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ABSTRACT 

 

The objective of this dissertation was to advance the knowledge about 

mathematics instruction regarding the use of exploratory graphical embodiments in Pre-

K to College levels. More specifically, the study sought to find out which graphical 

representations generate the highest learning effect sizes as well as which teaching 

method is the most supportive when graphical representations are applied.  

The dissertation is organized into three coherent research studies that correspond 

to different schooling levels. The primary method of data analysis in this study was 

meta-analysis supported by synthesis of qualitative and comparative studies. A total of 

73 primary studies (N = 9055) from 22 countries conducted over the past 13 years met 

the inclusion criteria. Out of this pool, 45 studies (N = 7293) were meta-analyzed. The 

remaining 28 studies (N = 1762) of qualitative or mixed method designs where 

scrutinized for common themes. The results support the proposed hypothesis that 

visualization aids mathematics learning. At the primary level, the mean effect size for  

using exploratory environment was ES = 0.53 (SE = 0.05, 95% CI: 0.42-0.63), the mean 

effect size for using computerized programs at the grade levels 1-8 was ES = 0.60 (SE = 

0.03, 95% CI: 0.53-0.66), and the results of applying congruent research techniques at 

the high school and college levels revealed an effect size of ES = 0.69 (SE = 0.05, 95% 

CI: 0.59–0.79).  

At each of the teaching level, implementing an exploratory environment 

generated a moderate effect size when compared to traditional teaching methods. These 
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findings support a need for a broader implementation of exploratory learning media to 

mathematics school practice and provide evidence to formulate a theoretical 

instructional framework.  
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NOMENCLATURE 

 

ES  Effect size 

SE   Standard error 

CI   Confidence interval  

SS   Sample size  

df   Degree of freedom 

QE   Quasi-experimental 

R   Randomized 

MM   Mixed methods 

QUAL   Qualitative 

ECE   Exploratory computerized environment 

SC   Student centered 

MEA   Model eliciting activity 

Q  Test of homogeneity of effect sizes 
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CHAPTER I 

 
INTRODUCTION  

 

Visualization and Mathematics Teaching 

There have been multiple research studies conducted in the area of enhancing 

mathematics teaching and learning through visualization (e.g., Gershman & Sakamoto, 

1981; Niss, 2010; Podolefsky, Perkins, & Adams, 2010; Thomas & Hooper, 1991). 

Although the majority of scholars supported the idea that visualization—often displayed 

by programmed computer software—helps students learn math concepts, they often 

explored visual media as tools supporting tutoring or enhancing the process of graphing 

functions or drawing geometrical objects. Despite proven advantages of using 

visualization in these capacities, there exists a potential for applying graphical 

representations to immerse learners in scientific exploratory environments that allow 

conceptualization of math ideas and their deeper understanding. Although some 

elements of scientific inquiry, such as analysis and measurements, have received 

significant attention in the newly developed common core standards (Porter, McMaken, 

Hwang, & Yang, 2011), the process of inquiry design in mathematics classes, for 

example, the process of mathematical modeling or problem solving, seems to be left out 

of these discussions. Research by Grouws and Cebulla (2000) suggests that students who 

develop math conceptual understanding are able to perform successfully on problem 

solving requiring a task transfer; thus, it is hypothesized that by enriching math 

curriculum via elements of scientific inquiry and mathematical explorations, the process  
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of conceptualization of abstract math ideas will be enacted. Consequently, 

shifting from procedural to conceptual teaching and learning methods in mathematics 

could be initiated. The three coherent articles in this dissertation will attempt to seek 

answers to these hypotheses. Supported by the statistical apparatus of meta-analytic 

research, these manuscripts will aim to quantify the effects of using these visualization 

techniques in school practice and highlight moderators that increase students’ learning 

effects.  

Purpose, Problem Statement, and Inquiry Method  

The purpose of the dissertation is bifocal; it is to advance the knowledge about 

mathematics instruction regarding the use of various graphical embodiments to enhance 

the process of mathematics reasoning and also to propose an instructional method that 

will help improve students’ achievement when exploratory environments are used.  The 

following are the research questions that will guide the study: (a) what type of 

visualizations or scientific embodiments contextualizes the mathematical concepts and 

theorems most effectively? (b) do contexts presented by computerized simulations help 

students develop the skills of math knowledge transfer to real life situations? (c) does 

situating the instruction in mathematical modeling, help students conceptualize abstract 

mathematical ideas? What are the constructs that improve/increase these skills? As a 

method of inquiry, meta-analysis will be employed. Depending on the availability of 

primary research studies, an inclusion of research situated in naturalistic paradigms will 

also be considered. The inclusion of synthesis of qualitative studies is intended to enrich 

and to strengthen the general research findings. 
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Structure of the Dissertation 

This dissertation comprises three articles that employ meta-analysis as the 

primary research method. Research conducted globally over the past 12 years will be 

considered and located studies will be referenced with an asterisk. Constituted by these 

three study foci, the dissertation will be solidified through a common theme—how and 

why exploratory environments enhance understanding of mathematic concepts—and 

will reveal which research constructs should lead to further investigations in this domain.  

The first article will aim at analyzing the effect of various forms of graphical 

representations on students’ math learning in Pre-K through Grade 5. The purpose of this 

study is to determine effect sizes of using representations in math classes and to inquire 

about students’ learning from using representations. This study will investigate the 

effects of using regular static blackboard drawings as well as a manipulative and 

knowing why some means of visualization work better than others. In addition to 

providing quantifiable results, this study examines potential mediators in the learning 

effects. Emphasis will also be placed on identifying the type of instructional support and 

its impact on student learning. The study will conclude with recommendations and 

conclusions intended to depict avenues for further research.  

The second article will focus on analyzing effectiveness of visual representations, 

delivered through computer programs— on students’ math achievement— in Grades 1 

through Grade 8. The purpose of this article is to contribute to this body of research by 

examining exploratory computerized environments (ECEs) used to support the process 

of word problems solving and explorations. The themes of this study will reflect on the 
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notion that any form of visualization—whether static or dynamic—can be converted into 

digital format and be delivered through a computer screen. 

The goal of the third manuscript will be to extend inferences about using 

graphical representations in mathematics to high school and college levels, and to seek 

quantifications of these constructs that support exploratory learning. Since an emerging 

view on math knowledge acquisition is that exploratory environments in the form of 

computer-simulated environments promise to be very effective (Jong, 1991), synthesis 

of research in this area will be of particular interest.  

The proposed three study format aimed at researching different domains of 

mathematical cognition is internally linked. Its inductive sequencing, from comprising 

and analyzing general visualization techniques to more detailed analysis of their 

applications, is purposeful. It is intended to lead to providing recommendations on what 

type of visualization increases students’ achievement and how to organize math lesson 

cycles and develop their content so that students’ understanding of math concepts as 

mediated through the quality of their problem-solving techniques is improved. All three 

studies follow different yet domain-coherent theoretical frameworks that guide the 

studies and direct examination of their constructs.  

The following chart flow (see Figure 1) illustrates the sequencing of the 

manuscripts and  the structure of the dissertation. 
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Constituted by the three components, the dissertation will solidify through a 

common theme—how and why exploratory environments enhance understanding of 

mathematics concepts—and will attempt to reveal constructs that should be propagated 

in school practice and lead further investigations in this domain. The benefits for the 

learners, and teachers, and the curriculum policy makers of identifying such contracts 

are far-reaching; they are to: (a) help with organizing instructions, and (b) help the 

learners more effectively comprehend abstract math concepts and apply these concepts 

to other disciplines. The theoretical framework accompanying each article will guide the 

synthesis of previous research findings and support the formulation of the current study 

research objectives. Due to its substantial reference to math curriculum content design, 

this study might be of interest to mathematics teachers, curriculum developers, software 

math programmers, and other stakeholders who are involved in mathematics curriculum 

development and  who are concerned about improving school mathematics teaching and 

learning. 
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CHAPTER II  

THE EFFECTS OF USING REPRESENTATIONS IN ELEMENTARY 

MATHEMATICS: META-ANALYSIS AND SYNTHESIS OF REASERCH 

 

Introduction 

This study provides a synthesis of global research conducted over the past 12 

years on using representations to support the learning of mathematics concepts in Pre-K 

through Grade 5. The purpose of this study was to determine a general effect size of 

using representations in Pre-K through Grade 5 math classes and to learn about students’ 

progress in learning from using representations. A total of 22 primary studies 

encompassing 2448 subjects were analyzed.  In order to reflect more accurately on the 

research objectives, the pool of studies was divided into a meta-analysis of 13 primary 

research studies, which provided necessary statistical quantities to calculate the mean 

effect size, and 9 comparative studies, which were used to formulate general conclusions 

about how students progress and advance their skills in applying representations. The 

weighted mean effect size for the 13 primary studies (13 effect sizes) was reported to be 

ES = 0.53 (SE = 0.05). A 95% confidence interval around the overall mean—Clower = 

0.42 and Cupper = 0.63— proved its statistical significance and its relative precision. The 

calculated effect size signifies strong, robust support for use of representations in Pre-K 

through Grade 5 mathematics classes. The findings of 9 comparative studies enhanced 

the study findings by shedding more light on the conceptual interpretations of the 

representations and teachers’ role during lessons where representations are implemented. 
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Discussion of some of the representations, called schemata, and their conceptual 

alignment with high school math and science equivalent structures concludes this study. 

Multiple researchers (e.g., Hoffler & Leutner, 2007; Mayer & Anderson, 1992) 

have determined that people learn more deeply from words supported by graphics than 

from words alone. This finding corresponds to the modern view on mathematical 

learning, which claims that utilizing multiple representations that make connections 

between abstract, graphical, symbolic, and verbal descriptions of mathematical 

relationships during teaching and learning will empower and simultaneously help 

students develop a deeper understanding of mathematical relationships and concepts 

(Kaput, 1989; National Council of Teachers of Mathematics [NCTM], 2000; Porzio, 

1999).  

Representations, especially their graphical forms, can also be perceived as 

learning experiences that are transmitted to the learner by pictorial media (Clark & 

Mayer, 2011). As such, they help the learner identify meaningful pieces of information 

and link the information with the learner’s prior experience. Although the constructs of 

using diverse forms of representations to enhance the development of mathematical 

concepts and problem-solving techniques at the elementary school level has been widely 

researched (e.g., Jitendra, Star, Rodriguez, Lindell, & Someki, 2011; Van Oers, 1998; 

Weber-Russell & LeBlanc, 2004), a formal meta-analysis in this domain could not be 

located using standard library search engines. Since students’ early experiences with the 

content of mathematics have a tremendous impact on their further engagement and 

success in the subject (Dienes, 1971), this study emerged to fill in the gap and to 

http://www.tandfonline.com.lib-ezproxy.tamu.edu:2048/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Van+Oers%2C+B.)
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contribute to enriching the research on using representations in elementary school 

mathematics. 

Theoretical Background 

Representations and Constructivist Learning Theory  

The strengths of the knowledge delivered by means of representations are 

supported by one of the leading learning theories, the constructivist theory, which is 

strongly advocated by Kant, Dewey, and von Glasserfield (Merrill, 1991). Dienes (1971) 

concluded that students’ learning of mathematics concepts can be optimized by using a 

variety of representations. Clark and Mayer (2011) suggested that knowledge acquisition 

is based on the following principles of learning: (a) dual channel—people have separate 

channels for processing visual/pictorial material and auditory/verbal material; (b) limited 

capacity—people can actively process only a few pieces of information in each channel 

at one time; and (c) active processing—learning occurs when people engage in 

appropriate cognitive processing such as attending to relevant material and organizing 

the material into a coherent structure. The principles of learning reflect on how 

knowledge is stored and retrieved from learners’ memory.  Shepard (1967) showed that 

memory created by pictures is retained much longer by a learner than the memory of 

spoken words. Shepard’s findings support the theory of human cognitive architecture 

(Paas, Renkl, & Sweller, 2003), which states that the most crucial structures affecting the 

rate of information processing are working memory and long-term memory. Human 

working memory has a limited capacity as oppose to long-term memory whose capacity 

is unlimited (Kintch, 1998). In order for the information to be stored in a learner’s long-
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term memory, it needs to be processed initially through its working stage. Being 

presented with a dose of complex information, the learner might feel overwhelmed, 

which can result in the information not being fully processed. This state will 

consequently block the information from reaching the learner’s long-term memory, and 

prevent it from being learned and accumulated. The primary goal of using 

representations is to convert the information to a visual form and to transmit it to the 

learner’s visual channel. The cognitive weight of the information is not reduced though, 

but it is converted to a different and an easier accessible format. This process, according 

to human cognitive architecture (Shepard, 1967), reduces the need for high working 

memory capacity and allows the information to be accumulated in the learner’s long-

term memory. Thus, the virtue of using representations lies in their capacity to present 

the knowledge in conveyable graphical embodiments supported by verbal elaborations 

rather than vice versa.  Such knowledge presentation creates appealing conditions for not 

only being accumulated, but also longer retained, and accessible for a further usage. 

Thus developing effective visual representations plays a significant role in learners’ rate 

of math knowledge acquisition and their potential to apply the knowledge in other 

subjects. 

Representations in Mathematics 

Broadly defined representations are passive entities. Due to learner’s active 

engagement, they are transformed into active semiotic resources (Thomas, Yoon, & 

Dreyfus, 2009) and can be stored in a learner’s long-term memory. Knowledge 

externalized by graphics can be easily accessible for analysis and can be readily 
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exhibited and communicated (Ozgun-Koca, 1998; Zhang, 1997). Representations as a 

means by which individuals make sense of situations (Kaput & Roschelle, 1997) can be 

expressed in forms of combinations of written information on paper, physical objects, or 

a carefully constructed arrangement of thoughts. Monk (2003) noticed that 

representations can be used to explore aspects of a context that might otherwise not be 

apparent to a learner; thus they amplify properties of mathematical structures not easily 

imaginable.  In the process of knowledge accumulation, representations are converted 

into internal images. Mediated by the level of entry into learners’ memory system, Kaput 

(1989) categorized representations as external or internal. Both types of representations 

are interrelated in the sense that the meaning of internal representations stored in a 

learner’s long-term memory strongly depends on the learner’s perception of its external 

counterpart. The following sections will provide more details on specificities of each 

type of representation along with elaboration on their mutual relations. 

External representations encompass physically embodied, observable 

configurations—such as pictures, concrete materials, tables, equations, diagrams, and 

drawings of one-, two-, or three-dimensional figures (Kaput, 1989)—or various forms of 

schemata (Jitendra, Griffin, McGoey, Gardill, Bhat, & Riley, 1998). All of these 

embodiments can be provided in the forms of drawings, or digitalized by computer 

programs. They can also be generated by the instructor as he/she introduces the 

representations to the learners. External representations encompass also dynamic 

graphics which are generated with the help of technology, for example, graphing 

calculators or computer-based simulations (Goldin & Shteingold, 2001).  



12 
 

The advantage of external dynamic representations is rooted in the feature that 

they can explicate more clearly the dependence between isolated variables. Being able to 

observe how a change of one variable affects the change of the other can help with 

mathematization of their mutual relations. Modern technology provides multiple 

advantages of exploring these features (Blum, Galbraith, Henn, & Niss, 2007). Being 

able to produce representations plays also an important role in deriving new theories; 

major scientists made their discoveries by carefully selecting representations and 

analyzing their properties, or by inventing new representations (Cheng, 1999). Thus one 

can hypothesize that having the ability to convert verbal information into its different 

format; diagram, graph or algebraic function can help with other subjects’ understanding 

that utilizes quantification processes. 

Developing students’ skills of converting verbal contexts into external graphical 

representations and using the representations to contextualize math concepts has proven 

to be beneficial for the students. While learning or constructing mathematical structures 

involves not only manipulating mathematical symbols but also identifying relationships 

and interpreting the relationships, graphical representations, especially their dynamic 

embodiments have a great potential to help students with learning these processes. 

According to National Research Council (2000), representation can also encompass 

clarification of problems, deduction of consequences, and development of appropriate 

tools. Thus exploring these capacities and making them available to mathematics school 

learning seem to be a worthy undertaking.  As Eisenberg and Dreyfus (1991) noted, 

students might end up with an incorrect solution if their algebraic skills are not strong 
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even though their reasoning might be correct. However, if the learner possesses the skills 

of graphically solving the problem or support its solution process, the graphed 

representation might serve as a backup or a way of solution verification. Being exposed 

to mathematical representations, the learners “acquire a set of tools that significantly 

expand their capacity to model and interpret physical, social, and mathematical 

phenomena” (NCTM, 2000, p. 4). Identifying meaningful representations that are 

attractive and conveyable to elementary mathematics students appears to have a 

profound impact on their mathematics education and interest in studying this subject. 

 Internal representations encompass mental images corresponding to internal 

formulations of what human beings perceive through their senses. Internal 

representations cannot be directly observed. They are defined as the knowledge stored in 

learner’s long-term memory (Zhang, 1997). Internal representations are formulated 

based on one’s interaction with the environment (external representations) and are 

altered throughout a lifespan. In the process of learning, external representations prompt 

the emergence of internal representations. Being able to formulate concepts’ internal 

representations through the process of understanding their external embodiments and 

retrieve the mental pictures plays an essential role in communicating messages in 

mathematics. The extent to which the internal representations solidify determines the 

rate learner understands the concept or idea. In this vein, Hiebert and Carpenter (1992) 

maintained that there exists a strong relationship between external and internal 

representations created by learners, and that the strength of linkage these representations 

determines students understanding. Internal representations of the knowledge 
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accumulated through experiencing visual representations is more efficiently stored and 

retrieved from a learner’s long-term memory. Von Glasersfeld (1990) suggested that the 

environment is construed by one’s internal representations, while Perkins and Unger 

(1994) stated, “Mental maps or mental models or other sorts of mental representations 

mediate what we would call understanding performances” (p. 4). Projected through this 

postulates, the concept of internal representations asserts knowledge considered as a 

body dependent on a learner’s own experiences. Enabling these experiences by engaging 

and intellectually stimulating learners through carefully designed learning environments 

deems to be a significant factor in nurturing effective learning.  

Challenges of Inducing Representations in Pre-K through Grade 5   

The effect of using representations is not new to mathematics education community. 

However it has recently attracted more attention due being supported by constructivist 

learning theorem that leads contemporary research in education (Cuoco, 2001). By 

treating mathematical concepts as objects, thus by embodying them with observable 

representations, a construction of mental pictures in the minds of the students can evoke 

(Dubinski, 1991). Such constructed mental pictures are stored in students’ long term 

memory and are being available for retrieval. Research (Zaskis & Liljedahl, 2004) 

suggests that one of the ways to induce the process of converting concepts to objects is 

act on them or to manipulate on them. Thus having students construct a representation, 

for example, of a ratio of an area of an inscribed circle in a square to the area of the 

square, should help students with a proportionality constant formulation. Researchers 

(e.g., Sfard, 1991) concluded that the process of transferring abstract mathematical 
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concepts into their mental images is challenging for the learner and also for the 

instructor who is to guide the learner with the transferring processes. What are the 

challenges faced by elementary school children to embody mathematical structures into 

visual representations? The following is a discussion of some of them. 

Algebraic equations and their conceptualization are frequently investigated in K-

5 mathematics research. Swafford and Langrall (2000) noted that students generally can 

make use of various representations and they can identify patterns between isolated 

variables, but they cannot find consistency along a larger set of variables along with 

generalizing the patterns and converting them into algebraic forms. Bruner (1961) 

suggested three learning phases for problem solving: (a) the enactive, (b) the iconic and 

(c) the symbolic with representations serving as a mediator between there three levels of 

learning. Dreyfus (1991) suggested another learning phases with representations: (a) 

using one representation, (b) using more than one representation, (c) making links 

between parallel representations, and (d) integrating the representations. Although the 

inductive way of utilizing representations proposed by Dreyfus (1991) should lead to 

generalization, not much is said about principle identification that would direct the 

learner to selecting a correct mathematical representation. More recently English and 

Walters (2005) proposed introducing mathematical modeling to elementary math school 

learning as a way to support students’ skills of problem solving techniques. They 

proposed a shift of attention from representations to conceptual analysis of the variables 

of the problem and then searching for representations that would mathematize 

formulated dependence. In a congruent view, Terwel, van Oers, van Dijk, & van den 
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Eeden (2009) claimed that representations appear to be more general, overarching 

concepts from cognitive psychology, while model is a more domain - specific term. This 

position is aligned with our perspective on the relation between a representation and a 

model. Representations, at the elementary school level, encompass general structures 

used in mathematics thus ratio, rate, percent or newly developed schemata for problem 

solving. Models depict — using mathematical representations—real quantifiable events. 

Viewed through this prism, pinpointing and understanding the principle embedded in a 

given problem act as catalysts of selecting correct representation which consequently 

provides a gateway for students’ correct model formulation. According to Swafford et 

al., (2000), the emphasis in the curriculum at the prealgebra level should be on 

developing and linking multiple representations to generalize problem situations. They 

concluded that the lack of generalization skills is rooted in instruction focusing on 

reaching only the initial stages of problem analysis and leaving the process of 

generalization for the students to formulate.  

The process of symbolically expressing problem patterns is difficult and it might 

be out of students’ reach if a prior learning of such techniques did not take place. A 

similar conclusion was formulated by Deliyianni, Monoyiou, Elia, Georgiou, & 

Zannettou (2009) who observed that first graders restricted themselves to providing 

unique solutions even though the questions required a general patter formulation. They 

further suggested that seeking unique solutions to a problem is students’ habit based on 

their previous experience, thus a place in the math curriculum should be found and an 

effort should be made to create such learning environments that would broaden students’ 
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perspective on problem solving by including more tasks on generalization. Other 

researchers (e.g., Kieren, 1984; Lesh & Harel, 2003) have shown that elementary school 

children bring powerful intuitions and sense-making tool, yet mediating these intuitions 

with abstract math concepts to embody these concepts into representations is a challenge 

still facing the math research community. The benefits of identifying and using the 

constructs that enable learners to effectively transfer abstract mathematics concepts into 

meaningful internal representations are limitless. It seems that a design of sound 

instructional techniques to support the processes is still being researched and developed.  

The formulated theoretical framework will guide the synthesis of previous 

research findings and support the current study research objectives. 

Synthesis of Prior Research 
 

As the constructivist theory strongly supports the use of representations in the 

learning process, several research studies have been undertaken to explore the effects of 

using representations on students’ math concepts understanding. These results converge 

with contemporary theories of cognitive load and multimedia learning principles 

developed by Clark and Mayer (2011) and have practical implications for math 

instructional designs. A meta-analysis of 35 independent experimental studies conducted 

by Haas (2005) shed light on using representations as a means of supporting teaching 

methods at the secondary school level. Haas concluded that math instruction supported 

by multiple representations, manipulatives, and models produced a high (ES = 0.75) 

effect size. Schemas, which are defined as generalized representations that link two or 

more concepts (Gick & Holyoak, 1983), are frequently being researched at the Pre-K 
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through fifth-grade level. For example, Jitendra and colleagues (1998) found that having 

students of Grades 2-6 categorize problems and then having them solve the problems by 

using schemas produced a positive medium size learning effect (ES = 0.45). The virtue 

of using representations embodied by schemas is that they are easily converted by 

learners into internal representations, and, as such, they can be stored in long-term 

memory and allow treating diverse elements of information in terms of larger, more 

general units (Kalyuga, 2006). According to Pape and Tchoshanov (2001), schematic 

representations also lead to enhanced student problem-solving performance.  

Another group of researchers investigated whether representations should be 

provided to students or if the students should be the producers of representations (e.g., 

De Bock, Verschaffel, Janssens, Van Dooren, & Claes, 2003; Rosenshine, Meister, & 

Chapman, 1996). These scholars concluded that if representations are provided, their 

forms must be sufficiently informative and detailed to be transferrable by students into 

mathematical algorithms. They also emphasized that having students construct their own 

representations benefits the learners the most. The importance of possessing the ability 

to transfer a given context (e.g., a story problem) into a representation was highlighted 

by Jonassen (2003), who claimed that successful problem solving requires the 

comprehension of relevant textual information along with the capacity to visualize that 

data and transfer the data into a conceptual model. Following Riley, Greeno, & Heller 

(1983) developing students’ abilities to identify the matching representation that helps 

with problem conceptual understanding should emerge as a priority of elementary 

mathematics teaching.  
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Representations are also used to support the introduction of new mathematics 

concepts. For example, several studies (e.g., Corwin, Russell, & Tierney, 1990; Tzur, 

1999) were conducted on the development of students’ notations of fractional parts of 

areas, called  fair sharing, which provided a meaningful representation of dividing a 

whole into parts that were then easily comprehended by elementary students. Hiebert 

(1988) noted that students’ understanding of new ideas strongly depends on the degree to 

which the learners are engaged in investigating the relations between new 

representations and the representations whose understanding is already mastered. A 

study conducted by Ross and Willson (2012) not only supported the claim that math 

students learn more effectively when instruction focuses on using representations, but 

moreover, they proved that the most effective strategies for building representations are 

these rooted in constructivist learning theorem. The range of using representations in 

Pre-K through fifth grade is wide; thus, synthesizing the experimental research findings 

and identifying the most effective strategies manifests as a worthy undertaking. 

Research Methods 

Based on prior research, a hypothesis for this study emerged, suggesting that 

using representations in mathematics classes helps students comprehend abstract 

concepts and enhances the skills of the concepts’ applications. Understanding the degree 

to which representations help learners with understanding the different mathematics 

entities as compared to traditional methods of instruction emerged as the main objective 

of this study. 
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Research Questions 

The following research questions guided this study:   

1. What are the magnitude and direction of the learning effect sizes of using 

representations in Pre-K through fifth-grade mathematics when compared to 

traditional teaching methods?  

2. Do the magnitudes of effect sizes of applying representations in Pre-K through 

Grade 5 differ across the main modes of their classroom induction—concept 

introduction and problem solving? 

3. What are the possible moderators that affect students’ achievements when 

representations are used?  

Meta – analysis with its quantitative methods providing means to computing the mean 

effect size as well as of applying subgroup moderator analysis will be used to quantify 

the research findings. Yet, there are other questions of a qualitative nature that the 

current study will also attempt to answer though the analysis of the available 

comparative studies.  

1. How can the learner be assisted with making a connection between abstract 

mathematical symbolism and its embodied representation? How the complexity 

of representation should evolved as students’ progress with their schooling?   

2. What are the main mathematical domains, at elementary level, where 

representations are used? Are these representations induced in a manner 

consistent with definitions that they use in high school math classes? 
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It is hoped that the answers to these questions will advance the knowledge of using 

representations and help students improve their math understanding.  

 Data Collection Procedure 

This synthesis sought to encompass the past 12 years of global research on using 

representations in Pre-K through fifth-grade mathematics, with student groups ranging in 

age from 3 to 12, in both public and private schools, with a minimum sample size of 15 

participants. The primary intention of this undertaking was to analyze only peer-

reviewed experimental research that included treatment and control groups with 

associated quantifications, as described by Lipsey and Wilson (2001). However, because 

researchers found a valuable pool of comparative studies, the study scope was expanded 

to include a synthesis of findings of these studies as well. This modification was 

employed to enhance the general inferences and strengthen the study generalizability. In 

the process of collecting the applicable research, ERIC (Ebsco), Educational Full Text 

(Wilson), Professional Development Collection, and ProQuest Educational Journals, as 

well as Science Direct, Google Scholar, and other resources available through the 

university library were used to identify relevant studies published between January 1, 

2000, and December 31, 2012. In the process of extracting the relevant literature, 

researchers searched for the following terms: graphical representations, mathematics 

education, primary, students, and research. In order to broaden the search criteria, we 

also used the terms graphics, visualization, and problem solving. Such defined criteria 

returned 131 papers, out of which 13 satisfied the conditions for meta-analysis (13 effect 
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sizes) and 9 represented comparative studies that analyzed the effects of using 

representations in the functions of group age or group levels.  

