northern platform edge during a forced regression 

and major sea-level fall in the Late Aptian. Core descriptions integrated with carbon 

isotope data confirm two prograding sequences formed on the flanks of the Shu'aiba 

platform, however, more prograding sequences may exist farther east toward the basin 

(Figure 14). Yose et al. (2010) and Pierson et al. (2010) were able to identify nine 

prograding sequences on the U.A.E giant field A, using seismic data. 

 

Maximum Flooding Surfaces 

 The regional maximum flooding surfaces of the Early Cretaceous Biyadh and 

Shu'aiba Formations have been debated, especially the maximum flooding surfaces K70 

and K80. Sharland et al. (2001) defined three major flooding surfaces within the study 

interval; (K60) in the Late Barremian Biyadh Formation, and (K70 and K80) in the Early 

Aptian Shu'aiba Formation.  Sharland et al., (2001) placed K60 within the unit at the 

base of the Biyadh Formation, placed K70 at the top of the Hawar dense unit 

corresponding to the highest gamma ray signal at the contact between Hawar unit and 

basal Shu'aiba Formation, and placed K80 higher in the Shu'aiba section coeval to the tar 

unit of intrashelf Bab Member.  

 K60 in this paper was placed higher in the section within the mudstone facies of 

S2 at the base of the Biyadh Formation (coeval to Khariab Formation in the U.A.E). It is 
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similar to the placement of K60 in van Buchem et al. (2010) but different than the K60 

of Sharland et al., 2001 that was picked within the dense unit underneath (Figure 15).  

 Davies et al., (2002) on his updated study, refined the location of K70 and placed 

it higher in the section within the lower part of the Shu'aiba Formation, corresponding 

the chalky Hedbergella planktonic mudstone facies that also was interpreted to be the 

deepest water facies of the Shu'aiba Formation (AL-Ghamdi and Read, 2010). In 

addition, K70 was interpreted to be the MFS of the entire Early Cretaceous 

supersequence (Sharland et al., 2001; Davies et al., 2002; AL-Ghamdi and Read, 2010). 

The Hawar unit, was previously interpreted as a deep, open platform with planktonic 

foraminifera associated with the predominant argillaceous Palorbitolina packstone 

facies (Hughes, 2000). AL-Ghamdi and Read (2010) interpreted the Hawar dense unit as 

deposited in relatively deep water environments, but with lack of planktonic 

foraminifera, thus K70 maximum flooding surface was placed higher in the section 

within the clean chalky planktonic mudstone facies that interpreted to represent the 

deepest water facies of the Shu'aiba Formation. However, evidence of mud cracks and 

possible exposure surfaces within the coeval Hawar unit, especially in the outcrop of 

Jabal Akhdar (Oman), suggests that the Hawar unit may deposit in tidal flat or shallow 

restricted environments rather than a deep open marine setting and representing the early 

TST rather than the maximum flooding surface (van Buchem et al., 2002, 2010; Pittet et 

al., 2002; Stronhmenger et al., 2006).   

 Van Buchem et al., (2010) however did not recognize K70 as a major surface, 

they only recognized the K80 as the major MFS of the entire Lower Cretaceous super 
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sequence. Moreover, van Buchem et al., (2010), Droste, (2010) and others, picked K80 

on the basis of the general stratigraphic trend near the contact from the lower Shu'aiba 

transgressive phase dominated by Lithocodium/Bacinella facies to the middle Shu'aiba 

rudist buildups regressive phase. However, there is no discrete surface that can be 

identified for this MFS event and gamma ray logs also do not have a significant increase 

associated with this surface in the region. We agree that the MFS K80 is probably the 

major MFS for the Shu'aiba composite sequence rather than K70, but we do not agree 

that it is located at the contact between the Lithocodium/Bacinella facies and the rudist 

buildups facies. This contact is a major sequence boundary (SB 4 in this study and base 

of Apt3 in van Buchem et al., 2010), marked by a sharp contact and abrupt change in 

facies (Figure 8D), depositional environment, and also change in the global carbon 

isotope values, thus it cannot be a sequence boundary and maximum flooding surface at 

the same time. K80 in this study is placed on a clear physical surface in cores, that is 

higher in the section than the K80 of van Buchem et al. (2010), within the rudist 

buildups facies of S5 associated with a major flooding surface and deep water facies 

recorded in cores associated with higher gamma ray signals, especially on the flanks of 

the field (Figures 16-19). This is a major drowning event within S5 that occurred across 

the entire field and also occurred within the in situ rudist bank-crest setting, where 

deeper water Palorbitolina mudstone/wackestone was deposited within the rudist 

buildups indicating major platform drowning event (e.g wells 14, 9, 10 and 12). On the 

platform edge, major deepening is recorded with the deposition of a thick succession of 

deeper water, black-laminated mudstone facies. Placing K80 at this surface makes S1 - 

 63



  

S4 the TST of the entire Shu'aiba composite sequence with general aggrading and 

backsteeping geometries. S5 - S8 then become the early HST with aggrading and slight 

prograding geometries toward the basin. S9 - S10 is the late HST with strong, 

downstepping and progradational geometries (Figure 19A). In addition, the rudist 

buildups in S4, beneath the K80 are mainly dominated by the relatively deep water 

transgressive caprotinid Glassomyophorus rudist, but above K80 the caprinid Offneria 

rudists are the predominant rudist type. Therefore, K80 here is the turnover surface 

(MFS) between the large scale TST and HST of the Shu'aiba composite sequence. 

 Although K80 is considered the major MFS of the Shu'aiba composite sequence, 

K70 is still an important flooding unit and it is picked here as the MFS of the HFS S2 

and the MFS of the 3rd-order sequence 1. K70 also is an important surface, because it is 

associated with the onset of the major carbon isotope positive excursion of the Early 

Cretaceous just beneath the Lithocodium/Bacinella facies, coeval to widespread black 

shale deposited during the global OAE 1a (Immenhauser et al., 2005). It is not clear why 

this MFS (K70) and its associated facies, the deep planktonic chalky mudstone unit 

(brown color in the cross sections) was not clearly defined and mapped in the region. 

This MFS was described as a secondary higher-order flooding event with limited 

correlation potential (e.g. van Buchem et al., 2010).  

 

Anatomy of the Shu'aiba Formation Platform 

A series of facies maps (Figures 20 - 26) were generated for each HFS (S3 - S10) 

to illustrate the evolution of Shu'aiba platform and to track the changes in its 
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depositional anatomy to determine its influence on reservoir quality. These facies maps 

are crucial for constructing a 3-D geocellular model and also for predicting reservoir 

quality and guiding new drilling programs. They also are important to understand the 

influence of third order sea-level changes during the Aptian on the Shu'aiba platform and 

the effect of syn-depositional faulting on facies development. The facies maps were 

constructed using the 55 cored wells at the top of each sequence representing the HST of 

each sequence. S1 and S2 were not included in the facies maps, because their facies are 

sheet-like strata across the region without any lateral facies changes. 

 

Facies anatomy of HFS 3 (S3)  

 Sequence 3 is dominated by the development of Lithocodium/coral algal mounds 

with subtle lateral facies changes to Palorbitolina wackestone (Figure 20). In this 

sequence, the Shu'aiba platform is dominated by the Lithocodium facies associated with 

global sea-level rise that flooded epicontinental basins around the world during the 

development of Oceanic Anoxic Event 1a. This Lithocodium facies is coeval to black 

shale and the global OAE 1a elsewhere (Immenhauser et al., 2005). The Lithocodium 

facies in this sequence develop a thick and extensive algal mound on the margin that 

thins toward the eastern side of the basin and changes to deep, open marine facies 

(Figure 19A). Patchy coral mounds of mixed platy and massive corals developed locally 

to the north and south. These coral facies may extend for several kilometers and 

providing high reservoir quality due to the abundance of intergranular and moldic 

porosity within the corals (Figure 6F). These coral mounds developed on top of the  
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Figure 20. Facies map at top of HFS 3. This facies is dominated by Lithocodium facies. 
Intraplatform depression is dominated by Palorbitolina wackestone facies (green). Coral 
facies form local mounds on the flanks.  
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Figure 21. Facies map at top of HFS 4. This map shows the initiation of the rudist 
buildups. The southern block still develop extensive Lithocodium on the western margin.  



 

 

 

68

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Facies map at top of HFS 5. Rudist buildups rimmed the northern block, 
while the western side of the southern block is open to deep lagoonal facies.  
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Figure 23. Facies map at top of HFS 6. Extensive and continuous rudists buildups 
formed around the field.  
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Figure 24. Facies map at top of HFS 7. The platform is dominated by inner ramp 
lagoonal facies, but rudist buildups still forming in the eastern margin.  
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Figure 25. Facies map at top of HFS 8. The southern block is subaerially exposed and 
the northern block is dominated by inner ramp shallow lagoonal facies.  
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Figure 26. Facies map of the Upper Aptian sequences 9 and 10. The whole platform was 
subaerially exposed except the north and eastern margins of the northern block, where 
prograding sequences occurred.  
 



  

Lithocodium facies as topographically higher coral mounds were suitable place for the 

rudist buildups to initiate in the following sequences, such as the elongate coral unit on 

the north that is overlain by the high-energy rudist facies that has the highest reservoir 

quality in all wells. The intraplatform depression between the northern and southern 

blocks was dominated by Palorbitolina wackestone facies without significant 

Lithocodium or coral developed due to sediment starvation and its topographic low 

position. Therefore, S3 thins dramatically in this zone or pinches out altogether (Wells 7 

and 8)(Figure 18). This change in the facies at the intraplatform depression suggests that 

the syn-depositional fault systems initiate early in this sequence, because previous 

sequences were uniform beneath this depression area. 

 

Facies Anatomy of HFS 4 (S4)  

 Sequence 4 formed at the base of the 3rd-order S2, recording the onset of the 

rudist buildups along the north and south margins of the platform (Figure 21). The south 

margin rudist facies passes eastward into an open marine Lithocodium algal platform or 

lagoonal facies, whereas the northern block developed more extensive rudist buildups 

that transitioned into a fragmented rudist shoal except along the northeastern flanks 

(Wells 50 and 52) where the Lithocodium facies persisted, suggesting an open 

environment to deeper water facies off the margin. The rudist buildups in this sequence 

are dominated by mixed Glassomyophorus and Offneria rudists in the northern and 

mainly Glassomyophorus rudists on the southern block, suggesting the northern block 

was influenced by higher energy waves than the southern block. The rudist buildups on 
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the eastern flanks were interpreted as the windward margin whereas the western flank 

was the leeward  margin (AL-Ghamdi and Read, 2010). However, the western flank 

rudist facies (pink)  is dominated by fragmented rudists rudstone in a grainy matrix with 

abundant moldic and vuggy porosity and was deposited under a higher energy 

environment than the eastern flank (red) (Figure 7E). Conversely, the eastern flank rudist 

facies, is dominated by in situ rudist rudstone/floatstone with muddy matrix filling and 

infiltrating the rudists with moderate to good porosity. Rudist buildups in this sequence 

formed north-south oriented buildups, with discontinuous elongated barriers possibly 

separated by tidal channels (Figure 12). These discontinuous rudist buildups was 

conceptually interpreted on the basis of discontinuous barrier banks (or reefs) in modern 

carbonates platforms such as the Great Pearl Bank barrier of the Arabian Gulf (Hughes, 

1997) and the Great Barrier Banks of Australia (J.F Read, personnel com.). The 

intraplatform depression is dominated by detrital grainstone facies developed in an 

elongated W-E trending trough with high-energy currents in a channel-like geometry. 

This detrital grainstones were sourced from the surrounding rudist buildups that 

developed on the topographically high W-E trending rim created by fault systems, 

possibly along deep seated basement faults as suggested by seismic data. The platform 

interior in the northern block is generally dominated by the back-bank Glassomyophorus 

rudist floatstone with no evidence of deep lagoonal ponds or restricted lagoons as 

previously thought (Hughes, 2000). The southern block, however has deeper back-bank 

or lagoonal settings dominated by Lithocodium aggregatum facies as shown on the 

western flank (Figure 21).  
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Facies Anatomy of HFS 5 (S5)  

 The rudist buildups in this sequence continued to develop a stacked sequence 

above the previous platform margins, but the buildups extend further around the 

platform (Figure 22). For instance, rudist buildups were established above the 

Lithocodium facies of S4 on the far south and possibly attached to the previous rudist 

buildups on the central part at Well 4 with an elongated north-south trend. The northern 

block has similar rudist trends as the previous sequence, but they also extended into 

Wells 50 and 52 forming a amore continuous rim around the platform over Lithocodium 

facies in S4. A major change in facies in the northern block is the development of a 

high-energy grainstone shoal (Figure 7C), in the platform interior (yellow zone. Figure 

22) as an elongated north-south trending zone. This high energy grainstone in the 

platform interior was deposited in a shoal or shallow back-bank settings and surrounded 

by in situ rudist buildups on both sides. The southern block, however does not have such 

high energy shoal facies, instead, the platform interior is dominated by low energy 

lagoonal wackestone or Lithocodium/coral facies (e.g. Wells 33, 23 and 35). The deep 

lagoonal facies marks a widespread deepening event that were clearly recorded on the 

flanks wells (e.g wells 21, 26, 30 and 45) associated with the regional maximum 

flooding unit (MFU, K80) of the Shu'aiba 2nd-order composite sequence, coeval to the 

K80 of Sharland et al. (2001). This MFU is also recorded within the rudist buildup 

barrier as a thin unit of Palorbitolina wackestone facies.  
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Facies Anatomy of HFS 6 (S6)  

 Sequence 6 has well established rudist barrier banks around the field and records 

the shallowest water facies of the Shu'aiba Formation associated with subaerial exposure 

surface (Figure 23). Rudist buildups are mainly dominated by the high-energy, 

recumbent Offneria rudists (Figure 7F), that formed more continuous in situ rudist 

barriers. Therefore, the rudist facies predominate across the entire platform, either as a 

rim of barrier banks, or back-bank, or fore-bank fragmented rudist rudstone. The 

platform interior on the northern block is dominated by high-energy grainstone as well 

as by a new established local rudist buildups in the central part of the platform (Well 11 

and 44).  The platform interior in the southern block also is dominated by moderately 

deep back-bank rudist facies, except where deep restricted ponds in the central part of 

the platform interior (Wells 22, 12 and 3). The northeastern flanks is dominated by fine 

skeletal wackestone/mudstone deposited in slope and open marine settings as in previous 

sequences, but subtle shallowing occurs in this stage to more detrital skeletal packstone. 

The rudist buildups in this sequence are capped by thin, well-rounded, well-cemented 

rudist rudstone facies of high-energy beach environments (Figure 7D), followed by an 

exposure surface, marking the termination of rudist buildups in the southern block and 

the end of the 3rd-order sequence 2. 

 

Facies anatomy of HFS 7 (S7) 

 Sequence 7 is dominated by extensive shallow lagoonal/inner ramp environments 

with fine skeletal peloidal milliolid packstone/wackestone facies on both north and south 
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blocks (Figure 24). However, the northern block still developed rudist barrier banks on 

the eastern side, backed by shallow lagoonal sediments. These rudist buildups have 

similar trends to previous rudist buildups, but are slightly shifted basinward representing 

slight progradation of the platform margin settings. These rudists are possibly 

discontinues separated by tidal channels. The intraplatform depression still contains 

fragmented rudist skeletal grainstone, therefore a rudist buildups likely formed around 

the trough to source this grainstone facies. The southern block is entirly dominated by 

the shallow lagoonal sediments excepts where Agriopleura rudist floatstone that 

developed local mounds.  

 

Facies anatomy of HFS 8 (S8) 

 Sequence 8 only occurs on the northern block, while the southern block was 

subearially exposed (Figure 25). The northern block is dominated by shallow lagoonal 

facies that prograded basinward. The intraplatform channel was buried by the shallow 

lagoonal facies. Rudist buildups did not form during this sequence.  

 

Facies Anatomy of HFS's  9 and 10 (S9 and S10) 

 Sequences 9 and 10 are Upper Aptian sequences formed only on the northern 

lock platform edges as a prograding sequences into the basin during a long-term sea 

level fall (Figure 26). Facies anatomy of these sequences include shallow water 

rudist/stromatoporoid/coral marginal facies formed marginal setting on the eastern and 

around the far northern part of the field. An upper Aptian wedge along the western flank 
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(Well 45) consists solely of shallow lgoonal facies, with no rudist or shallow marginal 

facies occurred in this wedge. The shallow water marginal facies on the eastern flank 

passes laterally into slope and deep open marine facies. Moreover, these Upper Aptian 

sequences begin with a flooding even of an argillaceous mudstone at their base 

interpreted as low-stand wedges. This argillaceous mudstone is interpreted as a 

continuous N-S elongate wedge that may act as a reservoir barrier to fluid flow 

movement. The interpretation of this mudstone as a low-stand wedge may imply a 

separation in the reservoir units, however, pressure data is required to substantiate this 

interpretation. 

 

Global Correlation 

The Lower Cretaceous Barremian and Aptian successions of the subsurface 

Biyadh and Shu'aiba Formations record major subaerial sequence boundaries and 

dramatic facies changes associated with growth and demise of carbonate platforms that 

can be linked to global changes in sea-level, ocean chemistry, and Milankovitch orbital 

forcing. To evaluate this relationship,  the stratigraphic framework of the Biyadh and 

Shu’aiba Formations presented in this paper were calibrated to biostratigraphy and stable 

isotope chemostratigraphy and correlated to: (1) the global sea-level curve of Haq and 

Schutter (2005); (2) the sequence stratigraphic records from European sections 

(Hardenbol et al., 1998); (3) the high-resolution sea-level changes recorded in Pacific 

guyots (Rohl and Ogg, 1998); (4) the high-resolution orbital model sea-level (Al-

Hussaini and Matthews, 2010) and (5) the global carbon isotope curve of the Tethyan 
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pelagic records (Follmi et al., 2006) (Figure 27). This correlation suggests that the 3rd-

order sequences of the Biyadh and Shu’aiba Formations formed in response to global 

sea-level changes and to rapid Earth’s climate changes. Also, most HFS’s can be 

correlated globally, but are less pronounced than the 3rd-order sequences. The high-

resolution orbital forcing model of Al-Husseini and Matthews, (2010) is controlled by 

the 405 k.y eccentricity cycles (called stratons), driven mainly by glacio-eustaty. Some 

of these stratons are correlated directly to some HFS’s in this study, especially the HFS’s 

in the Biyadh and the lower part of the Shu’aiba Formations. The following is a brief 

discussion of each sequence with their correlated sea-level and chemostratigraphic 

curves and the significant and implications of their global correlations. 

 

3rd-order Barremian Sequence (Biyadh Formation) 

The 3rd-order composite sequence of the Biyadh Formation is composed of four 

HFS’s (S1-S4) and is coeval to Ap Bar2 of van Buchem et al. (2010). The correlation 

suggests that S1 and S2, which are the TST of this sequence, are correlated with Bar 5 in 

Hardenbol et al. (1998) and formed during one sea-level rise and fall of Haq and 

Schutter, (2005) and correlates to stratons 326-314 of the orbital sea-level model (Al-

Husseini and Mathews, 2010). The extreme spike of the orbital model at straton 315, 

represents the maximum sea-level rise and is correlated with the MFS of the Biyadh 3rd-

order composite sequence corresponding to the deepest water facies in Biyadh 
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Figure 27. Composite global correlation between the Arabian Plate Biyadh and Shu'aiba formations and the global 
stratigraphic records. The colors used for each sequence were arbitrary to highlight the sequence. 
 



 

Formation, which is the chalky mudstone facies at the middle of Biyadh S2. This MFS is 

well correlated with the 3rd-order regional MFS (K60) of Sharland et al., (2001) and van 

Buchem et al. (2010). The coeval Tethys carbon isotope curve of this sequence shows 

subtle change with an overall minor gradual increase from 1.5 ‰ at the base of S1 to 

2.2‰ at the top of S2 (Figure 27).  

The HST of the 3rd-order Biyadh sequence is composed of two HFS’s (S3 and 

S4) and they are correlated to the global Bar 6 of Hardenbol et al. (1998), and formed 

during one global sea-level rise and fall of Haq and Schutter (2005). S3 and S4 are well 

correlated with stratons 313 and 312 of Al-Husseini and Mathews (2010), suggesting 

that each of these HFS's is an ~ 400 k.y cycle. This correlation suggests that the Biyadh 

3rd-order composite sequence can be separated into two smaller scale 3rd-orders 

sequences, each on the order of ~ 1 to 1.5 m.y duration, where the mud dominated- TST 

sequences S1 and S2 of the Biyadh Formation comprise one sequence coeval to Bar 5, 

and the grain-dominated- HST sequences S3 and S4 comprise another sequence coeval 

subtle change with an overall minor gradual increase from 1.5 ‰ at the base of S1 to 

2.2‰ at the top of S2 (Figure 27).  

