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ABSTRACT 

 

In order to obtain sustainable engineering systems, this research investigates 

surface and interface properties of metals and active nanostructured coatings. The goal is 

to develop new approaches in order to improve the corrosion resistance and obtain 

knowledge in reconstruction of worn and/or corroded surfaces. The research will focus 

on high carbon steels as the substrate. These materials are used in most of industries and 

vehicles like aircrafts and automobiles. 

For anti-corrosion and self-healing applications, the layer-by-layered (LBL) 

coatings consisting photo-catalytic materials, the corrosion inhibitor, and the 

polyelectrolyte will be studied. Potential dynamic tests will be carried out in order to 

characterize the corrosion potential and current. 

For wear study, we will develop a metallic composite that has several functions, 

such as corrosion and wear protection, refresh or reverse worn or corroded surface. 

Characterization techniques used include optical microscope, surface interferometer, 

tribometer and the hardness tester. 

The ultimate goal of this research is to understand several types of problems on 

metal surface, such as corrosion and wear, and explore the possible ways to reduce those 

by using active nano-structured composite coating on metal surface. 
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CHAPTER I 

INTRODUCTION 

 

This chapter explains the main concept and approach of this research. Basics 

about healing for corrosion, wear and cracks on the surface of metal, and how corrosion, 

wear and cracks occurs on metal substrate. Current issues related to corrosion, wear and 

cracks on metal are described to better understand the reason why this research is 

needed. 

 

1.1. Metallic materials 

Metals such as steels and aluminum alloy have been used in many industrial 

applications for their superior stiffness and strength as well as their excellent electrical 

conductivity [1]. Metals are essential for our life because many plants and transportation 

equipment are made of the same; examples are airplanes, automobiles, and boats. Like 

any other materials, metals pose some problems such as fracture due to wear or 

corrosion induced by environment [2, 3]. These problems are costly and tremendous 

amount of effort has been made in repair and replacement. Figure 1 shows the 

comparison of the mechanical properties between various materials [1]. Most metals 

have higher stiffness, strength and resistance to fracture than other materials such as 

polymers and composites. These properties are the advantages of metals and would be 

the reasons why metals are broadly used in many fields. 
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Figure 1. Bar-chart of room-temperature mechanical properties for 
various metals, ceramics, polymers, and composite materials[1]. 

 

Corrosion, wear and cracking are most common causes of failure of metals and 

they cause  problems due to their expense and safety issues of human life [4]. For 

example, people who are working with aging aircraft are facing to corrosive 

phenomenon and severe wear and cracks, and that situation brings out many problems 

such as fracture, malfunction and unexpected troubles [5, 6]. These corrosion, wear and 

cracking are augmented by surrounding corrosive environment (moisture and salt), 

excessive and repeated stress on the metals used for aircraft working.  

The picture in Figure 2 is a well-known aircraft accident caused by corrosion 

problem in 1988. Aloha Airlines’s Boeing 737 lost most of the upper fuselage in flight, 

when operating time of this aircraft was only 19 year [5]. At that time, the main problem 
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was corrosion around the fastener hole to hold the fuselage with the aircraft body and 

fastener itself [6].  

 

 
Figure 2. Accident of Aloha airlines aircraft Boeing 737[7] 

 

Beside of this case, there have been many similar cases with this so far, and the 

cost to repair or overhaul and safety issues have been big problem. Thus, problems 

related with corrosion have become tremendous. 

There are many causes for metallic failure such as corrosion, crack and wear. In 

order to reduce these metallic failures, engineers can control some factors including a 

design of product, a choice of materials or a change of environment. If a design of 

product has defects or errors, this product will fail faster than expected due to applied 

excessive stress or stress concentrations on a specific spot, which is not designed 

suitably. If a choice of materials is not proper, the same situation will be happened. For 
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example, if a metal having low elastic modulus is chosen and excessive stress is applied, 

the metal will be broken because of its stress-strain relation.  

Figure 3 demonstrates the stress-strain curve for high carbon steel and the angle 

of the stress-strain curve is the elastic modulus of a material in the linear region. 

Material shows the elastic behavior, meaning it can be recovered to its original shape up 

to point 1 corresponding to its elastic modulus. The excessive stress that is more than 

yield stress causes plastic deformation, which cannot be recovered its original shape 

(from point 1 to 3). The yield strength of a material means the stress which is the 

material starts plastic deformation. If a stress which is bigger than the ultimate stress is 

applied, fracture of material will happen. This principle is the basic knowledge to 

understand the plastic deformation of metals such as wear and crack. Also, proper 

surface treatments are needed to prevent and minimize these problems because these 

problems are normally generated from the surface of a material, which can be the reason 

why surface engineering has been developed. 
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Figure 3. The stress-strain curve for high carbon steel [1] 

 

1.2. Engineering for corrosion and wear resistance 

Surface engineering can be explained as mechanical or chemical treatments on 

the surface of a material for establishing special functions that are known for surface 

properties such as corrosion resistivity and wear protection. Hence, the surface 

treatments can extend the service life and improve better performance of materials. 

Engine parts of air vehicles are coated with various materials to protect failure of 

function of parts because the engine parts of air vehicles are exposed to severe 

conditions such as high temperature, cycled stress causing fatigue or fretting wear and 

corrosive agents. Several methods of surface treatment have been developed so far in 

order to obtain proper properties under severe conditions [8]. 
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For example, thermal spray polymer coating for corrosion and PVD magnetron 

sputtering with MoS2 to reduce heat energy on transmission parts have been applied for 

engine parts. A plasma nitriding treatment has been introduced to reduce fatigue 

problems instead of chromium plating [8]. 

These surface properties can be modified by mechanical treatment, chemical 

treatment or constructing of coating and layer on the surface of a materials [9]. 

 

1.3. Nature of corrosion 

Corrosion is a natural process. All materials want to move to the stable condition 

that is the lowest energy level thermodynamically, for example water flows from a high 

level to a low level. Figure 4 shows the cycle for steel product in nature as a simple 

model [10]. Iron oxide is actually the most stable condition. We can produce steel 

products by adding energy such as through refining processes. Since a steel product is 

an unstable condition thermodynamically, it has a tendency to move to the stable level 

under certain environmental conditions. This is a corrosion reaction on a steel surface. 

They give up their energy and return to their stable condition thermodynamically and 

chemically. We usually try to prevent corrosion on surfaces of metals by painting, 

coating and other surface treatments. If some defects occur on coating, the metal is 

corroded again. Thus, we need to create a special coating that is self-healable without 

any effort to discover or repair corrosion on the surface of metals. 
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Figure 4. Cycle for steel in nature 

 

Corrosion can be defined as an electro-chemical reaction between materials, 

usually metals, and surrounding environments. Corrosion on the surface of metals 

creates a pitting of the surface and makes changes to their properties [10, 11]. Figure 5 

is the mechanism of corrosion on a metal substrate by a surrounding environment 

containing water and oxygen. Metal is decomposed into metal ions and electrons, and 

then electrons emitted from the metal are combined with water and oxygen in the 

environment to generate hydroxides. These hydroxides are combined with metal ions to 

generate metal hydroxides and rust [12]. Thus, the surrounding environmental factors of 

a metal such as high humidity or salty condition significantly affect its corrosion rate. 
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Figure 5. Corrosion mechanism of metal 

 

Mo ↔ Mn+ + ne-         (1) 

2 2
1 O  H O  2e  2OH
2

           (2) 

  nOH  M OHn

n
M           (3) 

Especially, steel products have been widely used for many fields such as 

construction of buildings, plants and production of transport equipment due to their high 

strength, toughness and manufacturability in spite of their vulnerability to corrosion. 

Several methods for corrosion protection have been developed; the first one is changing 

metal properties by alloying. The second one is changing the corrosive environment to 

mild condition. The third one is applying coating on the surface with organic materials 

or ceramic materials to prevent chemical reaction on the surface of materials by 
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controlling the electrochemical reaction [9]. Organic surface coating, which is the third 

one, is common method for corrosion protection such as painting [9]. 