Coding Study Features   

The main construct under investigation was the learning effect of using 

representations in Pre-K through fifth-grade mathematics classes. While some of the 

characteristics, for example, year of study conduct, locale or type of research design 

were extracted to support the study reliability, some, like grade level or intervention 

type, were extracted to seek possible mediators. Following are the descriptions of these 

features. These features were further aggregated to apply a subgroup moderator analysis. 

Grade. This variable described the grade level of the group under investigation 

and referred to groups ranging from kindergarten to Grade 5. 

Descriptive parameters. Descriptive parameters encompassed the locale where 

the studies were conducted, the date of publication, and the sample size representing the 

total number of subjects under investigation in experimental and control groups. 

Publication bias. All studies included in this synthesis were peer-reviewed and 

published as journal articles, thus no additional category for publication was created. 

Group assignment. This categorization refers to the mode that was used to 

select and assign research participants to treatment and controlled groups. Two main 

groups were identified: (a) randomized, where the participants were randomly selected 

and assigned to the treatment and control group; and (b) quasi-experimental, where the 

participants were assigned by administrator selection. This categorization is aligned with 

Shadish, Cook, and Campbell (2002) definitions of group assignment. 
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Type of research design. Two types of research design were synthesized in this 

study: a pretest-posttest experimental study with a control group, and comparative 

studies. The two types of research were analyzed separately.  

Intervention. The intervention (treatment approach) was classified into four 

categories reflecting the type of representations used in Pre-K through fifth-grade 

mathematics as defined by Swing, Stoiber, and Peterson (1988) and Xin and Jitendra 

(1999): (a) pictorial (e.g., diagramming); (b) concrete (e.g., manipulatives); (c) mapping 

instruction (e.g., schema based); and (d) other (e.g., storytelling, key word). 

Output assessment measure. This variable described assessment instrument and 

indicates whether the assessment was developed by the researcher or was standardized.  

Data Analysis 

General Study Characteristics 

The summaries of the studies characteristics extracted from the pool of 

experimental pretest-posttest studies is presented in the Table1. 

  

Table 1  

Tabularization of Experimental Pretest-Posttest Studies Features 

Authors Date Locale 
 

RD SS GL Intervention 
Representation Type 

Alibali,  
Phillips, & Fischer 

2009 USA QE 91 
 

4th (38)  
3rd (53) 
 

Pictorial 

Van Oers 
  

2010 The 
Netherlands 
 

QE 239  4th     Pictorial 

Poland, Van Oers, & 
Terwel  

2009 The 
Netherlands 

QE 54 2nd Schemata based 
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Table 1 continued 

Authors Date Locale 
 

RD SS GL Intervention 
Representation Type 

 
Xin, Zhang,  Park, 
Tom, Whipple, & Si 

 
2011 

 
USA 

 
QE 

 
27                        

 
4th                        

 
Schemata based 

 
Booth & Siegler 

 
2008 

 
USA 

 
R 

 
52 

 
1st 

 
Pictorial 

 
Csikos,  Szitányi, & 
Kelemen 

 
2012 

 
Hungary 

 
QE 

 
244 

 
3rd 

 
Pictorial  

 
Gamo, Sander, & 
Richard  

 
2010 

 
France 

 
QE 

 
261 
 

 
4th/ 
 5th 

 
Schemata based 

 
Terwel, Van Oers, 
Van Dijk, & 
Van den Eeden 

 
2009 

 
The 
Netherlands                                                    

 
R 
 

 
238 

 
5th 

 
Pictorial 

 
Casey, Erkut, 
Ceder, & Young 

 
2008 

 
USA 

 
QE 

  
76 

 
Pre-K  

 
Other (storytelling) 

 
Jitendra, 
Griffin, Haria, 
Leh, Adams, & 
Kaduvettoor 

 
2007 

 
USA 

 
QE 

 
88   

 
3rd   

 
Schemata based 

 
Fuchs, Fuchs, 
Finelli, Courney, & 
Hamlett 

 
2004 

 
USA 

 
R 
 

 
436 
 

 
3rd 
 

 
Schemata based 

 
Saxe, Taylor, 
McIntosh, & 
Gearhart  

 
2005 

 
USA 

 
QE 

 
84 

 

 
4th and 
5th 

 

 
Pictorial 

 
Fujimura  

 
2001 

 
Japan 

 
R 
 

 
51 

 
4th 

 
Concrete 

Note. SS = sample size, GL = grade level, RD = research design, QE = quasi-experimental, R = randomized 

 

The data revealed that there is substantial diversity in the representations used in 

elementary mathematics classes that ranges from schemas supporting problem solving to 

storytelling supporting operations on fractions. Majority of the studies 9 (69%) were 

quasi-experimental and 4 (31%) were randomized. Grade wise, a dominated group of 6 
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studies was represented by fourth grade. Because in K-12 math education, problem 

solving dominates the math learning objectives, how representations help students 

improve their  problem solving techniques emerged as a possible subgroup to be 

analyzed. Table 2 summarizes the main features of the comparative studies whose 

findings were also synthesized in this research. 

 

Table 2  

Tabularization of Comparative Studies 

Authors Date Locale RD SS Grade Cognitive Domain/Strategy Applied 

Deliyianni, 
Monoyiou, 
Elia, 
Georgiou, & 
Zannettou 
 

2009 Cyprus QE 

 

38 
34 

 

K 
1st 

 

Addition and subtraction; compared 
kindergarteners and Grade 1 students’ 
representations on problem solving. 

Castle & 
Needham 

2007 USA QE 

 

16 1st Measurements; investigated students’ 
change of analyzing objects’ dimensions 
given by different representations. 

Coquin-
Viennot & 
Moreau  

2007 France R 44 
46 

3rd 
4th 

Solving problems; compared 
mathematical models to qualitative 
representations. 

Coquin-
Viennot & 
Moreau  
 

2003 France QE 
 
 

91 3rd 
5th 

Arithmetic; compared how students 
choose between qualitative analysis and 
schema models while solving arithmetic 
problems. 
 

Yuzawa, 
Bart, 
Yuzawa, & 
Junko 

2005 Japan QE 69 
 

Pre-K 
1st 

Geometry; investigated how children 
compared figures areas given by their 
various relative positions. 
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Table 2 continued 

Authors Date Locale RD SS Grade Cognitive Domain/Strategy Applied 

 
David & 
Tomaz 

 
2012 

 
Brazil 

 
QE 

 
25 

 
 

 
5th 

 
Geometry; examined how various 
representations become subjects of an 
activity. 

 
Rittle-
Johnson, 
Siegler, & 
Alibali 

  
2001 
 

 
USA 

 
R 
 

 
74 

 
6th 
7th 

 
Decimals; reviewed how correct problem 
representations (number line) mediate 
relations between conceptual and 
procedural knowledge. 

 
McNeil & 
Alibali 
 

 
2004 

 
USA 

 
R 
 

 

 
70 

 

 
4th 

 
Equation evaluation; looked at how 
students distinguish different 
representations in which the equation sign 
is used. 

 
Moseley & 
Okamoto 

 
2008 

 
USA 

 
QE 

 
91 

 

 
4th 

 
Fractions and decimals; examined how 
students understand rational number 
representations. 

Note. RD = research design, QE = quasi - experimental, R= randomized, SS = sample size. 

 

The data analysis in this study consisted of three parts. First, descriptive analysis 

was applied to the entire pool of 22 studies to identify general trends.  Next, a meta-

analysis of 13 experimental pretest-posttest studies was conducted. The third and final 

part of the analysis examined the findings of the 9 comparative studies. 

Descriptive Analysis 

The pool of experimental studies generated data collected from 1,941 elementary 

school students (see Table 1), while the comparative studies collected data from 507 

elementary students (see Table 2). The majority of the studies (15, or 68%) were 

supported by a quasi-experimental design, and 7 (or 32%) were randomized.  
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Cognitive domains ranged from the theory of solving equations, to algorithms for 

operations on fractions, and geometry shape analysis.  

The data were further categorized the data by the year of research conduct and 

the locale where the studies were conducted. Table 3 displays the frequencies of the 

studies by publication date, showing the number of studies conducted globally between 

January 2000 and December 2012 and published in peer-reviewed journals in the 

English language. A substantial number of these studies (15, or 68%) were conducted 

within the past 5 years. This result signifies increasing interests in using representations 

in mathematics teaching and learning on a global scale. 

 

Table 3 

Descriptive Analysis of Date of Study Publication 

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Study  
Count  
Percent 

2 

  9% 

0 

0% 

1 

5% 

2 

9% 

2 

9% 

0 

0% 

3 

14% 

3 

14% 

4 

18% 

2 

9% 

1 

5% 

2 

9% 

 

 

Table 4 illustrates the locales where the studies were conducted. As the table 

indicates, the idea of inducing representations for embodying mathematics concepts and 

processes in Pre-K through Grade 5 has a multinational range. However, the majority of 

the studies were conducted in North America (50%), followed by European countries 

(36%). 
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Table 4 

Descriptive Analysis of the Reviewed Studies by Locale 

Country 
 

Cyprus Brazil France Hungary    Japan The Netherlands USA 

Study Count 
 

Percent 

1 
 

5% 

1 
 

5% 

3 
 

13% 

1 
 

5% 

2 
 

9% 

3 
 

13% 

11 
 

50% 
 

 

Meta-Analysis of Pretest-Posttest Experimental Studies 

The Mean Effect Size and Significance  

Quantitative inferential analysis in the form of a meta-analysis was performed on 

pretest-posttest experimental studies. In order for the meta-analytic methods to be 

applied, the responses for the experimental studies were standardized, and the accuracy 

of the effect sizes was then improved by applying Hedges formula, which eliminated 

sampling bias (Lipsey & Wilson, 2001). The overall weighted mean effect size for the 

13 primary studies (13 effect sizes) was reported to have a magnitude of 0.53 (SE = 

0.05) and positive direction. A 95% confidence interval around the overall mean—Clower 

= 0.42 and Cupper = 0.63—which does not include zero, proved its statistical significance 

and its relative precision (Hunter & Schmidt, 1990). According to Lipsey and Wilson 

(2001), the effect of 0.53 is reported as being of a medium size. Its magnitude along with 

its positive direction indicated that the score of an average student in the experimental 

groups was 0.53 of standard deviation above the score of an average student in the 

control groups. By incorporating the U3 Effect Size Matrix (Cooper, 2010), the average 

pupil who was taught mathematics structures using representations scored higher on unit 
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tests than 70% of students who were taught by traditional methods. Thus, it can be 

deduced that using representations in the teaching of mathematics, as a medium 

supporting instruction, has a profound impact on students’ math concept understanding 

when compared to conventional methods of teaching. Therefore, contextualizing math 

ideas and letting students embed math operations in contexts meaningful to them has a 

positive effect on storing the ideas in their long-term memory. The following table 

provides summaries of individual effect sizes of the meta-analyzed studies along with 

confidence intervals and qualitative research findings. 

 

Table 5  

Effect Sizes of Using Representations in Pre-K through Grade 5 

Study  
(First 
Author)   

 
ES   

   
SE 

     95% CI 
Lower  Upper 

 
Research Findings 

 
Source of  
Assessment 

Alibali 
(2009)             

0.92             0.22 0.19          1.05 Strategy of representing the process 
of equalizing equations improved 
problem representation techniques.  
 

 
Researcher 
designed 
 

 
Van Oers 
(2010)         

 
0.23             

 
0.13 

 
0.36          

 
0.89 

 
Children improved fraction 
understanding when they were 
allowed to construct own 
representations guided by the 
teacher.  

 
Researcher 
designed 

 
Poland 
(2009)                
 

 
1.22                        

 
0.29 

 
0.04          

 
1.22 

 
Introducing dynamic schematizing 
improved understanding of the 
concept of process during problem 
solving. 

 
Researcher-created 
schematizing  test 
 

 
Xin 
(2011)                  

 
0.60            

 
0.39 

 
-0.19         

 
1.44 

 
Conceptual representations helped 
students learn the process of problem 
solving. 

 
Used textbook  
items adopted by 
the  districts 
Cronbach’s  alpha 
= 0.70 
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Table 5 continued 

Study  
(First 
Author)   

 
ES   

   
SE 

     95% CI 
 
Lower  Upper 

 
Research Findings 

 
Source of  
Assessment 

 
Booth 
(2008)              

 
0.20            

 
0.28 

 
0.05          

 
1.19 

 
Providing accurate visual 
representations of the magnitudes of 
addends and sums increased 
children’s computational skills.  

 
Wide Range 
Achievement 
Test–Expanded 
(WRAT–
Expanded) 

 
Csikos 
(2012)            

 
0.62                    

 
0.13 

 
0.36          

 
0.88 

 
Presenting word problems with 
different types of visualization (e.g., 
arrows) improved techniques of 
problem solving. 

 
Test items adopted 
from National Core 
Curriculum, 
Cronbach’s  alpha 
= 0.83 

 
Gamo 
(2010)              

 
0.61            

 
0.14 

 
0.34          

 
0.91 

 
Mapping data into graphical 
representations helped students with 
problems involving fractions. 

 
Researcher 
designed 

 
Terwel 
(2009)                                                                     

 
0.41           

 
0.13 

 
0.36           

 
0.88 

 
Having students learn to design 
representations helped them bring 
more model-based knowledge to the 
structure of mathematics problems.  

 
Researcher 
developed criteria, 
Cronbach’s alpha = 
0.76. 

 
Casey 
(2008)             
                                                           

 
2.00                   
 
 
                

 
0.31 
 
 
 

 
0.38          
 

 
2.63                        

 
Representing geometry concepts in a 
story context improved math 
knowledge retention.  
 

 
Used Kaufman-
Assessment 
Battery for 
Children (K-ABC; 
Kaufman & 
Kaufman, 1983) 

 
Jitendra 
(2007)                              
 

 
1.36 

 
0.22 

 
-0.12          

 
1.07 

 
Addition and subtraction; used 
graphics to support multiple 
representations. 
 

 
Used Pennsylvania 
System of School 
Assessment math 
test 

 
Fuchs 
(2004)               
  

 
0.22   
 
 

 
0.19 

 
0.26           
 

 
0.99 

 
Applied schema for problem solving 
improved students’ algorithmic 
outcomes.  

 
Researcher 
developed 
 

 
Saxe 
(2005)  
 

 
0.33 
 

 
0.22 
 

 
0.18           
 

 
1.07 

 
Percent: representing fraction with 
standard part-to-whole 
representations. 

 
Researcher 
developed 
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Table 5 continued 

Study  
(First 
Author)   

 
ES   

   
SE 

     95% CI 
Lower  Upper 

 
Research Findings 

 
Source of  
Assessment 

 
Fujimura 
(2001) 

 
0.71                

 
0.29 
 

 
0.05        

 
1.20      

 
Highlighting the idea physical units 
in setting the proportions improved 
students’ conceptual understanding. 
 

 
Researcher 
developed; 
interrater 
agreement 97%  
(N = 76) 

Note.  ES = effect size, SE = standard error. 

 

Calculated confidence intervals (CIs) for each effect size revealed that nine of the 

effect sizes fell within 95% confidence intervals. Homogeneity of the studies was 

verified by calculating the Q value and evaluating its statistical significance; Q = 40.86, 

df =12, p < 0.001 showed that the variability across the effect sizes was greater than 

expected from the sampling error. The researchers used Statistical Package for the Social 

Sciences (SPSS) software to visualize the position of the effect sizes as well as the 

confidence intervals for each study around the computed overall mean effect size of the 

pool of studies. Some of the means (see Figure 2) showed to be outside of the area of the 

funnel graph that was earlier anticipated by a statistical significance of the Q value. 
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Figure 2.  Funnel graph for the pretest-posttest experimental studies.  

 

The individual effect sizes of some of the studies showed to be outside of the 

confidence intervals indicating a lack of homogeneity of distributions within the pool. 

This was also depicted by the significant p-value (p < 0.001). As the purpose of a meta-

analytic study is to compute effect size (Willson, 1983), the lack of homogeneity does 

not undermine the validity of the calculated mean effect; rather, it explicates the 

characteristics of the studies, indicating that some of them originated from different 

distributions.  
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 The highest learning effect size (ES = 2.00) was generated in a study conducted 

with kindergarten pupils who were exploring the creation of verbal representations of 

geometry concepts (Casey et al., 2008). This study revealed that immersing math 

concepts in an environment that students can relate to their experiences and fantasies and 

letting students explore the links makes the math concepts tangible and results in them 

being easily stored in their long-term memories. Another study with a high effect size 

(ES = 1.22), conducted by Poland et al. (2009), investigated the impact of dynamic 

representations on kindergarten students’ math achievement. Dynamic representations 

provided more opportunities for having the learners explore their structures, thus 

generating a higher engagement factor and consequently higher learning effects. A 

positive learning effect of students’ explorations was also advocated by Lesh and Harel 

(2003), who concluded that such situated learning enhances the processes of 

mathematical modeling that play a vital role in developing students’ scientific curiosity 

and their problem-solving skills in high school and college.  

Analysis of Moderator Effects  

Experimental pretest-posttest studies were aggregated into subgroups to provide 

opportunities for computing possible moderators that reflected the research objectives. 

Where applicable, the levels within the subgroups were contrasted and inferences on 

differences were made. The following criteria were applied to formulate subgroups and 

calculate their relative effect sizes.  
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Treatment length. The treatment length classification followed a partition 

established by Xin and Jitendra (1999): (a) short—less than 1 week; (b) intermediate—

between 1 week and 1 month; and (c) long—more than 1 month. 

Mode of representation induction in the lesson cycle. This category followed 

operational roles of representations and contained two levels: concept introduction and 

problem solving.  

Grade level. Large range of grades was comprised into two levels according to 

standard classification (NCTM, 2000). The lower group level encompassed all students 

from Pre-K to Grade 3, and the upper level included Grades 4 and 5.  

Content standards. This subgroup reflected general standards mediated in the 

studies: number and operations, proportions, and geometry. The summary of the 

weighted effect sizes is presented in Table 6. 

 

Table 6  

Summary of Subgroups’ Weighted Effect Sizes 

Variable and Class N ES SE 

 

95 % CI 

          Lower                        Upper 
Grade Level   
 Lower: Pre-K through 3 

 Upper: 4-5 

 
6 
7 

 
0.60 
0.47 

 
0.08 
0.07 

 
0.45 
0.33 

 
0.76 
0.60 

Representation Type 
  Pictorial 
  Schemata based 
  Concrete 
  Other 

 
6 
5 
1 
1 
 

 
0.45 
0.49 
0.71 
2.00 

 
0.06 
0.09 
0.29 
0.31 

 
0.32 
0.31 
0.05 
1.38 

 
0.57 
0.67 
1.20 
2.63 
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Table 6 continued 

Variable and Class N ES SE 

 

95 % CI 

Lower              Upper 
Treatment Length 
   Short 
   Intermediate  
   Long 
    

 
5 
4 
4 

 
0.46 
0.53 
0.60 

 
0.07 
0.10 
0.10 

 
0.31 
0.33 
0.40 

 
0.61 
0.72 
0.80 

Content Standard 
   Numbers and operations 
   Geometry  
   Ratio and proportions 

 
10 
2 
1 

 
0.45 
1.61 
0.71 

 

 
0.06 
0.22 
0.29 

 
0.34 
0.17 
0.05 

 
0.56 
0.24 
0.20 

Mode of Induction in the 
Lesson  
   Concept introduction 
   Concept applications  

 
7 
6 

 
0.68 
0.49 

 
0.07 
0.08 

 
0.54 
0.34 

 
0.82 
0.64 

Note N = number of participants, ES = effect size, SE = standard error. 

 

The subgroup effect sizes provided a basis for answering more research 

questions. When compared by grade level, the effect of using representations was higher 

in Pre-K through Grade 3 than in Grades 4-5. This conclusion might be rooted in the fact 

that as students progress with learning math concepts, they learn more abstract semantics 

that might be difficult to embody in representations, for instance, the idea of dividing. 

Students can observe the initial and the final stage of the process, but the diversity of the 

means of dividing that is embodied by the syntax of division along with the various 

rational number representations might not be fully comprehended by young learners and 

not fully diversified by teachers. As Mosely and colleagues (2008) noted, teachers’ 

preparation and flexibility to deliver the content plays a significant role in student 

achievement. 
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When mediated by the type of representation, concrete and others produced the 

highest effect size; yet, their significance as a result of meta-analytic procedures could 

not be fully apprehended since each subgroup was represented by a single primary study. 

When pictorial representations (ES = 0.49) and schemata-based representations (ES = 

0.45) were contrasted, schemata-based representations showed a higher impact on 

student learning, which supports scholastic research (e.g., Jitendra et al., 2007; Terwel et 

al., 2009; Xin et al., 2011). Schemata-based representations are often embedded to 

support the process of problem solving. Used in this regard, they do help students with 

solving word problems. An interesting, linear relation was observed when effect sizes 

were contrasted with treatment lengths. It became apparent from this comparison that the 

longer the treatment, the higher the effect size (ES = 0.46 for short treatments, ES = 0.53 

for intermediate, and ES = 0.60 for long). This result provides support for applying 

representations in classes on a daily basis. In regards to content standards, geometry 

concept representations received the higher effect size (ES = 1.61). This result reflects 

the visual nature of content of this branch of mathematics, which by virtue is rooted in 

representations. The concluding subgroup provided an answer to how representations 

help with concept understanding and concept applications. It is apparent that 

representations help more with concept introduction (ES = 0.69) than problem solving 

(ES = 0.49). As was shown in the comparative studies, for example, Coquin-Viennot and 

Moreau (2003), once introduced to representations, students apply them successfully in 

new situations. Thus, one could conclude that supporting concept introduction with 

representations builds a strong network of impulses in students’ long-term memory. 
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Synthesis of Comparative Research Findings 

In order to provide a more complete picture of how representations affect math 

knowledge acquisition in PreK-5, an analysis of comparative studies conducted between 

2000 and 2012 was included. In all of the studies, the construct under investigation was 

the effect of using representations on students’ conceptual understanding of mathematics 

ideas and their computational skills in Pre-K through fifth-grade math classes. Table 7 

summarizes the qualitative research findings of this pool of studies.  

 

Table 7  

Synthesis of Comparative Study Findings 

Study (First 
Author) 

Research Findings/Recommendations 

 
Deliyianni 
(2009) 
 

 
First-grade students have the ability to obey and apply the didactical contract rule 
to supply their graphical representations to solve problems.  
 

 
Castle  
(2007) 

 
More emphasis should be given to meanings of measurements along with 
conservations on numbers and length. 

 
Coquin-Viennot  
(2007) 

 
More emphasis should be given to teaching students to identify correct 
mathematical representation of problem modeling. 

 
Coquin-Viennot  
(2003) 

 
Students chose schemas to solve problems if the schemas are available to them.  
Yet, teachers should avoid moving too quickly from the text to problem models. 

 
Yuzawa 
(2005) 
 

 
Children should learn diverse ways of comparing areas (e.g., adjusting sizes). This 
will improve their problem-solving strategies and appreciation for math 
sophistication. 

 
David 
(2012) 

 
Representing (drawing) figures should be the subject of class activities. Letting 
students explore diverse ways of area calculations increases their motivations. 
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Table 7 continued 

Study (First 
Author) 

Research Findings/Recommendations 

 
Rittle-Johnson 
(2001)                                                    

 
Experimentally manipulating students’ correct problem representations improves 
their procedural knowledge and conceptual knowledge that develop iteratively.  

 
McNeil (2004) 

 
Correctly encoded problem structure representation (equation or evaluation) affects 
students’ choice of applied action to solve the problem. 

 
Moseley (2008)              

 
More emphasis should be given to providing students with multiple representations 
of rational numbers.  

 

 

The objectives of the majority of the comparative studies were to determine how 

students’ ability to use representations helped them with understanding of math concepts 

when compared across various grades or ability levels. Cognitively, the studies could be 

categorized into two major groups: those that investigated the development of geometry 

(e.g., Castle & Needham, 2007; David & Tomaz, 2012), and those that investigated the 

use of schemas in problem solving (e.g., Deliyianni et al., 2009). Implementing 

representations to enhance teaching of these two domains along with a discussion of 

instructional support emerged as themes for a further discussion that follows. 

Schemata and Solving Problems 

Several researchers concluded that once children are exposed to certain 

representations— for instance, schematic representations to solve problems—they retain 

those methods and apply the schemas in their next math courses (Coquin-Viennot & 

Moreau, 2003). Thus, one can infer that the schematic representations are accessible to 

children’s realities and that possessing the internal representations of problem-solving 
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schemata seems to appeal to students. Yet, as some scholars noted (e.g., Castle & 

Needham, 2007), this idea cannot be overemphasized: children also need some working 

space to analyze problems and devise their own ways to solve the problems with the 

support of provided schemata. Thus, schemata should be perceived as suggestions for 

mathematization of certain patterns, not as fixed formulas to use. It seems that more 

research should focus on the type of inquiry methods that students should apply to 

determine the principles embedded in a given word problem.  

Carpenter and Moser (1984) proposed four semantic categories for arithmetical 

operations: change, combine, compare, and equalize. It is apparent that applying these 

schemas to model story problems allows certain flexibility. For example, in some cases 

equalize can be perceived as compare, or compare can include combine. There can be 

cases when two or more schemata can be used in succession. For example, in order to 

compare items or properties, students might need to combine them first. Thus, certain 

degree of flexibility in applying these schemas should be allowed. However, it seems 

that the primary meaning of each schema should be consistently executed to allow 

solidifications of these meanings in the learners’ long-term memories.  

Jitendra and colleagues (2007) proposed the following word problem: Music 

Mania sold 56 CDs last week. It sold 29 fewer CDs last week than this week. How many 

CDs did it sell this week? This problem was intended to support the schema of compare. 

There is a merit of using compare in this problem, but is the schema compare the most 

representative to mathematize the process of selling the CDs? Since the problem 
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involves two events happening at two different time instants referring to congruent 

objects, then can the learner be directed to finding rather the difference?  

Thus, would change better describe the process and elicit its solution? It seems 

that referring students to compare gears their thinking toward the output of the problem, 

not toward the process or principle that was the cause of reaching the process output. By 

directing students’ attention to the problem output, the phase of problem analysis is 

significantly reduced. Considering the definition of change as Change = Final value – 

Initial value, and solving for Change, one will receive Change = This week’s sales - Last 

week’s sales. Substituting the given values results in 29 = This week’s sales – 56, which 

leads further to This week’s sales to be 85 CD.  With the implementation of change, the 

representation involved negative numbers that perhaps were not intended in Jitendra’s 

study. Thus to further discuss applicability of this problem to Grade 3 math curriculum, 

the problem needs to be redesigned. Another example, discussed by Marshall (1995), 

illustrates how the schema change is proposed to be induced (see Figure 3). The idea of 

using change is proposed to solve the following word problem: Jane had 4 video games. 

