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ABSTRACT 

 

 One of the main objectives in the Oil & Gas Industry is to constantly improve the 

reservoir management capabilities by using production optimization strategies that can 

positively impact the so-called net-present value (NPV) of a given project. In order to 

achieve this goal the industry is faced with the difficult task of maximizing hydrocarbon 

production and minimizing unwanted fluids, such as water, while sustaining or even 

enhancing the reservoir recovery factor by handling properly the fluids at surface 

facilities. A key element in this process is the understanding of the interactions between 

subsurface and subsurface dynamics in order to provide insightful production strategies 

which honor reservoir management surface facility constraints. The implementation of 

the ideal situation of fully coupling surface/subsurface has been hindered by the required 

computational efforts involved in the process. Consequently, various types of partially 

coupling that require less computational efforts are practically implemented. Due to 

importance of coupling surface and subsurface model on production optimization and 

taking the advantage of advancing computational performance, this research explores the 

concept of surface and subsurface model couplings and production optimization.  

 The research aims at demonstrating the role of coupling of surface and 

subsurface model on production optimization under simple production constraint (i.e. 

production and injection pressure limit). The normal production prediction runs with 

various reservoir description (homogeneous-low permeability, homogeneous-high 

permeability, and heterogeneous permeability) and different fluid properties (dead-oil 
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PVT and lived-oil PVT) were performed in order to understand the effect of coupling 

level, and coupling scheme with different reservoir descriptions and fluid properties on 

production and injection rate prediction. The result shows that for dead-oil PVT, the 

production rate from different coupling schemes in homogeneous and heterogeneous 

reservoir is less sensitive than lived-oil PVT cases. For lived-oil PVT, the production 

rate from different coupling schemes in homogeneous high permeability and 

heterogeneous permeability are more sensitive than homogeneous low permeability. The 

production optimization on water flooding under production and injection constraint 

cases is considered here also.  
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NOMENCLATURE 

 

𝐽   Jacobian Matrix 

𝐽(𝑣)    Jacobian Matrix at 𝑣 th Newton - Raphson's Iteration 

𝑅𝑅   Residual Vector 

𝑅𝑅𝑛+1∗   Residual Vector at ∗ th Newton - Raphson's Iteration 

𝑅𝑅𝑓   Residual Vector of the Surface Flow Equation 

𝑅𝑅𝑟   Residual Vector of the Subsurface Flow Equation 

𝑅𝑅𝑜   Residual Vector of Oil Flow Equation 

𝑅𝑅𝑤   Residual Vector of Water Flow Equation 

𝑅𝑅𝑔   Residual Vector of Gas Flow Equation 

𝜕𝜕𝑥𝑥𝑓   Solution Vector of Newton Linearization of the Surface Flow 

𝜕𝜕𝑥𝑥𝑟   Solution Vector of Newton Linearization of the Subsurface Flow 

𝜌𝑜   Oil Density 

𝜌𝑤   Water Density 

𝜌𝑔   Gas Density 

𝜌𝐺𝑜   Solution Gas Density 

𝑘𝑟𝑜   Relative Permeability to Oil 

𝑘𝑟𝑤   Relative Permeability to Water 

𝑘𝑟𝑔   Relative Permeability to Gas 

𝑘   Total Permeability 



 

vii 
 

𝑘𝑥    Permeability in the X - Direction  

𝑘𝑦    Permeability in the Y - Direction  

𝜇𝑜    Oil Viscosity 

𝜇𝑤    Water Viscosity 

𝜇𝑔    Gas Viscosity 

𝜇𝐺𝑜    Solution Gas Viscosity 

𝜙   Porosity 

𝑔   Gravitational Acceleration 

𝑥𝑥   Distance in X - Direction in the Cartesian Coordinate 

𝑦   Distance in Y- Direction in the Cartesian Coordinate 

𝑧   Distance in Z- Direction in the Cartesian Coordinate 

𝑝𝑜    Oil Phase Pressure 

𝑝𝑤    Water Phase Pressure 

𝑝𝑔   Gas Phase Pressure 

𝑆𝑜    Oil Phase Saturation 

𝑆𝑤    Water Phase Saturation 

𝑆𝑔   Gas Phase Saturation 

𝑡   Time 

𝑞𝑞𝑜�   Oil Phase Mass Flow Rate 

𝑞𝑞𝑤�    Water Phase Mass Flow Rate 

𝑞𝑞𝑔�   Gas Phase Mass Flow Rate 
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𝑞𝑞𝑜∗    Oil Phase Volume Flow Rate 

𝑞𝑞𝑤∗    Water Phase Volume Flow Rate 

𝑞𝑞𝑔∗    Gas Phase Volume Flow Rate 

𝑞𝑞𝑓𝑔∗    Volume Flow Rate of Free Gas 

𝐵𝐵𝑐𝑜𝑤   Oil-Water Capillary Pressure 

𝐵𝐵𝑐𝑔𝑜   Gas-Oil Capillary Pressure 

𝜆𝑜   Oil Phase Transmissibility 

𝜆𝑜𝑥   Oil Phase Transmissibility in X - Direction 

𝜆𝑜𝑦   Oil Phase Transmissibility in Y - Direction 

𝜆𝑜𝑧   Oil Phase Transmissibility in Z - Direction 

𝜆𝑤   Water Phase Transmissibility 

𝜆𝑤𝑥   Water Phase Transmissibility in X- Direction 

𝜆𝑤𝑦   Water Phase Transmissibility in Y - Direction 

𝜆𝑤𝑧   Water Phase Transmissibility in Z - Direction 

𝜆𝑔   Gas Phase Transmissibility 

𝜆𝑔𝑥   Gas Phase Transmissibility in X- Direction 

𝜆𝑔𝑦   Gas Phase Transmissibility in Y- Direction 

𝜆𝑔𝑧   Gas Phase Transmissibility in Z- Direction 

𝛾𝑜   Oil Phase Hydrostatic Gradient 

𝛾𝑤   Water Phase Hydrostatic Gradient 

𝛾𝑔   Gas Phase Hydrostatic Gradient 
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𝑖, 𝑗, 𝑘   Subscript Specified the Properties of Superscript  

   at Location (i, j, k) 

𝑖 + 1
2

, 𝑗,𝑘   Subscript Specified the Properties of Superscript Evaluated 

   at Location (i, j, k) and (i+1, j, k) 

𝑖, 𝑗 + 1
2

,𝑘   Subscript Specified the Properties of Superscript Evaluated 

   at Location (i, j, k) and (i, j+1, k) 

𝑖, 𝑗, 𝑘 + 1
2
   Subscript Specified the Properties of Superscript Evaluated 

   at Location (i, j, k) and (i, j, k+1) 

𝑖 − 1
2

, 𝑗,𝑘   Subscript Specified the Properties of Superscript Evaluated 

   at Location (i, j, k) and (i-1, j, k) 

𝑖, 𝑗 − 1
2

,𝑘   Subscript Specified the Properties of Superscript Evaluated 

   at Location (i, j, k) and (i, j-1, k) 

𝑖, 𝑗, 𝑘 − 1
2
   Subscript Specified the Properties of Superscript Evaluated 

   at Location (i, j, k) and (i, j, k-1) 

𝑅𝑅𝑆𝑂   Solution Gas - Oil Ratio 

𝐵𝐵𝑜   Oil Formation Volume Factor 

𝐵𝐵𝑤   Water Formation Volume Factor 

𝐵𝐵𝑔   Gas Formation Volume Factor 

𝑊𝐼   Peaceman's Well Index 

𝑟𝑟𝑜    Equivalent Gridblock Radius 

𝑟𝑟𝑤    Wellbore Radius 
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𝑝𝑤𝑓    Bottomhole Flowing Pressure 

ℎ   Reservoir Thickness 

𝑟𝑟   Skin Factor 

𝑝𝑏    Bubble Point Pressure 

𝑈𝑛+1    State Vector of Current Time step 

𝑈𝑛+1∗    State Vector of Current Time step at *th Newton - Raphson's

   Iteration 

𝛿𝑈    Correction Vector of Newton - Raphson's Linearization 

𝐵𝐵𝑠𝑒𝑝    Separator Pressure 

�𝑑𝑝
𝑑𝐿
�
𝑒𝑙𝑒𝑣

  Pressure Loss Gradient from Elevation Change 

�𝑑𝑝
𝑑𝐿
�
𝑓
   Pressure Loss Gradient from Friction 

�𝑑𝑝
𝑑𝐿
�
𝑎𝑐𝑐

  Pressure Loss Gradient from Acceleration 

𝑔𝑐   Conversion Factor in Newton's Second Law of Motion 

𝜃   Theta Angle 

𝜌𝑚   Density of the Gas/Liquid Mixture in the Pipe Element 

𝜌𝐿    Density of Liquid in the Pipe Element 

𝜌𝑚    Density of Gas in the Pipe Element 

𝜆𝐿   Liquid Holdup in the Pipe Element 

𝜆𝐺   Gas Holdup in the Pipe Element 

𝑓𝑓   Friction Factor 

𝑣   Velocity of Fluid in the Pipe Element 
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𝑑    Pipe Diameter 

�𝑑𝑣
𝑑𝐿
�    Acceleration Term 

𝑁𝐹𝑅   Froude Number 

𝑂𝑛    Objective Function at Time step n 

𝑂    Summation of Objective Function 

𝐿    Lagrange Function 

𝑑   Discount Factor 

𝑟𝑟𝑜   Oil Revenue 

𝑟𝑟𝑔   Gas Revenue 

𝑐𝑝𝑤   Water Production Cost 

𝑐𝑖𝑤   Water Injection Cost 

𝑄𝑜   Oil Production Rate 

𝑄𝑤   Water Production Rate 

𝑄𝑔   Gas Production Rate 

𝑄𝑝𝑤    Water Production Rate 

𝑄𝑖𝑤   Water Injection Rate 

𝑥𝑥𝑛   State Variable Vector at Time step n 

𝑢𝑛   Control Vector at Time step n 

𝑐𝑛(𝑥𝑥𝑛+1,𝑢𝑛)  Inequality Constraint Function 

𝐿𝐵𝐵    Lower Bound Value 

𝑈𝐵𝐵    Upper Bound Value 
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𝜆𝑛    Lagrange Multiplier 

𝑢𝑜𝑝𝑡𝑛    Optimal Control Vector 

IAM   Integrated Asser Model 

𝐵𝐵𝐵𝐵𝐵𝐵    Bottomhole Pressure 

𝑇𝐵𝐵𝐵𝐵    Tubing Head Pressure 

GOR    Gas-Oil Ratio 

𝑁𝐵𝐵𝑉   Net Present Value 

𝑉𝐿𝐵𝐵    Vertical Lift Performance Relationship  

𝐼𝐵𝐵𝑅𝑅   Inflow Performance Relationship  

OOIP   Original Oil In-Place 
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1. INTRODUCTION 

 

 Production optimization has always becomes an important step in Oil & Gas 

field development production. Production optimization plays an important role in 

reservoir management improvement through finding the production strategies that leads 

to maximum so-called net-present value (NPV) of a given project. The NPV 

maximization can be done by minimizing undesirable fluid and maximizing hydrocarbon 

production by controlling surface production facility. One of the important elements to 

achieve this goal is the understanding of the connections and interactions between 

subsurface and surface dynamics so as to deliver insightful production strategies which 

honor reservoir management surface facility constraints. Interaction of subsurface and 

surface dynamics can be taken into account by coupling the surface and subsurface 

model.  

 Coupled surface and subsurface model can be done by using several options of 

coupling mechanism. The general concept of coupling surface and subsurface model is 

to link the surface and subsurface model by passing control parameter at the coupling 

point such as bottomhole flowing pressure and flow rate back and forth between surface 

and subsurface model. There are three main coupling mechanisms used in Oil & Gas 

industry, explicit coupling, implicit coupling, and fully implicit coupling. The fully 

implicit coupling mechanism is rarely used in Oil & Gas industry since this coupling 

scheme is the most complicated and computational expensive coupling scheme. The 

surface and subsurface model is treated as one domain such that the system of equations 
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of surface flow and system of equations of subsurface flow are solved simultaneously. 

The root cause of complexity and computational expensive of fully implicit coupling 

mechanism is treating the surface flow and subsurface flow to be a single system of 

equation. This can be done by treating nodes of surface facility as additional grid block 

of reservoir model which increase the number of unknown parameter in Newton 

Raphson linearization. The system of equations is solved simultaneously by Newton 

Raphson linearization which requires modification of original residual and jacobian 

matrix.  

 The practical coupling mechanisms used in the industry are implicit and explicit 

coupling mechanism. These two coupling mechanisms are different from fully implicit 

coupling as the surface and subsurface are treated as different domain. The major 

difference between explicit and implicit coupling mechanism is the treatment of well 

boundary condition of subsurface model. The well boundary condition for explicit 

coupling will be treated explicitly by obtaining it from surface and subsurface model 

balancing in the beginning of the time step while for the implicit coupling; surface and 

subsurface model are balanced in almost every Newton iteration step of Newton 

Raphson linearization process for solving the system of equation of subsurface model. 

These two mechanisms require less computational effort and have less structure 

complexity. Consequently, this research will focus on only implicit and explicit coupling 

mechanisms.  

 After the coupled surface and subsurface model with explicit and implicit 

coupling option is developed. The effect of coupling mechanism with several setting of 
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reservoir and fluid properties on normal production prediction can be investigated and 

use to design the case for production optimization to illustrate the importance of 

choosing coupling mechanism. 

 

1.1. Objective 

 The popularity and importance of the application of coupled surface and 

subsurface models for production optimization is the motivation for this research. Since 

there are several choices to do coupling and each coupling mechanisms have their 

advantage and disadvantage. Consequently, the objective of this project is to investigate 

various surface and subsurface model coupling mechanisms applied in the Oil&Gas 

Industry. To this end, we will investigate the effect of various coupling levels, and 

coupling schemes on production optimization results and give recommendations on the 

critical point of coupling. To accomplish this objective, two main phases are to be 

completed. First, we construct a simple coupling model of water flooding scenario by 

using programming software (i.e. MATLAB®) or commercial software (i.e. 

ECLIPSE100 & Network option). The model obtained in this first task will be used to 

investigate the effect of various coupling levels, and coupling schemes with different 

reservoir descriptions and fluid properties on normal production prediction.  In the 

second phase, the result from the first phase will be used to design the production 

optimization cases and resulting in recommendations on the critical point of coupling. 

The production & injection rate and economic results will be used as indicators on 

effectiveness of the various coupling mechanism discussed here. 
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1.2. Coupling Surface and Subsurface Model 

 In general, surface and subsurface models are modeled separately and treated as 

two different domains. The subsurface model is normally referred to reservoir simulation 

model and the surface model is referred to production network simulation. To make a 

realistic reservoir performance prediction in reservoir simulation, it is often necessary to 

connect the surface and subsurface model together in order to ensure that all of the 

production constraints from surface facilities are obeyed. Connecting of surface and 

subsurface models can be done by a process known as “Coupling”. The concept of 

coupling is shown in the Figure 1. The parameter that we use to connect surface and 

subsurface models is called control parameter. The “Coupling” can be done by passing 

the control parameter back and forth between surface and subsurface models. Normally, 

the control parameter used in “Coupling” is bottomhole pressure (BHP), tubinghead 

pressure (THP), and flow rate depend on where the coupling point and control parameter 

are used. 
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1.3. Surface and Subsurface Model Coupling Scheme 

 There are three different types of coupling scheme that are generally used in the 

petroleum industry. 

1.3.1. Explicit Coupling Scheme  

 The surface and subsurface are treated as different domain (domain 

decomposition) and the iterative process is simplified such that the boundary condition 

for subsurface model is treated explicitly. The subsurface model and surface model are 

solved at different time steps. Given the production rate from previous time step, the 

 

Figure 1: Coupled surface and subsurface model 
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pressure drop across surface facilities is calculated to give the value of bottomhole 

pressure (BHP). The BHP and well block pressure at the beginning of the time step will 

be used as input for well rate calculation. The iterative loop will be continued until the 

solution of well rate calculation and surface model is converged. The converged BHP 

will be used as boundary condition for subsurface model to solve for the production rate 

at current time step. It can be said that the system (surface and subsurface model) is 

balanced at the beginning of the time step to calculate the boundary condition for 

subsurface model, after subsurface model run the well rate will not consistent with the 

well rate at the beginning of the time step as the gridblock condition is changed. 

1.3.2. Implicit Coupling Scheme 

 The surface and subsurface are treated as different domain as same as the explicit 

coupling method but the subsurface model becomes a part of the Newton iterative 

process. The implicit method can lead to high computational time. So, the domain 

decomposition technique is use to accelerate the convergence speed. The main idea of 

this technique is to separate subsurface domain into reservoir subdomain and well 

subdomain. The well subdomains contain just only small portion of subsurface model 

and only the well subdomain will be include in first iterative loop to find boundary 

condition for the remaining part of reservoir subdomain. 

1.3.3. Fully Implicit Coupling Scheme  

 The surface and subsurface model is treated as one domain such that the system 

of equations of surface facility and system of equations of subsurface flow are solved 

simultaneously by considering nodes of surface facility as additional grid block of 
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reservoir model.  Normally, the system of equation will be linearized and solved by 

Newton iteration which requires the knowledge of derivatives to form a Jacobian matrix 

(𝐽). The set of matrix below shows the general structure of Newton linearization 

(𝜕𝜕𝑥𝑥 = 𝐽−1𝑅𝑅) 

�
𝝏𝒙𝒇
𝝏𝒙𝒓

� =  �
𝑨𝒇 …
… 𝑨𝒓

�
−𝟏
�
𝑹𝒇
𝑹𝒓
� 

The 𝑅𝑅𝑓 and 𝑅𝑅𝑟 represent subvector of Residual vector while the 𝐴𝐴𝑓 and 𝐴𝐴𝑟 represent 

submatrix of Jacobian matrix derived from the system of equation of the surface model 

and subsurface model, respectively. The vector 𝜕𝜕𝑥𝑥𝑓 & 𝜕𝜕𝑥𝑥𝑟represent subvector of the 

solution vector of Newton linearization of the surface and subsurface model equations. 

In each Newton iteration step, the vector 𝜕𝜕𝑥𝑥𝑓 and 𝜕𝜕𝑥𝑥𝑟 will be solved. The iterative 

process will be stopped when Newton iteration is converged. 
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2. LITERATURE REVIEWS 

 

 In this session, we briefly review the field developments in two main areas: 

advanced well modeling and coupling surface and subsurface models. They will set the 

background material for the developments in this thesis. 

 In addition to advanced well modeling, there have been developments of 

coupling surface and subsurface model. Normally, the surface and subsurface model are 

decoupled from each other for the sake of simplification. The surface and subsurface 

model are decoupled at well boundary condition. The importance of coupled model is 

pointed out here. In history matching process, there is no issue of inconsistent well 

boundary conditions between surface and subsurface model because the well boundary 

conditions (well production rate or bottomhole flowing pressure) is known (from hard 

data such as production test and pressure test). However, in the predictive processes, the 

well boundary condition is unknown and depends on reservoir behavior and surface 

facility performance. This may lead to inconsistent of well boundary conditions between 

surface and subsurface model because it is possible that either reservoir deliverability or 

surface facility performance cannot deliver the specified well boundary condition. 

 Moreover, coupling surface and subsurface model can play a major role in field 

production optimization. Normally, the subsurface model is only used in the reservoir 

performance optimization. The surface model is used as a tool for surface facility 

capability optimization. Both of these aspects have the common goal of production 

optimization. However, using the models separately does not guarantee that both aspects 



 

9 
 

 

will be achieved. Consequently, the coupling is necessary in field production 

optimization. 

 To take an advantage of coupled models, many authors have presented method 

for simultaneous solving the system of equation of surface and subsurface model. Some 

of publications are presented in these sections. 

 

2.1. Advanced Well Modeling 

 In the past decade, there have been several developments of advanced well 

modeling which can be viewed a precursor of coupling surface and subsurface models. 

The model is mainly used in order to support the invention of multilateral wells, 

horizontal wells and even intelligence wells which has complex well configurations. 

 Holmes (1983) presented fully implicit three dimensional black oil simulator that 

use three variables in each well instead of single variable (bottomhole pressure). The two 

additional variables are used to describe fluid content in the wellbore which can be used 

for crossflow calculation in the wellbore. This model is a good starting point to consider 

the effect of surface facility dynamic (although it is just wellbore model) on subsurface 

model.  

 Stone et al. (1989) created a fully implicit three phases, three dimensional dead-

oil thermal numerical model that coupling wellbore and tubing model with reservoir 

model. Reservoir mass and energy balance, transport equation in pipe (energy, 

momentum, and mass balance) were solved simultaneously using Newton iteration. The 

model faces some stability issues. The time step size is too small when the flow in 
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wellbore cannot reach quasi steady-state. The flow regime calculation is unstable in the 

transition lead to convergence problem.  

 Holmes et al. (1998) established a more comprehensive model from the work in 

1983. The model can determine pressure lost due to friction and able to determine more 

accurate crossflow. The model is fully coupled, implicit three phases, three dimensional 

black oil numerical that fully couple segmented wellbore and tubing with reservoir 

model. The system of equations comprise 3 phases (oil, gas, and water) mass balance 

equations, hydraulic equation for calculating pressure lost in each segment, and 

constraint equations.  Four variables are included for each well segmented. The concept 

can be extended to compositional simulator. The system of equations is linearized by 

using Newton-Raphson scheme. The continuous & differentiable of the pressure loss and 

flow rate correlation is necessary condition for implicit numerical calculation. The 

continuity requirement rules out many of the correlations which based on flow regime as 

they tend to be discontinuous across the flow regime boundaries. The enhanced version 

of previous work is the thermal simulation with multisegment well which incorporates 

heat transfer equation. 
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2.2. Coupling Surface and Subsurface Model 

 Dempsey et al. (1971) published the coupling of a simple surface and gas/water 

subsurface model. The model is explicit couple at time step level. Although the author 

does not mention that the reason of using selected flow in pipe correlation regarding 

stability issue, it can be observed that the flow in pipe correlation used in the study are 

all continuous. (Surface piping-Eaton, Production string-Modified Hagedon and Brown, 

Griffith for bubble flow). 

 Emanuel and Ranney (1981) presented the coupling of complex surface and three 

dimensional black oil reservoir models. The author use implicit couple at time step level 

technique to solve the system of equation (Surface and Production string - Beggs and 

Brill, Orkiszewski). 

 Litvak and Darlow (1995) published the rigorous procedure for the determination 

of well rate from surface pipeline network and tubinghead pressure constraint. They 

claim that the procedure is implemented in an industrial compositional reservoir 

simulator and it's applicable with black oil simulator.  

 Fang and Lo (1996) presented the gas-lifted production optimization of scheme 

for integrated reservoir simulation model and production network model with multiple 

field limits. The author aims to develop well-management scheme that can optimize oil 

production rate under general conditions with multiple facility limits. The author 

developed practical well-management scheme using the simplex/separable programming 

technique which they claim that it is much faster than gradient - based approach (i.e. 

linear programming).  
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 Several authors tried to integrate commercial reservoir simulator (such as 

ECLIPSE) with commercial production network simulator (such as FORGAS and 

NetOpt) using Parallel Virtual Machine interface as a controller to pass the information 

between these two program. The level of coupling is varied from time step level to 

Newton iteration level (Hepguler et al. 1997; Trick 1998).  