The organic coatings for anti-corrosion have been developed with various ways 

and materials such as organic metal polyaniline [13-16]. Some coatings were effective 

in preventing corrosion, but were less functional with surrounding or were hazardous 

for the environment sometimes. Organic materials were used to modify surface 

properties, which might be color, wear protection, insulator or electrochemical reaction 

[14]. Corrosion means that electrochemical reaction happens between the surfaces of 

materials, usually metals, and environment, thus organic materials on the surface of 

metal act as the blocking and the adhesive agent to impede the corrosion reaction. 

Another important role of the organic materials for anti-corrosion is that it can 

encapsulate active corrosion inhibitors which are also released under specific conditions 

[14, 17]. 

This characteristic of the organic materials will be the important factor for 

constructing the anti-corrosion and self-healable coating on the surface of the metal in 

this research, which is the active nano-structured coating with photo-catalytic materials, 

polyelectrolytes and corrosion inhibitors. 

 

1.4. Principle of wear and cracking 

1.4.1. Wear  

Wear occurs due to the contact between two or more surfaces and the contact 

causes the removal or the plastic deformation of a surface owing to the mechanical 
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performance of the surfaces [18, 19]. Figure 6 shows the mechanism of friction and 

wear between two different surfaces. Wear may cause a failure of function such as 

breaking and malfunction.  

 

 

Figure 6. Mechanism of friction and wear 

 

There are mainly four kinds of wear. The first one is adhesive wear that is 

generated by attachment of wear debris and frictional contact. The second one is 

abrasive wear that is created by loss of material due to the strong opposite side of the 

surface with a protrusion [20]. The third one is that the repeated stresses on a surface of 

materials cause the fatigue wear. This wear happens when materials start to be 

weakened or detached by the micro-sized cracks, which are caused by the fatigue, 

cycled stress on the surface of the materials [21]. Finally, similar with the fatigue wear, 
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fretting wear occurs on the spot where two different surfaces of materials are scrubbed 

with certain cycle repeatedly [22]. 

Troubles of wear in industry usually emphasize on abrasive wear that can be 

divided into two mechanisms [20]. The first one is two-body abrasion which means 

material is removed by protrusion of the harder material and the second one is three-

body abrasion in which separated particles are rolled between the contact of two 

surfaces [23]. Figure 7 shows the classification of mechanical wear. However, the 

difference between two-body and three-body abrasion would be vague because the 

separated particles in three-body abrasion become fixed in one side of the surfaces [20].  

 

 

Figure 7. Classification of mechanical wear 

 

There are several methods to improve wear resistivity; the first one is using 

lubricants to reduce friction energy between the surfaces of materials. The second one is 

hardening the materials to make the materials harder and strengthen to fracture and 
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plastic deformation. The third one is preventing corrosion on the surface of the 

materials, which corrosion causes pitting or erosion on the surface of the materials [9].  

For the wear protection, several technic such as mechanical or chemical 

treatment have been used, for example plating, thermal diffusion, cladding, CVD 

(chemical vapor deposition) and shot peening. But these technics cause the complex 

steps and expenses, or severe condition such as high temperature [9].  

For example, shot peening is a process to increase service life of materials by 

cold forming on the surface. Small size of shot impact on the surface of materials, and 

then compression stressed on the surface is generated which causes impeding of the 

initiation and growth of the fatigue and fretting wear. But this process needs proper 

shots with different materials and sizes depending on the applied materials, and special 

equipment as well as the surface becomes rougher than before treatment due to impact 

of the shots [8].  

In this research, the hardening scheme by using the nano-composite materials 

under heat treatment will be used to enhance the wear resistivity, which is easy and 

simple method without any complicate experimental steps and is performed under not 

severe condition (relatively low temperature). 

 

1.4.2. Cracking  

Cracking can be defined as a propagated fracture of materials caused by the higher 

stress than a designed value or repeated stress on materials [24]. Cracking causes 
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unexpected failures in mechanic, and much expenses and sacrifices of people might 

have to follow. 

Crack initiation occurs on the spots which are the weak points (cause stress 

concentration) geometrically or the defects like pitting and wear. Crack propagation is 

generated with the cyclic stress such as the vibration and the loading during operating 

on the materials in case of the crack caused by fatigue [24, 25]. Figure 8 shows typical 

crack on the surface of the metal. 

 

 

Figure 8. Small crack on the surface of the metal 

 

Figure 9 shows the schematic of crack propagation in materials. A fracture 

happens due to the propagation of a crack that usually starts from a defect on the surface 

of materials, even though some cracks start at the middle of a material. A defect on the 

surface means the surface displacement such as pitting, discontinuity or geometrically 

weak point. As shown by Figure 9, crack growth direction is developed along with the 
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defect, and crack growth rate can be different depending on the applied load and 

direction. Normally, a crack grows faster when a load is applied in perpendicular 

direction with defect on surface. Hence, a crack growth is influenced by properties of 

materials, such as Young’s modulus, yield strength and stiffness, applied load, shape of 

materials and defects on the surface. 

 

 

Figure 9. The schematic of crack propagation 

 

One of the most common methods for repairing cracks is welding, but it has 

several problems. Welding can cause changes in properties of materials, for example the 

shape or the residual stress for heat of welding or unbalanced heat input. Much labor 

and cost for repairing are needed. It also requires significant operator skill, thus the 

quality of welding can vary by technician [26]. 
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1.5. Nanomaterials 

Nano-sized materials have several advantages [27]. The first thing is that 

nanomaterials have higher strength and ductility than conventional materials [28]. The 

second one is high surface area-volume ratio, which is important factor in chemical 

reactivity. The nano-sized materials, which have great surface area-volume ratio, can 

react faster than the conventional materials chemically because the heavy driving power 

to accelerate thermodynamic process is generated for the nanomaterials [29]. For 

example, the burning temperature of ultra-fine nano-powder is lower than conventional 

powder. Thus, some metal nano-powders have been used for rocket propellants and 

explosives [30]. Figure 10 shows the comparison of surface area-volume ratio according 

to size. As the material size becomes smaller, the surface area to volume ratio becomes 

bigger [31]. 

 

 

Figure 10. Comparison of surface area-volume ratio according to 
material size 



 

16 

Figure 11 shows the comparison of surface area-volume ratio according to 

materials shape. Thus, it can be known that surface area-volume ratio depends on size 

and shape of materials. 

 

 

Figure 11. Comparison of surface area-volume ratio according to 
material shape 

 

1.6. Summary 

In this chapter, we discussed reasons why metals have been used widely and 

their characteristics. Since corrosion, wear and crack are most common problems being 

occurred in use, we studied mechanisms of those. Corrosion is a natural process and can 

be defined as electrochemical reaction between metal surface and environment, which 

may cause pitting or reduction of mechanical properties of metals. Wear happens when 

two or more surfaces of materials are rubbed against each other with an applied force. A 

crack is formed and propagated on the spot where geometrically weak point or from a 

defect on the surface under an excessive applied or repeated stress. 
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CHAPTER II 

MOTIVATION AND OBJECTIVES 

 

As described in CHAPTER Ι, the problems related with corrosion, wear and 

cracking on metals are important to any field using metals such as the construction of 

airplanes, automobiles, ships or buildings for cost and safety reasons. This research 

aims to develop methods that use critical thinking to overcome those problems. Nano-

sized materials are the key for accomplishing the role of healing of metal due to their 

unique properties of size and surface area to volume ratio. We propose a layer-by-

layered coating with the function of photo-catalytic property, the active composite 

coating for solving the problems. 

 

2.1. Objectives 

The goals of this research are to: 

• Develop a novel method that can prevent corrosion and can heal the surface 

through photo-catalytic metal nano-particles as well as inhibitor of corrosion. 

• Develop a methodology that can enhance wear resistance on steel substrate by 

using active metallic nanoparticles. 

• Understand mechanisms of property enhancement and surface repair. 