Then her mother gave her 3 video games for her birthday. Jane now has 7 video games. 

 

 

Figure 3. Example representing change proposed by Marshall (1995). 
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Change in quantity values is concluded by subtracting the initial value from the 

final value: Change = Final Value – Initial Value. This standard definition of quantity 

change is applied not only in mathematics, for example, to constitute part of computing 

the instantaneous or average rate of change (e.g., Stewart, 2006) but also in physics to 

compute a change of objects’ temperature or an object’s velocity (e.g., Giancoli, 2005). 

This equation can be rearranged to Beginning + Change = Ending to reflect Marshal’s 

idea but the rearranged form is not aligned with the fundamental principle that the 

schemata of change supports. If the schema of change were to be used, then the diagram 

should be redesigned to reflect the difference in the quantity magnitudes. 

These two examples were brought up to signify a need for verifying 

interdisciplinary consistency of the schemata interpretations and their adherence to the 

principle definitions. It is understood that the equations symbolizing the schemata can be 

rearranged and used in multiple ways. It also seems that with every algorithm done on 

them, the interpretations take different meanings, for example, x + y = 5 represents 

compare, whereas x – 5 = – y would rather represent change. Thus, what stage is being 

used will depend on individual perception, yet general foundations for problem analysis 

must remain consistent. Perhaps establishing fewer such schemata and letting students 

manipulate them to reflect on a given problem would benefit the learner more? As it was 

mentioned, applications of change, combine, compare, and equalize are very 

fundamental in sciences, thus understanding their core meanings might have a profound 

impact on students’ success not only in problem solving at elementary level but also at 

higher levels beyond math classroom boundary.  
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Providing students with well-designed problems that will correspond with their 

level of experiences would help with inducing the schemata’s core meanings. 

Furthermore, zooming into the processes of students’ reasoning and learning how they 

interpret the schemata  would help with correlating schemata meanings with students’ 

thinking processes and identify areas of strengthening the understandings. Lee and 

Ginsburg (2009) have proven that removing acquired misconceptions is a more 

complicated task than learning new concepts. It is hoped that the suggestions would 

prevent the misconceptions to occur. 

Representations of Geometry Concepts  

Another construct examined in the comparative studies was representations of 

geometry concepts. Yuzawa et al. (2005) pointed out that geometry investigations should 

be organized deductively: “educators should pay attention first to children learning the 

general shape and strategy and then progress into more detailed representational 

analysis” (p. 251). The idea of having students explore geometrical concepts as a means 

of effective learning was also investigated by Castle and Needham (2007), who 

highlighted a positive effect of letting students explore learned methods and techniques 

in and outside of school using diverse representations. David and Tomaz (2012) 

highlighted the positive effect of exploration on student achievement and concluded that 

letting students explore different paths of solving problems via producing diverse figure 

representations engages the students in the learning process, which in turn generates 

their higher intellectual effort to understand and solve problems.  
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 These inferences bring to light the teacher’s role in guiding new learners in their 

discoveries of mathematical relations and patterns.  

Using exploratory environments in which representations can be applied as a medium of 

learning is yet another suggestion for organizing productive learning that emerged from 

this pool of research.   

The Effects of Teacher Support  

Deliyianni and colleagues (2009) investigated the impact of using different 

problem representations (informational pictures, decorative pictures, verbal forms, and 

number lines) on students’ ability to solve problems in different grade levels. They noted 

that children in all age groups selected decorative pictures and verbal descriptions to 

work on and that the usage of these representations yielded the highest learning effect 

size; in contrast, informative representations, rather formal in form, recorded the lowest 

effect size. The rates proportionally increased with students’ age. Fraction representation 

techniques in the function of experimental manipulation were investigated by Rittle-

Johnson et al. (2001). They concluded that teaching concept understanding is not 

sufficient for the domain understanding and that a substantive procedural knowledge 

along with teacher’s support must be delivered to students. Regardless of student age, 

“Children who received representational support made greater gains in procedural 

knowledge” (Rittle-Johnson et al., 2001, p. 360). David and Tomaz (2012) also noted 

that the teacher needs to take the role of a guider during such activities and redirect 

students’ thinking if needed. It is important that the teacher support and enhance 

students’ selection of the most suitable representation to solve a given problem; letting 
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students explore the representations without guidance might not generate desirable 

results. Another important factor for the study analysis is the content selection and 

wording used to formulate the problems. Mathematics is to develop students’ concise 

thinking, but to achieve that it needs to reflect on daily life problems whose contents 

need to be adequate to students’ experiences. Solving artificially created problems might 

be discouraging for students and consequently it may disconnect mathematics from 

reality. 

Study Limitations and General Recommendations 

The findings of this study support the study’s hypothesis: representations help 

Pre-K through fifth-grade students learn and apply abstract math concepts, especially 

when such representations are applied to supporting new concept understanding and 

students’ problem-solving skills. However, certain limitations and recommendations 

emerged from this study, as discussed below.  

Threats to Research Validity 

The main parameter limiting the study finding was a lower-than-expected pool of 

primary studies to be meta-analyzed. Still, the authors believe that the inclusion of 

comparative studies enhanced the study inferences. The validity of the study 

computations was supported by double research data coding at the initial and concluding 

stages of the study process. Any potential discrepancies were resolved. Although strictly 

specified, the literature search was undertaken with broader conceptual definitions in 

mind that allowed for, as suggested by Cooper (2010), adjustment of the definitions and 

strengthening of the literature relevance. Thus, as the initial literature search revealed 
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that representations in Pre-K through Grade 5 are often used to support problem solving, 

the term problem solving was then used to locate more studies. 

Recommendations for Further Research 

Schemata-based representations and their application emerged as the main type 

of representations to support problem solving. According to Owen and Sweller (1985), a 

schema is a cognitive general structure that allows the problem solver to categorize the 

problem and then apply certain tools to solve it. A moderate effect size (ES = 0.49) 

indicates that this learning strategy helps students understand underlying math ideas in 

given word problems and solve them. Hiebert and Carpenter (1992) posited that in the 

process of developing the schemas, students’ domain conceptual understanding consists 

of a complex network of concepts. Furthermore, the networks constitute the model that 

will be called an internal representation of the domain embodied by an external 

representation. The learners can be provided with the representations, or the 

representations can be derived by the learners under a teachers’ guidance, and then the 

conceptual networks can be developed.  

Cheng (1999) proposed four learning stages that can lead the learner to 

developing concept understanding through using external representation: domain, 

external representation, concept, and internal network of concepts. In the process of 

moving from one stage to another to reach the internal network, the learner is immersed 

in four processes: observation, modeling, acquisition, and integration. With the 

exception of the studies conducted by Rittle-Johnson and collegues (2001) and Terwel 

and colleagues (2009), the majority of the gathered pool of studies did not explicate on 
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these processes, focusing instead on applying fixed models without discussing and 

possibly conditioning them.  

As Perkins and Unger (1994) noted, having the right representation does not 

suffice for having an understanding. To confirm an understanding, one needs to be able 

to “put this representation through its paces, explaining and predicting novel cases” (p. 

45). Thus, to have an understanding of a representation is to be in a state of readiness, 

taking the representation as a point of departure in the solution process, not as an 

unquestionable formula. Terwel and colleagues (2009) proved that having students 

explore and modify given representations produced the highest effect size.  We would 

support this success by inducted math modeling phase that allowed the students to 

explore and adopt representation to given real scenarios. While this interpretation is 

hypothetical, the particular finding needs further investigation to be legitimately 

explained. 

Having students develop principles of representations by identifying 

commonalities due to applications and then having them apply such representations to 

model other contexts beyond the math classroom would be a valid pursuit for future 

studies. Other question worth further investigation is: If students are to be placed in the 

role of mathematicians applying the schemata to solve other problems, should the 

processes be organized inductively, as suggested by Nunokawa (2005), or deductively? 

How do students perceive these inquires? Are these inquiring rooted in virtues of 

mathematical representations or are they rather content-domain related?  
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Related questions generated by this study and suggested for examination in 

future studies are the following: How does the use of representations continue as 

students’ progress in math education? How are representations, especially schemata-

based representations that dominate problem solving in Pre-K through Grade 5, linked to 

higher-level math classes? 

After generating a positive effect size in a study with students with learning 

disabilities, Fush and colleagues (2004) suggested using schemata more extensively for 

problem solving at the high school level, especially targeting students will learning 

disabilities. Having high school students derive processes of transitioning from 

proportion to a linear or rational function or from percent rate to an exponential function 

seem like valuable research topics to explore further. 

Another conclusion calls for expanding the idea of using schemata to sciences 

and other subjects in a consistent manner that will carry out their general principles. This 

transition will help students broaden the meanings and consequently built a stronger 

image of these schemata in students’ long term memories. Do students experience 

applying similar representations in their science classes? It seems that applying, for 

example, the schema of equalize to verifying the law of conservation of mass or energy 

would enrich the spectrum of the schema applications and induce more contextual 

meaning. Should these main avenues of knowledge acquisition depend on the nature of 

the representation (schemata or pictorial) or their general purpose? Further research in 

these regards is needed, and we believe that this paper will provide some prompts for its 

initiations.  
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CHAPTER III  

USING COMPUTERS TO SUPPORT EXPLORATORY LEARNING 

ENVIRONMENTS IN GRADE 1-8 MATHEMATICS:  

A META-ANALYSIS OF RESEARCH 

 

Introduction 

The process of solving word problems is difficult for students; thus, mathematics 

educators have made multiple attempts to seek ways of making this process more 

accessible to students. The purpose of the study was to contribute to this research by 

examining the effect size statistic of utilizing exploratory computerized environments 

(ECEs) to support the process of word problems solving and explorations in Grade 1-8 

mathematics. The findings of 19 experimental pretest and posttest studies (19 primary 

effect sizes) published in peer-reviewed journals between January 1, 2000 and January 

31, 2013 revealed that exploratory computerized environments produced a moderate (ES 

= 0.60) effect size (SE = 0.03) when compared to traditional methods of instruction. A 

95% confidence interval around the overall mean—Clower = 0.53 and Cupper = 0.66—

proved its statistical significance along with its relative precision. A further moderator 

analysis revealed differences among the effects of students’ achievement between 

problem solving and ECEs favoring the latter. Discussion of these results and their 

potential impact on improving students’ mathematical problem solving skills along with 

implications for further research is also undertaken in this study. 
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Advancement in capabilities of varied technologies caused that school practice 

problem solving, traditionally difficult for students, has become a domain of a particular 

interest. Whereas researchers have examined the use and impact of computers on 

presenting the content of word problems to the learners, comparatively little research has 

focused on using computers as a means to have the learners explore dependence of  a 

given problem variables in the attempt to mathematize and solve it. While interest in 

improving students’ problem-solving solving skills has have a wide range, the rate of the 

progress in this domain has not been satisfactory (Kim & Hannafin, 2011). High 

interactivity of contemporary computer programs that allow for dynamizing problem 

contents and consequently inducing and exercising elements of scientific processes such 

as isolating parameters of a system and depicting the system changes that result from 

varying the parameters are not utilized in fully in mathematics classroom yet. Although 

some elements of scientific inquiry, such as measurements and data analysis, have 

received a substantial attention in the newly developed common core standards (Porter, 

McMaken, Hwang, & Yang, 2011), the process of inquiry organization in mathematics 

classes, for example, the process of mathematical explorations or problem solving, are 

not discussed. Research (Grouws & Cebulla, 2000) suggests that students who develop 

math conceptual understanding are able to perform successfully on problem solving, 

even these requiring a task transfer. Capabilities of modern technology open multiple 

opportunities for applying mathematical structures to quantify system changes and 

simultaneously help with understanding of math concept applications. It is hypothesized 

that by enriching mathematics problem solving processes by phases of scientific inquiry 
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such as; hypothesis stating, analysis and model formulation, the process of 

conceptualization of abstract math ideas and their applications in real world will be more 

accessible to students. Consequently, the shift from procedural to conceptual teaching 

methods in mathematics might be initiated. The current research in mathematics 

education encompasses many aspects of using technology, yet exploratory computerized 

environments (ECEs) focusing especially on supporting mathematical explorations, 

problem solving, and mathematical modeling has many commonalities with scientific 

discovery and scientific inquiry. From the three avenues: explorations, problem solving 

and mathematical modeling, the processes of explorations dominate the elementary and 

middle school math curricula at the current research. A formal process of explorations—

mathematical modeling—is more frequently applied at the high school and college levels 

(Blum & Booker, 1998; English, 2004). Although, problem solving can integrate 

scientific methods, this idea does not mediate in the current research. Historically, a 

major contribution to the field of problem solving was done by Polya’s (1957) who 

codified four stages of problem solving processes as understanding the problem, 

devising a plan, carrying out the plan, and looking back. Bransford and Stein (1984) 

extended Polya’s approach by developing 5-stage problem solving model which 

encompassed identifying problem, defining goals, exploring possible stages, anticipating 

outcomes, and looking back and learning. To varying extents, these stages represent 

integral elements of contemporary problem solving methods ( Kim & Hannafin, 2011). 

As in science classes, technology rich inquiry has proven to help students with problem-

solving techniques (e.g., see Reid, Zhang, & Chen, 2003; Stern, Barnea, & Shauli, 2008) 
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searching for ways of inducing congruent ideas to a math classroom appeared to be 

promising undertaking worth of examining. 

 The purpose of this study was to synthesize, using meta-analytic techniques, 

current research on applying such learning environments, often called exploratory 

(Remillard & Bryans, 2004), in school practice at the elementary and middle school 

levels.  

Technology as a Means of Supporting Explorations and Word Problem Solving 

The following section provides a theoretical framework that has guided this 

study. It summarizes the advantages of utilizing technology in mathematics school 

practice focusing on how technology is used to enhance explorations and word problems 

solutions. Since the far reaching goal of this study is to search for means of improving 

students’ math achievement on problem solving, this section also discusses the role of 

competencies associated with explorations and word problems solving in math learning. 

According to the National Council of Teachers of Mathematics (NCTM; 2000), 

“Technology is essential in learning mathematics” (p. 3). Applying technology to 

enhance students’ problem-solving skills is an intermediate area of interest. A problem’s 

setup and information component expressed in word format are often difficult for 

students to comprehend, analyze, and solve. Such presented problems also have a low 

motivational factor, which consequently affects the degree to which a learner engages in 

finding the solution. The advancement of multimedia technology has opened new 

possibilities for dynamically expressing a problem’s contents and extending its analysis. 

The process can now be externalized and magnified through digital constructions, 
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showing more explicit properties and structures that were previously silent. Several 

researchers, for instance, Chen (2010) and Merrill and Gilbert (2008), have found that 

students’ word-problem-solving skills can be significantly enhanced through the 

integration of computer technologies. Embodied by tangible representations, such 

presented problem-solving scenarios are more realistic and are thus more meaningful to 

students.  

While the engaging factors of computerized environments on students’ 

motivation have been widely documented (see, for example, Lewis, Stoney, & Wild, 

1998), their interactive features that enable the learner to hypothesize, make predictions, 

and verify those predictions have not yet been meta-analyzed at the elementary and 

middle school levels. This study sought to examine these areas and identify moderators 

that contribute to increasing the learning effects.  As a result of this undertaking, we 

hope to formulate conditions for learning environment design that will advance students 

analytic skills and consequently improve their problem solving techniques at the 

elementary, middle school level and beyond. We hope that through our research 

findings, the math research community will be encouraged to support curricula whose 

notion is to propagate the idea of unified math-science problem solving techniques.  

The Role of Explorations and Word Problems in Math Learning 

Explorations. The processes of explorations, data interpretation, and validation 

are closely related to the level of mathematical modeling that has traditionally been 

reserved for secondary schools (Blum & Booker, 1998). However, a recent study 

(English & Watters, 2004) shows that young children are capable of analyzing situations 
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beyond of those involving simple processes of counts and measures. Furthermore, 

researchers (e.g., Lai & White, 2012; English, 2004) recommend that children have more 

exposure to situations where they explore informal notions of rate, or where they 

quantify information, transform quantities, and deal with quantities that cannot be seen. 

Flum and Kaplan (2006) claimed that explorations engage the learner with the 

environment through definite actions of gathering and investigating information. By 

inducing the use of terms that are central to scientific inquiry, like observe, identify, and 

analyze (Slough & Rupley, 2010), explorations promote the transfer of knowledge, 

problem-solving skills, and scientific reasoning (Kuhn, 2007). Furthermore, Schwarz 

and White (2005) advocate that learning about the nature of scientific models and 

engaging the learners in the process of creating and testing models should be a central 

focus of science education. Thus, enhancing these processes in mathematics classes by 

the development of modeling processes and knowledge acquired through these processes 

may simultaneously facilitate the learning of science. 

Explorations can be externalized in various forms. One of these forms, 

computerized simulations, offers great promise for providing a rich medium for learning. 

Grouws and Cebulla (2000) suggested that students who develop scientific inquiry are 

able to successfully solve problems; thus, it is hypothesized that by enriching math 

curriculum via elements of such inquiry, presented, for example, by mathematical 

explorations, students’ problem-solving skills can be strengthened. Consequently, a shift 

from procedural to conceptual teaching and learning methods in mathematics might be 

initiated. These shifts posit certain challenges.  
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At the elementary school level, manipulatives have been extensively used to help 

build conceptual understanding of abstract ideas (Jitendra et al., 2007), as they are often 

replicates of real manipulatives accessed through computer software or the Internet. 

Research (Kaput, 1991; Kieran & Hillel, 1990) has proven their positive impact on 

students’ math achievement. Since manipulatives are restricted to geometrical objects, 

exploratory learning environments provide a far richer context for inducing 

mathematical ideas. As a result, their applications in math classrooms have gained 

momentum over the past decades (Neves, Silva, & Teodoro, 2011); thus, there is a need 

for a more systematic way of using these environments.  

The process of explorations usually concludes with a formulation of a 

mathematical model. As such, multifaceted cognitive goals are achieved by learners 

while they undertake such activities. Bleich, Ledford, Hawley, Polly, and Orrill (2006) 

concluded that such activities expand students’ views of mathematics by integrating 

mathematics with other disciplines, especially sciences, and engage students in the 

process of mathematization of real phenomena. In addition to being able to express a 

situation using mathematical symbols, explorations help students develop problem-

solving skills (NCTM, 2000). Viewed through this prism, interactive exploratory 

learning environments dominate the previously applied drill-and-practice computer 

applications in school mathematics classroom.  

Word problems. Situations carrying open questions that challenge learners 

intellectually (Blum & Niss, 1991) are called word problems or story problems. The 

general structures of word problems are centered on three components: (a) a setup 



55 
 

component, which provides the content (for instance, place or story problem); (b) an 

information component, which provides data to derive a mathematical model; and (c) a 

question component, which is the main task directed to the solver (Gerofsky, 2004). A 

setup component of a word problem can be externalized by a static diagram, short video, 

computer simulation, or physical demonstration. With the exception of static diagrams, 

all of these means, though not yet commonly used in mathematics classes (Kim & 

Hannafin, 2011), assist with the visualization of problem scenarios and thus help with 

identifying patterns and formulating their symbolic description. Word problem solving is 

one area of mathematics that is particularly difficult because it requires students to 

analyze content, transfer it into mathematical representations, and map it into learned 

mathematical structures. Therefore, it requires not only a retrieval of a particular 

problem-solving model from learners’ long-term memory but also the need to create a 

novel solution (Zheng, Swanson, & Marcoulides, 2011).  

According to Polya (1957), solving word problems requires that the solvers 

immerse themselves in certain phases during which they are to analyze the problem, 

organize the facts, devise a plan, find the solutions, and validate the results for 

reasonableness. Among these phases, the phase of exploration, which leads the solver to 

a model formulation and validation, is of the highest importance (Arthur & Nance, 

2007). Once the model is validated, it can be used for forecasts, decisions, or actions 

determined by the problem-question component. Francisco and Maher (2005) suggested 

that the stage of modeling must exist in the problem-solving process for authentic 

mathematical problem solving to occur. A similar conclusion was reached by 
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Gravemeijer and Doorman (1999), who claimed that “the role of context problems and 

of symbolizing and modeling are tightly interwoven” (p. 112). Linking the mathematical 

apparatus with the problem information component, mathematical modeling appears to 

be one of the critical skills for student success in solving word problems. The forms of 

the mathematical models depend on the problem content and on elementary and middle 

school levels; they are often externalized by geometrical objects, ratios, and proportions 

(NCTM, 2000). Learners’ skills of applying mathematical structures to investigate the 

world outside of the classroom is of highest importance in students’ general 

mathematical deposition because it develops students’ confidence in their own ability to 

think mathematically (Schifter & Fosnot, 1993). For these reasons, the skill of applying 

math tools is a predominant requirement of mathematics teaching (NCTM, 2000).  

Over the past 30 years, the research on teaching and learning math applications 

has undergone modifications reflecting research advancements in this area, one of which 

is a change in the instructional approach to problem solving: from teaching problem 

solving, to teaching via problem solving (Lester et al., 1994). Some of the main elements 

of teaching via problem solving include (a) providing students with enough information 

to let them establish the background of the problem, (b) encouraging students to make 

generalizations about the rules or concepts, and (c) reducing teachers’ role to providing 

guidance during the solution process (Evan & Lappan, 1994). According to more recent 

research about the cognitive process of problem solving, Yimer and Ellerton (2009) 

proposed an inclusion of a prelude phase, called engagement, whose role is to increase 

students’ motivation and, consequently, their success rate.  
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Despite these changes, problem solving processes still require more research, 

especially in the area of linking these processes to the process of scientific inquiry that 

students exercise in their science classes. 

Synthesis of Findings of Prior Meta-Analytic Research 

The study of problem-solving methods in the domain of mathematics education 

has been frequently undertaken by researchers and has especially influenced 

mathematical practices during the past 30 years (Santos-Trigo, 2007). As “problem 

solving refers to the entire process of dealing with a problem in attempting to solve it” 

(Blum & Niss, 1991, p. 38), the process challenges learners (Schoenfeld, 1992) because 

it encompasses several stages such as analysis, pattern extraction, model formulation, 

and verification, which often are not explicitly elaborated on for the learner. In addition 

to applying an adequate mathematical apparatus, the solver needs to uncover the 

principle embedded in the given problem (Jonassen, 1997) neglected in the current 

research that is often of a science or other content domain.   

Computer programs have been recognized as highly powerful tools for the 

numerical and graphical treatment of mathematical applications and models that assist 

learners with the problem-solving process (Blum & Niss, 1991). Tall (1986) provided an 

insightful analysis on how computers can be used for testing mathematical concepts. He 

claimed that “computer programs can show not only examples of concepts, but also, 

through dynamic actions; they can show examples of mathematical processes” (p. 5). He 

questioned the formal approaches to mathematical representations used in textbooks, 

calling them inaccessible to students, and suggested instead using computer programs to 
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show the dynamics of the processes. Following Skemp’s (1971) findings, Tall claimed 

that building concepts on cognitive principles instead of on the principles of logic 

teaches students mathematical processes and mathematical thinking.  

Computer programs used to support problem solving were one of the moderators 

in a meta-analysis on methods of instructional improvement in algebra undertaken by 

Rakes, Valentine, McGatha, and Ronau (2010). Using 82 relevant studies from 1968 and 

2008, these researchers extracted five categories, of which two contained technology and 

computers as a medium supporting instruction and learning. Contrasting procedural and 

conceptual understanding of mathematics ideas, these scholars found that conceptual 

understanding as a separate construct, appearing initially in research in 1985, produced 

the highest effect size when enhanced by computer programs. The timeline of this 

finding corresponded with the emergence of mathematical explorations, which also 

exemplify math conceptual understanding. In addition, Rakes et al. found that 

technology tools including calculators, computer programs, and java applets produced a 

moderate 0.30 effect size when compared to traditional methods of instruction. Another 

systematic review of using computer technology and its effects on K-12 students’ 

learning in math classes between 1990 and 2006 was undertaken by Li and Ma (2010). 

Analyzing the effects of tutorials, communication media, exploratory environments, 

tools, and programming language, they concluded that exploratory environments, 

characterized by the constructivist approach, produced the highest (ES = 1.32) learning 

effect size. Li and Ma did not compute the effects of computer technology on math 

cognitive domains and type of learning objectives, suggesting a need for another review 
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that would focus on “the nature of the use of technology” (p. 235) on student 

achievement.  

Prior literature has provided many insightful conclusions about the effectiveness 

of exploratory computer programs on math students’ achievement. However, it has also 

led to many research questions on how the content delivery methods or problem-solving 

settings presented by the computer programs will yield the highest learning effect sizes. 

It seems that the high capability of exploratory computerized environments to provide 

opportunities for enriched dynamic visualization demands more detailed research in 

order to better understand how to direct students’ attention to embedded mathematical 

structures and help them uncover the underlying mathematization of their principles.  

As the above literature synthesis illustrates, several concerns regarding the 

improvement of students’ problem-solving skills in mathematics are still unresolved. For 

instance, Artzt and Armour-Thomas (1992) concluded that students’ difficulties with 

problem solving are often attributed to their failure to initiate active monitoring and 

regulation of their own cognitive processes. It seems that presented with problem 

content, students face uncertainties about how to proceed through the phases of the 

solution stages that will lead to the mathematical model formulation. As several potential 

ways of improving students’ initiation of active monitoring have been already researched 

(e.g. see Grouws, & Cebulla, 2000; Kapa, 2007), by undertaking this study we hope to 

uncover moderators that have been silent in the previous research. We are especially 

interested in learning whether extending the exploration stage of the solution process and 

guiding students through the phases of the inquiry could materialize as a construct of 
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addressing this issue worth of a further investigation? The effect of such organized 

support might reduce the working memory capability needs and consequently allow 

students to attempt to solve the problem without being overwhelmed at the start. In 

addition, Hart (1996) concluded that students find word problems difficult because they 

lack motivation. Presenting word problems in an engaging format might increase 

learners’ motivation factor and drive them to solve the problems. Furthermore, providing 

some guidance during the solution process might improve their productivity and 

decision-making (Stillman & Galbraith, 1998). Finally, Blum and Niss (1991) expressed 

their concern that the implementation of ready-made software in applied problem 

solving may put an unintentional emphasis on routine and recipe-like procedures that 

neglect essential phases, such as critically analyzing and comparing models. Closely 

examining how this concern is resolved in newly developed math software was an 

additional focus of this meta-analysis. 

Problem solving mediates with multiple external factors. It seems that the use of 

ECEs to promote problem solving is a promising avenue, but more research-driven 

actions are needed. It is hoped that this study’s findings will generate directions for such 

actions. 

Research Methods 

A literature review can take several venues, for example, narrative, quantitative, 

or meta-analytic. This study took the form of the latter, using the systematic approach 

proposed by Glass, (1976) called meta-analysis, which can further be described as an 

analysis of the analyses. A statistical meta-analysis integrates empirical studies, 
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investigating the same outcome described as a mean effect size statistic. Thus meta-

analytic techniques were selected for this study because they provide tools to assess 

effect size considering a pool of studies as a set of outputs collected within prescribed 

criteria. There are two main advantages of such investigations: (a) a large number of 

studies that vary substantially can be integrated, and (b) the integration is not influenced 

by the interpretation or use of the findings by the reviewers (Gijbels, Dochy, Van den 

Bossche, & Segers, 2005).  

