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ABSTRACT 

 

 

 The electrical synapse was first described over 50 years ago. Since that time 

appreciation of its complexity and importance has grown, including the hypothesis that 

early transient formation of these synapses is important to adult patterns of connectivity 

in neural networks. Presented in this dissertation are studies utilizing identified neurons 

in cell culture from the snail Helisoma trivolvis to examine discrete periods of electrical 

synapse formation during regeneration with sustained or transient expression. Extensive 

knowledge of connectivity patterns of the buccal neurons of Helisoma in cell culture and 

the ganglia, provide a useful framework for looking at modulation and manipulation of 

electrical synapses and their impact and emerging connectivity in a simple neuronal 

network. 

Two types of electrical connections were observed those that were transient, 

between a B19 and a B110 and those that were sustained, between a B19 and another 

B19. Dopamine (DA) modulation of forming electrical synapses (FES) produces a 

synapse specific effect at those either destined to be transient (TES) or sustained (SES) 

and may be a direct effect on the gap junctions at the synapses, as is the case at TES, or 

an indirect effect on other membrane currents, as seen in SES. DA modulation produces 

different outcomes at SES-centered networks and TES-centered networks with respect to 

new chemical synapse formation, demonstrating network-dependent effects of electrical 

synapse modulation.  
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Pharmacological blockade of chemical and electrical components at forming 

mixed synapses in some cases alters subsequent synapse formation although due to the 

variable nature does not appear to be a direct interaction between chemical and electrical 

synapses. Three-cell networks appear to display a balancing mechanism for overall 

electrical coupling when electrical synapses are blocked suggesting a competition for 

some resource in the construction or trafficking of gap junctions. In addition to 

electrophysiological examinations, network coupling can be assessed utilizing 

fluorescent calcium imaging to look at coincidence of calcium changes as an output for 

coupling between cells. This technique provides a useful tool for less invasive studies of 

neuronal networks and the impact of coupling at mixed synapses. 
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NOMENCLATURE 

 

5HT Serotonin 

ACh Acetylcholine 

BSA Bovine serum albumin 

CBX Carbenoxolone 

CUR Curare 

DA Dopamine 

DMeth Deltamethrin 

DMSO Dimethyl sulfoxide 

Dyna Dynasore 

FES Forming electrical synapse 

HEX Hexamethonium 

mPSP Miniature postsynaptic potential 

NES New electrical synapse 

nAChR Nicotinic acetylcholine receptor 

nCCS New chemical cholinergic synapse 

nTES New transient electrical synapse 

PLL Poly-l-lysine 

PSP Postsynaptic potential 

SES Sustained electrical synapse 

TES Transient electrical synapse 
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 CHAPTER I  

GENERAL INTRODUCTION 

 

The general acceptance of the neuronal doctrine as defined by Santiago Ramon y 

Cajal and others, that the nervous system was comprised of individual cells and not a 

continuous web-like entity, led necessarily to the question of how signals traveled 

between the many neural entities (reviewed in Bennett 1999). One hypothesis was that 

nervous stimulation produced a chemical to which the target effector cells responded 

with a corresponding signal. Perhaps the most famous experiments in this regard were 

those of Otto Loewi showing that stimulation of the vagus nerve, and its associated 

inhibition of heart rate, was due to a factor secreted by the vagus nerve (Loewi, 1921). A 

second hypothesis, long championed by John Eccles, proposed that there was a direct 

passage or coupling of electrical current between connected neurons. The first clear 

demonstration of such electrically-transmitting synapses was not to come until 

intracellular electrophysiology performed by Furshpan and Potter (1959), showed direct 

electrical current flow at giant motor synapses involved in crayfish escape behaviors. 

Today it well documented that both forms of neural transmission, chemical and 

electrical, exist in most nervous systems, if not all. Furthermore, in many instances 

synapses actually exhibit mixed connectivity where both forms of synaptic transmission 

co-exist. Perhaps the best understood and most rigorously studied mixed synapses are 

those of the Mauthner cell of the goldfish (Lin and Faber, 1988).  
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Chemical-mediated connections (known as chemical synapses) differ 

fundamentally in their structure and function from electrical synapses. Functionally, 

chemical synapses require that action potentials in the signal-sending (presynaptic) cell 

be coupled to the release of a diffusible chemical signal at the site of contact before 

action potentials can be generated in the signal-receiving (postsynaptic) cell. This 

requires very specific specializations in both the presynaptic and postsynaptic cells, 

particularly machinery in the presynaptic cell for production and release of chemical 

transmitter and in the postsynaptic cell for the receipt and transduction of those chemical 

signals into changes in membrane potential. In contrast, electrical synapses form large 

intercellular channels, known as gap junctions, that allow for the direct passage of 

electrical current between cells. These gap junctions are formed when extracellular 

domains of the channel proteins from each cell (known as hemichannels) align to form a 

large pore providing cytoplasmic continuity.  

In contrast to chemical synapses, many electrical synapses are bi-directional, 

conducting current equally well in either direction. Given the synaptic specializations 

necessary for chemical synaptic transmission, such bi-directionality would be a difficult 

proposition. However, in numerous instances gap-junctional conductance displays 

rectification in which the channel will preferentially conduct current in one direction 

(Furshpan and Potter, 1959; Hall et al., 1985).  As might be expected, chemical synapses 

contain a longer synaptic delay when compared to the near instantaneous transmission of 

electrical signals through gap junctions. It is generally considered that chemical synapses 

have higher metabolic demands and provide a higher degree of modulation than their 
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electrical counterparts. Recently, however, electrical synapses have been demonstrated 

to be highly dynamic in expression and degree of plasticity (Condorelli et al., 1998; 

Pereda et al., 2012).  

Electrical synapses are well studied with regard to their mediation of rapid motor 

escape behaviors (Antonsen and Edwards, 2003), however, the appreciation for their role 

in the regulation of synaptic function throughout the vertebrate brain is continually 

growing  (Bennett et al., 1959; Connors and Long, 2004). The expression of electrical 

synapses can be highly diverse. In some instances gap junction-mediated intercellular 

communication is sustained throughout development and incorporated into the adult 

neural connectivity of the animal, such as in the retina (Bloomfield and Volgy, 2009). 

These types of synapses will hereafter be referred to as sustained electrical synapses 

(SES). However, in numerous instances electrical synapses, present early in nervous 

system development, undergo a programmed uncoupling (Spitzer, 1982; Connors et al., 

1983) often coincident with the emergence of chemical synapses. This brief, but distinct 

period of expression, led these developmental forms gap junction-mediated coupling to 

be referred to as transient electrical synapses (TES). Although the function of these 

short-lived electrical connections is not well understood, TES have long been 

hypothesized to be important in the formation of appropriate adult connections amongst 

neural networks (Peinado et al., 1993; Yuste et al., 1995). 

As mentioned earlier, gap junctions are known to be important sites of 

neuromodulation with an increasingly large number of modulatory agents known to 

affect changes in junctional conductance. One such agent is cytosolic calcium (Rose et 
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al., 1977), which can act to gate electrical synapses by affecting alterations in their 

voltage sensitivities. There are also well-studied neuromodulators in the vertebrate retina 

including dopamine (DA) and nitric oxide, which alter junctional conductance 

(Witkovsky and Dearry, 1991; Lu and McMahon, 1997). In both instances these gap 

junction modulators alter kinase activity leading to changes in the relative 

phosphorylation state of the gap junction proteins and, subsequently, alterations in their 

conductance (Lasater, 1987; Patel et al., 2006). 

Given that gap junction expression is widespread throughout the adult vertebrate 

brain and that in certain instances its expression is transient, gap junction-mediated 

synapses have been implicated in the regulation of developing and emerging adult 

connectivity. Therefore, this dissertation and my doctoral research is based on the central 

hypothesis that modulation of developing electrical synapses will lead to predictable 

changes in the formation of synaptic connections within known neural networks. 

Furthermore, I hypothesize that the persistence, or not, of electrical connections, SES 

and TES, respectively, within neural networks will have different modulatory effects 

(i.e., generate different synaptic outcomes) on the networks within which they exist. In 

order to address these hypotheses, I have used a biological system, Helisoma trivolvis, 

were neurons are visually identifiable and easily manipulated into cell culture. This 

system allows for the controlled construction of networks of known neuronal identity 

and for the spatial and temporal manipulation of synaptic contacts and the ready 

administration of pharmacological and neuromodulatory agents. Using these tools, I 
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have assessed how modulation of both sustained and transient forms of electrical 

synapses alters the emergence of neural network connectivity. 

 

Electrical Synapses  

 

Electrical synapses allow for the direct passage of intercellular communication between 

coupled cells. Although evidence of this mode of communication was functionally 

described over fifty years ago at crayfish giant synapses (Furshpan and Potter, 1957; 

Furshpan and Potter, 1959) cardiac ganglia of mantid shrimp (Watanabe, 1958) and 

supramedullary neurons of pufferfish (Bennett et al., 1959), it has since been 

demonstrated that electrical coupling occurs at large membrane-spanning channels 

referred to as gap junctions (Revel and Karnovsky, 1967; Sotelo et al., 1974). Gap 

junctions were so named because they bring opposing cell membranes into much closer 

juxtaposition (2-4nm) with one another than is typical for an intermembranous space 

(around 20nm). It is important to note that, although much of the discussion here of gap 

junctions will be limited to their function and presence in neural systems, these channels 

are widely found throughout the body to couple many cell types within most tissues. For 

example, the expression of connexin (Cx) 43 is widespread in cardiac muscles (Reaume 

et al., 1995), alveolar capillaries (Parthasarathi et al., 2006), liver epithelial cells (de 

Feijter et al., 1996), osteocytes (Cherian et al., 2005), myometria (Ou et al., 1997) and in 

the brain, where gap junctions couple massive networks of both neurons and astrocytes 

(Yamamoto et al., 1992).  
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Structure and composition 

Gap-junction proteins are contained in two multi-gene families; connexins, 

which are unique to chordates, and innexins and pannexins, which constitute a second 

family with representatives extant across both protostome and deuterostome lineages 

(Phelan, 2005; White et al., 2004). Currently there are 20 connexin genes that have been 

identified in the mouse genome, 19 of which are orthologs of those found in the human 

genome (Sohl et al., 2005). Out of these 20 genes only a relatively small number are 

expressed within the mouse nervous system including Cx26, Cx36, Cx45 and Cx57 

(Dere and Zlomuzica, 2012). In comparison, 25 innexins have been identified in C. 

elegans (Starich et al., 2001) and a recent paper reports the identification of 21 innexin 

genes encoded in the leech genome (Kandarian et al., 2012).  

Although initially thought to be distinct to invertebrate lineages, innexin 

homologs were later found in vertebrates demonstrating a more widespread distribution 

among animal phyla. It is important to note that the use of the nomenclature, innexin and 

pannexin, is often considered dubious due to the fact that they are homologs (Baranova 

et al., 2004). Therefore, it has been suggested that all members be referred to simply as 

pannexins (pan being Latin for throughout). This name, pannexin, is used very distinctly 

when found in the chordate genome, however, the innexin identifier is still very 

prominently used to identify most, but not all, invertebrate gap junction proteins. 

Currently, there are three identified pannexin genes in mammals (Panchin, 2005). 

Interestingly, unlike connexins that form fully functional intercellular channels, 

pannexins have only been shown to function as hemichannels in mammals (MacVicar 
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and Thompson et al., 2010) though they were capable of forming intercellular channels 

when expressed in oocytes (Bruzzone et al., 2003). 

 Structurally gap junction proteins consist of 4 transmembrane domains, 2 

extracellular loops, 1 intracellular loop, and cytosolic carboxy and amino termini 

(Panchin, 2005). Gap junctions are formed when hexameric units of connexins or 

innexins, termed connexons or innexons respectively, link between two adjacent cells 

and create a large junction allowing for cytoplasmic continuity between the two cells 

following channel opening. Docking of the connexons between adjacent cells is thought 

to occur by interaction of the extracellular loops contained in the connexins comprising 

each hemichannel (Yeager and Nicholson, 1996). Mechanistically this is suggested to 

occur by the formation of disulfide bridges among conserved adjacent cysteine amino 

acids that act to link and stabilize juxtaposed hemichannels (Kumar and Gilula, 1996).  

Gap junctions and their constituent hemichannels are highly diverse in their 

composition (White and Paul, 1999). Connexons can be homomeric, with all six subunits 

the same connexin proteins, or heteromeric, where connexins of multiple identities form 

the hemichannel. Additionally, hemichannels contributed by each of the two cells 

constituting a gap junction are not obligated to have the same composition (Dedek et al., 

2006). Resulting gap junctions can therefore be homotypic, identical  hemichannels, or 

heterotypic, different hemichannels. Taken even a step further, gap-junctional plaques 

that constitute electrical synapses may be either homo- or heterogeneous and, therefore, 

could contain myriad types of gap junctions each with different signaling properties. All 

of these different components create a large degree of diversity in the composition of the 



 

 8 

intercellular junction, each providing potential variability in gating mechanisms, 

selectivity and modulation (Veenstra, 1996), which will be addressed later in this 

section. This diversity is evident in their wide array of functions and expression 

throughout the developing and adult animal body, of particular interest here- the nervous 

system.  

The channel itself has a large pore diameter that can pass molecules up to 1 kDa 

in molecular size (Dermietzel and Spray, 1993), allowing the junction to not only 

passage ions (and more importantly current) for electrical transmission but also small 

second messenger molecules that mediate a wide range of cellular processes (Harris, 

2007; Kandler and Katz, 1998; Kumar and Gilula, 1996; Leitch, 1992). The pore directly 

links the cytoplasm between cells creating an electrical synapse whose communication is 

very rapid. For this reason electrical and biochemical coupling can occur in very tight 

temporal sequences. In fact, throughout early phases of nervous system development, 

large groups of neurons are connected via electrical synapses (Nadarajah et al., 1997). 

Thus, the expression of gap junction proteins, the electrical and biochemical coupling 

they mediate and the modulation of their physiological function in the nervous system is 

considered tantamount to a regulatory switch during synaptic development and signal 

transmission within adult neural networks (Kandler and Thiels, 2005). In the following 

sections I will discuss processes by which these intercellular pores affect changes in 

neural function.  
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Gating gap junctions 

Electrical synapses are generally thought to be far less dynamic in their neural 

signaling capabilities than their chemical synapse counterparts. It is becoming evident, 

however, that gap junctions have a far wider range of synaptic capabilities and degree of 

modulatory impact in neural regulation than initially credited in early studies of 

electrical synapses (Furshpan and Potter, 1959). Gap junctions by their mere presence do 

not dictate an open pore for direct cellular communication. Electrical synapses can be 

gated into an open or closed conductance state and there are several well-known 

mechanisms by which they can be activated. Gating is thought to occur through one of 

the two termini with some clear evidence involving the amino terminus and voltage-

gating, as determined by studies of Cx26- and Cx32-based channels (Purnick et al., 

2000, Oh et al., 2004). Phosphorylation-based gating occurs at the carboxyl terminus 

(Lampe and Lau, 2000) and levels of cytosolic calcium are known to influence gating 

(Rose and Loewenstein, 1976). Therefore, the key players in a host of biological 

regulatory pathways, including membrane potential, phosphorylation state and calcium 

signaling, are also critical participants in the gating of gap junctions. 

It has been oft demonstrated that gap junctions are gated by the voltage across 

the junctional membrane (Spray et al., 1979, Srinivas et al., 1999), though sensitivities to 

voltage is largely dependent on the hemichannel in question and its connexin makeup 

(Revilla et al., 2000). Notably many junctions exhibit both voltage-dependent and 

independent currents, demonstrating that electrical synapses have multiple conductance 

states rather than simple on-off mechanisms (Chen and DeHaan, 1992; Moreno et al., 
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1994). These multiple gating states show that junctional conductance varies and hence 

displays a degree of gradation that allows for fine control of electrical synaptic 

communication. Voltage-dependent junctional currents also provide understanding of the 

rectification properties that some gap junctions possess, while others produce bi-

directional conductance (Bennett, 1997). Most arguments suggest that these rectifiying 

electrical synapses involve heterotypic gap junctions, where one hemichannel has a 

distinct voltage-dependent conductance while the other exhibits either slow-voltage 

dependent or voltage-independent gating, allowing differential resistance to current flow 

in one direction through the channel than the other. A final and interesting note on 

voltage sensitivity at electrical synapses is that it offers a mechanism for activity-

dependent regulation of gap junction physiology. In this regard, the activity within 

neural networks containing electrical synapses or mixed electrical/chemical synapses can 

modulate information processing of that network over time, depending on activity states. 

This idea is central to several aspects of this dissertation. 

Changes in cytosolic calcium (Ca2+) levels, as mentioned earlier, also gate 

intercellular channels, often with in an increase in calcium resulting in channel closure 

(Rose et al., 1977; Spray and Bennett, 1985). It might seem odd that increased calcium 

closes gap junctions when they are known to effectively propagate calcium waves 

among neural cells, particularly astroglia (Scemes and Giaume, 2006; Verkhratsky et al., 

2012). However, experiments demonstrating closure of intercellular channels were 

performed in excess of physiological levels of Ca2+ (Spray et al., 1994). Calcium 

modulation of junctional conductance could occur through changes in transjunctional 
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voltage, as discussed earlier, due to its nature as a divalent cation. Additionally, Ca2+ 

could act through acidification mediated by calcium entry into the neuron, due to gap-

junctional sensitivity to proton levels. However, some evidence suggests that the latter is 

an unlikely mechanism due to a lack of synergy when calcium and hydrogen ions are co-

applied (Peracchia, 2004). In addition to its effects on membrane voltage, and potentially 

pH, cytosolic calcium can also alter the conductance of gap junctions through 

calmodulin-dependent interactions, which can directly bind with certain connexins to 

alter channel conductance (Peracchia et al., 1996; Peracchia et al., 2000) or activate 

kinases such as Ca2+-calmodulin-dependent kinase II (CaMKII) to phosphorylate gap 

junctions (Pereda et al., 1998). All three of these mechanisms represent potential sites 

for activity-dependent modulation of electrical synapses. Furthermore, it should be noted 

that Ca2+ entering a neuron contributes to further depolarization of the cell membrane, 

particularly at synapses, where changes in gap junction permeability will depend on the 

dual sensitivities of those channels to calcium ions and membrane voltage. 

Adding to the story on channel phosphorylation, many second messengers 

including cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate 

(cGMP) and the aforementioned Ca2+ act to alter junctional conductance by modulation 

of phosphorylation state of intercellular channels (Saez et al., 1986; Kwak et al., 1995). 

Studies of Cx43 suggest that there are roughly 21 serines in addition to 2 tyrosine amino 

acids that are likely the sites of kinase activity and phosphorylation involved in gap 

junction protein conformational changes that underly phosphorylation-dependent gating 

(Solan and Lampe, 2005). The retina has provided arguably the most well studied model 
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of this type of channel gating. Horizontal cells of teleosts undergo a reduction of 

coupling when injected with cAMP, thereby activating cAMP-dependent protein kinase 

A, PKA (Lasater, 1987). The same phenomenon happens in horizontal cells of the turtle 

retina when adenylate cyclase is activated by the addition of forskolin (Piccolino et al., 

1982). However, the exact gating induced by phosphorylation is, again, often dependent 

on the connexin and hemichannel composition, as demonstrated by cAMP increasing, 

rather the decreasing, junctional conductance among mouse tumor cells (Atkinson et al., 

1995). 

 

Gap junction expression and trafficking 

Aside from direct gating of individual or populations of gap-junctional channels, 

another mechanism affecting overall electrical synaptic strength is alteration in plaque 

size. Membrane bound connexin half-lives in some cell membranes are known to be 

only a few hours long (Laird, 2006), meaning that regulation of gap junction numbers 

can be highly dynamic and an important site for potential modulation. This can be 

achieved through multiple methods including: increased expression of the genes 

encoding gap junction proteins, specific trafficking of those proteins to desired sites on 

the cell membrane, or regulation of gap junction turnover within the plaque itself. In the 

first instance, changes in connexin or innexin gene expression would lead to a potential 

increase or decrease in the number of proteins and hence potential channels expressed at 

a plaque. However, mere changes in protein levels do not guarantee their inclusion at 

synaptic sites. Therefore, trafficking to appropriate regions of the cell membrane is also 
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required to effect changes in intercellular conductance. Additionally, a given channel’s 

inclusion into, or removal from, a given plaque dictates how strong the coupling at that 

site can be and can provide potential regulatory control of electrical coupling.  