Hayder et al. (2006) used the commercial production network simulator (GAP) 

which has the production optimization algorithm available and this is capable of 

optimization of the flow rate under production constraint. GAP can be used to couple an 

in-house reservoir simulation program by using RESOLVE as a controller. It shows that 

the coupled model shows the improvement in reduction of water cut while the oil 

production rate is not significantly different compare to the uncoupled model. 

 Another important method for coupling the surface and subsurface model is the 

Integrate Asset Model (IAM) is define as the model that integrates reservoir, wells, 

surface infrastructure, and process facilities—as well as the asset's operating parameters, 

financial metrics, and economic conditions—into a single production management 

environment. It has gained widely acceptance for production integration and 

optimization as we can see several recently publication. Wickens and Jonge (2006) use 

IAM for risk management in production forecasting. Ursini et al. (2010) use IAM to 

couple dynamic oil reservoirs with surface facilities model for an onshore Algerian asset 

in order to account for pressure interaction between reservoir and surface facility, 

bottleneck and constraint identification, mixing of difference produced fluid. Gonzalez 

et al. (2010) build a fully compositional IAM for a giant gas-condensate field and it can 
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be used for manage the production schedule and liquid production optimization. The 

application of IAM is not limited to reservoir production management and optimization. 

Okafor (2011) shows the application of IAM for the flow assurance problem. 
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3. SUBSURFACE & SURFACE MODELING AND COUPLING MECHANISMS 

 

 In this chapter, the fundamental equations and theory related to surface & 

subsurface modeling and coupling mechanism are explained. The subsurface model used 

in this study is the black oil multiphase reservoir simulation model which simulates the 

flow of fluid in three phases (Oil, Gas, and Water). The derivation of three phases flow 

equations in reservoir system are shown in this chapter. The in-depth derivation of 

multiphase flow equation can be found from the textbooks by Ertekin (2001) and Chen 

et al. (2006). For surface model, the multiphase flow in pipe model is used in this study.  

The flow regime in vertical & horizontal pipe and related pressure lost correlations are 

described in a brief detail.  

 

3.1. Subsurface Modeling 

 In this section we discuss the black oil formulation of three phases flow (oil gas, 

and water) in reservoir engineering. The black oil formulation is derived from mass-

conservation equations and Darcy’s equation in form of partial differential equations 

(PDE’s). Most of equation presented here is mostly based on the textbook by Ertekin 

(2001) and Chen et al. (2006). 

 Assume that there are oil, gas, and water phases flow through the porous media 

which has permeability 𝑘, porosity 𝜙, oil saturation 𝑆𝑜, water saturation 𝑆𝑤, and gas 

saturation 𝑆𝑔 as shown in the Figure 2. The oil, gas and water phases have 
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density 𝜌𝑜,𝜌𝑔, 𝑎𝑛𝑑 𝜌𝑤, respectively. The viscosity of oil, gas and water are 

𝜇𝑜, 𝜇𝑔,𝑎𝑛𝑑 𝜇𝑤, respectively. 

 

 
 

Figure 2: Multiphase flow through porous media  

  

 The oil, gas and water flow equation can be derived using the concept of material 

balance which states that the mass of inflow stream is equal to mass of outflow stream 

and accumulation. Combining the material balance equations and Darcy’s equation yield 

the oil, water and gas flow equation which can be used to describe the flow of 

multiphase through the porous media. The partial differential equation of three phases 

flow is shown below 

Oil Flow Equation 

∇. [𝜌𝑜𝑘𝑟𝑜𝑘
𝜇𝑜

(∇𝑝𝑜 − 𝜌𝑜g∇𝑧)] = 𝜕(𝜌𝑜𝜙𝑆𝑜)
𝜕𝑡

+  𝑞𝑞𝑜�      (1) 

Water Flow Equation 

∇. [𝜌𝑤𝑘𝑟𝑤𝑘
𝜇𝑤

(∇𝑝𝑤 − 𝜌𝑤g∇𝑧)] = 𝜕(𝜌𝑤𝜙𝑆𝑤)
𝜕𝑡

+ 𝑞𝑞𝑤�      (2) 
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Gas Flow Equation 

∇. [𝜌𝐺𝑜𝑘𝑟𝑜𝑘
𝜇𝐺𝑜

(∇𝑝𝑜 − 𝜌𝑜g∇𝑧) + 𝜌𝑔𝑘𝑟𝑔𝑘
𝜇𝑔

�∇𝑝𝑔 − 𝜌𝑔g∇𝑧�] = 𝜕�(𝜌𝐺𝑜𝑆𝑜+𝜌𝑔𝑆𝑔)𝜙�
𝜕𝑡

+  𝑞𝑞𝑔� (3) 

where 𝑆𝑜 + 𝑆𝑤 + 𝑆𝑔 = 1,𝐵𝐵𝑐𝑜𝑤 =  𝐵𝐵𝑜 − 𝐵𝐵𝑤 𝑎𝑛𝑑 𝐵𝐵𝑐𝑔𝑜 =  𝐵𝐵𝑔 − 𝐵𝐵𝑜 

 The term on the left side of flow equations represent the different of mass 

flowing in and out while on the right side of the flow equations represent the 

accumulation term and external sink/ source (𝑞𝑞�). The unit of equation (1), (2), and (3) 

above is mass flow/unit volume. 

Dividing the equation (1), (2), and (3) by 𝜌𝑆𝑇𝐶 and use the definition of 𝐵𝐵 = 𝑉𝑟𝑐/𝑉𝑆𝑇𝐶  

Oil Flow Equation 

∇. [𝜆𝑜(∇𝑝𝑜 − 𝛾o∇𝑧)] =
𝜕�𝜙𝑆𝑜𝐵𝑜

�

𝜕𝑡
+ 𝑞𝑞𝑜∗        (4) 

Water Flow Equation 

∇. [𝜆𝑤(∇𝑝𝑤 − 𝛾w∇𝑧)] =
𝜕�𝜙𝑆𝑤𝐵𝑤

�

𝜕𝑡
+  𝑞𝑞𝑤∗       (5) 

Gas Flow Equation 

∇. �𝜆𝑔�∇𝑝𝑔 − 𝛾g∇𝑧� + 𝑅𝑅𝑆𝑂𝜆𝑜(∇𝑝𝑜 − 𝛾o∇𝑧)� =
𝜕�𝜙𝑅𝑆𝑂𝑆𝑜𝐵𝑜

+
𝜙𝑆𝑔
𝐵𝑔

�

𝜕𝑡
+ 𝑞𝑞𝑔∗ + 𝑞𝑞𝑜∗𝑅𝑅𝑆𝑂 (6) 

where 𝜆𝑜 =  𝑘𝑟𝑜𝑘
𝐵𝑜𝜇𝑜

, 𝜆𝑤 =  𝑘𝑟𝑤𝑘
𝐵𝑤𝜇𝑤

 , 𝜆𝑔 =  𝑘𝑟𝑔𝑘
𝐵𝑔𝜇𝑔

,𝑎𝑛𝑑 𝑅𝑅𝑆𝑂 = 𝑊𝐺𝜌𝑜/𝑊𝑂𝜌𝑔 

 The ∇ operator is gradient operator and it stand for 𝜕
𝜕𝑥

+ 𝜕
𝜕𝑦

+ 𝜕
𝜕𝑧

 operation for the 

space in 3D-Cartesian coordinate. In addition, we can impose three constraint equations 

𝑆𝑜 + 𝑆𝑤 + 𝑆𝑔 = 1, 𝐵𝐵𝑐𝑜𝑤 =  𝐵𝐵𝑜 − 𝐵𝐵𝑤 𝑎𝑛𝑑 𝐵𝐵𝑐𝑔𝑜 =  𝐵𝐵𝑔 − 𝐵𝐵𝑜  into the equations (4) to (5). 

The equations become 
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Oil Flow Equation 

𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝜆𝑜𝑥 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑥𝑥

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑥𝑥��

+
𝜕𝜕
𝜕𝜕𝑦 �

𝜆𝑜𝑦 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑦

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑦��

+
𝜕𝜕
𝜕𝜕𝑧 �

𝜆𝑜𝑧 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑧

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑧��

=  
𝜕𝜕 �
𝜙(1 − 𝑆𝑤 − 𝑆𝑔)

𝐵𝐵𝑜
�

𝜕𝜕𝑡
+   𝑞𝑞𝑜∗  

           (7) 

Water Flow Equation 

𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝜆𝑤𝑥 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑝𝑐𝑜𝑤
𝜕𝜕𝑥𝑥

− 𝛾𝑤
𝜕𝜕𝑧
𝜕𝜕𝑥𝑥��

+
𝜕𝜕
𝜕𝜕𝑦 �

𝜆𝑤𝑦 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑦

−
𝜕𝜕𝑝𝑐𝑜𝑤
𝜕𝜕𝑦

− 𝛾𝑤
𝜕𝜕𝑧
𝜕𝜕𝑦��

+
𝜕𝜕
𝜕𝜕𝑧 �

𝜆𝑤𝑧 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑧

−
𝜕𝜕𝑝𝑐𝑜𝑤
𝜕𝜕𝑧

− 𝛾𝑤
𝜕𝜕𝑧
𝜕𝜕𝑧��

=  
𝜕𝜕 �𝜙𝑆𝑤𝐵𝐵𝑤

�

𝜕𝜕𝑡
+   𝑞𝑞𝑤∗  

           (8) 

 

Gas Flow Equation 

𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜆𝑜𝑥𝑅𝑅𝑆𝑂 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑥𝑥

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑥𝑥
�� +

𝜕𝜕
𝜕𝜕𝑦

�𝜆𝑜𝑦𝑅𝑅𝑆𝑂 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑦

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑦
�� +

𝜕𝜕
𝜕𝜕𝑧
�𝜆𝑜𝑧𝑅𝑅𝑆𝑂 �

𝜕𝜕𝑝𝑜
𝜕𝜕𝑧

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑧
��

+
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜆𝑔𝑥 �
𝜕𝜕𝑝𝑔
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑝𝑐𝑔𝑜
𝜕𝜕𝑥𝑥

− 𝛾𝑔
𝜕𝜕𝑧
𝜕𝜕𝑥𝑥
�� +

𝜕𝜕
𝜕𝜕𝑦

�𝜆𝑔𝑦 �
𝜕𝜕𝑝𝑔
𝜕𝜕𝑦

−
𝜕𝜕𝑝𝑐𝑔𝑜
𝜕𝜕𝑦

− 𝛾𝑔
𝜕𝜕𝑧
𝜕𝜕𝑦
��

+
𝜕𝜕
𝜕𝜕𝑧
�𝜆𝑔𝑧 �

𝜕𝜕𝑝𝑔
𝜕𝜕𝑧

−
𝜕𝜕𝑝𝑐𝑔𝑜
𝜕𝜕𝑧

− 𝛾𝑔
𝜕𝜕𝑧
𝜕𝜕𝑧
�� =  

𝜕𝜕 �
𝜙𝑅𝑅𝑆𝑂(1 − 𝑆𝑤 − 𝑆𝑔)

𝐵𝐵𝑜
+
𝜙𝑆𝑔
𝐵𝐵𝑔

�

𝜕𝜕𝑡
+  𝑞𝑞𝑔∗  

           (9) 

 In order to solve the system of equations ((7), (8), and (9)) numerically, Accurate 

discretization method such as finite differences, finite volumes, or finite elements need 

to be applied. Here we will work with the block – centered finite difference which 

connected to the finite volume discretization methodology. 
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3.1.1. Oil Flow Equation Discretization 

The left hand side and right hand side of oil flow equation can be discretized . The 

discretization of each term in each side is explained here. For discretization of the left 

hand side terms, the case that the depth of top and the bottom layer does not change with 

x and y the term 𝛾 𝜕𝑧
𝜕𝑥

 and 𝛾 𝜕𝑧
𝜕𝑦

 becomes zero. The discretization of left hand side terms of 

the equations is as follow 

𝜕
𝜕𝑥
�𝜆𝑜𝑥 �

𝜕𝑝𝑜
𝜕𝑥

− 𝛾𝑜
𝜕𝑧
𝜕𝑥
�� ≈  1

𝛥𝑥𝑖
�𝜆𝑜𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘−𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑖
+ + 𝜆𝑜𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘−𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑖
− � 

 (10) 

𝜕
𝜕𝑦
�𝜆𝑜𝑦 �

𝜕𝑝𝑜
𝜕𝑦

− 𝛾𝑜
𝜕𝑧
𝜕𝑦
�� ≈  1

𝛥𝑦𝑖
�𝜆𝑜𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘−𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖
+ + 𝜆𝑜𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘−𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖
− � 

 (11) 

𝜕𝜕
𝜕𝜕𝑧
�𝜆𝑜𝑧 �

𝜕𝜕𝑝𝑜
𝜕𝜕𝑧

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑧
��

≈
1
𝛥𝑧𝑖

�𝜆𝑜𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+
+ 𝜆𝑜𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− 𝜆𝑜𝑖,𝑗,𝑘+12
𝛾𝑜𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+
− 𝜆𝑜𝑖,𝑗,𝑘−12

𝛾𝑜𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
� 

           (12) 

 The subscript 𝑖 + 1, 𝑗,𝑘 stand for the property of the adjacent gridblock in 

positive direction while  𝑖 − 1, 𝑗,𝑘  stand for the property of the adjacent gridblock in 

negative direction. The subscript 𝑖 + 1
2

, 𝑗, 𝑘 indicates that it is average properties of two 

adjacent gridlocks in positive x direction while the subscription 𝑖 − 1
2

, 𝑗,𝑘 defines that it 

is average properties of two adjacent gridlocks in negative x direction. The term 𝛥𝑥𝑥𝑖+ is 

the distance between the center of two adjacent gridblock in positive x direction and 𝛥𝑥𝑥𝑖− 

in negative x direction. The same convention is applied with y and z direction. 
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 Putting together the equation (10), (11), and (12), we have the left hand side term 

of discretized oil flow equation. 

𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝜆𝑜𝑥 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑥𝑥

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑥𝑥��

+
𝜕𝜕
𝜕𝜕𝑦 �

𝜆𝑜𝑦 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑦

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑦��

+
𝜕𝜕
𝜕𝜕𝑧 �

𝜆𝑜𝑧 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑧

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑧��

≈
1
𝛥𝑥𝑥𝑖

�𝜆𝑜𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖+
+ 𝜆𝑜𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖−
�

+
1
𝛥𝑦𝑖

�𝜆𝑜𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖+
+ 𝜆𝑜𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖−
�

+
1
𝛥𝑧𝑖

�𝜆𝑜𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+
+ 𝜆

𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− 𝜆𝑜𝑖,𝑗,𝑘+12
𝛾𝑜𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+
− 𝜆𝑜𝑖,𝑗,𝑘−12

𝛾𝑜𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
� 

           (13) 

 For discretization of the right hand side terms, consider term
𝜕�

𝜙(1−𝑆𝑤−𝑆𝑔)
𝐵𝑜

�

𝜕𝑡
, it can 

be expanded in several ways but has to guarantee the material balance. For this research, 

the accumulation term is expanded as follow (Ertekin 2001) 

𝜕�
𝜙(1−𝑆𝑤−𝑆𝑔)

𝐵𝑜
�

𝜕𝑡
= ��1 − 𝑆𝑤 − 𝑆𝑔�

𝑛(𝑏𝑜𝑛+1𝜙′ + 𝜙𝑛𝑏𝑜′ )Δ𝑡𝐵𝐵𝑜 − (𝜙𝑏𝑜)𝑛+1Δ𝑡𝑆𝑤 −

𝜙𝑏𝑜𝑛+1Δ𝑡𝑆𝑔   

           (14) 

where 

 𝑏𝑜 = 1
𝐵𝑜

,  𝑏𝑜′ = (𝑏𝑜𝑛+1−𝑏𝑜𝑛)
𝑝𝑜𝑛+1−𝑝𝑜𝑛

, 𝜙′ = (𝜙𝑜𝑛+1−𝜙𝑜𝑛)
𝑝𝑜𝑛+1−𝑝𝑜𝑛

, 

 Δ𝑡𝐵𝐵𝑜 = 𝑝𝑜𝑛+1−𝑝𝑜𝑛

Δ𝑡
, Δ𝑡𝑆𝑤 = 𝑆𝑤𝑛+1−𝑆𝑤𝑛

Δ𝑡
,𝑎𝑛𝑑 Δ𝑡𝑆𝑔 = 𝑆𝑔𝑛+1−𝑆𝑔𝑛

Δ𝑡
  

For sink/source term 𝑞𝑞𝑜∗  , we can treat it by using Peaceman's equation (Ertekin 2001). 
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𝑞𝑞𝑜∗ = 𝑊𝐼𝑜(𝑝𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑤𝑓)       (15) 

where𝑊𝐼𝑜 is defined as follow 

𝑊𝐼𝑜 =  −
2𝜋𝑘𝑟𝑜�𝑘𝑥𝑘𝑦ℎ

𝜇𝑜𝐵𝐵𝑜[ln(𝑟𝑟𝑜/𝑟𝑟𝑤) + 𝑟𝑟] 

           (16) 

𝑘𝑟𝑜 is relative permeability,𝑘𝑥 is permeability in x-direction, 𝑘𝑦 is permeability in y-

direction, ℎ is thickness of grid block, and 𝑟𝑟𝑤 is wellbore radius 

 The parameter 𝑟𝑟𝑜 is equivalent grid block radius. At this radius, the pressure at 

steady-state in the reservoir is equal to the well-block pressure. The equivalent wellbore 

radius can be calculated as follow 

𝑟𝑟0 = 0.28

���
𝑘𝑦
𝑘𝑥
�
1
2

(∆𝑥𝑥)2� + ��𝑘𝑥𝑘𝑦
�
1
2

(∆𝑦)2��

1
2

�
𝑘𝑦
𝑘𝑥
�
1/4 

+ �𝑘𝑥𝑘𝑦
�
1/4

 

           (17) 

 

Finally, combining equation (14) and (15), we have the right hand side terms of 

discretized oil flow equation. 
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𝜕𝜕 �
𝜙�1 − 𝑆𝑤 − 𝑆𝑔�

𝐵𝐵𝑜
�

𝜕𝜕𝑡
+ 𝑞𝑞𝑜∗

= ��1 − 𝑆𝑤 − 𝑆𝑔�
𝑛(𝑏𝑜𝑛+1𝜙′ + 𝜙𝑛𝑏𝑜′ )Δ𝑡𝐵𝐵𝑜 − (𝜙𝑏𝑜)𝑛+1Δ𝑡𝑆𝑤

− (𝜙𝑏𝑜)𝑛+1Δ𝑡𝑆𝑔� + 𝑊𝐼𝑜 �𝑝𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑤𝑓� 

           (18) 

3.1.2. Water Flow Equation Discretization 

 The discretization of the left hand side terms of water flow equation can be done 

in the same way as the discretization of oil flow equation. 

𝜕
𝜕𝑥
�𝜆𝑤𝑥 �

𝜕𝑝𝑜
𝜕𝑥

− 𝜕𝑝𝑐𝑜𝑤
𝜕𝑥

− 𝛾𝑤
𝜕𝑧
𝜕𝑥
�� ≈  1

𝛥𝑥𝑖
�𝜆𝑤𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘−𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑖
+ + 𝜆𝑤𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘−𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑖
− �

           (19) 

𝜕
𝜕𝑦
�𝜆𝑤𝑦 �

𝜕𝑝𝑜
𝜕𝑦

− 𝜕𝑝𝑐𝑜𝑤
𝜕𝑦

− 𝛾𝑤
𝜕𝑧
𝜕𝑦
�� ≈  1

𝛥𝑦𝑖
�𝜆𝑤𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘−𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖
+ + 𝜆𝑤𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘−𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖
− � 

           (20) 

𝜕𝜕
𝜕𝜕𝑧
�𝜆𝑤𝑧 �

𝜕𝜕𝑝𝑜
𝜕𝜕𝑧

−
𝜕𝜕𝑝𝑐𝑜𝑤
𝜕𝜕𝑧

− 𝛾𝑤
𝜕𝜕𝑧
𝜕𝜕𝑧
��

≈
1
𝛥𝑧𝑖

�𝜆𝑤𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+
+ 𝜆𝑤𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− 𝜆𝑤𝑖,𝑗,𝑘+12
𝛾𝑤𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+
− 𝜆𝑤𝑖,𝑗,𝑘−12

𝛾𝑤𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
� 

           (21) 

Putting together the equation (19), (20), and (21), we have the left hand side term of 

discretized water flow equation. 
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𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝜆𝑤𝑥 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑝𝑐𝑜𝑤
𝜕𝜕𝑥𝑥

− 𝛾𝑤
𝜕𝜕𝑧
𝜕𝜕𝑥𝑥��

+
𝜕𝜕
𝜕𝜕𝑦 �

𝜆𝑤𝑦 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑦

−
𝜕𝜕𝑝𝑐𝑜𝑤
𝜕𝜕𝑦

− 𝛾𝑤
𝜕𝜕𝑧
𝜕𝜕𝑦��

+
𝜕𝜕
𝜕𝜕𝑧 �

𝜆𝑤𝑧 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑧

−
𝜕𝜕𝑝𝑐𝑜𝑤
𝜕𝜕𝑧

− 𝛾𝑤
𝜕𝜕𝑧
𝜕𝜕𝑧��

≈  
1
𝛥𝑥𝑥𝑖

�𝜆𝑤𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖+
+ 𝜆𝑤𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖−
�

+
1
𝛥𝑦𝑖

�𝜆𝑤𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖+
+ 𝜆𝑤𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖−
�

+
1
𝛥𝑧𝑖

�𝜆𝑤𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+
+ 𝜆𝑤𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− 𝜆𝑤𝑖,𝑗,𝑘+12
𝛾𝑤𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+
− 𝜆𝑤𝑖,𝑗,𝑘−12

𝛾𝑤𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
� 

           (22) 

 For discretization of the right hand side terms, consider term 
𝜕�𝜙𝑆𝑤𝐵𝑤

�

𝜕𝑡
, it can be 

expanded in several ways but has to guarantee the material balance. For this research, 

the accumulation term is expanded as follow (Ertekin 2001) 

𝜕�𝜙𝑆𝑤𝐵𝑤
�

𝜕𝑡
= 𝑆𝑤𝑛[𝑏𝑤𝑛+1𝜙′ + 𝜙𝑛𝑏𝑤′ ]Δ𝑡𝐵𝐵𝑜 + [𝜙𝑛+1𝑏𝑤𝑛+1]Δ𝑡𝑆𝑤    (23) 

For sink/source term 𝑞𝑞𝑤∗  , we can treat it by using Peaceman's equation. 

𝑞𝑞𝑤∗ = 𝑊𝐼𝑤(𝑝𝑤𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑤𝑓)       (24) 

The definition of 𝑊𝐼𝑤 is the same definition of 𝑊𝐼𝑜 in the equation (15) but use the 

water properties instead of oil properties. 