These objectives are critical for operating the equipment using metals that are 

facing problems of corrosion, wear and cracks.  
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2.2. Dissertation structure 

This dissertation presents the corrosion, wear, and cracking phenomenon as well 

as the main concept and methods for healing these problems in CHAPTER I. The 

motivations and the objectives are presented in CHAPTER II. Experiments and 

procedures for preparing the key materials, the techniques and science to repair these 

problems and evaluation of the healing method are presented in CHAPTER III. Results 

and discussions of experiments are discussed in CHAPTER IV and V. Conclusions and 

future work are in CHAPTER VI. 
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CHAPTER III 

EXPERIMENTAL PROCESSURE 

 

This chapter describes experiments to be conducted in this research. It includes 

materials, corrosion and tribological evaluation, as well as characterization methods. 

The first part discusses synthesis of layer-by-layered coatings, followed by 

characterization of materials properties. The second part discussed active composite 

coating for wear, followed by evaluation of coating. Techniques include AFM (Atomic 

Force Microscopy), potential dynamic test, electrochemical impedance test, surface 

morphology tests (optical microscope and surface interferometer). Finally, tribological 

experiments were conducted in order to assess wear resistivity by hardness, wear rate 

and friction test. 

 

3.1. The active nano-structured coating for corrosion 

3.1.1. Materials 

3.1.1.1. Stainless steel 

Stainless steel was chosen for the substrate of the active nano-structured coating 

for corrosion. Stainless steel is prevalent metal in industry due to their comparatively 

good mechanical properties and low cost. The shortcomings of stainless steels is the 

localized corrosion and causes the pitting on stainless steel surface by exposure to an 

environment containing chloride [32]. 
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The type of stainless steel was 316 stainless steel that were composed of Fe 

(Iron), C (Carbon), Ni (Nickel), Cr (Chromium) and Mo (Molybdenum). This 316 

stainless steel has variety of application such as transportation system and architectural 

fields because it is easy to be manufactured by cutting, rolling of it. 

 

3.1.1.2. Zinc oxide nano-powder 

Zinc oxide was used as photo-catalytic material which is one of the most popular 

photocatalytic metal oxides with TiO2. Its band gap is 3.2 eV. The ultraviolet light, 

which has 400 – 100 nm wavelength and 3.10 eV – 12.4 eV of energy per photon, 

needed to react as photocatalytic materials [33-36]. The zinc oxide which used in this 

experiment was purchased from Sigma Aldrich (<100 nm). 

 

3.1.2. Sample preparation 

3.1.2.1. Electrochemical polishing on stainless steel substrate 

Electrochemical polishing (ECP) was performed on the surface of stainless steel. 

The purpose of electrochemical polishing is to remove an oxidation layer on the surface 

of substrate and make the surface of sample flat. Mixed solution of 100 ml of perchloric 

acid and 400 ml of ethanol was prepared, and polishing condition was 25°C and 15 V 

for 2 minutes. The graphite rod was used for cathode and the stainless steel sample was 

anode. Figure 12 shows schematic of electrochemical polishing and comparison of 

surface configuration before and after electrochemical polishing. 
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< Schematic of electrochemical polishing > 

 

 

< Comparison between before and after electrochemical polishing > 

Figure 12. Schematic of electro-chemical polishing 
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3.1.2.2. Coating configuration 

The configuration of the coating was layer-by-layered consisting of photo-

catalytic materials, inhibitor for corrosion and polyelectrolytes. The surface protection 

can be obtained through the formation of a surface film. 

To determine coating configuration, we needed to know the surface charge 

property of coating materials to make attraction force between the coating materials. An 

active nano-structured composite coating with oppositely charged materials was 

proposed in order to adhere and adjust the self-healing effects. The surface charge of 

zinc oxide nano-powders were expected to be negative because negative hydroxyl 

groups are attached to the surface of nano-oxide typically [37]. Since the corrosion 

inhibitors, 8-HQ, is positively charged, negatively charged polyelectrolyte, PSS, had to 

be introduced to encapsulate 8-HQ. PSS and ZnO are negatively charged. PEI, which is 

positively charged, needed to be introduced to adhere PSS and ZnO [17, 38, 39]. 

Coating sequence is shown in Figure 13. ZnO was fabricated on the stainless 

steel substrate, and then PEI was deposited on ZnO. Next, PSS was coated on PEI to 

capture the corrosion inhibitor (8 HQ). After fabrication of 8 HQ, PSS and PEI were 

coated on the samples in order. 
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Figure 13. Configuration of layer-by-layered coating 

 

3.1.2.3. Fabrication of the layer-by-layered coating 

The 0.5g of ZnO nano-powders were dissolved in 50 ml of DI (deionized) water 

under supersonication for 30 minutes. ZnO nano-powders were coated on stainless steel 

substrate uniformly by dropping of ZnO solution under 350 rpm for 30 min for 3 times. 

After ZnO coating, the samples were calcined at 350 ºC for 3 hours in tube furnace with 

argon gas to prevent contamination. Figures 14 shows the spin coater, and Figures 15 

shows the tube furnace that were used. 
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Figure 14. Spin coater (WS-400-6NPP, Laurell) 

 

 

Figure 15. Tube furnace (Thermo Electron Corporation) 

 

The polyelectrolytes, PEI (Polyethyleneimine) and PSS (Poly sodium styrene 

sulfonate), were purchased from Sigma Aldrich and 0.1 ml of 2mg/mol solution of 

polyelectrolytes in DI (deionized) water are prepared. PEI and PSS layer were deposited 

on the sample coated with ZnO under 700 rpm for 30 min, 2 times. 
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The corrosion inhibitor, 8HQ, was purchased from Sigma Aldrich and 10 wt% 

solution of 8 HQ in ethanol was prepared. 8 HQ was coated on the sample coated with 

ZnO, PEI and PSS under 300 rpm for 10 min, 2 times. 

 

3.1.2.4. Preparation of testing samples 

In order to evaluate the anti-corrosion and self-healing effect of the active nano-

structured coating on the stainless steel substrate, four samples were prepared. The first 

one was the bare stainless steel without any coating materials on it. The second one was 

the coated stainless steel with the active nano-structured coating. The third one was the 

damaged stainless steel, which the coating was scratched with sharp blade (damaged). 

The last one was the healed stainless steel, which the damaged coating was repaired 

under ultraviolet light. The ultraviolet lighter was set 255 nm wavelengths for 15 

minutes. Figure 16 show the ultraviolet lighter that was used.  

 

 

Figure 16. Ultraviolet lighter (Newport) 
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Figure 17 shows the surface configuration of each sample (bare, coated, 

damaged, and healed). 

  

 

Figure 17. The surface configuration of each sample 

 

3.1.3. Evaluation of the active nano-structured coating for corrosion protection 

3.1.3.1. Evaluation of electrochemical polishing by using an AFM 

In order to evaluate quality of electrochemical polishing, an AFM (Atomic Force 

Microscope) was used. The AFM is a powerful to evaluate surface properties of 

materials such as surface morphology and roughness, adhesion, phase distribution, as 

well as frictional behavior. It produces high lateral and vertical force resolution by 

sensing the accurate movement of the AFM probe. Figure 18 shows the schematic of 

AFM measurement. When the AFM probe scans over a substrate, the photodiode senses 
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the deflection of the cantilever, which is controlled by the piezoelectric material. 

Piezoelectric material can change an electric energy to a mechanical energy, which 

causes precise movement of the AFM probe. Movement of the AFM cantilever is 

caused by the surface morphology. The laser beam is deflected based on the position of 

the AFM cantilever. The friction force between the AFM probe and the substrate 

generates the deflection of the cantilever. 

 

 

Figure 18. Schematic of AFM measurement 

 

The AFM was used to evaluate the quality of the electro-chemical polishing of 

the stainless substrate by measuring the surface image and roughness. Figure 19 shows 

the AFM machine that was used. AFM test was performed with non-contact mode, it 

measured surface morphology, and AFM tip was made of Silcon Nitrade (Si3N4). 
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Figure 19. AFM machine (Nano-R AFM, Pacific Nanotechnology 
Inc.) 