In mammalian reproduction, Cx43 is upregulated in the myometrium of pregnant 

rats in preparation for parturition (Lye et al., 1993).  The increase in transcription of 

connexin genes during pregnancy in the myometrium acts to increase cell-to-cell 

coupling, where synchronization of muscle contractions is necessary for the birthing 

process (Risek et al., 1990, Lefebvre et al., 1995). Likewise, though some connexin 

expression remains, overall gap junction protein levels are reduced in rat motor neurons 

during the chemical synapse formation stage of spinal development (Chang et al., 1999), 

going from a period where the spinal motor networks are largely electrically coupled 

into the adult state when motor neurons are rarely connected to interneurons by anything 

other than chemical synapses.  

A connexin’s pathway from gene transcription to synaptic membrane localization 

follows the general mechanism of other synaptic proteins. These included protein 

synthesis occurring at the endoplasmic reticulum (ER), where connexins ultimately are 

integrated into the ER membrane and their protein topology is finalized. From there, 

through repeated vesicle budding and fusion cycles, the proteins (perhaps in multimers) 

are transported from the ER membrane and hemichannels are formed through the 

various Golgi stacks, trafficked along microtubule-based transport mechanisms and 

finally inserted into the cell membrane (Yeager et al., 1998). Since Cx43 is best studied 

in this regard I will briefly summarize the ‘birth’ portion of its lifecycle. As suggested 
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above following its synthesis in the ER, Cx43 polypeptide simultaneously gets 

incorporated into the ER membrane. Although inconsistencies exist on where 

oligomerization of Cx43 occurs (Falk et al., 1997; Musil and Goodenough, 1993), most 

recent data suggest that hexamer formation into connexons does not occur until the trans 

Golgi network (Vanslyke et al., 2009). 

Obviously, an important linkage between changes in gene expression and the 

ultimate incorporation of the finished protein into the cell membrane involves trafficking 

of the protein to appropriate sites on the cell membrane. As knowledge of the gap 

junction and gap junction assembly increases, sometimes referred to as the gap junction 

proteome, many of the players in directing and targeting of its assembly and 

incorporation are being defined. Phosphorylation of connexins and hemichannels is one 

such proposed mechanism. Rab20, a member of the Rab family of GTPases known to be 

involved in intracellular trafficking, directs Cx43 through its many steps of vesicle 

budding and fusion (Das Sarma et al., 2008). Another mechanism mediated by ERp29, a 

protein found in the endoplamic reticulum and known to process ER proteins, has been 

demonstrated to bind Cx43 suggesting it may act to chaperone connexins through the 

secretory pathway (Das et al., 2009). Although targeting of gap junctions to appropriate 

sites on the cell membrane would logically be an important step in the process of plaque 

assembly there is currently some debate about exactly how specific individual cells are 

at directing hemichannel assemblies to the plaque site.  

Gap junction plaques grow by accretion, where new channels get incorporated 

into the cell membrane, reportedly at non-junctional sites, and can move laterally to join 
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with the periphery of a given plaque (Lauf et al., 2002). Also given the knowledge that 

older channels are removed from the central portions of the plaque (Gaietta et al., 2002), 

it is now clear that gap-junctional plaque size is regulated by addition of new channels in 

the periphery and removal of old channels medially. Incorporation of connexons into the 

gap-junctional plaque occurs through various interactions with the scaffolding proteins 

or linkers with the cytoskeleton. Zonula occludens-1 (ZO-1) has been well studied in its 

interactions with members of the connexin family and can regulate distribution of 

junctions as well as plaque size through interactions with spectrin and the cytoskeleton 

(Toyofuku et al., 1998; Hunter et al., 2005). In addition to spectrin, other actin-binding 

proteins, drebrin and cortactin (Butkevich et al., 2004; Vitale et al., 2009), function to 

link connexins with the actin cytoskeleton. 

Turnover of gap junctions from the center of plaques occurs often by 

internalization of the intact junction, or at least segments of the junction. This 

internalization results in the formation of a double-membrane vesicle, often referred to 

as annular gap junctions or connexosomes (Jordan et al., 2001). Interestingly, but not 

surprisingly, this double-membrane vesicle contains both plasma membrane from the 

internalizing cell as well as the juxtaposed cell. Internalization of this connexosome is 

thought to occur via clathrin-mediated endocytosis, as shown in Gumpert et al, 2008 

where use of RNA interference of clathrin or associated machinery, AP-2, Dab2, or 

dynamin resulted in a reduction of internalized gap junctions. After undergoing 

endocytosis, connexosomes can then be targeted for degradation. There have been 

suggested roles for a sequential degradation of gap junctions by both lysosomal and 
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proteasomal degradation pathways. A report by Qin et al. (2003) demonstrated that in 

tumor cells proteosomal pathways act to promote endocytosis of Cx43 while lysosomes 

are more integral to the actual degradation of the internalized junctions. It is important to 

note that although the mechanism described here is the most widely studied, many 

tissues appear to lack connexosomes (Laird, 2010), suggesting that either other 

mechanisms for internalization may be present, or that data on connexosomes is 

incomplete. 

Several aspects of these house-keeping mechanisms are central to my research 

approaches, results and interpretations to follow in this dissertation. First, the fact that 

gap junctions and the plaques and synapses that they underlie are highly labile is 

important. The idea that electrical synapses can be constructed and deconstructed in 

hours will become a resonating theme here. Our understanding that the building of 

hemichannels is largely an ER-golgi process and that the construction of an electrical 

synapse is dependent on directional trafficking to that synapse will be central to my 

arguments. Furthermore, the ongoing endocytotic cycle at synaptic sites and its role in 

the maintenance of synapse communication will be exploited by pharmacological 

disruption of the dynamin-mediated aspects of this process. Finally, these processes and 

more are very likely important sites of the regulation of early and ongoing electrical 

synapse formation with neural networks. Therefore, modulatory mechanisms that alter 

the construction and maintenance of gap junction plaques are as important as those that 

affect changes in junctional gating properties. The next section will expand upon these 

issues. 
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Gap junction modulation 

A final principle of gap junction physiology important here is that they are 

readily modulated by a number of factors exogenous to the cells. For example, many 

neurotransmitters, such as dopamine (DA) and glutamate, affect changes in junctional 

coupling. A well-known mechanism involves DA activation of a D1 receptor in the 

horizontal cells of the retina to reduce junctional conductance (Lasater, 1987; McMahon 

et al., 1989; Piccolino et al., 1982; Teranishi et al., 1983). This affect is mediated via D1 

activation of adenylate cyclase to stimulate an increase in cAMP levels leading to 

changes in PKA-mediated phosphorylation. Another cell type in the retina, the AII 

amacrine cells, also undergo modulation of gap-junctional coupling in response to DA. 

As suggested in Kothmann et al. (2009), DA-induced PKA activity in amacrine cells 

activates a phosphatase, causing dephosphorylation of the gap junction leading to 

reduced coupling. In the retina DA may also activate D2-like receptors in the rods and 

cones of the photoreceptor layer to increase junctional conductance at certain times of 

the day (Ribelayga et al., 2008). Aside from the retina, DA modulation of junctional 

conductance has been demonstrated in the nucleus accumbens (O’Donnell and Grace, 

1993), the mixed synapse of the Mauthner cell of fishes (Pereda et al., 1994), and the 

lobster stomatogastric ganglion (Johnson et al., 1993).  

Nitric oxide (NO), a gaseous neurotransmitter, can also modulate junctional 

conductance. Patel et al. (2006) demonstrated that HeLa cells transfected with Cx35 

underwent a reduction in junction permeability due to NO application that involved both 

cGMP-dependent protein kinase (PKG) and PKA. NO also stimulates guanylate cyclase 
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to increase cGMP levels in horizontal cells, amacrine cells and bipolar cells of the retina, 

where it alters phosphorylation of connexin proteins through activation of PKG (Mills 

and Massey, 1995; Xin et al., 2000). The neurotransmitter serotonin (5HT) can also 

modulate coupling in the nervous system. Rurig and Sutor (1996) showed that 5HT 

reduced cell coupling in the somatosensory cortex through its actions on the 5HT2 

receptor. Reduction of coupling in this serotonin-mediated mechanism involved release 

of calcium from intracellular stores. Invertebrate neuronal gap junctions are also 

modulated by 5HT, with some these effects caused my non-junctional actions (Szabo et 

al., 2010), a topic addressed in the next section of this introduction.  

Aside from modulation via neurotransmitters, junctional conductance can also be 

altered through interactions with cell adhesion molecules. Connexin proteins directly 

interact with various cadherins, a class of Ca2+-dependent adhesion molecules. E-

cadherin, for instance, is proposed to be a key player in the mechanism underlying Ca2+-

dependent modulation of junctional signaling (Jongen et al., 1991). Similarly, antibody 

treatments that block N-cadherin function lead to the failure of Cx43 to form junctional 

channels (Meyer et al., 1992). Additionally, laminin 5 through its interactions with 

integrin proteins produces modulatory effects on intercellular communication through 

gap junctions and this mechanism is thought to involve Rho-GTPases (Lampe et al., 

1998). 
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Non-junctional regulation of electrical synapses 

When discussing changes in the coupling strength of electrical synapses it may 

be tempting to think of these in terms of direct effects on junctional conductance through 

modifications in the functional properties of gap junctions themselves. However, non-

junctional factors including both membrane resistance and capacitance of the cells 

harboring the plaques also impact coupling (Bennett, 1966). Coupling strength is vitally 

dependent not only on the resistance through the junction itself, but also the resistance of 

the cell to current flow across its own plasma membrane or across the electrical synapse 

with its other targets. Therefore, anything that alters membrane resistance of the neuron 

will functionally alter its coupling, where an increase in membrane resistance will 

promote stronger coupling and vice versa. A simple and common example of a non-

junctional modulatory effect is the decrease in membrane permeability to K+ ions 

induced by many neuromodulators. Closure of K+ channels leads to an increase in 

membrane resistance, thereby shunting a greater percentage of current through the gap 

junction into the neighboring cell. 

Interaction of chemical synapses in close proximity to electrical synapses is also 

likely to affect the degree of electrical coupling. Though some chemical synapses 

undoubtedly impact electrical coupling through steps that involve changes in 

intracellular calcium and relative phosphorylation levels of gap junctions, they also 

possess the means to regulate coupling by non-junctional mechanisms. Inhibitory 

chemical synapses proximal to gap junctions can counteract the effects of depolarizing 

ionic currents, and consequently gap-junctional currents, by shunting away some of that 
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signal through the ligand-gated channels. As recently reviewed in Pereda et al. (2012), 

there is an interesting example of this phenomenon where chemical inhibitory synapses 

seemingly serve this specific purpose at mixed electrical/chemical connections. 

Electrically coupled networks of inferior olive neurons form gap junction plaques at 

their dendritic spines and communicate exclusively through these electrical synapses. 

However, these spines also interface with afferent inhibitory inputs from neurons of 

cerebellular nuclei (De Zeeuw et al., 1998). The cerebellar neurons release the inhibitory 

neurotransmitter GABA onto the spine and shunt away depolarizing signal that might 

otherwise flow between the inferior olive neurons. Thus, the purpose of this inhibitory 

synapse is to indirectly regulate gap junction coupling and, consequently, the synchrony 

of firing between inferior olive neurons.  

Several aspects of the mechanisms of gap junction modulation, direct or indirect, 

are central to this dissertation. First, I will show that dopamine is a potent regulator of 

gap junction coupling within motoneuronal networks and found that the mechanisms 

underlying this DA-mediated modulation are both direct and indirect. Second, a central 

theme of my research involves the interaction of inhibitory chemical neurotransmission 

and electrical transmission at emerging mixed synapses within neural networks. The 

significance of these inhibitory synaptic components as mechanisms of current shunting 

is addressed. 
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Electrical Synapses in Development 

 

It is now evident that electrical synapses are much more widespread than initially 

thought (Meier and Dermietzel, 2006) and are also incredibly dynamic (Cachope and 

Pereda, 2012; Pereda et al., 2012). Electrical synapses can be found in neurons of the 

adult vertebrate brain (Bennett et al., 1959; Connors and Long, 2004; Korn et al., 1973), 

as well as among glia (Pannasch et al., 2011; Sanderson et al., 1994; Sneyd et al., 1995), 

whose importance in regulating neuronal signaling has now been well established 

(Araque et al., 1999). Electrical synapses are discernible even at early developmental 

states of the nervous system (Connors et al., 1983; Spitzer 1982; Walton and Navarette, 

1991). The coordination of neuronal differentiation is thought to partly involve 

mediation of biochemical signaling through gap junctions. NT2-D1 progenitors 

differentiate into NT2-N neurons through a retinoic acid pathway. Gap junction blockers 

reduce differentiation into NT2-N neurons without directly affecting retinoic acid 

signaling (Bani-Yaghoub et al., 1999). Additionally, gap-junctional communication in 

mice is necessary and sufficient to maintain cells in their neural progenitor state, while 

disruption of Cx43 gap junctional assembly causes embryonic cells to exit progenitor 

states and differentiate (Cheng et al., 2004).  

An early discovered and now canonical role for electrical synapses in circuits is 

their ability to coordinate synchrony of activity within coupled neurons (Deans et al., 

2001; De-Miguel et al., 2001; Kiehn and Tresh, 2002; Mann-Metzer and Yarom, 1999), 

a mechanism that can influence the firing activities of large neuronal and muscle 
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ensembles. One of the most well examined illustrations of electrical signling was in the 

mediation of motor behavioral outputs associated with rapid escape reflex circuits 

(Edwards et al., 1999; Phelan, et al., 1996). This synchrony can also be involved in a 

number of important processes including synapse stabilization or removal during 

development (Cohen-Cory, 2002; Personius et al., 2007), coordination of rhythmic 

oscillations critical to pattern generation, and coupling of firing rhythms associated with 

aspects of cognition (Hormuzdi et al., 2001; Draguhn et al., 1998). Further, electrical 

synapses have been implicated in neural circuit adaptation mechanisms where discrete 

outputs depend on the synchronous integration of multiple incoming signals (Edwards et 

al., 1998). A straightforward example of the latter is found in the rat retina where 

amacrine cells, receiving separate inputs, use electrical coupling as a coincident detector 

to produce different electrical outputs depending on the temporal sequence of the 

incoming signals (Veruki and Hartveit, 2002). Coincident subthreshold inputs can 

summate due to electrical coupling among amacrine cells allowing these neurons to 

produce suprathreshold outputs only when incoming stimuli are coincident. In this 

manner even a relatively simple setup like neurons coupled with a bi-directional 

electrical synapse can allow neural networks to be modified based on integration of 

multiple inputs. Though there are numerous points of evidence showing electrical 

synapses act to support synchrony in neural networks, it is also important to note that 

there are some networks where electrical synapses function to counter synchrony such as 

in the golgi cells of the mouse cerebellum (Vervaeke, et al., 2010). 
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As discussed in Rela and Szczupak (2004), electrical synapses act to functionally 

delineate signaling compartments via creation of cytosolic continuity between the cells. 

Compartmentalization of neural networks within the nervous system can be useful in 

augmenting the outputs of those circuits. In this instance, coupled neurons that receive 

separate inputs, but have the same target, can both stimulate the target provided one cell 

receives a suprathreshold potential from its input. The spatial expression of the electrical 

synapse is important though, as this synchronous effect is most reliably produced when 

the coupling occurs in close proximity to the neuron’s spike initiation zone. Additionally 

it is often convenient when discussing electrical synapses to think of ‘coupling’ as 

occurring throughout the entire cell. However, branch-coupled cells such as dendritic 

spines or axon terminals can function as discrete coupling compartments. 

Certain systems demonstrate sustained use of gap junctions, such that after 

development the electrical connections are maintained in the adult connectivity. This can 

occur in certain motor behaviors, as mentioned earlier, as well as sensory inputs, 

including those from the retina, cochlea, and olfactory bulb. In the retina, gap junction 

coupling is found at numerous cell contact sites, including the synapses of rods and 

cones (Tsukamoto et al., 2001). AII amacrine cells mediate signaling between rod 

bipolar cells and ganglion cells and this signaling pathway is largely through gap 

junctions (Strettoi et al., 1990). In the cochlea, Cx26 and Cx30 constitute gap junctions 

of mice and the mutation of these connexin proteins is linked to genetic deafness 

(Ahmad et al., 2003). Finally, synchrony in external tufted cells, proposed to be 
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important for encoding olfactory stimuli, occurs through gap-junctional coupling (Hayar 

et al., 2005). 

Many electrical synapses do not persist in neural networks and instead are 

transient in nature. As suggested by earlier statements regarding neural progenitor 

differentiation, many processes require tightly sequenced coupling and uncoupling of 

cells in order to fulfill their physiological needs in a precise manner. During the 

maturation of developing neural networks, electrical synapses are initially expressed and 

later undergo a programmed uncoupling from their synaptic partners (Bittman et al., 

1997; Chang and Balice-Gordon, 2000a; Dupont et al., 2006; Spitzer 1982). This 

electrical coupling and uncoupling during development led to the identification of a 

temporary expression pattern for some electrical connections, called transient electrical 

synapses (TES). The presence of TES has been found in a diverse number of nervous 

systems. These systems include the vertebrate visual cortex (Kandler and Katz 1998), 

other neocortical regions (Connors et al., 1983; Dupont et al., 2006; Peinado et al., 

1993), neuromuscular junctions (Personius et al., 2001), the hypothalamus (Arumagam 

et al, 2005), the retina (Penn et al., 1994) and the spinal cord (Chang, et al., 1999; Mentis 

et al., 2002). Furthermore, electrical synapses are wide spread among invertebrate 

nervous systems, but transient electrical synapses also are found in these phyla. For 

example, the visual system of flies (Curtin et al., 2002) and the motor systems of 

molluscs (Szabo et al., 2004) and annelids (Marin-Burgin et al, 2006) express these short 

lively connections. An important largely untapped gap in our knowledge about neural 

networks and their development involves temporal changes in the type of synaptic 



 

 25 

signaling present during their formation. The fact that TES formation and subsequent 

uncoupling coincides with discrete events during development, gives rise to the 

possibility that the pattern of electrical coupling/uncoupling may have an important role 

in the formation of neural networks (Bittman et al., 2002; Peinado et al., 1993; Yuste et 

al., 1995) and that the regulation of these intercellular synapses is likely vital to how the 

nervous system functions.  

Aside from this observable phenomenon in the developing nervous system, some 

injured nervous systems reproduce TES, further supporting its fundamental role in 

proper networking between cells. After axotomy, dye-coupling across electrical synapses 

is observable in mammalian spinal motor neurons similar to that in development (Chang 

et al., 2000B), leading to the conclusion that electrical coupling may be important even 

in the reestablishment of neuronal connections following injury. Likewise the pulmonate 

snail Helisoma exhibits patterns of transient electrical coupling in both injured buccal 

ganglia as well as in networks regenerating in vitro (Haydon et al., 1987; Haydon and 

Kater; 1988; Szabo et al., 2004). 

An important aspect of signaling in neural networks is the interplay between 

electrical and chemical synapses and their regulation of the opposing form of 

communication. This can occur when one synaptic type modulates signaling in the other 

at mixed synaptic connections, such as in the Mauthner cell, where electrical synapses 

are maintained in response to synaptic activity that is dependent upon co-localized 

NMDA receptor activation (Pereda et al., 1998). In the glomerulus of the olfactory bulb, 

Cx36 deficient mice fail to develop appropriate chemical signaling between mitral cells 
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and thus suggest that gap-junctional coupling is necessary for glomerular circuit 

maturation (Maher et al., 2009). In invertebrate development electrical synapse-

dependent formation of adult chemical synapses is also seen in the Drosophila eye 

(Curtin et al., 2002) and in the leech ventral nerve cord (Todd et al., 2010). In the 

mammalian neuromuscular junction (NMJ) where mice have Cx40 mutations, synapse 

elimination occurs at earlier developmental time points than in mice normally expressing 

Cx40, suggesting that correlation of activity via gap junctions is responsible for 

appropriate timing of NMJ maturation.  