The main objective of this study was to assess the impact of computerized 

exploratory environments on students’ mathematics achievement is Grades 1-8.  

Key Term Descriptions 

            Exploratory computerized environment. This is defined as a medium of 

learning that engages the learner with the environment through definite actions of 

gathering and investigating information (Flum & Kaplan, 2006). The medium can be 

displayed on the computer screen or iPod and provided via software or the Internet. 

            Student achievement in mathematics. Student achievement represents the 

outcome measure in this study and is defined as scores on solving various mathematical 

problems presented in various mathematical structures, such as equations, ratios, 

proportions, and formulas, measured by students’ performance on standardized or 

researcher- or teacher-developed tests expressed as a ratio or percent. Student 

achievement scores are further expressed as effect size computed using mean posttest 

scores of experimental and control groups and coupled standard deviation or other 

statistic parameters as defined by Lipsey and Wilson (2001).  
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Research Questions   

The research questions formulated for this study are divided into two groups; main and 

supplementary. As the main question reflect on the accumulated literature, 

supplementary questions are introduced to seek answers to additional inquiries whose 

goal is to enrich the study objective 

 Main Research Question 

1. What are the magnitude and direction of the effect sizes of using     

computerized exploratory environments to support the process of problem     

solving and explorations as compared to conventional learning methods? 

 Supplementary Research Questions 

1. Are the effect sizes of student achievement depending on grade levels or 

mathematics content domain?  

2. Are the effect sizes of student achievement different when problem 

solving is contrasted with explorations?  

3. How does the type of instructional support (teacher guided or student 

centered) affect student achievement when computers are used?  

While the answer to the main question will be based on the interpretation of the 

magnitude and direction of the computed mean effect size statistic, the answers to the 

additional research questions will be based on applied moderator analysis and 

interpretation of computed moderator effects made available through applying rigorous 

meta-analytic techniques.   
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Data Collection Criteria and Procedures 

Several criteria for literature inclusion in this study were established before the 

search was initiated. This synthesis intended to analyze and summarize the research 

published between January 1, 2000, and January 31, 2013, on using computerized 

programs to support student explorations in elementary and middle school mathematics 

classes in either public or private schools. The minimum sample size established in this 

meta-analysis was 10 participants. The study included only experimental research that 

provided pretest-posttest mean results, standard deviation (SD), F-ratios, t-statistics, or 

other quantifications necessary for meta-analysis. In the process of collecting the 

applicable research, ERIC (Ebsco), Educational Full Text (Wilson), Professional 

Development Collection, and ProQuest Educational Journals, as well as Science Direct, 

Google Scholar, and other resources available through the university library, were used 

to identify relevant studies. In the process of extracting the relevant literature, we used 

the following terms: explorations, simulations, computers in mathematics, mathematics 

education, problem solving, exploratory environment, and student achievement. This 

search returned 238 articles, out of which 14 satisfied the established criteria. In order to 

expand the pool, a further search, undertaken with broader conceptual definitions, 

including dynamic investigations, techniques of problem solving, and computerized 

animations and learning, was conducted. These modifications, which allowed for the 

adjustment of the contexts and strengthening the relevance of the literature (Cooper, 

2010), returned 31 studies. The additional search extracted a number of studies that 

although very informative (e.g., Chen & Liu, 2007; Harter &Ku, 2008), could not be 
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meta-analyzed because the instrument of computers was used in both the control and 

experimental groups. After additional scrutiny, five studies were added to the original 

pool, resulting in 19 primary studies and 19 corresponding effect sizes. 

The validity of the study was supported by a double research data rating at the 

initial and at the concluding stages of the study. Any potential discrepancies were 

resolved.  

Coding Study Features   

The coding process was conducted in a two-phase mode reflecting the two-stage 

analysis. During the first phase, general characteristics of the studies, such as research 

authors, sample sizes, study dates, research design type, and pretest-posttest scores, were 

extracted to describe the study features. During the second phase, additional scrutiny 

took place to more accurately reflect on the stated research questions and seek possible 

mediators of the effect sizes. Majority of the coding futures, for instance study authors, 

date of study publication, locale or research design type are utilized to support the study 

validity. The formulation of other coding, such as grade level, instrumentation or 

learning type was enacted to apply moderator analysis that will lead to answering 

additional research questions.  

Date of study publication. Despite the fact that computer programs as a medium 

supporting learning were introduced into education several decades ago (Joyce, Weil, & 

Calhoun, 2009), a rapid increase in this field occurred around the year 2000, which was 

selected as the initial timeframe for the search.  
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Descriptive parameters. Descriptive parameters encompassed the following: the 

grade level of the group under investigation, the locale where the studies were 

conducted, the sample size representing the number of participants in experimental and 

control groups, the date of the study publication, and the time span of the research 

expressed in a common week metric.  

Inferential parameters. Posttests mean scores of experimental and control 

groups and their corresponding standard deviations were extracted to compute study 

effect sizes. If these were not provided, F-ratios or t-statistics were recorded. Although 

most of the studies reported more than one effect size, for example, Kong (2007) and 

Guven (2012), who also reported on students’ change of attitude toward computers, this 

study focused only on student achievement, thus reporting one effect size per study.  

The research authors. A complete list of authors involved in the study 

completion was compiled in the first tabularization. As the analysis of the study 

progressed, each research study was labeled by the first author and the year of conduct.  

Publication bias. All studies included in this meta-analysis were peer-reviewed 

and published as journal articles; thus, no additional category in the summaries was 

created to distinguish the publication mode of the studies. By embracing the research 

selection in the criteria, publication bias was expected to be reduced. 

Group assignment. This categorization was supported by the way the research 

participants were assigned to treatment and control groups as defined by Shadish, Cook, 

and Campbell (2002). During the coding process, two main categories emerged: (a) 

randomized, where the participants were randomly selected and assigned to the 
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treatment and control group; and (b) quasi-experimental, where the participants were 

assigned by the researchers.  

Type of research design. Only experimental studies that provided pretest-

posttest means or other statistic parameters representing the means were utilized in this 

study.  

Instrumentation. Two main modes of using a computer as an instrument to 

promote students’ mathematical knowledge acquisition were identified: (a) as a medium 

supporting problem solving, and (b) as a medium supporting explorations. Additional 

descriptions of the instrumentations were included if they were provided by the primary 

researchers. 

Type of learning setting. The purpose of implementing this construct was to 

learn about the effect of the type of instructional support. Two sub-categories were 

identified: (a) teacher-guided support, where the teacher served as a source of support 

during student explorations or problem solving; or (b) student-centered support, where 

support was provided on the computer screen by the software. 

Data Analyses 

Homogeneity Verification and Summary of Data Characteristics 

The data analysis in this study was initially performed using SPSS 21 with 

verification of homogeneity of the study pool as suggested by Hedges (1992). A 

standardized mean difference effect size was calculated using posttest means on 

experimental and control groups as suggested by Lipsey and Wilson (2001). The 

individual effect sizes were then weighted, and an overall weighted mean effect size of 
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the study pool was calculated. The homogeneity statistics (QT = 117.52, with df = 18, p < 

0.01) showed that the set of effect sizes varied statistically significantly; thus, a random-

effect model was adopted for the data analysis. The following funnel plot visualizes the 

pool mean effect size and displays the confidence intervals and the individual effect 

sizes. In order to improve the clarity of the graph, the vertical axis scale was compressed 

by taking a natural logarithm of each sample size.  

 

Figure 4. Funnel plot for the data. 

 

The funnel plot (see Figure 4) shows evident outliers in the gathered data (e.g., 

Huang et al., 2012; Erbas et al., 2011). However, due to the complex study design and 
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valuable research findings, both of these studies were included in the meta-analysis and 

their contributed through their weighted effect sizes to the overall effect size.  

Table 8 summarizes the extracted general characteristics of the studies. The 

studies were further aggregated into classes to reflect the objectives of the research 

questions. 

 

Table 8 

General Characteristics of the Studies’ Features 

 
Authors 

 
Date 

 

 
Locale 

 

 
RD 

 
SS 

 
Grade  
Level 

 
 

 
RTL 

(in ws) 

 
Treatment 
Approach 

 
Learning 
Setting 

Pilli &  
Aksu  
 

2013 
 

Cyprus R 55 4th 12 
 

Explor TG 

Kong 2007 
 
 

Hong 
Kong 

QE 72 4th 5 
 

Explor TG 

Hwang &  Hu 2013 Taiwan R 58 5th 8 PS SC 

Lai & 
White 

2012 USA 
 
 

QE 12 6th 
7th 

1 Explor SC 

Chang,  Sung, & 
Lin 
 

2006 Taiwan QE 132 5th 6 PS SC 

Erbas &  
Yenmez 
 

2011 Turkey 
 

QE 134 6th 2 Explor TG 
 

Roschelle, 
Shechtman, 
Tatar, Hegedus,  
Empson, 
Knudsen, & 
Gallagher 
 

2010 USA 
 

R 1621 
 

7th 
 

40 
 

Explor SC 

Roschelle  et al. 
 

2010 USA 
 

R 825 
 

8th 
 

80 Explor SC 
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Table 8 continued 

Note. R = Randomized, QE = Quasi-Experimental, RD = research design, Explor = Explorations, SS = 
sample size, RTL  = research time length, ws = weeks, SC =  student centered, TG = teacher guided, PS =  
problem solving.  

 

 

The majority of the studies (12, or 63%) were conducted quasi-experimentally, 

while the remaining seven (37%) were randomized. The study duration was expressed in 

 
Authors 

 
Date 

 

 
Locale 

 

 
RD 

 
SS 

 
Grade  
Level 

 
 

 
RTL 

(in ws) 

 
Treatment 
Approach 

 
Learning 
Setting 

Kapa 
 

2007 Israel 
 

R 107 8th 8 
 

PS SC 
 

Papadopoulosa 
& Dagdilelis 

2008 
 

Greece QE 98 5th 
6th 

 

4 PS SC 
 

Eid 
 
 

2004 Kuwait 
 

QE 62 5th 1 PS 
 

SC 

Huang, 
Liu, & Chang 

2012 
 

Taiwan QE 28 
 

2nd 
3rd 

 

1 PS 
 

SC 

Lan, Sung, 
Tan, Lin, & 
Chang 

2010 
 
 

Taiwan 
 

R 28 4th 
 

4 
 

PS 
 

SC 

Van Loon-Hillen,  
van Goga, & 
Gruwel  
 

2012 
 

The 
Nether- 
lands 

QE 
 
 

45 
 

4th 3 PS 
 
 

TG 

Guven 2012 Turkey QE 68 8th 40 Explor SC 
 

Chen & Liu 2007 Taiwan QE 165 4th 4 PS 
 

TG 

Ku & Sullivan 2002 Taiwan QE 136 4th 1 PS 
 

SC 
 

Suh & Moyer- 
Packenham 
 

2007 
 

USA QE 36 3th 1 PS SC 

Panaoura 2012 
 

Cyprus    QE 255 
 
 

   5th      8        PS 
 

      SC 
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a common (weeks) metric scale, although some of the studies reported the duration in 

months or by semesters. The duration of experimental treatment usually lasted for one 

unit lesson (45 minutes) with a frequency of application twice a week. The highest 

sample size of 1,621 students was reported for a study conducted by Roschelle et al. 

(2010), and the lowest sample size of 12 participants was reported by Lai and White 

(2012). While analyzing the pool from a grade-level point of view, students whose 

primary level was Grade 4 (42%) dominated the pool. Since this study focused on 

gathering research on exploratory environments provided by computer programs or the 

Internet, the examined studies were aggregated by their focus on either supporting 

problem solving or explorations in mathematics. The study-highlighted characteristics 

were further aggregated. 

Descriptive Analysis 

The analysis of the data was organized deductively. It began with a synthesis of 

the general features of the studies, encompassed by a descriptive analysis, and then 

moved to an examination of the differences of the effect sizes mediated by the type of 

instrumentation, cognitive domain, study duration, grade level, and content domain.  

           The research pool generated data collected from 3,682 elementary and middle 

school students. The average sample size was 202 participants. Applied descriptive 

analysis provided information about the frequencies of the studies per year (see Figure 5) 

and the locale distribution where the studies were conducted (see Figure 6).  
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Figure 5. Distribution of studies per date of publication. 

 

Figure 6. Distribution of studies per locale. 

 

The majority of the studies (14, or 74%) were conducted within the past 5 years, 

which indicates a growing interest is using computerized programs to support the 

learning of mathematics. In terms of research location, Taiwan dominated the pool with 

six studies (32%), followed by the United States with three studies (10%). It is to note 

that applying and investigating the effects of ECEs in mathematics classrooms has 

accumulated a global interest. 

0

1

2
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4
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Inferential Analysis  

Quantitative inferential analysis was performed on the primary studies to find the 

weighted effect size of each study and the mean weighted effect size of the study pools. 

The mean effect size for the 19 primary studies (19 effect sizes) was reported to have a 

magnitude of 0.60 (SE = 0.03) and in the positive direction. A 95% confidence interval 

around the overall mean—Clower = 0.53 and Cupper = 0.66—supported its statistical 

significance and its relative precision as defined by Hunter and Schmidt (1990). The 

magnitude of the mean effect size statistics was ES = 0.60. Such effect magnitude along 

with a positive direction is described by Lipsey and Wilson (2001) as being of a medium 

size. When applied to school practice, it indicated that the score of an average student in 

the experimental groups, who learned using ECEs, was 0.60 of standard deviation above 

the score of an average student in the control groups, who was taught using traditional 

methods of instruction. Closer examination of the computed effect size and 

incorporation of the U3 Effect Size Matrix (Cooper, 2010) led to the conclusion that the 

average pupil who learned mathematical structures using exploratory environments 

scored higher on unit tests than 70% of students who learned the same concepts using 

traditional textbook materials. It can thus be deduced that using exploratory 

environments as a medium of support in the teaching of mathematics has a profound 

impact on students’ math concept understanding when compared to conventional 

methods of teaching. Table 9 provides a summary of the individual effect sizes of the 

meta-analyzed studies along with their confidence intervals, qualitative research 

findings, and the computer programs used as the instruments.  
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The table also contains reliability of measures used to compute the individual 

mean scores, expressed by indicating whether the test was researcher developed or 

standardized. For studies where it was available, Cronbach’s alpha (α) is also listed. 

Finally, the table contains additional information provided by the primary researchers 

that distinguish the given study within the pool. 

 

Table 9  

Effect Sizes of Using ECE in Grade 1-8 Mathematics 

 
 

Study 
(First Author) 

 
ES 

 
SE 

 
95% CI 

Lower Upper 

 
Reliability  
of Measure 

 

 
Program Used, Research Findings, 

Research Specifications 

Pilli (2013) 0.76 0.24 0.05 1.09 Researcher 
developed, 
Cronbach’s  
α = 0.9 
 

Used Frizbi Math 4. Explored 
arithmetic operations.  

Kong (2007) -0.33 0.27 0.12 1.15 Teacher  
developed 
 

Used Graphical Partitioning Model 
(GPM). Interface not appealing. 
Fraction operations were explored. 

Hwang (2013) 0.72 0.59 0.07 1.93 Researcher  
developed 

Used virtual manipulative and 3D 
objects. Investigated the effect of 
peer learning.  
 

Lai (2012) 0.51 0.18 0.71 0.97 California 
Math 
Standard Test 

Used NeoGeo. Interactive 
environment helped make the 
applications meaningful. 
Investigated a peer effect. 
 

Chang (2007) 0.77 0.18 0.26 0.96 Researcher  
developed 

Used schemata-developed problem 
solving. Provided teachers 
guidance, and helped with stage 
understanding. 
 

Erbas (2011) 2.36 0.05 0.26 0.71 Researcher  
developed 

Used dynamic geometry 
environment (DGE). Dynamic 
environment contextualized 
scenarios well. 
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Table 9 continued 

Roschelle 
(2010) 

0.63 0.07 0.51 0.75 Researcher  
developed 

Used SimCalcMathWorlds. 
Explored the concepts of change. 
Investigated the effect of teachers’ 
professional skills. 
 

Kapa (2007) 0.68 0.20 0.20 1.00 Used Ministry  
of Education 
guidance 
 

Used three-stage problem solving 
and open-ended scenarios. 

Papadopoulosa 
(2008) 

0.34 0.21 0.22 1.02 Researcher 
developed  

Used computers to help explore 
hypotheses and verify the solutions. 

Eid (2004) 0.20 0.16 0.19 0.92 Standardized 
 

Contrasted students’ performance 
using computerized scenarios and 
traditional representations. 
 

Huang (2012) 3.27 0.26 0.29 1.13 Researcher 
designed 

Used onscreen presented solutions 
to walk students through the course 
of thinking. 
 

Lan (2010) 0.18 0.40 0.09 1.42 CEA  
assessment 
 

Used Group Scribbles (GS) 
platform that enhances 
collaboration. Developed stages of 
problem solving. 
 

Van Loon-
Hillen (2012) 

-0.01 0.39 0.20 1.40 Researcher 
developed 

Worked examples to help with 
following procedures. 

Guven (2012) 
 

0.61 0.32 0.19 1.22 Researcher 
developed 
 
 

Used dynamic geometry software 
(DGS). Developed four stages of 
difficulty: recognition, analysis, 
deductive, and rigorous.  
 

Chen (2007) 
 

0.71 0.34 0.01 1.30 Teacher  
developed 

Incorporated personal contexts that 
helped students relate math concepts 
with their experience. 
 

Ku (2012) 
 

0.23 0.18 0.26 0.96 Teacher  
developed 

Used personalized context to help 
students with math concept 
understanding.  
 

Suh (2007) 
 

0.14 0.34 0.09 1.30 Researcher 
developed 

Incorporated principle of balance 
scale to model linear equations. 

Panaoura 
(2012) 
 

0.37 0.13 0.34 0.85 Researcher 
developed 

Incorporated explorations to 
problem solving. 

Note. ES = effect size, SE = standard error. 
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The majority of the studies (16, or 84%) used researcher- or teacher-developed 

evaluation instruments, and only one (Pilli & Aksu, 2013) reported a Cronbach’s α- 

coefficient of reliability measure. In addition, the majority of the studies (17, or 89%) 

reported positive effect sizes when an exploratory environment was used as a medium of 

learning. Only two studies- one conducted by Van Loon-Hillen et al. (2012) and one 

conducted by Kong (2007)- reported negative effect sizes favoring traditional 

instruction, illustrating that exploratory environments cannot replace good teaching and 

that some concepts, like operations on fractions (Kong, 2007), require the instructor to 

deliver the concept and its stages and to suggest ways of overcoming obstacles students 

may face. Exploratory environments seemed to produce high effect sizes in cases where 

students applied math concepts in practice (e.g., Chang et al., 2006; Guven, 2012; 

Roschelle et al., 2010), but not when they first learned the concepts. The highest effect 

sizes were reported by Huang and colleagues (2012; ES = 3.27), who investigated the 

effect of embedded support during the process of problem solving, and Erbas and 

Yenmez (2011; ES = 2.36), who investigated the effect of open-ended explorations on 

students’ mathematical achievements. Although an influx of onscreen instructional 

support might work well in many school settings, we believe that elements of 

mathematical modeling induced in the study by Erbas and Yenmez (2011) support more 

accurately the objectives of this study. 

Analysis of Moderator Effects 

Just as a mean effect size provides certain evidences for study findings’ potential 

for duplication, subgroup moderator effects allow for uncovering potential mediators 
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that maximize the effect. Since student mathematical achievement was the main 

outcome measured in this study, during the process of moderator formulation, attention 

was paid to extracting the study features that mediated achievement with using ECEs. 

We anticipated that through identifying such features, an optimum classroom setting 

would emerge. In addition, we realized that the effect of ECEs is strongly influenced by 

the degree of interactivity of the educational program used and the applied scaffolding 

necessary to have students assimilate tasks presented in context; however, such 

extractions from the studies were not feasible. Thus, a set of five moderators was 

identified: grade level, instrumentation, treatment duration, content domain, and type of 

learning setting. This categorization resulted in 12 subgroups whose effects were 

individually computed. The mathematical calculations associated with this part of the 

analysis were performed following Cooper (2010), who suggested giving more weight to 

effect sizes with larger sample populations (w = inverse of the variance in the effect 

calculations). Along with calculating subgroup effects, researchers computed their 

corresponding confidence intervals and standard errors, which helped determine the 

statistical significance of the subgroup effects. Table 10 displays the effect sizes 

according to the formulated moderators and the subgroups (levels). In order to provide a 

common metric for the subgroup effects magnitudes comparisons, the effect sizes were 

weighted by the sample sizes.  
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Table 10  

Summary of Subgroups’ Weighted Effect Sizes 

Variable and Class N ES SE 

 

                 95 % CI 

Lower             Upper 
Grade Level   
 Lower elementary: 1 through 3 

 Upper elementary: 4-5 
 Middle school: 6-8 
 

 
2 
11 
6 

 
0.91 
0.41 
0.65 

 
0.58 
0.07 
0.04 

 
-0.23 
0.27 
0.58 

 
2.06 
0.54 
0.73 

Instrumentation 
  Problem solving 
  Explorations 
  

 
11 
8 

 
0.52 
0.61 

 
0.07 
0.04 

 
0.39 
0.54 

 
0.66 
0.69 

Treatment Duration 
   Short 
   Intermediate  
   Long 
    

 
4 
7 
8 

 
0.36 
0.65 
0.66 
 

 
0.14 
0.09 
0.04 
 

 
0.08 
0.48 
0.60 

 

 
0.63 
0.83 
0.75 

 
Content Domain 
   Geometry  
   Arithmetic and algebra 
 

 

7 
12 

 
0.73 
0.54 

 
0.09 
0.04 

 
0.55 
0.47 

 
0.91 
0.61 

Learning Type 
   Teacher centered  
   Student centered 
 

 
6 
13 

 
0.69 
0.55 

 
0.09 
0.04 

 
0.52 
0.47 

 
0.87 
0.62 

Note. N = sample size, ES = effect size, SE = standard error. 

 

The grouping into levels and its analysis provided a more insightful picture about 

the effects of ECEs on the achievement of students in Grade 1-8 mathematics classes 

and helped answer research questions of this study. Detailed discussions reflecting these 

questions follow. 

Are the effect sizes of student achievement different across grade levels?  

A block of Grade Level was created to answer this question. Following NCTM (2000), 

three subgroup levels were formulated: lower elementary, which included Grades 1-3; 
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upper elementary, which included Grades 4 and 5; and middle school, which 

encompassed Grades 6-8. The computed effect size showed differences across grade 

levels, with lower elementary producing the highest effect size (ES = 0.91), which 

according to Lipsey and Wilson (2001) can be classified as large. This result can be 

attributed to the fact that students at the lower elementary school level often use 

manipulatives to support their understanding of math concepts (Jitendra et al., 2007); 

thus, these students’ transition to ECEs occurs rather naturally, resulting in the highest 

score gain. The effect sizes in the other grades showed a moderate magnitude. A larger 

pool of studies would help conclude whether the effect size distribution is common. 

Are the effect sizes of student achievement different when problem solving is 

compared to explorations? The moderator category Instrumentation 

was established to discover whether ECEs affect student achievement differently 

through supporting problem solving and exploration. This was apparently one of the 

most important questions in this research. As explorations often led students to pattern 

formulations (Panaoura, 2012; Suh & Moyer-Packenham, 2007), problem solving was 

usually constructed within defined stages, gearing students’ thought processes toward 

finding numerical answers to the stated problems (Chen & Liu, 2007; Hwang & Hu, 

2013). When mediated, learning supported by explorations produced a higher effect size 

of ES = 0.61 as opposed to ES = 0.51 for problem solving. This result generates several 

conclusions and some further research questions. First, it can be concluded that the 

processes of explorations appear to resonate better with students’ prior experiences, 
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which consequently contribute to students’ higher motivation to immerse in the inquiry 

processes as opposed to problem solving.  

 The research shows that problem solving is an integrated part of any math 

curriculum perceived globally, and efforts to help students understand the solution 

processes are multidimensional, ranging from creating schemas (Kapa, 2007) to 

inducing personalization (Chen & Liu, 2007; Ku & Sullivan, 2012). However, attempts 

at helping students learn the processes of problem solving by embedding explorations in 

some of the transitioning stages are nonexistent. The research on problem solving 

gravitates toward creating cognitive support rather. For example, by using onscreen help, 

showing worked-out solutions that students can follow (Van Loon-Hillen et al., 2007), or 

varying the segmentation of the stages of the solution process. As shown by calculated 

effect sizes, all of these attempts seem to produce desirable positive results, however by 

focusing on simplifying the mechanics of the problem solving processes, the attempts 

shift the focus and diminish the scientific principles the problems intertwine. As word 

problems usually embody scientific scenarios, the scientific inquiry processes that would 

uncover the underlying principles and then direct the learner to find a particular solution 

are not emphasized in the accumulated pool of research on problem solving, with the 

exception of the research by Roschelle et al. (2010) and Panaoura (2007). English (2004) 

advocated for wider implementations of mathematical modeling, which includes 

explorations, in elementary math curriculum. We support that idea. 
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Are the effect sizes dependent on the mathematics content domain?  

Two mathematics content domains were examined in this study: geometry and algebra. 

Geometry, traditionally dominated by visualization, showed a higher effect size (ES = 

0.73) compared to algebra (ES = 0.54). As geometric objects can also be externalized by 

their real embodiments, it seems that more effort should be placed on visualization of 

other, more abstract, mathematical structures- such as equations and functions. A 

potential to enhance the teaching of algebraic structures via exploratory environments 

seems to exist and need to be further explored. Embodying these structures using 

context-driven scenarios deems to be a challenge, as reflected in finding only seven 

(37%) such studies. We realize that these two subgroups did not reflect the entire 

spectrum of the content domain, and further for detailed classifications, such as 

applications of ratios, proportions, or solving linear equations, could have been built in. 

Furthermore, ECEs could have been applied to any grade and mathematics domain. Due 

to lack of available research, a more detailed categorization did not emerge. 

How does the type of instructional support (teacher guided or student 

centered) affect student achievement when computers are used? There were two 

main categories of instructional support provided to the students in the study pool: 

student-center support, provided on the computer screen, or teacher-centered support, 

provided by the teacher. Student-centered studies (13, or 68%) dominated the pool, but 

teacher-centered support produced a higher effect (ES = 0.69) than student-centered 

support (programmed tips provided by the computer; ES = 0.55). This result stresses the 

importance of the teacher’s role in developing students’ understanding of mathematics 
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structures and helping them apply math concepts to solve problems. Programmed tips 

are important, but the instructors’ expertise and support from a live person appear to 

have a higher impact on student success. Certainly, an effective teacher “transfers the 

knowledge development and justification responsibilities to students” (Li & Li, 2009, p. 

275). Further research contrasting these two modes of instructional support would likely 

shed more light on cause of their differences.  

Based upon linking the levels with the highest effects, it appears that month-long 

(at minimum) explorations in mathematics classes, guided by the teacher, produce the 

highest learning effect. Of course, variations of the setting are possible based on 

individual student needs. This type of learning organization, according to the findings of 

this meta-analysis, would result in increasing students’ mathematical achievements.  