 Finally, combining equation (23) and (24), we have the right hand side terms of 

discretized water flow equation. 
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𝜕�𝜙𝑆𝑤𝐵𝑤
�

𝜕𝑡
+   𝑞𝑞𝑤∗ = 𝑆𝑤𝑛[𝑏𝑤𝑛+1𝜙′ + 𝜙𝑛𝑏𝑤′ ]Δ𝑡𝐵𝐵𝑜 + [𝜙𝑛+1𝑏𝑤𝑛+1]Δ𝑡𝑆𝑤 + 𝑊𝐼𝑤(𝑝𝑤𝑖,𝑗,𝑘

𝑛+1 − 𝑝𝑤𝑓) (25) 

3.1.3. Gas Flow Equation Discretization 

 For discretization of the left hand side terms, the case that the depth of top and 

the bottom layer does not change with x and y the term 𝛾 𝜕𝑧
𝜕𝑥

 and 𝛾 𝜕𝑧
𝜕𝑦

 becomes zero. The 

discretization of left side of the free gas flow terms in x-direction 𝜕
𝜕𝑥
�𝜆𝑔𝑥 �

𝜕𝑝𝑜
𝜕𝑥

− 𝜕𝑝𝑐𝑔𝑜
𝜕𝑥

−

𝛾𝑔𝜕𝜕𝑧𝜕𝜕𝑥𝑥, y – direction 𝜕𝜕𝜕𝜕𝑦𝜆𝑔𝑦𝜕𝜕𝑝𝑜𝜕𝜕𝑦−𝜕𝜕𝑝𝑐𝑔𝑜𝜕𝜕𝑦−𝛾𝑔𝜕𝜕𝑧𝜕𝜕𝑦, and z – direction 

𝜕
𝜕𝑧
�𝜆𝑔𝑧 �

𝜕𝑝𝑜
𝜕𝑧

− 𝜕𝑝𝑐𝑔𝑜
𝜕𝑧

− 𝛾𝑔
𝜕𝑧
𝜕𝑧
�� can be done in the same way as discretization of left side 

of the oil flow terms. Comparing gas flow equation with oil flow equation, there are 

additional three more terms which represent solution gas flow in x-direction 

𝜕
𝜕𝑥
�𝜆𝑜𝑥𝑅𝑅𝑆𝑂 �

𝜕𝑝𝑜
𝜕𝑥

− 𝛾𝑜
𝜕𝑧
𝜕𝑥
��, y-direction 𝜕

𝜕𝑦
�𝜆𝑜𝑦𝑅𝑅𝑆𝑂 �

𝜕𝑝𝑜
𝜕𝑦

− 𝛾𝑜
𝜕𝑧
𝜕𝑦
��, and z-direction 

𝜕
𝜕𝑧
�𝜆𝑜𝑧𝑅𝑅𝑆𝑂 �

𝜕𝑝𝑜
𝜕𝑧

− 𝛾𝑜
𝜕𝑧
𝜕𝑧
��. These three additional terms can be discretized as follow 

𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝜆𝑜𝑥𝑅𝑅𝑆𝑂 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑥𝑥

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑥𝑥��

≈  
1
𝛥𝑥𝑥𝑖

�(𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖+

+ (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖−
� 

           (26) 



 

24 
 

 

𝜕𝜕
𝜕𝜕𝑦 �

𝜆𝑜𝑦𝑅𝑅𝑆𝑂 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑦

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑦��

≈  
1
𝛥𝑦𝑖

�(𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖+

+ (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖−
� 

           (27) 

𝜕𝜕
𝜕𝜕𝑧 �

𝜆𝑜𝑧𝑅𝑅𝑆𝑂 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑧

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑧��

≈
1
𝛥𝑧𝑖

�(𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+

+ (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘+12

𝛾𝑜𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+

− (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘−12

𝛾𝑜𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
� 

            (28) 

Putting together the equation (26), (27), (28), and discretized free gas flow terms, we 

have the left hand side term of discretized gas flow equation. 
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𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜆𝑜𝑥𝑅𝑅𝑆𝑂 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑥𝑥

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑥𝑥
�� +

𝜕𝜕
𝜕𝜕𝑦

�𝜆𝑜𝑦𝑅𝑅𝑆𝑂 �
𝜕𝜕𝑝𝑜
𝜕𝜕𝑦

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑦
�� +

𝜕𝜕
𝜕𝜕𝑧
�𝜆𝑜𝑧𝑅𝑅𝑆𝑂 �

𝜕𝜕𝑝𝑜
𝜕𝜕𝑧

− 𝛾𝑜
𝜕𝜕𝑧
𝜕𝜕𝑧
��

+
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜆𝑔𝑥 �
𝜕𝜕𝑝𝑔
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑝𝑐𝑔𝑜
𝜕𝜕𝑥𝑥

− 𝛾𝑔
𝜕𝜕𝑧
𝜕𝜕𝑥𝑥
�� +

𝜕𝜕
𝜕𝜕𝑦

�𝜆𝑔𝑦 �
𝜕𝜕𝑝𝑔
𝜕𝜕𝑦

−
𝜕𝜕𝑝𝑐𝑔𝑜
𝜕𝜕𝑦

− 𝛾𝑔
𝜕𝜕𝑧
𝜕𝜕𝑦
��

+
𝜕𝜕
𝜕𝜕𝑧
�𝜆𝑔𝑧 �

𝜕𝜕𝑝𝑔
𝜕𝜕𝑧

−
𝜕𝜕𝑝𝑐𝑔𝑜
𝜕𝜕𝑧

− 𝛾𝑔
𝜕𝜕𝑧
𝜕𝜕𝑧
��  

≈  
1
𝛥𝑥𝑥𝑖

�(𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖+
+ (𝑅𝑅𝑆𝑂𝜆𝑜)

𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖−
�

+
1
𝛥𝑦𝑖

�(𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖+
+ (𝑅𝑅𝑆𝑂𝜆𝑜)

𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖−
�

+
1
𝛥𝑧𝑖

�(𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+
+ (𝑅𝑅𝑆𝑂𝜆𝑜)

𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘+12

𝛾𝑜𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+

− (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘−12

𝛾𝑜𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
�

+
1
𝛥𝑥𝑥𝑖

�𝜆𝑔𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖+
+ 𝜆𝑔𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖−
�

+
1
𝛥𝑦𝑖

�𝜆𝑔𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖+
+ 𝜆𝑔𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖−
�

+
1
𝛥𝑧𝑖

�𝜆𝑤𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+
+ 𝜆𝑤𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− 𝜆𝑤𝑖,𝑗,𝑘+12
𝛾𝑤𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+
− 𝜆𝑤𝑖,𝑗,𝑘−12

𝛾𝑤𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
� 

           (29) 
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 Consider term  
𝜕�

𝜙𝑅𝑆𝑂(1−𝑆𝑤−𝑆𝑔)
𝐵𝑜

+
𝜙𝑆𝑔
𝐵𝑔

�

𝜕𝑡
 in the right hand side terms, it can be 

expanded in several ways but has to guarantee the material balance. For this research, 

the accumulation term is expanded as follow (Ertekin 2001) 

𝜕𝜕 �
𝜙𝑅𝑅𝑆𝑂(1 − 𝑆𝑤 − 𝑆𝑔)

𝐵𝐵𝑜
+
𝜙𝑆𝑔
𝐵𝐵𝑔

�

𝜕𝜕𝑡

=  ���1 − 𝑆𝑤 − 𝑆𝑔�
𝑛[(𝑏𝑜𝑛+1𝜙′ + 𝜙𝑛𝑏𝑜′ )𝑅𝑅𝑆𝑂𝑛 + 𝑅𝑅𝑆𝑂′ (𝜙𝑏𝑜)𝑛+1]

+ 𝑆𝑔𝑛�𝑏𝑔𝑛+1𝜙′ + 𝜙𝑛𝑏𝑔′ ���Δ𝑡𝐵𝐵𝑜 − 𝑅𝑅𝑆𝑂𝑛+1(𝑏𝑜𝜙)𝑛+1𝛥𝑡𝑆𝑤 + [�𝑏𝑔𝜙�
𝑛+1

− 𝑅𝑅𝑆𝑂𝑛+1(𝑏𝑜𝜙)𝑛+1]𝛥𝑡𝑆𝑔 

           (30) 

For sink/source term 𝑞𝑞𝑔∗   

𝑞𝑞𝑔∗ = 𝑞𝑞𝑓𝑔∗
𝑛+1 + 𝑅𝑅𝑆𝑂𝑛+1𝑞𝑞𝑜𝑛+1 =  𝑊𝐼𝑔 �𝑝𝑔𝑖,𝑗,𝑘

𝑛+1 − 𝑝𝑤𝑓� + 𝑅𝑅𝑆𝑂𝑛+1𝑊𝐼𝑜 �𝑝𝑔𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑤𝑓� (31) 

The definition of 𝑊𝐼𝑔 is the same definition of 𝑊𝐼𝑜 in the equation (15) but use the gas 

properties instead of oil properties. 

 Finally, combining equation (30) and (31), we have the right hand side terms of 

discretized gas flow equation. 

𝜕�
𝜙𝑅𝑆𝑂(1−𝑆𝑤−𝑆𝑔)

𝐵𝑜
+
𝜙𝑆𝑔
𝐵𝑔

�

𝜕𝑡
+ 𝑞𝑞𝑔∗ =  ���1 − 𝑆𝑤 − 𝑆𝑔�

𝑛[(𝑏𝑜𝑛+1𝜙′ + 𝜙𝑛𝑏𝑜′ )𝑅𝑅𝑆𝑛 + 𝑅𝑅𝑆′(𝜙𝑏𝑜)𝑛+1] +

𝑆𝑔𝑛𝑏𝑔𝑛+1𝜙′+𝜙𝑛𝑏𝑔′Δ𝑡𝐵𝐵𝑜−𝑅𝑅𝑆𝑛+1𝑏𝑜𝜙𝑛+1𝛥𝑡𝑆𝑤+𝑏𝑔𝜙𝑛+1−𝑅𝑅𝑆𝑛+1𝑏𝑜𝜙𝑛+1𝛥𝑡𝑆𝑔+

𝑊𝐼𝑔 �𝑝𝑔𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑤𝑓� +  𝑅𝑅𝑆𝑛+1𝑊𝐼𝑜 �𝑝𝑔𝑖,𝑗,𝑘

𝑛+1 − 𝑝𝑤𝑓�      

      (32) 
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3.1.4. Treatment of Saturated and Undersaturated State of Reservoir 

 In undersaturated state of reservoir, there is no free gas phase present in the 

reservoir and the reservoir pressure is higher that the bubble point pressure. Hence, the 

constraint conditions are 

𝑆𝑤𝑛+1 + 𝑆𝑜𝑛+1 = 1 𝑎𝑛𝑑 𝑆𝑔𝑛+1 = 0 

𝑝𝑜𝑛+1 > 𝑝𝑏𝑛+1 

           (33) 

where 𝑝𝑏𝑛+1is bubble point pressure 

 In saturated state of reservoir, the reservoir pressure is above or equal to the 

initial bubble point pressure and free gas phase come out from the oil phase. The 

constraint conditions can be written as follow 

𝑆𝑤𝑛+1 + 𝑆𝑜𝑛+1 + 𝑆𝑔𝑛+1 = 1  

𝑝𝑜𝑛+1 = 𝑝𝑏𝑛+1 

           (34) 

3.1.5. Newton-Raphson Linearization 

 Since oil, water, and gas discretization equations above are nonlinear in term of 

primary unknowns which are 𝑝𝑛+1, 𝑆𝑤𝑛+1, 𝑎𝑛𝑑 𝑆𝑔𝑛+1 . The set of nonlinear equations can 

be linearized by Newton-Raphson method such that the system of equation can be solved 

iteratively by linear solver. The implementation step of Newton-Raphson method is 

shown in a form of flowchart in the Figure 3. 
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Figure 3: Flowchart explaining Newton-Raphson method 

 

 Oil, Water, and Gas Discretization Equations can be formulated in term of 

residual equations (𝑅𝑅). The residual equations are simply the left hand side terms minus 

the right hand side term of flow equation of each phase. 
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Residual of Oil Discretization Equation 

𝑅𝑅𝑜 =  
1
𝛥𝑥𝑥𝑖

�𝜆𝑜𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖+
+ 𝜆𝑜𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖−
�

+
1
𝛥𝑦𝑖

�𝜆𝑜𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖+
+ 𝜆𝑜𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖−
�

+
1
𝛥𝑧𝑖

�𝜆𝑜𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+
+ 𝜆

𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− 𝜆𝑜𝑖,𝑗,𝑘+12
𝛾𝑜𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+
− 𝜆𝑜𝑖,𝑗,𝑘−12

𝛾𝑜𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
�

− ��1 − 𝑆𝑤 − 𝑆𝑔�
𝑛(𝑏𝑜𝑛+1𝜙′ + 𝜙𝑛𝑏𝑜′ )Δ𝑡𝐵𝐵𝑜 − (𝜙𝑏𝑜)𝑛+1Δ𝑡𝑆𝑤

− (𝜙𝑏𝑜)𝑛+1Δ𝑡𝑆𝑔� −𝑊𝐼𝑜(𝑝𝑜𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑤𝑓) 

            (34) 

Residual of Water Discretization Equation 

𝑅𝑅𝑤 =
1
𝛥𝑥𝑥𝑖

�𝜆𝑤𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖+
+ 𝜆𝑤𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖−
�

+
1
𝛥𝑦𝑖

�𝜆𝑤𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖+
+ 𝜆𝑤𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖−
�

+
1
𝛥𝑧𝑖

�𝜆𝑤𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+
+ 𝜆𝑤𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− 𝜆𝑤𝑖,𝑗,𝑘+12
𝛾𝑤𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+
− 𝜆𝑤𝑖,𝑗,𝑘−12

𝛾𝑤𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
�

− [𝑆𝑤𝑛[𝑏𝑤𝑛+1𝜙′ + 𝜙𝑛𝑏𝑤′ ]Δ𝑡𝐵𝐵𝑜 + [𝜙𝑛+1𝑏𝑤𝑛+1]Δ𝑡𝑆𝑤] −𝑊𝐼𝑤(𝑝𝑤𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑤𝑓) 

           (35) 
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Residual of Gas Discretization Equation 

𝑅𝑅𝑔 =  
1
𝛥𝑥𝑥𝑖

�(𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖+
+ (𝑅𝑅𝑆𝑂𝜆𝑜)

𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖−
�

+
1
𝛥𝑦𝑖

�(𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖+

+ (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖−
�

+
1
𝛥𝑧𝑖

�(𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+

+ (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘+12

𝛾𝑜𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+

− (𝑅𝑅𝑆𝑂𝜆𝑜)
𝑖,𝑗,𝑘−12

𝛾𝑜𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
�

+
1
𝛥𝑥𝑥𝑖

�𝜆𝑔𝑖+12,𝑗,𝑘

𝑝𝑜𝑖+1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖+
+ 𝜆𝑔𝑖−12,𝑗,𝑘

𝑝𝑜𝑖−1,𝑗,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑥𝑥𝑖−
�

+
1
𝛥𝑦𝑖

�𝜆𝑔𝑖,𝑗+12,𝑘

𝑝𝑜𝑖,𝑗+1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖+
+ 𝜆𝑔𝑖,𝑗−12,𝑘

𝑝𝑜𝑖,𝑗−1,𝑘 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑦𝑖−
�

+
1
𝛥𝑧𝑖

�𝜆𝑤𝑖,𝑗,𝑘+12

𝑝𝑜𝑖,𝑗,𝑘+1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖+
+ 𝜆𝑤𝑖,𝑗,𝑘−12

𝑝𝑜𝑖,𝑗,𝑘−1 − 𝑝𝑜𝑖,𝑗,𝑘

𝛥𝑧𝑖−

− 𝜆𝑤𝑖,𝑗,𝑘+12
𝛾𝑤𝑖,𝑗,𝑘+12

𝑧𝑖,𝑗,𝑘+1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖+
− 𝜆𝑤𝑖,𝑗,𝑘−12

𝛾𝑤𝑖,𝑗,𝑘−12

𝑧𝑖,𝑗,𝑘−1 − 𝑧𝑖,𝑗,𝑘

𝛥𝑧𝑖−
�

− �����1 − 𝑆𝑤 − 𝑆𝑔�
𝑛[(𝑏𝑜𝑛+1𝜙′ + 𝜙𝑛𝑏𝑜′ )𝑅𝑅𝑆𝑛 + 𝑅𝑅𝑆′(𝜙𝑏𝑜)𝑛+1]

+ 𝑆𝑔𝑛�𝑏𝑔𝑛+1𝜙′ + 𝜙𝑛𝑏𝑔′ ���Δ𝑡𝐵𝐵𝑜 − 𝑅𝑅𝑆𝑛+1(𝑏𝑜𝜙)𝑛+1𝛥𝑡𝑆𝑤

+ ��𝑏𝑔𝜙�
𝑛+1 − 𝑅𝑅𝑆𝑛+1(𝑏𝑜𝜙)𝑛+1� 𝛥𝑡𝑆𝑔�� − 𝑊𝐼𝑔 �𝑝𝑔𝑖,𝑗,𝑘

𝑛+1 − 𝑝𝑤𝑓�

−  𝑅𝑅𝑆𝑛+1𝑊𝐼𝑜 �𝑝𝑔𝑖,𝑗,𝑘
𝑛+1 − 𝑝𝑤𝑓� 

           (36) 
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 After the residual of oil water and gas flow equation are formulated. The 

jacobian 𝐽 = 𝜕𝑅
𝜕𝑈

 can be calculated in order to form the linearized equation for solving the 

unknown parameter. The problem can be set up as follow 

Define residual vector 𝑅𝑅 and unknown vector 𝑈 

𝑈 = �𝑝, 𝑆𝑤, 𝑆𝑔�
𝑇
 

𝑅𝑅 = �𝑅𝑅𝑜,𝑅𝑅𝑤,𝑅𝑅𝑔�
𝑇
 

           (37) 

Jacobian matrix can be formulated as follow 

𝐽 =  
𝜕𝜕𝑅𝑅
𝜕𝜕𝑈

=  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑅𝑅𝑜
𝜕𝜕𝑝

𝜕𝜕𝑅𝑅𝑜
𝜕𝜕𝑆𝑤

𝜕𝜕𝑅𝑅𝑜
𝜕𝜕𝑆𝑔

𝜕𝜕𝑅𝑅𝑤
𝜕𝜕𝑝

𝜕𝜕𝑅𝑅𝑤
𝜕𝜕𝑆𝑤

𝜕𝜕𝑅𝑅𝑤
𝜕𝜕𝑆𝑔

𝜕𝜕𝑅𝑅𝑔
𝜕𝜕𝑝

𝜕𝜕𝑅𝑅𝑔
𝜕𝜕𝑆𝑤

𝜕𝜕𝑅𝑅𝑔
𝜕𝜕𝑆𝑔 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

           (38) 

Newton-Raphson Iteration 

𝐽𝑛+1∗𝛿𝑈 =  −𝑅𝑅𝑛+1∗ 

𝑈𝑛+1∗+1 =  𝑈𝑛+1∗ + 𝛿𝑈  

           (39) 

 The Newton-Raphson iteration will be continued until the solutions are 

converged. When the solution is converged the norm of 𝛿𝑈 will approach to zero. 

Consequently, in practical, the Newton-Raphson iteration will be stopped when norm of 

𝛿𝑈 is smaller than some small tolerance value. 
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3.2. Multiphase Flow in Wells and Pipes Modeling 

Most of producing oil and gas reservoir are operated under multiphase flow 

condition. The producing fluid mostly contains oil, gas, and in some cases there may 

even be producing water. Hence, the basic knowledge of multiphase flow in wells and 

pipes are of primary importance in identifying the total producing fluid at the surface 

facilities. The basic knowledge of multiphase flow in wells and pipes presented here. For 

more detail, there are many references on this subject. For this study, we will base on the 

textbook by Economides (1993) and Beggs (2003). 

One of an important part in coupled surface and subsurface modeling is the 

determination of interaction of producing fluid with surface facilities in term of pressure 

loss. The pressure of producing fluid is loss when flow thru wells and pipes. The 

presence of liquid and gas in flow in pipes and wells complicate the pressure loss 

calculation. As the pressure changes, the phase changes occur resulting in changes of 

fluid densities, viscosities, and volume of each phase. In addition, temperature can be 

changes when the fluid flows along pipes and wells. In order to precisely identify the 

changing of properties of fluid and predict the pressure loss multiphase flow in wells and 

pipes modeling is needed.  
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Figure 4: Schematic of production system and associated pressure loss 

 (Source: Beggs (2003)) 
 

The Figure 4 is taken from Beggs (2003) give a good explanation of the 

production system and its pressure lost along the production system. The estimation of 

bottomhole flowing pressure 𝐵𝐵𝑤𝑓 can be calculate in the following forms 

𝐵𝐵𝑠𝑒𝑝 + ∆𝐵𝐵7 + ∆𝐵𝐵6 + ∆𝐵𝐵5 + ∆𝐵𝐵4 + ∆𝐵𝐵3 + ∆𝐵𝐵2 = 𝐵𝐵𝑤𝑓 

           (40) 

The producing fluid flow from bottomhole with bottomhole flowing pressure 𝐵𝐵𝑤𝑓 

thru the completion, flow restriction, and safety valve in the well resulting in pressure 

loss ∆𝐵𝐵2, ∆𝐵𝐵3, and ∆𝐵𝐵4, respectively. After that the producing fluid pressure is loss when 

flow thru tubing. The pressure loss in tubing is represented by ∆𝐵𝐵7 . When the fluid 

reach the wellhead, it will flow thru the surface choke, if one existed and then thru the 

flowline connected to separator. The pressure loss across the surface choke and flow line 
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are represented by ∆𝐵𝐵5 and ∆𝐵𝐵6, respectively. The fluid pressure after reach the separator 

is equal to 𝐵𝐵𝑠𝑒𝑝. 

In a simple production system, it may contain just only two main component of 

pressure loss which is pressure loss in pipeline and tubing. In this section, the overview 

of multiphase flow in pipes and wells will be presented. 

3.2.1. Pressure Loss in Wells and Pipes Model 

 The pressure loss is generally expressed in a form of pressure gradient. For 

multiphase flow in wells and pipes, there are three main components of the pressure loss 

gradient. 

𝑑𝑝
𝑑𝐿

= �
𝑑𝑝
𝑑𝐿�𝑒𝑙𝑒𝑣

+ �
𝑑𝑝
𝑑𝐿�𝑓

+ �
𝑑𝑝
𝑑𝐿�𝑎𝑐𝑐

 

           (41) 

Elevation Change Component �𝑑𝑝
𝑑𝐿
�
𝑒𝑙𝑒𝑣

 represents pressure loss due to potential energy 

or elevation change. It’s also known as hydrostatic component, 

�
𝑑𝑝
𝑑𝐿�𝑒𝑙𝑒𝑣

=
𝑔
𝑔𝑐
𝜌𝑚𝑟𝑟𝑖𝑛𝜃, 

           (42) 

where 𝜌𝑚 is the density of the gas/liquid mixture in the pipe element. In the case of no 

slippage, the mixture density can be calculated by following equation. 

𝜌𝑚 = 𝜌𝐿𝜆𝐿 + 𝜌𝐺𝜆𝐺 ,𝑎𝑛𝑑 

𝜆𝐿 =
𝑞𝑞𝐿

𝑞𝑞𝐿 + 𝑞𝑞𝑔
 𝑎𝑛𝑑 𝜆𝐺 = 1 − 𝜆𝐿, 

           (43) 
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𝜆𝐿 is known as liquid holdup and 𝜆𝑔 is gas hold up. The liquid hold up and gas hold up is 

a function of liquid flow rate 𝑞𝑞𝐿 and gas flow rate 𝑞𝑞𝑔. 