The functions of transiently expressed gap junctions are starting to be elucidated, 

but still remain largely mysterious and this is particularly true with respect to the 

regulation of neural network development. These transient synapses have long been 

known to coordinate electrical activity among synaptic partners and coordinate 

synchrony in neural circuits, but it is also evident that they are coordinating biochemical 

events among synaptic partners (Kandler and Katz, 1998). The biochemical coupling of 

cells can coordinate intracellular signaling cascades among neural networks and regulate 

refinement of those circuits. Transient gap junctions behave as cell adhesion substrates at 

choice points during development and in proper neuronal migration (Kristan et al., 2000; 

Elias et al., 2007). Therefore, it is not unreasonable to hypothesize that electrical 

synapses mediated by gap junctions are critical components in many of the processes 

underlying finding and connecting of neurons with their appropriate network 

constituents during development. This idea is one of several key foundations of the 

hypothesis I have tested in this dissertation. 
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It is known that gap-junctional coupling inhibits chemical neurotransmission 

within several neural systems, including those of neonatal rats (Mentis et al., 2002) and 

regenerating Helisoma motor systems (Bulloch et al., 1984; Szabo et al., 2004; Szabo et 

al., 2007). These data suggest that neuronal coupling may be responsible for delaying 

chemical transmission until an undetermined time when chemical neurotransmission is 

efficacious. Interesting, data from leech using injection of RNAi against Hm-inx1 show 

that formation of TES between certain neurons in the midbody ganglia is a required 

precursor to the formation of more mature chemical neurotransmission (Todd et al., 

2010). This suggests that TES could not only be important for the timing of developing 

mature chemical synapses, but their ability to form during a critical window of time. 

Recently, it has been shown that inhibitory chemical synaptic transmission of thalamic 

relay neurons in the mammalian brain emerged as electrical coupling decreased during 

the first and second postnatal weeks. It remains unclear whether interactions between 

electrical and chemical synapses during early postnatal development play a mechanistic 

role in the loss of electrical coupling as chemically-mediated inhibitory circuit mature. 

Coincidence of synaptic signaling is critical to the analysis and interpretation of 

my dissertation research. Coincidence detection of Ca2+ signals is used in aspects of my 

work to predict electrical coupling within neural networks of mixed connectivity. 

Furthermore, most of the synapses studied here are, in fact, mixed to varying degrees, 

but usually expressing both electrical and chemical components. The interactions 

between these two types of synaptic connections and the impact that those interactions 

have on the synaptic outcomes of neural network formation constitute the central 
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premise of my work. Helisoma motor neurons, during network formation in vivo and in 

vitro, form both electrical synapses and inhibitory chemical synapses at their sites of 

cell-to-cell contact. In some instances electrical coupling is short lived, a form of 

connection described earlier as transient electrical coupling or TES. In other instances, 

the electrical coupling is strengthened over time and maintained. These forms of 

electrical connection I have called sustained electrical synapses or SES. Finally, to 

differentiate newly forming electrical synapses from those being diminished or 

enhanced, I will use the term forming electrical synapse or FES for clarity. 

 

Synaptic Connectivity and Formation in Helisoma   

 

Invertebrate model systems, since early investigations of the nervous system around the 

mid 20th century, have been used for the study of neural physiology at the cellular level. 

Key examples of this include a series of papers by Hodgkin and Huxley (1952a; 1952b) 

in the 1950’s fundamentally describing the ionic nature of the resting membrane 

potential and the action potential in the squid giant axon as well as the aforementioned 

initial demonstration of electrical synapses in the crayfish by Furshpan and Potter in 

1957. Many of these systems became popular experimental models and successful due to 

their large neuronal size, identifiable nature, and ease of access, at the time, by new 

techniques like intracellular electrophysiology. Invertebrate systems were also attractive 

because of their relatively simple behaviors and the reduced neural circuits eliciting 

those behaviors, probably best exemplified in studies by Eric Kandel and colleagues on 
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the nervous system of Aplysia and its regulation of the gill withdrawal reflex (Pinsker et 

al., 1970). 

Neurons of the Helisoma buccal ganglia are quite large (in some cases with a 

diameter greater than 30µm) and mediate feeding behavior of this freshwater snail. Due 

to the large neuron size and contrast of pigmentation beneath the ganglion sheath these 

neurons are easily identifiable and are readily accessible via electrophysiology to assess 

neural connectivity and physiology. Studies culminating in Stanley Kater’s 1974 

overview, thoroughly described the simple Helisoma feeding behavior and the 

underlying neurons and buccal muscles involved in mediating movement of the radular 

feeding structure. These observations provided the basis for future studies on neural 

networks both in vivo and in vitro by providing the necessary framework of both 

individual neurons involved in feeding and the functioning of the broader feeding circuit. 

Groups of interneurons, collectively known as central pattern generators (CPG), are 

electrically coupled to one another and mediate the rhythmicity of motor neurons 

involved in snail feeding (Granzow and Kater, 1977; Kaneko et al., 1978). The motor 

circuit involved in feeding was initially described to generate a two-phase rhythmic 

pattern (Kater, 1974), however it was later determined to be tri-phasic in nature as 

reviewed by Don Murphy (2001) and as summarized below. 

 

Helisoma feeding circuit 

During phase 1 (S1), S1 interneurons, which include N1a and BCN1, respond to 

inputs from sensory afferents by stimulating a subset of buccal motor neurons, of which 
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B6 and B8 are best described. N1a and BCN1 are thought to mediate their effects on 

motor neurons via different mechanisms, with the former using dopaminergic signaling, 

while the latter is thought to use a GABAergic system. In response, S1 motor neurons 

that innervate the posterior jugalis muscle, cause a protraction of the odontophore and 

extension of the radula.  

S1 interneurons in addition to stimulating S1 motoneurons also elicit activity in 

phase 2 (S2) interneurons to initiate the next phase of feeding. Initiating this phase are 

neurons B2 and B29, referred to as influential neurons given that they have both 

interneuronal connections and motor outputs to muscles. These motor neurons 

stimulated S2 interneurons include B110, B26, B27. B2 is thought to work primarily 

through a glutamatergic pathway. S2 motor neurons innervate portions of the anterior 

jugalis (AJ) as well as the supralateral radular tensor (SLrT) to initiate retraction of the 

odontophore back into the oral cavity. S2 CPG neurons additionally inhibit S1 

production as well as phase 3 (S3) initiation until phase 2 is complete.  

S3 interneurons, which include N3a, start to fire due to postinhibitory rebound 

from the S2 portion of the CPG. In response these interneurons activate S3 

motorneurons like B17, B18 and B19. The motor neurons also innervate segments of the 

AJ and SLrT muscles to produce a hyper-retraction of the odontophore and radula, 

bringing them in close proximity to the esophagus. During the interphase, before another 

bout of feeding, S1 interneurons are still recovering from S2 inhibition and will 

eventually fire again if sufficient stimulation exists. 
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Regeneration and cell culture 

Aside from its relative simplicity, large sized neurons and ease of manipulation, 

another attractive feature of Helisoma is its potent regenerative capabilities. Axotomy of 

existing connections in certain neurons demonstrated the capability of identifying 

appropriate axonal pathways and synaptic targets. Although the process of neuronal 

regeneration is more discerning with regard to peripheral connections (Murphy and 

Kater, 1978), central connections like those of neuron B5 exhibit novel coupling 

following injury (Bullock and Kater, 1982). Potent regeneration of this molluscan 

system makes it an appealing option for observing how synaptic connections are formed. 

A recent publication on neuromuscular contact regeneration proposes that in Helisoma 

this occurs via a three step processes (Turner et al., 2011). Upon initial contact with 

potential muscle targets, miniature NMJ potentials are robust with a virtual absence of 

action potential-evoked release of neurotransmitter. This was subsequently followed by a 

strong reduction in miniature potentials while evoked potentials became weakly 

efficacious. In the last phase, miniature potentials were virtually absent and 

neuromuscular contacts regained fully functional adult synapses with robust evoked 

release of neurotransmitter. 

The Helisoma system benefitted greatly following the demonstration that neurons 

could easily be dissociated from their ganglia into cell culture. The system was further 

aided by the revelation that isolated neurons cultured in media supplemented with 

trophic factors from Helisoma central ring ganglia were capable of neurite extension 

(Wong et al., 1981). Utilizing this cell culture system, many neuronal properties 
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fundamental to the feeding neural system were determined. In Haydon et al. (1987), it 

was demonstrated that growth cone extension and motility is differentially regulated and 

that extension of neural processes was intimately involved in the regulation of synapse 

formation in vitro (Haydon and Kater, 1988). In 1989, Haydon and Zoran demonstrated 

that neurons have different synaptogenic strategies. Neuron B19 has constrained 

synaptogenesis and requires an activity-dependent contact with appropriate SLrT muscle 

fibers in order to gain action potential-coupled evoked chemical transmission (Zoran et 

al., 1991; Poyer and Zoran, 1996). Meanwhile neuron B5 is promiscuous in its 

synaptogenesis and will indiscriminately secrete neurotransmitter on novel targets in 

culture (Haydon and Zoran, 1994). More recently the dynamics of synapse formation 

have been demonstrated. Existing synaptic connectivity or its inability to form results in 

changes in the sequence and efficacy of synaptic plasticity (Neunuebel and Zoran, 2005; 

Szabo et al., 2004), as well as the formation of connectivity within small neuronal 

networks (Szabo and Zoran, 2007).  

 

Electrical synapses in Helisoma  

One of the first demonstrations of an electrical synapse in Helisoma came when 

Bulloch and Kater (1981) observed electrical connections between bilateral neuron B5s 

following axon crush in reduced buccal ganglia preparations. This study also 

demonstrated a short-lived coupling between ipsilateral neuron B4 and B5. Thus, the 

first evidence of transient electrical synapses following nerve injury were reported. 

Hadley and Kater (1983) used electrophysiology on intact buccal ganglia preparations to 
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show that bilateral B19s possessed electrical synapses and demonstrated that junctional 

channels aide in synchronizing left and right side behaviors during feeding. Electrical 

coupling between B5s, however, does not exist unless regeneration is induced and 

transient forms of coupling emerge. This novel connection is seen both in vivo as well as 

in vitro and requires coincident neurite growth, such that neurons that were not actively 

growing before cell-cell contact failed to couple (Hadley and Kater, 1983; Hadley et al., 

1983). 

Work done by Szabo (2004) demonstrated that in addition to B19, fellow S3 

motor neuron B18, was extensively coupled to the opposing B18 in intact ganglia 

preparations. B19, B18 and B110, an S2 motor neuron, were shown to form robust and 

sustained electrical coupling in cell culture when paired with homotypic partners. In the 

same study, short-lived, transient electrical synapses formed between B110 and B19 

both in vivo and in vitro. Furthermore, inhibitory chemical synapses that propagated 

only from B110 to B19 were also formed at these heterotypic connections. B110 bears 

similarities to B5 in that it has unconstrained synaptogenic capabilities and will therefore 

be promiscuous in developing evoked neurotransmitter release onto any neuronal target 

that is sensitive to acetylcholine, the primary neurotransmitter of molluscan motor 

neurons. These studies provided a foundational framework for the formation and 

function of electrical synapses during regeneration of the Helisoma feeding network. 

 

 

 



 

 34 

Electrical synapses in the regulation of connectivity and network formation 

As previously discussed, ongoing electrical coupling in the adult feeding circuit 

occurs between neurons B19 and B18 and is likely to aid in the coordination of bilateral 

motor outputs during a round of feeding, in this case hyper-retraction of the 

odontophore. Although coordination of motor behavior likely occurs in part due to this 

method, it is redundant due to the fact that these neurons possess both ipsi- and 

contralateral projections to the muscles. B19 is strongly dye-coupled to other S3 motor 

neurons, B17 and B18 (Szabo, unpublished), suggesting that the entire output of phase 3 

motor activity is synchronized. As occurs in the mammalian retina (Veruki et al., 2002), 

coupling of these neurons could act to ensure that the behavioral output only occurs 

when there is coincident stimulation of S3 motor neurons, ensuring that erroneous hyper-

retraction doesn’t occur.  

Neuron B5 shows no evidence that it projects contralaterally to the esophagus 

and does not connect with its homologous B5 (Bulloch and Kater, 1981), suggesting that 

its target organ, the esophagus, uses an alternative mechanism to synchronize its activity. 

However, upon nerve injury B5 sends a contralateral projection and forms a novel 

synapse with the other B5. This synapse appears to be maintained for at least a week, 

and then is likely eliminated. B110 neuron, as indicated earlier, bears certain 

physiological similarities to B5 and has not been shown to connect with its contralateral 

counterpart, although it does indeed have contralateral projections (Murphy, 2001). 

B110 neurons develop electrical synapses that are maintained at least throughout the 5 

days in cell culture (Szabo et al., 2004). Hypothetically, these neurons might benefit 
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from the synchrony provided by electrical coupling yet in normal development achieve 

this through a separate pathway that has yet to be demonstrated. The formation and 

persistence of these novel connections provide an intriguing and potentially exploitable 

facet of synapse and network formation. 

Aside from SES in the buccal ganglia, there are also a few examples of TES 

amongst buccal neurons. The first discovered transient coupling was between B5s 

mentioned earlier, but also at time B4-B5 and B5-B19 short-lived connections were 

found to exist following nerve injury (Hadley and Kater, 1983). TES peaked in coupling 

at about 2 days of contact and by day 7 were uncoupled. Interestingly, the transient 

nature of the B4-B5 synapse was dependent on the presence of coupling between the two 

B5s (Bulloch and Kater, 1981). In the absence of that coupling, B4-B5 electrical 

connections were maintained roughly twice as long. Szabo et al. (2004) also describe a 

transient connection between B110 and B19 following commissural crush. Similar to 

TES formed by neuron B5, B110-B19 coupling peaked at day 2 and underwent 

significant reduction by day 7. Perhaps most interesting about this synapse was that by 

day 3 a pronounced inhibitory chemical synapse had formed from B110 onto B19. It was 

subsequently found in vitro that reduction of electrical coupling via deprivation of 

trophic factors caused an earlier formation of the chemical synapse, leading to the 

hypothesis that TES might regulate the timing of subsequent chemical synapse 

formation. This idea of an inverse relationship between chemical and electrical synapse 

formation has subsequently been demonstrated between hypothalamic (Arumagam et al, 

2005) and thalamic neurons (Lee et al., 2010) of the developing mammalian brain. This 
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transition from electrical to chemical synapses has been documented for many species 

and many brain regions in mammals, but the mechanisms that mediate this switch and 

the possible interactions between these forms of connectivity during neural network 

development have remained elusive (Kandler and Thiels, 2005). 

Neunuebel and Zoran (2005) followed up this idea by looking at how TES might 

regulate chemical synapse formation. In the absence of transient electrical coupling, 

neuron B110 was capable of evoked transmitter secretion in response to release of Ca2+ 

from an intracellular cage at 24 hours of contact with B19. At the same synapse  B110 

was incapable of evoked secretion when TES was present. This effect was not due to 

changes in cytosolic calcium accumulation or cholinergic receptor sensitivity. In fact, 

cells that were incubated in conditioned medium (CM), and capable of forming TES, 

exhibited better recruitment of vesicles proximal to the site of contact than those lacking 

TES following incubation in trophic factor-deprived media. Thus, a functional disruption 

of the ability of neuron 110 to couple calcium influx to vesicle release may occur when 

TES is present.  

Further work on the role of transient coupling on synaptic connectivity was 

demonstrated using a simple three-cell network in cell culture as shown in Fig. 1B, 

where cells were dissociated and placed into novel configurations. Szabo and Zoran 

(2007) used a protocol where two neurons were allowed to undergo synaptogenesis over 

a 4-day span of time after which an additional neuron was placed in contact with the 

existing 2-cell network. An exhaustive study was performed where all permutations of 3-

cell connectivity were assessed for electrical and chemical connectivity. The culmination 
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of those studies demonstrated that new synapse formation was dependent on the synaptic 

connectivity already present within the network, and suggested networking outcomes 

were due at least in part to connectivity-dependent junctional coupling. This study in 

particular laid the framework for the basic neural network/cell culture protocol I have 

used in the present studies. 

 

Modulation of electrical synapses 

Modulation of synaptic connectivity is a key component in the regulation of 

many physiological processes and is a fundamental part of the neural regulation of most 

animal behaviors. Changes in synaptic connectivity are known to occur in response to 

neural (neurotransmitter) and humoral (hormone) signals. In the Helisoma feeding 

circuit, two major modulatory inputs are known to exist: C1, a serotonergic neuron from 

the cerebral ganglion, and Pl1, the FMRFamidergic neuron from the pleural ganglion 

(Murphy, 2001). Application of these two transmitters modulates motor function of the 

buccal feeding circuit (Zoran et al., 1989). Serotonin is known to depolarize buccal 

neurons (Achee and Zoran, 1997; Szabo et al., 2010) and, either through application or 

C1 stimulation, is known to act to phase-lock retraction and hyper-retraction of the 

radular movements (Price and Godlberg, 1993; Quinlan and Murphy, 1996). 

To date there has been no demonstrated role for FMRFamide in electrical 

synapse modulation, though it has also not been ruled out. Meanwhile, 5HT selectively 

inhibits neurite elongation, a process proposed to be necessary for electrical coupling, 

between buccal neurons (Haydon et al., 1987). Szabo et al. (2010) showed that serotonin 
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had variable effects on electrical coupling between buccal neurons, where cells with 

weaker coupling exhibited stronger reduction in coupling. However, 5HT’s effects on 

the gap-junctional coupling were not direct, but instead were extra-junctional in nature 

through the modulation of a hyperpolarization-gated inward current. 

DA, another important neuromodulator, through exogenous application is 

capable of initiating the feeding behavior in its full and distinct three phases (Quinlan 

and Murphy, 1996). Feeding stimulants that induced the full feeding behavior activate 

neuron N1a, a phase 1 interneuron, which subsequently initiates feeding (Quinlan et al., 

1997). DA also suppresses neuronal activity of some buccal neurons via activation of 

D2-like receptors (Zhong et al., 2012). These receptors, in turn, activate phospholipase C 

(PLC), which leads to K+ channel activation and membrane hyperpolarization. Thus, DA 

is a key component in the modulation of the Helisoma feeding circuit. The various 

neuromodulators found in the Helisoma feeding circuit suggest that multiple pathways 

interact to produce the various patterns of feeding seen in the snail. These modulatory 

effects are certain to impact synaptic connectivity amongst neurons involved in feeding 

and the formation and regeneration of the neural circuits that mediate it. 

 

Summary 

 

Gap junctions are found throughout the tissues of animal bodies in most taxa studied. 

The intercellular coupling they provide impact many aspects of the lives of cells, from 

differentiation and apoptosis to heart contraction and brain function. Unsurprisingly, 
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mutation of some of these proteins can lead to a variety of disorders including X-linked 

Charcot-Marie-Tooth syndrome (Bergoffen et al., 1993) and some forms of hereditary 

hearing-loss (Martinez et al., 2009). These junctions are not mere static entities, but 

rather are highly dynamic in the degree in which they communicate and are regulated. 

Notably electrical synapses in numerous nervous system preparations undergo 

programmed uncoupling during important windows of synapse formation. I have 

hypothesized that transient electrical synapses play a vital role in how neural networks 

are developed, subsequently impacting how behavior is regulated by those networks. 

Here, I use Helisoma neuronal cell culture for its ease of manipulation and its direct 

access to assessment of electrical connectivity within networks of identifiable neurons. 