In addition to computer moderators that reflected the stated research questions, 

the effect of treatment length was also included in the moderator analysis. There is a 

noticeable effect of treatment duration on student math achievement. This conclusion 

corresponds to an inference reached by Xin, Jitendra and Deatline-Buchman (1999), who 

in their meta-analysis also proved that longer treatment results in higher student 

achievement. The learner needs to be acquainted with the mechanics of the new learning 

medium; thus, it is important that the first contact with an ECE be absorbed into a 

learner’s working memory. More frequent exposure to the new environment allows for 

more focus on task-driven objectives related to the content analysis, which results in 

learning more from the medium. However, as Guven (2012) and Roschelle and 

colleagues (2010) found out, there is an achievement saturation level, which perhaps 
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suggests that ECEs need to mediate with other factors, for instance, with different 

learning goals not necessarily related to content knowledge, such as analysis, synthesis, 

or evaluation (Anderson & Krathwohl, 2001), in order to further promote learning. 

General Conclusions and Study Limitations 

Though several meta-analyses have been conducted on the effects of technology 

on student achievement, this study sought to examine the effects of exploratory 

environments on students’ understanding of math concepts. Although the study found a 

moderate positive effect size (ES = 0.60) associated with ECE use, this does not 

diminish the importance of good teaching. Christmann, Badgett, and Lucking (1997), as 

well as Clark (1994), found that using computers purely as a method of instruction does 

not improve students’ math understanding. Hence, as computers have been used in 

mathematics classrooms for several decades now, the question regarding what extent to 

which they can impact the teaching and learning of mathematics seems to remain 

unanswered. This meta-analysis of up-to-date literature allowed for formulations of 

some inferences based on implementations of technology, but many new questions 

emerged, such as the following: How do exploratory environments help students with 

the transfer of math concepts to new situations? If ECEs embed scientific principles, 

then how using them helps students with understanding these principles in mathematics 

classes? How to assure that the methods of quantitative scientific modeling that students 

apply in their physics, biology, or chemistry classes are coherent with these used in 

mathematics? As models and the process of modeling are fundamental aspects in science 
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(Schwarz, & White 2005) should there be a general modeling cycle designed for all 

subjects?  

Mathematics provides tools for scientific phenomena quantifications, thus 

unifications of the techniques of modeling seem to benefit the transition of knowledge 

between mathematics and science, and consequently affect the learners’ perception of 

mathematics as a subject of a high applicability range. It seems that a more detailed 

research studies in this domain are worthy of consideration and common availability of 

computerized exploratory environments will be very helpful in organizing such studies.  

The Impact of ECE on Students’ Problem Solving Techniques  

Problem-solving techniques are developed on the basis of understanding the 

context through identifying the principles of the system’s behavior. However, it is a 

highly intertwined process that might include verbal and syntactic processing, special 

representations storage and retrieval in short-and long-term memory, algorithmic 

learning and its most complex element —conceptual understanding (Goldin, 1992). 

Computerized programs offering basis for investigations display a great potential for 

improving problem conceptual understanding, yet this study shows that this area is not 

fully explored yet and taking a full advantage of such learning environments bears as a 

possible extension of this research. Enriching the problem analysis through explorations 

to focus the learners’ attention on its underpinning principles and then formulate patterns 

and generalize the patterns using mathematical apparatus, emerges to be an approach 

worthy of further investigations. Higher student achievement on explorations (ES = 

0.61) when compared to problem solving (ES = 0.51) also encourages the need for a 
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search of moderators that were silent in the accumulated study pool. Is the act of 

allowing students some flexibility to explore a given scenario, formulate a problem, and 

have them hypothesize, test, and prove or disprove their hypothesis a possible moderator 

affecting the learning effects? If yes, then to what extent can this type of learning be 

applied to problem solving? Although, the contrast between traditional static methods of 

teaching problem solving and the support of computerized simulations shows that 

dynamic ECEs produce a higher learning effects (ES = 0.60), certain stages of problem 

solving processes need to be elaborated and delivered by the teacher. Thus, in a 

congruent vein, teachers’ role and their offered support should also be investigated. 

Finally, another possible research topic emerging from this study is whether the 

appealing format of ECEs is what dominates students’ engagements and consequently 

impacts their persistence to stay on tasks, or whether being in control of the scenario’s 

parameters and having the opportunity of manipulating its variables is the dominant 

factor.   

Limitations and Suggestions for Future Research 

There are certain limitations of this meta-analytic research, primarily because this 

study could not be conducted in an experimental fashion where ECEs constituted 

instrumentation provided by computer programs and a direct contrast between two 

different modes of learning was exploited. Furthermore, the limited count of studies 

available to be meta-analyzed also affected the study generalizability. Although 

sensitivity to smaller sample sizes was restored by the process of weighing, the impact of 
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the mean effect would validate the replication of the findings more significantly by being 

computed over a larger study pool.  

In addition, it was not possible to evaluate the designs of the interventions 

through the lenses of the multimedia principles defined by Clark and Mayer (2011). 

Such a moderator, if possible to compute, would shed more light into ECEs design 

effectiveness and help identify the most optimal. We were especially interested in 

examining the magnitude of the exploratory effects on improving students’ problem 

solving skills and inversely the presence and effects of the problem-solving phases 

exercised in the explorations on students’ achievements. However, we encountered 

limited research findings for extracting these features from the accumulated studies. 

Thus the effect of scientific empirical methods on building theoretical mathematical 

models that was intended to examine could not be completely furnished. We realized 

that both types of interventions—ECE’s supporting problem solving and explorations—

contain common features, and their effects on students’ problem solving skills not just 

their problem solving performance— as measured by testing —should be the study main 

objective. Further research focusing primarily on extracting these features in a 

systematic way surfaced as an extension of this study.  

Another factor limiting the study findings involved the widely varied methods 

that have been used to assess student achievement, ranging from traditional multiple-

choice exams mostly locally developed to new assessment techniques such as 

standardize-based assessments. Although some of these studies (e.g., Pilli et al., 2013) 
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reported a Cronbach’s alpha reliability coefficient, most did not, thereby decreasing the 

reliability of the measuring instrument.  

Furthermore, although we initially planned to investigate similar issues 

mediating mathematical modeling and problem solving, we encountered very limited 

research data on mathematical modeling; thus, we had to give up on this idea and instead 

focus our attention on explorations and problem solving. Thus, the effect of 

mathematical modeling on students’ problem-solving techniques was not investigated as 

initially planned. We would like to encourage researchers to engage in studies on the 

effects of exploratory environments on mathematical modeling and problem solving as a 

unified three-strand research area. This meta-analysis, to a certain extent, exposed a 

narrow focus of the existing primary studies on the effects of exploratory environments 

of problem solving in mathematics education. We suggest creating more constructs that 

would help quantify students’ problem-solving techniques in the function of their 

mathematical modeling skills with exploratory computerized environments and as a 

medium for such. There seems to also be a need to evaluate how learners link concepts 

with principles due to given conditions and how they initiate applications of the 

procedures that they select.  
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CHAPTER IV  

THE EFFECTS OF MATHEMATICAL MODELING ON STUDENTS’ 

ACHIEVEMENT: MIXED-METHODS RESEARCH SYNTHESIS 

 

Introduction 

This study intended to broaden the research findings about the learning effects of 

applying mathematical modeling at the high school and college levels as well as to 

contribute to improving the design of modeling activities. Such formulated orientation 

called for synthesizing not only quantitative but also qualitative research that led to 

undertaking two separate yet objective wise coherent lines of research: meta-analytic, 

which was applied to quantify the experimental research, and qualitative, which was 

grounded in evaluating the subjects’ behavior. A total of 32 research studies from 16 

countries encompassing the past 12 years (from January 1, 2000 to December 31, 2012) 

met the inclusion criteria. The results of meta-analytic techniques that included 13 

primary research studies and 1,670 subjects revealed a positive moderate magnitude 

effect size of ES = 0.69 (SE = 0.05, 95% CI: 0.59–0.79). A subgroup analysis displayed 

differences of the effect sizes due to different modeling designs, grade levels, and 

content domains. Qualitative research encompassing 19 primary studies and 1,256 

subjects allowed for emergence of a grounded theory that embodied a proposal of an 

integrated math modeling cycle situated in a scientific inquiry framework. Several 

venues for further research that came forth during the study are also discussed. 
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The modeling processes constitute central methods of science knowledge 

acquisition (Schwarz & White, 2005). Scientific modeling provides methods for 

analyzing data, formulating theories—often expressed in symbolic mathematical 

forms—and testing those theories. As such, learning by the processes of modeling plays 

a vital role in developing students’ skills in both science classes (Wells, Hastens, & 

Swackhamer, 1995) and mathematics classes, especially during problem-solving (Lesh 

& Harel, 2003). One of the many advantages of modeling activities as compared to 

problem-solving is shifting the learning focus from finding solutions to enhancing skills 

of developing the solution processes through transforming and interpreting information, 

constructing models, and verifying the models (Lim, Tso, & Lin, 2009). 

Mathematical modeling, traditionally a core part of engineering courses (Diefes-

Dux & Salim, 2012), became an important learning method in emerging new academic 

fields that integrate the contents of various subjects such as biophysics or 

bioengineering. The interest in integrating all branches of science, technology, 

engineering, and mathematics (STEM) education has increased very rapidly lately 

(Ferrini-Mundy & Gucler, 2009). Modeling viewed as an interdisciplinary activity is 

now also being implemented in earlier schooling levels (English & Sriraman, 2010). The 

development of students’ modeling skills starting at the earlier educational levels can 

have a profound impact on their success in engineering, medicine, and other college 

programs that aim at graduating professionals who engage successfully in problem-

solving processes (Diefes-Dux, Zawojewski, & Hjalmarson, 2010).  
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The purpose of this study was to synthesize the current quantitative and 

qualitative research findings on mathematical modeling at the high school and college 

levels as well as identify its strengths and weaknesses and search for ways of advancing 

the knowledge about the design of modeling activities that will increase students’ 

learning. Through identifying modeling features that produce high learning effects, we 

hoped to formulate suggestions for improving students’ performance on such tasks, 

focusing particularly on a high school mathematical curriculum, which provides 

educational foundations for students’ college success (Hoyt & Sorensen, 2001). By 

uncovering how students engage and perceive modeling tasks, we hoped to reach 

conclusions for strengthening the phases of the modeling processes and consequently 

better prepare students for their college programs and professional jobs.  

The process of mathematical modeling, defined as an activity of finding 

quantifiable patterns of a phenomenon and its generalizations (Lesh & Harel, 2003), was 

first introduced into a mathematics classrooms about four decades ago (Pollak, 1978). Its 

ultimate goal was to bridge the gap between reasoning in a mathematics class and 

reasoning about a situation in the real world (Blum, Galbraith, Henn, & Niss, 2007). 

Research shows that through immersing into the modeling cycle, learners develop the 

skills of scientific reasoning, which are essential in broadly defined problem-solving 

processes. Such situated, mathematical modeling recently emerged as one of the most 

often researched methods of mathematics learning in education (Schwarz & White, 

2005).  
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During the past decades, substantial research (e.g., Gravemeijer, 1997; 

Schoenfeld, 1992) has proved that the process of problem-solving is disconnected from 

mathematical modeling, meaning that without considering the factual relationship 

between real-world situations and mathematical operations, students mimic the process 

of solving word problems (Reusser & Stebler, 1997). Specifically, students tend to use 

superficial key word methods rather than analyze embedded mathematical structures in 

the attempt to solve the problems (Schoenfeld, 1992). As a result, in the current math 

curriculum setting, exercising problem-solving processes does not generate the skills that 

it intends, and a substantial research body (e.g., Klymczuk & Zverkova, 2001; Lesh & 

Zawojewski, 2007; Schoenfeld, 1992) has proven this deficiency. In light of these 

findings, the following ultimate question arises: What phases of mathematical modeling 

help students improve their problem-solving understanding and enrich their techniques 

of formulating solution designs? Viewed through this prism, other questions can be 

generated: Should mathematical modeling constitute a separate type of classroom 

activity, or should it instead be considered as a phase of problem-solving processes? If 

both of these two competencies—modeling and problem-solving—are integrated, which 

one should dominate learning inquiry in mathematics classes? Should modeling be 

considered a subset of problem-solving, as shown in Figure 7A or should problem-

solving be a subset of modeling, as shown in Figure 7B? 
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A 

Problem-Solving 

 

B 

Mathematical Modeling 

 

 

Figure 7. Current relations between math modeling and problem-solving. 

 

The systematic research review undertaken in this study is poised to reflect on 

this relation and will attempt to propose a diagrammatic learning process that will 

comprise both mathematical modeling and problem-solving. 

Theoretical Background and Synthesis of the Prior Research 

Mathematical modeling is defined as an activity of finding patterns, generalizing 

the patters, and expressing the patters using mathematical apparatus. In these processes, 

mathematical models are elicited. Such elicited models represent simplified but accurate 

representation of some aspect of the real world (Winsberg, 2003). The models can take 

various forms, ranging from physical objects (e.g., solids or plane figures) to 

mathematized statistical models, differential equations, or mathematical functions, all of 

which describe algebraic dependences of the system variables.  

Mathematical modeling utilizing real scenarios, phenomena, or data that can be 

provided or gathered through experimentation is often classified as an exploratory type 

of learning (Thomas & Young, 2011). Conducting experiments and gathering data are 

often difficult in mathematics classrooms that are not traditionally designed for that 

purpose. Since computerized experiments can substitute for real experiments in science 

Mathematical 
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Problem - Solving 
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classes (Podolefsky, Perkins, & Adams, 2010), their adoption for enhancing 

mathematical modeling has become more tangible in contemporary math classrooms. 

One of the purposes of this study was to identify and statistically quantify the effect sizes 

of using various learning media that can support mathematical modeling, focusing 

especially on the learning effects produced by computerized simulations. 

The mathematical modeling process usually concludes with a formulation of a 

mathematical representation. As such, multifaceted cognitive goals are achieved by 

learners undertaking modeling activities. Bleich, Ledford, Hawley, Polly, and Orrill 

(2006) claimed that such activities (a) expand students’ views of mathematics by 

integrating mathematics with other disciplines, especially sciences; and (b) engage 

students in the process of mathematization of real phenomena. Understanding how 

models develop has a great potential to inform the field of mathematical education, 

much like research on the development of other math ideas, such as rational numbers or 

proportional reasoning (Lesh & Zawojewski, 2007). In this view, being able to express a 

situation using mathematical representations helps students develop problem-solving 

skills (National Council of Teachers of Mathematics [NCTM], 2000). A study by 

Lingefjärd (2005) concluded that after working on modeling activities that are usually 

supplied by real embodiments, students handled word problems with embedded visual 

representations better than those taught by conventional methods. A study conducted by 

McBride and Silverman (1991) revealed that mathematical modeling used during 

integrated lessons increased students’ achievement in all subjects whose content was 

utilized. Another advantage of exercising modeling is improving students’ affective 
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skills. By analyzing the processes of a phenomenon, students critically validate its 

stages, which in turn provide them with a contextual reference to problem-solving.  

Mathematical modeling as a process of mathematizing real phenomena has been 

frequently researched, and its structural phases have undergone several modifications. 

As a result, multiple theoretical designs have emerged to organize mathematical 

modeling activities. Their structures are presented in the next paragraph, and a short 

analysis accompanies each of them. The purpose of the following section is to shed light 

on the historical perspective on modeling and identify conceptual trends in which the 

designs are evolving. 

Review of Existing Modeling Cycles 

One of the precursors of mathematical modeling designs was proposed by Pollak 

(1978) and is displayed in Figure 8.  

 

  

Figure 8. A prototype of the modeling cycle (Pollak, 1978). 

 

 This design focused more on amplifying the domains encompassing modeling 

stages than the processes linking these stages, which are silent in this model. 
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Mathematics is depicted as a distinct academia separated from the rest of the world. The 

schema does not underline the initial phase of the process, nor does it elaborate on the 

final stage. Mathematics is divided into two sections—classical applied and applicable 

mathematics—with an intersection of these domains indicating common features. As 

presented, the applications of the model to school practice seem to have been limited. 

The method of inquiry was not specified and did not resemble scientific processes per se. 

Another, more detailed cycle for modeling activity design was developed by Blum 

(1996) and is illustrated by Figure 9. 

 

 

Figure 9. Modeling cycle (Blum, 1996). 

 

This cycle consists of two equal chambers called Reality and Mathematics, which 

consist of building blocks defined as real situation, real world model, mathematical 

model, and mathematical results. This cycle appears to be better balanced, weighting 

equally the aspects of reality and the models that are to reflect on the reality. The initial 

stage of the process is labeled as real situation. By moving through the modeling cycle, 

the modelers are to return to the real situation by validating their answers. Although the 
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designated stages are labeled, the processes that link the stages are only ordered by (a), 

(b), (c), and (d), with no further elaboration.  

Blum and Leiss (2007) developed a more detailed schema for modeling that 

included not only the stages of modeling but also short descriptions of the processes 

linking the stages (see Figure 10). 

 

 

Figure 10. Modeling cycle (Blum & Leiss, 2007). 

 

In their proposal, Blum et al. (2006) identified the following main phases of the 

modeling cycle: real situation; situation model; mathematical model, which leads the 

learners to generate mathematical results; and real results. They highlighted the phase of 

situation model, suggesting that during this phase the learner immerses in the process of 

understanding the task that will affect the correctness of the next phases of the cycle. 

Situation model that is meant to emerge as a quantitative structure independent from the 
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text of the given problem is perceived by some researchers as a phase of solving word 

problems (e.g., Nesher, Hershkovitz, & Novotna, 2003). In this vein, Ferri (2006) 

posited the question of whether formulation of the situation model follows understanding 

of the real model. The interaction between real and mathematical worlds is depicted 

through the processes of mathematization and interpretation. While the process of 

mathematization helps to express given elements of reality in symbolic forms, during the 

process of validation the modeler returns to the given real problem and contrasts its 

mathematical description with its real parameters. As this cycle provides many details 

about the phases, the separation of mathematics from the real world highlighted in this 

model seem to dilute the main idea of modeling activities that are about integrating 

mathematics with “the rest of the world” rather than separating these two. 

More recently, Lim et al. (2009; see Figure 11) proposed yet a more detailed 

modeling cycle in which the tasks at certain stages are further elicited.  

 

 

Figure 11. Modeling cycle (Lim et al., 2009).  

 

According to this model, the participants initiate the process by specifying the 

problem given in the scenario, then they isolate important features of the model by 
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making assumptions, and then they move to formulating and solving the problem. A 

stage of derived model validation is also present. Lim and his colleagues (2009) 

especially highlighted the phase of making assumptions in their modeling cycle, which is 

a precursor to model formulations. 

More diverse modeling cycles can be found in the literature (e.g., Berry & 

Davies, 1996; Geiger, 2011; Lesh & Lehrer, 2003; Yoon, Dreyfus, & Thomas, 2010). 

They share some common features; for example, they begin from a real situation and 

conclude with mathematical form of the situation. Yet, as Perrent and Zwaneveld (2012) 

noticed, the problem that students and teachers are confronted with during the modeling 

exercises is a lack of uniformity about the essence of tasks of these processes that cause 

obstacles in organizing such activities in school practice where the students are expected 

to express, test, and revise their own current ways of thinking (Yoon et al., 2010). Are 

the methods of mathematics defined widely as pattern seeking and conjecture 

formulations (Devlin, 1996) sufficient to lead the learners through modeling processes 

typical for a scientific inquiry? None of the models proposes an adoption of some of the 

phases of scientific modeling that students learn in their science classes. Situation, 

model, and analysis of the model appear to be crucial elements of the scientific modeling 

with the model as the central element of the process. As real situations at the high school 

and college levels often involve physics, chemistry, or biology concepts, referring to 

these concepts in the modeling and comparing them against their mathematical 

counterparts appeared to us as an interesting task. For a brief reference, we would like to 

discuss the main elements of scientific modeling using Hestenes (1995) modeling design 
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(see Figure 12). While science modeling can take two forms; qualitative and 

quantitative, the phase of mathematical modeling is not isolated in the proposed cycle.  

 

 

Figure 12. Science modeling cycle (Hestenes, 1995). 

 

Situation, model, and model analysis appear to be critical elements of scientific 

modeling with the model being the central element of the process. This cycle highlights 

an embedded system phenomenon not mentioned in the discussed mathematical 

modeling processes. The idea of extracting a system phenomenon or principle gained 

more attention in this study, and its role will be further discussed. Felder and Brent 

(2004) stated that following a scientific inquiry process, learners exercise inductive 

reasoning, which is a precursor to students’ natural curiosity and their intellectual 

development. Thus, the degree to which scientific inquiry is present in math modeling 

activities will also be discussed in this paper. 
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The Concept of Model - Eliciting Activities (MEAs) 

 Mathematical modeling cycles provide a general framework for a structural 

design of mathematical modeling activities. Lesh and Kelly (2000) went further and 

developed six principles for modeling activities’ context design. Several research studies 

located on mathematical modeling have been centered on MEAs (e.g., Inversen & 

Larson, 2006; Yoon et al., 2010; Yu & Chang, 2011). It seems that this framework 

crystallizes as a main structure for modeling activities’ context design. Each of the 

principles invokes certain questions that when satisfied, guarantee that the given activity 

can be classified as an MEA. A discussion of the principles along with the following 

invoking questions follows: (1) the reality principle—does the given situation appear 

realistic to the learners and is it built on the learners’ prior experience? (2) the model 

construction principle—does the situation generate a need for inducing mathematical 

tools? (3) the self-assessment principle—does the activity involve assessment of the 

developed model? (4) the construct documentation principle—does the activity make the 

students document their thought processes? (5) the model share-ability and reusability 

principle—can the elicited mathematical model be used to solve other similar problems? 

(6) the simplicity principle—is the content of the problem and the mathematical tools 

used to solve it in the range of students’ abilities and possessed knowledge? Coupled 

with the mathematical modeling cycle, the six principles for MEAs enrich the design 

framework and clearly distinguish it from typical problem-solving frequently applied in 

mathematics classroom. What are the differences between problem-solving and MEA? 
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Some researchers (e.g., Mousoulides, Christou, & Sriraman, 2008; Yoon et al., 2010) 

defined problem-solving as repetition of procedures, whereas modeling activities, 

according to these researchers, tend to be context-rich problems that do not assume that 

students have already learned the procedure for solving the problem. Yet, this distinction 

between modeling and problem-solving seems to contradict the simplicity principle, 

which assumes that students immersed in modeling activities possess necessary skills 

and knowledge and thus the procedures to enact and test derived models. 

Models, the product of modeling, can take various forms in mathematics. 

Representing simplified but accurate aspects of the real world, the models can be 

formulated using physical objects or nonphysical abstract mathematical forms expressed 

symbolically. In the process of mathematical modeling, a system under investigation, as 

well as its variables, must be defined using mathematical rules. The goal of immersing 

math students in the process of modeling is to have them view given phenomenon 

through the rules of mathematics representations. Suitable rules and their corresponding 

mathematical embodiments are identified through observing the system, identifying 

related parameters, formulating patterns, and constructing a symbolic representation of 

the patterns. Such defined models consist of a set of constraints that are embedded in the 

model selection. A formulated model can be further used to predict the behavior of the 

system in new circumstances. Viewed through this lens, the process of mathematical 

modeling places itself as a precursor to developing learners’ problem-solving techniques. 

This vision is also supported by Lesh and Kelly’s (2000) multi-tiered teaching 

experiments, which suggest conducting research on problem-solving as modeling. 
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Computer simulations as the means of enhancing modeling. Along with 

technological advances, education multimedia technologies create interactive learning 

environments whose goal is to enhance teaching and learning. Software in the forms of 

tutorials, simulations, games, and graphing and computational programs are created to 

help learners make knowledge more accessible and consequently increase their rate of 

the knowledge acquisition. Exploratory learning environments engage the learner with 

the environment through definite actions of gathering and investigating information 

(Flum & Kaplan, 2006). They also promote transfer of knowledge, inquiry, problem-

solving skills, and scientific reasoning (Kuhn, 2007). Exploratory learning environments 

can be externalized in various forms, such as real experimentation, provided data, 

scenarios provided on video or other multimedia, and scenarios provided by computers. 

Computerized simulations offer great promise for providing a rich medium for such 

learning. Determining the effect size of using technology to enhance the process of 

mathematical modeling constituted one of the research subgroup moderators of this 

study. 

Math modeling as an essential skill in engineering, science, and technology. 

Mathematical modeling, whose essence is to bridge mathematics with an outside world, 

is particularly important in engineering, science, and technology where transitions 

between real-word problems and the models are the substance of the disciplines (Crouch 

& Haines, 2004). Research shows that how students perceive mathematical modeling is 

greatly affected by their previous experiences with this type of learning. If problem 

solving is perceived as applying procedures dictated by the teacher, the students will 
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carry on this notion through their further math education (Christiansen, 2001), and likely 

they will perceive modeling as an activity of following teacher-dictated procedures. 

Stenberg (1997) claimed that students’ difficulties are due to being new to mathematical 

modeling activities entering their undergraduate college programs. The phase that is 

especially difficult is formulating sets of hypotheses, identifying the variables, and 

testing the derived model. Making modeling more accessible at a high school level 

seems to be one of the actions toward a better preparation of these students for their 

undergraduate college modeling activities. During the process of analysis of the 

accumulated research, we were also interested in extracting the contracts and 

expectations of undergraduate engineering, science, and technology programs that are 

essential in those disciplines and linking them with high school modeling designs. We 

concluded that learning the general conceptual approach to modeling in undergraduate 

programs would help us to reflect on high school modeling activities and more 

accurately formulate recommendations for their design. The following description of 

mathematical modeling for in undergraduate programs is proposed by Crouch and 

Haines (2004): “Mathematical modeling involves moving from a real-world situation to 

a model, working with that model and using it to understand and develop or solve real-

world problems” (p. 197). The mathematical modeling appears as a phase that is 

embedded in world problems. Bearing this, we will be interested in examining how the 

current research on mathematical modeling links students thinking processes to problem 

solving. The following cyclic process of mathematical modeling at undergraduate levels 

is proposed by Berry and Davies (1996): real-word problem statement; formulating a 
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model; solving mathematics; interpreting outcomes; evaluating solution; refrying model; 

real-world problem statement. According to Crouch and Haines (2004), the transition 

from formulated model back to real-world problem is the most difficult; thus, more 

attention should be given to having learners analyze and further use the developed 

model. It is to note that in the proposed mathematical modeling cycles (e.g., Blum & 

Leiss, 2007; Pollak, 1978), the role of scientific methods is diminished, whereas at the 

undergraduate level, they provide the basis for conveying mathematical meaning. The 

scientific methods are not separated from mathematical modeling, but they constitute an 

integrated part of the cycle. Searching for ways to reinstall this link at a high school level 

seems to be an important factor in connecting these two phases of schooling. 

Synthesis of Prior Research 

Although mathematical modeling was implemented in mathematics education 

about four decades ago, its contribution to mathematics education research has gained 

momentum recently. This section will synthesize major findings from prior qualitative 

and quantitative studies on effectiveness of mathematical modeling lessons, focusing on 

using computer programs as a medium for such activities.  

Past Research Major Findings  

In supporting the need for this study and reflecting on previous research, we 

searched for meta-analyses and other types of research syntheses on mathematical 

modeling in education using ERIC (Ebsco), Educational Full Text (Wilson), 

Professional Development Collection, and ProQuest Educational Journals, as well as 

Science Direct and Google Scholar. Although several meta-analytic research studies 
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targeting various aspects of conceptualization of math ideas were located and their 

discussion follows, a meta-analysis specifically targeting research on mathematical 

modeling was not found. Syntheses of qualitative research on mathematical modeling 

were not found either. The cited research will then, at large, refer to several constructs 

that aim at investigating various processes or stages of mathematical modeling activities. 