Friction Component �𝑑𝑝
𝑑𝐿
�
𝑓
represents pressure loss due to friction forces 

�
𝑑𝑝
𝑑𝐿�𝑓

=
(𝑓𝑓𝜌𝑣2)𝑓

2𝑔𝑐𝑑
, 

           (44) 

where 𝑑 is pipe diameter, 𝑓𝑓 is friction factor, 𝜌 is the density of fluid, and 𝑣 is the 

velocity of fluid. The way that these parameters are defined and evaluated is different by 

different sources, each which introduces different assumptions. 

 Finally, the acceleration component, �𝑑𝑝
𝑑𝐿
�
𝑎𝑐𝑐

, represents pressure loss due to 

kinetic energy changes, as 

�
𝑑𝑝
𝑑𝐿�𝑎𝑐𝑐

=
(𝜌𝑣𝑑𝑣)𝑘
𝑔𝑐𝑑𝐿

, 

           (45) 

where 𝜌 is density,𝑣 is velocity, and 𝑑𝑣
𝑑𝐿

 is acceleration term 

Some of pressure loss correlations completely ignore the acceleration component. 

Moreover, when this term is considered, various assumptions are made to simplify the 

procedure to determine the acceleration component. It can be said that the major 

considerations of developing pressure gradient correlation are basically the assumption 

in development of liquid hold-up prediction and friction factor. 
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3.2.2. Two Phases Flow Regimes in Vertical Flow 

 The flow regime is a qualitative property of phase distribution. For gas-liquid 

vertical upward flow, there are four flow regimes that can occur. The figure described 

each flow regime is shown in the Figure 5. A brief description of each flow regime is 

shown below 

• Bubble flow: The liquid phase flow as a continuous phase with dispersed bubble 

of gas phase. 

• Slug flow: The gas phase has higher velocity than gas phase in bubble flow. The 

gas bubbles coalesce into large bubbles which entirely filled the pipe cross 

section, known as Taylor bubble. The slugs of liquid that contain many small 

bubbles of gas are in between the large gas bubble. 

• Churn flow: As gas phase keep flowing at further higher gas rate, the large 

bubbles become unstable and collapse resulting in both liquid phase and gas 

phase dispersion and highly turbulent flow. Churn flow is characterized by 

oscillatory motion of liquid flow. 

• Annular flow: At very high gas phase rate, gas becomes the continuous phase 

and flow in the middle of the pipe. The liquid phase flow as annulus coating 

surface of the pipe and with liquid droplets dispersed in the continuous gas 

phase. 
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Figure 5: Flow regime in vertical flow (Source: Economides (1993)) 

  

 
3.2.3. Two Phases Flow Regimes in Horizontal Flow 

 For horizontal flow, the flow regime does not affect the pressure drop as 

significantly as it does in vertical flow. However, in some pressure correlation, the flow 

regime is considered and can effect production operation. The obvious example is the 

occurrence of slug flow which can affect the designing of separators to handle the large 

volume of liquid contained in a slug and some of special equipment such as slug 

catchers. The flow regime of horizontal flow is shown in the Figure 6. The flow regime 

can be classified into three types of regimes, as described below 
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• Segregated flow: The segregated flow occurs when gas and liquid phases are 

flow almost separately. It can be classified further as being stratified smooth, 

stratified wavy or ripple flow, and annular. 

o Stratified smooth flow describes the flow that gas phase flow in the top 

part of horizontal pipe while liquid phase flow in the bottom part of the 

pipe with a smooth interface between the phases. The stratified smooth 

occurs at low flow rate of both phases; 

o Stratified wavy flow describes the flow that gas phase flow in the top part 

of horizontal pipe while liquid phase flow in the bottom part of the pipe 

with wavy interface between the phases. This regime occurs when the gas 

rate is high; 

o Annular flow occurs when gas and liquid rate are both high and consist of 

an annulus of liquid coating the wall of pipe with continuous flow of gas 

phase with liquid droplets in the middle of the pipe. 

• Intermittent flow: The segregated flow consist of two type of flow which are 

plug flow and slug flow 

o Plug flow consists of large gas bubbles flow along the top of the pipe 

which is otherwise filled with liquid; 

o Slug flow is the flow that large liquid slug alternating with bubble of gas 

at high velocity that fill almost the entire pipe. 
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• Distributive flow: It can be classified further as being bubble flow and mist flow 

o Bubble flow: the bubble flow for horizontal pipe is different from bubble flow in 

vertical pipe in that the gas bubble in horizontal flow will be concentrate at the 

top part of the pipe; 

o Mist flow consists of continuous gas phase flow with liquid droplets. This flow 

regime occur when gas rates is high and low liquid flow rates. Most of the time, 

annular flow and mist flow are indistinguishable. 

 

 
Figure 6: Flow regime in horizontal flow (Source: Economides(1993)) 
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3.2.4. Pressure Gradient Correlations 

 In this section, the pressure drop correlations used in this thesis are described. As 

pointed out before, there are different methodologies to determine the pressure drop. 

3.2.4.1. The Beggs and Brill Method 

 In Beggs and Brill, the correlation is developed from experimental data. It’s 

different from other correlations such that it’s applicable to any pipe inclination and flow 

direction. The Beggs and Brill method includes flow regime into pressure gradient 

calculation which affect the liquid hold-up and average density calculation. This method 

determines the flow regime that would occur if the pipeline is perfectly horizontal and 

then make a correction to account for the change of holdup behavior with inclination. 

Although, the method gives good results for pipeline calculations, it was observed that it 

slightly over-predict pressure gradient in vertical wells in some cases. In this study, the 

Beggs and Brill method is used to calculated pressure loss of water injection and 

production fluids in pipeline. The flow regime determination of the Beggs and Brill 

method based on the following parameters summarized in Table1. 
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Parameter Correlation 

𝑁𝐹𝑅 
𝑢𝑚2

𝑔𝐷
 

𝜆𝐿 
𝑢𝑠𝑙
𝑢𝑚

 

𝐿1 316𝜆𝐿0.302 

𝐿2 0.0009252𝜆𝐿−2.4684 

𝐿3 0.10𝜆𝐿−1.4516 

𝐿4 0.5𝜆𝐿−6.738 

 
Table 1: Parameter for flow regime determination of Beggs and Brill method 

 

Segregated flow exists if 

𝜆𝑙 < 0.01 and 𝑁𝐹𝑅 < 𝐿1 or 𝜆𝑙 ≥ 0.01 and 𝑁𝐹𝑅 < 𝐿2 

Transition flow exists when 

𝜆𝑙 ≥ 0.01 and 𝐿2 < 𝑁𝐹𝑅 ≤  𝐿3 

Intermittent flow occurs when 

0.01 ≤ 𝜆𝑙 < 0.4 and 𝐿3 < 𝑁𝐹𝑅 ≤ 𝐿1 or 𝜆𝑙 ≥ 0.4 and 𝐿3 < 𝑁𝐹𝑅 ≤ 𝐿4 

Distributed flow occur if 

𝜆𝑙 < 0.4 and 𝑁𝐹𝑅 ≥ 𝐿1 or 𝜆𝑙 ≥ 0.4 and 𝑁𝐹𝑅 > 𝐿4 
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3.2.4.2. The Petroleum Experts 2 Correlation 

 The Petroleum Experts 2 correlation is a pressure lost correlation developed by 

Petroleum Experts Company. The Petroleum Expert 2 correlation is an extended work of 

Petroleum Expert 1 correlation which includes the features of the Petroleum Expert 1 

correlation and adds original work on predicting low-rate VLP and well stability 

(PROSPER’s manual). 

 Unfortunately, there was no publication about the correlation found. However, 

based on Prosper’s manual, Petroleum Expert Correlation combines the best features of 

existing correlations. The Hagedorn & Brown correlation Gould et al flow map is used 

in slug flow and Duns and Ros correlation for mist flow. A combination of slug and mist 

results is used for transition regime. The manual also mention that the correlation has 

been tested with several high flow rate wells and gave good estimate of pressure drops. 

The table below summarizes the correlations used for each flow regime. 

 

Flow Regime Correlation 

Bubble flow Wallis and Griffith 

Slug flow  Hagedorn and Brown 

Transition flow Dun and Ros 

Annular Mist flow Dun and Ros 

 
Table 2: Summary of flow regime and correlation used in Petroleum Expert 2 

correlation 
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3.3. Surface and Subsurface Model Coupling Mechanism 

 As pointed before, the core idea in the coupling surface/subsurface flows stem 

from the choice of mechanism used to compute the “correct” bottomhole pressure 

coming from the reservoir material balance equation and the equation coming from the 

theory of flow in pipes. 

 In this session, we explore the three main schemes used in the coupling surface 

and subsurface model. The idea here is to summarize each of the advantages and 

disadvantages of the three different coupling schemes. Their application to a reservoir 

model will be done in the next chapter. 

3.3.1. Explicit Coupling Scheme 

  In this scheme, the surface and subsurface are treated as different domain 

(domain decomposition) and the iterative process is simplified such that the boundary 

condition for subsurface model is treated explicitly. The subsurface model and surface 

model are solved at different time steps. The procedure for explicit coupling is explained 

below 

• In the first timestep of simulation, the controlling parameter (i.e. BHP) 

will be guessed at the best knowledge of user while in the later timestep, 

surface model calculates the pressure loss and solves for controlling 

parameter at the beginning of time step. Let’s assume function g is the 

function that uses to calculate the pressure loss. The controlling 

parameter (i.e. BHP) can be calculated as follow 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑔(𝑄,𝐵𝐵) 
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where 𝐵𝐵𝐵𝐵𝐵𝐵 is bottomhole flowing pressure, 𝑄 is flow rate, and 𝐵𝐵 is 

upstream injection pressure or downstream production pressure.  

• Pass the controlling parameters (i.e. BHP) to subsurface model for well 

rate calculation using Peaceman's equation (Equation (15) ). Let’s 

assume f is the function of Peaceman's equation. The well rate can be 

calculated as follow 

𝑄𝑤𝑒𝑙𝑙 = 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵,𝐵𝐵𝑟𝑒𝑠) 

where 𝐵𝐵𝐵𝐵𝐵𝐵 is bottomhole flowing pressure, 𝑄𝑤𝑒𝑙𝑙 is well flow rate, and 

𝐵𝐵𝑟𝑒𝑠 is reservoir pressure.  

• Check that the solutions of well rate calculation (𝑄𝑤𝑒𝑙𝑙) and surface 

model (𝑄) are converged or not. These process is called balancing 

process. 

• If “Y”, use controlling parameters as well boundary condition to solve 

the subsurface model (Equation (39): linearized oil, water, and das 

discretization equations) and proceed to the next time step 

• If “N”, repeat the process until the solutions of well rate calculation and 

surface model are converged 

The explicit coupling balances the surface and subsurface in time step level. The 

frequency can be varied. The main advantage of applying explicit coupling scheme is 

that it requires less computation effort than any other coupling schemes. Also it has high 

flexibility in terms of using different surface and subsurface simulation software to 

perform coupling. However, this may introduce inaccuracies in bottomhole flowing 
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pressure (BHP) because the surface and subsurface model are balanced at the beginning 

of the time step whereas the reservoir and fluid properties used in the balancing step are 

taken from previous time step of simulation. The flow chart of explicit coupling scheme 

is shown in Figure 7. 

 

 
 

Figure 7: Explicit coupling scheme 
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3.3.2. Implicit Coupling Scheme  

 This coupling scheme is a variant of the explicit method in which the surface and 

subsurface are treated as different domain but the subsurface model becomes a part of 

the Newton iterative process.  

The procedure for implicit coupling is explained below 

• In the first timestep of simulation, the controlling parameter (i.e. BHP) 

will be guessed at the best knowledge of user while in the later timestep, 

surface model calculates the pressure loss and solves for controlling 

parameter using the input in the beginning of newton iteration. Let’s 

assume function g is the function that uses to calculate the pressure loss. 

The controlling parameter (i.e. BHP) can be calculated as follow 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑔(𝑄,𝐵𝐵) 

where 𝐵𝐵𝐵𝐵𝐵𝐵 is bottomhole flowing pressure, 𝑄 is flow rate, and 𝐵𝐵 is 

upstream injection pressure or downstream production pressure.  

• Pass the controlling parameters (i.e. BHP) to subsurface model for well 

rate calculation using Peaceman's equation (Equation (15)). Let’s assume 

f is the function of Peaceman's equation. The well rate can be calculated 

as follow 

𝑄𝑤𝑒𝑙𝑙 = 𝑓𝑓(𝐵𝐵𝐵𝐵𝐵𝐵,𝐵𝐵𝑟𝑒𝑠) 

where 𝐵𝐵𝐵𝐵𝐵𝐵 is bottomhole flowing pressure, 𝑄𝑤𝑒𝑙𝑙 is well flow rate, and 

𝐵𝐵𝑟𝑒𝑠 is reservoir pressure.  
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• Check that the solutions of well rate calculation (𝑄𝑤𝑒𝑙𝑙) and surface 

model (𝑄) are converged or not. These process is called balancing 

process. 

• Use converged controlling parameter (i.e. BHP) as well boundary 

condition to solve the subsurface model (Equation (39)): linearized oil, 

water, and das discretization equations) 

• Check that the Newton iteration solution is converged or not 

• If “Y”, proceed to the next time step 

• If “N”, repeat the process until the Newton iteration solution is 

converged or it meets the maximum number of Newton iteration that 

require balancing step 

The implicit coupling balances the surface and subsurface in Newton iteration level. The 

updating frequency can be varied. This coupling scheme requires higher computational 

effort than explicit coupling scheme as it associates the iterative calculation at time step 

level. This coupling scheme also has some flexibility in term of using different surface 

and subsurface simulation software to perform coupling because it requires an access to 

the Newton iteration step in subsurface simulation software. However, the error in 

control parameter estimation (i.e. BHP) rooted from applying the implicit coupling 

scheme is smaller than the explicit coupling scheme because the surface and subsurface 

model are balanced in several Newton iteration steps so that the reservoir and fluid 

properties used in the balancing is updated every Newton step. The flow chart of implicit 

coupling scheme is shown in Figure 8. 
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Figure 8: Implicit coupling scheme 
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3.3.3. Fully Implicit Coupling Scheme  

 In this scheme, the surface and subsurface model are treated as one domain such 

that the system of equations of surface facility and system of equations of subsurface 

facility are solved simultaneously by considering nodes of surface facility as additional 

grid block of reservoir model.  The example of combining system of equation of surface 

and subsurface model is depicted again here.  

�
𝝏𝒙𝒇
𝝏𝒙𝒓

� =  �
𝑨𝒇 …
… 𝑨𝒓

�
−𝟏
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𝑹𝒓
� 

The process of fully implicit coupling scheme is explained below 

• The system of equation of surface model and system of equation of 

subsurface model are combined and solved simultaneously. 

• Check that the Newton iteration is converged or not 

• If “Y”, proceed to the next time step 

• If “N”, repeat the process until the Newton iteration is converged 

The fully implicit coupling scheme is the most computational expensive and complicated 

scheme because it has to be formulated in such a way that the system of equation of 

surface and subsurface model to a single system of equation. However, it is the “correct 

way” to coupling because all of the unknown parameters (i.e. reservoir pressure, 

saturation, and bottomhole pressure) are solved simultaneously and resulting in accurate 

solution. The flow chart of implicit coupling scheme is shown in Figure 9. 
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Figure 9: Fully implicit coupling scheme 
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4. PRODUCTION PREDICTION OF COUPLED SURFACE AND SUBSURFACE 

MODELS 

 
This chapter presents the results of the investigation of the effect of various 

coupling levels, and coupling schemes with different reservoir descriptions and fluid 

properties on production prediction using commercial and in-house simulators developed 

as part of this project. We start by introducing commercial tools used to couple surface 

and subsurface model. Then, we show how the in-house simulator can be used in the 

coupling in the next chapter. 

 

4.1. Surface and Subsurface Simulation Software for Coupling  

There are several tools that can be used in coupling surface and subsurface 

model. The coupling can be done either using commercial software or in-house software. 

This section will shows general overview the Surface and Subsurface Model Coupling 

Tools used in this study. 

4.1.1. Subsurface Simulation Software for Coupling 

 ECLIPSE 100 & Network Option: ECLIPSE 100 is commercial black oil 

reservoir simulation software developed by Schlumberger.  ECLIPSE 100 alone can 

simulate the flow of oil, gas, and water phases in subsurface model or reservoir models. 

Combining with Network Option with ECLIPSE 100 make us to be able to coupling 

surface and subsurface models. 

 The way ECLIPSE 100 & Network Option works is that surface models can be 

represented by simple pressure lost across production and injection network. It can be 
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input into the program in a form of Outflow Performance tables or Vertical Lift 

Performance (VLP) tables. The VLP table is the calculated pressure lost across surface 

models for various flow rate, water cut and GOR that can be generated from production 

software such as OLGA and PROSPER. For this study, the production software used to 

generate VLP tables is PROSPER. ECLIPSE 100 & Network Option can find the 

solution at coupling points by query wellbore curve from ECLIPSE 100 reservoir 

simulation run and pipeline curve from inputs in the VLP table. The solution is at the 

intersection of wellbore curve and pipeline curve. The step to find the solution at 

coupling points is called network balancing. The Figure 10 shows an example of 

wellbore curve, pipeline curve, and their intersection which is the solution of the 

coupling point. 

 

 

Figure 10: Example of the intersection of wellbore curve and pipeline curve 
(Source: ECLIPSE100’s manual) 
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 ECLIPSE100 & Network Option have several level and frequency of network 

balancing which allow us to vary coupling level and coupling scheme from loose 

coupling (i.e. Explicit coupling for every specified time step) to tight coupling (i.e. 

implicit coupling for every specified Newton iteration). The production and injection 

network can be setup using the ECLIPSE multi-level grouping hierarchy which allows 

connecting several production wells or group to its “parent” in the grouping tree by 

pipeline. 

 The advantage of using ECLIPSE100 & Network Option as a coupling tool stem 

from its simplicity because we do not need to deal with several software connection as it 

just requires only just VLP tables and ECLIPSE deck file with a small modification for 

doing the coupling using ECLIPSE100 & Network Option. However, there are several 

drawbacks in using ECLIPSE100 & Network Option. The first drawback is the 

flexibility of the coupling point. ECLIPSE100 & Network Option has only one option of 

coupling point which is at wellhead of wells. Secondly, the only allowable control 

parameter at the most upstream point of the production and injection network is 

pressure. Moreover, ECLIPSE100 & Network Option cannot be used for production 

optimization using upstream and downstream (such as tubing head pressure) as control 

parameter. Lastly, it lacks of an option to visualize and analyze the solution at coupling 

points. Due to some of these drawbacks, this thesis will concentrate in using different 

tools for getting more accurate and flexible coupling mechanism which suit with the 

objective of this study.  
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 Another subsurface simulation that we use in this study is MRST which stand for 

MATLAB® Reservoir Simulation Toolbox which is an open source code based on a 

high-level language and interactive environment for numerical computation, 

visualization, and programming known as MATLAB®. The whole package of MRST 

consists of two main parts. First part is MRST core which offers a complete set of 

routines and data structures for creating, manipulating, and visualizing grids and 

physical properties.  MRST assume all grids to be fully unstructured and the toolbox has 

a particular focus on the corner-point format which widely used in the petroleum 

industry.  

 The add-on modules are the second part. This part contains several advanced 

solvers and tools written as additional scripts and functions that extend, complement, 

and override existing MRST features. Based on MRST Version 2012b released on the 

20th of December, 2012, this part consist several useful features include routine for 

reading and processing industry-standard input decks (i.e. ECLIPSE input deck files), 

grid coarsening and upscaling routine, flow diagnostic routine, fully-implicit multiphase 

solver routine, etc. The example of add-on module is shown in the Figure 11. The 

routine that will be used and modified to support the coupling is the fully-implicit 

multiphase solver routine. The structure of fully-implicit multiphase solver routine and 

detail of modification will be explained in the next chapter. 

 The advantage of using MRST as a reservoir simulator is that the routine is an 

open source code with well-organized structure. It is feasible to do the modification of 

the code without deteriorating flexibility of the routine. Moreover, as mentioned before, 
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MRST also provide routine for reading and processing industry-standard input decks 

which are applicable with ECLIPSE input deck files. Consequently, we can guarantee 

that the input is consistent with the input we use in ECLIPSE100. The result of normal 

reservoir simulation without coupling from MRST and ECLIPSE 100 is considerably 

closed and consistent. The result of the comparison will be shown in the next chapter. 

 Although, there are several advantages of using MRST as a reservoir simulator, 

some disadvantages hinder its full applicability in the coupling surface/subsurface 

model. First, MRST is developed based on MATLAB® language which is not highly 

optimized in terms of computing time. MRST takes considerable more time than 

ECLIPSE100 to finish the run. The reservoir model with large number of grids can cause 

a very long simulation run time. In addition, based on the current release, the fully-

implicit multiphase solver routine does not provide an adaptive time step feature. 

Consequently, using large time step size in the beginning of reservoir simulation run 

may causes divergence of the solution. 
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Figure 11: The example of available add-on module in MRST (Source: MRST’s 

Website)  
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4.1.2. Commercial Surface Simulation Software  

 PROSPER is a commercial software developed by Petroleum Expert Limited. 

PROSPER stand for Production and System Performance analysis software. PROSPER 

provides the way to predict tubing and pipeline hydraulics with accuracy and speed. 

PROSPER can generate VLP tables that contain information of pressure lost in tubing 

and pipeline under various parameter sensitivity such as upstream injection pressure, 

downstream production pressure, water cut, and gas-oil ratio. 

 As mentioned before, ECLIPSE 100 & Network Option use VLP tables 

generated by PROSPER to represent the pressure lost in production and injection 

network. For the case of using MRST as a reservoir simulator choice, the VLP tables 

generated by PROSPER can also be used to represent the pressure lost in production and 

injection network. 

 

4.2. Effect of Various Coupling Level and Scheme with Different Reservoir 

Descriptions and Fluid Properties on Production Prediction 

This phase of study is aimed to thoroughly understand the effect of the 

permeability and fluid properties with different coupling levels, and coupling schemes 

before moving to the 2nd Phase of study that include the production optimization 

performance.  
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4.2.1. Sensitivity Parameters 

In order to, demonstrate each of these coupling mechanism capabilities; we will 

develop our finding based on the reservoir model as described in Table 3.  This general 

reservoir simulation model will be used during the entire this phase of the study. 