The HST of the 3rd-order Biyadh sequence is composed of two HFS’s (S3 and 

S4) and they are correlated to the global Bar 6 of Hardenbol et al. (1998), and formed 

during one global sea-level rise and fall of Haq and Schutter (2005). S3 and S4 are well 

correlated with stratons 313 and 312 of Al-Husseini and Mathews (2010), suggesting 

that each of these HFS's is an ~ 400 k.y cycle. This correlation suggests that the Biyadh 

3rd-order composite sequence can be separated into two smaller scale 3rd-orders 
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sequences, each on the order of ~ 1 to 1.5 m.y duration, where the mud dominated- TST 

sequences S1 and S2 of the Biyadh Formation comprise one sequence coeval to Bar 5, 

and the grain-dominated- HST sequences S3 and S4 comprise another sequence coeval 

to Bar 6. S3 and S4 contains many small-scale parasequences (13 parasequences for 

each sequence). Since S3 and S4 are ~ 400 k.y in duration; each parasequence appears to 

be fifth-order cycles spanning ~ 40 k.y duration and may be related to obliquity orbital 

forces.  

 

3rd-order Early Aptian Shu’aiba Sequence 1  

The Early Aptian 3rd-order sequence 1 is composed of three sequences (S1, S2 

and S3) and occurred in the lower part of the Shu’aiba Formation and includes the 

Hawar unit. This sequence is coeval to the Ap Apt1 and 2 of van Buchem et al. (2010). 

SB1 is a major sequence boundary that separates the Barremian Biyadh Formation from 

the Aptian Hawar unit and Shu’aiba Formations and it is linked to the Barremian-Aptian 

boundary (~125 My) and correlates with the global sequence boundary at the base of Apt 

1 in Hardenbol et al. (1998) and Rohl and Ogg (1998). This boundary represents a major 

high magnitude sea-level fall possibly on the order of tens of meters that can be traced 

worldwide (Hillgartner et al., 2002: Droste, 2010; Al-Husseini and Matthews, 2010). 

This boundary is associated with a negative carbon isotope excursion that also is 

correlated worldwide and is used in this correlation as a datum for the global correlation 

in figure 27. This boundary also reflects major rapid change in global climate from 

cooling and sea-level fall during the Late Barremian to global warming and sea-level rise 
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during the overlain Early Aptian (Jenkyns, 2003; Weissert and Erba, 2004). The major 

negative carbon isotope excursion in the earliest Early Aptian is related to dissociation of 

methane hydrates, possibly triggered by an increase in volcanism on the Ontong-Java 

Plateau (dated ~ 125-119 Ma) with large amount of CO2 released to the atmosphere 

causing a greenhouse warm climate and coincident warming of bottom waters on 

continental shelves that resulted in global warming and sea-level rise in the earliest Early 

Aptian (Larson and Erba 1999; Weissert and Erba, 2004; Follmi et al., 1994, 2006; 

Jahren et al., 2001; Jenkens 2003). The Barremian-Aptian boundary in the Shu’aiba 

Formation is overlain by S1 with the deposition of the argillaceous Hawar unit. S1 is 

correlated with Apt1 in Hardenbol et al. (1998) and Apt1 in Rohl and Ogg (1998), 

associated with global sea-level rise in the earliest Aptian (Figure 14). The Early Aptian 

stratons 311 and 310 are correlated with Apt1 and thus seem to be correlated with the 

Hawar unit in the Shu’aiba Formation. However, Al-Husseini and Matthews, (2010) 

correlated these stratons with lowstand wedge sequences only present in the Oman 

Ocean margin that onlap onto the SB1 sequence boundary (Droste, 2010). Stratons 311 

and 310 were interpreted to be coeval to the subaerial exposure of SB1 and thus the 

Hawar unit is correlated to stratons 309 and 308. This correlation may work as a regional 

interpretation within the Arbian Plate sequence stratigraphic framework, but when 

stratons 309 and 308 are correlated globally to Apt1 of Hardenbol et al., (1998), there 

will be a problem with correlating the rest of the sequences with the sea-level curve and 

global isotope signature. For instance, if stratons 309 and 308 are linked to the Hawar 

unit and correlated with the global Apt 2 instead of Apt1, that will make stratons 304-
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301 equivalent to Ap3 of Hardenbol et al. (1998), and correlative to the global OAE1a 

event as interpreted by Al-Husseini and Matthews, (2010). That correlation suggests that 

the rudist dominated (3rd-order sequence 2) in this study, or the equivalent AP Apt 3 of 

van Buchem et al. (2010) correlates with the OAE1a (Selli unit) in the standard isotope 

curve of Follmi et al. (2006). The OAE1a should correlate to the Lithocodium dominated 

interval of the Shu’aiba Formation which is S3 (within the 3rd-order sequence 1)  in this 

study or Ap Apt 2 of van Buchem et al. (2010). The carbon isotope records of Shu’aiba 

Formation integrated with biostratigraphy (Figure 14) strongly suggest that the Hawar 

unit is correlated with the first negative excursion above the Barremian-Aptian boundary 

and hence is correlated to Apt 1 and the sea-level rise above the boundary.  

S2 of the Shu’aiba Formation records a major deepening event associated with 

the deposition of chalky Hedbergella mudstone, which is the deepest water facies of the 

Shu’aiba platform. This flooding event is coeval to K70 of Davis et al. (2001) and it 

correlates to the onset of the major positive enrichment of carbon isotope values, just 

beneath OAE1a. MFS K70 is possibly correlated to the highest sea-level rise of straton 

308 of Al-Husseini and Matthews, 2010 and to the sea-level rise of Ap 2 of Hardenbol et 

al. (1998). S2 here with its deeper facies and K70 likely correlates with the Early Aptian 

nannoconid crisis defined from the Tethyan pelagic sediments. The nannoconid crisis 

was caused by a reduction in calcification, due to the high atmospheric CO2 just before 

the OAE 1a, and is associated with a global warming event and sea-level rise (Luciani et 

al., 2006).  
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The Shu’aiba S3 is dominated by an extensive Lithocodium aggregatum 

wackestone and is correlated to the maximum carbon isotope enrichment and to the OAE 

1a. S3 possibly correlates to stratons 307-305 and to the TST of the Ap3 of Hardenbol et 

al. (1998). This correlation differs from the correlation of Al-Husseini and Matthews 

(2010) that correlate stratons 304-301 to the OAE1a and to the Ap Apt3 of van Buchem 

et al., (2010). This latter correlation contradicts the biostratigraphic zonation, therefore, 

the correlation provided here is suggested as an update for correlating the Arabian Plate 

stratigraphic records to the global records.  

 

3rd-order Early Aptian Shu’aiba Sequence 2 

This 3rd-order sequence is a rudist bearing unit composed of three sequences 

(S4,S5 and S6) that formed in the middle part of the Shu’aiba Formation and it is coeval 

to the Ap Apt3 of van Buchem et al. (2010). This sequence correlates with the upper part 

(HST) of Ap 3 of Harndenbol et al. (1998), deposited during the HST of the global sea-

level curve of Haq and Schutter (2005). It also correlates to the Apt 4 sequence in the 

Pacific Guyot of Rohl and Ogg, (1998). This sequence possibly correlates with stratons 

304–301 where the maximum sea-level rise occurred within straton 303 coeval to the 

proposed MFS of the Shu’aiba composite sequence presented here, and corresponding to 

the regional K80 of Sharland et al. (2001). This MFS occurs within S5 and is well 

recorded in all wells of the study area. The carbon isotope curve of the Tethys pelagic 

record of Follmi et al. (2006) correlated to this unit shows enrichment values at the 

furcata ammonite zone corresponding to the maximum sea-level rise. This enrichment of 
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carbon isotope values should not be confused with the lower major enrichment that 

correlates to the deshayesi ammonite unit related to the global OAE1a. The carbon 

isotope values of the Shu’aiba platform record within this sequence range from 4.5 to 5 

‰ with more uniform values corresponding to the development of the extensive rudist 

buildups (Figure 14). Al-Husseini and Mathews (2010), however, correlated stratons 

304–301 to Apt 3 of Hardenbol et al. (1998) and to Ap Apt3 of van Buchem et al. 

(2010), but correlated these stratons to the lower major carbon isotope enrichment of the 

deshayesi ammonite unit associated with the OAE1a. However, this interpretation 

contradicts with the stratigraphic framework, facies and chemostratigraphy presented 

here, because both the 3rd-order sequence 2 in this paper and the Ap Apt3 of van 

Buchem et al. (2010) are rudist-dominated sequences that developed above the OAE1a. 

The 3rd-order sequence 2 represents a recovery of carbonate productivity after the 

demise of carbonate buildups in the lower Hawar unit, the nannoconid crisis and the 

Lithocodium aggregatum interval that acts as a substitute to the rudist buildups during 

the carbon perturbation intervals and OAE1a in the Early Aptian (Immenhauser et al., 

2005). 

 

3rd-order Early Aptian Shu’aiba Sequence 3 

This 3rd-order sequence consists of S7 and S8 and it is part of the HST of the 

Shu’aiba composite sequence. This sequence appears to be a regional, rather than a 

global individual sequence, but when combined with 3rd-order S2, it correlates with the 

late HST of the global Ap3 of Hardenbol et al. (1998). In the marginal setting, the top of 
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this sequence records a prominent sea-level fall that correlate with the global sea-level 

fall at the top of Ap3.  

 

3rd-order Late Aptian Shu’aiba Sequence 4 

Late Aptian Shu'aiba sequence 4 formed only on the platform edge as a 

progradational wedge composed of S9 and S10, representing a forced regression system 

and is coeval to the Ap Apt4 of van Buchem et al. (2010). It also correlates with Ap4 of 

Hardenbol et al. (1998) and with Apt5 in Rohl and Ogg (1998). The orbital model shows 

eight stratons (300-293) correlate to this sequence, suggesting that more progradational 

sequences may occur basinward in the study area, similar to the nine prograding 

sequences interpreted from seismic data in nearby fields (Pierson et al., 2010; Yose et 

al., 2010). The stratigraphic record from the Pacific Guyots shows a maximum of two or 

three sequences correlated to the eight prograding sequences in the Arabian Plate. This 

suggests that these prograding sequences might be correlated regionally rather than 

globally, reflecting more local relative sea-level changes. The carbon isotope curve 

shows gradual upward depletion in this sequence indicated a cooling interval  may have 

followed the major positive enrichment associated with the OAE 1a.  

The global sequence Ap5 of Hardenbol et al. (1998) correlates to Apt9, Apt10 in 

the Pacific Guyots and to stratons 292-281. This sequence does not form in the Shu’aiba 

study interval here but may occur in the far eastern part of the Shu’aiba platform as 

small scale prograding wedges. The orbital cycles in Ap5 suggest a substantial glacio-

eustatic lowstand on the order of ~30 m sea-level drop (AL-Husseini and Matthews, 
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2010). This sea-level drop culminates to the top of Ap5 of Hardenbol et al. (1998) where 

the largest sea-level drop of the Aptian stage occurred (Haq and Schutter, 2005). The 

Pacific guyot also records a major sea-level drop just above Apt10 that correlates to the 

global sea-level curve. The Late Aptian unconformity at the top of the Shu’aiba 

Formation formed during this major sea-level drop, producing a major subaerial 

unconformity and karst features. The base of the Nahr-Umr Formation represents the 

latest Aptian transgression (Al-Husseini and Mathews, 2010) and correlates to Apt 6 of 

Hardenbol et al. (1998), Apt 12 of the Pacific guyots and the global sea-level curve of 

Haq and Schutter (2005). Nahr-Umr shale formed above the top Shu'aiba unconformity  

and record a widespread sea-level rise, possibly representing the meltdown of the Late 

Aptian glaciations (Al-Husseini and Mathews, 2010); and corresponding to an abrupt 

positive enrichment in the carbon isotope curve just beneath the Aptian/Albian 

boundary.  

 

Implication and Significance of Global Correlations 

 The global correlation presented above suggests that the Biyadh and Shu’aiba 

Formations records a strong influence of the 3rd-order global sea-level changes 

associated with changes in carbon isotope signature, ocean chemistry and global climate 

on the development of Biyadh and Shu’aiba platforms. This correlation suggests major 

differences in the sea-level magnitude are associated with changes in stratigraphic 

accumulation between the Barremian and the Aptian stages (Figure 27). The Barremian 

stage has lower amplitude sea-level fluctuations with relatively thinner sequences 
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compare to the Aptian stage that has higher amplitude sea-level fluctuations associated 

with thicker sequences and more pronounced condensed sections. Also, the Barremian 

stage is dominated by a small-scale parasequences (decimeter scale), whereas the Aptian 

stage is dominated by larger-scale parasequences (meter scale), except the Hawar unit. 

The Barremian parasequences of the Biyadh Formation have an average duration of 30-

40 ky, whereas the Aptian parasequences have an average duration of 100 ky. This 

suggests that the glacio-eustatic control of the eccentricity orbital cycles were not the 

main driving mechanism for both the Barremian and Aptian stages. The parasequences 

of the Barremian Biyadh Formation possibly reflect obliquity cycles, whereas the 

parasequences of the Aptian Shu'aiba Formation may reflect small-scale eccentricity. 

Therefore, the Barremian stage may have recorded a warmer global climate, compared 

to the Aptian that records cooling and warming intervals with possible glaciations 

recorded during the base (SB1), middle (SB7) and upper part of the Aptian. Thus, the 

Aptian stage is not a uniform greenhouse period. Instead, it is more transitional time 

interrupted by glacial events as suggested by stratigraphic records, sea-level fluctuations 

and isotope data.  

 

Implication and Significance for Reservoir Geology 

 High-resolution chronostratigraphic frameworks provide the best tool for 

distributing the petrophysical properties in the interwell space within a 3-D reservoir 

model (Lucia, 2007). Sequence stratigraphy including high-resolution cyclicity and 

facies distribution presented in this study will be integrated in future studies with 
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wireline logs, petrophysical and engineering data to define flow units and barriers within 

the reservoir. This detailed stratigraphic framework will have a significant impact on the 

simulation model, thus enhancing production and development plan.  

 The Biyadh Formation with its homoclinal low angle ramp platform can be easily 

integrated to wireline logs and petrophysical data in uncored wells to construct a 3-D 

geological model in the entire field, due to its sheet-like sequences and uniform facies 

distribution. The initial TST of the Biyadh Formation, which is the argillaceous 

mudstone "dense unit" at the base of the Biyadh Formation acts as a barrier between 

Biyadh reservoir and the underlying Bwiyab Formation. The following TST (S2) of the 

Biyadh Formation is dominated by an extensive mud-dominated facies with low 

reservoir quality. The HST (S3 and S4) within the Biyadh Formation is dominated by  

higher energy rudist peloidal grainstone/packstone facies, that are still sheet-like units 

and can be correlated with wireline logs in uncored wells. The high-frequency cycles 

within the HST are bounded by hardgrounds or tight exposure surfaces that well 

correlated for long distances. These surfaces are thin but they are tight and well-

cemented, thus may affect vertical fluid flow. Therefore, accurate mapping of these 

small scale cycles is important to characterize this unit.  

 The Hawar unit is very tight and dense unit and it acts as a major seal separating 

the Biyadh reservoir from Shu'aiba reservoir. The lower part of the Shu'aiba Formation 

is dominated by muddy low reservoir quality facies. However, dissolution of platy corals 

may develop good reservoir zones with intragranular porosity (Figure 6F).  The rudist 

buildups facies is dominated by porous high-energy facies, however, the top of the rudist 
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buildups (SB 7) is marked by subaerial surface along with cemented rudists facies. The 

stratigraphic correlation suggests that this surface is well correlated field wide, thus 

forming a baffle or barrier zone for vertical fluid flow. This zone is also accompanied by 

distinct high gamma ray signal that allow for correlation in uncored wells.  

 The interpretation of the prograding sequences on the shelf edge with clinoform 

geometries is very significant in determining reservoir continuity and reservoir layering 

scheme. Previous geological models used to connect layers across the platform edges as 

a layer-cake geometry, which means connecting two different chronstratigrahic units that 

are genetically different. The framework presented here more accurately defines the 

Upper Aptian wedges as prograding sequences that are onlapping onto the top 

unconformity and are not connecting to the previous Lower Aptian sequences. 

Moreover, the lower part of the prograding sequences is dominated by a lowstand 

argillaceous dense mudstone unit that probably acts as reservoir barriers, with possible 

different oil-water contacts. However, more integrated research with pressure data is 

required to prove these results. In addition, the interpretation of the Upper Aptian 

prograding sequences suggests that more prograding sequences may form basinward 

with the possibility of new reservoir exploration targets off structures controlled by 

stratigraphic traps. However, seismic data is needed to evaluate the spatial distribution 

and the extent of the prograding sequences.  
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Conclusions 

 A detailed high-resolution rock-based stratigraphic framework of the Lower 

Cretaceous (Barremian and Aptian) Biyadh and Shu'aiba Formations provides an 

updated stratigraphic and depositional framework for these units. This framework are  

developed from 55 cored wells, biostratigraphy and 26 carbon isotope curves, covering 

the entire Shu'aiba platform in one the most prolific giant carbonate reservoirs in the 

Middle East. The Late Barremian Biyadh Formation is composed of one 3rd-order 

composite sequence (~3 My), comprised of four high-frequency sequences (S1-S4). S1 

and S2 are the TST of the Barremian composite sequence and K60 is the composite 

MFS, occurring within S2. These sequences are composed predominantly of relatively 

deep subtidal mud-dominated Palorbitolina chalky wackestone/mudstone facies. S3 and 

S4 are the HST of the Barremian composite sequence and are composed of high-energy 

shallow water subtidal with Caprotinid rudist and peloidal grainstone facies. This 

sequence is capped by a regional subaerial boundary (SB1) recording a global sea level 

fall.  

 The entire Shu'aiba Formation formed a 2nd-order composite sequence (~ 7 My 

duration) composed of four 3rd-order sequences (~1-2 My) and ten HFS's (S1-S10; each 

~ 405 Ky - 1 My duration). S1 records the initial TST with the deposition of Hawar unit, 

followed by S2 that records the deepest water facies and the regional MFS (K70). S3 is 

the late TST of the Shu'aiba composite sequence and is characterized by the deposition 

of extensive Lithocodium aggregatum/coral facies associated with the onset of 

differentiated platform-to-basin settings with slight clinoform and backstepping 
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geometries. The 3rd-order sequence 2, consisting of S4-S6, records the onset of a well 

established platform-margin setting containing rudist buildup facies that changed toward 

the platform interior into lagoonal facies and transitioned basinward into fore-bank, 

slope and basinal settings with pronounced clinoform geometries. This sequence has a 

transgressive lag at its base dominated by Glossomyophorus rudists that deepen upward 

to the regional composite MFS (K80). This is followed by the higher energy bank-crest 

of in situ caprinid rudist rudstone facies that is capped by well-rounded rudist fragments 

deposited in beach environments followed by the development of exposure surface (SB 

7). S7 and S8 are dominated by shallow lagoonal peloidal milliolid packstone facies 

associated with local Agriopleura floatstone, representing the HST of the Shu'aiba 

composite sequence. 

 The newly identified Upper Aptian sequences S9 and S10 are recorded on the 

northern-block within prograding platform edge and slope settings that formed during a 

major forced regression. These sequences were identified on the basis of 

chemostratigraphic analysis calibrated with biostratigraphy. These sequences form a 

lowstand wedge of argillaceous wackestone facies that may act as a possible reservoir 

baffle zone, changing upward to high energy marginal facies of mixed rudist and 

stromatoporoid/coral facies. Regional correlation suggests that more prograding 

sequences likely formed basinward.  

 High-resolution maps of facies distribution were generated to define the 

depositional anatomy and reservoir facies distribution. These maps are crucial when 

integrated with petrophysical parameters to determine the 3-D reservoir model, and help 
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predict the uncertainty between the wells, thus enhancing the 3-D reservoir 

characterization. The Shu'aiba platform is divided into northern and southern blocks, 

each with their own distinctive facies distribution and depositional anatomies. The 

northern block records higher energy facies with grainstone shoals/channels developed 

in the platform interior, whereas the southern block has thicker Lithocodium aggregatum 

algal platform facies with relatively lower energy environments. The southern block has 

deeper lagoonal environments within the platform interior.  

A refined global correlation between the Arabian Plate and global stratigraphic 

records and global sea-level curves was generated on the basis of this study. This 

correlation strongly suggests a direct influence of the 3rd-order sea-level fluctuations in 

the Biyadh and Shu'aiba Formations. The Shu'aiba Formation records the perturbations 

of global carbon cycles associated with the nannoconids crisis and OAE1a. The global 

nannoconids crisis appears to be correlated with the deep chalky mudstone facies 

associated with the MFS in S2, that is coeval to the regional MFU (K70). The OAE1a 

with its distinctive carbon isotope values is coeval to the Lithocodium aggregatum facies 

of S3 and correlated to the TST of global sequence AP3. This correlation also suggests 

that Aptian HFS's were mainly controlled by glacio-eustatic sea-level changes and the 

long term eccentricity cycles (~ 405 Ky) were the main driving mechanism. The 

Barremian sequences record low magnitude sea-level changes with relatively thinner 

sequences compared to the Aptian. Moreover, the Barremian parasequences likely 

reflect obliquity (~ 40 Ky), whereas the Aptian parasequences are likely controlled by 

small scale eccentricity (~ 100 Ky) cycles. The Shu'aiba Formation records major 
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subaerial hiatus reflecting glacial intervals, interrupted by major flooding units reflecting 

global warming intervals. These changes in the stratigraphic records and sea-level 

magnitude between the Barremian and Aptian suggest a prevailed greenhouse period 

during the Barremian, changed rapidly into a transitional climate period in the Aptian 

interrupted by glacial events. 