Helisoma buccal neurons reach a choice point between 1 and 2 days of contact where 

coupling either is downregulated, and therefore transient or TES, or strengthens and 

persists, therefore sustained or SES, as summarized in Figure 1C. Ultimately the 

temporal expression is such that as TES declines cholinergic chemical synapses (CCS) 

are upregulated. The question however, remains how these two temporal sequences of 

expression regulate emerging connectivity. Using either soma-soma giant synapses (Fig. 

1A) or 3-cell networks (Fig. 1B), the chapters that follow attempt to address how 

electrical synapses regulate the formation of connectivity within these neuronal 

networks. In particular they address how emerging connections, chemical and electrical, 

respond to manipulation of extant connectivity of the network within which they are 

emerging. 
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Figure 1. Electrical synapse formation in Helisoma pairs and 3-cell networks. (A) Diagram representing 
two neurons extracted from the buccal ganglia of Helisoma and plated into cell culture. After 3 days of 
culture in isolation, neurons completely reabsorb their axons, becoming spherical, and are stuck together 
as giant somatic synapses. (B) In 3-cell networks, neurons are plated as shown in A except they are 
cultured in adhesive conditions allowing neurite extension. At 4 days in culture a third cell is brought into 
contact with the pair creating the 3-cell network with extant and emerging connectivity. (C) Represents a 
general timeline for electrical and chemical synapse formation. In the first 24h chemical components are 
known to exist before the formation of electrical synapses. Shortly after day 1, connections either express 
transient electrical synapses (TES; gray line) or sustained electrical synapses (SES; black line). The 
downregulation of TES is known to occur at times when cholinergic chemical synapses (CCS; gray line) 
strengthen, suggesting a regulatory interaction.
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Chapter II addresses how extant electrical synapses can be modulated via 

dopamine, as well as how modulation of electrical synapse formation effects subsequent 

synapse formation. In Chapter III, I assess the use of a calcium-imaging protocol to 

predict network connectivity and neural activity as they relate to TES and SES formation 

and their modulation. In Chapter IV direct pharmacological manipulation of synapses 

was used to assess how emergent connectivity in simple three-cell networks affect 

changes in electrical and chemical connectivity with the goal of determining the 

mechanism by which these two forms of synaptic transmission interact to impact the 

others formation. 
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CHAPTER II 

NEURON-SPECIFIC MODULATION OF ELECTRICAL SYNAPSE 

FORMATION BY DOPAMINE 

 

Introduction 

 

Electrical synapses have historically been shown to couple neurons in many regions of 

adult mammalian brain (Korn et al., 1973; Conners et al., 1983; Parker et al., 2009), and 

have recently have been ascribed functions far beyond their classically known role in 

rapid transmission of electrical signals (for review, see Pereda et al., 2012). For example, 

they are thought to play a crucial role in mixed electrical-chemical transmission between 

hippocampal mossy fibers and pyramidal cells (Vivar et al., 2012) and in an extreme 

case in the inferior olive, they have been shown to constitute the only form of 

interneuronal communication (de Zeeuw et al., 1998).  

During development, electrical synapses are expressed transiently (Peinado et al., 

1993; Kandler and Katz 1995, 1998; Dupont et al., 2006); for example in the 

hypothalamus (Arumugam et al., 2005), spinal cord (Mentis et al., 2002) and 

neuromuscular junction (Personius et al., 2001). In this capacity, they are thought to be 

involved in local circuit formation (Szabo et al., 2007) and affect the subsequent 

formation of chemical synapses (Mentis et al., 2002; Szabo et al., 2004). Thus, the role 

of electrical synapses in neuronal function and their impact on neural processing is only 

beginning to be understood (Bennett and Pereda, 2006).  
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Along with an emerging understanding of the role and prevelance of electrical 

synapses in neural processing, it is becoming clear that electrical synapses are 

modifiable and can be important sites of neural plasticity (Pereda et al., 2012; Cachope 

and Pereda, 2012).  In particular, DA has long been known to impact electrical 

connectivity via its modulation of cAMP-dependent pathways (Piccolino et al., 1982; 

Lasater and Dowling, 1985; Pereda et al., 1992; Rorig et al., 1995; Rorig and Sutor, 

1996).  

DA’s role as a modulator of neuronal function is central to numerous neurologic 

deficits, such as Parkinson’s disease, schizophrenia, attention deficit and hyperactivity 

disorders (Fasano et al., 2010). Activation of D2 autoreceptors has been shown to inhibit 

synaptogenesis by mesencephalic dopamine neurons through translational mechanisms 

(Fasano et al., 2008). DA receptor activation has also been shown to decrease 

GABAergic synaptogenesis with medium spiny neurons (Goffin et al., 2010). Thus, 

while the impact of dopamine signaling on synapse formation and neural network 

development is far-reaching, the underlying cellular mechanisms are not well 

understood. We have previously demonstrated that the differential presence of transient 

electrical synapse (TES) or sustained electrical synapses (SES) alters the outcome of 

simple neural network formation in identified cell cultures (Szabo et al., 2007). In this 

study, we have examined the mechanisms governing the modulatory effects of DA at 

existing electrical synapses and during synaptogenesis  using identified TES and SES 

neural networks. These studies demonstrate that DA induced modulation of existing 

connections differentially affect TES versus SES coupling and that these effects may 
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have different mechanisms. In addition, modulation of electrical synapse formation 

alters new emerging synapses at a simple 3-cell network. 

 

Materials and Methods 

 

Animals 

Experiments were conducted on laboratory stocks of albino (red) pond snails, 

Helisoma trivolvis, which were maintained in 20 gallon aquaria at 26°C.  Aquaria were 

kept on a controlled photoperiod of 12 hour light/12 hour dark and snails were fed 

lettuce and trout chow daily. 

 

Reduced ganglia preparations 

Snails were deshelled and pinned to a Sylgard-coated dissecting dish.  For studies 

of semi-intact ganglia preparations, a midline incision was made in the dorsal body wall.  

Removal of the buccal ganglia consisted of severing the cerebrobuccal connectives, as 

well as the heterobuccal, ventrobuccal, and posterior buccal nerves.  In addition, the 

esophagus was cut from its site of connection to the buccal musculature.  Electrical 

connections between paired Helisoma buccal motoneurons B19 and B19-B110 were 

studied.  These neurons innervate radular tensor muscle groups (Kater 1974; Zoran et al. 

1989).  When ganglia were pinned in appropriate configurations, neuronal cell bodies of 

B19 and B110 were readily identified.  The right buccal neuron B110 might have a 

symmetrical partner in the left buccal ganglia but it has been difficult to consistently 
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identify, possibly due to the slightly asymmetric arrangement of the posterior nerves at 

this site; therefore all experiments have utilized neuron B110 from the right ganglia 

(when the rostral side is up and neuron B110 is visible).  Prior to recording, dissected 

buccal ganglia were stored briefly in defined medium (DM).  DM consisted of 

Leibowitz-15 (L-15, Formula No. 82-5154EC Gibco Laboratories) containing Helisoma 

salts (40.0 mM NaCl, 1.7 mM KCl, 4.1 mM CaCl2, 1.5 mM MgCl2, and 10.0 mM 

HEPES) at pH 7.5. 

 

Neuronal cultures 

For studies of neurons isolated into cell culture, excised buccal ganglia were 

placed into 0.2% trypsin (Sigma) in DM for 20 minutes to partially digest the neural 

sheath.  Ganglia were pinned to a Sylgard dish containing 3 ml of high osmolarity DM 

(56.0 mM NaCl, 2.4 mM KCl, 5.7 mM CaCl2, 2.1 mM MgCl2, and 14.0 mM HEPES).  

The buccal commissure and the relevant nerve trunks, containing the axons of 19 and 

110 neurons, were crushed with fine forceps.  The sheath of each ganglion was cut along 

the dorsal surface, next to a neuronal soma, using an electrolytically sharpened 

microknife.  Pressure applied to the ganglion forced the neuronal cell body through the 

incision and the neuron was collected into a fire-polished, non-adhesive (hemolymph-

coated) micropipette using negative pressure produced by a microsyringe (Gilmont).  

Neurons were then transferred into specific culture conditions, as described below for 

each experiment. 
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For studies of neurons exhibiting neuritic growth, cells were transferred directly 

into adhesive 35 mm culture dishes (No. 3001 Falcon) containing 2 ml of conditioned 

medium (CM).  The dishes were made adhesive by pretreatment with 0.1% poly-l-lysine 

(PLL) in a 0.15M Tris buffer.  CM was generated by incubating 2 central ring ganglia 

per 1 ml of DM in these PLL-coated culture dishes for 3 days.  Brain-derived factors in 

CM are required for neurite outgrowth in these cultures (Wong et al. 1981).  Neurons 

were maintained in these culture conditions while neurites extended and established 

contacts.   

For studies of neurons lacking neurite outgrowth, cells were transferred into non-

adhesive, 35 mm culture dishes (No. 1008 Falcon) containing 2 ml of CM.  CM was 

bulk-cultured in silicone-treated (Sigmacote) glass petri dishes before being transferred 

to culture dishes that had been made non-adhesive by pretreatment with a 0.5% solution 

of bovine serum albumin (BSA).  Neurons were maintained in these culture conditions 

as single, spherical cells for 24 h before being transferred into fresh CM dishes and 

paired into contact.  Cell pairs were cultured for an additional 24 h and then transferred 

to recording chambers (PLL-treated culture dishes containing 2 ml DM) for 

electrophysiological study.   

 

General electrophysiology 

Electrophysiological properties of neurons were examined using intracellular 

recording techniques.  Glass microelectrodes (borosilicate; FHC), possessing tip 

resistances ranging from 10-20 MΩ, were filled with 1.5 M KCl.  Current-clamp 
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recordings of neuronal membrane potentials were amplified using a bridge-balanced 

electrometer (Getting Instrumental Inc.) and records were viewed on a storage 

oscilloscope (Tektronix).  In most experiments unless otherwise stated, neuronal 

membrane potential was maintained with base current injection (BCI) at approximately -

70 mV.  Electrical coupling was measured by injecting constant amplitude, 

hyperpolarizing current pulses (3 s in duration) into one neuron (0.2 - 3nA) while 

simultaneously recording membrane voltage changes in the presynaptic (injected) 

neuron (approximately 30-50 mV) and its synaptic partner.  Coupling coefficients were 

determined as the ratio of postsynaptic to presynaptic voltage changes (Bennett 1977).  

Data analyses for coupling ratios and input resistance measurements were taken at the 

peak of the membrane hyperpolarization.  Electrophysiological recordings were digitized 

by a MacLab A/D data acquisition system linked to a Macintosh Quadra 950 computer 

using Chart software.  Records were archived onto a magneto-optical disk for later 

analysis and printing. 

 

Analysis of reduced ganglia preparations 

Dual recordings were made from electrically coupled cell pairs.  Preparations 

were pinned onto a Sylgard-coated glass petri dish containing 2 ml of 10x calcium saline 

(40.0 mM NaCl, 1.7 mM KCl, 41.0 mM CaCl2, 1.5 mM MgCl2, 10.0 mM HEPES).  

Increased levels of Ca2+ were used to reduce general motor activity of the preparation.  

Neuronal pairs were then penetrated with glass microelectrodes and hyperpolarizing 

current injections were applied sequentially to each cell (0.3-1 nA for 3 s).  Constant 
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perfusion of the recording chamber (3 ml/min) was maintained throughout the 

experiment using a peristaltic pump (Pharmacia).  Solutions of 0.5, 5.0 or 50 µM 

serotonin creatine sulfate (5HT; Sigma) in 10x calcium saline were perfused through the 

recording chamber for 2-3 minutes.  Treatment was followed by a 20-30 min wash with 

10x calcium saline.  The modulatory effects of DA on electrical coupling were 

determined by injecting multiple hyperpolarizing current pulses into each neuron of the 

pair before, during, and after perfusion.  Data measurements were taken at peak 

membrane potential changes associated with hyperpolarizing current injections unless 

otherwise indicated. Analysis of the data determined that these electrical connections 

were non-rectifying.  Thus, bi-directional analyses were averaged and a single mean 

coupling coefficient was calculated for cell pairs at each phase of the experiment.   

 

Analysis of neuronal cell cultures 

The effects of exogenous DA on electrical coupling between neurons in cell 

culture were examined as described above. Cells were penetrated with microelectrodes, 

hyperpolarizing current pulses were injected, and coupling coefficients were calculated.  

50 µM DA in DM was perfused over each cell pair for 30 seconds, followed by 5-10 min 

DM wash.   

 

Triplet synapse formation 

To achieve triplet synaptic networks two neurons were placed into contact for 4 

days, and receive either the treatment (DA) or the vehicle. After 4 days of contact the 
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central pair was washed to remove treatment and the third cell was brought into contact 

with one of the original two, as an emerging or new contact. 

 

Pressure injection  

Sharp glass pipettes, with a tip diameter ranging from 0.5–1.0 µm, were created 

from capillary tubes (Borosilicate, 1.5 mm; FHC) and filled with internal solutions 

containing the neural tracer, Neurobiotin (NB; Vector Laboratories, Burlingame, CA). 

Solutions were pressure-injected with a Picospritzer II (General Valve, Marietta, GA). 

The duration of the injection pulses was 5–10 msec at 20–30 psi. Solutions were injected 

until the diameter of the cell detectably increased by 5–10% and then allowed 1hr to 

diffuse between coupled partners before being fixed for 5 min in 4% paraformaldehyde 

in PBS. 

 

Cellular imaging  

Soma-soma pairs were transferred to DM-containing adhesive (PLL-coated) 

glass-bottom dishes and visualized using phase-contrast and epifluorescence optics. 

Images were captured and analyzed using a Olympus inverted microscope, Hamamatsu 

(C5810) CCD camera, SimplePCI image capture and Adobe Photoshop software (Adobe 

Systems, San Jose, CA). A portion of the image devoid of cells was sampled for dark 

background (DB) subtraction. 
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Mean fluorescence intensity values were obtained from images, and dye coupling 

coefficients (DCCs) were determined as the ratio fluorescence intensity of the non-

injected (postsynaptic) neuron to that of the injected (presynaptic) neuron. 

 

Data analysis 

Two-tailed Student’s t tests, ANOVA (post-hoc LSD), or Chi-square were used 

for statistical analysis. Statistical significance was determined at P<0.05. Data are 

presented as mean plus or minus SEM, unless otherwise indicated. 

 

Results 

 

DA modulation of electrical synapses 

Identified neurons from the snail, Helisoma trivolvis, were examined. Cellular 

properties, synaptic connectivity, and synaptogenic capabilities of these neurons have 

been extensively described (for review, see Murphy 2001). The neuromodulator 

dopamine (DA) inhibited electrical communication between neuron B19 and its bilateral 

counterpart in isolated buccal ganglia (Fig. 2A and B). Bath perfusion with DA (50 µM) 

induced a significant reduction in electrical coupling coefficient (ECC; n=5; p<0.001), 

an effect that was completely reversed upon saline washout (Fig. 2C). To determine the 

site of DA action on electrical coupling, identified neurons were isolated into cell culture 

and synaptic connections were allowed to reform over 24 h of soma-to-soma contact 

(Fig. 3A and B). A giant somatic synapse configuration (Haydon, 1988) was used to 
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Figure 2. Dopamine decreased electrical coupling between buccal neurons in reduced 
ganglionic preparations.  (A) Micrograph shows a caudal view of the paired Helisoma 
buccal ganglia. Specific neurons were identified by cell size and position, based on 
pigmentation of the ganglia (dark background) and neuronal cell bodies (light spheres), 
such as neuron 19 (circles). Scale bar equals 100 µm. (B) Representative traces from 
electrically coupled neurons 19. Hyperpolarizing current was injected into neuron 19 in 
the left ganglion (19-l), and membrane potential was monitored in both this neuron 
(lower traces) and the postsynaptic target neuron in the right ganglion (19-r; upper 
traces). Superimposed recordings demonstrated initial control responses to current 
injection in saline alone (Con) and responses obtained during bath perfusion with 50 µM 
dopamine (DA). Vertical scale bar equals 20 mV; horizontal scale bar equals 0.5 s. (C) 
Electrical coupling coefficients (EEC) were calculated before DA application (Pre), 
during exposure (DA), and following saline exchange (Wash). DA treatment caused a 
50% reduction in normalized ECC and this relative ECC was significantly different from 
the recovered ECC values following washout (*, P<0.001; Student’s t-test; n=5). 
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Figure 3. Synapse-specific modulation of electrical coupling by acute dopamine 
treatment in vitro. (A) DIC image of giant somatic synapse formed between a neuron 19 
(bottom cell) and neuron 110 (top cell) cultured in outgrowth-restrictive conditions. (B) 
Lucifer yellow injection into 110 revealed extensive cell-cell contact between somata 
and minimal neurite outgrowth over the surface of the neuron 19 (arrow). Scale bar 
equals 20 µm. (C) Membrane potential recordings demonstrate the modulatory effects of 
50 µM dopamine (DA) on a 19-19 somatic synapse. Bath perfusion with DA caused a 
membrane depolarization, an increase in post-inhibitory rebound spiking and a slight 
reduction in electrical coupling. Vertical scale bar equals 30 mV, horizontal scale bar 
equals 3 s. (D) DA-induced reductions in ECC is synapse-specific.  Dopamine caused 
significantly greater reduction (P<0.04; ANOVA; post-hoc LSD) at 110-110 (n=4) and 
19-110 (n=6) cell pairs, as compared to 19-19 pairs (n=25).  
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maximize the area of synaptic contact and the strength of electrical coupling. Treatment 

with DA (50 µM) again caused a reduction in electrical coupling between two B19 

neurons (Fig. 3C and D); however, the extent of the DA-dependent reduction in ECC 

was synapse-specific, as demonstrated by the fact that suppression of electrical coupling 

at B19-B19 synapses was markedly less than at B110-B110 and B19-B110 synapses 

(P<0.04; Fig. 3D). Along with suppression of electrical coupling, DA also caused a 

membrane depolarization and increased excitability in neurons B19 and B110. Increased 

neuronal excitability was particularly evident following hyperpolarizing voltage 

changes, where bursts of action potentials were activated by post-inhibitory rebound 

(Fig. 3C). Thus, DA’s inhibitoryeffects on electrical synaptic transmission were neuron-

specific and not an indirect product of a polysynaptic network modulation. 

 

DA modulation of electrical synapse formation 

Having determined that both neurons B19 and B110 respond to acute DA 

application, I next sought to determine the effects of chronic DA treatment on electrical 

synapse formation. To achieve this chronic treatment, homotypic B19-B19 pairs or 

heterotypic B19-B110 pairs were cultured in the giant somatic synapse configuration. 

Synaptogenesis between these neurons has been characterized previously (Szabo et al., 

2004). Within 24 hours, sustained electrical synapses (SES) were formed between B19-

B19 neuron pairs (Fig. 4A). SES are long-lasting connections maintained beyond initial 

synapse formation. In contrast, transient electrical synapses (TES), short-lived 
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connections that exist during the initial stages of synapse formation and are then lost, 

formed between B19-B110 neuron pairs.  

Somatic synapses were treated chronically with 50 µM DA throughout the first 

24 h of synapse formation and, following their transfer into DA-free medium, electrical 

coupling was assessed. Chronic DA treatment caused a significant reduction in TES 

formation at B19-B110 contacts (n=10; p<0.007), where coupling was less than 25% of 

untreated control levels (n=10, Fig. 4B). In contrast, the establishment of SES at B19-

B19 contacts was not reduced by DA treatment. Rather, chronic DA exposure during 

initial stages of synaptogenesis caused a small but significant increase in ECC at 

homotypic B19-B19 synapses (n=12; p<0.0005), as compared to untreated controls 

(n=12; Fig. 4C). Thus, TES formation was markedly diminished by DA treatment, 

whereas SES formation was strengthened. 