The effect of using computer simulations as an instructional strategy on students’ 

early math knowledge development was meta-analyzed by Dekkers and Donatti (1981). 

The findings gathered from 93 empirical studies “did not support the contention that 

simulation activities cause an increase of students’ cognitive development (d = - 0.075) 

when compared with other teaching strategies” (Dekkers & Donatti, 1981, p. 425). In 

light of these findings, these researchers suggested that “attention should be given to 

reporting details of methodology employed” (p. 426). The lack of promising results was 

associated with inadequate teaching methods that simulations were supposed to support. 

Sequentially arranged, the following will summarize findings conducted by Fey (1989). 

While discussing the capabilities of producing dynamics graphs, which are essential 

tools of math modeling, Fey uncovered that technology is not helping students with 

graph interpretation, as was expected. Consequently, Fey suggested developing projects 

that will address these difficulties and conducting research that will investigate 

eliminations of these difficulties. He also noticed a need for a change in teachers’ 

perception regarding graph introduction—from teaching students “how to produce a 

graph to focusing more on explanations and elaboration on what the graph is saying” (p. 

250). Another advantage of using computers in math education is their capability of 
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creating micro-worlds that allow students to make changes in their environments. Being 

able to manipulate system variables sustains the phase of model verification; thus, 

investigating computer capabilities in these regards contributes to strengthening the 

design of modeling activities. Thomas and Hooper (1991) advocated for a more precise 

definition of computer simulations and claimed that the lack of such hinders precision 

and questions validity of research aimed at quantification of simulation effectiveness. 

Kaput and Thomson (1994) elaborated on the pitfalls of the research pertaining to the 

role of technology in learning in general, stating that research studies played “less 

emphasis on controlled comparisons” (p. 677), thereby generating more research 

questions than providing answers. Yet, Kaput and his colleague underlined technological 

interactivity as a significant advantage to enabling students to experience active learning. 

They also claimed that an obstacle of injecting the meaning into procedures that students 

previously “automatizied meaninglessly” (p. 679) had not yet been overcome and that 

there was a need for attracting more researchers and curriculum developers to address 

this issue. Quantification of effect learning sizes when computer simulations were 

compared to traditional methods of instruction was presented by Lee (1999), who meta-

analyzed 19 empirical studies and concluded that they produced a moderate (ES = 0.54) 

learning effect size. Lee pointed out that “specific guidance in simulations helps students 

to perform better” (p. 81). In the light of this finding, he advocated a need for placing 

more emphasis to guidance design. A meta-analytic study conducted by Kulik (2003) 

who located six research studies published after 1990 on the effectiveness of 

computerized exploratory environments in secondary schools revealed an effect size of 
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0.32. Kulik did not elaborate on how these simulations were embedded in the lesson 

cycles or discussed the design of instructional support. He did, however, question the 

validity of some of the research procedures and evaluation instruments that quantified 

the research. A substantial meta-analysis including studies conducted after 1990 on the 

effectiveness of using computer technology in mathematics classrooms was conducted 

by Li and Ma (2010) who extracted  a total of 85 independent effect sizes from 46 

primary studies representing all grades from elementary to senior secondary school. 

These researchers computed the effect sizes for various types of technology used, such 

as communication media, tutorials, simulations and the like. The overall effect size of 

ES = 0.28 proved the statistical significance and supported the claim that using 

technology in math classes improves students’ achievements. The effect of using 

simulations (ES = 1.32) outpaced the effectiveness of tutorials (ES = 0.68) and 

communication media (ES = 0.39). The researchers also reported that “using technology 

in school settings where teachers practiced constructivist approach to teaching produced 

larger effects on mathematics achievement” (Li & Ma, 2010, p. 233) when compared to 

traditional teaching methods. They further concluded that learning through technology 

does require a context to produce desired learning outcomes. Yet, suggestions on the 

forms of the contexts and how the contexts should be executed were not discussed. 

Identified Areas of Concern in the Prior Research  

As an emerging method of mathematical knowledge acquisition, modeling still 

faces unresolved issues that prevent the process of design of its conceptual framework 

from solidifying. One such issue involves the stage of verification. Zbiek and Conner 
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(2006) suggested that there should be multiple opportunities for learners to verify 

derived models. Yet, in pen-and-pencil problems, verification might be lacking a reality 

aspect that modeling is centered on. Providing students with some format of real 

experiments or easily accessible computerized simulations during which isolated 

variables can be manipulated manifests itself as suggestion worthy of further 

investigation. Zbiek and Conner (2006) further reflected on the process of assessing 

students’ competency in math modeling and asked if the skills of mathematical modeling 

should be included as one of the math assessment items. Bleich and colleagues (2006) 

expressed concerns about inadequate teacher methodological preparation in inducing 

graphical representations during the modeling processes of motion. A similar conclusion 

was reached by Sokolowski and Gonzalez y Gonzalez (2012) in their study on how 

mathematics teachers perceive the differences between position-time graphs and path of 

object’s movement while modeling motion problems. This research revealed that math 

teachers are willing to apply math modeling in their math classes, but they face obstacles 

in finding sound scientific methodology that could help with organizing the modeling 

activities processes that would nurture students’ learning. Another unanswered question 

centers on the linkage of the modeling process with the contents of other academic 

disciplines. Some researchers claim that the goal of math modeling should be limited to 

formulating a mathematical representation and that no further conceptual discussions of 

the formulated patterns are needed. Although valid from a mathematical point of view, 

this stance does not mediate with a commonly accepted contemporary approach to 

teaching mathematics and science (e.g., Niess, 2005) and it is at odds with STEM 
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education. Instead, shouldn’t mathematical modeling be perceived as a bridge linking 

mathematics with other academia? The core phase of modeling constituted by a 

discussion about proving or disproving the validity of a derived mathematical model for 

fitting into scientific principles that the given system displays may also have a profound 

impact on eliminating many science-math misconceptions. Li (2007) recommended that 

“the differences between school science and mathematics concepts should be noted 

when we try to develop a model to explain students’ misconceptions in school 

mathematics” (p. 6). Since college students’ preparation to link mathematical world and 

real world is fragile (e.g., Carrejo & Marshall, 2007; Klymchuk & Zverkova, 2001), 

placing more emphasis on integrating these areas in high school emerges as a 

recommendation that would strengthen the links.  

In sum, the major meta-analyses and qualitative syntheses reported positive 

learning effects when simulations were used to enhance math learning objectives. Yet, 

the information associated with the type of instructional support that appears to be of 

high significance is limited. This study attempted to fill in the gap and enrich the 

analyses by placing an emphasis on this construct. It is evident that mathematical 

modeling has an established voice in mathematics education research. Its cognitive and 

affective effects on students’ math knowledge and aptitude are well exploited and 

researched. However, as this synthesis has revealed, there are unanswered questions and 

unresolved issues regarding, for example, instrumental implementation of this learning 

method in school mathematics. Successful implementation of computer technology must 

rely on sound instructional strategies (Coley, Cradler, & Engel, 2000). Thus, in order to 
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have students capitalize on this learning method and maximize their learning potential, 

further research is needed.  

Research Methods 

Although a literature review  is usually undertaken with one research method—

either narrative, quantitative, or meta-analytic — guiding the study, this study 

intertwined two methods: a systematic approach proposed by Glass (1976), called meta-

analysis, and a systematic summary of qualitative and mixed-methods research. The 

general search criteria were set to be similar for both lines of research, and 

differentiation was made on research findings’ evaluation. The meta-analytic part was 

concluded with calculating main effect size statistics along with moderator effects, and 

the qualitative part concluded with a formulation of common themes and emergence of a 

grounded theory that reflected on subjects’ perceptions of various constructs, referred to 

modeling activities. Considering each study as individual informatory, the analysis of the 

qualitative pool of studies was guided by methods described by Lincoln and Guba 

(1985). Content wise, this study attempted to synthesize research on applying 

mathematical modeling to support the process of mathematical knowledge acquisition 

and improving students’ problem-solving techniques at the high school and college 

levels. The modern theory on research design on mathematical modeling (Zawojewski, 

2010) identified two types of research objectives: (a) development and evaluation of the 

models formulated by learners, and (b) instructional tools and learning media applied 

during the modeling activities. While in positivistic paradigms, inferences are made due 

to quantifiable data, in naturalistic paradigms each informant is a source of valuable 
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district data (Lincoln & Guba, 1985) providing multiple yet holistic information. 

Undertaken with such scope, this research intended to zoom in and reflect on findings of 

both; quantitative empirical studies that provide measurable outcomes and qualitative 

studies that reflect on learners thought processes. It was hoped that by embracing the 

research in this strategy, a more comprehensive picture of current research on 

mathematical modeling would be generated and the inferences would be broader.  

Research Questions  

 The formulation of the research questions was supported by (a) the research 

conceptual framework, (b) suggestions found in the prior literature, (c) development of 

modern views on the role of mathematical modeling in school practice, and (d) the type 

of research methods employed. Intertwining these four pillars, the following research 

questions emerged: 

1. What are the magnitude and direction of the learning effect size when students 

are instructed in mathematical modeling as compared to conventional methods of 

learning? 

2. What are the possible moderators that affect students’ achievement during 

modeling activities?  

3. What are recommendations for a design of modeling activities as based on 

students’ perspectives? 

While question (1) and (2) will be answered by applying meta-analytic techniques and 

synthesizing experimental-pretest posttest studies, question (3) will be answered by 

synthesizing qualitative research findings.  



111 
 

The Main Key Term Descriptions 

Several key description terms were formulated to guide the qualitative and 

quantitative research literature search. As the listing below summarizes all the keys, 

some, for instance, effect size, were used to scrutinize only experimental pre-posttest 

quantitative research. 

 Mathematical modeling. The virtue of mathematical modeling is supported by 

Crouch and Haines’s (2004) description that defines it as a process of moving from a 

real-word situation to a model, working with that model, and using it to further 

understand and develop or solve real-word problems. Thus, this definition was taken 

with a broader scope, and the research encompassed not only research involving 

activities concluding with a model but also those that used the model to find a unique 

solution. 

Model-eliciting activities. MEAs provide a theoretical framework for 

mathematical modeling activities used as a treatment design in the accumulated research. 

Due to this framework being relatively new in the mathematical research community, 

studies that satisfied major phases of MEAs but that did not explicitly highlight 

following all phases of MEAs were also included in the pool.  

 Student achievement in mathematics. Student achievement is defined as a 

percent score or their equivalent decimal form on solving various mathematical 

structures adequate to high school and college math curricula where MEAs or some of 

their phases were used as a treatment. The basis for calculating student achievement was 

their performances on standardized or locally developed tests. 
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Effect size statistic. Effect size is a statistical parameter used to quantify student 

achievement scores in the meta-analytic part of the study. It is computed using mean 

posttest scores of treatment and control groups along with the coupled standard deviation 

of both groups. If these quantifications are not available, other statistic parameters such 

as F-ratio, t-statistics, or p-values were used according to formulas formulated by Lipsey 

and Wilson (2001).  

Grounded theory. Grounded theory is a result of synthesis of qualitative 

research (Lincoln & Guba, 1985). It formulates general inferences and recommendations 

based on that research.  

Themes. Themes are common inferences from debriefing qualitative research 

that were used to formulate grounded theory. 

Data Collection Criteria and Descriptions of Coding Study Features 

Due to the dual focal point of this synthesis—qualitative and quantitative—the 

initial search criteria included the following: (a) time span: this study intended to 

synthesize research published between January 1, 2000, and February 31, 2013, on 

applying mathematical modeling to support student math learning at the high school and 

college levels; (b) type of research design: qualitative and quantitative; and (c) sample 

size: the minimum sample size established in this meta-analysis was 10 participants for 

experimental pretest-posttest research, and no limit was established qualitative research. 

In the meta-analysis part, we allowed only experimental research that provided means of 

calculated effect size statistics. The following defines features that were extracted from 

the accumulated research.  
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Descriptive parameters. Descriptive parameters encompassed the following: the 

grade level of the group under investigation, the locale where the studies were 

conducted, the sample size representing the number of subjects in experimental and 

control groups, the date of the study publication, the duration of the study, and the total 

time interval that the subjects were under treatment. The total treatment time was 

introduced due to a high diversity of treatment frequency; thus, for instance, if the study 

lasted 2 months and the treatment was applied twice a week for 3 hours each session, the 

reporting on this study would be shown as 2 months/48 h. 

Inferential parameters. In order to compute study effect sizes, posttest mean 

scores of experimental and control groups and their corresponding standard deviations 

were extracted. If these were not provided, F-ratios or t-statistics were recorded. 

Although most of the studies reported more than one effect size, for example, Schoen 

and Hirsch (2003) and Wang, Vaughn, and Liu (2011), who also reported on students’ 

attitudes toward mathematical modeling activities, the current study focused on reporting  

effects of student achievement only and mediated by highlighted moderators. 

The research authors. A complete list of research-leading authors and co-

authors involved in each study completion will be provided in the general tabularization 

summary. As the analysis progressed, each primary study was denoted by its leading 

author and the year of research conduct.  

Publication bias. We focused on extracting the studies that were peer-reviewed 

and published as journal articles; thus, no additional category in the summaries was 
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created. By embracing the study publication selection in these criteria, a publication bias 

was reduced. 

Group assignment. Shadish, Cook, and Campbell’s (2002) definitions supported 

identification of group assignments. During the coding process, two main categories 

emerged: (a) randomized, where the participants were randomly selected and assigned to 

the treatment and control group; and (b) quasi-experimental, where the participants were 

assigned by the researchers.  

Type of research design. Experimental studies that provided pretest-posttest 

means or other statistic parameters allowing the means calculations along with 

experimental mixed-method research were scrutinized.  

Medium used for model construction. Medium for modeling is defined as 

information presented as data tables, a written text problem, computerized scenario, or 

real experiment. Any of these type of media will be categorized. 

Descriptions of Moderators 

A total of 12 moderators were formulated to be extracted from each study that 

met the general criteria. The moderator group classifications along with their levels are 

presented in Table 11.  
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Table 11 

Summary of Group of Variables and Their Classes 

Group Variables 

Study general  
characteristics 
  

Research authors 
School level (high school or college) 
Subject area (calculus, statistics, or algebra) 
Locale of the research (country where the study was conducted) 
Year of publication (year when research was published) 
Type of publication (peer-reviewed journal articles, conference proceeding) 

Study 
methodological 
characteristics 
 

Instrumentation (computer-supported activity or pen and paper) 
Reliability of measure (researcher-developed instrument (local) or standardized 
tests) 
Type of research (qualitative, quantitative, or mixed methods) 
Group assignment (randomized or quasi-experimental) 
Sample size (number of participants in control and experimental groups) 

Study design 
characteristics  
    
    

Program used, research specifications (verbal descriptions) 
Duration of treatment (in semesters, weeks, or days)  
Frequency of treatment assignment (in hours per day or other metrics provided) 
Type of  model eliciting activities  
Medium for model construction (computer or context provided on paper) 

 

 

In the process of collecting the research literature, ERIC (Ebsco), Educational 

Full Text (Wilson), Professional Development Collection, and ProQuest educational 

journals, as well as Science Direct, Google Scholar, and other resources available 

through the university library, were used. In the process of locating the relevant 

literature, the following terms were utilized: mathematical modeling, model eliciting 

activities, simulations, computers in mathematics, mathematics education, student 

achievement, high school, college. These search criteria returned 387 articles. After a 

review, it was revealed that 19 of these research studies satisfied the criteria, including 

eight studies of a qualitative nature. Most of the rejected studies focused on examining 
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formulated models in the professional fields of engineering or medicine. In order to 

increase the statistical significance of this review, a further search was undertaken with 

broader conceptual definitions. This search included auxiliary terms that were found in 

descriptions of mathematical modeling activities, such as investigations in mathematics, 

techniques of problem solving, exploratory learning in mathematics, and computerized 

animations and learning. These modifications allowing for adjusting the contexts and 

strengthening the relevance of the study returned 82 research papers. After an additional 

scrutiny, 13 studies were coded as satisfying the research conditions, resulting in 32 

primary studies, out of which 13 were quantitative, 16 were quantitative, and 3 were 

conducted using mixed research design. The validity of the coding and the extracted data 

was supported by a double research rating at the initial and at the concluding stages of 

the study. Any potential discrepancies were resolved.  

Descriptive Analysis of the Accumulated Research Pool 

The accumulated pool of studies that constituted raw data for the current research 

was at first analyzed descriptively. The purpose of such an undertaking was an attempt 

to summarize accumulated research in a meaningful way so that some patterns could be 

formulated. Once descriptive computations were concluded, further analysis was 

diverted in two independent channels: a meta-analysis of learning effect sizes of the 

quantitative studies and a synthesis of themes that emerged from qualitative studies. 

With such an aim, the data for the current research was constituted by 32 primary studies 

and a total of 2,925 participants. A general descriptive analysis of the studies is 
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displayed in Figure 13 and Figure 14 that follow. In both of these graphs, the vertical 

axes represent the number of studies. 

 

Figure 13. Distribution of studies per date of publication. 

 

 

Figure 14. Distribution of studies per locale. 
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Most research (26, or 81%) was conducted within the past 5 years, which 

signalized a rapid increase of interest in mathematical modeling among the mathematical 

research community. Considering the locale and frequency of studies, the United States, 

with 9, or 28%, had the modal number of studies, followed by Germany, then Taiwan, 

and Turkey, each contributing three studies, or 9%. A high diversity of countries where 

the studies were conducted indicates a high global interest in conducting research on 

mathematical modeling. Table 15 shows categorization of the pool of studies as 

qualitative, mixed method, and qualitative and displays their relative frequencies.  

 

 

Figure 15. Distribution of studies per type of research. 
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school and college levels, qualitative substantially dominated the latter. The following 

section presents a detailed meta-analysis of the experimental research. 

Meta-Analysis of Experimental Studies 

Out of 32 studies, 13 studies (or 41%) satisfied these conditions. These studies 

underwent rigorous meta-analytic data quantifications. Thirteen experimental pre-post 

studies and 14 primary effect sizes were used for the meta-analytic part of the study. The 

total number of participants was 1,670. Table 12 provides a summary of the extracted 

features of these studies. 

 

Table 12 

General Characteristics of the Studies’ Features 

Authors 

 

Date 

 

Locale 

 

RD SS 
 
  

School 
Level/ 
Subject                                                             

Research  
Duration/ 
Frequency  

Learn. 
Setting 

Medium 
of  
Learning 

Young, 
Ramsey, 
Georgiopoulos, 
Hagen, Geiger, 
Dagley-Falls, 
Islas, Lancey, 
Straney, Forde, 
& Bradbury 
 

2011 USA QE 265 College/ 
Calculus 

1 semester 
1h/week 

SC Comp 

Wang, 
Vaughn,  
& Liu 
 

2011 Taiwan QE 123 College/ 
Statistics 

1 semester 
NP 
 

SC Comp 

Voskoglou 
& Buckley 

2012 Greece QE 90 College/ 
Calculus 

1 semester 
NP 

SC Comp 

Laakso, 
Myller,  
& Korhonen 
 

2009 Finland R 75 College/ 
Statistics 

2 weeks 
2h/week 

SC Comp 
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Table 12 Continued 

Note. R = randomized, QE = quasi-experimental, DN = design, SC = student centered, MS = mixed 
methods, Comp = computer PP = pen and pencil, HS = high school, SS = sample size, NP = not provided. 
  

 

The majority of the studies (9, or 70%) were designed as quasi-experimental, 

while five (30%) were randomized. The study durations ranged from 1 semester to  2 

Authors 

 

Date 

 

Locale 

 

RD SS 
 
 

School 
Level/ 
Subject                                                             

Research  
Duration/ 
Frequency  

Learn. 
Setting 

Medium 
of  
Learning 

Milanovic,  
Takaci,  
& Milajic 

2011 Serbia QE 50       HS/ 
Calculus 
 

1 week 
4.5h 

SC Comp 

Baki, Kosa,  
& Guven 

2011 Turkey R 96 College/ 
Geometry 

1semester 
NP 
 

SC Comp 

Bos 2009 USA R 95 HS 
Algebra 
 

8 days 
55min/day 
 

SC Comp 

Mousoulides, 
Christou, 
& Sriraman 
 
 

2008 Cyprus QE 90 HS 
Statistics 
and 
Geometry 

3 months 
3h 
 

SC Comp 

Schoen 
& Hirsch 

2003 USA QE 341 HS 
Algebra 
 

1 semester 
NP 

SC PP 

Scheiter, 
Gerjets, & 
Schuh 
 

2010 Germany QE 32 HS 
Algebra 
 

1 session 
2h 
 

SC Comp 

Eysink,  
de Jong, 
Berthold, 
Kolloffel, 
Opfermann, & 
Wouters 
 

2009 The 
Nether- 
lands 
and 
Germany 
 

QE 272 HS 
Probability 

1 week SC Comp 

Bahmaei 2012 Iran R 60 College/ 
Calculus 

1 semester 
15 
sessions 
 

SC PP 

Baki & Guveli 2008 Turkey QE/ 
MS 

 

80 HS 
Algebra 

1 semester 
NP 

SC Comp 
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hours. Where it was provided, a frequency of treatment was also coded and reported. 

The average sample size for the study pool was 123 participants, with the highest being 

272 in a study conducted by Eysink et al. (2009) and the lowest sample being 32 

students in a study conducted by Milanovic et al. (2010). When categorized by school 

level, college and high school were uniformly represented, with six high school studies 

(or 46%) and seven college studies (or 54%). When categorized by learning setting, all 

of the studies were student centered, meaning that students worked on derived models of 

the given scenarios using the teachers’ expertise only when needed. Model construction 

was supported by using computerized simulations in 11 (or 85%) of the studies; only 

two studies (or 15%) used the traditional pen-and-pencil approach.  

Inferential Analysis 

The inferential analysis of this study pool was initially performed using SPSS 21 

(Statistical Package for the Social Sciences) software. We used the program and built in 

graphical capability to verify the homogeneity of the study pool, as suggested by Cooper 

(2010). For this stage, we calculated the effect size for each study present in the pool 

using posttest means on experimental and control groups, as suggested by Lipsey and 

Wilson (2001).  

Such standardized individual effect sizes were then corrected for population bias, 

as suggested by Hedges (1992), and weighted. After weighted effect sizes were 

computed, the overall weighted mean effect size statistic for the study pool was 

calculated. The homogeneity statistics was also calculated (QT = 329.74, with df = 16, p 

< 0.01) and indicated that the pool of effect sizes variation was statistically significant; 
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thus, a random-effect model was adopted for the further data analysis. In order to 

visually justify the degree of heterogeneity of the study pool and depict the relations 

between the overall mean effect size, individual effect sizes, and the confidence interval 

of individual effect sizes, a funnel plot was generated. 

 

 
 
Figure 16. Funnel plot for the data. 

 

The funnel plot (see Figure 16) shows that the effect sizes of three of the studies 

(or 23%) were outside of their confidence intervals, yet the majority—10 (or 77%)—

were located within the confidence intervals.  The mean effect size for the 13 primary 

studies (14 primary effect sizes) was reported to have a magnitude of 0.69 (SE = 0.05) 
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and a positive direction. A 95% confidence interval around the overall mean—Clower = 

0.59 and Cupper = 0.79—supported its statistical significance and its precision (Hunter & 

Schmidt, 1990). The numerical magnitude of the effect size of 0.69 is classified by 

Lipsey and Wilson (2001) as having a moderate size. Its positive direction indicated that 

the score of an average student in the experimental groups, who used mathematical 

modeling and computer programs to enhance problem-solving techniques, was 0.69 of 

standard deviation above the score of an average student in the control groups, who was 

taught the process of problem-solving using traditional methods of instruction. Another 

examination of the computed effect size incorporating modeling processes scored higher 

on unit tests than 70% of students who learned the same concepts being taught by 

traditional methods. Hence, it can be concluded that using mathematical modeling to 

support the process of problem-solving has a profound impact on students’ achievement 

compared to conventional methods of teaching. 

 
 
Table 13  
 
Effect Sizes of Applying Mathematical Modeling in High School and College 

 
Study 
(First 

Author) 

 
ES 

 
SE 

 
95% CI 

Lower  Upper 

 
Reliability of Measure 

 

 
Program Used, Research 
Findings, Research 
Specifications 
 

Bos 
 (2009) 

0.70 0.21 0.18 

 

1.01 

 

Used Standardized Texas state 
assessment. Kuder-Richardon 
formula 20 for reliability: 
 rpret = .80 and rpostt = .90. 
 

Used TI Interactive 
Instructional 
environment. 

Young 
(2011) 

0.61 0.13 0.10 1.09 Used (UCF) university faculty 
Math Department tests. Inter-
rater reliability: rpret = .82 and 
rpostt = .92. 

Research modeling 
activities (Excel) 
supported by computer. 
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Table 13 continued 

 
Study 
(First 

Author) 

 
ES 

 
SE 

 
95% CI 

Lower  Upper 

 
Reliability of Measure 

 

 
Program Used, Research 

Findings, Research 
Specifications 

Baki  
(2011) 

 

0.81 0.26 0.09 1.11 Used PCVT test with KR-20 
of rpret = .82 and rpret = .80 
(Branoff, 1998). 

Used interactive 
geometry software. 

Young     
(2011) 

0.04 0.13 0.34 0.85 Used University (UCF) faculty 
Math Department tests. 
Reliability: rpre= .82 and rpost = 
.92. 
 

Used research modeling 
activities (Excel) 
supported by computer. 

Wang  
(2011) 

0.45 0.26 0.08 1.11 Used researcher-developed 
20-item test, Conbach’s α = 
.91. 

Developed dynamic 
computer program that 
modeled real situations 
to test hypothesis. 

Voskoglou 
(2009) 

0.49 0.22 0.17 1.03 Used researcher-developed 
test graded by two faculty 
members. 

Contextualized 
differential equations 
using computer 
programs. 

Laakso 
(2009) 

0.61 0.24 0.12 1.07 Used researcher-developed 
test.  

Used Trakla2 to have 
learners developed 
probability principles. 

Milanovic 
(2010) 

 

0.67 0.29 0.02 1.18 Used researcher-developed 
test, items the same on both 
pretest and posttest. 

Developed simulated 
program to evaluate 
integrals. Used 
Macromedia Flash 10. 

Mousoulid
es (2008) 

0.31 0.22 0.17 1.03 Used researcher-developed 
test. 

Used researcher-
designed activities aimed 
at various math model 
formulations. 

Schoen 
(2003) 

0.53 0.11 0.38 0.81 Used standardized calculus 
readiness test items. 

Developed new math 
curriculum that focused 
on modeling. 

Scheiter 
(2009) 

0.57 0.36 -0.14 1.33 Used researcher-developed 
test aligned with Reed (1999) 
categorization. 

Used computer programs 
to enhance modeling 
through animated 
situations. 
 

Eysink  
(2009) 

4.49 0.12 0.35 0.84 Used researcher-developed 
44-item test. Reliability was 
determined by Cranach’s α = 
.64 and α = .82.  

Used different 
multimedia settings to 
investigate the effect on 
students’ math inquiry 
skills. 
 

Bahmaei 
(2012) 

1.84 0.26 0.07 1.13 Used researcher-developed 
test items.  