 

3.1.3.2. Potential dynamic test for evaluation of corrosion resistance 

To evaluate the anti-corrosion ability and self-healing performance of the active 

nano-structured coating on the stainless steel substrate, potential dynamic polarization 

tests were performed as corrosion tests. Corrosion begins to happen at the point where 

the equilibrium state between two electro-chemical reactions, the cathodic and the 

anodic reaction. The anodic reaction in corrosion can be defined as removing metal ions 

and electrons from the surface of a sample; this is the oxidation process. The cathodic 

reaction can be defined as the reduction process. 
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As applied voltage is increased, the anodic action is increased and the cathodic 

action is reduced. At the equilibrium point, there is no electrical current, and oxidation 

and reduction action can take place at the same time. Corrosion potential can be 

determined at this point, and corrosion occurs above this point. Corrosion current cannot 

be determined directly, but it can be estimated by finding the extrapolated point between 

anodic and cathodic curves. 

          Figure 20 illustrates a polarization curve of a potential dynamic test of a typical 

metal. The vertical axis shows corrosion potential and the horizontal axis represents 

corrosion current of a sample. As shown in this figure, the potential dynamic 

polarization curve can be drawn by adding two reaction curves, the anodic and cathodic 

curves. 

 

 

Figure 20. Interpretation of potential dynamic polarization curve 
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According to this theory, as the potential dynamic polarization curve moves left 

and up, corrosion resistance of the sample becomes higher. This means that the 

corrosion of the sample occurs at high potential and corrosion current is also low. 

To perform the potential dynamic test, the applied voltage range was -1.5V to 

0V with a rate of 1 mV/s, and a corrosive solution of 5 wt% sodium chloride (NaCl) in 

DI (deionized) water was prepared to mimic sea water. The exposed area of the sample 

was 0.20 cm² and the density of the sample was 8.03 g/cm³. A Gamry instrument 

(Reference 600) was used for the test. Figure 21 shows the schematic of potential 

dynamic test. 

 

 

Figure 21. Schematic of potential dynamic test 
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3.1.3.3. Electrochemical impedance spectroscopy analysis for evaluation of 

interfacial interactions for corrosion protection 

 EIS (Electrochemical Impedance Spectroscopy) analysis has been performed 

for evaluation of the interfacial interactions that are the interactions between the surface 

of metal and the surrounding environment by measuring the impedance corresponding 

to AC current. This is a useful technique for measuring interface/surface evolution and 

corrosion reaction of the surfaces [40, 41]. 

Impedance can be explained as a series of equal electric components, e.g., 

resistor, capacitor, and inductor, during electrochemical reaction on the material 

surfaces. The Exact component is highly dependent on the configuration of the surface 

and interface. It can be identified by calculating the magnitude of impedance and the 

shape of the graph (nyquist plot, bode plot) [42]. 

When the AC voltage is applied to the surface of materials with a certain range 

of frequency, the phase change due to different surface and interface components is 

measured at the same time. Figure 22 shows the phase change of AC voltage applied. 
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Figure 22. Sinusoidal current response corresponding to applying 
potential[43] 

 

Impedance (Z) can be explained in following equation, and it contains the real 

value showing the resistance of the circuit and the imaginary value showing the 

capacitance of the circuit corresponding to applying frequency. 

Z (jω) = R + jX = R + 
Cj

1  = R  
C

j


1                                           (4) 

The applying potential and responding current can be express as following 

equations (when ω = 2πf).  

                                         Et = E0 sin (ωt)                                                            (5) 

                                          It = I0 sin (ωt+ )                                                        (6) 
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By Euler’s equation, impedance (Z) can be expressed as the following equation. 

This equation can be compared with equation (4) to identify the resistance (real value) 

and the capacitance (imaginary value). 

                       )sin(cos)exp()( 00  jZjZ
I

E
Z                               (7) 

By equation (9), Nyquist plot can be generated showing impedance (Z) between 

the electrode and electrolyte in Figure 23 where cos0ZR  , and sin0ZX  . In 

nyquist plot, the radius of semicircle indicates the magnitude of impedance. 

 

            

Figure 23. Nyquist plot with impedance vector [43] 

 

In the electrochemical circuit model, there are three special elements: resistor, 

capacitor and Warburg impedance.  
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The first is resistor R (Ω) when the phase changes ( ) is zero, it means that the 

current is in the applying voltage. The physical meaning of this polarization resistance is 

inversely related to the corrosion rate. Polarizing happens when frequency of applying 

voltage is becoming low to the electrodes (approaching DC), and then the current flow 

is caused by the polarization of the electrode that causes the electrochemical reaction at 

the surface of electrode. For the corrosion reaction, as resistance become higher, the 

corrosion rate becomes lower by something protective to corrosion. 

The second is capacitor when the phase changes (  ) is -90˚. Capacitor is 

generated when the some dielectric materials impede the current flow between the 

electrode and environment (electrolyte), for example, double layer on a surface. The 

double layer generated by charges on the surface of electrode acts as a kind of insulator 

and forms a capacitor. The ability of a capacitor can be varied with the distance between 

the electrode and environment (electrolyte), and the ability of the dielectric double layer. 

As the distance between the electrodes is low and electrical permittivity is high, the 

value of the capacitor is low. 

The third is Warburg impedance that represents the diffusion process between 

the electrode and environment (electrolyte). The diffusion process happens due to the 

difference of ionic concentration between the electrode and environment (electrolyte). 

Normally, the ionic concentration of the electrolyte is much higher than the electrode. 

Warburg impedance is affected by the frequency of applying voltage. As the frequency 

of the applying voltage become low, the diffusion of ions can go farther, which is 

caused by increasing the Warburg impedance. 
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By measuring of impedance between the electrode and electrolyte, the corrosion 

resistivity and the surface configuration of materials can be evaluated. 

Applying voltage was AC 100 mV that is sinusoidal waveform with a range of 

frequencies from 0.1 Hz~1 MHz for each test sample. 

 

3.1.4. Steps to fabricate the active nano-structured coating for corrosion 

Figure 24 explains the experiment steps of active nano-structured coating for 

corrosion and self-healable coating on the surface of stainless steel. 

 

 

Figure 24. Experiment steps of active nano-structured coating for 
corrosion 

 

The first step was electro-chemical polishing of the stainless steel substrate. 

Then, layer-by-layer coating was performed with ZnO, PEI, PSS, 8HQ, PSS and PEI in 
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order. Finally, potential dynamic test and EIS test were performed to evaluate the 

corrosion resistance and self-healing effect. 

 

3.2. The active composite coating for wear protection 

3.2.1. Materials 

3.2.1.1. High carbon steel 

The high carbon substrate samples with cracks were used for this study. Image is 

shown in Figure 25.  

 

 

Figure 25. The carbon steel sample for  active composite coating for 
wear protection 

 

3.2.1.2. The active composite material 

The aluminum nanopowder (from Sigma Aldrich) and the sodium nitrate 

(NaNO3, from Sigma Aldrich) were used as ignition and releasing agents in active 
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composite materials. Aluminum nano-powder and sodium nitrate have been added in 

propellants of solid rocket to enhance the combustion performance due to their own 

property such as high aspect ratio  and an excellent chemical reactivity [44, 45]. 

The powders of graphite, iron and tungsten (all from Sigma Aldrich) were used 

as the surface modifiers to increase hardness and wear protection of the carbon steel 

substrates. Graphite consists of layered structures with carbon atoms which are 

honeycomb lattice. Carbon acted as a hardening agent of steel. High carbon steel, which 

has high carbon content, is expected to be harder and stronger than low carbon steel [46]. 

Iron powder was used to adhere the composite coating materials and the surface of 

carbon steel substrates. Tungsten was consumed for the production of hard materials 

and heavy metal alloys due to their high density. Their extremely high hardness makes 

more resistant for wear [47].  