 

 



 

CHAPTER III 

INTEGRATED HIGH-RESOLUTION CHEMOSTRATIGRAPHY AND FACIES-

BASED STRATIGRAPHIC ARCHITECTURE OF THE EARLY CRETACEOUS 

(APTIAN), SHU'AIBA FORMATION, SAUDI ARABIA 

 

Overview 

 

 High–resolution carbon isotope signatures were integrated with core descriptions 

and gamma ray logs and used as a correlation tool for better age control to refine the 

sequence stratigraphic framework of the Shu’aiba Formation in Saudi Arabia. The 

carbon isotope variations of the shallow carbonate Shu’aiba Formation correlate well 

with the Tethyan pelagic record and indicate an original marine C13 signature for the 

Early Cretaceous (Aptian) Shu’aiba Formation. Carbon isotope values of the Shu'aiba 

Formation ranges from 1.5 to 6‰ with minimal or no diagenetic effects. Oxygen isotope 

values range from -2.7 to -6.7‰, but were reset during diagenesis, and cannot be applied 

for chemostratigraphic analysis. The Shu’aiba strontium isotope records ranges from 

0.707356 to 0.707454 and differ slightly from the standard Aptian record due to 

diagenesis.  

 The Shu’aiba Formation platform is a large scale composite sequence (~7 My) 

composed of seven early Aptian high-frequency sequences and two additional late 

Aptian prograding sequences. Carbon isotope data were calibrated with core descriptions 

and gamma ray logs to construct two detail high-resolution stratigraphic cross sections. 
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Carbon isotope data help refine the internal stratigraphic architecture of the Shu’aiba 

Formation especially on the slope and open marine settings across the Lower/Upper 

Aptian boundary. The carbon isotope values of the Hawar “dense” unit in the base of 

Shu’aiba Formation record major depletion corresponding to the global dissociation of 

methane hydrates, followed by major positive excursion associated with the deposition 

of Lithocodium/Bacinella facies coeval with the global Oceanic Anoxic Event 1a (OAE 

1a). The rudist buildups on the platform commence with a value of approximately 4.5‰ 

in most wells and generally have a uniform carbon isotope trend, followed by gradual 

depletion to the top of Shu'aiba Formation. Although there are some variations in carbon 

isotope values associated with the lateral facies change from lagoon, margin, slope, open 

marine and basinal settings, carbon isotope trends are still similar and can be correlated 

field-wide. There is little evidence of meteoric diagenesis associated with the depletion 

of carbon isotope values. However, oxygen isotope records were possibly affected by 

meteoric diagenesis associated with subaerial exposure surfaces, but did not get affected 

by the late Aptian unconformity, despite the massive karstification observed in cores. 

The good correlation between the original carbon isotope fluctuations and the 3rd-order 

sequence framework of the Shu’aiba Formation fits well with the established carbon 

isotope curves that have been used as a proxy for global sea-level changes during the 

Early Cretaceous. This study also shows that small scale parasequences (5th order or 

higher) can be calibrated with carbon isotope curves, but they most likely represent 

relative sea-level changes with local effects rather than global signatures. Applications 

of high-resolution carbon isotope stratigraphy for the Shu’aiba Formation significantly 
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constrain the stratigraphic framework, and will lead to better geological and simulation 

models for reservoir characterization and development. 

 

Introduction 

 Carbon and oxygen isotope data have been used to trace the chemical 

compositions of the oceans through geologic history. The δ13C values are used to 

examine changes in the ratio of organic relative to inorganic carbon reservoirs in the 

crust. The δ18O values results from climate changes associated with glacial versus non-

glacial periods, temperature of water and diagenesis (Weissert and Lini, 1991; Jenkyns, 

1995; Weissert et al., 1998; Stoll and Schrag, 2000 and Erbacher et al,. 2002). Carbon 

isotope compositions of carbonate rocks can, therefore, be tied to biostratigraphy and 

chronostratigraphy, and used as a relative geochronologic tool for the geologic record. 

Carbon isotope data also can be used as a proxy for sea-level changes where 

transgressive systems tract and sea-level rise are associated with positive shifts of the 

global δ13C, and high stand systems tract and sea-level fall are associated with negative 

shifts of the global δ13C (Föllmi et al., 1994, 2006; Weissert et al., 1998). Several studies 

on the isotope stratigraphy of shallow carbonate platforms, however, suggest that 

positive and negative shifts of carbon and oxygen isotopes may not necessarily be 

related to the global carbon and oxygen isotope compositions of the oceans, but may 

reflect local diagenetic processes rather than global changes (Immenhauser et al., 2003; 

Xiong and Heckel, 1996; Patterson and Walter, 1994).  
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 The Lower Cretaceous (Aptian) Shu’aiba Formation in Saudi Arabia (Figures 28 

and 29) is a giant carbonate reservoir that was deposited in a shallow carbonate platform  

bordering an intrashelf basin (Aktas and Hughes, 1998; Hughes 2000; Al-Ghamdi and 

Read, 2010). The Shu’aiba Formation (Figure 30) is also one of the main oil producers 

in the United Arab Emirates (U.A.E) and Oman (Alsharhan and Nairn, 1986). A high-

resolution sequence stratigraphic framework was established to characterize the reservoir 

by providing the building blocks for reservoir modeling and simulation (Al-Ghamdi and 

Read, 2010). Without an accurate age control, however, the correlation of shelf margin 

to basin successions is difficult due to the lack of subaerial exposure surfaces and 

flooding surfaces in the open marine and deep water facies. Moreover, the limited 

resolution of biostratigraphic data makes it hard to accurately constrain the age model 

especially on the flanks of the platform where upper Aptian prograding sequences may 

exist (Al-Ghamdi and Read, 2010).  

 The Early Cretaceous (Aptian) provides one of the best records of carbon 

variations in the geological record (Weissert and Lini, 1991; Weissert et al., 1998; 

Föllmi et al., 1994; 2006; Vahrenkamp, 1996; 2010). The carbon isotope variations of 

the Early Cretaceous (Aptian) Shu'aiba Formation in the Arabian platform record high-

resolution carbon fluctuations of the southern Neo-Tethys Ocean, that due to the lack of 

diagenetic overprint and high sedimentation rate, can be correlated globally with the 

standard Tethys signature (Vahrenkamp, 1996 and 2010; Immenhauser et al., 2004). 

Vahrenkamp (1996 & 2010) used bulk carbon isotope data to correlate the Lower 

Cretaceous successions of the southern Tethys Ocean in the Arabian platform with the  
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Figure 28. Aptian paleogeographic map for the Arabian Plate showing the location of 
study area and the intrashelf basins. Modern plate boundaries are shown with red lines.  



 

 101

 
 
 

 

 

 

 

Figure 29. Base map of Shu'aiba platform showing two cross-section lines (A-A', B-B')
and wells used in this study.  
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Figure 30. Stratigraphic column of the Early Cretaceous strata in Saudi Arabia.  

 

 

 



 

pelagic northern Tethys records. He concluded that the similarity between the pelagic 

Tethyan isotope records and the Shu'aiba Formation isotope indicates global marine 

carbon isotope fluctuations affected both carbonate sediments at the same time 

resolution. The bulk carbon isotope data from the Shu'aiba Formation in the U.A.E and 

Oman was interpreted to represent an original ocean signature with only minor or no 

diagenetic effects (Vahrenkamp 1996, 2010). However, the relationship between the 

depositional settings and high-resolution parasequences with carbon isotope values was 

not investigated.  

 The objective of this study is to integrate high-resolution carbon isotope data 

with the core-based sequence stratigraphic framework for better age control of the 

Shu'aiba Formation and to refine the stratigraphic correlation especially on the platform 

edge and open marine setting. High-resolution carbon isotope data is also linked to the 

small scale cycles (5th-order parasequences) to test the hypothesis of using the carbon 

isotope curves as a proxy of sea-level changes. This paper will also discuss the 

relationship between the complex facies architecture of the Shu'aiba Formation and the 

carbon isotope values and will investigate the possible influence of variable depositional 

environments. The northern Tethys pelagic carbon isotope record of the Early 

Cretaceous (Föllmi et al., 2006) will be used in this study as the standard curve for 

correlation with the shallow carbonate Shu'aiba Formation.  
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Methodology 

 Core materials from 21 wells with an average thickness of 137 m (450 ft) each, 

housed in Saudi Aramco core lab in Dhahran, Saudi Arabia, were described using a 

binocular microscope to identify texture, fabric, grain size and fossil assemblages. Thin 

sections were also analyzed to identify microfacies to help define the environment of 

deposition. Facies, depositional environments and sequence stratigraphy were 

interpreted for each well. The interpreted core descriptions were depth shifted and tied to 

gamma ray logs.  Sequence boundaries, maximum flooding surfaces and parasequences 

were then picked for each well. Carbon and oxygen isotope sample (1 per meter) were 

collected as whole-rock samples from the muddy matrix avoiding cements and skeletal 

shells or fragments.. Higher-resolution sampling (< 0.5m spacing) for better isotope 

resolution was performed at critical stratigraphic markers. A total of 2,397 samples were 

collected from 21 wells (Figure 29) representing all facies, sequences and depositional 

environments of the Shu'aiba Formation. The selection of these wells was based on the 

core quality and the representation of different environmental settings. These data were 

analyzed for carbon and oxygen isotopes at the isotope lab in the University of Ottawa, 

Canada. Isotope data of wells F and I are from previous Saudi Aramco internal studies 

(Lindsay and Swart, 2002; Cantrell et al., 1999). Strontium isotope data were analyzed 

from thirty two samples of whole-rock micrite matrix from well-M on the platform 

wedge to delineate the age of the Shu'aiba Formation, and especially to define the 

position of the Lower/Upper Aptian boundary. The use of micrite mud for strontium 

isotopes analysis was mainly due to the lack of continuous bivalve-or rudist-bearing 
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zones in the platform edge where Upper Aptian sequences may occur. Carbon isotope 

curves were plotted against depth with the datum being the high gamma ray marker at 

the base of Shu'aiba Formation. Each curve was tied to core descriptions and gamma ray 

logs, so that carbon isotope samples correspond to their stratigraphic markers. This is a 

critical step in order to link the stratigraphic boundaries to the carbon isotope values to 

evaluate the relationship between sea-level changes and the carbon isotope 

compositions. 

 

Geological Setting 

 During the Aptian time, the shallow carbonate platform of the Arabian shelf was 

part of the large Arabian Plate that developed a passive margin facing the Neo-Tethys 

Ocean (Figure 28). The Arabian Plate was located several degrees south of the equator 

and as it separated from Africa, it moved toward the Neo-Tethys Ocean forming passive 

margins on its northern, northeastern, and southeastern margins (Sharland et al., 2001). 

Three intrashelf basins were developed during this time as a result of Neoproterozoic-

Early Cambrian Hormuz salt movements. These intrashelf basins were separated from 

the Neo-Tethys Ocean by a carbonate barrier system (Sharland et al., 2001). The rudist 

buildups of the Shu'aiba Formation formed on the edge of the Bab intra-shelf basin and 

their positions were controlled by subtle reactivation of deep-seated fault systems 

(Hughes 2000; Al-Ghamdi and Read, 2010).  

The Shu'aiba Formation is a prolific oil reservoir that extends regionally across 

the entire Arabian shelf. It is a large scale composite sequence with a total duration of 
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about 7 My covering the interval form earliest early Aptian at the base to the late Aptian 

on the platform edge (van Buchem et al., 2010). On the platform, a regional 

unconformity was developed limiting the duration to about 5 My. The Shu'aiba 

Formation was sealed by the Nahr Umr Shale which represents the lowermost part of the 

Albian Wasia Formation (Figure 30). 

 The Shu'aiba platform is a NE-trending, doubly plunging anticline and is divided 

into northern and southern blocks by an EW-trending fault zone that formed an 

intraplatform depression between the two blocks (Figure 29). This intraplatform 

depression was created by syn-depositional faulting that appears to have played a major 

role in the development of the Shu'aiba Formation stratigraphic geometry and facies 

architecture (Al-Ghamdi and Read, 2010).  

 

Stratigraphic Framework 

 The Shu'aiba Formation (Figure 31) was divided into seven high-frequency 

sequences that are correlated throughout the field (Al-Ghamdi and Read, 2010). Figure 

31 summarizes the evolution of these sequences along with their major depositional 

facies. Sequences 1 and 2 are sheet-like units that were deposited on a carbonate ramp 

and are equivalent to the Lower Aptian sequences 1 and 2 (AP Apt 1 and 2) in van 

Buchum et al., (2010). Sequences 3 to 7 record the onset of rudist buildups with the 

development of the intrashelf basin on the eastern side of the field. Sequences 3 to 7 on 

the platform are equivalent to the third-order Lower Aptian sequence 3 (AP Apt 3) in 

van Buchum et al., (2010). In this study, two additional sequences 8 and 9 were
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Figure 31. Two-dim
associations. Shu'
 

ensional depositional model showing the evolution of the Shu'aiba platform associated with major facies 
aiba platform is a composite sequence with 7 sequences in lower Aptian and 2 sequences in upper Aptian. 



 

identified on the flanks of the platforms based on isotope curves and the associated 

facies changes (Figure 31) and are equivalent to the Upper Aptian sequences 4a and 4b 

(AP Apt 4a and AP Apt 4b) in van Buchum et al., (2010), Yose et al. (2010) and 

Vahrenkamp, (2010). The Shu'aiba Formation platform evolved from a shallow 

carbonate algal platform in the earliest Aptian with the initial Transgressive Systems 

Tract (TST) as sequence 1 (S1) and the deposition of the dense argillaceous 

Palorbitolina packstone of Biyadh “dense” unit (equivalent to Hawar unit in the U.A.E 

and Oman). This was followed by deposition of oncoidal Lithocodium/Bacinella 

packstone of basal Shu'aiba Formation that represents the High Stand Systems Tract 

(HST) of S1. Sequence 2 started with a major flooding and deposition of deep chalky 

planktonic mudstone (Hedbergella zone) representing the regional maximum flooding 

unit (MFU) of the lower Aptian Shu'aiba succession (Al-Ghamdi and Read, 2010). This 

maximum flooding unit is equivalent to the updated K70 maximum flooding surface 

(MFS) of Davis et al., (2002). A thick and extensive Lithocodium aggregatum facies 

associated with platy corals and Palorbitolina wackestone developed above the MFU 

and represents the HST of sequence 2. At this time, a subtle clinoform of the 

Lithocodium facies developed along the margin of the platform (Figure 31). Sequence 3 

records the onset of rudist buildups and the formation of intrashelf basin on the eastern 

side of the field. Tectonic activity along a fault zone created a raised area upon which the 

rudists established a rimmed carbonated platform (Aktas and Hughes, 1998; Al-Ghamdi 

and Read, 2010). On the platform, sequences 3 to 6 are composed of skeletal rudist bank 

facies that are separated by back-bank and lagoonal settings on the western side from 
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fore-bank, slope and open marine settings on the eastern side with major clinoforms 

prograding toward the basin. The platform interiors are characterized by peloidal 

orbitolinid packstone facies and local rudist mounds. The rudist buildups formed 

shallowing upward sequences that are capped either by well-rounded rudist rudstone 

deposited in a beach environment or a local exposure surface at the top of sequence 6. 

Sequence 7 records a slight progradation of the rudist buildups with fine peloidal-

miliolids packstone facies on the back-bank and detrital rudist packstone on the fore-

bank and slope. Sequences 8 and 9 are the Upper Aptian new defined sequences that 

only been detected on the flanks of the northern block. These represent a time when the 

Shu'aiba margin was subaerially exposed and karsted during development of a regional 

unconformity and a global seal-level fall at the end of the Aptian. Sequences 8 and 9 

represent major basinward progradation corresponding to a 3rd-order sea-level fall (Haq 

and Al-Qahtani, 2005). These two prograding sequences have distinctive facies 

characteristics that are slightly different than the Lower Aptian sequences. They start 

with a dense argillaceous mudstone and shallow up to a reefal facies of stromatoporoid, 

massive coral heads and rudists. Rudists in the upper Aptian sequences are composed 

mainly of the Horiopleura rudists that extended from early to late Aptian (Skeleton, 2008 

Saudi Aramco written report). It is possible that more prograding sequences exist further 

east toward the intrashelf basin similar to the prograding sequences described from 

seismic data (Yose et al., 2006; 2010). The Bab intrashelf basin facies is present at Well-

P and displays a truncation and onlapping geometry against the Shu'aiba Formation shelf 

margin. It is the last stage infill of mixed siliciclastic and carbonate sediment 
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representing the Lowstand Systems Tract (LST) of an additional sequence in the latest 

Aptian. 

 

Chemostratigraphy 

General Results 

 A type log from Well-M with its stable isotope data and strontium isotope data 

were plotted and calibrated against the core description and gamma ray logs (Figure 32). 

This well was selected as a type log, because of its good core condition and its 

penetration of the Lower and Upper Aptian sequences. The carbon isotope values in this 

well show strong variation associated with sequence boundaries picked from cores. The 

Oxygen isotope curve shows poor correlation with sequence boundaries and more 

uniform pattern with values around -4‰. However, at some stratigraphic markers, such 

as the contact between the Hawar unit and basal Shu'aiba Formation, δ18O values shows 

abrupt depletion from -4‰ to -4.9‰ that gradually enriched and reach -4‰ at SB3 

(Figure 32). The lack of systematic correlation between δ13C and δ18O is commonly used 

as evidence for original carbon isotope composition with little or no diagenetic 

alterations (Glumac and Walker, 1998). All carbon and oxygen isotope data were plotted 

on one diagram with samples color coded for different facies (Figure 33). The carbon 

isotope values of Shu’aiba Formation range from 1.5 to 6.1‰. However, these values are 

higher than the standard pelagic record of northern Tethys that range from 1.5 to 4‰ 

(Föllmi et al., 1994). Oxygen isotopes range from -2.7 to -6.7‰ and are likely to be less 

significant than carbon isotopes in chemostratigraphic analysis. This is due to the greater  
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Figure 32. Type well (M) showing composite isotope data calibrated with core 
descriptions and gamma ray logs. Aptian sequences are shown in red. Whole-rock 
Strontium isotope data is plotted against core description and showing pronounced 
changes at the base of Shu'aiba and at the Lower/Upper Aptian boundary.  
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Figure 33. Carbon versus oxygen isotope plots from all 21 wells. The different colors 
and symbols represent different facies defined from cores and thin section analysis. 
General interpretations and trends are indicated by circles and arrows.  
 

 

 



 

reservoir of oxygen in water (compared with carbon) that exchanges with the carbonate 

rocks and resets oxygen during diagenesis. The highest carbon isotope values are 

recorded in the deep lagoonal setting (Well-J) with a maximum value of 6.1‰ (Figure 

33). Platform-margin rudist facies have relatively higher values compared to the 

standard Tethyan realm with average values ranging from 4.5 to 5‰. Carbon isotope 

values increase from platform interior to slope and open marine settings by about 1‰ 

(Figure 33). However, Well-P in the intrashelf basin has the lowest values ranging only 

from 1.5 to 4.5‰ and are very similar to the standard Tethyan curve. 

 Strontium isotope values of the Shu’aiba Formation are from the micrite matrix 

at Well-M on the eastern flank of the platform. The 87Sr/86Sr values range from 0.707356 

in the middle part to 0.707454 in the upper most part (Figure 32). The 87Sr/86Sr of the 

Shu'aiba Formation begins at the Hawar unit with a value slightly over 0.70740 and then 

gradually declines to 0.70735 forming a trough associated with the lower Aptian 

sequences 4 - 7. 87Sr/86Sr values then abruptly rises to 0.70740 and rises to 0.70745 near 

the top of the section. These high values are associated with the upper/lower Aptian 

boundary that was picked from core description and carbon isotope data. The strontium 

isotope data from whole rock micrite samples do not provide an accurate age due to 

diagenetic effects during the recrystallization of micrite matrix (Denison et al., 2003). 

However, the general similarity in the pattern with slightly different values between the 

Shu'aiba records and Aptian records from deep sea drilling (Bralower et al., 1997), 

suggests that the Shu'aiba Formation record may still preserve some global ocean 

signature. A major decline of 87Sr/86Sr values (the trough) during the early Aptian was 
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mainly due to the increase in ocean-crust production and sea-floor spreading that 

accompanied the formation of submarine igneous province (Bralower et al., 1997; 

Denison et al., 2003; Jenkens, 2003).  

 

Carbon Isotope Record 

 The Shu'aiba Formation carbon isotope curves of the platform-to-basin and their 

gamma ray logs were correlated with the pelagic Tethys curve (Figure 34).  Two detailed 

core-based sequence stratigraphic cross sections integrated with carbon isotope curves 

show: a west-east dip section in the northern block that has a transition from platform 

interior, margin, slope and basin (Figures 28 and 35) and a north-south strike section 

across the intraplatform depression between the southern and northern blocks (Figures 

28; 36A and 36B ).  