Used researcher-
developed activities. 
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Table 13 continued 

 
Study 
(First 

Author) 

 
ES 

 
SE 

 
95% CI 

Lower  Upper 

 
Reliability of Measure 

 

 
Program Used, Research 

Findings, Research 
Specifications 

Baki  
(2008) 

0.43 0.23 0.14 1.05 Used researcher-developed 
test items with reliability of 
rpostt = .62. 

Used web-based 
mathematics teaching 
material (WBMTM).  

Note. ES = effect size, SE = standard error. 

 

Table 13 provides a summary of the individual effect sizes of the meta-analyzed 

studies along with their confidence intervals, standard errors, and general descriptions of 

the treatment and computer programs used as a medium for model constructions. All 

meta-analyzed studies reported a positive effect size when an exploratory learning 

environment was applied. The highest effect size of ES = 4.49 was reported by Eysink et 

al. (2009), who investigated the effect of multimedia on students’ modeling skills, and 

the lowest of ES = 0.04 was reported by Wang et al. (2011), who investigated the effect 

of using computerized programs on Calculus 2 students’ skills of modeling differential 

equations. Several researchers (e.g., Wang et al., 2011) applied the Crnobach’s α- 

coefficient or other reliability measures, such as Kruder – Richardon’s formula 20, to 

support reliability of the assessment instrument. A reliability coefficient of the 

assessment instrument was induced in six (or 46%) of the studies. Table 2 also contains 

additional information provided by the primary researchers that distinguish the applied 

exploratory environment within the study pool. In the majority of the studies, the 

modeling activities were supported by researcher-developed contexts consistent with the 
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curriculum. The studies were further aggregated into four subgroups to identify potential 

moderator effects.  

Analysis of Moderator Effects 

The process of computing subgroup effects allowed for uncovering moderators 

that optimized the magnitude of the effect size statistic and consequently helped with the 

design and implementation of mathematical modeling activities in school setting. We 

realized that to have the most accurate data and most accurate inferences, the activities 

used during these studies would have to be coded according to the MEA principles 

defined by Lesh and Kelly (2000). However, such extractions from the studies were not 

feasible at a high extent, due to perhaps MEA principles not being converted into 

providing quantitative constructs yet. The outcomes of designing activities following 

MEA principles more rigorously were found in several qualitative studies, which will be 

summarized in the following section of the current study.  

A set of four moderators was identified: school level, instrumentation, treatment 

duration, and math content domain. This categorization resulted in 10 subgroups whose 

effects were individually computed and summarized in Table 14. The  mathematical 

calculations associated with this part of the analysis were performed following Cooper 

(2010), who suggested giving more weight to effect sizes with larger sample populations 

according to the formula of w = inverse of the variance in the effect calculations. 

Calculation of corresponding confidence intervals and standard errors helped summarize 

the effect sizes according to the formulated moderators and their subgroup levels.  
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Table 14 

Summary of Subgroups’ Weighted Effect Sizes 

Moderators and Their 
Classes 

N ES SE 

 

                 95 % CI 

     Upper                     Lower   
Grade Level   

 High school 

 College 
  

 
7 
7 

 
0.94 
0.45 

 
0.07 
0.08 

 
0.79 
0.30 

 
1.08 
0.61 

Medium Supporting MEA 

  Computer simulations 
  Pen and paper activities 
  

 
12 
2 

 
0.72 
0.68 

 
0.06 
0.10 

 
0.60 
0.48 

 
0.85 
0.88 

Treatment Duration 
  Semester 
  Shorter than one semester  

 
8 
6 

 
0.46 
1.31 

 

 
0.06 
0.10 

 
0.34 
0.11 

 
0.59 
1.50 

Content Domain 

   Algebra 
   Calculus 
   Probability and Statistics  
   Geometry 
 

 

4 
5 
4 
1 

 
0.73 
0.38 
3.11 
0.81 

 
0.09 
0.09 
1.17 
0.26 

 
0.55 
0.19 
3.11 
0.09 

 
0.91 
0.56 
3.80 
1.11 

Note, N = number of participants, ES = effect size, SE = standard error. 

 

The grouping into levels provided a relatively helpful source of information 

about the effects of modeling activities on students’ mathematics achievement at the 

high school and college levels that can be used as suggestions for the activities’ designs. 

A more detailed discussion of each moderator effect follows. 

Are the effect sizes of student achievement different across the school levels? 

This block was created to mediate the effect sizes of students’ achievement between the 

high school and college levels. Although it was intended to differentiate not only among 

high school grade levels but also among college majors, due to the limited pool of 

studies, this idea was aborted and two general group levels—high school and college—
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were formulated. The computed effect size showed differences across the school levels, 

with high school students achieving a larger effect size of ES = 0.94 (SD = 0.07), and 

college-level students achieving an effect size of moderate magnitude of ES = 0.45 (SD 

= 0.08). It is apparent that high school students benefit even more by being involved in 

modeling activities than college-level students. This result can be accounted for by other 

mediators (silent in these studies), such as the difference in difficulty level of high 

school and college math or better acquaintance of high school students in learning 

mainly from computerized modeling activities. As modeling is a relatively new math 

learning method, some college students might find it difficult to alter their views and 

habits of considering mathematics as a subject of drill and practice to a subject that 

provides a basis for explorations and opportunities for genuine applications. The element 

of previous experience might have an impact on the students’ achievement, although this 

is just a hypothesis that would need further research. The data accumulated in the pool 

do not provide the basis for supporting such a hypothesis; however, if it proves to be 

true, calling for a broader implementation of modeling activities even at lower school 

levels such as primary or middle, as advocated by English and Watters (2005), has our 

full support. Developing modeling skills and techniques that require high-order skills of 

analyzing and synthesizing knowledge of multiple subject areas requires certain time. It 

seems that the sooner such skills are initiated and brought forth, the sooner the learner 

will become a proficient modeler and problem solver. 

Does the medium used to elicit modeling activities affect students’ 

achievement? Two media—computer simulations and written pen-and-pencil 
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activities—were identified in the gathered pool of qualitative studies. Computers were 

used in 12 (or 86 %) of the studies to support modeling activities, and written pen-and-

pencil methods were used in two of these studies (or 14%). The learning effect size 

produced by simulations was higher (ES = 0.72, SD = 0.06) when compared to 

traditional pen-and-pencil activities (ES = 0.68, SD = 0.10). An unquestionable 

advantage of computer simulations is their interactivity that allows for variable 

manipulations and easiness of principle identification in generalization and 

mathematization. Simulations also allow for a clear verification of the constructed 

mathematical model by manipulating system parameters and observing the changes. 

Thus, using them in school practice to support modeling activities is highly 

recommended. Yet, the medium itself, as noted by Noble, Nemirovsky, Wright, and 

Tierney (2001), will not generate learning because concepts, principles, and ideas do not 

reside in physical materials or classroom activities but in what students actually do and 

experience. It seems that careful inquiry planning coupled with learning mediums are the 

prerequisites for initiating students’ engagements and their learning. Research (Young et 

al., 2011) shows that providing students with detailed descriptions of procedures to 

follow without letting them explore and discover relations on their own is not an 

effective inquiry planning. The virtue of mathematical inquiry design as seen from the 

subject perspective will be undertaken in detail in the qualitative research synthesis. 

Does the length of treatment have an effect on student achievement? Two 

different classes were formulated to answer this question: one semester and shorter than 

one semester. At the college level, some of the research was designed in the form of a 
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math modeling course lasting one semester with modeling activities embedded during 

the course.  

The effect size computation for this subgroup showed that shorter treatments 

produced a higher effect on students’ achievement (ES = 1.31, SD = 0.10) than longer 

treatments (ES = 0.46, SD = 0.06). Consequently, it seems that shorter treatments, 

considered additions to courses, support the learning objectives more effectively than 

longer ones. Depending on the content domain modeled, modeling activities might be 

difficult for students (e.g., modeling that involves differential equations; Milanovic et 

al., 2011), yet any improvement as compared with traditional teaching methods is 

worthy of implementing.  

Does the effect size depend on the math domain being modeled? Four 

different domains were formulated for this subgroup: algebra, calculus, probability and 

statistics, and geometry. The frequency of studies in each level was highly dispersed, 

ranging from one that examined modeling the concepts of geometry to five modeling 

calculus concepts. According to the computations, probability and statistics produced the 

highest effect size (ES = 3.11, SD = 1.17). The magnitude of this effect size was strongly 

affected by an outlier of 4.49 (Eysink et al., 2009). If this study were rejected, the effect 

size would have been ES = 0.21, and SD = 0.17. The concepts of algebra and its sub-

domain, function analysis, produced a moderately high effect size of ES = 0.73. It is to 

note that calculus concepts were the most frequently researched, although they did not 

produce the maximum effect size. Calculus, a study of change and accumulation, 

provides a wide range of sophisticated apparatus for inducing mathematical modeling 
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activities, but it seems that how students apply calculus to learn about real-life 

phenomena and how to support their learning through modeling activities needs further 

research.  

Summary of Quantitative Research Findings 

Combining all of the inferences from this part of the study, it is apparent that 

modeling activities generate positive learning effects when compared to traditional 

teaching methods. Further, a subgroup moderator analysis revealed that the setting 

producing the maximum effect was a high school mathematics model, conducted in the 

form of short additional activities enhanced by computer simulations. A need for 

preparing instructional materials was voiced frequently in the research, despite MEAs’ 

design being proposed. The activities developed by researchers used as an instrument 

were mostly locally developed, that their transition to be used by other schools is 

limited. A need for firming the type of inquiry and bridging it to other subjects involved 

during modeling processes also emerged. Strengthening these phases will not only help 

the learners develop a scientific view of knowledge acquisition but also help achieve the 

goals of STEM education. 

One of the problem questions not being explicitly stated in this research but 

hoped to materialize during the literature review was the relation of word problem-

solving and mathematical modeling. Should both be separately taught, or should one be 

a complement of the other? If so, which process is more general? Although modeling 

activities are to provide general inquiry methods for problem-solving not only in 

mathematics classes but also in other courses, especially science and engineering (e.g., 
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Hestens, 1985), these two areas seem to be disjointed in the current research. Perhaps 

one of the reasons is that researchers are still debating the place of modeling in 

mathematics education. As many educators would see modeling as a separate activity, 

for example, Blum and Niss (1991), others, for example, English and Sriraman (2010), 

have proposed otherwise. It seems that to find more convincing support for one or the 

other approach, the voices of the learners and the teachers conducting such activities 

should be heard. How do they perceive these two activity strands? Does modeling help 

students solve word problems in mathematics? If so, what phases of modeling are 

especially helpful? The qualitative part of the research is posited to provide more insight 

into this domain.  

Synthesis of Qualitative Research  

While meta-analysis provided measurable effect sizes of using mathematical 

modeling activities along with quantification of formulated moderators, qualitative 

research was used to extract findings that provide information about how students learn 

by being immersed in such activities as well as what are their concerns and 

recommendations for improving their learning experiences. Thus, it is hoped that the 

qualitative part along with several mixed-methods research will enrich the findings and 

provide a better picture of the role of modeling activities in school practice.  

Descriptive Analysis  

This synthesis encompasses findings from 19 studies conducted with over 1,256 students 

at the high school and college levels. Table 15 provides general descriptive 

characteristics of these studies and short summaries of their key features. 
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Table 15  

Summary of General Futures of Qualitative Research Pool 

     Authors 

 

Date 

 

Locale 

 

Research Type 
and Assessment 
Instrument 
 

SS School 
Level/ 
Subject                                                            

RD/TD/ 
 

Yoon, Dreyfus, 
&Thomas 
 

2010 New 
Zealand 

QUAL 
Interview 

18 College/ 
Calculus 

1 hour/NP 

Lim, Tso,  
& Lin 

2009 Taiwan QUAL 
Questionnaires 
Interview 

26 College/ 
Applied 
Math 

2 month/sNP 
 

Liang, Parsons, 
Wu, & Sedig 
 

2010 Canada QUAL 
Interview 

30 HS/ 
Geometry 

3 days/7.5h 

Leutner 2002 Germany QUAL 
Repeated measure 
 

228 College/ HS/ 
Algebra 

1 day/70 min 

Chinnappan 2010 USA QUAL 
Observations 
 

28 HS/ 
Algebra 

1 day/45 min 

Crouch & 
Haines 

2004 UK MM 23 College/  
Calculus 
 

1 day/45min 

Yu  & Chang 2011 Taiwan QUAL 
Observation, 
Video  
Questionnaires 
 

16 College/ 
Teachers 

9 weeks/18h 

Diefes-Dux, 
Zawojewski, 
Hialamarson,  
& Cardella 
 

2012 USA QUAL 
Questionnaires 

200 College/ 
Engineering 

1 day/4 hours 

Faraco  & 
Gabriele 

2012 Italy MM 
One group design 

59 College/ 
Mathematica
l Methods 
 

NP/NP 

Iversen & 
Larsen 

2006 Denmark MM 
One group design 

35 HS/ 
Calculus 

7 weeks/NP 
 

Klymchuk, 
Zverkova, 
Gruenwald,  
& Sauerbier 
 

2008 New 
Zealand/ 
Germany 

QUAL 
Questionnaires 

147 
25 

College/ 
Engineering 

1 semester/NP 

Schorr & 
Koellner-Clark 

2003 USA QUAL 
Questionnaires 
Observations 

58 College 
Teachers 

1 day/ 
1 h 
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Table 15 continued 

Note. MM = mixed methods, SS = sample size, HS = high school, NP = not provided. RD/TD = research 
duration/treatment duration. 
 

Several evaluation instruments were used in the qualitative research which 

included; interviews with participants, surveys, observations, and questionnaires. The 

sample sizes of this research pool ranged from three subjects (Cory & Garofalo, 2011) to 

228 subjects (Leutner, 2002); the average sample size was 60 subjects. When 

categorized by school level, 14 of these studies (or 74%) were conducted on the college 

level involving mainly calculus students, and four (or 21%) were conducted on a high 

     Authors 

 

Date 

 

Locale 

 

Research Type/  
Measuring 
Instrument 
 

SS School  Level/ 
Subject                                                            

 
RD/TD 

Turker,  
Saglam,  
& Umay 

2010 Turkey QUAL 
Survey and 
Interview 
 

60 College/ 
Teachers 

1 day/ 
1 h 

Soon,   
Lioe,  
& McInnes 

2011 Singapore QUAL 
Survey 

50 College/ 
Engineering 

1 semester/ 
NP 

Yildirim, 
Shuman, & 
Besterfield-
Sacre 
 

2010 USA QUAL 
Interview 

5 College 
Calculus 

1 semester/ 
NP 

Cory  
& Garofalo 
 

2011 USA QUAL 3 College/ 
Calculus 

1day/ 
1 hour 

Schukajlow, 
Leiss, Pekurun, 
Blum, Muller,  
& Messner 
 

2012 Germany QUAL 
Interview 
Survey 

224 HS/ 
Calculus 

NP/ 
10 lessons 

Sokolowski &  
Gonzalez y 
Gonzalez 
 

2012 USA QUAL 
Interview 
 

6 Mathematics 
Teachers 

6 days/ 
3 h 

Carrejo  
& Marshall 

2007 USA QUAL 
Observation 
Interview 
 

15 College/  
Teachers program 

5 weeks/ 
15h 
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school level. The populations included practicing teachers that were found in two studies 

(e.g., Schorr & Koellner-Clark, 2003). Four studies (or 21%; e.g., Turker et al., 2010) 

were conducted at the college level and involved students from teacher preparatory 

programs (e.g., Carrejo et al., 2007). This trend indicates that preparing teachers to teach 

students modeling techniques has gained popularity in mathematics education. 

Considering the ratios of the populations, it is evident that the interest in examining the 

effects of applying mathematical modeling in mathematics gravitates toward college-

level education (in the meta-analysis, the number of research studies at each school level 

was similar). There was a noticeable diversity in the studies’ duration, ranging from 1 

hour (e.g., Cory & Garofalo, 2011) to 1 semester (e.g., Klymchuk et al., 2008; Yildirim 

et al., 2010).  

Inferential Analysis and Themes Formulation 

While qualitative research unfolds as data are gathered, each study considered as 

an individual source of information was further scrutinized. With a goal of searching for 

key features that reflected the most promising features of modeling activities— as seen 

from the students’ perspective— and also their shortfalls, general treatment descriptions 

along with the study findings were tabularized. Table 16 displays summaries of these 

findings and the analysis of these findings follows. 
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Table 16  

Summary of Treatment Descriptions and Research Findings 

Leading 
Authors 

 

Treatment Description and General Findings Medium 
Applied 

Yoon 
(2010)  

Used MEAs after an instructional unit to support the process of 
integration. Investigated change of students’ perception and interpretation 
of calculus tools. 
 

PP 

Lim  
(2009) 

Used MATLAB and computer to model real scientific happening (the 
process of volcanic ash fall). Investigated change in students’ attitude 
toward mathematics. Mathematics appeared to generate a friendlier 
environment to students. Focused on having students interpret partial 
derivatives that emerged from given differential equations.  

PP 

Liang  
(2010) 

Used interactive 3D objects to formulate patterns for volume and surface 
area computing. Investigated students’ change of interpretations of some 
abstract geometry terms.  
 

COMP 

Leutner  
(2002) 

Used dynamic simulation called SimCity to enhance problem solving 
through modeling skills. Measured participants’ comprehension skills due 
to applied modeling processes. 

COMP 

Chinnappan  
(2010) 

Observations were made during one lesson on students’ discussion of 
modeling techniques and approaches. Students’ descriptions of math terms 
were more detailed and focused. 

PP 

Crouch  
(2004) 

Analyzed reflective questionnaire and used interview to distinguish 
between novice and expert modelers. Expert modelers used math tools 
with a greater flexibility. 
 

PP 

Yu  
(2011) 

Teachers engaged in MEA. They solved modeling problems and designed 
some. Teachers perceived modeling as a bridge to problem solving. 

PP 

Diefes-Dux  
(2012) 

Used web-based MEA resources to support modeling activities. Evaluated 
grading processes of modeling activities by instructors. General 
suggestions for students’ modeling activities emerged. MEA was applied 
after certain math concepts were introduced. 
 

PP 

Faraco 
(2012) 

Students used Lab VIEW to develop program that simulated physical 
phenomena. Conclusion: principle understanding is needed for successful 
modeling techniques.  
 

PP 

Iversen 
(2006) 

Modeled real-life situations. Derived algebraic functions and evaluated the 
functions following MEAs. Focused on assessing strengths and 
weaknesses of the modeling processes. 

PP 
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Table 16 continued 

Note. PP = pen and paper, COMP = computer, NA = not applicable. 

 

When categorized by medium-supporting modeling activities, traditional pen-

and-pencil activities dominated these studies (used in 13); computers were used in three 

Leading 
Authors 

 

Treatment Description and General Findings Medium 
Applied 

Klymchuk  
(2008) 

Students took course on modeling being given non-traditional, interactive 
life contexts. Differential equations were provided. Students were asked to 
interpret variables.  
Students priced correlations of the tasks to reality and claimed that 
mathematical modeling improved their problem-solving skills. 
 

PP 

 
Schorr  
(2003)  

 
Future teachers provided feedback about teaching the processes of 
modeling. Positive changes in students’ attitudes and knowledge emerged 
as an impetus for changing teachers’ instructional methods. 
 

NP 

Turker  
(2010) 

Participants worked on modeling activities. They were surveyed and 
stated that mathematics concepts became more tangible to them. 
 

PP 

Soon  
(2011)  

Students worked on modeling activities involving DE and linear algebra. 
Auxiliary steps were provided.  
 

PP 

Yildirim  
(2010)  

Investigated students’ process on MEAs. Students had difficulties with 
hypothesis stating. 
 

PP 

Cory  
(2011)  
 

Used sketchpad to visualize the concept of limits. 
 

COMP 

Schukajlow 
(2012)   
 

Students worked on diverse modeling problems in two different learning 
settings such as student and teacher centered. Their perception on problem 
solving was analyzed. Student-centered modeling benefited the students 
the most.  
 

PP 

Sokolowski  
(2012) 

Interviews with teachers were conducted and aggregated into themes. 
Teachers expressed a need to have modeling activities available to put in 
practice. 
 

NP 

Carrejo  
(2007) 

Teachers were involved in mathematical modeling activities. Need for 
implementing mathematical modeling in teacher preparatory programs has 
arisen. 
 

Real Lab 
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of the studies, and a real lab as a medium was applied in one study. According to 

procedures of analyzing a qualitative research study, its inference concludes with 

formulations of categories of concepts that are used to formulate a research grounded 

theory (Lincoln & Guba, 1985). Constant comparisons of the accumulated research 

justified by inductive reasoning helped formulate inferences of this study pool. The 

following themes emerged from this analysis:   

 Concerns about college-level modeling.  

 Teachers’ role during modeling activities.  

 The degree of contextual support during modeling activities.  

 Sequencing of modeling activities in math curriculum. 

 Problem solving and modeling.  

Discussion and synthesis of these themes led to proposing a grounded theory embodied 

as a mathematical modeling cycle whose design will be presented and discussed. 

Concerns about college-level modeling. The pool of college undergraduate-

level modeling with 75% of studies dominated the qualitative research investigations. 

This substantial contribution indicates a high importance of qualitative research methods 

in examining mathematical modeling. Thus, one can conclude that the math research 

community is not only interested in computed learning effects sizes but also in knowing; 

(a) what the obstacles that the learner still faces are and (b) why mathematical modeling 

benefits the learner, (c) how the learner moves through the modeling cycle, and (d) what 

is the teacher’s role during modeling activities. 
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 Phase of converting reality into mathematical symbolism. A major concern 

voiced frequently in the accumulated research was students’ inability to transfer scenario 

text description into its mathematical embodiment (e.g., Soon et al., 2011; Yoon et al., 

2010). This phase is essential in modeling, and a deeper analysis of this deficiency is 

necessary to formulate suggestions for assistance. While analyzing the accumulated 

research with an intention to find these answers, two questions seemed to be left not 

discussed by research: Is the deficiency due to a weak student understanding of 

mathematical structures (e.g., the properties of periodic functions, the differences 

between rate of change and a percent change, the techniques of solving differential 

equations and the like), or is the deficiency due to difficulties in identifying conceptual 

patters in given problems and mapping the patterns on corresponding mathematical 

embodiments? If students cannot identify algebraic functions that would reflect given 

behaviors, then the reason for the deficiency is their lack of their mathematical 

knowledge or skills. If the difficulty lies in recognizing the properties of system 

behavior, then this deficiency can be attributed to a lack of scientific inquiry skills or 

lack of the contextual knowledge embedded in the modeling activity. Thus, the interface 

of integrating of the two different worlds—real situations and their corresponding 

mathematical models, as defined by Blum and Leiss (2007)— needs further 

investigation, and its importance should be augmented by the research community. As 

the college-level modeling encompasses all types of system behaviors (e.g. multivariable 

rate of change, two —or three— dimensional motion), the high school level will focus 
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more on singular structures and on developing general foundations of the modeling 

processes.  

Concerns about hypothesis formulation. Several researchers (e.g., Crouch & 

Haines, 2004; Faraco et al., 2012) pointed out concerns with weak student skills in 

formulating hypotheses for given problems and following through the process of proving 

or disproving these hypotheses. Hypotheses reflect closely on problem statement. Thus 

the hypothesis context builds on the problem stated in the activity. Once formulated, a 

hypothesis focuses the investigator’s attention on a narrower area of investigation. 

Hypothesis can be perceived as the investigator’s proposed theory explaining why 

something happens based on the learner’s prior knowledge (Felder & Brent, 2004).  

The role of a hypothesis is to confirm or correct an investigator’s understanding 

of what the content of the modeling activity presents. As hypotheses in mathematical 

modeling activities will most likely be verbalized aiming at testing mathematical 

concepts rather than scientific, yet the contextual balance between these two academic 

domains needs to be established. Reducing problem statement to gearing students to 

formulating only mathematical dependence will not nurture the connection between real 

world and mathematical world as defined by Blum and Leiss (2007). Yet, due to 

mathematical modeling concluded often with a mathematical structure, hypotheses in 

mathematics will focus more on testing students’ knowledge in applying these 

structures. For instance, if students are to derive Newton’s second law of motion, then in 

mathematics classes their hypothesis will try to answer a question about what type of 

algebraic function can be used to describe the type of mathematical dependence between 
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an object’s acceleration and the net force, while in science classes their hypothesis will 

answer the question of how an object’s acceleration depends on the net force acting on 

it. These hypotheses are mutually inclusive, and one can be perceived as a complement 

of the other, yet it is suggested that their formulation is subject domain dependent. Thus, 

a hypothesis plays a central role in the process of modeling. Students’ difficulties in its 

formulation call for amplifying the hypothesis role and broader the discussions in 

mathematics classes where the term hypothesis is rather rarely used.  

A need for more elaboration is also noted in the differentiation between 

hypothesis and prediction. As a hypothesis proposes an explanation for some puzzling 

observation, a prediction is defined as an expected outcome of a test of some elements of 

the hypothesis (Lawson, Oehrtman, & Jensen, 2008). In modeling, a hypothesis will 

reflect on general mathematical structures, whereas a prediction will constitute an 

extension of the activity supporting its further validation. The usage of these essential 

terms of scientific inquiry during mathematical modeling activities is not visible in the 

current research, yet it seems that its importance is high. An extension of this idea, 

empowering hypothesis testing with its statistical interpretation, seems to be a task 

worthy of further investigation. In sum, the general purpose of hypothesis formulation 

during modeling activities along with the process its proving or disproving will be 

congruent to process of hypotheses testing that students encounter in other subjects. 

Classifying variables. Students’ difficulties with isolating variables and 

classifying the variables for the purpose of formulating a mathematical structure also 

frequently surfaced in the research (e.g., Stenberg, 1997; Carrejo & Marshall, 2007; 
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Diefes-Dux et al., 2012; Faraco et al., 2012). While the categorization of variables as 

dependent and independent appears when the variables are labeled in the Cartesian plane 

or in the function notation is straightforward, these distinguishing categories cause 

doubts when realistic contexts are presented and the variables are not explicitly pictured. 

This difficulty concerns also the science research community (e.g., Halloun & Hestenes, 

1985) thus, amplifying this phase— not explicated in the Lesh and Kelly (2000) MEA 

design —seems to be necessary. The research shows that classifying quantities as given 

and required traditionally done during problem solving in science is not sufficient to 

succeed during the process of mathematical modeling (Lim, Tso, & Lin, 2009). It is then 

hypothesized, based on research findings, that students do not transfer this technique to 

math classes automatically.  

Furthermore, while in science classes students often reduce the process of 

solving problems to mapping the given set of variables to available formulas (Redish, & 

Steinberg, 1999), in mathematics classes the identification of given and required takes 

another step—it is often used to perceive the given and required as function parameters 

(e.g., slope, coordinates of vertex, period, initial value, etc.). The required quantities are 

then being classified as independent and dependent reflecting the context of modeling. 

Thus, while constructing the algebraic function or structure (e.g., rate, ratio, proportion, 

and the like), the goal of extracting given and required quantities from the problem or 

scenario requires another step, apparently often omitted in the current research on 

modeling. It is hypothesized that extracting these differences may help students with 

variables’ identification and their classification. 
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 Teacher’s role during modeling activities. Although modeling activities are 

classified as student centered, instructors, even at a college level, play a vital a role. 