 

Cellular mechanisms of DA-induced modulation of electrical synapses 

To determine whether DA was acting directly on gap junction channels or 

extrajunctional sites, we used the tracer molecule neurobiotin (NB), which has been 

shown to diffuse through gap junction channels formed between these neurons (Szabo et 

al., 2004). A reduction in the number of gap junction channels present should result in a 

reduction in the passage of dye between cells. To determine if DCC values were 

representative of electrical coupling, prior to dye injection, ECCs were determined for 

each cell pair, and these values ranged from 0.0 to 0.8 (Fig. 5A). Dye coupling 

coefficients (DCC) were then determined, and at B19-B19 somatic synapses these DCC 
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Figure 4.  Formation of electrical synapses is modulated by dopamine. (A) 
Representative traces of from a 19-19 somatic pair exposed to 50 µM DA during 24 h of 
initial contact. Hyperpolarizing current was injected into one 19 (bottom trace) and 
membrane voltage was recorded in both this cell and its partner 19 (top trace). Vertical 
scale bar equals 40 mV, horizontal scale bar equals 1 s. (B) Synapse formation at 19-110 
transient electrical synapses (TES) was significantly suppressed by DA (n=10) compared 
to untreated controls (CTL, n=12; *, p<0.007, Student’s t-test). (C) Synapse formation at 
19-19 sustained electrical synapses (SES) was significantly enhanced by DA (n=12) 
compared to untreated controls (CTL, n=12; *, p<0.001, Student’s T-test). 
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values strongly correlated with the EEC values determined for the same somatic 

synapses (R2=0.57; n=15).  

Since we determined that the NB dye-coupling procedure was a reliable indicator 

of electrical coupling at these somatic synapses, NB injection and fluorescence imaging 

were used to assess dye coupling in both untreated control (CTL; Fig. 5B) and DA-

treated somatic synapses (DA; Fig. 5C). No effect of DA treatment on dye coupling was 

detected at B19-B19 electrical synapses (p=0.72; Fig. 5D). However, similar to the 

pronounced DA-induced reduction in electrical coupling previously seen at B19-B110 

synapses, DCC was significantly suppressed at these connections when treated with DA 

(p<0.0002; Fig. 5E). Thus, the reduction in electrical coupling caused by DA was at least 

partially due to a decrease in gap-junctional conductance at B19-B110 transient 

electrical synapses. In contrast, the absence of DA-induced changes in dye coupling at 

B19-B19 sustained electrical synapses suggested that modulation of non-junctional 

channels indirectly mediated the reduction in electrical coupling at these contacts. 

 

DA modulation of chemical synapse formation 

The differential presence of TES or SES alters the outcome of simple neural 

network formation, both in terms of electrical and chemical synaptogenesis (Szabo et al., 

2007). Therefore, we tested whether DA-induced diminution of TES formation altered 

subsequent synapse formation in defined three-neuron networks (Fig. 6A). In three-cell 

(B110-B19-B110) TES networks, an initial heterotypic pair (B110-B19; TES 

expressing) was treated with 50 µM DA for 4 days (Fig. 6B, gray cells) prior to
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Figure 5. Mechanism of DA modulation of electrical synapse formation. (A) Electrical coupling 
coefficients (ECC) and dye coupling coefficients (DCC) were obtained for 19-19 somatic synapses 
between 12 and 24 h of contact and a linear relationship between the two was demonstrated (n=15; R2 = 
0.57). (B and C) 19-110 somatic synapses were treated with conditioned medium alone (B; CTL) or 
conditioned medium containing 50 µM DA (C; DA) and the passage of neurobiotin from the injected cell 
(larger left cell) to its uninjected partner (right cell) was examined. Higher levels of fluorescence were 
detected in the cytoplasm of neuron 110 in control somatic synapses. Note the resolution of the nucleus in 
B due to the cytosolic accumulation of neurobiotin fluorescence. (B,C) Scale bar shown in C equals 20 
µm. (D) DCC values were used to quantify dye coupling between 19-19 somatic synapses in the presence 
(DA) and absence (CTL) of dopamine. No significant differences in dye coupling were detected between 
treated and untreated cell pairs. (E) DCC values were significantly lower in DA-treated 19-110 somatic 
synapses, as compared to untreated controls (*, P<0.05, Student’s t-test).  
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establishment of contact with a third untreated neuron (B110; Fig. 6B, white cell), thus 

generating a network containing synapses of varying age and DA-treatment status. Since 

older neurons B19 do not readily form strong electrical synapses, electrical coupling was 

weak (mean ECC <0.15) at the newly formed B110-B19 contacts in untreated control 

(CTL; n=7; Fig. 6C and 7A). Also, as predicted, DA-treated networks (DA; n=6; Fig. 6D 

and 7A) possessed weak coupling that was not significantly different than control levels. 

Thus, a temporal limit or permissive window exists following initial synaptic contact for 

DA-induced reduction in electrical coupling.  

Since an inverse relationship exists between electrical and chemical synaptic 

transmission at transient electrical connections (Szabo et al., 2004), we also examined 

chemical neurotransmission in these three-neuron networks. Approximately 30% of both 

CTL and DA TES networks possessed chemical coupling at these newly formed 

synapses (Fig. 7B), and the percentage of preparations with chemical coupling, the 

waveforms of the evoked postsynaptic potential (PSP) and PSP amplitudes were not 

different between treated (DA; Fig. 6F) and control groups (CTL; Fig. 6E). 

As shown above, in contrast to DA-induced TES diminution, DA enhances SES 

formation (Fig. 4B). We therefore examined the effect of DA on synapse formation in 

three-cell SES networks, with two older neurons B19 and one younger neuron B110. In 

these three-cell (B19-B19-B110) networks, an initial homotypic pair (B19-B19; SES 

expressing) was treated with 50 µM DA for 4 days prior to establishment of contact with 

a third untreated neuron B110. Electrical coupling was weak (mean ECC < 0.15) at the 
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Figure 6. Electrical and chemical synapses in three-cell networks. (A) Phase contrast micrograph showing a representative 3-neuron 
network. Neurons (light iridescent spheres) were plated into adhesive cell culture conditions for 4 days of neurite outgrowth. A third 
cell was plated into culture on day 4 in close apposition to one of the older neurons, thereby forming a three-cell network. Scale bar 
in equals 30 µm. (B) Schematic of the three-cell network in (A). The two 5d neurons (shaded) were connected by large neurites, 
while finer processes extended from the third, younger (white) neuron. 5d cells were exposed to either untreated medium (CTL) or 50 
µM DA for 4 days, prior to plating the third 1d cell. Cells were then cultured in medium only (no DA) for an additional day. (C and 
D) Representative traces from two cells in a 3-cell 110-19-110 network showing electrical coupling between the 5 day old neuron 19 
(top, enclosed in the light black box) and the 1 day old neuron 110 (top, not enclosed).   Simultaneous recordings of membrane 
potential were made from the injected (presynaptic) neuron 110 (top trace) and the 5d (postsynaptic) neuron 19 (bottom trace). Weak 
electrical coupling was detected at this 1d synapse, in both control (CTL, panel C) and dopamine-treated networks (DA, panel D). 
Vertical scale bar in C and D equals 20 mV, horizontal scale bar equals 1 s. (E and F) Depolarizing current injection into the 1d 
(presynaptic) neuron 110 evoked postsynaptic potentials (PSPs) in the 5d (postsynaptic) neuron 19. The amplitude of PSPs in control 
(E, CTL) or dopamine-treated networks (F, DA) was similar. Vertical scale bar in E and F equals 5 mV, horizontal scale bar equals 
0.4 s. 
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newly formed B110-B19 synapses in both DA-treated (n=7) and untreated connections 

(n=6; Fig. 7C). Newly formed (1d) connections in untreated control networks did not 

possess chemical coupling (CTL; Fig. 7D). In contrast, DA-treated B19-B19-B110 SES 

networks were significantly more likely to possess chemical coupling at their 1d 

connections than untreated control networks (P<0.05; Chi squared test; Fig. 7D), even 

though electrical coupling was not different between treated and untreated groups (Fig. 

7C). Thus, treatment of neural networks with DA, although enhancing SES and 

diminishing TES, had no impact on electrical synapses within those networks that 

emerged following DA. However, newly forming chemical synapses were more 

prevalent at DA-treated networks with sustained electrical synapses (SES), rather than 

those undergoing transient electrical coupling. 

 

Cellular mechanisms of DA-induced modulation of chemical synapse formation 

While the enhancement in chemical synapse formation observed in DA-treated 

neural networks might have been the result of altered electrical coupling in these 

networks (Szabo et al., 2007), alternatively, chronic DA treatment might also have 

caused a long-term alteration in acetylcholine receptor (AChR) expression and 

acetylcholine (ACh) sensitivity. To test this possibility, neuron B19s were cultured for 4 

days in 50 µM DA, in a protocol similar to that used for network modulation studies. 

Following transfer into DA-free medium, neurons were assessed electrophysiologically 

for ACh-induced membrane depolarization following pulsed application of 10 µM ACh. 



 

 61 

 

Figure 7. Synapse-specific alterations in chemical synapse formation following exposure to dopamine . 
(A) ECC values for 5d-1d 19-110 connections in TES (110-19-110) networks cultured in conditioned 
medium (CTL, solid bars; n=6) were not different from those determined for identical connections in 
dopamine-treated networks (DA, open bars; n=7). (B) The percentage of preparations with chemical 
coupling at the same 19-110 connections (in A) was not significantly different from identical connections 
in DA-treated networks. (C) ECC values for 19-110 connections in SES (19-19-110) networks cultured in 
condition medium (CTL, solid bars; n=4) were not different from identical connections in dopamine-
treated networks (DA, open bars; n=8). (D) Chemical removal. However, coupling was not present in 
control B19-B19-B110 networks, but was detected in 25% of DA-treated 1d B19-B110 connections (*, 
P<0.05; Chi-square test; n=8). 
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pretreatment with DA did not change the amplitude of ACh-evoked depolarization (DA; 

n=6; p=0.75), as compared to untreated control neurons (CTL; n=6; Fig. 8A and B). In 

support of this finding, the amplitude of PSPs in DA-treated TES networks (3.2 ± 0.8 

mV; n=6) and DA-treated SES networks (2.8 ± 1.1 mV; n=7) were not different 

(p=0.66).  Therefore, enhancement of chemical synaptogenesis, in networks possessing 

DA-enhanced SES formation, was not a byproduct of long-term changes in the 

sensitivity of the postsynaptic neurons to ACh. 

 

Discussion 

 

It is becoming increasing clear that electrical synapses are important regulatory sites of 

neural communication, and that they are dynamic and modifiable (Bennett, 1997; Pereda 

et al., 2012). Neuromodulation of electrical coupling has been shown in mollusks 

(Carrow and Levitan 1989), annelids (Colombaioni and Brunelli 1988), arthropods 

(Kepler et al., 1990), fish (Harsanyi and Mangel 1992; McMahon 1994; Curti and 

Pereda2004) and mammals (Maher et al., 2009; Goffin et al., 2010). Potential 

modulators of electrical coupling include peptides (Wolinsky et al. 1985), lipids (Guan 

et al. 1997) and neurotransmitters, such as norephinephrine (Blue and Parnavelis, 1982). 

 Dopamine has long been known as a modulator of electrical coupling (Piccolino 

et al., 1982; Rorig et al., 1995; Rorig and Sutor, 1996; Fasano et al., 2008). It is also a 

potent regulator of neuronal activity in the circuit controlling the feeding behavior of 
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Figure 8. Chronic dopamine treatment did not alter neuronal sensitivity to ACh.  
(A) Neuron 19 membrane depolarization evoked by pulsatile application of 10 µM ACh 
from a micropipette was similar in amplitude, rise time and decay both in neurons 
treated for 4 days with 50 µM dopamine (DA) as well as in untreated controls (CTL). 
(B) Mean amplitude of ACh-evoked membrane depolarization was not different 
(P=0.74) between untreated control (CTL; n=6) and dopamine-treated (DA; n=6) 
neurons. 
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Helisoma (Trimble and Barker 1984; Quinlan et al., 1997; Murphy 2001; Fig. 1). We 

therefore investigated the role of DA in the formation of identified Helisoma neural 

networks, where electrical coupling formed during synaptogenesis can be either 

sustained or transient (Szabo et al., 2004). We found that chronic DA treatment reduced 

a transient form of electrical coupling, but strengthened sustained electrical synapses in a 

neural network-specific fashion. This result demonstrates that DA can produce opposing 

effects on electrical synapses that are dependent on the identity of the neurons within a 

developing network.  

Modulation of electrical coupling can be due to direct effects on gap-junctional 

channels; although additional extrajunctional mechanisms abound  (Pereda et al., 2004, 

2012). In this study, we demonstrated that the suppression of transient electrical 

coupling caused by DA was due to a decreased conductance at gap junctions formed 

between neurons of differing identity. However, modulation of gap junctions was not 

involved in changes induced by DA at sustained electrical synapses. Since changes in 

non-junctional conductance can indirectly modulate electrical coupling (Szabo et al., 

2010), DA-dependent enhancement in SES is likely due to changes in extrajunctional 

channels. Although much is known regarding the diversity of dopamine receptors in 

vertebrates (Callier et al., 2003), less is understood with regard to invertebrates, 

particularly within molluscan neural networks. Furthermore, much information is 

emerging regarding the diversity of innexins, the proteins that form the majority of gap 

junctions in invertebrates (Kandarian et al., 2012). The specific innexins underlying 

Helisoma transient and sustained electrical coupling remain unknown, and further 
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studies characterizing these proteins should help elucidate the synapse-specific affects of 

dopamine on synaptogenesis in these simple networks. 

The regeneration of Helisoma buccal neurons in vivo involves the formation of 

new TES connections (Bulloch and Kater, 1981; Hadley et al., 1982) and the short-term 

increase in coupling at sustained electrical synapses (Murphy et al., 1983). Similar 

transient changes in electrical coupling occur in the mammalian nervous system during 

development and regeneration (Kandler and Katz, 1998; Chang and Balice-Gordon, 

2000b), although the specific functions of TES remain largely unknown. It has been 

hypothesized that transient electrical coupling in Helisoma imposes a synchrony of 

activity upon large populations of neurons, thereby influencing coordination of process 

outgrowth, the survival of damaged neurons, and activity-dependent mechanisms of 

synapse formation (Turner et al., 2011). The idea that TES may aid in the construction or 

maturation of chemical synapses (Kandler and Thiels, 2005; Marin-Burgin et al., 

2006Montoro and Yuste, 2004; Neunuebel and Zoran, 2005) is support by a switch from 

tranisent electrical to chemical signaling seen in mollusks (Szabo et al., 2004; Turner et 

al., 2011) and mammals (Arumugam et al., 2005). The chemical connection that emerges 

between neuron 110 and 19 following TES is cholinergic and inhibitory (Szabo et al., 

2004). Furthermore, the loss of electrical coupling, and the formation of this inhibitory 

connection, occurs at precisely the time when synaptic boutons and evoked synaptic 

potentials appear in the target musculature of these regenerating motoneurons (Turner et 

al., 2011), thereby providing a potential mechanism for neuromuscular synaptic 

competition.  
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Extensive transient coupling has been shown to exist during discrete periods of 

neural circuit formation (Peinado et al., 1993; Yuste et al., 1995), suggesting that 

electrical coupling may be an important regulator of neural network formation. We’ve 

previously shown that the differential presence of TES or SES alters not only the 

outcome of electrical synapse formation but chemical synaptogenesis as well (Szabo et 

al., 2007). In this study, we have shown that although DA had no effect on cholinergic 

synapse formation within a TES network, chemical synaptogenesis within SES neural 

networks were significantly enhanced by DA treatment. This increase in chemical 

synaptogenesis in networks possessing DA-enhanced SES formation was not due to 

changes in the sensitivity of the postsynaptic neurons to ACh, but rather was a cell 

specific effect of DA influenced by the presence of this particular form of electrical 

coupling.  

DA has wide-ranging neuromodulatory effects on neural networks involved in 

learning and memory (Rossato et al., 2009), behavioral reinforcement (Wise, 2004), 

social displays (Anstrom et al., 2009; Aragona and Wang 2009), vocal communication 

(Leblois et al., 2010; Sasaki et al., 2006), and feeding (Leinninger et al., 2009). The 

extent to which DA-dependent modulation sculpts aspects of neural network 

connectivity during development remains unknown. Nonetheless, the current studies 

demonstrate that both electrical and chemical synapse formation are influenced by DA in 

complex fashion, such that the identity of the neurons and the strength of existing 

synapses within an emerging neural network impact the nature of DA-induced 

synaptogenic modulation.  
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CHAPTER III 

CALCIUM OSCILLATIONS IN HELISOMA  

NEURONAL NETWORKS 

 

Introduction 

 

The ability to functionally assess how neural networks are constructed is vital to 

understanding how those neural circuits mediate the physiology in a behaving animal. 

Expansion and refinement of electrophysiology techniques drove the early growth of 

fundamental research on the nervous system and continues to drive various aspects of 

neuronal studies such as ion channel function and their relationship to pain (Bohlen et 

al., 2011, Samways et al., 2011). Intracellular electrophysiology in particular allows for 

direct assessment of electrical properties of neurons when they are penetrated with glass 

microelectrodes. This technique is limited in that recording from large numbers of cells 

at the same time becomes technically impractical. Furthermore, intracellular 

electrophysiology can greatly perturb the physiology of the neurons being monitored. 

Although, no technique is without its drawbacks other methodologies were explored to 

complement my electrophysiological approaches, with the intent to reduce or eliminate 

physical damage of neurons. 

Two useful examples of relatively noninvasive neural activity include 

extracellular electrophysiology and cellular imaging. Extracellular electrophysiology, as 

its name suggests, measures electrical changes at the surface of, but not inside, the 
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neuron with respect to an extracellular site distant from the neuron. This technique is 

frequently used to measure field potentials from populations of neurons and is still used 

today for clinical studies measuring brain activity during sleep to assess sleeping 

disorders, to record electroencephalography, and to measure heart physiology by way of 

electrocardiograms.  Many studies attempting to address neuronal networking questions 

have developed extracellular recording techniques in rat hippocampal neurons, including 

ways to use extracellular recordings as predictors of intracellular physiology (Henze et 

al., 2000), as well as complex microelectrode arrays that could detect coincident activity 

among a population of neurons (James et al., 2004). Fluorescent cell imaging techniques 

likewise have a long history of usefulness in monitoring intracellular physiology in a 

population of cells, which can include both calcium-sensitive probes (Tsien, 1981; Yuste 

and Denk; Ikegaya et al., 2005) and voltage-senstive probes (Yuste et al., 1997; Bradley 

et al., 2009).  

Voltage-sensing probes have frequently used chromatophores bound to the cell 

membrane whose distribution or orientation changes based on changes in membrane 

voltage that moves the charged chromatophore and alters fluorescence (Ehrenbert et al., 

1988). Other voltage-sensing indicators have used genetically targeted green fluorescent 

protein to sense domains of ion channels that alter its fluorescence state (Ataka and 

Pieribone, 2002). Calcium-sensitive probes based on the chelator ethylene glycol 

tetraacetic acid (EGTA) like Fura-2, were developed by Roger Tsien and colleagues and 

have found wide use as indicators for cellular physiology (Tsien, 1980; Grynkiewicz et 

al., 1985). They became useful tools because they had a high sensitivity to calcium and 
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could be loaded non-invasively into large groups of cell, while maintaining the ability to 

monitor single cells amongst the larger population (Tsien, 1981; Cosart et al., 2003; 

Yuste and Katz, 1991). Many of these probes were ratiometric and therefore fluoresced 

at two emission wavelengths allowing for estimations of calcium concentrations 

regardless of the strength of loading due to the ratioed output. 