The late Barremian Biyadh Formation underneath the Shu’aiba Formation 

records a gradual decrease of carbon isotope values from 4.5 to 2.5‰ (Figure 34) 

associated with the major third-order sequence boundary (SB 1). The Biyadh "dense" 

unit (equivalent to the Hawar unit in the U.A.E and Oman) records a major decrease of 

carbon isotope values. The onset of major positive carbon excursion in the lower part of 

the Shu’aiba Formation is associated with the TST of sequence 2 with its chalky 

Hedbergella mudstone facies that shallow up to Palorbitolina and Lithocodium 

wackestone facies. This positive excursion associated with the Lithocodium aggregatum 

facies is coeval with the global Oceanic Anoxic Event OAE 1a in the early Aptian 

(Weissert and Lini, 1991; Föllmi et al., 1994; Weissert et al., 1998; Vahrenkamp, 2010). 
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Aggrading rudist bank facies with skeletal rudstone/grainstone have relatively uniform 

isotopic composition that ranges from 4.5 to 5‰. The upper part of the Shu’aiba 

Formation has a slightly negative isotope trend associated with a sea level fall during the 

HST. The lower/upper Aptian boundary was identified on the basis of isotopes and 

facies changes on the northeastern and northwestern sides of the field and was correlated 

with the Tethyan isotope curves (Figure 34). This boundary corresponds to the 

switchover from a negative to positive trend in carbon isotope values and a major shift in 

facies from slope derived fine skeletal packstone to relatively deeper high density dark 

colored argillaceous mudstone with high gamma ray values. The similarity in the carbon 

isotope pattern of the Shu’aiba Formation and the global Tethyan pelagic curve suggests 

that the Shu'aiba Formation records an original signature of the Early Cretaceous ocean 

composition (Vahrenkamp, 1996; 2010; Immenhauser et al., 2004). However, 

sedimentation rates are quite different between the shallow carbonate Shu’aiba 

Formation and the pelagic curve, especially at the platform margins where extensive 

rudist buildups developed during high sedimentation rate. This higher sedimentation rate 

resulted in poorly cycles buildups with almost uniform carbon trend within the marginal 

middle Shu’aiba Formation. This difference in sedimentation rates may explain the 

absence of some sequences with their carbon isotope variations between the shallow 

carbonate Shu'aiba Formation and deep pelagic Tethyan record. These variations must 

be taking into account when applying the chemostratigraphic analysis.  
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Figure 34. Type east-west chronostratigraphic cross section of the Shu'aiba Formation correlating gamma ray logs and δ13C 
isotope curves for five wells versus the Tethyan pelagic curve of Föllmi et al. (2006). Major sequence boundaries are shown in 
red. The purple shaded zone is the Lithocodium algal platform facies that corresponds to major global positive excursion in the 
early Aptian that is related to Oceanic Anoxic Event 1a. Upper Aptian prograding sequences are shown in orange and green. 
Black stars in well-H indicate early Aptian rudist caprinid Offneria and caprotinid Agriopleura. Red star indicates late Aptian 
rudist Horiopleura of the Polyconitidae family, while black stars indicate early Aptian rudist Caprinid Offneria below SB6 and 
Caprotinid Agriopleura above SB6.  
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Figure 35. Integrated west-east cross section showing high-resolution stratigraphic framework, gamma ray logs and δ13C 
isotope curves from platform to basin transition. The prograding Upper Aptian sequences occurred on the eastern platform 
edge clinoforming toward the basin. Yellow stars indicate the nannofossil data of late Aptian age in Well-O and late Aptian 
rudist in Well-M. Blue star indicates late Aptian rudist in Well M. Black stars indicate early Aptian rudists in Wells H and K.  
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Figure 36A. Integrated north-south strike trend cross section. The intraplatform depression occurs in the middle of the section 
at Well-F. The northern and southern blocks are shown with the top Shu'aiba Formation being the datum between the two 
blocks. Upper Aptian sequences also occur on the northwestern side of the field at Well-T.  
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Figure 36B. Legend, symbols and color codes of lithofacies used in the above cross sections.  



 

Oxygen Isotope Record 

 Although the Shu’aiba Formation oxygen isotope record has been reset during 

diagenesis, a general correlation between oxygen isotope and some sequence boundaries 

occurred, especially on the shelf margin settings (Figure 37). This is because the 

marginal setting is more susceptible to diagenesis than the slope and open marine 

settings, thus resulting a meteoric diagenesis effects on oxygen isotope record. The 

contact between the Biyadh Formation and the overlain Hawar unit at SB 1 coincide 

with a sharp increase in δ18O values from -4.9‰ to -4.1‰ associated with SB 1 (Figure 

37). The δ18O of Hawar unit is relatively enriched with values reaching -4‰. The 

contact between the Hawar unit and the overlain basal Shu’aiba Formation is associated 

with a sharp δ18O deletion of approximately 1‰. This depletion is also coincident with 

the onset of the OAE 1a and the deposition of the Lithocodium/Bacinella facies. The 

contact between the Lithocodium/Bacinella facies and the overlain rudist facies at SB3 is 

marked by the abrupt increase of δ18O from ~ -4.2‰ to -3.45‰ associated with the onset 

of rudist buildups (e.g Well H) (Figure 37). The rudist buildups of sequences 3 – 6 have 

generally uniform trend, but with minor depletion of δ18O and a value range from -4.5 

to -5‰. At top of sequence 6, however a pronounced depletion of δ18O (~2‰) occurred, 

associated with the deposition of the shallowest rounded rudist rudstone of beach 

environment and local exposure surfaces that capped the rudist facies (yellow zone) 

(Figure 9). This depletion was possibly resulted from the influence of meteoric water 

associated with SB 6 marking the end of the rudist buildup facies. Carbon isotope values 

were not affected much at this surface, but still showing some minor depletion at this  
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Figure 37. Correlation of oxygen isotope curves from several wells in the shelf-marginal setting showing major sequence 
boundaries. The yellow zone beneath SB6 shows the depletion in oxygen isotope curves due to the effects of meteoric 
diagenesis. Oxygen isotope curves show opposite trend at top Shu’aiba associated with the late Aptian Unconformity.  
 



 

surface (Figure 8B, Well B). The upper part of the Shu'aiba Formation (sequences 6 and 

7) has an overall increase of δ18O from ~ -6‰ to ~ -4‰ at top of the Shu’aiba 

Formation. This enrichment of δ18O is contradict with the core description data that 

show massive karsted surface on top of the Shu'aiba Formation associated with the 

development of late Aptian Unconformity. This contradicts between the enrichment of 

δ18O and the karsted unconformity at the top of the Shu'aiba Formation is enigmatic and 

need further analysis to explain.  

 

Sequence 1 

 Sequence boundary 1 (SB1) is a major surface (Figure 38) that separates the 

shallow subtidal caprotinid rudist rudstone/grainstone of the Biyadh Formation from the 

dense argillaceous Palorbitolina packstone facies of the overlying Hawar unit. This 

initial transgression corresponds to the abrupt carbon isotope depletion from 3‰ in 

Biyadh Formation to 2‰ or less associated with the deposition of dark-gray highly 

argillaceous Palorbitolina packstone (Figure 34). This depletion increases upward and 

reaches its minimum value of 1.5‰ at high gamma ray marker associated with a thin 

bed of argillaceous shale in the basal Shu’aiba Formation (Figure 38B). The fluctuation 

of δ13C within the Hawar unit (Figures 35 and 36) is correlated with higher-order cycles 

picked from cores, where the enriched spike of about 3.5‰ occurred in the clean, chalky 

mudstone that represent the MFS of sequence 1 (see Wells H, M, P and F).  

 The HST of sequence 1 has a sharp contact where the facies change from 

argillaceous Palorbitolina packstone to oncoidal lithocodium/Bacinnilla packstone 
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(Figure 38B) associated with an increase of the carbon isotope values of about 0.5‰. 

This minor increase in δ13C values of this facies marks the onset of the following high 

magnitude positive enrichment 13C trend in the Early Cretaceous period associated with 

the first Oceanic Anoxic Event series (OAE 1a). The small fluctuations of carbon values 

in this unit also are correlated with the higher frequency parasequences (Figure 36A), 

with minor carbon enrichment corresponding to flooding surfaces and minor depletion 

corresponding to the shallow water grainy facies (Well H).  

 

Sequence 2 

 Sequence 2 started with a sea-level rise associated with the deposition of chalky 

planktonic (Hedbergella) mudstone that likely represents the maximum flooding unit 

(MFU) of the Shu'aiba Formation composite sequence (Al-Ghamdi and Read, 2010). 

Hedbergellids planktonic forams have been recorded within the black shale Tethyan 

deposits in Italy (Luciani et al., 2006). This may suggest that this deep water facies in the 

Shu'aiba Formation records the onset of the coeval interval to the OAE 1a black shale 

interval of the pelagic Tethyes record. A major enrichment of carbon isotope values 

approximately 2‰ to 3‰ is associated with this flooding event and the following HST 

of Lithocodium aggregatum facies (Figures 35 and 36). The HST of this sequence has 

extensive Lithocodium aggregatum, platy corals and Palorbitolina wackestone facies 

that also records a continuous gradual increase in carbon values to about 4.5‰ at the top  
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Figure 38. Core sample photographs of some important boundaries and facies. The 
yellow scale bar represents 2 cm. (A) sequence boundary 1 (SB1) separates the lower 
shallow peloidal skeletal grainstone of Biyadh Formation from the overlying 
argillaceous Palorbitolina packstone of Biyadh "dense" unit (or Hawar unit). (B) major 
contact at basal Shu'aiba Formation separating the underlying argillaceous shale at top of 
Hawar unit (used as stratigraphic datum) and the overlying light-colored 
Lithocodium/Bacinella oncoidal packstone. (C) Lithocodium Aggregatum facies form as 
extensive mounds within the HST of sequence 2. This Lithocodium is coeval to the black 
shale deposited in the deep pelagic setting of the northern Tethys Ocean. (D) 
Lower/Upper Aptian contact (dashed line) separating the underlying fine skeletal 
peloidal packstone and the overlying argillaceous mudstone. It occurs on the slope and 
platform edge as a correlative conformity. (E) Horiopleura type rudist in upper Aptian 
sequences, extends their age from Aptian to the Lower Albian. (F) dark argillaceous 
mudstone/wackestone of deep lagoonal environment, which records the highest carbon 
isotopic values in all Shu'aiba Formation data.  
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of this sequence. This Lithocodium aggregatum facies is very distinctive in its 

composition and morphology (Figure 38C) and also is coeval to the black shale that 

formed during OAE 1a in the northern Tethys pelagic deposits of southern Europe 

(Immenhauser et al., 2005). The gradual long-term increase of the carbon isotope values 

is interrupted by several minor depletion events, similar to the four reversal trends 

described by Vahrenkamp (2010). These minor depletion trends are correlated with the 

minor flooding events associated with high frequency-cycles within the Lithocodium 

facies.  

Sequences 3 - 7 

 Sequence 3 marks the end of the positive 13C excursion associated with the onset 

of thick, stacked rudist buildups within the middle part of Shu'aiba Formation with their 

uniform carbon isotope trend. The boundary between the Lithocodium platform of 

sequence 2 and the rudist buildups of sequence 3 corresponds to the δ13C value of 4.5‰. 

This value is well correlated from platform to slope and basin as shown in Wells H, M 

and N (Figure 35). The good lateral correlation from margin to basin with almost a 

constant value of  4.5‰ at sequence boundary 3 suggests that the δ13C at this surface 

represents a significant chronostratigraphic time marker. Sequences 4, 5 and 6 on the 

platform are dominated by constant high sedimentation rate of the rudist buildups, 

having uniform δ13C values ranging from 4.5 to 5‰ with nearly constant values of 5‰. 

However, toward the slope and open marine settings (e.g Wells M, N and Q), carbon 

values increase to more than 5‰. Moreover, the deep lagoonal setting (e.g Wells J and 

A) have the highest carbon isotopic values reaching its maximum of 6.1‰ in sequences 
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5 and 6. The sequence boundary 6 (SB 6) marks the termination of the rudist buildups 

facies with local subaerial exposure associated with oxidized clay materials developed at 

this surface (e.g Wells B and S) (Al-Ghamdi and Read, 2010). However, no concomitant 

carbon isotope depletion occurs here. Oxygen isotope records, on the other hand show 

significant depletion at this sequence boundary (Figure 37). Sequences 6 and 7 record a 

gradual decrease in carbon values from 5 to 4‰ at the top of Shu'aiba Formation where 

it is capped by the late Aptian unconformity. However, this gradual depletion is cyclic in 

nature and is not related to the influence of meteoric water beneath the unconformity.  

 

Sequences 8 and 9 

 Newly identified sequences 8 and 9 are sequences and they only formed on the 

flanks of the northern block, as clinoformal sequences prograding toward the basin while 

the platform top was exposed and eroded by the late Aptian Unconformity (Figures 34 

and 35) (Wells M, N, O & P). These two sequences are Upper Aptian in age and have 

distinctive facies characteristics and biota. Each has a base of dense argillaceous 

mudstone as a TST that shallow upward to stromatoporoids and rudist reefal facies in the 

HST (Wells M, N, O and T) (Figure 38D). The first occurrence of the nannofossill 

Lithraphidites houghtonii in Well-O is late Aptian (Varol, 1993, Saudi Aramco internal 

report). This paleontological data is calibrated with sequence stratigraphy, facies 

stacking patterns and isotope curves to interpret the prograding sequences in nearby 

wells. Rudists in sequences 8 and 9 are different than the lower Aptian rudists. Whereas, 

Lower Aptian rudists of sequences 3-7 are mainly caprinids in the shallow water bank-
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crest settings or caprotinids in the back-bank or shallow lagoonal inner ramp setting 

(Figure 38E), the rudists in the upper Aptian sequences are Horiopleura of the 

Polyconitidae family (Skelton, 2008, Saudi Aramco internal report). The range of 

Horiopleura rudists extends from the Aptian to the lower Albian (Skelton and Masse, 

2000).  

 It is possible that even more prograding sequences may have formed prograding 

into the basin similar to those that are interpreted from seismic data in the U.A.E (Yose 

et al., 2010). The Lower/Upper Aptian boundary marks a major change in facies from 

fine skeletal and peloidial packstone to dark argillaceous mudstone associated with 

increase in carbon isotope data of about 0.5 to 1.5‰. This change in δ13C is similar in 

pattern but smaller in magnitude than the standard Tethyan curve (Wells M, N and P on 

the eastern flank). However, Well J on the western flank shows a strong depletion of 2‰ 

followed by an increase of 1.5‰ at the Lower/Upper Aptian boundary similar in pattern 

and magnitude with the pelagic Tethys curve (Figures 34 and 35).  

 

Discussion 

Isotopes versus Depositional Facies  

 The relationship between isotopic composition and facies is critical when 

evaluating chemostratigraphic correlations, as a strong correlation between isotope 

values and depositional facies may not indicate an original ocean signature (Kaufman 

and Knoll, 1995). To analyze the relationship between depositional facies and isotope 

values, a plot of all carbon and oxygen isotope data (Figure 33) associated with the 
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major facies of the Shu'aiba Formation was plotted. Shu'aiba Formation δ18O values 

range from -2.7 to -6.7‰, whereas δ13C ranges from 1.5 to 6‰. The Shu'aiba Formation 

δ18O is generally more depleted than the proposed Early Cretaceous Ocean value, which 

is about -3‰ (Lohmann, 1988). This depletion along with the general lack of variation 

in the δ18O values suggests diagenetically altered values, making them unreliable for 

chemostratigraphic correlations. Carbon isotope values on the other hand have larger 

variations associated with the evolution of Shu'aiba Formation platform and sequence 

stratigraphic architecture.  

 The following are brief discussions of the main Shu'aiba lithofacies that plotted 

in Figure 33 and their isotope signatures:  

 

Hawar Unit and Lithocodium/Bacinella Facies 

 The most depleted δ13C values (1.5‰) occur within the dark argillaceous 

Palorbitolina packstone within the Hawar unit. This depletion is corresponding to global 

methane hydrates in the earliest lower Aptian (e.g. Jenkyns, 1995; Weissert et al., 1998; 

Föllmi et al., 1994, 2006; Jahren et al., 2001; Vahrenkamp, 2010). The early Aptian 

nannoconid crisis defined from the Tethyan pelagic sediments (Luciani et al., 204) is 

possibly coeval to the Hawar unit, associated with the initial TST of Shu'aiba platform 

and a possible warming event during the earliest early Aptian (Föllmi et al., 1994; 

Jenkyns, 2003). The nannoconid crisis was associated with a reduction in calcification, 

due to the high atmospheric CO2 just before the OAE 1a (Luciani et al., 2004). The 

higher values in this facies (> 3‰) is corresponding to the low gamma ray, white chalky 
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mudstone within the Hawar unit that represent the MFU of sequence 1. The 

Lithocodium/Bacinella facies (purple) associated with sequence 2 of the lower Shu'aiba 

Formation have a major increase in δ13C and are coeval with the global OAE 1a. This 

large increase in δ13C is one of the major carbon enrichments of the Cretaceous Period 

and is related to a rise in inorganic carbon as a result of increased organic carbon burial 

in ocean black shale during the early Aptian Oceanic Anoxic Event OAE 1a (e.g. 

Scholle and Arthur, 1980; Jenkyns, 1995; Weissert and Lini, 1991; Weissert et al., 1998; 

Föllmi et al., 1994, 2006).  

 

Rudist Buildup Facies 

 The rudist buildups facies (both caprinid and caprotinid types) are shown in red 

(Figure 33) with most δ13C values ranging from 4 to 5‰. The rudist facies that plot 

below 4‰ are interpreted to either have undergone minor diagenesis (e.g Well-F), or 

they represent local Agriopleura rudist buildups that formed in the upper part of Shu'aiba 

Formation and are associated with the general depletion of carbon (Figures 35 and 36) in 

the upper Shu'aiba sequences (e.g S6 and S7 in Wells J and H). The large variations in 

δ18O values of this facies possibly indicate influence of meteoric diagenesis associated 

with local subaerial exposure, especially on the shallow bank-crest settings (Figure 37).  

 

Shallow Lagoonal Facies 

 The shallow lagoonal facies (light blue) shows an overlap with the rudist facies 

isotope values, but with slightly broader clustering (Figure 33). The overlap of lagoonal 
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facies with rudist facies indicates that the platform interior values are time equivalent to 

the surrounding rudist facies (e.g S6 in Wells H and S) (Figure 36A).  

 

Deep Lagoon Facies 

 The deep lagoonal facies (dark blue) have the highest carbon isotope values with 

over 6‰ recorded at Well-J on the northwestern flank of the field (Figure 35). Well-A 

on the southeastern flank has a similar carbon trend (Figure 36A). This carbon 

enrichment is associated with the black laminated wackestone/mudstone facies only 

recorded in these two wells (Figure 37F). Gamma ray signals of this facies have higher 

values possibly associated with higher Uranium content and organic-rich mudstone. 

Similar heavy isotope values were recorded in the inner platform of Bu-Hasa field, 

representing isolated ponds formed under partially anoxic conditions (Vahrenkamp, 

2010; Amthor et al., 2010; Yose et al., 2010). The partial anoxia explains the withdrawal 

of light carbon by the organic matter, resulting in heavier carbon isotope values in the 

inorganic carbonate (Vahrenkamp, 2010).  

 

Slope and Shallow Open Marine Facies 

 Although the slope and open marine facies (light and dark green), have some 

overlap with the rudist facies, the majority of these data have higher δ13C and δ18O 

values than the rudist buildups (Figure 33). Their δ13C values range from 5 to 6‰ and is 

associated with slight enrichment of δ18O from -4 to -3.5‰. Variations in isotope trends 

from the modern Bahamas and Florida platforms indicate the platform seawater may be 
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depleted in δ13C by 4‰ relative to the open-ocean water (Patterson and Walter, 1994). 

This depletion occurs as a result of light CO2 input from respiration of organic matter 

due to the aging of seawater on semi-restricted platforms and also to seasonal effects. 

The depletion of δ13C from slope and shallow open marine to the rudist buildups in 

Shu'aiba Formation however, is only 1‰ at maximum and they show similar isotope 

trends as shown between Wells H and M. Therefore, the Bahamas modern platform 

example may not be applicable to the ancient Shu'aiba Formation platform. It is possible 

that the small depletion in rudist buildups is related to the alteration of the muddy matrix 

within the rudist facies, where the matrix is commonly composed of cemented silt-sized 

rudist fragments.  

 

Deep Basinal Facies 

The isotope record of the deep intrashelf basin (black) in Well-P has generally lower 13C 

values than both the rudist buildups and the slope and shallow open marine facies 

(Figure 33). However, the carbon isotope curve of the intrashelf basin is close in 

magnitude and pattern to the Tethyan pelagic curve (Figure 34). The oxygen isotope 

values in the basinal section also are close to the values of Cretaceous ocean water 

(Figure 33). A similar trend of increased values in the shallow carbonate values relative 

to the basinal values was observed in the Arabian Gulf region and interpreted as 

resulting from the isolation of shallow water from the circulation of marine water 

(Vahrenkamp, 1996). However, there is no evidence of such isolation at the Shu'aiba 

Formation in this study. Another possible interpretation may be the vital effects of 
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dominant rudist bivalves in the margins/or their skeletal fragments in the slope and 

shallow shelf environments versus the dominant pelagic foraminifera in the intrashelf 

basin facies. These different organisms incorporate different amount of light isotope 

metabolic CO2 into their shells, thus the resulting coeval facies may have different 

carbon values (Emrich et al., 1970; Grossman, 1987). Corals and red algae have larger 

vital effect than benthic foraminifera (Grossman, 1987) and that may explain the 

depletion of carbon isotope from shelf margin to slope and open marine. Well-F on the 

central margin of the field shows even more depletion of carbon isotopes that may be 

related to the dominant coral facies in this well (yellow facies, Figure 36A). Another 

factor affecting the carbon isotope values in the rudist buildups is the aragonite 

composition of rudists shells. The Early Cretaceous rudists usually have relatively thick 

aragonite shells covered by a thin calcite layer (Steuber, 2002). The aragonitic 

compositions of the rudists contribute to the enrichment of heavy carbon due to the 

higher fractionation rate in aragonite as the presence of 20% aragonite sediments may 

increase the carbon isotope values by about 0.2‰ (Godet et al., 2005).  