  

Reservoir Simulation Model 

Properties 

Value Unit 

NX:NY:NZ (homogeneous) 45:45:6   

NX:NY:NZ (heterogeneous) 45:45:2   

Grid size (homogeneous) 20 x 20 x 1 ft 

Grid size (heterogeneous) 20 x 20 x 3 ft 

Porosity 20 % 

Initial Water Saturation 10 % 

Initial Oil Saturation 90 % 

SCAL Figure 12 & 13   

Production Scenario Direct line drive    

Reservoir pressure 3000 psia 

Reservoir depth 3000 ft 

 
Table 3: Summary of reservoir simulation model properties used in the 1st phase of 

the study 

 
 In addition to the Table 3 summarized the general reservoir properties, the 

relative permeability relationships of gas-oil, and oil-water are shown in the Figures 12 

and 13. The general surface facility model properties used in the 1st Phase of study is 

summarized in the Table 4.  
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Figure 12: Oil-Water relative permeability 

 

 
Figure 13: Gas-Oil relative permeability 
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Surface Facility Model Properties Value Unit 

Production Tubing Size (ID) 6 in 

Production Tubing Length 3000 ft 

Injection Tubing Size (ID) 6 in 

Injection Tubing Length 3000 ft 

Surface Pipeline Size (ID) 6 in 

Surface Pipeline Length 3280 ft 

Downstream Production Pressure 100 psig 

Upstream Injection Pressure 3000 psig 

 
Table 4: Summary of surface facility model properties used in the 1st phase of the 

study 

 

 
 

Figure 14: Surface model of production and injection facilities 
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• Production scenario 

 The example of the surface model of production and injection used in 1st phase of 

study is shown in the Figure 14. The coupling point of the models is at wellhead. The 

production scenario used to demonstrate the several level of coupling was chosen as a 

direct line drive waterflooding with two production and two injection wells at each 

corner of the reservoir model. The upstream pressure (pumping head pressure) of water 

injection is given at 3000 psi and the  downstream pressure of production is at 100 psi. 

 There are three main types of parameter that we consider: Coupling scheme and 

frequency, reservoir description, and fluid properties. The summary of parameter varied 

in the 1st phase of study is shown in the Table 5. 

 

 

  
 

 

 

 

     Table 5: Summary of parameter varied in the 1st phase of study 

 

• Coupling scheme and frequency 

 As mentioned before the coupling mechanism that we consider in this study is 

explicit and implicit coupling. Consequently, there are three main types of coupling 

scheme and frequency that we consider in this study. 

Coupling scheme and frequency
Explicit Coupling 

Every 15 Days
Explicit Coupling 
Every Timestep

Implicit Coupling 
First 3 Newton 

Iteration

  
  

Reservoir Description Homogeneous - High 
Perm

Homogeneous - Low 
Perm

Heterogeneous

Fluid Properties Dead oil Lived oil
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o Explicit coupling for every 15 days: The surface model is balanced at the 

beginning of each time step that starts after 15 days interval has elapsed since 

the previous balancing calculation. The diagram for this type of coupling is 

shown in the Figure 15. The figure shows that the simulation starts at 0 day.  

In the beginning of the time step of T = 0 day, the surface model will be 

balanced before the 1st Newton iteration and proceed to the next time step 

under the same well target until it reaches the next 15 days. The process will 

be repeated until it reaches the end of the prediction time. 

 

 

 

 

 

 

 

 

o Explicit coupling for every time step: The surface model is balanced at the 

beginning of every time step (before the 1st Newton iteration) since the 

previous balancing calculation. The diagram for this type of coupling is 

   
Figure 15: Schematic of explicit coupling in every 15 days  

(Source: AVOCET’s manual) 
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shown in the Figure 16. The figure shows that the simulation starts at 0 day.  

In the beginning of the time step of T = 0 day, the surface model will be 

balanced before the 1st Newton iteration and proceed to the next time step. 

The process will be repeated until it reaches the end of prediction time. 

 

 

 

 

 

 

 

 

 

o Implicit coupling for every first 3 Newton iteration: The network will be 

balanced in each of the first three Newton iterations of every time step. The 

diagram for this type of coupling is shown in the Figure 17. The figure shows 

that the simulation starts at 0 day.  In the beginning of the time step of 0 day, 

the surface model will be balanced at zero th Newton iteration (before the 1st  

Newton iteration) to second Newton iteration and proceed to the next time 

step. The process will be repeated until reach the end of prediction time. 

   
Figure 16: Schematic of explicit coupling in every time step  

(Source: AVOCET’s manual) 
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• Reservoir descriptions  

 In this phase of study various reservoir properties (i.e. permeability) are 

considered. There are three main types of reservoir descriptions that we include in the 

coupling study. 

o Homogeneous high permeability: for the case of homogeneous high 

permeability, the reservoir model has permeability about 550 md with ratio of 

vertical permeability and horizontal permeability (kv:kh ratio) about 0.1. 

o Homogeneous low permeability: for the case of Homogeneous Low 

Permeability, the reservoir model has permeability about 50 md with kv:kh 

ratio about 0.1. 

 
Figure 17: Schematic of explicit coupling in every first three Newton 

iteration (Source: AVOCET’s manual) 
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o Heterogeneous permeability: the reservoir model has average permeability 

about 250 md with kv:kh ratio about 0.1. The permeability range is 30 – 5000 

md with high permeability zone in the northwest of the reservoir model. 

 The figures of reservoir model of the heterogeneous and homogeneous 

 permeability cases are shown in the Figure 18. 

 

 

 

 

 

 

 

 

 

Figure 18: The permeability of reservoir model in the case of heterogeneous 
permeability (left) and homogeneous permeability (right) 

 

• Fluid properties: There are two main types of fluid properties that we consider. 

 Dead Oil PVT:  

o Oil density 30 API 

o Gas gravity 0.664 sg air 

o Solution GOR 0.09 MSCF/STB 

 Lived Oil PVT 

o Oil density 40 API 
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o Gas gravity 0.664 sg air 

o Solution GOR 1.5 MSCF/STB 

 

4.2.2. Study Cases 

In total, there are eighteen cases to be ran and analyzed, in order to understand 

the effect of each parameter on the production prediction. The results of each different 

coupling scheme and frequency on the same reservoir description and fluid property will 

be analyzed together to compare the differences in prediction of the production and 

injection rates. 

• Case 1: Homogeneous high permeability – lived oil PVT 

Figure 19 shows the production profile of well “PROD1”. The production profile 

of two production wells (PROD1 & PROD2) are the same. Consequently, the only one 

production profile will be shown here. The dash line represents oil production rate and 

the solid line represents bottomhole flowing pressure. Three different line colors 

represent three different coupling schemes and frequencies. The figure shows that in the 

case of explicit coupling for every 15 days the oil production rate is lower than the other 

cases in the first 15 days as the bottomhole flowing pressure is higher than the other 

cases in the first 15 days. This can be explained by following reason: for explicit 

coupling, the surface and subsurface model are not completely balanced. Consequently, 

the bottomhole flowing pressure obtained from the balancing is not the actual value of 

bottomhole flowing pressure for that time step which causes discrepancies in the final 

result. 
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The balanced pressure in the first time step will be used as the well control target 

for the whole period of 15 days of the production prediction.  For the case of explicit 

coupling for every time step and implicit coupling, the results are almost the same 

because of the bottomhole flowing pressures of these two cases are closed to each other 

which it implies that the explicit coupling for every time step gives acceptable balancing 

of surface and subsurface model. 

 

 
Figure 19: Oil production profile and bottomhole pressure of homogeneous high 

perm – lived oil PVT case 

 

Figure 20 shows the injection profile of well “INJ1”. The only one injection 

profile will be shown here because the injection profile of two injection wells are the 

same. The dash line represents water injection rate and the solid line represents 

bottomhole flowing pressure. Three different line colors represent three different 
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coupling schemes and frequencies. The figure shows that in the case of explicit coupling 

every 15 days, the water injection rate is lower than the other case in the first 15 days as 

the bottomhole flowing pressure is lower than the other case in the first 15 days.  This 

occurs as in the production profile case because for explicit coupling, the surface and 

subsurface model are not completely balanced.  

 

 
Figure 20: Water injection profile and bottomhole pressure of homogeneous high 

perm – lived oil PVT case 

 

It can be noticed that the oil production rate of the first 15 days of the explicit 

coupling case every 15 days is not only lower than the other cases but it’s also 

dramatically decline. This because the water injection rate of the case is lower than the 

other cases resulting in much lower reservoir pressure and lead to high rate of production 

decline. 
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• Case 2: Homogeneous low permeability – lived oil PVT 

The production and injection profile of two production wells and two injection 

wells for the case homogeneous low permeability – lived oil PVT are the same. So, the 

production and injection profile from only one production and injection well will be 

shown here. 

The production profile shown in Figure 21 shows demonstrates similar results as 

the homogeneous high permeability – lived oil PVT case.  The figure shows that in the 

case of explicit coupling every 15 days, the oil production rate is lower than the other 

cases in the beginning period of production, because the bottomhole flowing pressure is 

higher than the other case in that period. However, the difference of the production rate 

is less obvious than the case of homogeneous high permeability – lived oil PVT. This 

implies that in the lower permeability reservoir case, the changing of bottomhole flowing 

pressure has less effect on the change of production rate. This can be explained by Nodal 

analysis. The IPR curve of low and high permeability cases is shown in the Figure 22. 

The line with number 0 represent the IPR of low permeability case while the line with 

number 1 represent the IPR of high permeability. It obviously shows that for the case of 

low permeability when the pressure change from 1500 psi to 750 psi the production rate 

is changed just only 200 STB/D while for the case of high permeability the production 

rate is changed about 1000 STB/D. 
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Figure 21: Oil production profile and bottomhole pressure of homogeneous low 
perm – lived oil PVT case 

 

 

 

Figure 22: IPR of high and low permeability reservoir 
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Also for the injection profile, the same trends can be experienced with the 

injection rate. Figure 23 shows that in the case of explicit coupling for every 15 days, the 

water injection rate is lower than the other cases in the first 15 days as the bottomhole 

flowing pressure is lower than the other cases in the first 15 days. 

 

 

Figure 23: Water injection profile and bottomhole pressure of homogeneous low 
perm – lived oil PVT case 

 

• Case 3: Heterogeneous permeability – lived oil PVT 

For the case of heterogeneous permeability, the production and injection profile 

of the two production injection well are different as they are placed in the different 

permeability zones. The injection well “INJ-1” and the production well “PROD-1” are in 

the high permeability zone while the injection well “INJ-2” and the production well 

“PROD-2” are in the low permeability zone. This explained why under the same 
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conditions of production and injection, the injection rate of well “INJ-1” is higher than 

“INJ-2” and the production rate of “PROD-1” higher than “PROD-2”. 

For production profile, it can be observed from Figures 24 and 25 that the oil 

production rate of both “PROD-1” and “PROD-2” wells in the case of explicit coupling 

for every 15 days is lower than the other cases in the first 15 days because of bottomhole 

flowing pressure difference resulting from incomplete balancing of surface and 

subsurface model. However, the production rate in the first 15 days does not show much 

trend of decline because the injection rates of two injection wells are relatively constant. 

For the production profile, both “PROD-1” and “PROD-2” well in the case of explicit 

coupling for every time step and implicit coupling, the production rate over all 

production period are almost the same because the bottomhole flowing pressure of these 

two cases are closed to each other. 

For injection profiles of both two injection wells which shown in the Figures 26 

and 27, the water injection rate in the first 15 Days of the case of explicit coupling for 

every 15 days is lower than the other cases but it's relatively constant. After the first 15 

days, the reservoir pressure of the case explicit coupling for every 15days is lower than 

the other cases and the bottomhole flowing pressure get closer to the other case resulting 

in a small peak in injection rate in a short period and decline rapidly to a constant 

injection rate. 
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Figure 24: Oil production profile and bottomhole pressure of PROD-1 for 
heterogeneous perm – lived oil PVT case 

 
 

 

Figure 25: Oil production profile and bottomhole pressure of PROD-2 for 
heterogeneous perm – lived oil PVT case 
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Figure 26: Water Injection profile and bottomhole pressure of INJ-1 for 
heterogeneous perm – lived oil PVT case 

 

 

Figure 27: Water Injection profile and bottomhole pressure of INJ-2 for 
heterogeneous perm – lived oil PVT case 
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• Case 4: Homogeneous high permeability – dead oil PVT 

The production profile of two production wells (PROD1 & PROD2) are the 

same. Consequently, the only one production profile will be shown here. Figure 28 

shows the production profile of “PROD1”. It can be seen that the oil production rate of 

different coupling scheme and frequency are the same because the bottomhole flowing 

pressure of each cases are indifferent and the rate of injection are the same for all cases. 

The injection profile of two production wells (INJ1 & INJ2) are the same. 

Consequently, the only one injection profile will be shown here. The injection profile in 

Figure 29 shows no different between various types of coupling although the bottomhole 

flowing pressure for the case of explicit coupling for every 15 days shows a bit of 

difference. It is not significant to affect the injection rate. 

The reason that the bottomhole flowing pressure for all the cases is the same can 

be easily explained by the fact that the IPR of dead oil PVT is a straight line (due to very 

low amount of gas phase flow). So, it does not require several time step (for explicit 

coupling) or Newton iteration (for implicit coupling) to get an actual balancing point 

between surface and subsurface model (The detail of finding balancing point between 

surface and subsurface model can be found the section 5). In addition, fluid properties 

such as oil density, gas density, and GOR of the dead oil PVT of oil production stream 

do not change significantly over the whole production period. This cause pressure lost 

and production rate relationship in the production facility (tubing head to downstream) 

to be the same over the time till before the water breakthrough. This is the reason that 

the frequency of coupling does not cause bottomhole flowing pressure differences. After 
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water breakthrough, WOR keep increasing but it does not affect pressure lost in the 

production facility get it results in slight changes of pressure lost and production rate 

relationship. Consequently, the bottomhole flowing pressure of different coupling cases 

are the same. 

 

 

Figure 28: Oil production profile and bottomhole pressure of homogeneous high 
perm – dead oil PVT case 
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Figure 29: Water injection profile and bottomhole pressure of homogeneous high 
perm – dead oil PVT case 

 

• Case 5: Homogeneous low permeability – dead oil PVT 

For the case of homogeneous low permeability – dead oil, the results in Figures 

30 and 31 show the same trend as the homogeneous high permeability – dead oil case To 

this end, there is no difference in production profile and bottomhole flowing pressure 

between various types of coupling. This can be explained by the same reason mentioned 

in the case of homogeneous high permeability – dead oil PVT case. However, the rate of 

production of the case of low permeability is lower than the case of high permeability 

because the reservoir has lower productivity. 
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The same observations can be achieved with the injection profile. It also shows 

no difference between various types of coupling of comparing high and low permeability 

cases: moreover, the injection rate of the case of low permeability is lower than the case 

of high permeability because of lower permeability. 

 

 

Figure 30: Oil production profile and bottomhole pressure of homogeneous low 
perm – dead oil PVT case 
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Figure 31: Water injection profile and bottomhole pressure of homogeneous low 
perm – dead oil PVT case 

 

• Case 6: Heterogeneous permeability – dead oil PVT 

The difference of permeability causes the production profile of the well “PROD-

1” and “PROD-2” to be different. The production rate of “PROD-1” is higher because 

the well locates in the high perm zone. This also occurs with injection wells. The 

injection well “INJ-1” has higher injection rate than “INJ-2”. 

Figure 32 and Figure 33 show that there are not differences between various 

types of coupling in production profile and bottomhole flowing pressure. The reason is 

the same as explained before. The same thing occurs with the injection profile in Figures 

34 and 35. It also shows no different between various types of coupling although the 
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bottomhole flowing pressure for the case of explicit coupling for every 15days shows a 

bit of difference. It is not significant to affect the injection rate. 

 

 

 

Figure 32: Oil production profile and bottomhole pressure of PROD-1 for 
heterogeneous perm – dead oil PVT case 
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Figure 33: Oil production profile and bottomhole pressure of PROD-2 for 

heterogeneous perm – dead oil PVT case 

 
Figure 34: Water injection profile and bottomhole pressure of INJ-1 for 

heterogeneous perm – dead oil PVT case 
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Figure 35: Water injection profile and bottomhole pressure of INJ-2 for 
heterogeneous perm – dead oil PVT case 

 

All the case run, the bottomhole production pressure is increased because the water is 

breakthrough at the production well. 

 

4.3. Effect of the Original Oil In-Place (OOIP) Size 

This part aims to illustrate the effect of system size or, in another word the size of 

the OOIP with different coupling levels, and coupling schemes. The size of  the reservoir 

can has an effect on production prediction with different coupling level, and coupling 

scheme because under the same production strategy in a small system (i.e. small OOP), 

the reservoir conditions (i.e. pressure, saturations) are changed much faster than the 

system or reservoir that has large OOIP. The dynamics of the reservoir condition 
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especially in an early time of production for coupling level and coupling scheme like 

explicit coupling can lead to balancing error and resulting in different production profile.  

The general reservoir simulation model properties used to study the effect of system size 

is summarized in the Table 6. 

 

Reservoir Simulation Model Properties Value Unit 

NX:NY:NZ (homogeneous) 23:23:6   

NX:NY:NZ (heterogeneous) 23:23:6   

Grid size (homogeneous) 350 x 350 x 5 ft 

Grid size (heterogeneous) 350 x 350 x 5 ft 

Porosity 20 % 

Initial Water Saturation 10 % 

Initial Oil Saturation 90 % 

SCAL Gas-Oil & Oil-Water   

Production Scenario Direct line drive water flooding   

Reservoir pressure 3000 psia 

Reservoir depth 3000 ft 
 
Table 6: Summary of reservoir simulation model properties used to study the effect 

of OOIP 

 

It can be seen that all of the reservoir simulation model properties are the same as 

in previous section except the grid size and the number of grid these changes affect the 

size of reservoir and resulting in larger OOIP about 400 times than the reservoir 

simulation model in the previous section. From now on the reservoir simulation model in 

this section will be called large OOIP reservoir and the reservoir simulation model in 

previous section will be called small OOIP reservoir. The rock & fluid properties and 
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surface models description used in this section are the same as the properties that used in 

previous section. 

4.3.1. Production Scenario 

The production scenario used here is the same as in the previous section namely 

the direct line drive waterflooding with 2 production and 2 injection wells at each corner 

of the reservoir model. The upstream pressure (pumping head pressure) of water 

injection is 3000 psi and the downstream pressure of production is 100 psi which exactly 

the same as production. 

4.3.2. Study Cases 

In this section, some of the obvious cases are shown here to illustrate the effect of size of 

OOIP. There are two cases presented here. 

• Case 1: Homogeneous high permeability – lived oil PVT 

Figures 36 and 37 show production and injection profile for the case of large 

OOIP reservoir. Comparing with Figures 19 and 20 which represent the case of small 

OOIP, the production and injection profile of large OOIP case show that the coupling 

level and scheme have less effect on the production and injection rate differences. 



 

85 
 

 

 
Figure 36: Oil production profile and bottomhole pressure of large OOIP reservoir 

with homogeneous high perm – live oil PVT case 

 

 
Figure 37: Water injection profile and bottomhole pressure of large OOIP 

reservoir with homogeneous high perm – live oil PVT case 
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• Case 2: Heterogeneous permeability – lived oil PVT 

Another explicit case to show the effect of the size of reservoir is heterogeneous 

– lived oil PVT case. Figures 38, 39, 40, and 41 show production and injection profiles 

for the case of large OOIP for heterogeneous permeability – lived oil PVT case. The 

production and injection profile of different coupling level and coupling scheme of small 

OOIP reservoir shown in the previous section (Figures 24, 25, 26, and 27) are different 

while for large OOIP reservoir that shown in this section shows just only small 

difference in production and injection rate. 

 

 
Figure 38: Oil production profile and bottomhole pressure of PROD-1 of large 

OOIP reservoir with heterogeneous perm – lived oil PVT case 
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Figure 39: Oil production profile and bottomhole pressure of PROD-2 of large 

OOIP reservoir with heterogeneous perm – lived oil PVT case 

 

 
Figure 40: Water injection profile and bottomhole pressure of INJ-1 of large OOIP 

reservoir with heterogeneous perm – lived oil PVT case 
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Figure 41: Water injection profile and bottomhole pressure of INJ-2 of large OOIP 

reservoir with heterogeneous perm – lived oil PVT case 

 

4.4. Summary 

• For dead oil PVT, the coupling schemes have less effect on the production and 

injection profile than Lived Oil PVT. 

• For lived oil PVT, the production prediction of homogeneous high permeability and 

heterogeneous permeability reservoir using different coupling schemes is more 

sensitive than the production and injection prediction of homogeneous low perm. 

• The production prediction difference between explicit coupling at every specified 

time step and explicit coupling at every time step is significant. 

• The production prediction difference between explicit coupling at every time step 

and implicit coupling at every first 3 Newton iterations is not significant because the 

coupling point of ECLIPSE100 with Network Option is at wellhead which mean that 



 

89 
 

 

the pressure loss from flow in the well is solved simultaneously with subsurface 

model plus the order of pressure loss in the surface pipe is order of tenth compare to 

the order of pressure lost in the well which is order of thousandth. Consequently, the 

difference of pressure loss in surface pipe between explicit coupling for every 

timestep and implicit coupling scheme are not significant. 

• Under the same production strategy, the production and injection profile of the 

reservoir that has smaller OOIP tend to show more different in production and 

injection profile when different coupling schemes are used. 
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5. MATLAB RESERVOIR SIMULATION TOOLBOX MODIFICATION FOR 

SURFACE AND SUBSURFACE MODEL COUPLING 

 
As discussed in the previous chapter, there are several advantages of using 

ECLIPSE 100 & Network Option to run the coupled surface and subsurface models. 

However, ECLIPSE 100 & Network Option does not provide the way to make the 

production optimization using upstream injection pressure and downstream production 

pressure as control parameters. A modification to the MRST is developed in order to 

create the functionality that ECLIPSE 100 & Network Option does not support. In this 

chapter, we will explain how to modify the MRST code and compare the result with 

ECLIPSE 100 & Network Option. Moreover, the effect of generated VLP table on the 

result is also analyzed and limitations of modified MRST code are presented. 

 

5.1. MRST Fully Implicit Multiphase Solver Routine Modification 

Based on the original work of MRST, the MATLAB® code for setting up the 

problem can be divided into three main parts. The first part is to call the routine for 

reading and processing ECLIPSE input deck files. The second part is to call the fully 

implicit multiphase solver routine. Most of the code modification works are focused on 

this part. The last part of MATLAB® code is to post-process the solution from the 

second part. The flowchart of the original work of MRST is shown in the Figure 42. The 

detail of fully implicit multiphase solver routine is shown in the Figure 43. In this 
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section, we will show the parameter associated with the coupling and which MRST 

models in the fully implicit multiphase solver routine are modified. 

 

 

 

Figure 42: Flowchart of MRST fully implicit multiphase solver routine 
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Figure 43: Detailed structure of MRST fully implicit multiphase solver routine 

 

As discussed in the previous chapter, one of important part of the implicit and 

explicit couplings is the balancing algorithm. The function of balancing algorithm is to 

find the balancing point of the Inflow Performance Relationship (IPR) obtained from 

reservoir simulation and Outflow Performance Relationship (OPR) obtained from VLP 

table generated form PROSPER. When the balancing point is found, the bottomhole 

flowing pressure at the balancing point will be used as control parameter for the 

reservoir simulation run. The balancing algorithm that was implemented in fully implicit 

multiphase solver routine modification is pretty similar to the balancing algorithm called 
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Fast PI that is used in ECLIPSE 100 & Network Option. The detail is presented in the 

next subsection below 

5.1.1. Fast PI Balancing Algorithm 

The fast PI coupling method is a non-iterative network-balancing process. The steps 

worked in the algorithm are shown below. 