Not long after its development, Fura-2 became a molecule frequently used in 

growth cone physiology studies using Helisoma neuronal cultures. These included 

demonstrations that neuronal depolarization caused local increases in calcium and that 

these calcium changes where responsible for alteration in growth cone dynamics (Cohan, 

1992; Davenport and Kater, 1992, Welnhofer et al., 1999). In addition, neuromodulators 

that affect neurite outgrowth, like serotonin, were shown to work in part by mediating 

changes in intracellular calcium (Cohan et al., 1987; Goldberg et al., 1992). Growth 

cones were also demonstrated to be capable of homeostatically regulating intracellular 

calcium concentrations (Rehder et al., 1991). Previous work with Helisoma giant 

somatic synapses, using Fura-2 imaging, demonstrated changes in intracellular calcium 

in response to trophic factor-induced upregulation of electrical coupling (Nueneubel and 

Zoran, 2005). In addition to being a proxy for voltage-dependent changes in neurons, 

calcium probes also act as readouts for intercellular coupling of neuronal activity. 

Monitoring of calcium transients in large neuronal populations have been used 

previously, such as in Smetters et al. (1999), where single action potentials could be 

reliably detected using this optical approach and were indicative of the spiking patterns 

in the population. Stosiek et al. (2003) also demonstrated that ratiometric calcium 
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imaging could be efficiently used to monitor neuronal populations while still achieving 

high resolution monitoring of activity in individual cells.  

Connectivity of simple 3-cell neuronal networks has demonstrated that ongoing 

synaptic connectivity can alter emerging electrical and chemical connectivity at these 

networks (Szabo and Zoran, 2007). This simple neuronal culture system uses identified 

neurons with known synaptic phenotypes, also addressed previously in Chapter II, and 

provides a useful tool to look at coincidence changes in calcium during network 

interactions. As such, I attempted to develop a system whereby I could monitor changes 

in intracellular signaling amongst cells that would not have the drawback of inducing 

physical damage, but would complement previous electrophysiological studies and 

provide pairwise analysis of synaptic interactions a defined neural network.  

An important aspect in the formation and maturation of neural networks is 

neuronal activity, which is typified by large, activity-dependent increases in cytosolic 

calcium. Cytosolic calcium changes between neurons comprising a network is, therefore, 

not only indicative of neuronal excitation, but also ongoing synaptogenesis. Fura-2 AM 

is a cell permeable form of the calcium indicator dye, whose multiple 

excitation/emission wavelengths allow for determination of cytosolic calcium levels 

through ratiometric fluorescent imaging. Using coincidence detection on data sets of 

calcium-dependent fluorescence between neurons, I monitored neural network function 

with minimal mechanical disturbance of the cell membrane and electrophysiological 

properties. Given that large gap-junctional pores are capable of rapidly conducting 

electrical and biochemical signals (including in some cases calcium ions themselves), 
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stronger electrical coupling between neurons was hypothesized to lead to higher degrees 

of coincidence in calcium changes. Therefore, coincidence detection of calcium was 

used as an indicator of electrical coupling. In the following sections, I describe an 

approach modeling a computational means of assessing network coupling and this 

approach was assessed using known approaches to modulate coupling and to construct 

networks with predicted electrical communication. In the following sections, I address 

the question, can coincidence detection of calcium oscillations between neurons report 

synaptic interactions with reasonable fidelity?  

 

Materials and Methods 

 

Animals 

All experiments performed were conducted on neurons extracted from Helisoma 

trivolvis, an American albino pond snail, as previously described in Chapter II were 

maintained in laboratory aquaria. Snail culture conditions were maintained at 26oC with 

a 12-hour light/dark cycle. Snails were fed either lettuce or trout chow each day.  

 

Cell culture 

Isolation of neurons from the Helisoma buccal ganglia were performed as 

previously described in Chapter II. Buccal ganglia were treated with trypsin (Sigma) in a 

1 to 2 ratio of mass of trypsin per volume of solution. Trypsin-treatment was conducted 

for 15 minutes and allowed for the softening of the ganglionic sheath before neuron 
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extraction. Ganglia were first washed in media before being pinned onto Sylgard (Dow 

Corning) plate in high osmolarity media (in mM: 56 NaCl, 2.4 KCl, 5.7 CaCl2, 2.1 

MgCl2, and 14 HEPES). Pinned ganglion underwent nerve crush and, using a tungsten 

microknife; an incision was made near the neuronal cell body desired for extraction. 

Isolation of the desired neurons was performed using a glass micorpipette created from 

micro-hematocrit capillary tubing (VWR) with an inner diameter of 1.2mm. Capillary 

tubing was pulled using a vertical pipette puller (Kopf) that was cut so that the tip was 

slightly larger than the neuronal diameter (approximately 50µm) and was subsequently 

fire-polished. Pipettes were placed into a micromanipulator with a micrometer syringe 

attached to plastic tubing, which was filled with media, allowing for negative and 

positive pressure to be applied to the ganglia. Desired neurons were isolated by visually 

locating the neuron cell body using a stereoscopic microscope and applying negative 

pressure to suck the neuron into the pipette before transferring the cell into 35mm 

culture dishes (Falcon 1008) coated with non-adhesive 0.5% bovine-serum albumin 

(BSA) obtained from Sigma.  

Transferred neurons were cultured in BSA coated dishes for 3 days in 2mLs 

cultured media (CM) before experimental protocols are started. CM was created by 

culturing 2 central ring ganglia per mL of defined media (DM) as previously described 

in Wong et al., 1981. DM consisted of Leibowitz-15 media (L-15 Gibco Formula No. 

82-5154) with added glutamine (30mg per 100mL of L-15) and physiological levels of 

salts to Helisoma (40mM NaCl, 1.7mM KCl, 4.1mM CaCl2, 1.5mM MgCl2, and 10mM 

HEPES) adjusted to a pH of 7.5.  
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General electrophysiology 

All electrophysiology performed was done using intracellular recording methods. 

Glass microelectrodes (FHC, borosilicate 1.5mm OD x 1.12mm ID with omega dot 

fiber) were pulled to tip resistances of approximately 20MΩ were filled with 1.5M KCl 

prior to penetration of cells. Synaptic connectivity was assessed using dual current-

clamp recordings of identified neurons with Duo-773 electrometers (World Precision 

Instruments). Recordings were analyzed by digitization of signals using ADInstruments 

Powerlab data acquisition system in conjunction with Chart software. Electrical coupling 

was assessed by injection of a hyperpolarizing current of constant amplitude, 

approximately 1nA, into one cell (presynaptic) while simultaneously recording 

membrane voltage changes in both the presynaptic cell, usually around 30mV, and the 

non-injected synaptic partner (postsynaptic) neuron. Analysis of the coupling is assessed 

by determining the ratio of postsynaptic to presynaptic voltage change at the peak of 

each change. Analysis of chemical connections between cells was performed by 

stimulating 10 action potentials in the presynaptic neuron at a rate of 1 action potential 

(AP) every 2 seconds and observing any resulting postsynaptic potentials (PSP). Since 

electrical coupling would also result in a depolarization of the postsynaptic cell and 

many Helisoma synapses in culture were mixed in nature, a protocol was developed for 

assessing when a postsynaptic depolarization was due to chemical connectivity. Since 

electrical coupling occurs near instantaneously it was determined that any PSP occurring 
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after 95msec of the peak of a presynaptic AP was due chemical and not direct electrical 

transmission.  

 

Imaging 

Unless otherwise noted all images observed where taken from 20x magnification 

using an IX70 inverted scope (Olympus). Images were taken using either that of 

differential interference contrast (DIC) microscopy or Fura-2 AM (Molecular Probes) 

ratiometric calcium imaging with a pseudocolor applied to better visualize changes in 

calcium levels. Prior to imaging neurons are plated onto poly-l-lysine coated coverglass 

slides (Lab-Tek). Fura-2 excitation was performed using light emitted from a system-

controlled Lambda DG4 monochromator (Sutter Instruments) where light passes through 

excitation filters at 340 and 380nm. Neurons imaged were loaded with Fura-2 AM for 1 

hour at a final concentration of 4µM. Following loading cells undergo 3 washes with 

DM over the course of 30min. Fura-2 as mentioned above is excited at both 340nm and 

380nm and the ratio of the fluorescence (F340/F380) can be directly correlated to 

intracellular calcium levels. Ratio data was collected using SimplePCI software 

(Compix). Due to cells often appearing inactive during imaging, 30 minutes prior to 

imaging 10µM of deltamethrin (DMeth, Sigma) in dimethyl sulfoxide (DMSO) was 

added to the bath to hyper excite cells. Unless otherwise noted the delay between time 

points where images where taken is 5 sec.  
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Data analysis 

Ratio fluorescence data were analyzed using ImageJ software (National Institute 

of Health) to create a timescale of change in fluorescence over the entire recording. The 

determination of calcium oscillation duration and rate was determined using the equation 

used in Grynkiewicz et al.,1985: 

 [Ca2+]= Kd*Fmax380/Fmin380*(R-Rmin)/(Rmax-R) 

where Kd is the dissociation constant of Fura-2AM, Fmin380/Fmax380 is the ratio of 

fluorescence intensity measured at zero calcium over the intensity at calcium saturation. 

R represents the measured ratio intensity versus those at both zero and saturated calcium 

(Rmin and Rmax respectively). Calcium transients were considered to be 5% change in 

the Fura-2 ratio, R, from resting levels. Raw data from calcium imaging was collected as 

the mean intensity of F340/F380 ratio from regions of interest (ROIs) within each cell. 

F340/F380 ratio was then transformed using several steps for analysis of coincident 

changes between specific neuronal pairs. Data transformations were performed using the 

numerical computing software MATLAB (MathWorks). The first transformation 

involved a time series analysis where each data point was converted to the change in 

ratio between consecutive time points (t) with the difference in ratio (R change between 

t-1 and t). Ratio differences for each time point were correlate the temporal changes in 

calcium ratio in one cell with the cange in another cell within the neural network at that 

time point. For each synapse within an imaged neural network, the two-coordinate 

temporal differences in calcium fluorescence ratio was plotted using a two-dimensional 

Cartesian coordinate system, with values for one neuron (a) plotted in the y-axis and 
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values for the other neuron (b) plotted on the x-axis. By convention, a data point with 

coordinates that fall in quadrant I (+,+) and quadrant III (-,-) are indicate of temporal 

coincidence in calcium change, whereas paired values with coordinates that fall in 

quadrant II (-,+) and IV (+,-) indicate change in calcium occurring in inverse directions. 

For a given time series, the coordinate points within each of the 4 quadrants were 

counted and a coincidence index was calculated where values close to 1 represent no 

correlation. The higher the index the stronger the direct correlation in calcium changes 

and as values fell under 1 the more inversely correlated they became. 

 

Results 

 

Intrinsic activity of Helisoma motor neurons 

Helisoma buccal motor neurons B19 and B110 exhibited intrinsic bursting 

patterns of activity as assessed by intracellular electrophysiology. Individual bursts in 

isolated single neuronal cultures were found to have durations of 1.94 ± 0.20s (n=8) and 

often occurred in rapid succession with inter-burst intervals ranging from 1 to 4 seconds 

(Fig. 9A). Having determined that buccal neurons were spontaneously active in culture 

and fired action potentials independent of stimulation, I then determined how calcium 

transiently changed in these neurons. Unlike the robust level of activity seen with 

electrophysiology, neurons loaded with Fura-2 AM and imaged with fluorescence 

microscopy showed only rare observable oscillation in fluorescence intensity with a 

calcium transient rate of 0.04 ± 0.02 per minute (n=8; Fig. 10A and C). This suggested
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Figure 9. DMeth modulation of intrinsic electrical activity in neuron B19. (A) 
Representative trace of characteristic B19 bursting activity in cell culture when current-
clamped at a resting membrane potential near -65mV. (B) Neuron B19 excitability 
increased following acute treatment with DMeth, such that prolonged high frequency 
action potential bursting was produced. Horizontal scale bar in A and B equals 1 s, 
vertical scale bar in A and B equals 30 mV. 
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that buccal neurons loaded with this calcium indicator were largely inactive. Although 

many possibilities exist for why these discrepancies were observed, two of the more 

obvious ones are: 1) that penetration of cell membranes causes membrane leakage that 

resulted in a net depolarization of the cells, thus making them abnormally excitable, or 

2) that the buffering capacity of Fura-2 calcium binding led to a reduction in observable 

calcium-dependent response to membrane excitation. To test this we looked at ways to 

increase membrane excitability in Fura-2 loaded neurons that were otherwise 

unperturbed.  

To make the cells more excitable DMeth, a synthetic pyrethroid similar to natural 

insecticides used by certain plants, was applied to neuronal cultures to prolong opening 

of voltage-gated Na+ channels. Electrophysiological assessment of DMeth treated 

neurons demonstrated a pronounced increase in action potential bursting compared to 

vehicle-treated neurons (Fig. 9A and B). DMeth treatment showed a significant increase 

in the firing rate (5.7 ± 1.5Hz; n=4; p<0.05) of the neuron compared to control cultures 

(1.5 ± 0.19Hz; n=9). In contrast to the previous calcium imaging studies of untreated 

neurons, those treated with DMeth for 15 minutes before calcium imaging had much 

more frequent calcium-dependent changes in Fura-2fluorescence (Fig. 10B and D). As 

represented in Figure 11A, DMeth increased the rate of calcium oscillations from 2.3 ± 

1.1 to 47 ± 21 transients per hour (Fig. 11B, p<0.05) as well as the duration of calcium 

oscillations from 35 ± 5.8 to 53 ± 11sec (Fig. 11C, p<0.05). Additionally, treatment with 

DMeth increased the percentage of time any cell spent oscillating by 44%. These data 
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Figure 10. Calcium-dependent changes in Fura-2 fluorescence in response to DMeth. (A and B) Representative images of heterotypic 4-cell networks in 
either control (A) or DMeth (B) treated cultures. In each the leftmost panels in A and B, a DIC image of the network is shown. The subsequent panels at 
5, 300, and 600s show pseudocolor images of Fura-2 fluorescence.. (C and D) Representative traces showing simultaneous calcium monitoring (Fura-2 
fluorescence ratio; f340/f380) from all 4 cells over time in control (C) and DMeth-treated (D) networks. In C and D the red line represents the bottom left 
cell of the 4-cell network in A and B respectively, with the blue line representing the bottom right cell, the green representing the top right cell and the 
black representing the top left cell. A and C show static calcium levels in controls, while B and D illustrate transient changes in calcium-dependent 
fluorescence in DMeth-stimulated networks. 
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indicate that increased neuron excitability produced much more robust changes in 

calcium oscillations in cultured Helisoma buccal neurons. As such manipulation with 

DMeth allows for the detection of calcium oscillations in Helisoma neuronal culture and 

ultimately to test if those oscillations are coincidence amongst neurons in the same 

network. 

A key feature to this study was the ability to detect coincident changes in calcium 

amongst cells comprising small networks of neurons in culture. As such it was important 

that I be able to determine if transients of intracellular calcium in one neuron followed 

temporally in another network neurons. Through the detection of coincident changes in 

calcium, I hypothesized that synaptic connectivity of the network could be determined.  

 

Temporal coincidence of calcium transients 

Having established a method to elicit and monitor network calcium changes, I 

next developed a method for assessing neuronal connectivity based on the temporal 

coincidence of calcium transients. First, the ratio of calcium fluorescence F340/F380 

was calculated for each combination of cell pairs comprising a simple 3-cell network. A 

ROI for each cell was selected from Fura-2 calcium images and ratiometric calcium data 

was plotted over the time course of imaging. Increases and decreases in f340/f380 

represented oscillations in intracellular calcium of each neuron comprising the network 

(Fig. 12A and B). To determine if changes in calcium levels between cells were 

correlated, I calculated the difference in calcium levels of neurons from one
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Figure 11. DMeth increases the rate and duration of calcium oscillations. (A) 
Representatives of both DMeth-induced changes in Fura 2 fluorescence ratio (black line) 
and inactive, untreated control (gray line) neurons B19. (B) Mean rate of calcium 
transients was significantly increased (*, P<0.05 Student’s t-test) when treated with 
DMeth (DMTH, gray bars; n=13) versus controls (CTL, black bars; n=8). (C) In the 
same neurons, calcium transient duration was also significantly increased in drug-treated 
cells (DMTH; gray bars) compared to vehicle-treated controls (CTL, black bars). 
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time point to the next. For every time point, the relative change in fluorescence either 

increased or decreased, from the time point before it. This time series analysis with 

point-to-point changes in the cytosolic calcium of two cells was analyzed and 

represented the pairwise activities of a network synapse (Fig. 12C and D). Finally, these 

temporal differences in calcium for each synaptic pair were assigned X (neuron1) and Y 

(neuron 2) values and were plotted in a Cartesian coordinate system (Fig. 12E and F).   

 Points representing correlated calcium transients segregated into quadrants I 

(+,+) and III (-,-), indicating direct coincidence of calcium changes between neurons, 

with coordinates inquadrants II (-,+) and IV (+,-) representing inverse correlations in 

calcium change. Quadrant-specific data points were then tallied and a coincidence index 

(CI) was calculated, where time points of coincident change were divided by those 

representing inverse correlation. Therefore, higher coincidence indices were indicative 

of synapses possessing largely coincident calcium oscillations. Figure 12 illustrates two 

synapses of different cellular identity, modulatory state, and coincidence of calcium 

oscillations. A homotypic neuron B19 synapse was characterized by high coincidence of 

Dmeth-induced calcium oscillations (Fig. 12A and C). This synaptic pair possessed a CI 

of 5.9 (Fig. 12E), indicative of strongly correlated activity. In contrast, a heterotypic 

B110-to-B19 synapse had no correlated DMeth-induced calcium transients (Fig. 12B 

and D), particularly when treated with the neuromodulator DA. This uncoupled synapse 

possessed a CI of 1.5 (Fig. 12F), indicating very low correlated activity. 
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Figure 12. Coincidence of intracellular calcium transients reports synaptic connectivity. 
(A) Changes in calcium-dependent Fura-2 fluorescence ratio at a strongly-coupled B19-
B19 neuronal pair are presented. (B) Fluorescence ration of an uncoupled B110-B19 pair 
with predicted chemical synaptic transmission following treatment with DA is shown 
over a 10 min recording period. Red traces indicate B19s, while blue traces represent 
B110s. (C and D) Time-series analysis of point-to-point changes in Fura-2 fluorescence 
between two neurons of a 3-cell network. (C) Analysis of point-to-point changes in 
calcium levels for the synapse in A, while (D) shows the anaylsis for the synapse in B. 
(E and F) Cartesian coordinate systems were analyzed for each represented synapse and 
temporal differences in calcium between the two cells were plotted. E represents the 
coordinates of temporal changes in calcium at the synapse in A, while F represents the 
coordinates from the synapse in B. The coincidence index, CI, represents the ratio of 
those plotted points that are directly correlated (quadrants I and III) versus those that are 
inversely correlated (quadrants II and IV). 
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Figure 12 Continued.  
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Fidelity of coincidence assessment of connectivity 

Given the observation that CIs of neural network synapses appear to reflect 

previous electrophysiological descriptions of these connections, we statistically 

compared CIs obtained from different types of synapses with known patterns of 

electrical coupling. To assess the accuracy of calcium-based coincidence detection for 

the assessment of neural network connectivity, electrical synapses of predicted coupling 

strength within an identified network were assayed. Synapses with strong electrical 

coupling were predicted to produce a high degree of coincident calcium transients 

between cells. In contrast, synapses with either low electrical coupling or chloride 

channel-mediated inhibitory synaptic transmission were expected to produce low levels 

of coincident activity. 

Network synapses with predictably strong electrical coupling generated calcium 

oscillations with a significantly greater likelihood of coincidence, as compared to 

network synapses predicted to lack electrical coupling (Table 1). As suggested above, a 

highly active B110, predicted to form inhibitory chemical connections with B19, had 

very little calcium oscillation coincidence between these neurons, indicating a low level 

of electrical coupling.  The use of coincidence detection of calcium transients at 

identified network synapses appeared to be a highly sensitive approach to predicting 

electrical coupling. In 100% of synapses (n=18) studied in this way, where the cellular 

identity and cell culture conditions promoted either strong or weak electrical coupling, 

coincidence of calcium changes was significantly greater than that predicted by random, 

uncorrelated activity (Table 1). However, 57% of synapses (n=7), cultured in 
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Table 1. Statistical analysis of coincidence detection of calcium transients at identified 
network synapses with predicted electrical coupling strengths. 
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configurations that reduced electrical coupling, still exhibited significant coincident 

calcium oscillations. These results suggested that this technique was a sensitive measure 

of coincident activity, revealing coupling not typically detected by conventional 

electrophysiological approaches. Alternatively, this approach may inaccurately report a 

level of non-randomness in the calcium data sets that is not due to correlated biological 

activity, but rather was a consequence of low amplitude, ubiquitous oscillations in the 

data caused by culturing, optical measurement, sampling protocols or other procedural 

issues. 