 

Carbon Isotope Curves versus Stratigraphic Framework and Depositional Settings 

 The carbon isotope curves from all wells are plotted against depth (Figure 39). 

Each major depositional setting then separated into a single plot to analyze the 

relationship between carbon isotope trends, stratigraphic frameworks and depositional 

settings (Figures 40 to 44). The curves were datumed on the regional marker at top of 

Hawar unit, which has high gamma ray values and low carbon isotope values. All the 
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data below and above the datum until depth ~ 90 have similar values and trends 

representing a series of uniform layers of the Late Barremian Biyadh sequence, Shu'aiba 

Formation sequence 1 and the TST of sequence 2. The major depletion of δ13C at the 

datum is closely correlated with the global ocean signature associated with methane 

hydrate dissociation in the earliest early Aptian (Jenkyns, 1995; Weissert et al., 1998; 

Föllmi et al., 1994, 2006; Jahren et al., 2001; Vahrenkamp, 2010). The subsequent 

gradual increase in values is also well correlated in all wells associated with the major 

flooding and OAE 1a. At depth ~ 90 with values between 4 and 4.5‰, carbon isotope 

curves begin to diverge from each other indicating a major change in paleoenvironment, 

ocean signature and/or sequence stratigraphy. This change is correlative with the onset 

of the rudist buildups at SB3 and with the formation of shelf margin with its slope and 

open marine in the front and back-bank and lagoonal settings in the back. After the 

divergent zone between the different curves within the middle part of Shu'aiba 

Formation, the carbon values in most wells converge, with decreasing values in the 

upper part of the Shu'aiba Formation. The prograding Upper Aptian sequences (8 and 9) 

have relatively similar depletion trends toward the top, but this interval is younger and 

they should not be compared with the platform wells that only record the Lower Aptian 

(Figure 45). The overall similarity in pattern and trends of these different isotopic curves 

along with their association with the cored-based sequence boundaries suggest that the 

Shu'aiba Formation carbon isotope record represents the original marine signature and 

thus can be used to constrain a high-resolution chronostratigraphic framework for the 

Shu'aiba Formation.  
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Figure 39. Carbon isotope curves from all wells plotted against depth. The datum is the 
basal Shu'aiba Formation associated with the negative carbon isotope spike. The datum 
is a depth value of zero that increases upward to 490 feet and decreases to -110 feet, 
which is study interval. Curves with different colors represent different depositional 
settings, (red is the shelf margin, yellow is back-bank/platform interior, blue is the deep 
lagoon or lagoon, green is slope or shallow open marine, and black is the intrashelf 
basin).  
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Figure 40. Carbon isotope curves from the deep-lagoonal setting. Different colors are 
arbitrary chosen just to differentiate between wells. Wells Q and A are located on the 
eastern flank of southern block, while well J is located on the western flank of northern 
block.  Black arrows show general carbon isotope trends.  
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Figure 41. Carbon isotope curves from the shelf-marginal setting. Different colors are 
arbitrary chosen just to differentiate between wells.  Black arrows show general carbon 
isotope trends.  
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Figure 42. Carbon isotope curves from the back-bank/platform-interior setting. Diffe
 are arbitrary chosen just to differentiate between wells. Wells F and V are f

the northern block, while wells R and U are from the southern block.  Black arrows
show general carbon isotope trends.  
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Figure 43. Carbon isotope curves from the slope and open-marine settings. Different 
colors are arbitrary chosen just to differentiate between wells. Upper Aptian prograding 
sequences occurred in most wells of these settings.  Black arrows show general carbon 
isotope trends.  
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Figure 44. Carbon isotope curves from the basinal setting. Wells P is located
structure within the intrashelf basin.  Black arrows show general carbon isotope trends. 
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Figure 45. Carbon isotope correlation of the west-east platform to basin transition illustrating how biostratigraphy and 
chemostratigraphy data are integrated to determine the stratigraphic geometry of the Shu'aiba Formation and age difference 
between the Lower Aptian platform sequences and the Upper Aptian prograding sequences.  



 

 Five major depositional settings can be distinguished based on their carbon 

isotope trends, sequences architectures and facies stacking patterns. These depositional 

settings are: (1) deep-lagoonal setting (Wells A, Q and J) (Figure 40), (2) shelf-margin 

setting (Wells K, B, H, S) (Figure 41), (3) platform-interior setting (Wells V, F, R and 

U) (Figure 42), (4) slope and open marine setting (Wells M, N, W, X, O, T, Z and Y) 

(Figure 43), (5) basinal-setting (Well P) (Figure 44).  

1) The deep lagoonal setting has distinctive δ13C trends with the highest values 

recorded within the middle part of the Shu'aiba Formation (Figure 40). Although 

the wells in this setting are from different locations, they almost have identical 

curves. They are characterized by large increase in δ13C values above SB3 with 

the deposition of dark-colored organic mudstone/wackestone (Figure 38F). This 

large increase is coeval to rudist buildups in shelf margin setting. The highest 

δ13C in the middle at depth ~290 is corresponding to a deepening event of 

mudstone facies that possibly have high organic contents (Figure 38F). The 13C 

curve then decline in all three wells to reach the minimum value that marks the 

Lower/Upper Aptian boundary at Well J. The depletion in well Q at the 

maximum δ13C increase is due to the occurrence of small rudist facies on the 

upper part of S6 (Figure 36A). Despite the higher δ13C magnitude of the lagoonal 

setting, the general trends match well with the Tethys pelagic curve, especially at 

the Lower/Upper Aptian boundary.    

2) The shelf-margin setting is characterized by a dominant thick massive rudist 

buildup facies at sequences 3 to 6 with generally uniform 13C trend, indicating 
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higher sedimentation rates. The δ13C values of the rudist buildup range from 4.5 

to 5‰, with minor depletion occurred in some wells (e.g. K, H and S) (Figure 

41). This depletion is possibly associated with shallowing upward event that 

capped by SB6. However, no influence of meteoric diagenesis on carbon isotopes 

occurred associated with the subaerial exposure surface of SB6. The uniform 

trend occurred in well B is associated with large and massive in situ rudist that 

developed in bank-crest setting.  

3) The platform-interior setting has similar trend to the shelf margin setting (Figure 

42). This is because these wells are located on back-bank platform interior with 

the deposition of some local rudist buildups or skeletal rudist fragments.  Well-F 

shows more negative values compared to other wells. This depletion is possibly 

related to the vital effects with the dominant coral facies and to minor diagenetic 

alterations associated with a highly fractured and faulted zone within the 

intraplatform depression (Al-Ghamdi and Read, 2010). 

4) The slope and open marine setting have identical δ13C trends of sequence 1 to 

sequence 3 (Figure 43). The curves above SB3 increases upward then slightly 

decreases at the Lower/Upper Aptian boundary. This increase is coeval to the 

uniform rudist buildups trend present in shelf-marginal setting. Well O was 

deposited in a deeper open marine setting and has higher δ13C values 

corresponding to the additional Upper Aptian prograding sequence 9.  

5) The basinal setting has a distinctive δ13C trend that represent deep water pelagic 

sediments (Figure 44). The  δ13C values are relatively low similar to the standard  
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 Tethys record. Despite the low sedimentation rates occurred in this setting, 

pronounced fluctuations of the Lower Aptian sequence are still preserved and can 

be correlated with coeval sequences in slope and shelf-margin settings. The 

distinctive positive spike in the upper part of this curve is related to the 

deposition of the late stage infill of Bab intrashelf basin. 

 

Isotope Stratigraphy versus Global Sea-level Changes 

 The use of carbon and oxygen isotope compositions as a proxy of sea-level 

changes was documented on several platforms around the world (e.g., Scholle and 

Arthur, 1980; Föllmi et al., 1994, Stoll and Scharg, 2000). It was proposed that the 

positive carbon excursion during the Early Cretaceous is related to the rise of sea-level 

associated with increased atmospheric CO2, whereas the negative carbon excursion is 

related to sea-level fall (Scholle and Arthur, 1980; Föllmi et al., 1994). Immenhauser et 

al. (2003), however hypothesized that during sea-level fall in the Carboniferous ice-

house, the shallow carbonate platforms were exposed and underwent meteoric diagenesis 

resulting in a depletion of δ13C and δ18O values. On the other hand, during sea-level rise, 

the carbonate platform was flooded with open marine, well circulated waters with 

minimum diagenetic effects. This resulted in an enrichment of the δ13C and δ18O with 

positive shifts of the isotope curve. Therefore, shallow carbonate platforms may reflect 

local alterations rather than global ocean signatures (Immenhauser et al., 2003).  

 Although core descriptions from the Shu'aiba Formation show some evidence of 

exposure surfaces (e.g SB 6 at Wells B and S), there is no recorded depletion of δ13C 
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values are associated with this boundary. Oxygen isotope data, however, record 

depletion values at SB 6 associated with possible meteoric influence (Figure 37). This 

results suggest that carbon isotope data on the shallow carbonate Shu'aiba Formation 

were more stable and did not get affected by the meteoric water or soil gas at exposure 

surfaces, similar to what Vahrenkamp (1996; 2010) concluded on other Shu'aiba 

platform in the region. Therefore, the hypothesis of (Immenhauser et al., 2003) cannot be 

applied on carbon isotope data here and it should only be limited to oxygen isotopes 

signature. But, it is possible that short periods of dry climate prevailed during the 

formation of other local exposure surfaces of Shu'aiba Formation (e.g SB 4 and 5 in 

Wells F and B), thus no meteoric waters affected the sediments. Moreover, the top of 

Shu'aiba Formation has a major unconformity with extensive karstification (Al-Ghamdi 

and Read, 2010) but the slight depletion of δ13C in the upper part of Shu'aiba Formation 

is well correlated with the global carbon records and is not related to meteoric 

diagenesis, karstification or soil gas from the unconformity. Therefore, the Shu'aiba 

Formation carbon isotope records strongly reflect changes in the global carbon cycles 

which can be tied to the global sea-level curves. Oxygen isotope data has an opposite 

δ18O trends associated with the top Shu'aiba unconformity. The oxygen records have 

enrichment trend rather than depletion trend that normally recorded at major subaerial 

unconformities (Figure 37).  

The Shu'aiba Formation carbon isotope records correlate with the third-order sea-

level fluctuations of the Aptian in the following manner:  
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(1) the gradual depletion in δ13C in the Biyadh Formation beneath SB1 is 

associated  with a regressive phase and sea-level fall of the latest Barremian.  

(2) the major depletion of δ13C in the Hawar unit is a widespread event that has 

been related to the dissociation of methane hydrates and can be correlated 

globally.  

(3) the major positive excursion during S2 is associated with the major sea-level 

rise, the deposition of the maximum flooding unit (MFU, K70) and the 

Lithocodium algal platform during the global early Aptian sea-level rise and 

the OAE 1a (Föllmi et al., 1994).  

(4) the uniform trend of δ13C in the rudist buildups reflects an aggradational 

phase with a very high sedimentation rate during the early HST of the 

Shu'aiba Formation composite sequence.  

(5) the general depletion of δ13C at the upper part of Shu'aiba Formation is 

associated with the major third order sea-level fall during the latest early 

Aptian. 

 

Carbon Isotope Stratigraphy versus High-Frequency Parasequences 

 Higher-order parasequences (e.g 5th-orders or more) also can be correlated to 

small-scale carbon isotope enrichment and depletion. Small scale parasequences of the 

Biyadh Formation (Figure 46) show minor positive excursion of δ13C enrichment (~ 

0.2‰) associated with flooding surfaces. On the other hand, gradual depletion of carbon 

values (~ 0.3‰) occurs in the grainy facies associated with the top of these shallowing 
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upward cycles. Two parasequences in the basal Shu'aiba Formation beneath the SB2 

have good correlation with δ13C fluctuations. These parasequences have increasing δ13C 

values (~ 0.3‰) at their base followed by decreasing values of similar amplitude at the 

cycle top. These parasequences are correlatable field wide as shown in cross sections 

(Figures 35 and 36) and seem to be correlating in their δ13C values (e.g Wells H, F and 

P) despite the small magnitude of the δ13C fluctuation. However, more isotope data from 

these zones are required to further substantiate this interpretation. These small-scale 

fluctuations in δ13C cannot be tied to global sea-level changes or global carbon cycles 

due to their high resolution, but they may reflect a change in relative sea-level on a 

regional scale. 

 The major positive excursion in the early Aptian related to OAE 1a is interrupted 

by several small-scale negative δ13C spikes (Figure 46). Some of these minor negative 

values appear to be related to the development of parasequence tops within the HST of 

S3 within the Lithocodium aggregatum facies. Vahrenkamp (2010) interpreted these  

small-scale negative spikes within the larger scale positive enrichment as a result of  

minor methane hydrates defrosting that episodically interrupted the prevailing oceanic 

anoxic environments during the early Aptian. The relationship between these small 

reversals and small-scale shallowing-upwards parasequences, however likely indicate 

that these small reversal spikes may be local rather than global events. Hochuli et al., 

(1999), proposed that the enhanced primary productivity is the main cause for the 

organic carbon accumulation during the OAE 1a with its δ13C values marked by an 

interval of unchanged values with an absence of anoxia environment.   
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Figure 46. Carbon isotope curve in a higher resolution scale from Well H, plotted against 
core description of Well H. The black horizontal lines represent high resolution 
parasequences (possibly 5th orders) indentified from cores and tied to δ13C. Small blue 
and red arrows show enrichment and depletion of 13C, associated with flooding surfaces 
and cycle tops respectively. 



 

Carbon Isotope and Palaeoclimate Changes 

 The Cretaceous Period has long been considered as a continuous warm, 

greenhouse climate. However, intervals of global cooling and warming have been 

interpreted from isotope data from different carbonate platforms, with possible 

development of ice-sheets in the poles (e.g Frakes, 1999; Frakes et al., 1995; Stoll and 

Scharg, 2000; Immenhauser and Matthews, 2004). The major carbon isotope 

perturbations during the Early Cretaceous were associated with rapid global climate 

changes (Jenkyns 2003).  

 The latest Barremian including the Barremian-Aptian boundary record cooling 

event associated with carbon isotope depletion and sea-level fall (Weissert and Erba, 

2004). This event was recorded in the Shu’aiba Formation at SB1. This sequence 

boundary records the disappearance of the rudist buildups facies and is related to the 

global carbonate platform diminish recorded elsewhere in northern Tethys (Föllmi et al., 

1994). This was abruptly followed by the global negative carbon isotope excursion 

related to dissociation of methane hydrates and deposition of the argillaceous 

Palorbitolina packstone of the Hawar unit (the initial TST of the Shu’aiba composite 

sequence). The Hawar unit is a condensed section composed of glauconite-and pyrite 

with many erosion surfaces that seems to be synchronous to the earliest Aptian 

condensed and phosphgentic sections in northern Tethys described by Föllmi et al. 

(1994). These condensed sections represents widespread breakdown of carbonated 

production reflecting what is called the destructive sea-level rise (Föllmi et al., 1994). 

AT this time, the global climate changed rapidly from a cooling phase at the Barremian 
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to a warming in the earliest Aptian (Weissert and Erba, 2004, Jenkens, 2004). The warm 

climate at the earliest Aptian culminated with the deposition of the black shale in the 

pelagic sections and chalky Hedbergella lime mudstone and Lithocodium aggregatum 

wackestone in the shallow carbonate Shu’aiba platform. The OAE 1a was deposited 

during warm and humid climate as suggested by isotope signatures, fossil assemblages 

and the presence of southern provenance pollen (Hochuli et al., 1999; Jenkens, 2003; 

Luciani et al., 2006). OAE 1a was associated with an increase in marine biological 

productivity, accelerated hydrological cycling, global sea-level rise, positive carbon 

isotope excursion, and poor circulation of the deep ocean. This disturbance in the global 

carbon cycle with this rapid warming event possibly resulted from the dissociation of 

methane hydrates, possibly triggered by an increase in volcanism on the Ontong-Java 

Plateau (dated ~ 125-119 Ma) with large amount of CO2 released to the atmosphere 

causing a greenhouse warm climate and warming of bottom waters continental shelves 

(Larson and Erba 1999; Weissert and Erba, 2004; Jenkens 2003).  

 The onset of the rudist buildups in the Shu’aiba Formation at sequence 3 and the 

development of extensive rudist-banks indicate carbonate platform recovery that 

possibly associated with a cooling climate and HST of the composite Shu’aiba sequence, 

similar to the cooling event above the OAE 1a in northern Tethys (Weissert and Erba, 

2004; Jenkens 2003). This cooling event was due to the drawdown of CO2 due to an 

increase in marine productivity and to the increase in carbon burial during the OAE 1a 

(Jenkens, 2003). The major unconformity at the top of the Shu’aiba is a global event 
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caused by eustatic sea-level fall in a cooling and humid climate and is associated with 

the overall gradual carbon isotope depletion at top of the Shu’aiba Formation.  

 

Conclusions 

 The carbon isotope values of the shallow carbonate Early Cretaceous, Aptian, 

Shu'aiba Formation range between 1.5 and 6‰ with variations that are mimicking the 

Tethyan pelagic record. Carbon isotope values of the Shu'aiba Formation have not 

undergone major meteoric diagenesis, and likely reflect the original marine values of the 

Early Cretaceous shallow platform waters. Oxygen isotope values of the Shu'aiba 

Formation range between -2.7 to -6.7‰ and were diagenetically modified including 

meteoric diagenesis and so do not reflect the original marine signature of the Early 

Cretaceous Ocean.  

 In this study, the carbon isotope record of the Shu'aiba Formation was used as a 

correlation tool to further refine the age model beyond the resolution of the 

biostratigraphic age model. Carbon isotope data from 21 wells were integrated with core 

descriptions and gamma ray logs to define sequence boundaries, maximum flooding 

surfaces and the Lower/Upper Aptian boundary. Two detailed chemostratigraphic cross-

section transects were generated; (1) an east-west cross-section along the dip direction 

showing a platform transition from lagoonal, back-bank, shelf-margin, slope, open 

marine and basin, (2) a north-south cross-section along strike section showing the 

evolution of the Shu'aiba platform from platform edge, platform interior and 

intraplatform depression.  
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 The Shu'aiba Formation is a large-scale composite sequence (~ 7 My) composed 

of seven high-frequency sequences in the Lower Aptian and two more prograding 

sequences in the Upper Aptian. The Lower Aptian sequences show good correlation with 

the carbon isotope curves, where TST’s are associated with carbon isotope enrichment 

and HST’s are associated with carbon isotope depletion. These records of enrichment 

and depletion of carbon isotopes during the early Aptian are related to the change in 

global carbon cycles and are not related to local diagenetic effects.  

 The major negative excursion in the Hawar unit is a global event associated with 

dissociation of methane hydrates in the basal Aptian. The major positive excursion 

within sequence 2 is also a global phenomena related to organic carbon burial and OAE 

1a. Carbon isotope values of ~ 4.5‰ represent an important chronostratigraphic time 

line associated with the onset of rudist buildups in the middle Shu'aiba. This value is 

well preserved despite major changes in facies from margin to slope and open marine. 

The upper Aptian sequences on the northern platform edge prograded toward the basin. 

These additional sequences were mainly identified on the basis of a carbon isotope 

trends that calibrated to facies stacking patterns and biostratigraphy. Although, isotope 

values of single stratigraphic time lines show some lateral variations with different 

environments, the general isotope trends are similar in pattern and are laterally 

correlative. These minor changes in carbon isotope values across environments are 

possibly related to changes in dominant organisms. However, overlaps of isotope values 

between different facies suggesting those are original carbon isotope signatures. The 
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deep lagoonal environment records the highest carbon values, whereas the intrashelf 

basinal setting records lower values similar in magnitude to the pelagic record.  

 Carbon isotope data can be used as a proxy for the third-order global sea-level 

fluctuations of the Early Cretaceous. The carbon isotope enrichment is linked to sea-

level rise as shown in the maximum flooding unit (MFU) of chalky planktonic mudstone 

in sequence 2. The carbon isotope depletion is linked to sea-level fall in the Biyadh 

Formation at SB1 and in the top of the Shu'aiba Formation.   

 Exposure surfaces within the Shu'aiba Formation including the major 

unconformity at the top, lack evidence of meteoric waters adversely affecting the carbon 

isotope data. On the other hand, oxygen isotope record shows depletion with some 

exposure surfaces such as SB6. However, oxygen isotope record did not get affected by 

the late Aptian unconformity, despite the massive karstification observed in cores. It is 

not clear why the extensive karstification at the top of the Shu’aiba Formation did not 

alter the oxygen isotope values. The general carbon isotope depletion beneath the upper 

unconformity is related to global marine isotope trends and not related to meteoric 

diagenesis.  