 

 

Figure 44: Example of Fast PI balancing scheme 

 

Step of Fast PI Balancing Algorithm 

• Start with the current operating point (point No.1 of Figure 44) which is obtained 

from the previous time step or Newton iteration. For the first time step for 

explicit coupling or first Newton iteration for implicit coupling, the current 

operating point is guessed to the best of user knowledge.  
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• Query for the well linear IPR curve which tangent with the current operating 

point in the following form:  

𝑄 = 𝑀(𝐵𝐵) + 𝐴𝐴 

where 𝑀 is slope of the well linear IPR at current operating point, 𝐵𝐵 is the 

bottomhole flowing pressure, and 𝑄 is flow rate 

• Calculate water cut and GOR from the solution of previous time step (in another 

words they are water cut and GOR of the beginning of current time step) and use 

them to interpolate VLP table. 

• Find intercept (point No.2 of Figure 44) between well linear IPR and interpolated 

VLP. 

• Use BHP at intercept as control parameter for reservoir simulation run at current 

time step for explicit coupling or Newton iteration for implicit coupling. 

• For implicit coupling, the process can be done iteratively to get more accurate 

BHP (point No.3 of Figure 44)-(point No.4 of Figure 44). 

5.1.2. Modification for Explicit Coupling 

The structure of fully implicit multiphase solver routine after the modification for 

explicit coupling is shown in the Figure 45. The additional function called 

“explicitCoup.m” is included into “runScheduleADI.m”. The function of 

"explicitCoup.m" is the same as the function of Fast PI algorithm. It uses the operating 

point from the last time step to query for well linear IPR, and it uses water cut and GOR 

to interpolate the VLP table. The intersection between well linear IPR and interpolated 
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VLP table yield the bottomhole flowing pressure that will be used as the control for 

current time step. 

 

 

 

Figure 45: Detailed structure of modified MRST fully implicit multiphase solver 
routine for explicit coupling 
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5.1.3. Modification for Implicit Coupling 

The structure of fully implicit multiphase solver routine after the modification for 

implicit coupling is shown in the Figure 46. For the implicit coupling case, the “eqsfi 

BlackOilExplicitWells.m” function is changed to “eqsfiBlackOilExplicitWellsIm.m”. The 

description of the “eqsfiBlackOilExplicitWellsIm.m” is pretty much the same as the 

description of “eqsfiBlackOilExplicitWells.m” except that it has an additional function 

that work like Fast PI balancing algorithm. It uses operating point from the last Newton 

iteration to query for well linear IPR, and uses water cut and GOR from the last time 

step to interpolate the VLP table. The intersection between well linear IPR and 

interpolated VLP table yield the bottomhole flowing pressure that will be used as the 

control for current Newton iteration. 
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Figure 46: Detailed structure of modified MRST fully implicit multiphase solver 
routine for implicit coupling 

 

5.2. Comparison of Simulation Result from Modified MRST & ECLIPSE100 

with Network Options 

This section will show the simulation run results in the case of no coupling, 

explicit coupling and implicit coupling in order to check the consistency of  the result 

from the modified MRST and the ECLIPSE100+Network Option.  
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5.2.1. No Coupling Case 

The reservoir description and production strategy of the no coupling case is summarized 

in the Tables 7 and 8. 

 

Reservoir Simulation Model Properties Value Unit 

NX:NY:NZ (homogeneous) 23:23:6   

Grid size (homogeneous) 350 x 350 x 5 ft 

Permeability 350 md 

Porosity 20 % 

Initial Water Saturation 10 % 

Initial Oil Saturation 90 % 

Production Scenario Direct line drive water flooding   

Reservoir pressure 3000 psia 

Reservoir depth 3000 ft 

 
Table 7: Summary of reservoir simulation model properties used to check the 

consistency between MRST and ECLIPSE100 
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Production Strategy Value Unit 

Bottomhole flowing  pressure 400 psi 

Bottomhole injection pressure 4300 psi 

 
Table 8: Summary of production strategies used to check the consistency between 

MRST and ECLIPSE100 

 

The comparison of the result of no coupling case for MRST & ECLIPSE100 is 

shown in the Figure 47. It can be seen that the result from MRST & ECLIPSE100 is 

very similar except in the very early period of the production that MRST gives higher 

production and injection rate. This occurs because the production and injection profile of 

ECLIPSE100 is an averaged production rate. In the very early time of the simulation, 

ECLIPSE100 normally reduce time step into smaller interval than report time step and 

the production rate and injection rate of the report time step is the result of the averaged 

production and injection rate from every smaller interval. 
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Figure 47: Comparison of MRST and ECLIPSE’s production and injection profile 
of no coupling case 

 

5.2.2. Implicit Coupling Case 

In this section, we consider the consistency of the production and injection 

profile result from modified MRST and ECLIPSE100 & Network Option for the cases of 

implicit coupling only. The reason that we compare the result from MRST and 

ECLIPSE100 & Network Option only implicit coupling case is because ECLIPSE100 & 

Network Option use coupling point at tubing head. The tubing is treated as a part of 

reservoir model and the pressure lost in the tubing will be solved simultaneously with 

reservoir simulation model. This gives the same effect as implicit coupling at the 
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bottomhole. The reservoir description and production strategy of no coupling case is 

summarized in the Tables 9 and 10. 

 

Reservoir Simulation Model Properties Value unit 

NX:NY:NZ (homogeneous) 23:23:6   

Grid size (homogeneous) 350 x 350 x 5 ft 

Permeability 350 md 

Porosity 20 % 

Initial Water Saturation 10 % 

Initial Oil Saturation 90 % 

Production Scenario Direct line drive water flooding &  

5-spots water flooding 

  

Reservoir pressure 3000 psia 

Reservoir depth 3000 ft 

 
Table 9: Summary of reservoir simulation model properties used to check the 

consistency between modified MRST and ECLIPSE100 & Network Option 
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Surface Facility Model Properties Value unit 

Production Tubing Size (ID) / 

Injection Tubing Size (ID) 

7.5 in 

Production Tubing Length/ Injection 

Tubing Length 

3000 ft 

Surface Pipeline Size (ID) 7.5 in 

Surface Pipeline Length 3280 ft 

Downstream Production Pressure 260 (direct line drive case) 

220 (5-spots case) 

psia 

Upstream Injection Pressure 4666 (direct line drive case) 

3000 (5-spots case) 

psia 

 
Table 10: Summary of production strategy and surface model properties used to 

check the consistency between modified MRST and ECLIPSE100 & Network 
Option for direct line drive & 5-spots water flooding 

 

The production scenario that will be used to check the consistencies between 

modified MRST and ECLIPSE100 & Network Option are the same configuration from 

the previous section. For the sake of completeness, the reservoir models are depicted 

again in Figures 48 and 49. 
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Figure 48: Reservoir simulation model with direct line drive water flooding 

 

 
Figure 49: Reservoir simulation model with 5-spots pattern water flooding 
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The comparison of the modified MRST & ECLIPSE100 with Network Option 

results for direct line drive waterflooding is shown in the Figure 50. The dash line 

represents the result of well PROD1 & INJ1 and solid line represents the result of 

PROD2 & INJ2. The red line shows the result of modified MRST and blue line shows 

the result of ECLIPSE100 & Network Option. It can be seen both simulators yeild 

similar results, and the only difference stem from the production and injection rate 

between the modified MRST & ECLIPSE100 with Network Options in the early time of 

the simulation. This indeed the same results as obtained before for the no coupling 

scheme. A small different of the result is caused by the difference of bottomhole 

pressure. 
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Figure 50: Comparison of modified MRST and ECLIPSE’s production/injection 

profile of implicit coupling case for direct line drive water flooding 

 
 

The comparisons of the injection and production profiles for the 5-spots pattern 

water flooding are shown in the Figures 51 and 52, respectively. The result of PROD-1 

is shown separately from the other production wells in order to avoid confusion of axis 

scale because the well has very high production rate compare to the other wells. The 

solid line represents the result from modified MRST and the dash line represents the 

result from ECLIPSE100 & Network Option. The difference of production and injection 

rate between modified MRST & ECLIPSE100 & Network Options in the early time of 

simulation also occurs here. There is a small difference in injection and production rates 

which rooted from the different bottomhole pressure for both cases. 
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Figure 51: Comparison of modified MRST and ECLIPSE’s injection profile of 
implicit coupling case for 5-spots water flooding 
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Figure 52: Comparison of modified MRST and ECLIPSE’s production profile of 
implicit coupling case for 5-spots water flooding 
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5.3. Effect of VLP Table Discretization Scheme on Simulation Result 

As discussed before that the pressure lost in production and injection stream can 

be represented in form of VLP tables. The pressures lost versus flow rates for specified 

range of downstream production pressure, gas-oil ratio, and water cut are generated by 

PROSPER and export into a table format. In PROSPER, there are several options to 

discretize the range of upstream pressure, gas-oil ratio, and water cut. However, the 

discretization scheme that will be considered here are linear spacing (equally spacing) 

and geometric spacing.  

5.3.1. Downstream Production Pressure Discretization 

Figure 53 shows the comparison of VLP curves using different discretization 

schemes for the downstream pressure. The plot on left hand side is VLP curve of various 

downstream pressures discretized by using linear spacing while the plot on the right 

hand side use geometric spacing. It can be seen that the relationship between upstream 

pressures and VLP curves are closed to linear relationship. Consequently, the 

discretization scheme does not affect the accuracy of VLP table interpolation and 

simulation result.  
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Figure 53: VLP of various downstream pressure using linear spacing and geometric 
spacing 

 

5.3.2. Water Cut Discretization 

Figure 54 shows the comparison of VLP curves using different discretization 

scheme to discretize water cut. The plot on left hand side is VLP curve of various water 

cut discretized by using linear spacing while the plot on right hand side use geometric 

spacing. It can be seen that for geometric spacing case  poorly represent the change of 

VLP curves with water cut because there is large gap between VLP curve at 60% water 

cut and VLP curve at 100% water cut which can cause more interpolation error than the 

case of linear spacing. Hence, linear spacing is recommended discretization scheme for 

water cut. 
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Figure 54: VLP of various water cut using linear spacing and geometric spacing 

 

5.3.3. Gas-Oil Ratio Discretization 

Similarly, we show in Figure 55, the different discretization scheme for the gas-

oil ratio. The plot shows that gas-oil ratio discretization using geometric spacing is better 

to represent the changes of VLP curve with gas-oil ratio than the linear spacing case. 

This is due to the fact that there is large gap of VLP curve at low gas-oil ratio in the 

linear spacing case. Consequently, the geometric spacing is recommended for gas-oil 

ratio discretization. 
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Figure 55: VLP of various gas-oil ratio using linear spacing and geometric spacing 

 

5.3.4. Simulation Result Using Different Discretization Scheme 

Figure 56 shows the comparison of simulation results for well PROD1 using 

coupled surface and subsurface model for 5-spots water flooding scenario presented in 

the previous sections Here, we use different gas-oil ratio discretization schemes to 

generate the VLP tables for coupling surface and subsurface model. The plot on the top-

left and top-right show the oil and gas production profiles, respectively. The plot on the 

bottom-left and bottom-right of Figure 56 show bottomhole flowing pressure and gas-oil 

ratio. The blue solid line represents the case that use geometric spacing gas-oil ratio and 

the red dash line represents the case that use linear spacing gas-oil ratio. It can be seen 

that the bottomhole production pressure between two cases are different and resulting in 

different oil and gas production profile. It can be seen that the case of the linear spacing 

overestimate the bottomhole flowing pressure.  
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Figure 56: Comparison of production profile of coupling surface and subsurface 

model using different gas-oil ratio discretization 
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6. EFFECT OF COUPLING SCHEME ON PRODUCTION OPTIMIZATION OF 

COUPLED SURFACE AND SUBSURFACE MODEL  

In this section, the theory and procedure of performing production optimization 

of coupled surface and subsurface model using gradient based optimization are 

explained. In the standard subsurface model production optimization framework, the 

optimal control parameters are mostly described in terms of well rates and bottomhole 

flowing pressures. The coupled surface and subsurface model production optimization 

can be perform in similar fashion except that the optimal control will be in the form of 

upstream and downstream pressures. The objective function used in here is Net Present 

Value (NPV). The detailed objective function formulation, gradient computation via 

adjoint model, and the surface and subsurface production optimization problem will be 

discuss in this section. 

 

6.1. Objective Function Formulation 

In production optimization process, we usually set the objective function as NPV, 

which can be defined as function of the total oil and gas revenue subtract by total 

injection and production costs and then multiply by a discount factor which used to 

discount future cash flows to the present value. The objective function O can be 

formulated as follow. 

𝑂𝑛 = ��
∆𝑡

(1 + 𝑑)
𝑛∆𝑡
𝑇

(−�𝑟𝑟𝑜𝑄𝑜,𝑗,𝑛

𝑁𝑤

𝑗=1

� −�𝑟𝑟𝑔𝑄𝑔,𝑗,𝑛

𝑁𝑤

𝑗=1

+ �𝑐𝑝𝑤𝑄𝑝𝑤,𝑗,𝑛

𝑁𝑤

𝑗=1

+ �𝑐𝑖𝑤𝑄𝑖𝑤,𝑗,𝑛

𝑁𝑤

𝑗=1

)� 

           (45) 
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where  𝑑 is discount factor, n is number of current time step, and ∆𝑡 is time step size 

rois Oil revenue, rgis Gas revenue, cpwis Water production cost, and ciwis Water 

injection cost 

𝑄𝑜is Oil production rate, 𝑄𝑔is Gas production rate, 𝑄𝑝𝑤is Water production rate, 

and 𝑄𝑖𝑤is Water injection rate 

In this formula, the oil, gas, and water production rate is set to be negative while the 

water injection is set to be positive. Consequently, the oil and gas revenue is positive and 

water production and injection cost term is negative. The control that we use in this 

study is upstream injection & downstream production pressure and terms 

𝑄𝑜,𝑄𝑔,𝑄𝑝𝑤,𝑎𝑛𝑑 𝑄𝑖𝑤 are function of them and state variables (P, Sw, and Sg). The 

function above can be written in accumulative form as follow 

𝑂 =  ∑ 𝑂𝑛(𝑥𝑥𝑛,𝑢𝑛)𝑁−1
𝑛=0                                                      (46) 

where 𝑥𝑥𝑛 is state variable vector (P, Sw, and Sg) at time step n  

𝑢𝑛is control vector which is upstream injection & downstream production 

pressure for this study 

What we can do in optimization is to maximize the objective function P or minimize the 

negative of objective function 𝑂.  In this study, we choose to minimize the negative of 

objective function J. Thus, the problem can be formulated as follow 

min−𝑂 =  −∑ 𝑂𝑛(𝑥𝑥𝑛,𝑢𝑛)𝑁−1
𝑛=0                                                (47) 

The objective function is subjected to  

𝑔𝑛(𝑥𝑥𝑛+1, 𝑥𝑥𝑛,𝑢𝑛) = 0, 𝑥𝑥0 = 𝑥𝑥0(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

𝑐𝑛(𝑥𝑥𝑛+1,𝑢𝑛) ≤ 0, 𝐿𝐵𝐵 ≤ 𝑢𝑛 ≤ 𝑈𝐵𝐵 
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The problem is a constrained optimization problem, where the constrained term is 

𝑔𝑛(𝑥𝑥𝑛+1, 𝑥𝑥𝑛,𝑢𝑛), which are the coupled surface and reservoir simulation function for 

each grid block at each time step. The governing equation is stated as follow 

𝑔𝑛(𝑥𝑥𝑛+1, 𝑥𝑥𝑛,𝑢𝑛) = 𝑅𝑅𝑜,𝑔,𝑤 = 0                                              (48) 

where 𝑅𝑅𝑜,𝑔,𝑤 are the Residual of oil, gas and water discretization equations 

 

6.2. Gradient Based Optimization Method 

To solve the problem mentioned in the previous section, there are two main 

categories of existing optimization algorithm. First, stochastic algorithms like Simulated 

Annealing and Genetic Algorithm. Second is gradient-based algorithm for example, 

Steepest Descent and Quasi – Newton Algorithm. The first one normally requires a large 

number of forward simulation runs because the algorithm uses stochastic process, the 

algorithm is not suit with time consuming model like reservoir simulation with large 

number of grid block. The second one does not require a lot of forward simulation run 

but the optimization solution might not be a global solution. In practice, the number of 

grid block of reservoir simulation is large which may require several hours to finish one 

run of forward simulation.  

Consequently, the stochastic algorithm does not suit with production 

optimization using reservoir simulation. The feasible option to solve the optimization 

problem is gradient-based algorithm. Although, the gradient-based algorithm does not 

always give global solution, it can improve the whole system of production 

effectiveness.  
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There are several ways to find gradient for example, gradients from numerical 

perturbation method and gradients with adjoint model. In this thesis, the gradients with 

adjoint model method are selected. 

6.2.1. Gradients with Adjoint Model 

Finding gradients with adjoint model is more effective way than numerical perturbation. 

The objective function is modified by adding the constrained term with Lagrange 

multiplier(𝜆𝑛+1). The modified objective function becomes 

𝑂� = −∑ [𝑂𝑛(𝑥𝑥𝑛,𝑢𝑛)𝑁−1
𝑛=0 +  𝜆𝑛+1𝑔𝑛(𝑥𝑥𝑛+1, 𝑥𝑥𝑛,𝑢𝑛)]                               (49) 

The vector 𝜆𝑛 is called Lagrange multiplier vector which one Lagrange multiplier is 

required for each constraint with which the cost function ( 𝐽𝑛 ) is augmented. 

Lets 

𝐿𝑛 = 𝑂𝑛(𝑥𝑥𝑛,𝑢𝑛) + 𝜆𝑛+1𝑔𝑛(𝑥𝑥𝑛+1, 𝑥𝑥𝑛,𝑢𝑛)                                      (50) 

We can obtain first order partial derivation of 𝐽 ̅in term of  𝑥𝑥𝑛+1, 𝑥𝑥𝑛,𝑢𝑛,𝑎𝑛𝑑 𝜆𝑛+1  

𝛿𝑂� = ∑ (𝜕𝐿
𝑛

𝜕𝑥𝑛
)𝑁−1

𝑛=1 𝛿𝑥𝑥𝑛 +  ∑ ( 𝜕𝐿𝑛

𝜕𝑥𝑛+1
)𝛿𝑥𝑥𝑛+1𝑁−1

𝑛=0 +  ∑ �𝜕𝐿
𝑛

𝜕𝑢𝑛
� 𝛿𝑢𝑛𝑁−1

𝑛=0 + ∑ � 𝜕𝐿𝑛

𝜕𝜆𝑛+1
� 𝛿𝜆𝑛+1𝑁−1

𝑛=0   

(51) 

And thus we can rearrange the equation above  

𝛿𝑂� =  ∑ (𝜕𝐿
𝑛−1

𝜕𝑥𝑛
+ 𝜕𝐿𝑛

𝜕𝑥𝑛
)𝑁−1

𝑛=1 𝛿𝑥𝑥𝑛 + ∑ �𝜕𝐿
𝑛

𝜕𝑢𝑛
� 𝛿𝑢𝑛𝑁−1

𝑛=0 +  ∑ � 𝜕𝐿𝑛

𝜕𝜆𝑛+1
� 𝛿𝜆𝑛+1𝑁−1

𝑛=0 + �𝜕𝐿
𝑁−1

𝜕𝑥𝑁
� 𝛿𝑥𝑥𝑁   (52) 

According to constrain condition, we can notice that the term  𝜕𝐿𝑛

𝜕𝜆𝑛+1
= 0 

If we impose the following term to be zero 

𝜕𝐿𝑁−1

𝜕𝑥𝑁
= 0 𝑎𝑛𝑑 𝜕𝐿

𝑛−1

𝜕𝑥𝑛
+ 𝜕𝐿𝑛

𝜕𝑥𝑛
= 0                                             (53) 

then the equation(52) becomes 
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𝛿𝑂� = ∑ �𝜕𝐿
𝑛

𝜕𝑢𝑛
� 𝛿𝑢𝑛𝑁−1

𝑛=0 = ∑ �𝜕𝐽
𝑛

𝜕𝑢𝑛
+ (𝜆𝑛+1) 𝜕𝑔

𝑛

𝜕𝑢𝑛
� 𝛿𝑢𝑛𝑁−1

𝑛=0                         (54) 

The term 𝜕𝐿
𝑁−1

𝜕𝑥𝑁
= 0 is called final condition. We can manipulate the equation (53) by 

substitute term 𝐿𝑛 = 𝑂𝑛(𝑥𝑥𝑛,𝑢𝑛) + 𝜆𝑛+1𝑔𝑛(𝑥𝑥𝑛+1, 𝑥𝑥𝑛,𝑢𝑛)  

𝜕𝜕𝐿𝑛−1

𝜕𝜕𝑥𝑥𝑛
+
𝜕𝜕𝐿𝑛

𝜕𝜕𝑥𝑥𝑛
= 0 

 

𝜕𝜕�𝑂𝑛−1(𝑥𝑥𝑛−1,𝑢𝑛−1) + 𝜆𝑛𝑔𝑛−1(𝑥𝑥𝑛, 𝑥𝑥𝑛−1,𝑢𝑛−1)�
𝜕𝜕𝑥𝑥𝑛

+
𝜕𝜕�𝑂𝑛(𝑥𝑥𝑛,𝑢𝑛) + 𝜆𝑛+1𝑔𝑛(𝑥𝑥𝑛+1, 𝑥𝑥𝑛,𝑢𝑛)�

𝜕𝜕𝑥𝑥𝑛
= 0 

(𝜆𝑛)𝑇 �
𝜕𝜕𝑔𝑛−1

𝜕𝜕𝑥𝑥𝑛
� =  −(𝜆𝑛+1)𝑇

𝜕𝜕𝑔𝑛

𝜕𝜕𝑥𝑥𝑛
−
𝜕𝜕𝑂𝑛

𝜕𝜕𝑥𝑥𝑛
 

               (55) 

We can use final condition to get 𝜆𝑁and use equation above to compute backward to get 

all 𝜆𝑛, for all n: 

𝜆𝑁 = �𝜕𝑂
𝑁−1

𝜕𝑥𝑁
� �𝜕𝑔

𝑁−1

𝜕𝑥𝑁
�
−1

                                                       (56) 

 

𝜆𝑛 =  − �𝜕𝑂
𝑛

𝜕𝑥𝑛
+ (𝜆𝑛+1) 𝜕𝑔

𝑛

𝜕𝑥𝑛
� �𝜕𝑔

𝑛−1

𝜕𝑥𝑛
�
−1

       (57) 

After all of Lagrange multipliers are calculated, the gradient vector 𝛿𝐽
̅

𝛿𝑢𝑛
 can be found by 

substituting all of calculated Lagrange multipliers into equation (54). 

𝛿𝑂�

𝛿𝑢𝑛
=  ∑ �𝜕𝑂

𝑛

𝜕𝑢𝑛
+ (𝜆𝑛+1) 𝜕𝑔

𝑛

𝜕𝑢𝑛
�𝑁−1

𝑛=0      (58) 
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The calculated gradient 𝛿𝑂�

𝛿𝑢𝑛
 can be used with any gradient - based optimization 

algorithm to find an optimal control 𝑢𝑜𝑝𝑡𝑛 . 

The gradient – based optimization algorithm used in this study is Sequential 

Quadratic Programing (SQP). It is a popular algorithm for solving non-linearly 

constrained problems. This approach is a generalization of Newton’s method for case of 

no non-linearly constrained condition. 