 

3.2.1.3. Preparation of the active composite materials 

For the heat ignition and releasing agents, 20 wt% of aluminum nanopowder and 

20 wt% of sodium nitrate were used. For the surface modifiers, 20 wt% of graphite 

powder, 20 wt% of iron powder and 20 wt% of tungsten powder were used. Composite 

materials were mixed uniformly together in mixer for 8 hours. Figure 26 shows the 

mixer that was used. 
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Figure 26. Mixer  (Inversion Machines Itd.) 

 

3.2.1.4. Heat treatment 

The high carbon steel substrate was covered with the mixed composite material. 

The heat-treatment was performed in furnace for 6 hours at 400ºC to make new hard 

surface on carbon steel substrate. Figure 27 shows the furnace that was used. 

 

 

Figure 27. Furnace (F-A1630, Thermolyne Corporation) 
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3.2.2. Evaluation of wear resistance 

To examine the surface profile of the high carbon steel, a surface interferometer 

was used to identify the surface profile before and after the active composite coating. 

Surface interferometer can measure the surface roughness and makes it easy to visualize 

with colorful range to examine surface irregularities. Figure 28 shows the 3D optical 

surface interferometer (ZYGO NEW VIEW 600). A 10x objective was used for 

measuring of samples, and a vibration isolator was needed to eliminate vibrations from 

noise that would affect the measurement. After measuring, images (2D, 3D) were 

created with the surface profiles. 

 

 

Figure 28. Surface interferometer (ZYGO NEW VIEW 600) 

 



 

40 

3.2.2.1. Tribometer 

Tribometers were used to measure tribological features such as friction 

coefficient and wear resistance for the coated sample and the non-coated sample. In 

order to measure the friction coefficient of the samples, a pin-on-disk tribometer was 

used with a reciprocating linear test mode. The selected amplitude was 2 mm, the 

scanning speed was 12 cm/s, the distance was 100 m, and the applied load was 

delivered with 4 N using a D52100 bearing ball of 6 mm diameter. In order to make the 

wear track, 8 lb of weight using a 6 mm D52100 bearing ball for 2 hours was applied. 

After the tribo-tests, the wear tracks of the samples were examined by the surface 

interferometer (ZYGO NEW VIEW 600) and the optical microscope (KEYENCE 

VHX-600K) in order to calculate the worn volume and the wear rate of the samples. 

Figure 29 shows the tribometer that was used. 

 

   

Figure 29. Tribometer for measuring friction coefficient (CSM 
Instrument) 
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3.2.2.2. Hardness test 

Rockwell hardness test is widely used to measure a hardness of materials and the 

Rockwell scale is determined by measuring the gap of indented depth between a major 

load and a minor load on a material. The gap of indented depth can be affected by the 

elastic property of a material [48]. Figure 30 and 31 shows the schematic of Rockwell 

hardness test and the Rockwell hardness tester that was used. There are several 

Rockwell scales with dimensionless number; here we use the HRC scale that is used 

mainly as hard steels. 

 

 

Figure 30. Schematic of Rockwell hardness test [49] 
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Figure 31. Rockwell hardness test (INSTRON instrument) 

 

3.2.3. The experiment steps of the active composite coatings for wear 

protection 

Figure 32 explains the experiment steps for wear resistant coating on the surface 

of high carbon steel substrate.  

 

 

Figure 32. Experiment steps of active the composite coating for wear 
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The first step was preparation of composite coating materials for wear protection 

on carbon steel substrate. The second step is evaluation of coating for wear protection 

by hardness and wear test. 

 

3.3. Summary 

This chapter describes the experiment steps for the active nano structured 

coating for corrosion and self-healing by using ZnO photocatalytic materials, PEI/PSS 

polyelectrolytes and 8HQ corrosion inhibitor. In order to evaluate the corrosion 

resistance, potential dynamic test and EIS test were introduced. For wear protection 

coating on the carbon steel, the active composite coating materials were used. These 

composite materials were composed of aluminum nano-power, sodium nitrate, graphite, 

iron and tungsten which are mixed uniformly.  
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CHAPTER IV 

ACTIVE NANO-STURCTURED COATING FOR CORROSION 

 

This chapter discusses the active nano-structured composite coating for 

corrosion and self-healable coating. To investigate corrosion resistance of the sample, 

the potential dynamic test was performed under a corrosive condition (salt water). 

 

4.1. AFM result of electrochemical polishing of the stainless steel substrate 

By atomic force microscopy tests, the surface morphology of two different 

samples can be evaluated by comparing 3 D and 2 D images of the surfaces. 

As shown in Figure 33, the surface of the electrochemical polished sample 

became flat. It was hard to find any protrusion or irregularity in the surface of the 

electrochemical polished sample when comparing it to the surface of the non-polished 

sample. The surface roughness (Sq) of the non-polished sample was 121.2824 nm, 

while the surface roughness (Sq) of the polished sample was 31.6376 nm. It is obvious 

that the electrochemical polishing was accomplished successfully. Surface roughness of 

stainless steel can effect corrosion resistance. As a surface roughness of stainless steel 

become lower, corrosion resistance become higher. The rougher surfaces are at risk to 

generate localized corrosion like propagation of pitting, because a metastable pitting on 

the stainless steel surface can be led and developed by the surface nucleation [50]. 
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Also, the oxidation layer on the stainless steel surface was expected to be 

removed during the electrochemical polishing. Oxidation layer on the stainless steel 

surface may affect the corrosion reaction and the evaluation of the anti-corrosion effect 

for the active nano-structured coating that was prepared in this research. This is why the 

electro-chemical polishing was performed. 

 

 

< Before electro-chemical polishing > 
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< After electro-chemical polishing > 

Figure 33. Comparison of the surface morphology between before and 
after coating 

 

4.2. Result of potential dynamic test for the samples 

A potential dynamic test is performed to determine the corrosion potential and 

corrosion current under certain environments. These parameters are normally obtained 

from a potential dynamic curve. As described before, corrosion processes come with 
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electron and metal ion transfers between a metal surface and a corrosive environment 

[51]. If the metal shows a higher potential value and a lower current value than other 

metals, we can assume that the metal has high resistance to corrosion. Normally, high 

corrosion potential state means stable condition, and low corrosion potential state means 

active condition. 

For the potential dynamic test, stainless steel is used as the substrate and four 

samples (bare, coated, damaged, and healed) are measured to evaluate the corrosion 

potential of the anti-corrosion and the self-healing ability of corrosion resistance under 

5wt% NaCl water, which is corrosive like sea water.  

 

4.2.1. Comparison of potential dynamic test between before and after coating 

As shown in Figure 34, potential dynamic curves of the two samples shows their 

corrosion potential and current. In the case of the bare sample, the corrosion potential 

and current was determined to be around -0.9 V (vs Vref) and 10-4.5 A/cm2. After the 

coating for anti-corrosion on the stainless steel, the corrosion potential and current was 

determined to be around -3.7 V (vs Vref) and 10-4.25 A/cm2.  

The corrosion potential of the coated sample was -0.53 V higher than the bare 

sample, and the corrosion current of the coated sample was less than the bare one. 

Therein, it can be concluded that the active nano-structured coating, which was 

composed of Zinc oxide nano-particles, the corrosion inhibitor and the polyelectrolytes, 

prevented the corrosion reaction on the stainless steel surface. Zinc oxide nano-powders 

and the corrosion inhibitors fabricated on the stainless steel surface prevented and 
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resisted the corrosion reaction, because these materials acted as insulators which 

prevented an electro-chemical reaction between the electrolyte (corrosive solution) and 

the stainless steel. 

As described in the introduction, a corrosion reaction can be defined as an 

electro-chemical reaction on a metal surface, which is an anodic passivation reaction. 

When an anodic passivation reaction dominates the electro-chemical reaction on the 

metal surface, it can be said that corrosion starts to happen. Corrosion potential value 

can be determined at this point in which corrosion begins. Thus, it can be said that 

corrosion on the surface of a metal having a lower corrosion potential happens easier 

than a high corrosion potential metal. 

 

.  