 Strontium isotope values of the Shu'aiba Formation range from 0.707356 to 

0.707454, and are slightly different from the standard Aptian record. Although there is 

some relationship between certain stratigraphic markers and strontium isotope shifts in 

the Shu'aiba Formation, the diagenetic alteration of the whole-rock strontium isotope 

values make them less reliable in defining the age of the Shu'aiba Formation. The uses of 

carbon isotope data as a correlation tool along with core data significantly enhance the 
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stratigraphic framework of the Shu'aiba Formation, leading to better reservoir 

characterization and modeling.  

 

 

 

 

 

 

 



 

CHAPTER IV 

TRACE ELEMENT VARIATIONS, GEOCHEMICAL ANALYSIS AND THEIR 

IMPLICATIONS ON DIAGENETIC HISTORY OF THE EARLY 

CRETACEOUS (APTIAN) SHU'AIBA FORMATION 

 

Overview 
 

 The Early Cretaceous (Aptian) Shu'aiba Formation has undergone a complex 

diagenetic history resulting in a heterogeneous reservoir along with complex pore 

systems. Trace elements, stable isotopes and thin sections were analyzed to determine 

the diagenetic history of the Shu'aiba Formation and are linked to major facies, 

depositional settings and sequence boundaries.  

 The trace element composition of the Shu'aiba Formation are generally low, 

reflecting either low values of the original fluids (e.g. Fe and Mn) or removal of 

elements during diagenesis (e.g. Sr and Mg). The lower Fe and Mn contents of the 

original sediments indicates that no additional values were added during diagenesis, 

suggesting the meteoric fluids in oxidizing environment were the primary diagenetic 

event rather than reducing environments. Sr and Mg contents also are generally low 

compared to the original Cretaceous sea water or modern carbonate rocks, suggesting 

they were removed from the sediments during diagenesis in an open system 

environment. Variations of trace elements were controlled by the presence of subaerial 

exposure surfaces, depositional settings and lithofacies. Upper Aptian sequences on the 
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platform edge and basinal settings have different compositions likely reflecting different 

fluid chemistry associated with facies changes.  

 Carbon isotope values of mud matrix and cements are similar ranging from ~ 1 to 

6 ‰, reflecting the original carbon isotope record of the Cretaceous. No depletion of 

δ13C is associated with subaerial exposure or meteoric diagenesis observed from the 

cements, shells or mud matrix. δ18O values of the cements are depleted with wide 

variations representing different stages of cementation. No evidence of depletion 

associated with deep burial diagenesis except in a few fracture fills samples. The average 

strontium isotope data of the Shu'aiba Formation is 0.07389. This value fall within the 

range of the Cretaceous Sr isotope values reflecting the original composition of the 

sediments with no additional radiogenic Sr added during the diagenesis further 

supporting meteoric diagenesis as the primary fluids affecting these rocks.  

 Cathodoluminescence (CL) analysis of the Shu'aiba Formation indicates four to 

five zones within the rudist buildups facies. CL analysis helped identify the original 

stable Low Magnesium Calcite (LMG) rudist with the non-luminescent zone (NL) from 

the recrystallized aragonitic shells that has bright luminescent. Dull luminescent zones 

are less common, occurred only as thin layer at the edges of the blocky calcite crystals 

and reflecting the general low Fe contents.  

 The subaerial exposure surface SB7 within the Shu'aiba Formation and the major 

unconformity at the top of Shu'aiba Formation are the most important events that 

influenced the diagenetic history of the Shu'aiba Formation. These events diagenetic 

including the chalkification and development of micro-rhombic calcite, microporosity 
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and moldic porosity occurred at this time or as the platform was exposed associated with 

meteoric fluids.  

 

Introduction 

The Early Cretaceous (Aptian) Shu’aiba Formation has a complex depositional 

and diagenetic history that impacts reservoir characterization and performance (Figure 

47). Diagenetic processes played a major role in developing or occluding pore systems 

within the Shu’aiba Formation. The diagenetic fabrics of the Shu’aiba Formation range 

from the poorly cemented micro-crystalline chalky mudstone with dominant 

microporosity to cemented rudist rudstone with large vugs and molds. This complexity 

results in heterogeneous reservoir quality in both lateral and vertical scales associated 

with complex stratigraphic architectures. For instance, rudist debris grainstone facies 

deposited in shallow-water, high-energy marginal settings occurred in two forms, one as 

a clean porous facies and the other as a tight and cemented grainstone. To understand 

and characterize the temporal and spatial distribution of these two facies within the 

sequence stratigraphic framework, diagenetic environments and paragentic history were 

identified and tied to sequence stratigraphy, to better define and predict flow and barrier 

units within the reservoir.   

The diagenetic study presented here includes petrographic analysis of thin 

sections, cathodoluminescence (CL) analysis of selective thin sections, trace elements  

and microprobe elemental analysis from mud matrix and cements. It also includes stable 

isotope analysis of mud matrix and cements.   
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Figure 47. Base map with the Shu'aiba platform facies showing well locations. Wells in 
blue are used in this study.   

 

 

 



 

The diagenesis history and diagenetic environments of the Shu’aiba Formation 

has been studied in the region (e.g Harris 1964; Litsey et al., 1986; Alsharhan and 

Kendall, 1991; Moshier, 1989, Budd, 1989), however, there are no published data on the  

diagenesis of the Shu’aiba Formation in the study area. Only two unpublished diagenetic 

studies were conducted for Saudi Aramco (Swart and Cantrell, 2000 and Swart and 

Lindsay, 2002). In addition, there is no regionally coherent conclusive diagenteic model 

of the Shu'aiba Formation, due to the lack of a detailed stratigraphic framework and 

complex geochemical data.  

The chalky textures in the Shu'aiba Formation were attributed to meteoric 

diagenesis associated with the development of the unconformity at the top of the 

Shu'aiba Harris (1964). The unconformity hiatus at the top of the Shu’aiba Formation 

was estimated using benthic forams to represent a 1-1.5 My hiatus (Forst et al. 1983). 

The porosity development of the Shu'aiba Formation is related to the major sea-level fall 

during the latest Aptian time Muris (1980). The lack of cementation and porosity 

preservation, particularly within the lower part of the Shu’aiba Formation was possibly 

due to early oil emplacement that inhibited subsequenct diagenetic processes (Litsey et 

al., 1986). However, Pratt and Smewing (1993) indicate that the depleted supply of 

CaCO3 fluids is the main cause of porosity preservations. Moshier et al. (1988), Moshier 

(1989), and Budd (1989) present two contradicting arguments for the development of the 

micro-crystalline chalky textures of the Shu'aiba; (1) stabilization in marine waters in 

shallow to intermediate burial depths (550-800) in a closed system conditions Moshier 

(1989); (2) they developed in meteoric fluids by a two-step diagenetic process during 
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subaerial exposure Budd (1989). This study will evaluate these two theories using the 

advantage of the detailed and updated sequence stratigraphic frameworks that will be 

integrated with geochemical data to define more accurate diagenetic history. This study 

provides extensive data across all depositional environments and facies, including 

subaerial exposures surfaces within the Shu'aiba Formation that were lacking in previous 

studies.  

Data Sets 

 This study used previously determined trace element analyses from Aramco 

internal reports  for Wells 19, 50, 52, 55 (Swart and Cantrell, 2000) and Well-6 (Swart 

and Lindsay, 2002). These data were collected from core plugs at intervals of 

approximately every 1 to 3 feet (0.3 m). Mn, Sr, Mg were measured and analyzed using 

ICP-MS using a ratio of 1:100 and standardization was achieved using conventional 

methods which employed internal standard, while Fe was measured using an AA, with 

standardization using standards derived in Specpure calcium carbonate (Swart and 

Cantrell, 2000). In addition, 39 microprobe analyses from eight different thin sections 

were analyzed for trace elements at Texas A&M microprobe lab targeting small-scale 

calcite cements. This analysis was crucial to identify the paragenetic sequence and its 

stages of cementation. Cathodoluminescent and petrographic analysis were done on 

selective samples to identify the diagenetic features, type and timing of cementation.  

 Carbon, oxygen and strontium isotope data are also included in this study. 

Isotope date of the matrix was used from 26 wells across the platform (see AL-Ghamdi 

and Pope, 2013). Another 138 samples were analyzed for carbon and oxygen stable 
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isotope by micro-drilling the rudist shells, cements, and other diagenetic features. These 

samples provide information about the diagenetic history of the Shu'aiba Formation, 

where the isotope data of the matrix should provide information about the Cretaceous 

Ocean signature and may also provide some information about the formation of the 

micro-crystalline calcite and microporosity evolution.   

 

Results 

Trace Elements 

 Trace elements were taken from five wells (Figure 47) representing different 

facies and depositional settings and record the transition from marginal to platform-

interior to slope and open marine settings. Table 2 shows the results of the entire data 

with the average and range of the main trace elements. The following is a brief summary 

of the results from for each well with their ranges and averages plotted as curves against 

depth measured from the top of the Shu’aiba Formation and integrated with the sequence 

stratigraphy. 

 

Rudist Buildups (Well-52) 

 Well-52 is located on the northwestern flank within the high-energy rudist 

marginal setting (Figure 47). Fe content slightly decreases with depth from 180 ppm at 

the top to about 80 at the base (Figure 48). Mn is also depleted with depth from top to 

bottom from ~150 ppm at the top to ~70 ppm at the base. However, Sr and Mg are 

opposite to the Fe and Mn, being enriched from the top to the bottom (Figure 48).  
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Well No. Element Range (ppm) Average (ppm)
Well-52 Iron (Fe) 52-209 102

Manganese (Mn) 38-357 112
Strontium (Sr) 48-495 209
Magnesium (Mg) 382-2650 1855

Well-50 Iron (Fe) 28-240 98
Manganese (Mn) 55-446 128

Strontium (Sr) 128-482 234
Magnesium (Mg) 112-2989 1735

Well-6 Iron (Fe) 24-440 78
Manganese (Mn) 49-202 90
Strontium (Sr) 105-247 159
Magnesium (Mg) 462-4091 1210
Vanadium (V) 0.3-12 2

Well-55 Iron (Fe) 41-167 104
Manganese (Mn) 24-420 125
Strontium (Sr) 125-473 193
Magnesium (Mg) 745-2548 1275

Well-19 Iron (Fe) 55-300 131
Manganese (Mn) 42-512 42
Strontium (Sr) 181-432 325
Magnesium (Mg) 1323-3159 2532

All wells Iron (Fe) 24-440 95
Manganese (Mn) 24-512 113
Strontium (Sr) 48-495 204
Magnesium (Mg) 112-4091 1561

 

Table 2. Trace elements from all wells with range and average for each trace element.  
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Figure 48. Trace elements from rudist buildup setting of Well-52 plotted against depth and superimposed by major sequence 
boundaries. Sr and Mg curves tend to positively correlated to each other and negatively correlated with Mn curve.  
 

 

 



 

 Fe contents in this Well do not show a clear relationship with major sequence 

boundaries, but subtle variations occurred associated with major facies changes. 

Moreover, there is no pronounced correlation between Fe and Mn in this well except the  

general decrease of both elements from top to bottom, but inverse correlation occurred 

between Mn on one hand and Sr, Mg on the other hand.  

 The Mn contents of Well-52 generally decreases with depth, but major increases 

occurred within the middle part of the Shu'aiba Formation (above SB4) associated with 

the rudists buildups (Figure 48). Major sequence boundaries (e.g SB4 and SB7) are 

correlated with abrupt changes in Mn content trends. The low Mn values at the base (~70 

ppm) are associated with the deep chalky planktonic mudstone facies of the maximum 

flooding surface. Mn rapidly increased from ~70 ppm to ~120 ppm at the beginning of 

the Lithocodium/coral facies, then decreases to a value of ~80 ppm at the top of the 

Lithocodium/coral facies at SB4. The exposure surface occurred at SB7 has only a small 

decrease in the Mn value, that slightly decreases toward the top unconformity. 

 Sr contents are generally increase from top to bottom. An abrupt decrease of Sr 

occurred above SB4, above the boundary between the Lithocodium and rudist facies. 

The most Sr depletion occurred within the rudist buildups.  

 Mg increases with depth from ~2000 ppm at the top to ~ 2300 ppm at the bottom 

similar to Sr curve. Thus, Mg is positively correlated with Sr, but inversely correlated 

with Mn. Major enrichment and depletion of Mg are associated with major sequence 

boundaries with their facies changes. For instance, at SB4 with the onset of rudist 

 164



 

 165

buildups, Mg is dramatically depleted from ~2300 ppm to ~1300 ppm, then get enriched 

more toward the unconformity at the top of the formation.  

 

Platform Interior/Rudist Buildups (Well-6) 

 Well-6 is located on the platform edge of the intraplatform depression within the 

marginal to platform interior (Figure 49). It has a variety of depositional facies including 

rudist buildups, extensive massive and branching corals that are relatively more 

susceptible to diagenesis and severe leaching. Also, this well was affected by syn-

depositional fault and fracture systems that enhanced fluid flow through this area.  

 Table 2 shows the average and range of trace elements in this well including 

Vanadium. Generally, the minimum and mean values of Fe, Sr and Mg are the lowest 

values comparing to other wells, whereas Mn content is relatively higher or the same as 

other wells (Figure 49). Fe and Mn values show generally a subtle depleted trend from 

top to bottom. Fe and Mn contents in this well show changes at some sequence 

boundaries (e.g SB5 and SB7). Fe is dramatically enriched toward the top from less than 

50 ppm at SB7 to >200 ppm at SB8, and then becomes slightly depleted beneath the top 

Shu'aiba unconformity. The positive spikes of Fe content (e.g at SB5 and SB8) are 

possibly related to extensive pyrite minerals, which are common in this well. Mn shows, 

only a subtle increase from base to top. Sr and Mg contents are positively correlated in 

this well and show changes in values at or near several sequence boundaries (e.g SB3, 

SB6, SB7). Sr and Mg content record a major increase corresponding to the flooding 
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Figure 49. Trace elements from rudist buildup setting of Well-6 plotted against depth and superimposed by major sequence 
boundaries. This well has the lowest Fe contents recorded at the base of the section. It also records the Mn lowest maximum 
values. Vanadium content is recorded only in this well.  
 

 

 

 



 

interval above SB 6, the both become depleted to their minimum values near SB 7 which 

is a subaerial exposure surface. Sr and Mg increase dramatically above SB 7 to their 

maximum values near the top of the Shu'aiba Formation. 

 The Vanadium (V) is only analyzed in this well with a minimum of 0.3 ppm and 

maximum of 12 ppm and an average of 2 ppm (Figure 49). However, two extreme 

values recorded for the Vanadium occur at SB 3 and above SB 6.  

 

Slope and Platform Edge (Well-55) 

 Well-55 was deposited on the far eastern platform edge within slope/open marine 

settings (Figure 1). It is dominated by fine grained mudstone and wackestone facies in 

the lower part overlain by the Upper Aptian stromatoporoid and rudist buildups facies. 

The average and range of trace element contents in this well are shown in Table 2. 

Unlike other wells, Fe in well-55 is relatively homogeneous averaging ~100 ppm with 

no clear depletion or enrichment trends (Figure 50). Sr and Mg values are generally 

uniform in the base then decrease to their minimum values below the Upper Aptian 

rudist. The Sr and Mg contents then increase on the upper part of the Formation 

associated with the rudist buildups that developed marginal setting within the Upper 

Aptian prograding sequences then get slightly decrease at the top unconformity. Sr and 

Mg are positively correlated to each other, but negatively correlated to Mn.  

 Mn content in this well has a pronounced pattern that decreased dramatically 

with depth from ~ 410 ppm in the top to ~ 24 ppm at depth of 150 feet below the top, 

(Figure 50). Below 150 feet, the Mn values are uniform with the lowest value recorded 
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Figure 50. Trace elem
boundaries. This well records lateral facies 
the lowest among other wells.  
 

 

ents from slope/shelf edge setting of Well-55 plotted against depth and superimposed by major sequence 
changes associated with the Upper Aptian sequence. The Minimum Mn contents is 



 

in all wells corresponding to the pelagic mudstone facies. Mn values are relatively 

increasing along the stromatoporoids/coral facies and then rapid increase occurred at the 

upper Aptian rudist buildups facies.  

 

Open Marine and Basinal Settings (Well-19) 

 Well 19 is located on the eastern flank of the field within the deep open marine 

setting (Figure 1). This well records the Upper Aptian prograding sequences 9 and 10 

and is dominated by pelagic mudstone facies along with a dense argillaceous lowstand 

wedge that onlaps onto the Upper Shu'aiba unconformity. No rudist or grainy facies 

occurs in this well. The trace elements in this well are the highest of all the wells. Fe and 

Mn in this well have the highest mean values (131 ppm and 512 ppm respectively) of all 

wells and are positively correlated with similar patterns and a clear depletion trend from 

top to bottom (Figure 51). However, these higher values occur within the Upper Aptian 

sequence 10, whereas the lower part (which is open marine pelagic 

mudstone/wackestone) has values similar to the Lower Aptian sequences in the other 

wells. The argillaceous mudstone zone that represents the LST of the prograding 

sequence 10 does not record any particular trends or distinctive Fe or Mn values. 

However, major enrichment of Fe and Mn are recorded above the dense zone increasing 

to the maximum values at the top of the Shu'aiba Formation, similar to the trend 

recorded on the platform margin (Figures 49 and 50), but with higher values.  

 Sr and Mg contents in Well-19 also record the highest values of all wells and 

while their pattern is to become depleted with depth (Figure 51). In addition, Sr and Mg 
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Figure 51. T
correspond
 

 

race elements from open marine setting of Well-19 plotted against depth. The dense zone in the middle part 
ing to the argillaceous mudstone marked the base of the Upper Aptian sequence 10.  



 

have distinctive values associated with the dense argillaceous mudstone unit deposited as 

the lowstand wedge of the Upper Aptian sequence 10, where values tend to decrease in 

this zone. 

 

Microprobe Analysis 

 In addition to the trace elements derived form the core plug analysis, 39 samples 

were analyzed by microprobe on eight thin sections for higher resolution of small-scale 

calcite cements and diagenetic features (Table 3; Figures 52 and 53). These eight 

samples (Figures 52 and 53) were taken from different depositional settings to 

investigate and identify the types and stages of cements, and their relationship with 

different Cathodoluminescence intensities (CL) zones to determine evidence of 

meteoric, marine or burial diagenesis.  

 Fe ranges from 0 to 554 ppm with an average of 87 ppm and lower detection 

limit of 0.010 wt%. The highest Fe value (554 ppm) occurs within the rudist fragments 

(Figure 52C). However, isopachous and blocky equant cements have relatively lower Fe 

content than micrite or rudist fragments, ranging from 100 to  159  ppm.  