 

Coincidence indices at sustained and transient electrical synapses 

To further analyze whether or not coincidence indices could predict functional 

classes of electrical coupling (i.e, transient or sustained electrical synapses), we 

separated the calcium coincidence data set by synapse-specific identity (Fig. 13). 

Heterotypic connections (e.g., B110-B19 or B5-B18) that were cultured in contact for 1 

day or 5 days were predicted to exhibit early and late transient electrical synapses (TES), 

respectively. Homotypic connections (e.g., B110-B110 or B19-B19) were predicted to 

exhibit sustained electrical synapses (SES). TES connections when designated as ‘late’ 

were generally predicted to be uncoupled or very weakly coupled. TES designated 

‘early’ were expected to have moderate levels of electrical coupling. The assumption is 

that SES synapses, because of their high degree of gap junctional connectivity, would 

likely exhibit the highest CIs. Meanwhile, TES was hypothesized to exhibit lower CIs 
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Figure 13. Coincidence indices for synapses predicted to express sustained or transient 
coupling. Coincidence indices (CI) at B19-B19 synapses, predicted to have high 
coupling associated with late SES, had high and variable CIs. B110-B110 synapses, also 
predicted to express late SES, had low and invariable CIs. Both late and early TES, 
represented by a mix of neuronal pairs, had low CIs, as was predicted. Dots represent an 
individual synapse’s CI, with the horizontal bars representing the group mean and the 
vertical bar srepresenting the SEM.
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due to their generally lower coupling 

Late SES connection types had the most striking differences in CI based upon 

neuronal identity. At B19-B19 SES connections the average CI was 4.1 ± 1.0 (mean ± 

s.e.m.; n=3; Fig. 13). In contrast, at B110-B110 connections the CI was 1.7 ± 0.1 (n=4). 

Although the sample sizes on these networks did not allow for meaningful statistical 

comparison, it is worth noting that there was no overlap of the CI range or standard 

error. Homotypic B110 connections with late SES exhibited weaker electrical coupling 

in vitro than B19-B19 SES connections. Furthermore, although bilateral B19 pairs are 

coupled in vivo, the nature of B110-B110 electrical coupling is not known, largely due 

to asymmetry in the position of cells within the left and right ganglia.  

Nonetheless, the degree of dissimilarity detected with calcium coincidence 

analysis was surprising. In contrast, none of the connections predicted to possess TES 

synapses, whether early or late in formation, were different in CI indices (Fig. 13). Thus, 

neurons with similar synaptic phenotypes (i.e., TES connections) but different neuronal 

identity (i.e., heterotypic B110-B19 and B18-B5), exhibited similar CIs of 2.1 ± 0.2 and 

1.8 ± 0.3, respectively. Late TES synapses, represented entirely by the heterotypic 

neuronal pairs (B5-B18) had an average CI of 1.8 ± 0.3. 

 

Discussion 

 

A fundamental and largely unsolved problem of neuroscience is how connections 

between neurons underlie the global information processing that occurs within larger 
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neural circuits.  Even in the light of well-understood wiring diagrams of a neural 

network, it is critical to know what kinds of communication are occurring between pairs 

of neurons within a network and how that communication influences the rest of that 

circuit (Lee and Reid, 2011). The study of neural network connectivity within large 

ensembles of neurons is a challenging task. Conventional intracellular (current and 

voltage clamp electrodes) and extracellular (multi-unit and multi-electrode arrays) each 

have their limitations in this regard (Liu et al., 2012). Optical analyses of neuronal 

activities, particularly using fluorescent dyes, have become important tools for probing 

neuronal ensembles in vivo and in vitro (Grewe and Helmchen, 2009). Here, real-time 

calcium imaging approaches are combined with thoroughly characterized neural 

networks in vitro. This system was assessed to determine if computational analyses of 

that connectivity data generated predictable pairwise synaptic outcomes.  

The degree of coincidence of calcium transients produced by identified Helisoma 

neurons was analyzed between contacting neuronal pairs and used as an indicator of the 

network connectivity. Although mulit-electrode intracellular electrophysiology is not 

impractical in simple 3- or 4-cell networks, monitoring calcium fluxes via fluorescence 

microscopy provides a high degree of noninvasive access to an individual cell’s 

physiology and provides greater freedom for neuronal manipulation. Fluorescent 

calcium indicators, such as the Fura 2-AM used here, report intracellular calcium 

changes evoked by neuronal activity. Calcium probes have proven to be advantageous 

over voltage-sensitive dyes due to differences in signal-to-noise ratio and phototoxicity 

(Grewe and Helmchen, 2009). The strong correlation between neuronal spiking activity 
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and somatic calcium transients has allowed for important discoveries of network 

properties in vivo, such as those connecting the mammalian visual cortex (Kerr et al., 

2007; Greenberg et al., 2008). In excitable neurons, trains of action potentials lead to the 

summation of individually induced calcium influxes. Calcium fluorophore probes 

generate fluorescence transients whose temporal dynamics reflect changes in spike 

frequency underlying neuronal electrical signaling. 

An initial obstacle faced in these studies was the unexpected low frequency of 

calcium transients displayed in the Helisoma neuronal networks in cell culture, an 

observation seemingly in direct contradiction to decades of electrophysiological studies 

of these motor neurons in vivo (Murphy, 2001) and in cell culture (Turner et al., 2011). 

A few explanations for these differences are obvious. First, penetrating the neurons with 

microelectrodes causes excitation through mechanical disturbance of the cell membrane 

and leakage of Na+ and Ca2+ ions into the cytoplasm. Second, the use of 1.5M KCl-

filled electrodes makes the resting membrane potential slightly more positive and 

reverses the flow of Cl- ions through acetylcholine (ACh)-activated chloride channels. 

Together these chloride-based influences may tend to make the neurons, when 

penetrated with intracellular microelectrodes, slightly more excitable due to a less 

polarized membrane and inhibitory currents turned excitatory. Third, use of a chelator-

derived calcium dye like Fura-2 AM can lead to altered states of cytosolic calcium 

buffering, which could suppress calcium-dependent excitability. Since the neurons used 

in these studies are networks of electrically-coupled motor neurons, it is most likely that 

these cells are weakly active or inactive when isolated from their primary excitatory 
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interneuronal inputs, a notion likely exacerbated by the calcium buffering capacity of 

Fura-2. 

To circumvent the issue of low action potential firing frequencies in vitro, 

pharmacological treatment was used to hyper-excite neurons in culture to produce robust 

levels of activity. DMeth, a potent synthetic of pyrethrum that suppresses inactivation of 

voltage-gated sodium channels (Motomura and Narahashi, 2001), caused 

hyperactivation and increased frequency of calcium transients in motor neuronal 

networks. DMeth likely amplified activity already present in low levels in the neuron, 

instead of stimulating it outright, given that treatment with DMeth often did not 

immediately induce tonic firing until after a depolarizing current was given. Acute 

application of DMeth produced a dramatic increase in the rate and duration of calcium 

transients sufficient to conduct coincident detection analyses in identified neural 

networks.  

Simultaneous calcium imaging from multiple neurons allowed detection of 

calcium oscillations within each cell over the same time series. Following data collection 

and ratiometric assessment, cross-correlation analyses were used to detect coincidence of 

calcium transient activity between neurons. This methodology of analyzing calcium 

signals allowed indirect inference of neuronal spiking and in doing so allowed deduction 

of pairwise interactions within the network. Correlated calcium transients were analyzed 

statistically using a comparison based on a null hypothesis of random interaction. 

Surprisingly, most neuronal interactions assessed, whether predicted to possess strong, 

weak or no electrical coupling, had levels of significant correlated calcium signaling. 
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Furthermore, coincidence indices (CI) calculated from the pairwise interactions were 

predictive of the type of electrical connectivity present at a given synapse, suggesting 

that this technique might be useful in diagnostic differentiation between weak transient 

synapses and strong sustained synapses within a neural network.  

Although several synaptic mechanisms exist that might coordinate calcium 

changes amongst neuronal pairs, electrical coupling via gap junctions seems the most 

likely contributor as these motoneuronal networks are known to be electrically coupled 

both in vivo and in vitro (Szabo et al., 2004). In addition to this electrical 

communication, chemical neurotransmission in these networks is mostly inhibitory in 

nature and, therefore, is unlikely to lead to direct correlation of calcium changes. Any 

depolarization in one cell sufficient to trigger ACh release, would be accompanied by a 

hyperpolarizing postsynaptic potential in a receptive cell of opposing signal polarity 

(i.e., one leading to calcium influx and the other not). In the case of an inhibitory 

potential passing between two electrically coupled neurons, it is unlikely that these small 

hyperpolarizing membrane potentials would transmit through the low-pass filter of the 

gap junctions with sufficient fidelity of amplitude to produce coincident resting calcium 

changes detectible with Fura-2 imaging. Therefore, I conclude that the calculation of 

pairwise CIs gives reliable assessment of electrical connectivity at these synapses, with 

higher CIs suggestive of strong electrical coupling and CIs closer to a value of 1 

representing low coupling levels. Those CIs under 1, and indicative of inversely 

correlated calcium changes, would most likely represent synapses with primarily strong 

inhibitory chemical connectivity, where activity and its associated rise in cytosolic 
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calcium levels stimulate inhibitory synaptic transmission and hyperpolarization of the 

postsynaptic cell, which consequently suppresses neuronal activity and leads to a 

decrease in cytoplasmic calcium levels in the follower cell. 

Neuronal pairs with SES, generally the strongest coupling, had higher CIs than 

pairs predicted to possess either early or late TES. Interestingly, homotypic connections 

between B110s had much lower CIs compared to those of B19s, even though both of 

these are predicted to express SES connections. The major difference between these two 

types of connections is the chemical synaptic strategies employed by the component 

neurons. Although it does not frequently occur, B110s can form inhibitory connections 

onto one another, while homotypic B19 synapses are not competent to do so (Poyer et 

al., 1996; Turner et al., 2011). Therefore, inhibitory chemical synapses may be forming 

at 110-110 connections and disrupting coincidence of calcium fluxes bringing the CI 

closer to 1 than in the CI of homotypic B19 SES connections. Although the nature of this 

discrepancy is not understood, it demonstrates that differences in pairwise evaluations of 

synaptic interactions with neural network can be achieved using coincident calcium 

transients rather that membrane potential fluctuations as the basis of the assessment. 

Further experimentation is needed to determine if calcium imaging and 

coincidence computation is sensitive enough to determine complex interactions within 

large neural networks. Analysis of neuronal firing patterns using computational 

approaches demonstrate that global firing within an electrically coupled neural network 

can be predicted by simple pairwise interactions (Shlens et al., 2006; Schneidman et al., 

2006). Local interactions at a single synapse can induce long-range correlations through 
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many cells of the network (Nirenberg and Victor, 2007). That is, at adjacent neuronal 

pairs connected by gap junctions, a neuron that is only directly coupled to one of the 

other cells has predictable synchronous efficacies with the non-adjacent neurons of that 

network. As an example, neurons with an electrical connection strength where roughly 

one third of the cell’s spikes are synchronous would have a predictable spike synchrony 

in each of the neuron,s non-adjacent partners where one-ninth of all spiking events were 

synchronous. Schneidman et al. (2006) have suggested that pairwise electrical 

interactions, as described above, present in the firing patterns of the broader neural 

network in the vertebrate retina serves an error-correcting code function, where signals 

in the network are correlated so that information can be correctly decoded in the face of 

background noise levels. Similarly, electrically coupled motor neuronal networks, such 

as those of Helisoma, might benefit from such an error-correcting code, whereby inputs 

from central pattern generator interneurons are relayed to neuromuscular outputs with 

high fidelity, particularly when synaptic connections are mixed electrical and chemical 

synapses. Taken together, these neural network studies using calcium transient 

coincidence suggest that examinations of relatively small populations of neurons can 

make global predictions of overall activity within broad networks. What once was a 

tedious and confounding task of assessing neural connectivity, has today become be a 

manageable undertaking based on the interplay of optical engineering, physiological 

probes and computational neuroscience. 
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CHAPTER IV 

ELECTRICAL SYNAPTIC REGULATION OF NEW AND  

FORMING SYNAPTIC CONNECTIVITY 

 

Introduction 

 

Electrical synapses are present in the nervous systems of most animals, being widely 

found in invertebrates and, to a lesser extent, vertebrates. Often these synapses mediate 

highly synchronized neural pathways, such as large populations of invertebrate motor 

neurons. Due to their rapid transduction of electrical signals, these synapses are vital 

components of escape reflexes, such as the giant fiber escape circuit of crayfish 

(Antonsen and Edwards, 2003) and the goldfish Mauthner cell-mediated escape network 

(Pereda et al., 2004). The electrical synapse is not limited to mediating only rapid escape 

or highly synchronous motor behaviors. In fact, the vertebrate brain is much more 

widely coupled by gap junction-mediated synapses than once appreciated (Pereda et al., 

2012). In adult mammals, astroglial networks are connected through gap junctions and 

play pivotal roles in regulating ongoing synaptic efficacy in the brain (Nagy and Rash, 

2000; Oliet et al., 2001). Electrical synapses functionally couple cells and coordinate 

their activity patterns through creation of contiguous intercellular compartments that are 

often bidirectional in nature (Yuste et al., 1992). In addition to synchronization of ionic 

conductance, electrical synapses underlie biochemical coupling between cells, where 
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small second messengers, such as cAMP and IP3, pass through gap junctions (Kandler 

and Katz, 1998). 

During nervous system development, synchronization of neural activity through 

gap junction-mediated intercellular connections is thought to be important in the 

construction and development of neural networks (Kandler and Katz, 1995; Personius et 

al., 2001). Electrical synapses are highly expressed in the developing central nervous 

system, where they are transient and diminish dramatically prior to the formation of 

adult chemical connections (Peinado et al., 1993). Additionally, gap junctions are 

upregulated in the mammalian central nervous system during the regeneration of neural 

connections following injury (Chang et al., 2000). A common pattern seen in the 

expression of these transient electrical synapses (TES) is a sequential progression from 

largely electrical coupling to predominantly chemical synaptic connectivity (Kandler and 

Katz, 1998; Marin-Burgin et al., 2005; Dupont et al., 2006). In many circumstances, this 

period of electrical coupling is thought to be crucial to the formation of adult chemical 

synapses, such as in the optic lamina of Drosophila (Curtin et al., 2002), 

mechanosensory neurons of leech (Todd et al., 2010) and olfactory systems of mice 

(Maher et al., 2009). An interesting feature of TES is not only that it regulates the 

formation of adult chemical synaptogenesis, but there appears to also be a mutual 

regulation of electrical connections by chemical synapses, such that delay or inhibition 

of chemical neurotransmission appears to prolong the temporal expression of TES 

(Szabo et al., 2004). In rats, electrical coupling is present between CNS neurons early in 

development. Later, these synapses are uncoupled by NMDA-mediated glutamatergic 
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signaling. This sequence of coupling and uncoupling occurs in the hypothalamus 

(Arumugam et al., 2005), spinal cord (Mentis et al., 2002), and neocortex (Dupont et al., 

2006). Blocking of NMDA-mediated signaling leads to a delay in the electrical synapse 

uncoupling. Thus, a complex co-regulatory mechanism exists between electrical and 

chemical synapses during neural network formation. Still, the cellular mechanisms 

involved in mediating these synaptic interactions remain unknown. 

In rat thalamic relay neural circuits, transient electrical synapses are replaced by 

inhibitory chemical synapses during the second postnatal week (Lee et al., 2010). 

Similarly, regenerating motor neural circuits of the Helisoma buccal ganglia express 

transient electrical synapse that, at specific connections, are replaced by inhibitory 

chemical synapses in a matter of days. Synapses formed between neurons B19 and B110 

both in vivo and in vitro are strongly coupled at 2 days of contact. Over the next 3 days, 

the decline of electrical coupling is inversely proportional to the emergence of a 

unidirectional and inhibitory cholinergic synapse (Szabo et al., 2004). In contrast, B19-

B19 homotypic synapses develop sustained electrical synapses (SES) that do not 

diminish in coupling strength and do not form chemical synapses. When TES are 

deprived of trophic factors, chemical synapses are formed earlier, suggesting that 

electrical synapses regulate formation of chemical neurotransmission. Furthermore, 

block of acetylcholine receptors led to increased electrical coupling (Szabo et al., 2004).  

Surprisingly, in simple neural networks, the state of electrical coupling influenced the 

formation of new electrical and chemical synapses with that network (Szabo and Zoran, 

2007). In the present study, I have utilized these well-defined Helisoma synapses, within 
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paired connections or simple 3-cell networks, to investigate the contributions of 

electrical and chemical synaptic transmission to the formation of neural network 

connectivity. Specifically, I have tested the hypothesis that emerging electrical synapses 

compete with other electrical synapse and with inhibitory chemical synapses during the 

formation of connections within motoneuronal networks. 

 

Materials and Methods 

 

Animals 

Experiments were conducted on laboratory stocks of albino (red) pond snails, 

Helisoma trivolvis, which were maintained in 20 gallon aquaria at 26°C.  Aquaria were 

kept on a controlled photoperiod of 12 hour light/12 hour dark and snails were fed 

lettuce and trout chow daily. 

 

Cell cultures 

Cultures were maintained to the specifications referenced in Chapter 2. For 

studies of neurons isolated into cell culture, excised buccal ganglia were placed into 

0.2% trypsin (Sigma) in defined media (DM) for 15 to 20 minutes to partially digest the 

neural sheath.  Ganglia were pinned to a Sylgard dish containing 3 ml of high osmolarity 

DM (56.0 mM NaCl, 2.4 mM KCl, 5.7 mM CaCl2, 2.1 mM MgCl2, and 14.0 mM 

HEPES).  The buccal commissure and the relevant nerve trunks, containing the axons of 

19 and 110 neurons, were crushed with fine forceps.  The sheath of each ganglion was 
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cut along the dorsal surface, next to a neuronal soma, using an electrolytically sharpened 

microknife.  Pressure applied to the ganglion forced the neuronal cell body through the 

incision and the neuron was collected into a fire-polished, non-adhesive (bovine serum 

albumin-coated) micropipette using negative pressure produced by a microsyringe 

(Gilmont).  Neurons were then transferred into specific culture conditions, as described 

below for each experiment. For studies of neurons exhibiting neuritic growth, cells were 

transferred directly into adhesive 35 mm culture dishes (No. 3001 Falcon) containing 2 

ml of conditioned medium (CM).  The dishes were made adhesive by pretreatment with 

0.1% poly-l-lysine (PLL) in a 0.15M Tris buffer.  CM was bulk-cultured in silicone-

treated (Sigmacote) glad petri dishes generated by incubating 2 central ring ganglia per 1 

ml of DM for 3 days. CM was subsequently transferred to PLL-coated dishes before 

plating of cultures.  Brain-derived factors in CM are required for neurite outgrowth in 

these cultures (Wong et al., 1981).  Neurons were maintained in different cell culture 

conditions depending on the experiment. In general, two culture configurations were 

used: 1) soma-soma neuronal pairs and 2) 3-cell neuronal networks. Each of these 

protocols are described in the following sections.  

 

2-cell soma-soma pairs 

Identified neurons were transferred into non-adhesive, 35 mm culture dishes (No. 