6.2.2. Sequential Quadratic Programing (SQP) 

Let 𝑓𝑓(𝑥𝑥) be objective function and the set of problem is to minimize 𝑓𝑓(𝑥𝑥) 

Minimize 𝑓𝑓(𝑥𝑥) 

the objective function is subjected to 

𝑔(𝑥𝑥) = 0                                                                (59) 

The method for solving the problem above can be derived by applying Newton’s 

method. The Lagrangian for the problem is 

𝐿(𝑥𝑥, 𝜆) = 𝑓𝑓(𝑥𝑥) − 𝜆𝑇𝑔(𝑥𝑥)                                                 (60) 

The first-order optimality condition 

∇𝐿(𝑥𝑥, 𝜆) = 0              (61) 

The formula for Newton’s method 

�
𝑥𝑥𝑘+1
𝜆𝑘+1� =  �

𝑥𝑥𝑘
𝜆𝑘� + �

𝑝𝑘
𝑣𝑘�          (62) 

where 𝑝𝑘and 𝑣𝑘can be obtained from the solution of the following linear system. 

∇2𝐿(𝑥𝑥𝑘 , 𝜆𝑘) �
𝑝𝑘
𝑣𝑘� =  − ∇𝐿(𝑥𝑥𝑘, 𝜆𝑘)    (63) 
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This linear system has the form 

�
∇𝑥𝑥2 𝐿(𝑥𝑥𝑘 , 𝜆𝑘) −∇𝑔(𝑥𝑥𝑘)
−∇𝑔(𝑥𝑥𝑘)𝑇 0

� �
𝑝𝑘
𝑣𝑘� =  �

−∇𝑥𝐿(𝑥𝑥𝑘 , 𝜆𝑘)
𝑔(𝑥𝑥𝑘) �  (64) 

This system of equations represents the first order optimality condition for the following 

optimization problem 

Minimize            𝑞𝑞(𝑝) = 1
2
𝑝𝑇[∇𝑥𝑥2 𝐿(𝑥𝑥𝑘 , 𝜆𝑘)]𝑝 + 𝑝𝑇[∇𝑥𝐿(𝑥𝑥𝑘, 𝜆𝑘)] 

Subjected to        [∇𝑔(𝑥𝑥𝑘)]𝑇𝑝 + 𝑔(𝑥𝑥𝑘) = 0 

This optimization problem is a quadratic program (the minimization of a 

quadratic function subject to linear constraints) where the quadratic function is the 

Taylor series approximation of Lagrangian at (𝑥𝑥𝑘 , 𝜆𝑘) and the linear constraint is linear 

approximation of 𝑔(𝑥𝑥𝑘 + 𝑝) = 0. For unconstraint problem, the formula for Newton’s 

method relate to the minimization of a quadratic approximation to the objective function. 

At each iteration, a quadratic program is solved to obtain �
𝑝𝑘
𝑣𝑘� and used to update�

𝑥𝑥𝑘
𝜆𝑘�. 
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6.3. MRST Module for Finding Gradients with Adjoint Model 

In this study MRST module for finding gradients with adjoint model is used to 

calculate the gradients and provide the gradients to MATLAB® function called 

“fmincon”. The “sqp” option which is Sequential Quadratic Programing option is 

selected to be an algorithm to solve the optimization problem. 

However, the MRST module for finding gradients with adjoint model is designed 

for the model that use well rate or bottomhole flowing pressure as controls. Some 

modification is needed to modify the module to be able to optimize the model when 

using downstream production and upstream injection pressure as controls.  

This section will show a brief detail of MRST module for finding gradients with 

adjoint model and modification. The structure of MRST module for finding gradients 

with adjoint model before modification is shown in the Figure 57.  

In the modification the function that will be modified is "runAdjointADI.m". The 

structure of MRST module after modification is shown in the Figure 58. The concept of 

modification is simply base on chain rule of differentiation. 

let 𝑇𝐵𝐵𝐵𝐵 be upstream injection pressure or downstream production pressure 

control, 𝐵𝐵𝐵𝐵𝐵𝐵 be bottomhole pressure control and 𝛿𝑂�

𝛿𝐵𝐻𝑃
 be gradients of objective function 

with respect to bottomhole pressure control. We can find 𝛿𝑂�

𝛿𝑇𝐻𝑃
 by applying chain rule of 

differentiation as follow 
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Figure 57: MRST module for finding gradients with adjoint model 

 
 

𝛿𝑂�

𝛿𝑇𝐻𝑃
=  𝛿𝑂�

𝛿𝐵𝐻𝑃
 𝛿𝐵𝐻𝑃
𝛿𝑇𝐻𝑃

     (65) 

The function of "delbhpdelthp.m" is to calculate the term 𝛿𝐵𝐻𝑃
𝛿𝑇𝐻𝑃

. The 

"delbhpdelthp.m" is added into "runAdjointADI.m" in order to modified the gradients 

calculated from original function of "runAdjointADI.m" to be the gradient of objective 

function with respect to upstream pressure for case of injection and downstream pressure 

for production.  
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Figure 58: Modified MRST module for finding gradients with adjoint model 

 
 

As the surface model is in form of VLP table, the relationship between 

bottomhole pressure and downstream production pressure is discrete. Consequently, the 

term 𝛿𝐵𝐻𝑃
𝛿𝑇𝐻𝑃

 can be calculated by numerical method. The Figure 59 shows how to find the 

term 𝛿𝐵𝐻𝑃
𝛿𝑇𝐻𝑃

 numerically. Assume that the VLP table has pressure loss and rate relationship 
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for two different downstream production pressure (DPP1 and DPP2). The intersection of 

DPP1’s curve and DPP2’s curve with IPR curve gives the bottomhole pressure A and B, 

respectively. The numerical 𝛿𝐵𝐻𝑃
𝛿𝑇𝐻𝑃

 can be found by following equation 

 

𝛿𝐵𝐻𝑃
𝛿𝑇𝐻𝑃

= 𝐴−𝐵
𝐷𝑃𝑃1−𝐷𝑃𝑃2

                                                          (66) 

 

 

Figure 59: Example of method finding numerical 𝜹𝑩𝑯𝑷
𝜹𝑻𝑯𝑷
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6.4. Investigation of the Effect of Various Coupling Level and Scheme on 

Production Optimization 

The goal of a study in the 2nd phase of the study is to investigate the effect of the 

coupling mechanisms on the production optimization framework in order to infer the 

best coupling level for the optimization setup. Also we seek for the recommendation for 

coupling surface and subsurface models in production optimization. One of important 

step in this phase of study is the selection of fluid and reservoir properties, and 

production strategies. The properties should be selected in such a way that we can 

observe difference in the final result of the optimization process to figure out how much 

the coupling scheme can affect the production optimization result. 

In this section, the gradients with the adjoint model and the sequential quadratic 

programming algorithm mentioned in previous section will be used to optimize the 

selected fluid properties, reservoir properties, and production strategies. According to the 

finding in the first phase of this study, the reservoir properties that give obvious different 

result between the different coupling schemes are reservoir properties which have 

heterogeneity and high permeability. Fluid with dynamic properties tends to give 

observable different result. Consequently, for fluid properties, lived oil PVT will yield 

better results than dead oil PVT. This leads to the use of the reservoir and fluid 

properties as summarized in Table 11 and 12. 

The production strategies that will be considered here are the direct line drive 

water flooding and the 5-spots patterns water flooding. Figures 60 and 61 show the 

reservoir model with production and injection wells for direct line drive water flooding 
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and 5-spots pattern water flooding, respectively. The figures show that for both 

production scenario cases, there is at least one production well that deliberately locates 

in the high permeability zone in order to emphasize the effect of the high permeability, 

as described before. 

 

Reservoir Simulation Model Properties Value Unit 

NX:NY:NZ  23:23:6   

Grid size  350 x 350 x 5 ft 

Permeability Heterogeneous md 

Porosity 20 % 

Initial Water Saturation 10 % 

Initial Oil Saturation 90 % 

Reservoir pressure 3000 psia 

Reservoir depth 3000 ft 

 
Table 11: Reservoir simulation model properties for production optimization 

 
 

Fluid Properties Value Unit 

Type of fluid Lived oil - 

Oil Density 40 API 

Gas Gravity 0.664 Sg air 

Solution GOR 1.5 MSCF/STB 

 
Table 12: Fluid properties for production optimization 
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Figure 60: Reservoir simulation model with direct line drive water flooding 

 

 

Figure 61: Reservoir simulation model with 5-spots water flooding 
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The production scenario of direct line drive water flooding case is pretty much 

the same as the production scenario of heterogeneous case in section4 except that the 

production wells are located in the high permeability zone instead of the injection wells 

in order to emphasize the effect of high permeability.  

The direct line drive water flooding production scenario can be expected that the 

water from injection wells could not breakthrough the production wells as the injection 

wells are in the low permeability zone. On the other hand, the 5-spots pattern water 

flooding production scenario is supposed to have some water breakthrough at the 

production wells, especially PROD1 since there is high permeability path between 

PROD1 and INJ1. 

The objective function in equation (45) is NPV and it is associated with oil price, 

gas price, water production cost and water injection cost. In order to make the equation 

(45) to be completed, we need to specify the values of the cost and revenue. The 

summary of cost and revenue assumption used to calculate NPV is summarized in the 

Table 13. 
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Parameter Value Unit 

Oil Price 100 US/STB 

Gas Price 15 US/MSCF 

Water Injection Cost 10 US/STB 

Water Production Cost 10 US/STB 

 
Table 13: Summary of cost and revenue assumption for production optimization 

 

The production and injection constraints imposed in the production optimization 

problem here is the lower and upper bound of upstream injection pressure and 

downstream production pressure which are caused by the production and injection 

facility limits. The summary of the lower and upper bound of upstream injection 

pressure and downstream production pressure used in these production optimization 

problems are summarized in the Table 14. 

 

Parameter Lower bound Upper bound 

Upstream injection pressure 2666 psi 3666 psi 

Downstream production pressure 203 psi 406 psi 

 
Table 14: Summary of lower bound and upper bound of upstream injection 

pressure and downstream production pressure 
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Each production and injection well is assumed to be connected to the surface 

pipeline and can be controlled independently by downstream production pressure and 

upstream injection pressure. The well and surface pipeline specifications of both water 

flooding optimization cases are the same as the well and surface pipeline specification 

used in Table 10 of section 5. 

6.4.1. Direct Line Drive Water Flooding 

For direct line drive water flooding, there are two injection wells (INJ1 and INJ2) 

and two production wells (PROD1 and PROD2). All the wells are fully perforated. The 

upstream injection pressure and downstream production pressure for the base case run is 

controlled at 3000 psi and 220 psi, respectively, for the whole time of production 

timespan. This case is a representative case of low pressure support from water flooding 

because the injection wells are in low permeability zone and the direct line drive water 

flooding production scenario is expected to be produced without water breakthrough at 

the production wells. This implies that the water flooding could not provide a strong 

pressure support. The production optimization using explicit coupling, implicit coupling, 

and no coupling for direct line drive water flooding production optimization are 

presented in the following subsection. 

6.4.1.1. Explicit Coupling Case 

In the explicit coupling case, there is a term of timing that is used in production 

optimization process called optimization time step. The meaning of optimization time 

step is the time that the control parameters (for this problem, they are upstream injection 

pressure and downstream production pressure) can be changed to minimized (or 
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maximized) the objective function. In an explicit coupling case, the optimization time 

step and the surface and subsurface model balancing time step are the same and it occurs 

periodically (every specified interval of time). For the case of direct line drive water 

flooding, the total production time is 1000 days and the optimization and balancing time 

step size is set to be 20 days.  Consequently, there will be 50 optimization and balancing 

time steps. The comparison of production profile of the base case and optimized case is 

shown in the Figure 62. The red line represents the result of optimized case while the 

blue line represents the result of base case. The PROD1 and PROD2 production profiles 

are represented by solid line and dash line respectively. The same notation is used for 

injection profile shown in the Figure 63. It can be seen that after the production 

optimization run, the control of downstream production pressure of both production 

wells are changed to 406 psi which is the upper bound value for 280 days and then go 

down to 206 psi which is the lower bound value for the rest of production period. The 

upstream injection pressure of both injection wells also changes to upper bound in the 

early period of production and then go down to lower bound in the middle and late 

period of production. The improvement of production in the optimized case is resulting 

from maintaining the reservoir pressure in the early time of production by reducing gas 

production and increasing water injection rate. In the middle and late time of production, 

the water injection can be reduced since the reservoir still has driving energy from the 

gas that was not produced in the early time of production. The optimized case improves 

the NPV to 11.3 billion USD as compared to the base case NPV by 0.7 billion USD. 
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6.4.1.2. Implicit Coupling Case 

For the implicit coupling case, the optimization time step and the surface and 

subsurface model balancing time step are the same and occur every time step, namely 

every 10 days.  Consequently, there will 100 optimization and balancing time steps. The 

comparison of the base case and optimized case of production and injection profile are 

shown in the Figures 64 and 65, respectively. The control of upstream injection pressure 

and downstream production pressure after optimization is pretty much the same as the 

explicit coupling case except that the high upstream injection pressure and downstream 

production pressure period is shorter than the implicit case. The NPV of the base case 

using implicit coupling is about 10.5 billion USD while the optimized case increase the 

NPV to 11.2 billion USD. 

6.4.1.3. Coupling Surface and Subsurface Model in the Optimization Framework 

This section aims to illustrate the importance of using coupled surface and 

subsurface model in production optimization. The production optimization of no coupled 

model or standalone reservoir simulation model can be achieved by using bottomhole 

production and injection pressures as control parameters. All of reservoir description is 

the same as the one that used in the coupled model.  

In a real situation, the possible lowest and highest bottomhole production and 

injection pressure can be estimated using nodal analysis. The possible highest 

bottomhole production and injection pressure occurs when the wells produce/inject at the 

highest downstream production pressure/upstream injection pressure and reservoir 

pressure is maintained at initial reservoir pressure. The lowest bottomhole injection 
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pressure can be estimated by the same method but use lowest upstream injection 

pressure and reservoir pressure at low pressure. The possible lowest bottomhole 

production pressure is assumed to be equal to abandonment pressure, which in our 

example is 400 psi. The summary of estimated lower and upper bound of bottomhole 

production and injection pressures is shown in the Table 15. 

 

Parameter Lower Bound Upper Bound 

INJ1: Bottomhole Injection Pressure 3871 psi 4926 psi 

INJ2: Bottomhole Injection Pressure 3871 psi 4926 psi 

PROD1: Bottomhole Production Pressure 400 psi 2050 psi 

PROD2: Bottomhole Production Pressure 400 psi 850 psi 

 
Table 15: Lower and upper bound of bottomhole production and injection 

pressures 

 

Figures 66 and 67 show the comparison of production optimization results of 

coupled and no coupled case. The red line represents the implicit coupling case and the 

blue line represents the no coupling case. It can be seen that the bottomhole production 

pressure of the two cases is obviously different. The bottomhole production pressures of 

no-coupling case are at maximum allowable pressure or upper bound which higher than 

the maximum bottomhole production pressure of implicit coupling case and maintain at 

this value from the day one of production and keep constant about one year and eight 

months for PROD1 and about one year and six months for PROD2. Then, they drop to 

the lower bound value for the rest of production period while the bottomhole production 
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pressures of implicit coupling case are gradually reduced as the gas oil-ratio increase and 

then suddenly drop due to reducing of downstream production pressure. For injection 

profiles, the bottomhole injection pressures of two injection wells in the case of no 

coupling are at maximum allowable pressures for a longer time than the case of implicit 

coupling and drop to lower bound about at the same time that the bottomhole production 

pressures of two production wells are dropped resulting in different injection rate 

profiles. The difference of bottomhole production/injection pressures impacts the oil and 

gas production profile and it causes NPV of no coupling case to be higher than implicit 

coupling case about 1.8 billion USD. 

We also ran a different setup by using assumption that we know the minimum 

and maximum of bottomhole pressure results from the optimization using implicit 

coupling. The lower and upper bound of bottomhole production and injection pressures 

are set to be equal to minimum and maximum of bottomhole pressure result of 

production optimization using implicit coupling. The summary of lower and upper 

bound of bottomhole production and injection pressures used in production optimization 

of standalone reservoir simulation model is shown in Table 16. 
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Parameter Lower Bound Upper Bound 

INJ1: Bottomhole Injection Pressure 3971 psi 4974 psi 

INJ2: Bottomhole Injection Pressure 3971 psi 4974 psi 

PROD1: Bottomhole Production Pressure 305 psi 1029 psi 

PROD2: Bottomhole Production Pressure 303 psi 644 psi 

 
Table 16: Estimated lower and upper bound of bottomhole production and 

injection pressures 

 

Although the bottomhole production pressures and production profiles of the two 

production wells of no coupling (with known lower and upper bound) and implicit 

coupling case are still different as shown in Figure 68, it can be seen from the Figures 68 

and 69 that the production and injection profiles are much more similar than the case of 

no-coupling with estimated lower and upper bound. The NPV of no coupling case with 

known bound is 11.49 billion USD which is higher than the implicit coupling case NPV 

about 0.3 billion USD. 

The differences of no coupling and coupling case will be more visible when 

water breakthrough the production well which will be shown in the case of 5-spots 

pattern water flooding. 
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6.4.1.4. Comparison of Explicit and Implicit Coupling Case 

The Figures 70 and 71 show the comparison of explicit coupling and implicit 

coupling results of optimization. The blue line represents the case of production 

optimization using implicit coupling while the red line denotes the explicit coupling. As 

mentioned before that the optimal control of upstream injection pressure and 

downstream production pressure of explicit and implicit coupling are a little bit different. 

However, the bottomhole flowing pressures of production wells between implicit and 

explicit coupling are obviously different in the early date of production since the surface 

and subsurface model of explicit coupling case are not fully balanced  resulting in 

different oil production and gas production rate in that period of time. The differences of 

oil and gas production rate affect the average reservoir pressure.  

After the first balancing time step, the bottomhole production pressures of 

explicit coupling case are getting closed to implicit coupling case because the well linear 

IPR is queried from more realistic operating point. Moreover, the bottomhole production 

pressure profiles after the first balancing time step of explicit coupling and implicit 

coupling cases have quite the same trend because gas-oil ratio profile which influence 

the outflow performance relationship and reservoir pressure (in Figure 72) which 

influence the inflow performance relationship of the both implicit and explicit cases are 

relatively similar.  

The reason that the average reservoir pressure and gas-oil ratio of difference 

coupling cases are fairly similar can be explained as follow; the reservoir pressure 

depletions of the two cases are similar (same trend but different value) and assimilate to 
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normal depletion trend because the water flooding can provide only a small pressure 

support. The similarity of reservoir pressure depletions effects gas-oil ratio profiles of 

the two different coupling cases to be fairly similar. The plot of comparison of average 

reservoir pressure can be found in the Figure 72. 

Moreover, the optimized NPV of these two coupling schemes is not much 

different since the total volume of oil and gas production and water injection are not 

much different. The summary of difference of cumulative production and injection is 

concluded in the Table 17. The plot of cumulative production and injection volume 

comparison can be found in the Figure 72. 

 

Parameter Value Unit 

Difference of Cumulative Oil Production -81.0 MSTB 

Difference of Cumulative Gas Production 125.5 MMSCF 

Difference of Cumulative Water Injection 80.1 MSTB 

 
Table 17: Summary of difference of total cumulative production and injection 

volume of production optimization using different coupling schemes 
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Figure 62:  Comparison of base case and optimized case of direct line drive water flooding production profiles using 

explicit coupling 
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Figure 63: Comparison of base case and optimized case of direct line drive water 

flooding production profiles using explicit coupling 
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Figure 64: Comparison of base case and optimized case of direct line drive water flooding production profiles using 

implicit coupling 
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Figure 65: Comparison of base case and optimized case of direct line drive water 

flooding injection profiles using implicit coupling 
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Figure 66: Comparison of no coupled (estimated lower and upper bound) and implicit coupled optimization production 

profiles for the case of direct line drive water flooding 
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Figure 67: Comparison of no coupled (estimated lower and upper bound) and implicit 
coupled optimization injection profiles for the case of direct line drive water flooding 
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Figure 68: Comparison of no coupled (known lower and upper bound) and implicit coupled optimization production 

profiles for the case of direct line drive water flooding 
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Figure 69: Comparison of no coupled (known lower and upper bound) and implicit 

coupled optimization injection profiles for the case of direct line drive water flooding 
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Figure 70: Comparison of explicit coupled and implicit coupled optimization production profiles for the case of direct 

line drive water flooding 
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Figure 71: Comparison of explicit coupled and implicit coupled optimization injection 

profiles for the case of direct line drive water flooding 
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Figure 72: Comparison of explicit coupled and implicit coupled cumulative production 

& injection volume and average reservoir pressure for the case of direct line drive 
water flooding 
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6.4.2. 5-Spots Pattern Water Flooding 

The 5-spots pattern water flooding consists of four production wells (PROD1, 

PROD2, PROD3, and PROD4) and one injection well (INJ1). The wells are assumed to 

be fully perforated. As same as the direct line drive water flooding, the upstream 

injection pressure and downstream production pressure for base case are controlled at 

3000 psi and 220 psi for the whole time of injection and production. This production 

scenario represents the case that the water flooding has a strong effect on reservoir 

pressure because the injection well is in the high permeability zone such that the injected 

water can effectively flood the remaining oil. The results of 5-spots pattern water 

flooding with various coupling scheme and no coupling are presented and analyzed to 

observe the effect of different coupling scheme on production optimization. 

6.4.2.1. Explicit Coupling Case 

The total time of production of 5-spots pattern water flooding is 1400 days. The 

optimization and balancing time step used here is 50 days.  Consequently, there will be 

28 optimization and balancing time step. The oil production profile and bottomhole 

production pressure of each production wells are shown in the Figures 73 and 74, 

respectively. The red line represents the optimized case and the blue line represents the 

base case. The Figure 75 shows comparison of base case and optimize case of the other 

production results. It can be seen that the downstream production pressure of PROD1 

(solid red line) is changed to the maximum value to delay the water breakthrough while 

the pressure for the other production wells is changed to minimum value to maximize 

the oil production rate. Although the bottomhole production pressure of the optimized 
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case in the early time of production is higher than the base case and water breakthrough 

faster than the base case, the oil production profile of all four production wells of 

optimized case clearly shows the improvement of oil production rate because higher 

volume of water can be injected and flooded more remaining oil out of reservoir. The 

comparison of injection rate of the base case and the optimized case can be found in the 

Figure 76. The upstream injection pressure of optimized case (red line) is changed from 

the base case (blue line) to the upper bound and goes down to the lower bound around 50 

days before end of four years of production. The NPV of optimized case is 26.19 billion 

USD which improve from the base case by 2.76 billion USD. 

6.4.2.2. Implicit Coupling Case 

For implicit coupling case, the size of simulation time step is 10 days. 