 Mn ranges from 0 to 793 with an average of 121 ppm and lower detection limit 

of 0.010 wt%. Mn content of matrix, isopachous and blocky cements shows a wide 

variation. The matrix has the lowest values, isopachous cements have moderate values 

and blocky cements have higher values. The highest Mn value occurs within the large 

blocky cement between the rudist skeletal fragments (Figure 53B). The lowest Mn value 

(14 ppm) occurs within the skeletal grainstone of fore-bank setting (Figure 53A), in the  
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Samples Mg ppm Fe ppm Mn ppm Sr ppm comments
7_405_pt01 2689.9 115.7 0.0 522.3 micrite rim
7_405_pt02 2542.9 0.0 62.1 652.9 cemented shell (possible original fabric)
7_405_pt03 2545.7 48.2 43.0 100.9 cemented shell
7_405_pt04 1755.8 0.0 0.0 0.0 intergranular cement
7_405_pt05 1758.7 0.0 14.3 261.1 intraskeletal cement fill (after moldic porosity)
7_405_pt06 1600.1 139.8 28.7 178.1 isopachous cements at edges
7_405_pt07 1804.8 77.1 28.7 267.1 micrite within peloids
9_111_pt01 614.1 48.2 162.5 136.5 intergranular cement
9_111_pt02 495.9 0.0 119.5 142.4 intraskeletal cement  
9_111_pt03 660.2 154.3 0.0 136.5 dissloved cements at skeletal edge
9_111_pt04 351.7 159.1 148.2 136.5 blocky intergranular cement
9_111_pt05 752.5 4.8 124.3 231.5 dissloved cements at skeletal edge
18_112_pt01 1320.4 24.1 234.2 284.9 intergranular cement
18_112_pt02 743.8 0.0 148.2 243.3 micrite skeletal grains
18_112_pt03 1357.9 0.0 0.0 1044.6 cements, but with brwon color (possible original)
18_112_pt04 550.7 110.9 157.7 314.6 blocky cements fill of possible large skeletal grains 
14_5176_pt01 1092.7 192.8 76.5 47.5 micrite matrix, fine grains 
14_5176_pt02 1320.4 173.5 148.2 207.7 micrite matrix, fine grains 
14_5176_pt03 913.9 67.5 95.6 0.0 isopachous cements at edge
14_5176_pt04 1294.5 554.4 0.0 184.0 rudist shell cemented with precurser shell
14_5176_pt05 997.5 67.5 90.8 166.2 micrite matrix, fine grains 
14_5176_pt06 1040.8 380.8 200.7 106.8 possible stylolites matix between rudists
15_291_pt01 1323.3 101.2 86.0 338.3 micrite matrix, fine grains 
15_291_pt02 1787.5 159.1 0.0 320.5 skeletal rudist shell
15_291_pt03 1265.7 96.4 348.9 427.3 isopachous cements at edge
15_291_pt04 1801.9 48.2 253.3 201.8 blocky cements fill within rudist
4_37_pt01 1706.8 4.8 0.0 955.6 large skeletal grains, partially dissolved 
4_37_pt02 1023.5 0.0 0.0 65.3 blocky calcite fill within intergranular porosity
4_37_pt03 781.3 168.7 62.1 249.3 matrix fill, fine micrite 
4_37_pt04 1023.5 9.6 66.9 0.0 cemented coral 
16_4761_pt01 738.1 19.3 66.9 249.3 cemented skeletal grains
16_4761_pt02 893.8 4.8 95.6 59.4 cements between grains 
16_4761_pt03 397.9 28.9 162.5 23.7 large cements between grains
16_4761_pt04 5.8 72.3 0.0 2285.0 cemented skeletal grains
9_11_pt01 1412.7 53.0 234.2 421.4 Agruiplura rudist, possible original cement
9_11_pt02 1776.0 33.7 162.5 433.3 Agruiplura rudist, possible original cement
9_11_pt03 1822.1 96.4 793.4 338.3 large blocky cement fill
9_11_pt04 2300.7 62.7 0.0 1056.4 Agruiplura rudist, possible original cement
9_11_pt05 1306.0 115.7 530.5 231.5 micrite marix with some cements
Detection limit 0.020 (wt%) 0.010 (wt%) 0.010 (wt%) 0.020 (wt%) lower detection limit (wt%)
Mean 1271.1 87.0 121.7 333.9
Minimum 5.8 0.0 0.0 0.0
Maximum 2689.9 554.4 793.4 2285.0

 
 
 
Table 3. Summary of microprobe analysis from eight thin sections of 39 samples. These 
thin sections were selected to represents different facies, stratigraphy and cements.  
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Figure 52. Thin sections samples of different cements show the location of the 
microprobe analysis. (A) is from rudist rudstone facies on the eastern margin. (B) is 
from rudist floatstone of the back bank setting. (C) is rudist fragmented rudstone facies 
of the western margin. (D) is from rudist debris grainstone facies near subaerial exposure 
surface SB 7.  
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Figure 53. Thin sections samples of different cements show the location of the
croprobe analysis. (A) is from rudist skeletal grainstone facies on the intraplatf

depression (channel). (B) is from Agriopleura rudist floatstone of the shallow lagoo
the upper part of the Shu'aiba Formation. (C) is from skeletal peloidal packstone facies 
of slope and shallow open marine settings. (D) is from coral skeletal packstone facies  of 
the lower part of the Shu'aiba Formation.  

ents filling the intraskeletal porosity.  
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 Sr contents range from 0 to 2285 ppm with an average of 333 ppm and lower 

detection limit of 0.020 wt%. Generally, Sr of calcite cements are much higher than the 

matrix values. The highest Sr value (2285 ppm) occurs within the rudist debris 

grainstone facies of the beach environment at the top of the rudist buildup (Figure 52D). 

However, comparing this value with other lower Sr values in this rock, this value seems 

to be affected by the presence of pyrite (dark brown) rather than a clean calcite cements. 

The presence of pyrite has an impact on pore fluids by lowering the redox potential over 

clean calcite cements (Grover and Read, 1983). The highest group of Sr values (900 and 

above) correspond to the Low Magnesium Calcite (LMC) skeletal rudist shells (Figure 

53B).    

 Mg ranges from 5 to 2689 ppm with an average of 1271 and lower detection limit 

of 0.020 wt%. Mg contents of cements are relatively lower than the micrite or skeletal 

fragments. The highest Mg value (2689 ppm) occurs in the micrite rim of the shell. 

Rudist fragments also have higher Mg values (e.g Well-18 points 2 and 3, well-506-11 

points 4; Table 3; Figures 53A and B).  

 

Cathodoluminescence (CL) 

 Diagenesis in carbonate rocks commonly is difficult to determine by just using 

plane light microscopy. Therefore, CL is used to provide low-cost and powerful 

analytical processes for determining the origin and development of cements (Fairchild, 

1983). CL needs to be calibrated with other data such as trace elements and isotopes to 

determine the diagenetic history. Mn concentration is the most important activator of 

luminescence in carbonate rocks, whereas Fe is the most important quencher element. 
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Mn contents of 15 - 30 ppm are sufficient to activate luminescence in calcite if total Fe 

contents are below about 150 ppm (Hans, 2000). The intensity of the luminescence is 

controlled by the absolute amount of Mn and not by the Fe/Mn ratios (Have and 

Heignen, 1985).  

 CL data of the Shu'aiba Formation were analyzed from eight thin sections 

(Figures 52 and 53) to define different diagenetic phases, particularly within calcite 

cements and rudist skeletal fragments. Mud matrix of the Shu'aiba Formation generally 

is dominated by non-luminescent (NL) and in some cases weak luminescence, reflecting 

low Mn values associated with these zones. Calcite cements within the Shu'aiba 

Formation show subtle to moderate variations of luminescent intensities related to 

different cement phases of. These phases range from NL-moderate bright-high bright 

luminescent (Figures 54 - 56). Dull luminescent zones are less abundant and occur as 

thin layers at the edge of blocky calcite cements. Rudist fragments and its associated 

cements represent good locations for identifying multiple diagenetic phases. Four to five 

different diagenetic phases (zones) were determined within the Agriopleura rudists 

within on the upper Shu'aiba Formation S7 and S8 (Figure 54).  

1. Zone 1 is NL phase occurred within part of the rudist fragments (No.1; Figures 

54B and D).  

2. Zone 2 is moderate bright and occurred as a micrite rim on the edge of the rudist 

(No. 2; Figure 54B).  

3. Zone 3 occurred within the micritizied peloidal grains of the matrix and is 

moderate bright with similar intensities to the previous zone (No. 3; Figure 54B).  
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4. Zone 4 occurred on the clear blocky calcite that filling the intergranular porosity. 

This zone has bright CL and can easily be distinguishable from of previous zones 

(No. 3; Figure 54B). 

5. Zone 5 is the latest stage occurring within fractures that cut the rudist fragments 

and filled with calcite (No.5; Figure 54D). It has bright CL and can only be 

observed with cathodoluminescence.  

6. In addition, the internal structure of the rudist fragments have bright CL 

associated with the precursor foliated fabrics (Figure 54D).  

 The high-energy caprinid Offneria rudist formed at top of rudist buildups  

records only two CL zones 1 and 2 (Figures 55A and B). Zone 1 is moderate bright 

occurred in the internal micrite sediments within the rudist cavity, whereas zone 2 is a 

bright CL forming in the fringing cements within the intergranular porosity.  

 Rudist skeletal grainstone within the intraplatform depression (Figures 55C and 

D) records at least four stages of diagenesis. Zone 1 is NL occurring within the micrite 

grains. Zone 2 is moderate bright luminescent in the fringing isopachous cements filling 

the intergranular porosity. Zone 3 is dully luminescent occurs in the large blocky 

cements filling the vugs and cavity. Zone 4 is bright cements representing the last stage 

cementation. These four stages of CL also recorded within the rudist rudstone facies of 

the shoal complex (Figure 56), with one additional stage (zone 5) that is a thin dull 

luminescent at the edge of the blocky calcite cements (No. 5; Figure 56B). 
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Figure 54. Plain light and Cathodoluminescence petrography zones of rudist fragments 
within rudist buildups. (A) Plain light of rudist fragment and blocky calcite fill. (B) Four 
CL zones; zone 1 is NL; zones 2 and 3 are moderate bright luminescent and zone 4 is 
bright luminescent. (C) Plain light of rudist shell. (D) Five CL zones; zone 1 is NL; 
zones 2 and 3 are moderate bright luminescent; zone 4 is bright luminescent and zone 5 
is bright luminescent within fracture fill.  
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Figure 55. Plain light and Cathodoluminescence petrography zones of rudist fragments 
within rudist facies and slope setting. (A) Plain light of cemented rudist. (B) Two CL
zones; zone 1 is moderate bright luminescent and zone 2 is bright luminescent. (C) Plain 
light of skeletal peloidal grainstone. (D) Four CL zones; zone 1 is NL; zone 2 is 
moderate bright luminescent; zone 3 is dull luminescent and zone 4 is bright 
luminescent.  
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Figure 56. Plain light and Cathodoluminescence petrography zones of large blocky 
calcite. (A) Plain light of cemented rudist rudstone and large blocky calcite. (B) Five CL 
zones; zone 1 is NL; zone 2 is moderate bright luminescent; zone 3 is dull luminescent; 
zone 4 is bright luminescent and zone 5 is thin dull luminescent. (C) Plain light of 
cemented rudist rudstone and large blocky calcite. (B) Four CL zones; zone 1 is NL; 
zone 2 is moderate bright luminescent; zone 3 is dull luminescent and zone 4 is bright 
luminescent.  

 



 

 Isotope Geochemistry  

A total of 137 micro-drill samples were collected to determine their carbon and 

oxygen stable isotope values of the calcite cements and other diagenetic features from 

eight wells representing different facies, diagenetic and depositional environments. A 

total of 2,397 samples (whole rock) were collected from 26 wells mainly to analyze and 

interpret the chemostratigraphy of the Shu'aiba Formation (AL-Ghamdi and Pope, 2013), 

but they will only be used here to compare with the cement values and to understand the 

diagenesis of the micro-rhombic calcite. Figure 57 shows a plot of all carbon and oxygen 

isotope data of both cements (red) and mud matrix (blue). 

 

Carbon Isotope 

The carbon isotope values of mud matrix range from 1.5 to 6.1‰ with minimal 

diagenetic effects. However, these values are higher than the standard pelagic record of 

Northern Tethys that range from 1.5 to 4‰ (Föllmi et al., 1994).  

 Carbon isotope values of the calcite cements range from 1.2 to 5.5‰ with an 

average of 4.4‰ (Figure 57). The minimum carbon isotope value of the cements (1.2‰) 

occurs within a fracture filled by pyrite and calcite. The heaviest carbon isotope value of 

the cements (5.5‰) occurs within the cemented rudist facies at top of the rudist bank-

crest, beneath subaerial exposure surface SB7. Carbon isotope values of cements show 

more uniform clustering, have narrower variations and are similar to the carbon isotope 

values of the matrix; the majority of carbon isotope data plotted between 4 - 5‰ (Figure 

57). This narrow range are clustered within the isotope values of shallow environments  
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Figure 57. Cross plot of carbon and oxygen isotope data of both mud matrix (blue) and 
cements (red). Mud matrix values are uniform in δ18O, but have wide variations of δ13C. 
Cement values are uniform in δ13C but have wide variation of δ18O.  



 

rudist buildups of sequences 3 to 5 (Al-Ghamdi and Pope, 2013). 

 

Oxygen  Isotope 

 Oxygen isotope values of the matrix range from -6.7 to -2.7‰ and they were 

likely influenced by meteoric diagenesis (Al-Ghamdi and Pope, 2013; Figure 57). The 

estimated original oxygen isotope value of the Cretaceous ocean water is ~ -3‰ 

(Lohmann, 1988), therefore the Shu'aiba Formation oxygen isotope values of the mud 

matrix are depleted by 1 - 2 ‰ relative to the original ocean value. Oxygen isotope 

values of the calcite cements ranges from -9.6 to -2.9‰ with an average of -5.4‰ 

(Figure 57). The minimum oxygen isotope value (-9.6‰) occurs within a fracture filled 

pyrite and calcite, associated with the minimum carbon isotope value (1.5‰). The 

heaviest oxygen isotope value (-2.9‰) occurs within the rudist buildups of the platform 

margin. In contrast to the carbon, oxygen isotope values record major depletion with 

wide variations that ranges from -3 to -9.5‰, indicating locally strong diagenetic 

influence.  

 

Strontium Isotope 

 Thirty samples were collected for strontium isotope analysis of the micro-

rhombic mud matrix in the Shu'aiba Formation (Figure 58). The 87Sr/86Sr values range 

from 0.707355 to 0.707454 with an average of 0.707389. This data fall within the range 

of Sr isotope of the Cretaceous seawater (Bralower et al., 1997) and are similar to the 

values of 0.7040 and 0.70744 reported by Moshier (1989) and the value of 0.70749 
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Figure 58. Strontium isotope curves (87Sr/86Sr) linked to core descriptions and sequence 
stratigraphy. Fluctuations of 87Sr/86Sr curve possibly reflect changes in ocean signatures.  
 
 



 

reported by Budd (1989) for the coeval Thammama Formation.  

 

Discussions 

Trace Elements 

 Trace elements are used to analyze the diagenetic history, where the increase of 

diagenetic alterations are related to the elemental decrease of Sr and Mg and increase in 

Fe and Mn (Brand and Veizer, 1980). Sr and Mn elements are the most important 

diagenetic indicator, because of their widely divergent partition coefficient with their 

large composition and differences in marine and meteoric waters (Brand and Veizer, 

1980).  

 The trace elements of the Shu'aiba Formation both matrix and cements are 

generally low indicating homogenous carbonate sediments. Fe and Mn contents possibly 

represent the original sediment with no additional values added during diagenesis. The 

lower Fe and Mn contents suggest that the sediment were formed in oxidizing 

environments where Mn and Fe are not incorporated into calcite crystals (Grover and 

Read, 1983). Sr and Mg content in the Shu’aiba Formation samples are very low 

compared to the original Cretaceous sea water (Steuber and Veizer, 2002) or modern 

carbonate rocks (Budd, 1998). The low Sr and Mg contents indicates their removal from 

the sediments during diagenesis. These lower values, particularly Fe suggest that 

Shu'aiba Formation was affected by pore fluids in oxidizing environments within a 

meteoric vadose or phreatic environment rather than deep burial or subsurface 

environments. The low Fe also indicates that original sediments had low values and 

additional Fe was not added during the diagenetic history as Fe of reducing 
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environments in burial diagenesis should be in order of ~1000 ppm or higher (Drever, 

1982).  

 The relatively high Mn values recorded in the Lithocodium-dominated facies 

(Figure 48) are related to the dense, massive and platy coral heads that have large calcite 

spar crystals. Major increase of Mn from ~80 ppm to ~170 ppm associated with decrease 

of Sr and Mg (Figures 48 and 49) is often recorded where rudist buildups facies 

developed, reflecting a major change in both depositional and diagenetic history, where 

high porous and permeable zones allowed fluids to migrate freely resulting in extensive 

recrystallization and cementation.  

 Figure 59 (A,B,C and D) comparing and correlating each individual trace 

element from all wells to evaluate the effect of different depositional settings on 

diagenesis history. Fe curves are generally homogeneous with a mean value of 100 ppm, 

however Fe contents tends to decrease slightly with depth from top to base (Figure 59A). 

Mn has similar trends to Fe, but shows more pronounced enrichment near the top of the 

Shu'aiba Formation. The major change of Mn occurred above SB7, where  the values are 

dramatically increased to its maximum value below the top of the Shu'aiba Formation. 

The karst formed during exposure of the upper part of the Shu'aiba Formation plays an 

important rule as a conduit that enables meteoric waters to migrate. The increases of Fe 

and Mn in the upper part of the Shu'aiba Formation may be linked to karsting observed 

in this well that penetrated at least 30 feet below the top Shu'aiba unconformity (AL-

Ghamdi and Read, 2010). Meteoric waters normally have low Mn and Fe contents, but 

their increase recorded here may be an indication of a rock-buffered system that added 

Mn and Fe to the meteoric waters (Brand and Veizer, 1980). Although some positive 
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correlation occurs between Fe and Mn values (Figure 59A and B), plotting Fe against 

Mn from all wells does not show a clear linear relationship (Figure 60), except Well-6 

on the platform interior that shows some relationship associated with the lowest values 

of Mn and Fe in all wells.  

 The mean value of Mn in all data is about 112 ppm which is compatible with the 

initial estimated values of the Shu'aiba Formation (Budd, 1989). The lower Mn and Fe 

values were recorded at the base of the section associated with the chalky mudstone 

facies. These lower values are probably inherited from the original sediments and 

indicate lack of abundant Fe or Mn in the pore fluids during the recrystallization of this 

unit (Budd, 1989). The low Mn values also reflect the dominant micro-rhombic calcite 

crystals within these facies that underwent extensive recrystallization with dominant 

micro-rhombic calcite without any large equant or blocky calcite cements. Rudist 

buildups record an increase of Mn from ~80 ppm to ~170 ppm (Figure 48) corresponds 

to the development of the rudist buildups facies, reflecting major change in both 

depositional and diagenetic history. These rudist units record extensive dissolution and 

cementation stemming from the local subaerial exposure surface at the top of the rudist 

buildups (SB 7). However, above this exposure surface, Fe and Mn contents tend to 

decrease corresponding to the flooding surface with mud-dominated facies along with 

less diagenetic alterations.  
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Figure 59. Major trace elem
wells. The curves are generally unif  
wells. The curves show good correlation with 
all five wells. W
plotted against depth of all five wells. 
 

 

ents from different wells plotted against depth. (A) Fe contents plotted against depth of all five 
orm, with subtle depletion with depth. (B) Mn contents plotted against depth of all five

a pronounced depletion trend with depth. (C) Sr contents plotted against depth of 
ell-19 has major enrichment in the upper part associated with Upper Aptian sequence 10. (D) Mg contents 

Well-19 also increases in the upper part associated with Upper Aptian sequence 10.  



 

 189

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0

M
n

 (
p

p
m

Well_50

Well_52

Well_6

Well_55

Well_19

Petrography

)
0

0

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0
Fe (ppm)

 

 

Figure 60. Cross plot of Fe and Mn from all data. No clear relationship between Fe and 
Mn in most wells, except Well-6 that show moderate relationship.   
 

 

 

 

 

 



 

 The Upper part of the Shu'aiba Formation records a dramatic increase of Mn in 

all wells associated with smaller changes in Sr and Mg that indicates a direct influence 

of the subaerial unconformity at top of Shu'aiba Formation. Lateral facies changes do not 

seems to affect the Mn and Fe values much, because the general increase of Mn and Fe 

patterns at the upper part occurred amongst all wells along the depositional settings 

including the open marine setting. This indicates that similar Fe and Mn of pore fluids 

chemistry affected the Shu'aiba Formation regardless of the lateral facies changes or 

changes in depositional settings. However, the larger increases of Mn in the upper part 

of the Shu'aiba Formation are recorded within open marine settings (Wells 55 and 19) 

(Figure 59B). This large increase of Mn values may indicate that the Upper Aptian 

sequences of Wells 55 and 19 may be affected by different pore fluids than the marginal 

settings.  

 Sr and Mg content of Shu'aiba Formation generally are low suggesting severe 

depletion during diagenesis. It was suggested that the initial Sr value of Shu'aiba was 

approximately 1000 ppm (Swart and Lindsay, 2002). The lower Sr concentration of the 

Shu'aiba Formation implies either the fluids in this unit had a lower Sr/Ca ratio than 

Cretaceous seawater or they formed under different temperature (Swart and Lindsay, 

2002). Alternatively, the low Sr is due to the enrich in Ca and lowering and flushing Sr 

of fluids during recrystallization of the Shu'aiba Formation by unconfined meteoric 

waters (Budd, 1989). The extensive removal of Sr and Mg must have occurred before 

the formation of micro-rhombic calcite that required many pore volumes of water to 
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remove the Sr, which suggest diagenesis formed under high water/rock ratio conditions 

in a diagenetic system open to fluid flow (Budd, 1989).  

 Sr and Mg are positively correlated to each other (e.g. Figures 49 and 50) with a 

liner relationship (Figure 61). This linear relationship indicates they shared a similar 

diagenetic history that removed them from the original lime mud during stabilization by 

dissolution/reprecipitation (Moshier, 1989). Sr and Mg are inversely correlated with Mn, 

indicating that increased Mn content was not emplaced until Sr had been removed from 

the sediments (Budd, 1989).  

 The general pattern of Sr and Mg that increased with depth (enriched at the base 

and depleted locally in top and mostly in the middle) is probably related to the severe 

influence of meteoric diagenesis from the unconformity on the upper part of the Shu'aiba 

Formation comparing to the less affected deeper units. In addition, the rudist buildups 

facies undergone extensive dissolution and cementation including local subaerial 

exposure surfaces at the top of the rudist buildups. Thus, Sr and Mg tends to decrease at 

rudist buildup zones compared to other units (e.g Figures 48 and 49). 

 Well-19 within platform edge and open marine settings (Wells-55 and 19) 

records different Sr and Mg profiles. Above the stromatoporoids facies of Well-55, trace 

elements are more depleted compare to other wells. This depletion may be related to 

facies control that are unique in this well compared to other wells. This unit contains 

stromatoporoids and rudist facies that are more susceptible to meteoric diagenesis, with 

higher primary porosity that enhanced hydraulic flow of fluids through the upper part of 

the Shu'aiba Formation. Well-19 in the open marine setting records the highest values of 
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Figure 61. Magnesium concentration plotted against concentrators of Fe, Sr and Mn. 
Strong linear relationship occur between Mg and Sr.  
 
 

 

 

 



 

Sr and Mg, presenting a gap in the pattern within the upper part of the section between 

the open marine and marginal settings (Figures 59C and D). This difference in trend and 

pattern indicates a different diagenetic history between these two settings, possibly 

related to the original depositional textures with their different porous matrix. The higher 

the porous matrix in the marginal setting (e.g Well 6 and 52), the lower the Sr and Mg. 