Figure 34. Comparison of the corrosion potential and current between 
samples (bare, coated) 
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4.2.2. Comparison of potential dynamic test between damaged and healed 

coating 

Figure 35 shows the potential dynamic curves of the two samples, damaged and 

healed. The damaged sample means that the active nano-structured coating on the 

stainless steel was scratched by the sharp blade, and the healed sample means that the 

damaged sample was re-constructed by ultraviolet light (255 nm wavelength, 15 

minutes). The ultraviolet light from the light source causes the photo-reaction of Zinc 

oxide nano-powders which are deposited on the stainless steel substrate uniformly. 

 

 

Figure 35. Comparison of the corrosion potential and current between 
samples (damaged, healed) 
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In the case of the damaged sample, the corrosion potential and current was 

determined to be around -0.55 V (vs Vref) and 10-3.95 A/cm2. After healing of the 

damaged sample, the corrosion potential and current was determined to be around -0.40 

V (vs Vref) and 10-4.3 A/cm2. 

The corrosion potential of the healed coating on the stainless steel was -0.15 V 

(vs Vref) higher than the damaged coating on the stainless steel, and the corrosion 

current of the coated sample was less than the damaged one.  

Therein, it can be concluded that the healed coating on the stainless steel could 

prevent a corrosion reaction between the electrolyte and the stainless steel, and become 

more resistant to corrosion than the damaged sample. This result shows that the 

damaged area by the sharp blade was re-established by forming the protective layer to 

corrosion. 

 

4.2.3. Comparison of potential dynamic test between all samples 

Figure 36 shows the comparison of the corrosion potential and the corrosion 

current between the samples (bare, coated, damaged and healed coating on stainless 

steel). It is obvious that bare stainless steel shows lower corrosion potential and higher 

corrosion current than coated one, which means coated sample is more resistant to 

corrosion. Nano-structured coating can prevent a corrosion reaction that is electron 

transfer between the stainless steel substrate and the corrosive environment. 
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Figure 36. Comparison of the corrosion potential and current between 
samples (bare, coated, damaged, healed coating on the stainless steel) 

 

A coating on substrate, damaged by scratching with a sharp blade, shows lower 

corrosion potential than coated stainless and higher corrosion potential than bare 

stainless steel, which means damaged coating can prevent corrosion but not much as the 

perfect coating. The damaged coating on the metal substrate makes the stainless steel 

exposed to the corrosive environment and caused corrosion of it. Therein, the corrosion 

potential of the damaged sample became lower than the coated sample. 

After damaged coating is repaired under ultraviolet light for 15 minutes with 255 

nm wavelengths, the corrosion potential becomes higher than the stainless steel with 

damaged coating, which means the new passivation layer is generated on the damaged 
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spot of the coating and prevents the corrosion reaction on surface of stainless steel 

substrate. The protective passivation layer can be considered as the chelated layer; that 

is the strong and dense coordination complex molecules layer which can deactivate the 

metal ion (Mn+) and avoids attacking for corrosion with other elements to produce the 

metal rust. The chelated layer can be described as the three coordinate bonds formation 

between a metal ion in the core and polydentate ligands of 8 HQ in the outer [52]. 

 

4.3. EIS analysis  

Figure 37 shows the nyquist plot for each sample (bare, coated, damaged and 

healed) to evaluate the surface configuration (circuit model).  
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< Bare sample >                                                  < Coated sample > 

 

 

         

< Damaged sample >                                                  < Healed sample > 

Figure 37. The Nyquist plot and the surface circuit model for each sample 
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In case of the bare metal, the nyquist plot indicates the sample behaves as semi-

circle. This means that the resitance R (charge transfer) and C (Capacitance) component 

existed on the surface. It is possible to expect that the double layer by oxidation on the 

stainless steel surface was generated. 

In case of the coated sample, the nyquist plot shows Warburg impedance at low 

frequency area, which means the diffusion (ionic transfer) from the electrolyte solution 

to the active nano-structured coating.  It is possible that corrosion reaction 

(electrochemical) on the stainless steel surface was protected by the coating. 

In case of the scratched sample, the nyquist plot shows two different kinds of the 

double layers on the stainless steel surface, which indicate the damages of the coating 

exposed to the electrolyte solution and further corrosion was observed. 

In case of healed sample, the nyquist plot shows two different kinds of the 

double layers on the surface. However, these double layers show the Warburg 

impedance, which means the diffusion dominates from the electrolyte solution to the 

coating. This result indicates that the new protective layer for corrosion was generated 

by the chelating reaction with the metal ions and the corrosion inhibitors. 

The generated interfacial double layers are expected to be around ZnO 

nanoparticles in the coating [53-55]. The active nano-structured coating makes it 

possible to form the double layers further, which cause the diffusion process. The 

straight line at right side of the nyquist plot (low frequency area) of the coated sample 

shows the Warburg impedance. 
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Figure 38 shows the comparison of the nyquist plot for evaluating corrosion 

resistivity for all samples tested in this research. As shown in this figure, the bare 

sample shows significantly low resistance value, and the coated sample shows highest 

resistance value between the electrolyte and the surface of the sample. Showing high 

resistance value means that the electrochemical reaction on the surface is difficult to 

happen. Corrosion can be explained as electrochemical reaction between a material and 

environment, thus it is obvious that the active nano-structured coating prevents the 

corrosion reaction of the stainless steel metal substrate. 

The healed sample shows the higher value of resistance than damaged sample. It 

means that the damaged coating was reconstructed by forming the protective layer. The 

formed layer is protective for the electrochemical reaction, i.e., corrosion, between the 

surface of the sample and the electrolyte. 

 

 

Figure 38. The comparison of the nyquist plots for evaluating 
corrosion 
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4.4. The mechanisms of the active nano-structured coating for corrosion 

protection 

4.4.1. Photo-reaction 

The strategy for anti-corrosion and self-healing coating is the active nano-

structured layer-by-layer coating consisted of photo-catalytic material, corrosion 

inhibitor and poly-electrolytes. Photo-catalytic metal nano-particle is the key material 

for self-healing mechanism. When a photo-catalytic material absorbs ultraviolet (UV) 

light from light source, an electron density of the photo-catalytic material is changed 

from valence band to conduction band by photon energy. It also produces the pairs of 

electrons and holes simultaneously [56].  

Figure 39 shows the schematic of photo-reaction on photo-catalytic reaction 

under ultraviolet light of Zinc oxide. This reaction on photo-catalytic material can 

establish the condition for self-healing coating. Also, excited electron (e-) and positive 

hole (h+) by photo-reaction react with surroundings and create photo-reduction and 

photo-oxidation processes [56].  
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Figure 39. Schematic of photo-reaction on photo-catalytic material 

 

An energy gap of materials (between valence band and conduction band) is 

called band gap that is the factor to distinguish between a conductor, a semiconductor 

and an insulator for identifying electric conductivity [1]. If a band gap does not exist, 

this material would be a conductor. If there is a large band gap, this material would be 

an insulator. If there is a small band gap, this material would be a semiconductor. Photo-

catalytic material, which has small band gap, would be a kind of semiconductor because 

the electron density can be changed from one state (valence band) to another state 

(conduction band) by the external stimuli such as doping or ultraviolet light radiation 

[57].  
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Figure 40 shows the excited electron density under ultraviolet light on the photo-

catalytic material (Zinc oxide) of the active nano-structured coating which will be 

introduced in this research. 

 

 

Figure 40. Excited electron density under ultraviolet light on the 
photo-catalytic material (Zinc oxide) of the active nano-structured 

coating 

 

4.4.2. Mechanisms of self-healing coating under UV light 

The excited electron density under ultraviolet light in photo-catalytic materials 

acted to form the protective layer. The exited electron density made changes of the 

electron density of the poly-electrolytes, and the corrosion inhibitor encapsulated in 

poly-electrolytes was released into the damaged area of the coating. Then, the formation 

of the chelation on surface made the passivation layer and protects corrosion reaction of 
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the substrate [58]. The chelated passivation layer is the highly bonded coordination 

complex and has been used for the dense and resistant layer of corrosion widely [59]. 