Diefes-Dux et al. (2012) suggested that instructors or graduate teaching assistants should 

be partners of innovation during modeling processes. They should suggest certain 

solutions when needed and correct certain modeling processes if the processes will not 

lead to a correct model formulation. A phrase corrective guidance surfaces description 

of the instructor assistance during college level modeling. Mason, Stephens, and Watson 

(2009) stated that teachers need to possess strategies and tactics for extracting structural 

relationships and bring them to the fore for the students. They also pinpointed teachers’ 

enthusiasm toward MEA implementation as a significant factor: “If the instructor 

appreciates the potential benefits that the students can receive from MEA, he/she should 

more readily make the extra effort to properly guide the students” (Yildrim et al., 2010, 

p. 838). The teacher’s role as a subtle guider through activities with modeling discourse 

is also advocated in by Hestenes (2013) who further suggested that the teacher promotes 

framing of all classroom discourse in terms of models and modeling in the aim to 

synthesize students to the structure of scientific knowledge. It is suggested that this 

recommendation is extended to designing modeling activities at any mathematics school 

level. 

The degree of contextual support during modeling activities. Calculus as a 

study of change is the subject where modeling is most frequently exercised. 

Accumulated research shows that at the college level, mathematical modeling is 

perceived as applications of differential equations (DEs) and it is supported by providing 
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students with general structures of DEs (e.g., Cory & Garofalo, 2011; Klymchuk et al., 

2008). Students are expected to interpret the models and use the models to infer about 

embedded science/business or other domain-specific principles. While students generally 

possess the skills to solve DEs algebraically by separating the variables and taking 

antiderivatives of both sides of DEs, the scientific interpretations of these results have 

lacked precision (e.g., see Chaachoua & Saglam, 2006). This conclusion draws on 

students’ weak understanding of the scientific context and consequently on the reality 

principle of the MEA designs (Lesh & Kelly, 2000) not being verified prior the activity 

assign.  

In sum, the modeling activities at the college level are perceived as opportunities 

to put learned mathematical tools in practice (Soon et al., 2011). They do not represent 

standalone learning experiences but are to be blended into the curriculum and their role 

is to show undergraduate students ways of inducing modeling techniques into the real 

world. Derived models are used to predict future system behavior or compute quantities 

not observable or measureable by using directly the experiment outcomes. Math analysis 

is presented as a subject providing tools to delve deeper into the system behavior and 

extend the inferences beyond given parameters in the experiment. Although there several 

pitfalls of these processes, the math research community strives to remove them. As a 

subject, modeling becomes more frequently considered as an independent courses taught 

(e.g. Klymchuk et al., 2008; Yildirim et al., 2010). 

 Placing modeling activities within high school math curriculum. One of the 

themes that emerged from the high school modeling research findings was the 
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sequencing of modeling activities within a chapter domain. There are two distinct voices 

raised in this matter: one advocated by Blum et al. (2007) and Lesh et al. (2007) that 

suggests that modeling activities be implemented prior to new content being taught, and 

the opposite view presented, for example, by Leutner (2002) and Chinnappan (2010) 

suggesting that modeling activities be implemented after new content is delivered. Both 

strategies seem to benefit the learners, yet caution needs to be given for the inquiry 

design of the activities. Lesh et al. (2007) suggested to place modeling activity at the 

beginning of new chapter. They supported their claim by pointing out that if the MEA is 

implemented as a concluding activity of the instructional unit, it guides students along 

necessary trajectories and turns the activity into mathematics applications, which is not 

what modeling activities should be about. A legitimate question in this context arises: Is 

associating mathematical modeling with exercising applications of mathematics 

diminishing the virtue of modeling activities? Furthermore, if the sequencing has not 

been a concern in college-level modeling activities, the question is why it would be a 

concern at the lower— high school — levels? MEAs as defined by Lesh and Kelly 

(2000) are not sensitive to where they are inserted into the curriculum. Considering the 

content of the simplicity principle (see Lesh & Kelly, 2000) that students must possess 

necessary mathematical tools and knowledge before engaging in modeling activities, 

implementing such activities after the content is delivered is concluded. There are further 

supports for such sequencing; Leutner (2002) advocated that students’ pre-domain 

knowledge correlates with their achievement in problem solving modeling activities. A 

similar conclusion was researched by Chinnappan (2010), who stated that if the goal of 
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teaching mathematics is developing students’ structural understanding of concepts and 

embedding the concepts in realistic contexts, students need to learn the structures before 

exercising their applications. In his study, the students succeeded on the modeling 

processes being provided with structures along with scaffolds of the processes. Even at 

the college level, to have students succeed on modeling activities, they need to possess 

knowledge of mathematical structures that the problems involve. The complexity of the 

processes of uncovering and identifying the structures will depend on students’ 

background, yet mathematical apparatus needs to be learned prior to the activity. For 

instance, if a quadratic function is to be used in a given problem, one needs to recognize 

that the given situation must suggest that the relation takes an extreme value; if a linear 

dependence is to be used, one needs to recognize that the rate of change between 

involved variables remains constant and so forth. Without providing means for 

recognizing these parameters, activities of modeling might result in endless trials, 

leaving the students frustrated and unmotivated to be involved in further such tasks. 

Constructing different MEA designs, undertaken with different theoretical scopes, would 

place more diversity on the sequencing. One of the solutions to this debate would be 

proposing an implementation of math modeling course to high school curriculum, where 

sequencing could be exhibited with a higher flexibility. It is to note that in the 

accumulated research pool no information was found about such math class designed. 

Problem solving and modeling. As a relatively new theoretical framework in 

mathematical education research, investigating how MEAs lead students to problem 

solving, what are their strongholds, and which elements appear to be still under 
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discussion emerged as pivotal themes from the qualitative analyses. In their study, Yu 

and collegues (2011) concluded that “developing the modeling ability promotes students 

problem solving ability” (p. 152). However, they also noticed a lack of theoretical 

background on how to transition the process of mathematical modeling to problem 

solving. The formulation of MEA theoretical framework directed to designing the 

content of modeling activities does not appear to be sufficient to help the instructor 

bridge students’ thinking to problem solving. Niss (2010) claimed that knowing 

mathematical theories does not guarantee that this knowledge is transferred 

automatically to an ability of solving real-life problems. However, there is a strong 

research supporting the thesis that carefully designed modeling environments can foster 

and solidify students’ problem-solving skills. While scaffolding is found to produce a 

positive effect on students’ math learning (Anghileri, 2006), the type of inquiry to apply, 

inductive or deductive, is still unanswered. Investigating the impact of the scaffolds 

and/or its removal might not be sufficient, as was suggested by Chinnappan (2010).  It 

seems that the extent to which modeling activities help the learner with problem solving 

skills is rooted in the design of modeling activities and their capacities to develop 

students’ analytic skills and abilities to mediate contexts with mathematical tools. The 

phase of transitioning between modeling and problem solving needs much more 

attention not only form the modeling but also form the problem solving perspective. This 

conclusion has developed as another recommendation for further research. 
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Emerged Modeling Cycle 

 The findings of both parts of the research led to formulation of a mathematical 

modeling cycle (see Figure 17) that encompasses the global research recommendations.  

More specifically, it integrates elements of scientific inquiry as well as recommendations 

from the problem-solving math research community that were raised in the accumulated 

research pool. The proposed cycle highlights phases that were silent or absent in the 

quantitative part but whose importance has emerged through student responses, 

summarized in the qualitative part of this study. The purpose of this section is bifocal: it 

is to elaborate on the general structure of the proposed modeling cycle by pinpointing 

particular research findings that led to its emergence and to discuss its applications. 
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   Figure 17. Proposed integrated math-science modeling cycle.  
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Deciding About the Type of Inquiry  

One of the main questions seeking an answer was the selection of type of a 

suitable inquiry method for mathematical modeling processes. The inquiry method 

applied during modeling activities has not been discussed in detail in the accumulated 

research, and the literature has not provided a coherent view on what inquiry method 

should be used. Because the general method of reasoning affects the design and task 

formulation of the activity, a need for its establishment has emerged. Hestenes (2013) 

claimed that throughout their schooling, students must be engaged in scientific inquiry 

so that they learn how to form and justify rational opinions on their own. There are two 

main types of reasoning used in science, mathematics, and engineering: deductive and 

inductive (Prince & Felder, 2006). While deductive inquiry denotes the process of 

reasoning from a set of general premises to reaching a logically valid conclusion, 

inductive inquiry is a process of reasoning from specific observations to reaching a 

general conclusion (Christou & Papageorgiou, 2007). Viewed through these lenses, 

deductive thinking draws out conclusions, whereas inductive thinking adds information 

(Klauer, 1989). Because mathematical modeling processes are about pattern formulation 

and generalization (Lee, 2004; Lesh & Harel, 2003), inductive inquiry emerged as a 

leading form of reasoning for mathematical modeling. This selection is further supported 

by NCTM (2000) standards that recommend students’ familiarity with this learning 

method and by research on using inductive thinking in general math knowledge-

acquisition processes. For instance, Harverty, Koedinger, Klahr, and Alibali (2000) 

proved that inductive reasoning plays a significant role in problem solving, concept 
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learning, and the development of math expertise. Inductive reasoning includes a range of 

instructional methods such as inquiry learning, problem-based learning, project-based 

learning, case-based teaching, discovery learning, and just-in-time teaching (Prince & 

Felder, 2006). Discovery-type instructional methods that accompany mathematical 

modeling (English & Sriraman, 2010) further supported inductive inquiry selection for 

mathematical modeling activities. 

Type of Modeling Medium  

The modeling processes (see Figure 11) that are set forth to mathematize 

processes happening in the real world (Blum & Leiss, 2007) are initiated by providing 

the learner with Real Contexts. The contexts must satisfy certain conditions: They must 

be exploratory (Flum & Kaplan, 2006) and must obey the five principles of MEAs 

formulated by Lesh and colleagues (2000). As the research pool shows (see Table 13 and 

Table 14), the contexts can be supplied by various means such as a written paper-and-

pencil test, data provided by a table of values, or a real lab, or it can be presented by 

computerized simulations. The moderator effects of some of the means were 

summarized in Table 13. The complexity of the contexts will depend on (a) the math 

grade level taught, (b) activity objective that is to be achieved, and (c) time interval 

allocated for its completion  

The Formulation of Problem Statement and Hypothesis  

The catalyst for inquiry initiation is Problem Formulation or Problem Statement 

followed by Hypothesis. Research has shown (e.g., Crouch & Haines, 2004; Faraco et 

al., 2012; Milanovic et al., 2011) that students have difficulties with formulating the first 
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two phases of the inquiry process. As students’ confidence in formulating the two initial 

phases will have an impact on their engagement throughout the activity, this part of the 

modeling design demands more elaboration. If the learner falsely identifies the problem 

embedded in the given activity, he/she might not be able to extract quantifiable variables 

to prove or disprove the hypothesis. How can teachers help the learner with this stage? 

This question can be further reduced to whether the problem statement formulation 

should be a part of tasks assigned to the students or if the problem statement should 

instead be provided to students. The research pool did not elaborate on this issue; thus, 

we propose our position. It is important to note that the problem statement formulation 

does not necessarily have to have the form of a problem traditionally found in 

mathematics textbooks under the heading Problem Solving. Since a well-established 

precept in education is that a strong motivation to learn is generated by a strong desire to 

know (Albanese & Mitchell, 1993), we suggest that the problem statement be provided 

to the learner and the hypothesis formulation be assigned as a student task. This 

organization is further supported by the fact that the hypothesis is formulated based on 

the problem statement, and the problem statement is formulated through establishing 

certain control of the Real Context to reflect on the activity design (if prepared by the 

instructor). 

The hypothesis formulation is very important because it focuses the students’ 

attention and determines the analysis process. Furthermore, since hypothesis formulation 

depends on students’ judgment and their prior knowledge (Felder & Brent, 2004), it will 

drive students’ motivation to prove whether they were right or wrong. We recommend 
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that in math modeling activities, the hypothesis formulation not only involve providing 

suggestions for extracting the mathematical structure but that it also require the students 

to incorporate the verification scientific principle rooted in the activity. For example, if 

the context of the activity refers to producing and selling goods, the mathematical 

structures used to model this context will most likely be polynomial functions along with 

an analysis of their intersecting points, while the principle of the context will be the law 

of supply and demand. If the context refers to modeling projectile motion, then 

mathematical structures will include parametric equations and the principle will refer to 

properties of gravitational field. 

Discussion of Model Eliciting Phases 

The contents and tasks of the next phases of the modeling process such as 

Analysis, Generalization and Model Formulation are similar to those proposed by Blum 

and Leiss (2007) and Hestenes (1995). Yet, as Blum and his colleagues suggest, 

separation of mathematical results and real results, we propose that both types of results 

mediate during the analysis and model-eliciting phases. While the analysis of the 

variables and its generalization is the stage at which the learner integrates the knowledge 

of math with the real world, the next phase, the Model Verification, is proposed to take 

two different paths, called in our modeling process Scientific Principle Verification and 

Mathematical Structure Verification. Having students verify mathematical structure 

along with the embedded scientific principle has not been emphasized in the prior 

modeling cycles. However, this modification reflects researchers’ concerns (e.g., see 

Klymchuk et al., 2008; Yildirim et al., 2010) that students fail to validate formulated 
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mathematical structures or have difficulty formulating the verification processes. This 

phase seems to be very important because it warrants reusability of the derived model 

(eg., see Lesh et al., 2000) and provides means of reflecting on the hypothesis and its 

math/other subject duality. In order to have the learner validate the derived model, 

special tasks targeting verification of the structure supported by contextual interpretation 

of tasks would require the students to solve the problems algebraically and also justify 

coherence of the model to the scientific principle under investigation. Once these two 

distinct verification processes are enacted, the formulated model is ready to be 

confirmed and deployed to other similar contexts outside of the activity (e.g., physics, 

economics, and statistics). This will constitute its final phase, called Other Real Contexts 

to Solving Additional Problems. Research has shown (Hestenes, 2013) that students are 

thrilled when they realize that a single model can be used to solve multiple problems. 

The modeling cycle also proposes revision processes, often omitted in the current 

modeling. The stage of revision depends on the particular model and the nature of its 

lack of fit. Thus, it can begin from revising Testing and Analysis or even from 

Hypothesis. The arrows in red, emerging from the Problem Statement, refer to a case 

when the Problem Statement is formulated by the students. 

Zooming Deeper into the Modeling and Problem Solving Interface 

The phase of verification of the model in new contexts resembles typical problem 

solving—the learner uses the derived mathematical representation to answer additional 

questions. Viewed as such, we support the position that problem solving is an extension 

of modeling activities and constitutes its integrated part that is nested in the verification 
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process. Thus, problem solving, in our view, emerges as a subset of mathematical 

modeling. Both of these cognitive activities are very important in mathematical 

knowledge acquisition, but these processes complement rather than contradict each 

other. If the problem-solving process does not require the students to analyze the 

situation and raise its mathematical structure, when the process does not include 

modeling, it reduces to a repetition of procedures (e.g., see findings of Mousoulides et 

al., 2008, and Yoon et al., 2010), and that is not what mathematical methods have to 

offer. Concurrently, this conclusion presents our position on the relation between 

problem solving and mathematical modeling that is illustrated in Figure 18. 

 

 

                    Mathematical Modeling 

 

 

 
Figure 18. Proposed relation between math modeling and problem-solving. 

 

Mathematical modeling appears in the relation as superior to problem solving in 

the sense that it provides students with methods and techniques that are broader and 

more comprehensive. As such, modeling can also be perceived as an activity of shifting 

the learner’s focus from deductively finding a particular solution to inductively 

developing mathematical structure-based contexts and then using the developed 

structures to find the particular solution. Through modeling activities, students learn that 

Problem Solving  
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the solution to a problem follows directly from a mathematical model of the problem. 

The modeling process applies also to solving artificial textbook problems and significant 

real-world problems of great complexity (Hestenes, 2013). A number of studies (e.g., 

Gravemeijer & Doorman, 1999; Malone, 2008) find that modeling instructions promotes 

expert problem-solving behavior in students. 

Modeling activities cannot replace problem solving, but it is hypothesized that 

when students work on such activities, their problem-solving techniques take a different, 

more scientific approach that will benefit them throughout their high school, college, and 

professional endeavors. 

Sequencing Modeling Activities 

In answering the question of where mathematical activity should be placed in the 

curriculum as viewed through the proposed modeling process, the answer is that it 

depends on the goal of the activity: (1) if the goal of modeling is to have students learn 

how to apply mathematical tools, such activity should conclude the chapter; (2) if the 

goal of the activity is to introduce a concept and provide the learner with its introduction, 

then such activity should be introduced before new material is delivered. If the latter is 

used, the process as described in Figure 17 will be significantly reduced, retaining only 

its conceptual formulations. Further research designed to reflect on both paths of 

modeling is suggested to quantify an effect of each type of sequencing on student 

achievement. 



157 
 

Limitations and Suggestions for Future Research 

This study, as any other research, carries certain limitations. Some of them can 

be attributed to the limited number of studies available to be meta-analyzed, and some 

can be attributed to diversity of math curricula across the countries where the research 

on modeling was conducted. Although sensitivity of smaller quantitative sample sizes 

was restored, the significance of the mean effect statistic would promote the replication 

of the findings more accurately by being computed over a larger study pool. The 

qualitative synthesis generated a wealth of themes, yet the diversity the curriculum 

systems could constitute some mediators that remained silent. Accounting for such 

diversity was not possible in the present study. Varied methods of student achievement 

evaluation used in the quantitative pool of the research also limited, to a certain degree, 

the study findings and its generalizability. Moreover, as in the line of this research 

mathematical modeling is to support problem solving, a moderator link testing the 

modeling impact on students’ problem-solving techniques could not be established 

either. In some of these primary studies, the students’ achievement due to mathematical 

modeling activities was evaluated as taken with a broader scope, seen through general 

students’ math concept understanding. This conclusion prompts impulses for generating 

another more sophisticated research, focusing on investigating students perceptions of 

transitioning from mathematical modeling to problem solving. 

As the initial intent of this undertaking was to examine the utilization of 

scientific simulations to support mathematical modeling activities, due to limited number 

of studies, we broadened the literature search and included a substantial amount of 
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literature that examined pen-and-pencil activities, as well as these that utilized real 

experiments. We believe that this modification benefited this research. Situated mainly 

in naturalistic paradigms, these studies contributed substantially to formulating the 

general modeling process proposed in Figure 11. Analyzing these studies another 

conclusion was reached; if mathematical modeling activities are set to model reality, 

then the real sceneries need to be supplied to the learners. In the era of highly interactive 

multimedia availability, simulated scientific experiments can be easily brought to a 

mathematics classroom and serve as a rich basis for inducing mathematical modeling 

with all of its phases. This research revealed that this great opportunity is not fully 

exploited yet in mathematics classrooms.  

Another conclusion that emerged is the role of modeling in the current math 

curriculum. Students’ skills and techniques on modeling are not being tested on 

standardized tests yet. If modeling is to be wider implemented, students need to be tested 

on these skills as well. The current research shows a need for a stronger link established 

between mathematical modeling and problem solving in school practice. It has been 

proven, especially in the qualitative part of this research, that mathematical modeling 

even being taught with isolation to problem solving helps accomplish multiple math 

learning objectives. Yet, it seems that with a goal of being set as a governing method to 

problem solving techniques, its impact on students’ mathematical knowledge acquisition 

will be much higher.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

While several studies have been conducted about the effects of visualization on 

students’ math achievement, this research sought to examine the effects of exploratory 

visual environments on students’ understanding of math concepts and their skills on 

applying these concepts to solving real life problems. Undertaken with a large scope that 

included the entire range of math schooling levels, this study revealed that visualization 

embodied by either static diagrams or by computer simulated programs supported the 

learning of mathematics at any level. This study also examined effectiveness of one of 

the emerging instructional methods that extensively uses visualization; mathematical 

modeling. This study revealed that mathematical modeling when compared to traditional 

teaching produces a high positive effect size of ES = 0.69 (SE = 0.05, 95% CI: 0.59–

0.79) signaling a need for its wider implementation to school practice.  

Yet, as was discussed earlier, using computers or visualization purely as a 

method of instruction will not increase students’ math understanding. This synthesis of 

contemporary literature allowed formulations of several valuable inferences about 

teaching and learning mathematics and also generated questions for further research. 

While the first article revealed that exploratory environments help students understand 

new concepts, the question remains how exploratory environments can help students 

with the transfer of math concepts to new situations.  If the notion of teaching is to enact, 

in students minds, an integrated math-science-technology approach to problem solving 
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that will continue and advance a rapid development in this area, how can teachers 

balance the inclusion of science content in math classes or math content in science 

classes? Should widely established schemata for problem solving in lower math grades 

be consistently introduced throughout more advanced math levels? Or should rather 

simplified modeling cycles proposed by math research (e.g., Blum, 1996; Blum & Leiss, 

2007) be introduced to lower math grades? Cheng (1999) proposed four learning stages 

that are supposed to lead the learner to developing concept understanding through using 

schemata such as domain, external representation, concept, and internal network of 

concepts. These stages, however, show certain limitations, which are that (1) their very 

general forms make them difficult to apply in school, (2) they do not provide the teacher 

with a framework for lesson organization, and (3) they do not bridge the learning process 

with other processes that are applied in higher-level math courses. As in the process of 

moving from one stage to another, the learner is immersed in four processes: 

observation, modeling, acquisition, and integration. These processes reassemble formal 

modeling as defined by Dreyfus and Thomas (2010); thus, a potential for unifying them 

exists. The majority of the gathered pool of studies did not refer to these inquiry 

processes and focused instead on applying fixed models without conditioning them. 

While schemata-based representations produced a moderate effect size ES = 0.49 

(SE = 0.09, 95% CI: 0.31–0.67) a need to learn more about how students perceive these 

mathematical structures would benefit a further implementation of this supporting 

learning tool. Thus, not only does quantitative research contribute to inferences about 

learning effects, but also recommended is qualitative research that reflects the 
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underlying students thought processes. Although the moderator of explorations could not 

be applied to this research, letting students explore and find meanings of the 

representations was frequently raised by researchers (e.g., Terwel et al., 2009; Perkins 

and Unger, 1994).   

The idea of using exploratory environment, in the form of computerized 

simulations to support concept understanding and problem solving was further examined 

in the Chapter 3 (Manuscript #2). This strictly meta – analytic study revealed that using 

computerized programs exploratory environments produced high ES = 0.60 (SE = 0.03, 

95% CI: 0.53–0.66) learning effect size across elementary and middle school 

mathematics levels. High dynamism of simulated medium and multiple opportunities for 

investigating relations between variables deem to be the primary factors for this 

inference. Despite this high positive effect, mathematics curriculum with its rather rigid 

structures is challenged to adapt to the new methods of its content learning. Simply 

having students explore some relations without purposeful objectives that relate to their 

prior experiences might distort applicability of explorations. Another research area that 

opens for further investigation is the transition from exploration to problem solving. 

Problem-solving skills are merged on two independent paths: (a) They are developed on 

the basis of understanding the context through identifying the principles of the system’s 

behavior and (b) they require fluency and flexibility in applying computational skills. 

Research shows (Hestenes, 2013; Yildrim et al., 2010) that students succeed on problem 

solving if both paths are balanced and both are developed prior to having the learners 

work on such problems. The solver must be equipped with tools that he/she will use to 
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solve given tasks. The process of accumulating these skills is highly intertwined and 

includes (a) verbal and syntactic processing, (b) special-representation storage and 

retrieval in short- and long-term memory, (c) algorithmic learning, and (d) its most 

complex element—conceptual understanding (Goldin, 1992). Computerized programs 

offering bases for investigations display great potential for improving problem 

conceptual understanding, yet this study shows that this area is not fully explored yet. 

Taking full advantage of such learning environments emerges as a next stage of this 

research. Extending the problem analysis, thorough explorations to focus the learners’ 

attention on its underpinning principles and then formulate patterns and generalize the 

patterns using mathematical apparatus is worthy of further investigation. Of special 

attention in these investigations is a structure of theoretical framework that would 

provide directions for methodological design of activities. Manuscript #3 (Chapter 4) 

provides such a framework that is rooted in mathematical modeling processes. Although 

several such theoretical frameworks have been already created (e.g., Blum & Leiss, 

2007; Pollak, 1978), the exploratory factor linking mathematics to other subjects, in 

particular to science, has not been explored in those designs. This missing link is 

believed to have a diminishing impact on students’ achievement when modeling 

activities are applied. Departing from this premise, a new and enriched modeling cycle 

was proposed. It not only encompassed qualitative elements of experimentations but its 

entire structure was supported by inductive inquiry that dominates school reasoning 

nowadays (Prince & Felder, 2006). Moving through the reasoning cycle, students are 

constantly reminded to verify and revise their math applications techniques not only 
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considering correctness of mathematical structures but also adherence to scientific 

principles embedded in the given context.  

In most math assessment tests, students’ skills and techniques in modeling are 

not being tested yet, so another concern that emerged from the research was the 

inclusion of an assessment that would evaluate students’ math modeling skills. As the 

content taught is reflected on standardized assessment tests, a question arises of whether 

mathematical modeling skills should also be evaluated. If modeling is to be more widely 

implemented, students need to be tested on these skills as well. If so, how should we 

measure and evaluate these skills? It seems that requiring only numerical answers as 

solutions to text problems is not sufficient and that assessments should also require 

verbal justifications of these answers and reflections of thought processes that led the 

students to their conclusions. 

The current research shows also a need for the establishment of a stronger link 

between mathematical modeling and problem solving in school practice at any level. 

More specifically, there is a need to research and explicate how these methods of math 

knowledge acquisition are interrelated. As the analysis of the contemporary research 

allowed formulating an integrated math modeling cycle, its experimental testing 

emerged as an intermediate task.  

Even if mathematical modeling is taught in isolation from problem solving, it 

helps accomplish multiple math learning objectives (Yoon et al., 2010). Yet, if the goal 

of including modeling activities in school practice is to support problem-solving 

techniques, the link needs to be explicitly formulated in the math curriculum. 
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Each of the three studies has certain limitations attributed to either: (a) diversity 

of treatment designs, (b) diversity of math curriculum, or (c) inability to evaluate the 

degree of interactivity of the computer programs applied. Although through the process 

of weighting, sensitivity to smaller sample sizes was restored, the replication of the 

findings would be more significant if the primary studies had larger sample counts.   

Widely varied methods used to assess student achievement, ranging from 

traditional multiple-choice exams mostly locally developed to new assessment 

techniques such as standardize-based assessments also decreased validity of the primary 

research findings and consequently decreased the validity of their corresponding effect 

sizes. Although some of these studies reported a Cronbach’s alpha reliability coefficient, 

most did not, or used a different reliability measure thus not allowing for comparisons.  

While initially the effect of computerized simulations on students’ problem 

solving was to be examined, this idea was soon abandoned due to lack of available 

research. Thus, the effect of mathematical modeling on students’ problem-solving 

techniques was not investigated as it was anticipated. The idea of examining the effect of 

modeling on students’ problem solving techniques emerged as one of the themes for 

further research.  It is hoped that this study enriched the knowledge about using 

exploratory environment to support the processes of mathematical learning. By 

providing answers to stated research problems, it also generated prompts and themes for 

other more detailed investigations in this domain.  
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