Conversely the lower the porous matrix within the deep open marine setting (e.g Well 

19), the higher the Sr and Mg. In addition, the higher values of Sr and Mg in Well 19 are 

associated with the Upper Aptian sequences, that are diachronous compared to the 

Lower Aptian units marginal setting. Therefore, the increase of trace element contents 

particularly Sr and Mg are to some extent influence by the difference lithofacies and 

depositional settings. 

 The Vanadium (V) is only analyzed in Well-6 in the platform interior/rudist 

buildup setting. Two extreme values of V were recorded at SB 3 and SB 6. SB 3 records 

a major facies change from chalky Palorbitolina mudstone to coral/rudist rudstone 

facies, but without evidence of an exposure surface. On the other hand, SB 6 records a 

pronounced subaerial surface at the top of the rudist rudstone facies. Therefore, the 

Vanadium spikes may be associated with sequence boundaries, but not necessarily with 

subaerial exposure surfaces. 

 

Microprobe Analysis 

 The microprobe analysis (Table 3) shows some relationship between lithofacies 

and trace elements. For example, the skeletal grainstone of fore-bank/channel in Well-18 
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(Figure 53A), deposited within the intraplatform depression generally has very low Mn 

and Fe content associated with higher Mg and Sr values, regardless of the type of 

cements. Also, the high-energy rudist fragment grainstone facies of beach environment 

(Figure 52D), that was completely cemented records very low values in all trace 

elements possibly suggesting early meteoric diagenesis. This cementation occurred at the 

top of rudist buildups where an exposure surface developed, and the cement formed by 

meteoric diagenesis during subaerial exposure. This extensively cemented facies may 

form a vertical flow barrier within the reservoir.  

 The higher Mn values recorded in the large blocky calcite cements (Figure 53B) 

within the rudist skeletal fragments are formed just beneath the top Shu'aiba 

unconformity and were likely produced during karsting as the Shu'aiba platform was 

subaerially exposed. Calcite cements within of the rudist fragments that were affected by 

meteoric waters (Figures 52A and D) have relatively moderate Sr values (~130-200 

ppm) indicating extensive flushing of Sr during meteoric diagenesis. The depletion of 

Mg values within the cemented rudist rudstone/grainstone facies also resulted from 

extensive recrystallization.  

 The highest group of Sr values (900 ppm and above) correspond to the skeletal 

rudist fragments that possibly represent their original Low Magnesium Calcite (LMC) 

shells that were not affected by diagenesis. These higher Sr values are also compatible 

with the suggested initial Sr composition of the Shu'aiba, which is approximately 1000 

ppm (Swart and Lindsay, 2002). These original rudist shells have high Sr and Mg values 

(e.g Well-18 points 2 and 3, Well-506-11 points 4; Table 3; Figures 53A, B, D) along 
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with the preservation of the precursor fabric of the rudist, suggesting that these rudists 

shells were precipitated in an equilibrium with the original Cretaceous sea water. These 

rudist shells are mainly Agriopleura rudists deposited within the shallow lagoonal 

environments in the upper part of the Shu'aiba Formation. The caprinid Offneria rudists 

of the marginal bank-crest settings are very poorly preserved, suggesting they were 

possibly original high-Mg calcite or aragonite rudists.  

 Although there are some differences of the trace elements between the calcite 

cements and the micro-crystalline matrix, both values are still low, suggesting little 

evidence of marine or burial diagenesis. These results strongly suggest that diagenesis of 

the Shu'aiba Formation was mainly influenced by oxidizing meteoric diagenesis forming 

during the subaerial exposure event within the Shu'aiba Formation (e.g SB7) or during 

the widespread development of the uppermost Shu'aiba unconformity. However, the 

slight increase of Mn within some blocky calcite cements may indicate they formed 

during shallow burial within marine phreatic environments.  

 

Cathodoluminescence (CL) 

 The precipitation of dull luminescent cements indicates a change form oxidizing 

near-surface waters to more reducing pore fluids (Meyers, 1978). The low occurrence of 

a clear, dull luminescent is related to the generally low Fe concentrations indicating 

oxidizing waters, although relatively higher Fe values occurred locally in few samples. 

The dull luminescent cements typically have higher amounts of Fe and moderate amount 
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of Mn and are likely the results of partial quenching of the Mn luminescence by Fe 

amounts in excess of about 1400 ppm (Grover and Read, 1983; Savard et al., 1995). 

 The NL phase of the rudist fragments (No.1; Figures 54B and D) represents the 

original LMC that was stable during diagenesis, supported by the higher concentration of 

Sr (1056 ppm) and moderate Fe and Mn contents (~ 62 to 150 ppm respectively). The 

moderate bright luminescent of the micritized rim (Figure 54) likely occurred in early 

dissolution stages within marine environments. This part of the rudist fragments was 

very soluble compared to the first zone and was possibly deposited as aragonite (Russell, 

2001). Zone 3 of moderate bright luminescent within the micritizied peloidal grains are 

similar to zone 2 of micritization rim (Figure 54), indicating that the micritized grains 

occurred early, simultaneously or just after the dissolution and recrystallization of rudist 

rim of zone 2. Zone 4 blocky calcite cements (Figure 54), occurred later on the 

diagenetic histories, possibly associated with meteoric fluids during the subaerial 

exposure of the Shu'aiba platform. The bright CL within the internal structure of the 

rudist fragments indicate dissolution and cementation of the internal structures within the 

original rudist fragments, likely occurred during the latest phases of Mn-rich 

cementation. 

 Isopachous cements formed on substrates at the edge of the rudist micrite zone 

(Figures 55A and B) has similar CL to the internal micrite sediments suggesting similar 

diagenetic stage. The Bright CL is the last stage formed as cements filling the 

intergranular porosity. The diagenetic history of this facies along with little CL 
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variations likely resulting from the dominant meteoric diagenesis occurred underneath 

the subaerial exposure surface of SB 7 at the top of the rudist buildups. 

 The skeletal grainstone facies and rudist rudstone facies of the shoal complex 

record four CL phases (Figures 55C and D). The diagenetic history of these facies 

includes micritization and dissolution of skeletal grains forming moldic porosity, 

followed by cementation of intergranular porosity and then late stage cementation of 

cavities. 

 

Isotope Geochemistry  

 Carbon isotope values of calcite cements show more uniform clustering, have 

narrower variations and are similar to the carbon isotope values of the matrix; the 

majority of carbon isotope data plotted between 4 - 5‰ (Figure 57). This narrow range 

cluster within the isotope values of shallow environments rudist buildups of sequences 3 

to 5 (Al-Ghamdi and Pope, 2013). The uniform values of calcite cements and their 

similarity with the original muddy matrix strongly suggest that the carbon isotope 

signature of the cements were not much affected by subsequent diagenesis, or reflects a 

highly rock-buffered system without organic involvement (Hudson, 1977). Despite the 

occurrence of the subaerial exposure surfaces within the Shu'aiba platform and the karst 

formation at the top Shu'aiba unconformity, little depletion of δ13C depletion values of 

either the cements or matrix within the Shu'aiba Formation, suggesting they were not 

extensively affected by meteoric diagenesis. The increased carbon isotope value of the 

cements (5.5‰) near the subaerial exposure surface SB7, indicates the absence of 
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organic soils (plants) influence during subaerial exposure, suggesting possible dry 

climate during this interval (Al-Ghamdi and Pope, 2013). The highly depleted carbon 

and oxygen isotope values of the fracture fills were possibly due to the influence of 

hydrothermal fluids formed during the latest diagenetic events (Swart and Lindsay, 

2002).  

 The two major separation in cluster trends occurs between mud matrix and 

calcite cements representing two systems linked to different diagenetic pathways (Figure 

57). On the one hand, the mud matrix, which is mainly dominated by micro-rhombic 

calcite crystal with the so called "chalky" texture  record wide variations of δ13C values 

and more uniform with narrow variations of δ18O values. On the other hand, the calcite 

cements record more uniform with narrow variations of δ13C values and wider variations 

with more depleted δ18O values. The wide variations of δ13C in the mud matrix reflect 

the evolution of original ocean signature from the Early-Mid-to Late Aptian (see AL-

Ghamdi and Pope, 2013). The large variations of δ18O values in the calcite cements 

reflect an influence of meteoric diagenesis; deep burial diagenesis can only be seen in 

the fracture fills.  

 The oxygen isotope record of the calcite cements are interpreted to represent five 

major cements types that are likely related to different diagenetic environments or 

phases (Figure 62). Carbon isotope trends are uniform in all these cements, except in the 

latest fracture cements. The heaviest oxygen isotope values (-3.2‰ to -2.9‰) occurred 

within the original LMC rudist shell representing the original marine signature similar 

original δ18O values of the Cretaceous (Lohmann, 1988). Micro-rhombic calcite plots  
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Figure 62. Cross plot of carbon and oxygen isotope data from calcite cements. Wide 
variations of oxygen isotope trend reflect different cement types.  
 

 

 

 

 



 

within the original LMC rudist shell representing the original marine signature similar 

original δ18O values of the Cretaceous (Lohmann, 1988). Micro-rhombic calcite plots 

between -4 and -3.3‰ representing the general matrix values. These relatively enriched 

values of the micro-rhombic calcite are due to the low permeability within the mud 

matrix that percolate the meteoric waters from infiltrating into the matrix, particularly 

within the open marine and basinal settings. Calcite cements within rudist skeletal 

fragments have δ18O values between -4 and -5.5‰ and includes the micrite rim around 

the grains and the isopachous cements, both of which possibly formed during early 

marine that were later recrystallized by meteoric waters. Large blocky calcite cements 

filled the large rudist chambers, intergranular porosity, karst or caverns. These calcite 

cements have more depleted δ18O values ranging from -5.5 to -8.7‰ and possibly 

formed in latest event from meteoric or possibly in very shallow burial environments. 

The most depleted δ18O cements are the fractures filled cements that occurred in only a 

few samples and were possibly related to hydrothermal waters. This fractures filled 

cements also have depleted δ13C values, thus supported the interpretation of 

hydrothermal waters.  

 Moshier (1989) and Budd (1989) concluded that the strontium isotope of the 

micro-rhombic calcite of the Early Cretaceous Thammama Formation reflects the initial 

composition of the sediment with no additional radiogenic Sr added during the 

diagenesis, thus suggesting a closed system diagenetic environment in either meteoric or 

marine diagenetic environments. Subsurface burial waters are typically enriched in 

87Sr/86Sr, usually higher than 0.7090. Therefore, the Shu'aiba matrix was not 
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diagenetically altered by deep subsurface brines (Woronick and Land; Budd, 1989). The 

87Sr/86Sr data of the Shu'aiba Formation fluctuates from its base to its top possibly 

reflecting changes in the Early to Late Aptian ocean signature (Figure 12; AL-Ghamdi 

and Pope, 2013). 

 

Paragenetic Sequence 

 Compiling all geochemical, trace element, CL petrography analysis, and isotope 

data, nine paragenetic events occurred within the Shu'aiba Formation (Figure 63). These 

nine events are summarized as:  

1. Deposition of the Shu'aiba Formation with biodegradation and mechanical 

breakdown of rudist debris with both stable LMC and unstable aragonite 

cements.  

2. Dissolution and micritization of rudist shell rims, and around the edges of 

peloidal grains during or just after deposition within marine environments.  

3. Marine cementation of fringing isopachous cements around the skeletal and 

peloidal grains.  

4. Dissolution and recrystallization of aragonite rudist shells.  

5. Formation of large blocky calcite cements, plugging intergranular porosity. 

Second phase of cementation after the isopachous cements.  

6. Major meteoric cementation event occurred at the time of platform exposure 

associated with SB7. This event mainly affected the upper part of the rudist 

buildup unit resulting in almost complete cementation of the rudist rudstone  
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Figure 63. Paragenetic sequences of the main events from early to late diagenesis. Major 
diagenetic events occurred during the subaerial exposure phase.  
 

 

 

 

 

 



 

 deposited on beach environment that capped the rudist buildups. This event 

 formed a baffle zone at this sequence boundary. 

7. Major dissolution, chalkification and recrystallization event associated with the 

major subaerial unconformity at the top of the Shu'aiba Formation. At this time,  

8. microporosity and the chalky texture were likely formed in open system 

meteoric environments.  

9. Burial compaction associated with pressure solution and thin late stage cements 

fill occurred at shallow to deep burial.  

10. Late stage fractures produced and filled with fracture-filling cement possibly by 

hydrothermal fluids.  

 

Conclusions 

 The trace elements of the Shu'aiba Formation both matrix and cements are 

relatively low, reflecting either low values of the fluids (e.g Fe and Mn) or removal of 

elements during diagenesis (e.g. Sr and Mg). Fe and Mn contents represent the lower 

values of the original sediments with no additional values added during diagenesis, thus 

suggesting that the sediments were mainly influenced by meteoric fluids in oxidizing 

environments. Sr and Mg contents are very low compare to the original Cretaceous sea 

or modern carbonate rocks, indicating removal of these elements in an open system 

diagenetic environments. Fe and Mn trends are generally depleted with depth and 

following similar pattern, while Sr and Mg are positively correlated and following 
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similar trends. Mg and Sr are inversely correlated with Mn, but show some changes 

laterally reflecting changes in depositional settings.  

 Cathodoluminescence (CL) is best observed within the rudist buildups facies, 

where four to five CL zones can be identified, reflecting different stages of diagenesis. 

CL analysis helped identified the original stable LMC rudists with their NL zones from 

the recrystallized aragonite shells that have bright luminescence. Dull luminescent zones 

are less common, only forming thin layers at the edges of the blocky calcite crystals and 

reflecting the general low Fe contents.  

 Carbon isotopes of mud matrix and cements have similar values that range from 

~ 1 to 6 ‰, reflecting the original carbon isotope record of the Cretaceous ocean. No 

evidence of δ13C depletion associated of subaerial exposure or meteoric diagenesis 

observed from the cements, shells or mud matrix indicating a rock-buffered system. δ18O 

values of the cements are very depleted with wide variations representing at least four 

stages of cementation from meteoric diagenesis. Deep burial diagenesis is only recorded  

in the late stage fracture fills. The average strontium isotope data of the Shu'aiba 

Formation is 0.07389, and fill within the range of Sr isotope of the Cretaceous ocean 

reflects the original composition of the sediments with no additional radiogenic Sr added 

during the diagenesis. This further support the interpretation that meteoric diagenesis 

was the most dominant process affecting Shu'aiba Formation.  

 The subaerial exposure surface occurred within the Shu'aiba Formation at the top 

of the rudist buildups at SB7 and the major unconformity at top of Shu'aiba Formation 

are the most important events that influence the diagenesis history of the Shu'aiba. The 
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major diagenetic stabilization events including the chalkification and development of 

micro-rhombic calcite occurred at the time or just after the platform exposure associated 

with meteoric fluids.  
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CHAPTER V 

CONCLUSIONS 

 

 This study provides the most updated and accurate high-resolution sequence and 

chemostratigraphic frameworks covering the entire Shu'aiba platform using all available 

cored wells (50 wells), including carbon isotope profiles from 26 wells. This study also 

described the entire Biyadh Formation for the first time in the study area, providing the 

first depositional and stratigraphic model. 

 The Late Barremian Biyadh Formation represents one 3rd-order transgressive 

/regressive composite sequence (~3 My), consists of four high-frequency sequences (S1-

S4). S1 and S2 are the TST of the Barremian composite sequence and are composed of 

deep chalky and marly limestone. S3 and S4 are the HST of the Barremian composite 

sequence and are composed of high-energy shallow water subtidal with Caprotinid rudist 

and peloidal grainstone facies. This sequence is capped by a regional subaerial boundary 

(SB1) corresponding to a global sea level fall.  

 The entire Shu'aiba Formation represents a 2nd-order composite sequence (~ 7 

My duration) composed of four 3rd-order sequences (~1-2 My) and ten HFS's (S1-S10; 

each ~ 405 Ky - 1 My duration). S1 records the initial TST with the deposition of Hawar 

unit, followed by S2 that records the regional MFS (K70). S3 is the late TST of the 

Shu'aiba composite sequence and is characterized by the deposition of extensive 

Lithocodium aggregatum/coral facies associated with the onset of differentiated 

platform-to-basin settings with slight clinoform and backstepping geometries. The 3rd-
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order sequence 2, consisting of sequences 4-6 and are dominated by rudist buildup facies 

that changed toward the platform interior into lagoonal facies and transitioned basinward 

into fore-bank, slope and basinal settings with pronounced clinoform geometries. This 

3rd-order sequence has a transgressive lag at its base that deepens upward to the regional 

composite MFS (K80), then was shallowed up and capped by  major sequence boundary 

(SB7) and exposure surface that records major changes in facies and biota. The 3rd-order 

sequence 3 consists of S7 and S8 and are dominated by shallow lagoonal peloidal 

milliolid packstone facies associated with local Agriopleura floatstone, representing the 

HST of the Shu'aiba composite sequence. The 3rd-order sequence 4 consists of the newly 

identified Upper Aptian sequences HFS's S9 and S10. These sequences are recorded on 

the northern-block within prograding platform edge and slope settings that formed 

during a major forced regression. Regional correlation suggests that more prograding 

sequences likely formed basinward.  

This study proposed a refined global correlation between the Arabian Plate 

stratigraphic record and global stratigraphic record and global sea-level. This correlation 

strongly suggests a direct influence of the 3rd-order sea-level fluctuations on the Biyadh 

and Shu'aiba Formations. The Shu'aiba Formation records the perturbations of global 

carbon cycles associated with the nannoconids crisis and OAE1a. The global 

nannoconids crisis appears to be correlated with the deep chalky mudstone facies 

associated with the MFS in S2, that is coeval to the regional MFU (K70). The OAE1a 

with its distinctive carbon isotope values is coeval to the Lithocodium aggregatum facies 

of S3 and correlated to the TST of global sequence AP3. This correlation also suggests 
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that Aptian HFS's were mainly controlled by a glacio-eustatic sea-level changes and the 

long term eccentricity cycles (~ 405 Ky) were the main driving mechanism. The 

Barremian sequences record low magnitude sea-level changes with relatively thinner 

sequences compared to the Aptian. Moreover, the Barremian parasequences likely 

reflect obliquity (~ 40 Ky), whereas the Aptian parasequences are likely controlled by 

small scale eccentricity (~ 100 Ky) cycles. The Shu'aiba Formation records major 

subaerial hiatus reflecting glacial intervals, interrupted by major flooding units reflecting 

global warming intervals. These changes in the stratigraphic records and sea-level 

magnitude between the Barremian and Aptian suggest a prevailed greenhouse period 

during the Barremian, changed rapidly into a transitional climate period in the Aptian 

interrupted by glacial events. 

 Carbon isotope values of the Shu'aiba Formation have not undergone major 

meteoric diagenesis, and likely reflect the original marine values of the Early Cretaceous 

shallow platform waters. Therefore, carbon isotope data were integrated with well data 

and used as a chronostratigraphic correlation tools to refine the age model beyond the 

resolution of biostratigraphic age model. The fluctuations of the Shu'aiba Formation 

carbon isotope profile reflects global perturbation of carbon cycle that can be correlated 

worldwide. The major negative excursion in the Hawar unit is a global event associated 

with dissociation of methane hydrates in the basal Aptian. The major positive excursion 

within sequence 2 is also a global phenomena related to organic carbon burial and OAE 

1a. Carbon isotope values of ~ 4.5‰ represent an important chronostratigraphic time 

line associated with the onset of rudist buildups in the middle Shu'aiba. This value is 
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well preserved and can be correlated despite major changes in facies from margin to 

slope and open marine. Although, isotope values of single stratigraphic time lines show 

some lateral variations with different environments, the general isotope trends are 

similar in pattern and are laterally correlative. These minor changes in carbon isotope 

values across environments are possibly related to changes in dominant organisms. The 

isotope profile of the Shu'aiba Formation can be used as a proxy for the third-order sea-

level fluctuations, where carbon isotope enrichment is linked to seal-level rise and 

carbon isotope depletion is linked to sea-level fall.  

 The Shu'aiba Formation has underwent extensive diagenetic alterations that 

produced complex pore systems along with its complex facies architectures. The main 

diagenetic environments occurred during the late Aptian unconformity associated with 

meteoric waters. At this time major dissolution, chalkification and recrystallization 

events occurred possibly in open system meteoric environments.  

 The trace elements of the Shu'aiba Formation both matrix and cements are 

relatively low, reflecting either low values of the fluids (e.g Fe and Mn) or removal of 

elements during diagenesis (e.g. Sr and Mg). Cathodoluminescence (CL) analysis 

indicate four to five CL zones, reflecting different stages of diagenesis. CL analysis 

helped identified the original stable LMC rudists with their NL zones from the 

recrystallized aragonite shells that have bright luminescence. Dull luminescent zones are 

less common, only forming thin layers at the edges of the blocky calcite crystals and 

reflecting the general low Fe contents. Carbon isotope values of mud matrix and cements 

are similar, reflect original carbon isotope record of the Cretaceous ocean, with no 
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evidence of δ13C depletion associated of subaerial exposure or meteoric diagenesis. 

Oxygen isotope values of the cements are much depleted due to meteoric diagenesis, 

representing at least four stages of cementation. No evidence of deep burial diagenesis 

except few samples of late stage fracture fills.  
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