Figure 41 shows chelate reaction between complex metal ion and polydentate ligands to 

form a protective layer for corrosion. 

Mn + +8 HQ (corrosion inhibitor) → Mqn     (8) 

 

 

Figure 41. Chelate reaction between metal complex ion and 
ligands 

 

4.4.3. Configuration of anti-corrosion and self-healing coating 

The configuration of the active nano-structured coating for anti-corrosion and 

self-healing is described in Figure 42. The layer-by-layered active nano-structured 

coating prevented corrosion reaction of the substrate. Once the coating was damaged, 

corrosion happened on bare metal under corrosive environment. Then, damaged area 

was reconstructed by forming the chelated layer, which is protective for corrosion 
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reaction of the metal substrate [59]. This is self-healing mechanism of the active nano-

structured coating for corrosion under ultraviolet light irradiation. 

 

 

Figure 42. Configuration of active nano-structured coating for anti-
corrosion and self-healing 

 

4.5. Summary 

In order to evaluate the corrosion resistivity and self-healing effect of the active 

nano-structured coating on the stainless steel substrate, the potential dynamic tests were 

performed. The corrosion potential values can determine when the anodic reaction on 

the surface of materials dominates the cathodic reaction. The anodic reaction means that 
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the surface of metal decomposes into metal ions and electrons, and this process causes 

pitting by corrosion. 

The corrosion potential of the coated sample showed much higher value than the 

non-coated sample. This means that the active nano-structured coating prevented the 

corrosion reaction on the stainless steel surface. The zinc oxide nano-powder and the 

corrosion inhibitors fabricated on the stainless steel surface acted as the barrier for the 

chemical reaction between the surface of the sample and the electrolyte, which was used 

in this research. 

Once the coating was scratched by the sharp blade, this sample was exposed to 

the corrosive environment and was expected to corrode. Afterwards, the damaged 

sample was healed under the ultraviolet light, which causes the photo-reaction of the 

zinc oxide nano-powders layer on the stainless steel substrate to make the protective 

layer for corrosion. This process was proven by the result of the potential dynamic tests 

of the damaged sample and the healed sample. The corrosion potential value of the 

healed sample was higher than the damaged sample. 
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CHAPTER V 

ACTIVE COMPOSITE COATING FOR WEAR RESISTANCE 

 

This chapter discusses the active nano-structured composite coating for wear 

resistance. To evaluate the active composite coating for wear resistance, hardness test, 

wear test and friction coefficient test were performed. 

 

5.1. Evaluation of hardness 

Figure 43 and Table 1 shows the comparison of the Rockwell hardness value 

(HRC) of the carbon steel substrate before and after the active composite coating. The 

coated sample with the composite materials showed higher hardness than the non-

coated sample. The composite materials re-acted with the surface of the carbon steel 

substrate at relatively low temperature and made the new surface with higher hardness 

than non-coated carbon steel. The aluminum nano-powers and sodium nitrate behaved 

as a heat ignition and a releasing agent. The tungsten and graphite strengthened the 

carbon steel surface due to their own properties. The materials with high hardness were 

expected to have high wear resistance as well. 

In order to calculate how much the hardness of the sample was increased by the 

active composite coating, the following equation was used. 

                
               

       
           (9) 
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Figure 43. Comparison of the hardness before and after the active 
composite coating 

 

Table 1. The hardness values of each measurement of the sample 
(before and after the active composite coating) 

Hardness 1st 2nd 3rd 4th 5th average 

Before coating hardness 52.6 53.7 54.5 53.9 54.2 53.78 

After coating hardness 77.1 73.7 75.6 78.1 76.6 76.22 

 
    

 
 
 

 

By equation (9),                 
            

     
                   was 

calculated. It is obvious that the active composite coating made the carbon steel 

substrate 41.7255 (%) harder than the non-coated sample. 

Materials can become physically harder through the hardening processes, which 

mean they go through a metallurgical process to enhance the hardness that is related 
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with Young’s modulus of the metal. For instance, as a metal has a high Young’s 

modulus and yield stress, it is possible to say that the metal has a high hardness as well 

as a high resistance to plastic deformation. Hence, in order to increase wear resistance 

on a surface of a metal, the metal needs to become harder than before.  

 

5.2. Evaluation of wear resistance 

Figure 44 and Table 2 shows the comparison of the wear rate of the carbon steel 

substrate before and after the active composite coating. The coated sample with the 

composite materials showed lower wear rate than the non-coated sample. As discussed 

before, the materials having higher hardness are expected to have higher wear resistance 

because a wear, in other words a plastic deformation, on the surface of a metal is 

strongly related to and proportional with the surface hardness of a metal. From this 

point, we could assume that the wear resistance of the coated sample would be higher 

than the wear resistance of the non-coated sample, and this assumption was proven by 

this data in Figure 44 and Table 2. 
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Figure 44. Comparison of the wear rate before and after the active 
composite coating 

 

Table 2. Wear rate parameters of each measurement of the sample 
(before and after the active composite coating) 

Before coating 1st 2nd 3rd 4th 5th average 

Wear depth (mm) 4.50E-03 4.00E-03 3.50E-03 4.00E-03 3.50E-03 0.0039 

Wear width (mm) 0.32 0.3 0.3 0.32 0.26 0.3 

Wear length (mm) 10 10 10 10 10 10 

Duration (2 hours) 2 2 2 2 2 2 

wear rate (mm3/h) 0.0072 0.006 0.00525 0.0064 0.00455 0.00585 

 
After coating 1st 2nd 3rd 4th 5th average 

Wear depth (mm) 2.50E-03 2.80E-03 3.00E-03 3.80E-03 2.50E-03 0.00292 

Wear width (mm) 0.27 0.28 0.26 0.3 0.26 0.274 

Wear length (mm) 10 10 10 10 10 10 

Duration (2 hours) 2 2 2 2 2 2 

wear rate (mm3/h) 0.003375 0.00392 0.0039 0.0057 0.00325 0.004 
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In order to calculate how much the wear resistance of the sample was improved 

by the active composite coating, the following equation was used. 

                
               

      
           (10) 

And the wear rate of the sample was calculated by this equation. Wear rate of 

the carbon steel can be determined simply by multipling the wear depth, wear width and 

wear length of the wear scar generated by the hard material. 

                
   

 
    

                                

            
  (11) 

Figure 45 shows the wear parameters such as wear length, width and depth to 

calculate the wear rate of the sample in this research. Volume is in three dimensional 

values: m3, ft3 or qt. When the hard material scratches over the carbon steel substrate, 

the wear scar is generated depending on a hardness of material, an applying force and 

duration of scratching. In this research, the 6mm diameter of the stainless bearing ball 

scratched over the carbon steel with 8 lb and 2 hours. As the shape of the stainless steel 

ball is a sphere, the shape of the wear scar is expected to be a semi-circled cylinder.  
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Figure 45. The wear geometry on the substrate by friction of the 
stainless ball bearing 

 

In order to measure the wear rate of the carbon steel substrate, the surface 

interferometer was used. As mentioned in CHAPTER III, the surface interferometer is 

suitable equipment to examine the surface map such as morphology and roughness. The 

visulaized 2D and 3D images also make it easy for us to recongnize the surface map. 

Figure 46 shows the optical microscope of wear track images before and after 

coating. As shown by this figure, the wear scar of the non-coated sample shows bigger 

wear scar than the coated sample. It means that the coated sample shows higer the wear 

resistace than the non-coated sample. 
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< Before the active composite coating > 

 

 

< After the active composite coating > 

Figure 46. The surface interferometer test on the wear scar before and 
after coating 



 

69 

Figure 47 shows the result of the surface interferometer test on the wear scar to 

calculate the wear parameter such as the wear depth and the wear width before and after 

coating. Wear width was determined by the X axis of the surface profile data, which is 

the length of the dotted white line between the two peaks. Wear depth also was 

determined by the Y axis of the surface profile data, which is the length of the dotted 

yellow line under the white line. As shown by these data, the wear scars were generated 

by scrubbing, and the shape of wear area was semi-circled as we expected. 
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< Before the active composite coating > 

 

 

< After the active composite coating> 

Figure 47. The surface interferometer test on the wear scar before and 
after coating 
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By equation (11), the wear rate of the samples, both before and after coating, 

was calculated. It revealed that the wear rate of the coated sample was 0.00400 (mm3/h), 

and the wear rate of the non-coated sample was 0.00585 (mm3/h). 