Consequently, the number of optimization time step and balancing time step is 140. The 

Figures 77 and 78 show the comparison of base case and optimized case oil production 

profile and bottomhole production pressure. The Figure 79 illustrates the comparison of 

base case and optimized case of the other production results. The optimized case is 

represented by the red line while the blue line represents the base case.  It can be seen 

that the characteristic of production profiles of implicit coupling case are pretty much the 

same as explicit coupling case results. For injection side, the comparison of injection rate 

of the base case and the optimized case can be found in the Figure 80. The rate of water 

injection of optimized case is higher than the base case. The production improvement of 

implicit coupling case can be explained by the same reasons as it explained in explicit 
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coupling case. The NPV of optimized case is 26.27 billion USD which improve form the 

base case by 2.76 billion USD. 

6.4.2.3. Coupling Surface and Subsurface Model in the Optimization Framework 

In the previous section (direct line drive water flooding), the importance of 

coupled model for production optimization is presented. It can be seen that in the case of 

direct line drive water flooding, there is no water breakthrough at production wells. In 

this section, the results will show you how the water breakthrough can affect the 

difference between using coupled surface and subsurface model and no coupled model 

for production optimization results.  

The estimation of lower and upper bound of bottomhole production and injection 

pressure can be done in the same fashion as mentioned the previous section. The 

summary of estimated lower and upper bound of bottomhole production and injection 

pressures is shown in the Table 18. 

 
Parameter Lower Bound Upper Bound 

INJ1 : Bottomhole Injection Pressure 3871 psi 4962 psi 

PROD1: Bottomhole Production Pressure 400 psi 2050 psi 

PROD2: Bottomhole Production Pressure 400 psi 710 psi 

PROD3: Bottomhole Production Pressure 400 psi 965 psi 

PROD4: Bottomhole Production Pressure 400 psi 850 psi 

 
Table 18: Estimated lower and upper bound of bottomhole production and 

injection pressures 
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The Figures 81 and 82 show the oil production profile and bottomhole 

production pressure of no coupling and implicit coupling optimization case. It can be 

observed that the oil production profiles and bottomhole production pressures of the two 

cases are totally different. The bottomhole production pressure of PROD1 is increased to 

the maximum allowable pressure since the early time of production in order to delay the 

water breakthrough while the bottomhole production pressure of the other wells are 

changed to the minimum allowable or lower bound pressure to maximize the oil 

production. The difference of bottomhole production pressures of no coupling case and 

implicit coupling case causes the production profiles of the two cases to be different.  

The Figure 83 shows the comparison of gas-oil ratio and water cut of no coupling 

and implicit coupling cases. The case of no coupling obviously produces lower gas-oil 

ratio which imply that most of the reservoir energy is preserved. This explains the reason 

why the water injection rate of the no coupling case is lower than the implicit coupling 

case although the bottomhole injection pressures of the both cases are quite identical. 

The injection profile of no coupling and implicit coupling can be found in the Figure 84. 

As same as the direct line drive water flooding, another no coupling case can be 

ran based on assumption that we know and use the minimum and maximum of 

bottomhole pressure result of production optimization using implicit coupling as lower 

and upper bound of bottomhole production and injection pressures. The summary of 

lower and upper bound of bottomhole production and injection pressures used in 

production optimization of standalone reservoir simulation model is shown in Table 19. 
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Parameter Lower Bound Upper Bound 

INJ1 : Bottomhole Injection Pressure 3949 psi 4938 psi 

PROD1: Bottomhole Production Pressure 802 psi 1563 psi 

PROD2: Bottomhole Production Pressure 320 psi 411 psi 

PROD3: Bottomhole Production Pressure 343 psi 427 psi 

PROD4: Bottomhole Production Pressure 352 psi 617 psi 

 
Table 19: Lower and upper bound of bottomhole production and injection 

pressures 

 

Although the bottomhole production pressure and oil production profiles of the 

production wells of no coupling (with known lower and upper bound) and implicit 

coupling case are still have obvious differences as shown in Figures 85, 86 and 87, it can 

be seen that the production and injection profiles are much more similar than the case of 

no coupling with estimated lower and upper bound. The water injection profiles in the 

Figure 88 also show that the water injection rate  of no coupling case with known lower 

and upper bound the water injection profile, The NPV of no coupling case with known 

bound is 11.49 billion USD which different from the implicit coupling case NPV about 

0.3 billion USD. 

6.4.2.4. Comparison of Explicit and Implicit Coupling Case 

The comparison of explicit coupling and implicit coupling of oil production 

profile and bottomhole production pressure in each well are shown in the Figures 89 and 

90. The blue line represents the case of production optimization using implicit coupling 

while the red line denotes the explicit coupling. The Figure 91 shows gas-oil ratio, water 
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cut profiles, downstream production pressure controls and average reservoir pressure of 

the two different coupling cases. Although the downstream production pressure controls 

of each production well of two difference coupling schemes which is shown in the 

Figure 91 are quite the same, it can be seen that in the first time step of production the 

oil production rate of all production wells of explicit coupling are less than the case of 

implicit coupling because of higher bottomhole production pressure. After the first time 

step, the bottomhole production pressures of two different coupling schemes are 

significantly different. As mentioned before that the bottomhole production pressure is 

obtained from the intersection of well linear inflow performance relationship and 

outflow performance relationship. The well linear inflow performance is related to the 

reservoir pressure while the outflow relationship is subjected to composition of the fluid 

flow in pipe (i.e. gas-oil ratio and water cut). It can be seen from Figure 91 that the shape 

of gas-oil ratio profiles and average reservoir pressure profiles are quiet similar but they 

are shifted. Consequently, the shape of bottomhole production pressure profiles of the 

two different coupling schemes are quite the same but shifted. The difference of 

reservoir pressure and bottomhole production pressure affect the production profiles of 

oil and gas to be different. 

In the late time, the oil production rates of explicit coupling and implicit coupling 

are pretty much the same because the bottomhole production pressures and reservoir 

pressures of the two cases are getting closed.  

In the Figure 92, the upstream injection pressure control of injection well of two 

difference coupling schemes is similar but the injection profile shows some differences 
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in the early period of production since the oil production wells of implicit coupling 

produce at higher rate cause the reservoir pressure to be lower and resulting in higher 

injection rate. In the late time of production, the injection rate of explicit coupling case is 

higher because the reservoir pressure of explicit coupling case is increased more than the 

reservoir pressure of implicit coupling case. 

Although the oil production, gas production, and water production profiles of 

different coupling scheme of each well are different, the total cumulative production 

profiles are not much different as they are shown in the Figure 93. The summary of 

difference of total cumulative production and injection volume of production 

optimization using different coupling schemes is shown in the Table 20. The optimized 

NPV of these two coupling scheme is not much different since the total volume of oil, 

gas, and water production and water injection are not much different. 

 

Parameter Value Unit 

Difference of Cumulative Oil Production 128.6 MSTB 

Difference of Cumulative Gas Production 100.3 MMSCF 

Difference of Cumulative Water Production 226.1 MSTB 

Difference of Cumulative Water Injection 448.7 MSTB 

 
Table 20: Summary of difference of total cumulative production and injection 

volume of production optimization using different coupling schemes 
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Figure 73: Comparison of base case and optimized case of 5-spots pattern water 

flooding oil production profiles using explicit coupling 
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Figure 74: Comparison of base case and optimized case of 5-spots pattern water 

flooding bottomhole flowing pressure using explicit coupling 
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Figure 75: Comparison of base case and optimized case of 5-spots pattern water flooding production profiles using 

explicit coupling 
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Figure 76: Comparison of base case and optimized case of 5-spots pattern water 

flooding injection profiles using explicit coupling 
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Figure 77: Comparison of base case and optimized case of 5-spots pattern water 

flooding oil production profiles using implicit coupling 
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Figure 78: Comparison of base case and optimized case of 5-spots pattern water 

flooding bottomhole production pressure using implicit coupling 
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Figure 79: Comparison of base case and optimized case of 5-spots pattern water flooding production profiles using 

implicit coupling 
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Figure 80: Comparison of base case and optimized case of 5-spots pattern water 

flooding injection profiles using implicit coupling 
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Figure 81: Comparison of no coupled (estimated lower and upper bound) and implicit 

coupled optimization oil production profiles for the case of 5-spots pattern water 
flooding 
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Figure 82: Comparison of no coupled (estimated lower and upper bound) and implicit 

coupled optimization bottomhole production pressure for 5-spots pattern water 
flooding 
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Figure 83: Comparison of no coupled (estimated lower and upper bound) and 

implicit coupled optimization GOR and water cut for 5-spots pattern water 
flooding 
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Figure 84: Comparison of no coupled (estimated lower and upper bound) and implicit 

coupled optimization injection profile for 5-spots pattern water flooding 
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Figure 85: Comparison of no coupled (known lower and upper bound) and implicit 

coupled optimization oil production profiles for 5-spots pattern water flooding 
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Figure 86: Comparison of no coupled (known lower and upper bound) and implicit 

coupled optimization bottomhole production pressure for 5-spots pattern water 
flooding 
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Figure 87: Comparison of no coupled (known lower and upper bound) and implicit 

coupled optimization GOR and water cut for 5-spots pattern water flooding 
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Figure 88: Comparison of no coupled (known lower and upper bound) and implicit 

coupled optimization water injection profile for 5-spots pattern water flooding 
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Figure 89: Comparison of explicit coupled and implicit coupled optimization oil 

production profiles for 5-spots pattern water flooding 
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Figure 90: Comparison of explicit coupled and implicit coupled optimization 

bottomhole production pressure for 5-spots pattern water flooding 

0 1 2 3 4
800

1000

1200

1400

1600

1800

2000

Years

P
re

ss
ur

e(
ps

i)
Bottomhole Production Pressure of PROD1

0 1 2 3 4
300

350

400

450

500

550

600

Years

P
re

ss
ur

e(
ps

i)

Bottomhole Production Pressure of PROD2

0 1 2 3 4
300

400

500

600

700

800

900

1000

Years

P
re

ss
ur

e(
ps

i)

Bottomhole Production Pressure of PROD3

0 1 2 3 4
300

400

500

600

700

800

Years

P
re

ss
ur

e(
ps

i)

Bottomhole Production Pressure of PROD4



 

173 
 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 91: Comparison of explicit coupled and implicit coupled optimization GOR, 

water cut, and pressure for 5-spots pattern water flooding 

0 1 2 3 4
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Years

G
O

R
(M

S
C

F
/S

T
B

)

Gas - Oil Ratio of PROD1

0 1 2 3 4

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Years

G
O

R
(M

S
C

F
/S

T
B

)

Gas - Oil Ratio of PROD2, PROD3, and PROD4

0 1 2 3 4
0

20

40

60

80

100

Years

W
at

er
 c

ut
(%

)

Water Cut of PROD1

0 1 2 3 4
0

10

20

30

40

50

60

Years

W
at

er
 c

ut
(%

)

Water Cut of PROD2, PROD3, and PROD4

0 1 2 3 4
200

250

300

350

400

450

Years

P
re

ss
ur

e(
ps

i)

Downstream Production Pressure

0 1 2 3 4
2400

2500

2600

2700

2800

2900

3000

3100

Years

P
re

ss
ur

e(
ps

ia
)

Average Reservoir Pressure



 

174 
 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 92: Comparison of explicit coupled and implicit coupled optimization water 

injection profile for 5-spots pattern water flooding 
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Figure 93: Comparison of explicit coupled and implicit coupled optimization 

cumulative production and injection volume for 5-spots pattern water flooding 
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From the result of comparison of explicit coupling and implicit coupling 

optimization, it shows that for both direct line drive water flooding and 5-spots pattern 

water flooding cases the upstream injection pressure and downstream production 

pressure control resulting from using explicit coupling and implicit coupling are quite 

identical. This leads to an idea to use the upstream injection pressure and bottomhole 

production pressure control results from production optimization using explicit coupling 

model and then use the control to run the implicit coupling model to calculate the oil, 

gas, and water production and water injection profile. The advantage of using the 

explicit coupling model to do the production optimization instead of implicit coupling is 

because the explicit coupling model requires less computational effort than implicit 

coupling model. The Table 21 summarizes the computational time using in production 

optimization. From the Table 21, we can conclude that the explicit coupling case use less 

CPU time in production optimization than implicit coupling case about 12-14 %. 

 

Production strategies Explicit Coupling Case Implicit Coupling Case 

Direct line drive water flooding 2086 sec 2380 sec 

5-Spots pattern water flooding 2500 sec 2800 sec 

 
Table 21: Summary of computational time using in production optimization 
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6.5. Optimization Using Explicit Coupling Model - Prediction Using Implicit 

Coupling Model 

 This section will show the result of optimization using explicit coupling model to 

run the production optimization and implicit coupling model to run the production 

prediction of direct line drive water flooding and 5-spots pattern water flooding. The 

optimization using explicit coupling model - Prediction using implicit coupling model 

method will be called explicit-implicit coupled optimization. 

6.5.1. Direct Line Drive Water Flooding 

 The Figures 94 and 95 show the comparison of explicit-implicit coupled and 

implicit coupled optimization production profiles and injection profiles for direct line 

drive water flooding. The blue line represents the case of implicit coupled optimization 

while the red line represents explicit-implicit coupled optimization. It can be seen that 

there is difference in the timing that the downstream production pressure and upstream 

injection pressure is changed from maximum value to minimum value. However, it 

causes just only small impact on overall production and injection profile. It can be said 

that the production and injection profiles of the two different coupling cases are almost 

identical. The Figure 96 shows that cumulative production & injection and average 

reservoir pressure of the two different coupling schemes are also identical.  The NPV of 

explicit-implicit coupled optimization is about 11.2 billion USD which is identical to 

optimized NPV of implicit coupling. 
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6.5.2. 5-Spots Pattern Water Flooding  

The comparison of explicit-implicit coupled and implicit coupled optimization 

production profiles and injection profiles for 5-spots pattern water flooding can be found 

in Figures 97, 98, 99 and 100. The blue line represents the case of implicit coupled 

optimization while the red line represents explicit-implicit coupled optimization. The oil 

production profiles and bottomhole production pressure profiles of each production 

wells are shown in the Figures 97 and 98 which show no difference between the two 

coupling cases. Moreover, the gas-oil ratio, water cut, average reservoir pressure and 

water injection profiles of the two coupling cases are very similar. This because the 

control of explicit-implicit coupled and implicit coupled optimization is pretty much the 

same. The NPV of explicit-implicit coupled optimization is about 26.27 billion USD and 

it is identical to optimized NPV of implicit coupled case. 
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Figure 94: Comparison of explicit-implicit coupled and implicit coupled optimization production profiles for the case of 

direct line drive water flooding 
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Figure 95: Comparison of explicit-implicit coupled and implicit coupled optimization 

injection profiles for the case of direct line drive water flooding 
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Figure 96: Comparison of explicit-implicit coupled and implicit coupled cumulative 
production & injection volume and average reservoir pressure for the case of direct 

line drive water flooding 
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Figure 97: Comparison of explicit-implicit coupled and implicit coupled optimization 

oil production profiles for the case of 5-spots pattern water flooding 
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Figure 98: Comparison of explicit-implicit coupled and implicit coupled optimization 
bottomhole production pressure profiles for the case of 5-spots pattern water flooding 
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Figure 99: Comparison of explicit-implicit coupled and implicit coupled optimization 

production profiles for the case 5-spots pattern water flooding 
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Figure 100: Comparison of explicit-implicit coupled and implicit coupled optimization 

injection profiles for the case 5-spots pattern water flooding 
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7. CONCLUSIONS AND RECOMENDATIONS 

 

7.1  Summary 

 In standard framework of production optimization, the process aims to optimize 

the system of production that is scoped at the reservoir only. However, in practice, the 

system of production is the combination of reservoir and production facility. Hence, the 

understanding of fluid flow characteristic in the reservoir thru the flow in pipe is the one 

of important element in production optimization. This can be taken into account in the 

production optimization process by using coupled surface and subsurface model. 

 Normally, the surface and subsurface flow are modeled separately. However, in 

the past, there are several research study related to coupling surface and subsurface 

model. The research can be divided into two main groups. The first group is the research 

about advanced well modeling and another group is the coupled surface and subsurface 

model research. The detail of each research can be found in the CHAPTER 2. 

 In oil & gas industry, there are three main methods to couple surface and 

subsurface model; explicit coupling, implicit coupling, and fully implicit coupling. The 

procedure for explicit and implicit coupling is quite similar. The major difference 

between explicit coupling and implicit coupling is that the explicit coupling balances 

surface and subsurface model at the time step level while the implicit coupling do it at 

Newton's iteration level. Another approach to do coupling is the fully implicit coupling. 

The fully implicit coupling procedure is completely different from the previous two type 

of coupling such that the two systems of equations of surface and subsurface flow are 
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formulated as a single system of equation and it will be solved simultaneously in every 

Newton's iteration. 

 In order to investigate the coupling mechanism, we divide this research into two 

main phases. In the first phase of the study, we investigated the so-called coupling using 

the forward model whereas in the 2nd phase we attached the forward model into an 

optimization framework. We used several tools to investigate the various coupling 

mechanism in surface/subsurface dynamics. We started with the ECLIPSE100 with 

Network Option to study the effect of the coupling mechanism on the forward problem, 

that is, the reservoir simulation problem. However, we switched to the MATLAB® 

based reservoir simulation toolbox (MRST) for the production optimization process. To 

this end, we modified several of the function in MRST to suit our framework. 

In the 1st phase of study, the coupling schemes that have been considered here 

are the explicit coupling for every time step, explicit coupling for every fixed period of 

time and implicit coupling. The results show in section 4 that most of the cases used in 

the implicit coupling and explicit coupling for every time step give the same production 

and injection profile. The results of the first phase also show that lived oil PVT clearly 

yield difference result between explicit coupling for every fixed period of time and 

implicit coupling. In addition, comparing between homogeneous low permeability and 

high permeability, the difference of production and injection profiles among the different 

coupling scheme of the high permeability case are more obvious than the case of low 

permeability. In terms of heterogeneity effect, the reservoir tends to impact more the 
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production and injection profile of different coupling scheme than the homogeneous 

reservoir. 

In the second phase of this study, the modified MRST is used to run production 

optimization on selected fluid and reservoir properties and production scenarios. From 

the first phase of this study, the reservoir properties and fluid properties that give clear 

difference between explicit and implicit coupling scheme are heterogeneous high 

permeability reservoir and lived oil PVT fluid. Consequently, in order to investigate how 

the coupling schemes can affect the production optimization result, the reservoir that has 

heterogeneity and high permeability with lived oil PVT is selected.  The production 

scenarios considered here are direct line drive water flooding and 5-spots pattern water 

flooding. For both production scenario cases, there is at least one production well that is 

deliberately locate in the high permeability zone in order to emphasize the effect of  the 

high permeability.  

The results for production optimization using explicit and implicit couplings for 

direct line drive water, and 5-spots pattern water flooding show that the gradient-based 

optimization and gradient calculation using adjoint model can improve the economical 

parameters, namely NPV by improving the upstream injection pressure and downstream 

production pressure controls.  

The production optimization using the standalone subsurface model and coupled 

surface and subsurface model using implicit coupling scheme are also ran on both 

production scenarios in order to investigate the result of production optimization with 

and without surface facility model response. The results show that the production 



 

189 
 

 

optimization without consideration of surface facility model response gives an optimistic 

optimization result because the production optimization by using bottomhole 

production/injection pressure as control does not consider the effect of production and 

injection fluid such as gas-oil ratio and water cut. This leads to unrealistic bottomhole 

production pressure and inaccurate estimation of lower and upper bound of bottomhole 

production and injection pressure.  

The optimized controls for the direct line drive water flooding of explicit and 

implicit coupling are quite the same. There is a small difference in the timing that the 

upstream injection pressure and downstream production pressure changed from 

maximum value to minimum value. However, the bottomhole pressures of explicit and 

implicit coupling are not completely inline. The bottomhole production pressure of 

explicit case is higher than implicit case in the early period of production as surface and 

subsurface model are not fully balanced. After that the bottomhole production pressure 

of the explicit case still higher than the implicit case but they have quite the same trend 

because gas-oil ratio profile which influence the outflow performance relationship and 

reservoir pressure which influence the inflow performance relationship of the both 

implicit and explicit cases are relatively similar. In general, it can be said that not only 

the optimized injection and production profile but also the optimized NPV from implicit 

and explicit coupling are fairly the same for the case that water flooding has small 

influence on pressure maintenance. 

For the case of the 5-spots pattern water flooding, there is just a small difference 

in optimized control about the timing of changing in term of maximum and minimum 
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pressure control. This problem represents the case that water injection has a high 

influence on reservoir pressure. The difference of injection profile causes the shifting of 

reservoir pressure and gas-oil ratio profiles between implicit and explicit coupling cases. 

Since gas-oil ratio profiles influence the outflow performance relationship, the 

bottomhole production pressures of implicit and explicit coupling cases are also shifted 

and resulting in different oil production profile. Although the production profiles seem to 

be different, the optimized NPV from explicit and implicit coupling case has a small 

difference. 

Although, in the case that water flooding plays a major role in the reservoir 

pressure support (5-spots pattern water flooding), the different coupling scheme can 

affect the production and injection profile. However, the difference is not significant 

enough to effect the value of optimized NPV. The rationale for this is that the NPV is a 

function of the production and injection volume. There is a strong relationship between 

reservoir pressure and production/ injection volume. It can be seen from the comparison 

of average reservoir pressure of implicit and explicit coupling in two different water 

flooding strategies that the pressure from the two coupling scheme is different in the 

early and middle time of production. However, the pressure is getting closer in the last 

time step. When the reservoir pressure is getting closer, it implies that the total mass in 

and out of the reservoir of the two cases is supposed to be approximately the same. 

Hence, the total production and injection volume is supposed to be the same and 

resulting in indifferent optimized NPV.    
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From the comparison of implicit and explicit coupling optimization result, it can 

be seen that the optimized controls from implicit and explicit coupling for both 

production scenarios are somewhat the same. This leads to an idea of using explicit 

coupling model for production optimization and then uses the optimized controls to run 

the prediction by using implicit coupling model in order to reduce the computational 

time but still get an accurate production & injection profiles and optimal NPV. The study 

shows that the optimization using explicit coupling - prediction using implicit coupling 

results are identical to the optimization results using implicit coupling. 

 

7.2  Future Works 

 In the next paragraphs, a few suggestions will be given regarding the future work 

of this project. 

 In order to test the findings of this research to a more realistic scenario, real field 

data and more complete reservoir model need to be incorporated in to the optimization 

framework. Furthermore, in the real production field, the production scenario and 

constraint might be more complicated from the production scenarios and constraint that 

have been considered here. The production scenarios that we consider here is just a 

single unit of water flooding pattern while in a more realistic field, the production 

scenario might be consist of multiple unit of water flooding pattern. In an actual 

production field, the production constraint might be involve multiple objective such as 

pressure limit and maximum allowable water cut. 
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 This research can be developed further by considering other parameters in the 

coupling mechanism. For example the type of balancing algorithm and point of coupling 

can be changed during simulation. As mentioned in section 5, the balancing algorithm 

that we used here is the Fast PI balancing algorithm which represents the IPR by linear 

model. Apart from Fast PI balancing algorithm, there are several balancing algorithm 

that calculate IPR differently. In terms of point of coupling, the point of coupling used 

here is at bottomhole of the wells while in practice, the point of coupling can be varied 

from bottomhole to the tubing head of the wells, depending on the suitability of the 

application and availability of the software. By including these two coupling parameters 

into further studies, we strongly believe that it will lead to more comprehensive 

conclusion of the research. 
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