By equation (10),                 
                

       
              was 

calculated. It is obvious that the active composite coating made the carbon steel 

substrate 46.25 (%) more resistant for wear rate than the non-coated sample, and it was 

almost proportional to increased percentages of the hardness values of the samples 

between before and after coating. 

It can be concluded that the active composite coating which were composed of 

the heat ignition / releasing agents and the surface modifiers make the surface of carbon 

steel harder by hardening processes, and the surface of carbon steel became more 

resistant for wear when comparing the samples before and after coating. 

 

5.3. Evaluation of friction coefficient 

As explained in CHAPTER III, in order to measure the friction coefficient of the 

samples, the tribometer was used. Applied force was 4N, and friction coefficient can be 

calculated by equation (8). 

                        
                  

                  
     (12) 

Figure 48 illustrates the schematic of measuring friction coefficient data between 

the two different solid surfaces, which is dry friction measurement, in this research. 

When an opposite material touches and scrubs on a substrate with applied force, friction 

force is generated corresponding to several parameters, such as scratching speed, 
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distance and environment factors. The friction energy between the two solid surfaces 

can be changed into thermo energy, which is heat. The friction energy also causes the 

plastic deformation, which is wear, on the surface of the softer material. 

 

 

Figure 48. Schematic of measuring friction coefficient of the sample 

 

Figure 49 shows the result of friction coefficient data before and after the active 

composite coating. The friction coefficient of non-coated sample was 0.412 while the 

friction coefficient of coated sample was 0.363. The difference of friction coefficient 

between the two samples, coated and non-coated, was only 0.049. Therein, it can be 

concluded that there was not much difference of friction coefficient data between the 

two samples. This result indicates that the friction coefficient is not a function of surface 

hardness or a composition of materials. The surface roughness can affect friction 

http://en.wikipedia.org/wiki/Heat
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coefficient data since the friction forces of the two samples are similar. Friction force 

can be described as resistance force against sliding of the stainless steel ball. 

 

 

Figure 49. Comparison of the friction coefficient before and after the 
active composite coating 

 

5.4. The mechanism of the active composite coating for wear protection 

In order to improve wear resistance of high carbon steel, composite materials 

were used for the surface coating. The composite materials consisted of heat ignition / 

releasing agents and surface modifier. The heat ignition / releasing agents were the 

nano-sized materials and were reacted at relatively low temperature due to their higher 

chemical reactivity [31]. The surface modifiers which have high strength and hardness 

were used to make the steel surface harder and more resistant for wear. 
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The carbon steel substrate was covered with the composite materials uniformly 

and the heat treatment was performed under a certain temperature. During heat 

treatment, the composite materials react with the surface of substrate and the new 

surface, which has higher hardness and better anti-wear, was generated. Figure 50 

shows the schematic of active nano composite coating on the surface of carbon steel.  

 

 

Figure 50. Schematic of active nano composite coating 

 

The hardening processes in this case of active composite coating would be 

described in two ways of hardening concepts. These concepts were a diffusion 

hardening and precipitation hardening under heat treatment. Basically, the hardening 

processes of metals can be performed by heat treatment. Heat on metals makes the 

hardening elements increase the chemical re-activity or diffuse into the substrate faster, 

or makes the micro-structure of metals change into another phase that has higher 

hardness and strength. 

Firstly, diffusion hardening is the process when diffusion occurs between the 

composite materials and the carbon steel substrate. The carbon steel surface is modified 

by diffusion of the composite materials, which are composed of tungsten and graphite 

http://en.wikipedia.org/wiki/Diffusion
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powders. Increased heat in the furnace by heat ignition and releasing agents in the 

composite materials, which are aluminum nano-powders and sodium nitrate, makes the 

hardening elements in the composite materials diffuse into the surface of the substrate. 

For instance, the graphite powders structured with carbon atoms can be diffused into the 

surface of the substrate and the contents of the carbon elements are increased [60]. 

Secondly, precipitation hardening happens during the heat treatment by the 

composite coating materials. The modifiers, which are tungsten, graphite and iron, 

penetrate and are diffused into the surface of the carbon steel substrate. These entered 

particles of the modifiers on the surface of the substrate prevent the movement of 

dislocations of the metal substrate such as slip, or defects in a crystal's lattice. These 

particles act as impurities to impede the plastic deformation on the surface of metal, and 

this phenomenon makes the surface of metal harder. High temperature makes the 

modifier elements soluble into the surface of metal [61]. 

 

5.5. Summary 

For evaluating the wear protection of the active composite coating on the carbon 

steel substrate, the Rockwell hardness tests and the wear rate calculations were 

accomplished. The results of hardness tests showed that the surface of the coated sample 

became harder than the non-coated sample by the hardening processes, such as 

precipitation and diffusion hardening. Furthermore, the wear rate of the coated sample 

was lower than the non-coated sample. This means that the active composite coating has 

wear resistance and protection ability on the surface of the carbon steel. 

http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Crystal_structure


 

76 

CHAPTER VI 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 

6.1. Conclusions 

This research explores nanostructured active coatings to protect corrosion and 

wear. Using experimental approaches, we introduced nano-materials to form coatings 

coating to protect corrosion and heal corroded surfaces. Due to the built-in mechanical 

properties, the wear resistance of the metal surface is improved.   

The self-healable coating for corrosion protection proposed in this research was 

the active nano-structured coating, which was composed of photo-catalytic materials 

(ZnO), corrosion inhibitors (8 HQ) and polyelectrolytes (PSS and PEI). The coating on 

the metal substrate showed the anti-corrosion ability, and this coating was self-healable 

under ultraviolet light. When ultraviolet light irradiated to the coating on the metal, 

which were damaged by the sharp blade, the electron density of the Zinc oxide on the 

metal substrate was excited. By the excited electron density of the Zinc oxide, the 

electron density of the functional group of the polyelectrolytes was changed. This made 

it possible for the corrosion inhibitor to be released from the polyelectrolytes, which 

capsulated the corrosion inhibitor.  

The corrosion resistivity of each sample was measured by the potential dynamic 

tests, and the results of the potential dynamic tests for each sample proved these 

mechanisms, anti-corrosion and self-healable effect of the active nano-structured 
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coating. Potential dynamic tests can measure the corrosion potential, which is the point 

to be happened the anodic reaction and cause corrosion pitting on the surface of metal. 

The active composite coating for wear protection of the carbon steel was 

proposed in this research. For the construction of anti-wear coating on the the carbon 

steel surface, the mixed composite materials, which consisted of the aluminum nano-

powder, sodium nitrate, tungsten power, graphite powder and iron powder, were 

presented.  

The composite materials re-acted with the surface of the carbon steel by the heat 

treatment, and the newly coated surface was produced. By hardness and wear testing on 

the carbon steel sample, it was revealed that the coated sample had higher hardness 

values and lower wear rate than non-coated sample. 

This research is expected to help reducing cost and safety hazard related with 

corrosion and wear on metal surfaces. Using nanostructured materials to engineer and 

protect surfaces of metals is a novel approach. It opens areas for future investigation, 

and here proposed the active nano-structured composite coating showed the feasibility 

enough to be industrialized or technologically advanced further. 

 

6.2. Future Recommendations 

1. The tribological tests of the active nano-structured coating, for example 

friction test and wear test, need to be conducted to evaluate the mechanical properties of 

the coating. 
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2. The other test such as the wettability test and corrosion test need to be 

performed to identify the surface properties of the active composite coating. 

3. The potential application need to be carried out by modeling and designing. 
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