1008 Falcon) containing 2 ml of CM.  Culture dishes had been pre-treated with a 0.5% 

solution of bovine serum albumin (BSA) to make their surface non-adhesive.  Neurons 

were incubated for 3 days of initial culture as single, spherical cells before being 
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transferred into fresh CM dishes and paired into contact. Cell pairs were cultured for an 

additional 1 or 5 days for synapse formation on BSA-coated dishes. The soma-soma 

pairs, having not produced neurites on non-adhesive substrates, were then transferred to 

recording chambers (PLL-treated culture dishes containing 2 ml DM) for 

electrophysiological study.   

 

3-cell network formation 

Identified neurons were again transferred into non-adhesive, 35 mm culture 

dishes (No. 1008 Falcon) containing 2 ml of CM, as described in the previous section. 

Neurons were incubated for 3 days of initial culture as single, spherical cells before 

being transferred into fresh CM dishes and paired into contact.  Unlike soma-soma pairs, 

theses neuronal pairs were plated onto adhesive substrate cultures coated with PLL and 

incubated for 4 days while neurites extended and processes established contacts. Simple 

3-cell networks were formed by the additional of a third neuron and the network was 

cultured in CM for another 24h prior to electrophysiological studies.  The end result of 

this culture protocol resulted in two kinds of synapses existing within the network (Fig. 

14A). The first synapse type was 5 days of age and formed at contacts between the two 

original (central) neurons. The second synapse type was 1 day of age and formed 

between the newly added neuron and the original pair. Following the 5d of 

synaptogenesis, the neural network was assessed for connectivity. The electrical 

synapses initially forming between central neuron pairs, less than 24h of contact, were 

designated as forming electrical synapses (FES; Fig. 14B). The older, 5d electrical 
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synapses were designated as either transient (TES) or sustained (SES), depending on the 

nature of the electrical coupling expressed. The newly formed 1d old synapses were 

designated as new forming electrical synapses  (nTES). 

 

General electrophysiology 

Electrophysiological properties of neurons were examined using intracellular 

recording techniques.  Glass microelectrodes (borosilicate; FHC), possessing tip 

resistances ranging from 10-20 MΩ, were filled with 1.5 M KCl or 1.5 M KAc.  

Current-clamp recordings of neuronal membrane potentials were amplified using a 

bridge-balanced electrometer (World Precision Instruments) and records were viewed as 

digitized outputs using a PowerLab 4/35 data acquisition system (ADInstruments) using 

an IMac computer running Chart software (ADInstruments).  In most experiments unless 

otherwise stated, neuronal membrane potential was maintained with base current 

injection at approximately -70 mV.  Electrical coupling was measured by injecting 

constant amplitude, hyperpolarizing current pulses (3 s in duration) into one neuron (0.2 

- 3nA), while simultaneously recording membrane voltage changes in the presynaptic 

(injected) neuron (approximately 30-50 mV) and its synaptic partner.  Electrical 

coupling coefficients (ECC) were determined as the ratio of postsynaptic to presynaptic 

voltage changes (Bennett 1977).  Data analyses for coupling ratios were taken at the 

peak of membrane hyperpolarization.  To assess evoked chemical neurotransmission 

presynaptic cells were generally given a series of 10 depolarizing stimuli of 40-60 mV at 

a rate of 1 stimulus every 3 seconds.  Evidence of evoked chemical release was
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Figure 14. Cell culture protocol for analysis of electrical synapse formation in pair and triad neural 
networks. (A) Illustration of the cell culture protocol used to produce electrical synaptic connections at 
soma-soma synapses and subsequent 3-cell, triad, networks. Neurons were isolated into cell culture and 
incubated for 3 day as single cells. At time point zero, 2 neurons were paired as giant somatic synapses. 
These cells were plated onto adhesive culture dishes for neurite growth and formation of electrical 
synapses, either transient (TES) or sustained (SES). For indicated studies certain pairs are recorded from 
during the first day of synapse formation. On day 4 of culture a new neuron was plated into contact with 
the existing cell pair to create a triad of neurons. One day later, the 3-cell network was studied. (B) 
Timecourse of electrical synapse formation, either SES or TES. Forming electrical synapses (FES) 
develop during the first 24h in contact. SES connections persist, whereas TES connections decline in 
coupling strength over time. Newly forming TES connections (nTES) were initiated on day 4 and were 
assessed 1 day later. Shaded areas indicate the times of electrophysiological assessments (Record).



 

 104 

measured by the presence of a graded-postsynaptic potential at 95msec post stimulus of 

the presynaptic neuron.  

 

Drug treatment procedures 

For electrical synapse manipulation, either 18α-glycyrrhetinic acic (AGA) at 

10µM in 0.01% dimethyl sulfoxide (DMSO; Sigma) in DM or carbenoxolone (CBX; 

Sigma) at 100µM in DM, both gap junction blockers, were added to neuronal cultures 

for durations as indicated. Cholinergic signaling was disrupted using two nicotinic 

acetylcholine receptor antagonists, hexamethonium bromide (HEX; Sigma) at 10µM in 

DM or curare (CUR; Sigma) at 10µM in DM for the specified durations. For blocking 

vesicular endocytosis an inhibitor of dynamin, known as dynasore (Dyna), at 10µM in 

DMSO was used for 24 hours prior to cell-cell contact. Upon initial pairing of the central 

neurons, pharmacological agents (e.g., CBX) or given vehicle were added to the culture 

medium. Following day 4 of contact, the neuron pairs were washed with fresh medium 

before the third neuron was plated into contact.  

 

Data analysis  

Electrical coupling, compared among groups, was analyzed using the Student’s t-

test, while chi-square tests were used to determine if observed numbers of preparations 

with chemical neurotransmission were different from expected results (Microsoft Excel). 

Data presented here represents the mean plus or minus the standard error of the mean 
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(SEM) unless otherwise indicated. Significance of statistical measures was defined as 

p<0.05. 

 

Results 

 

Disruption of coupling at forming electrical synapses 

Deprivation of trophic factors from identified Helisoma neurons suppresses the 

formation of electrical synapses, leading to subsequent increased rates of chemical 

synapse formation (Szabo et al., 2004). To test the specific involvement of electrical 

synapses in modulation of chemical synapse formation, electrical coupling was knocked 

down using gap junction inhibitors. Electrophysiological  recordings were conducted to 

determine if reduction in coupling altered subsequent synapse formation. Soma-soma 

synapses comprised of homotypic B19 pairs were strongly coupled after 24h of contact 

and therefore had formed early SES (Fig. 15). However, identical synapses treated for 

that 24h of initial synaptogenesis with the glycyrrhetinic acid derivative, AGA, had 

reduced electrical coupling (n=13; p<0.001) as compared to vehicle-treated controls 

(n=16; Fig. 15C). No B19-B19 synapses exhibited evoked chemical neurotransmitter 

release, either treated or untreated, consistent with the idea that B19 gains secretory 

capabilities only following contact with appropriate muscle targets (Zoran et al., 1996). 

Thus, AGA effectively reduced the formation of SES by 72% without affecting a change 

in chemical synaptogenesis at mixed giant synapses.  
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Heterotypic TES connections, consisting of B110-B19 pairs, had electrical coupling 

coefficients lower than those seen at B19-B19 synapses (Fig. 15). Although treatment 

for 24h with AGA reduced the average coupling coefficient by 47% (n=19), when 

compared with DMSO-treated synapses (n=20) no significant differences in coupling 

were found (p=0.067; Fig. 15D). Unlike B19s, B110s possess promiscuous chemical 

synaptogenesis and form inhibitory chemical synapses readily with cholinoceptive target 

neurons. Nonetheless, AGA treatment had no impact on chemical synapse formation of 

B110 (treated vs. control; p=0.43). Therefore, AGA is a potent inhibitor of both SES and 

TES formation, but does not affect the competence of chemical synapse formation at 

these synaptic pairs. 

Although AGA is a potent inhibitor of Helisoma electrical synaptogenesis at 

soma-soma pairs, I opted against using this pharmacological agent for neurite-bearing 

neuronal networks to avoid the use of DMSO, a solubilizing agent known to disrupt 

neurite outgrowth of cultured Helisoma neurons (Zoran, unpublished observation). 

Carbenoxolone (CBX), a water-soluble derivative of glycyrretinic acid used in many 

studies of electrical coupling (Traub et al., 2001; Margineanu and Klitgaard, 2001), was 

tested for its efficacy in blocking electrical coupling between Helisoma neurons at 

strongly coupled B19-B19 SES connections. CBX caused a 51% reduction in electrical 

coupling at treated synapses (n=10; p<0.001), compared to coupling coefficients at 

untreated synapses (n=3; Fig. 16). Therefore, CBX provided potent inhibition of 

electrical synapse formation, while its aqueous solubility made it a useful tool for 

examining chronic reductions in coupling in growing neural networks.
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Figure 15. AGA reduces the formation of SES, but not TES, at B19-B19 connections, without altering chemical 
synapse formation. (A) Membrane potential recordings from a pair of B19 neurons expressing SES. (B) Membrane 
potential recordings from a pair of B19 neurons expressing reduced electrical coupling following AGA (10µM) 
treatment. Note the spontaneous mPSPs in A and B. Vertical scale bars equal 20 mV. Horizontal bars equal 0.5 s. (C) 
Histograms represent electrical coupling coefficients (ECC) from control (CTL; n=16) and AGA-treated (AGA; n=13) 
soma-soma SES connections. ECCs were significantly different (*; p<0.05, Student’s t-test). Numbers in parentheses 
represent the ratio of preparations with action potential-evoked chemical synaptic transmission. (D) Histograms 
represent electrical coupling coefficients (ECC) from control (CTL; n=20) and AGA-treated (AGA; n=19) soma-soma 
TES connections. ECCs were not significantly different (p=0.07). Numbers in parentheses represent the ratio of 
preparations with action potential-evoked chemical synaptic transmission. TES preparations in D possess higher 
percentages of preparations with chemical synapses compared to SES preparation in C, whether control or treated. 
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Figure 16. CBX reduces SES formation at B19-B19 connections following 24h of 
synapse formation. (A) Membrane potential recordings from a pair of B19-B19 control 
neurons (CTL) expressing strong electrical coupling. Vertical scale bars equal 10 mV. 
Horizontal scale bar equal 0.5 s. (B) Membrane potential recordings from a pair of B19-
B19 neurons treated with CBX (100µM) and expressing weaker electrical coupling. 
Vertical scale bars equal 20 mV. Horizontal scale bar equal 0.5 s. (C) Histograms 
represent electrical coupling coefficients (ECC) from control (CTL; n=3) and CBX-
treated soma-soma SES connections. ECCs were significantly different (*; p<0.05, 
Student’s t-test). Numbers in parentheses represent the ratio preparations with action 
potential-evoked chemical synaptic transmission. 
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Synaptic outcomes at three-cell networks  

Using a simple, three-cell neural network model (Zoran and Szabo et al., 2007), I 

determined whether or not the nature of electrical coupling at existing neuronal 

connections altered new synapse formation within that network. In this model, two 

neurons in contact were either treated with vehicle or drug for 4 days. Following 

washout, a third neuron was plated into contact with the existing pair and cultured for an 

additional day.  In control SES-centered 3-cell networks, the central B19-B19 

connection had significantly stronger electrical coupling (SES; n=6; p<0.05) than the 

newly formed B110-B19 synapse (nTES; n= 9; Fig. 17A). Interestingly, when the central 

synapse of an SES-centered 3-cell network was treated for 4 days with CBX, this 

difference in electrical coupling was abolished. In this case, the central B19-B19 

connection had virtually identical electrical coupling (SES; n=4; p=0.48) to that of the 

newly formed B110-B19 synapse (nTES; n= 6; Fig. 17A).  Similar to the previous 

demonstration (Fig. 17), CBX reduced SES by 61%. However, due to the smaller sample 

size used in these 3-cell networks, the difference between control and CBX SES was not 

significant (p=0.098).  

These SES-centered 3-cell networks were also assessed for chemical 

synaptogenesis. Consistent with the knowledge that B19s are constrained in their ability 

to exhibit evoked neurotransmitter release, no central B19-B19 synapses possessed 

evoked release in control or CBX-treated networks. However, at the new synaptic 

connections exhibiting nTES, 30% of control connections (n=10) exhibited new 

cholinergic chemical synapse (nCCS) formation from B110 onto the B19, while no 
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Figure 17. CBX disrupts SES-dependent suppression of new electrical synapse (nTES) and promotion of new 
chemical synapse (nCCS) formation. (A) Histograms represent electrical coupling coefficients (ECC) from control 
(CTL) and CBX-treated SES-centered network connections. ECCs were significantly different (*; p<0.05, Student’s t-
test) between central SES and nTES connections in control (CTL), but not between the CBX-treated SES and nTES 
connections. (B) Histograms represent the percentage of preparations with new cholinergic chemical synapses (nCCS) 
in control (CTL) and CBX-treated SES-centered network connections. Inset represents recordings of membrane 
potential of B110 and B19 neurons at newly forming network connections in CBX-treated SES-centered networks. 
Vertical scale bars equal 30 mV. Horizontal scale bars equal 0.5 s.
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nCCS was detected at new the connections made with CBX-treated pairs (n=4; Fig. 

17B). It is unclear if this dissimilar chemical synaptogenesis, which was not significantly 

different between groups (p=0.22), was in any way connected to differences in electrical 

coupling imposed by CBX on those networks. It is interesting to note, however, that at 

new mixed synapses where nCCS formed, nTES coupling was significantly less than 

SES at the central synapse, suggesting that an inverse regulatory mechanism is at play 

between chemical and electrical transmission at newly forming synapses. 

I next examined the impact of CBX-mediated diminution of electrical coupling in 

TES-centered 3-cell networks and essentially a reversal of the result seen in SES 

networks was obtained. In CBX-treated networks, the central B110-B19 connection had 

significantly lower electrical coupling (TES; n=3; p<0.05) than the newly forming B110-

B19 synapse (nTES; n= 5; Fig. 18A). Here, the central synapse of control TES-centered 

networks had no difference in coupling from the newly forming connection. That is, the 

central B110-B19 connection had similar electrical coupling (TES; n=4; p=0.42) to that 

of the newly forming B110-B19 synapse (nTES; n= 4; Fig. 18A).  Again, although the 

CBX-induced reduction of TES was 75%, the difference was not statistically significant 

(p=0.085). These data suggest that there may be competition between sites of electrical 

synapse formation in these neural networks, such that existing coupling dictates resource 

allocation to nTES.  

In both control and CBX-treated networks the number of preparations that 

displayed evoked cholinergic chemical neurotransmission was not significantly different 

(p=0.74; Fig. 19B), with 50-60% of both groups possessing evoked release. In contrast 
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Figure 18. CBX disrupts TES-dependent modulation of new electrical synapse (nTES) 
formation, but does not alter new chemical synapse (nCCS) formation. (A) Histograms represent 
electrical coupling coefficients (ECC) from control (CTL) and CBX-treated TES-centered 
network connections. ECCs were significantly different (*; p<0.05, Student’s t-test) between 
drug-treated (CBX) SES and nTES connections, but not between the control (CTL) SES and 
nTES connections. (B) Histograms represent the percentage of preparations in TES-centered 
networks with new cholinergic chemical synapses (nCCS) in control (CTL) and CBX-treated 
networks. Inset traces represent recordings of membrane potential from B110 and B19 neurons 
at newly forming network connections following CBX treatment. Vertical scale bar equals 30 
mV. Horizontal scale bar equals 0.5 s.
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to SES-centered networks, the strength of nTES coupling in TES-centered networks did 

not appear to alter nCCS formation, thereby raising questions regarding the role of nTES 

in directly influencing chemical synapse formation at these mixed synapses. In both 

types of 3-cell networks, reduction of electrical coupling resulted in an overall difference 

in the nature of new electrical synaptogenesis in those networks.  

 

Changes in electrical coupling through manipulation of chemical synapses 

Block of chemical neurotransmission during electrical synapse formation has 

been suggested to increase electrical coupling (Szabo et al., 2004). To see if ongoing 

chemical transmission effected formation of TES or SES, I used two known antagonists 

of Helisoma nicotinic acetylcholine receptors, curare (CUR; 10µM) and hexamethonium 

(HEX; 10µM) to manipulate the cholinergic signaling at somatic synapses. Following 24 

hours in the presence of HEX, B19-B19 SES synapses had significantly different 

electrical coupling (p<0.001), where untreated control synapses (n=6) had lower 

coupling than the HEX-treated pairs (n=6). No significant change in coupling was seen 

in CUR-treated pairs (n=5; Fig. 19A). Following 5 days of synapse formation and drug 

treatment, long-term cholinergic blockade reduced SES (Fig. 19B). CUR-treated 

networks (n=15) at day 5 had significantly weaker SES than control pairs (n=13; 

p<0.05). In a similar fashion, HEX-treated pairs (n=17) also displayed a significant 

decrease in coupling coefficient from controls (p<0.001). 

Similar to SES connections at day 1 of contact, HEX-treated B110-B19 TES 

pairs (n=8) showed a significant increase in electrical coupling compared to control 
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Figure 19. Hexamethonium and curare have potentiating and suppressing effects on 
SES. (A) Histograms represent electrical coupling coefficients (ECC) from control 
(CTL), curare (CUR)-treated and hexamethonium (HEX)-treated B19-B19 pairs 
following 1 day of treatment in cell culture. ECCs were significantly different (*; 
p<0.05, Student’s t-test) between HEX-treated and control (CTL) soma-soma SES 
connections. (B) Histograms represent electrical coupling coefficients (ECC) from 
control (CTL), curare (CUR)-treated and hexamethonium (HEX)-treated B19-B19 pairs 
following 5 days of treatment in cell culture. ECCs were significantly different (*; 
p<0.05) between HEX-treated and control soma-soma SES connections. ECCs were also 
different (*; p<0.05) between CUR-treated and control soma-soma synapses with SES.
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Figure 20. Hexamethonium and curare potentiate TES. (A) Histograms represent 
electrical coupling coefficients (ECC) at TES connections from control (CTL), curare 
(CUR)-treated and hexamethonium (HEX)-treated B19-B110 pairs following 1 day of 
treatment in cell culture. ECCs were significantly different (*; p<0.05, Student’s t-test) 
between HEX-treated SES and control soma-soma TES connections. (B) Histograms 
represent electrical coupling coefficients (ECC) from control (CTL), curare (CUR)-
treated and hexamethonium (HEX)-treated B19-B110, TES, pairs following 5 days of 
treatment in cell culture. ECCs were significantly different (*; p<0.05, Student’s t-test) 
between CUR-treated and control soma-soma synapses.
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synapses (n=28; p<0.001; Fig. 20). TES connections treated with CUR (n=24) were 

again not significantly different (p=0.12) from control synapses. At 5 days of TES 

formation, CUR-treated pairs showed a significant increase over controls (n=26; 

p<0.05), whileHEX-treated pairs (n=14) showed no significant differences (p=0.45). 

Taken together, these results with cholinergic antagonists demonstrate a clear interaction 

between ongoing chemical synaptic transmission and electrical synapse formation at 

mixed connections. However, this interaction is not a simple inverse relationship. 

Rather, the length of antagonist treatment and the identity of the neurons involved in 

synaptogenesis caused differential potentiating and suppressing effects. 

Cholinergic blockade early in FES, particularly with HEX, caused strong 

potentiation of electrical coupling, but later during TES and SES communication 

reduction or no change in coupling was induced. This raised the question, what is 

different regarding the relationship between cholinergic signaling and electrical synapses 

early in formation versus later in the process of synapse maturation? To address this 

question, I turned my focus to spontaneous release as a potentially vital regulator of 

early electrical synaptogenesis. This was in part due to the fact that these Helisoma 

motor neurons have high rates of spontaneous ACh release early during regeneration of 

neuromuscular junctions (NMJ) both in vivo and in vitro, when very little evoked release 

is detected and important target recognition decisions are made (Turner et al., 2011).  To 

determine if similarly high rates of mPSPs were present during FES, I used B110-B19 

soma-soma synapses to access miniature potential rates at both 1day and 5 days of 

electrical synapse formation (Fig. 21). On day 1, electrical coupling was strong with an 
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Figure 21. Evoked, but not spontaneous, release is inversely correlated with electrical coupling at TES connections. 
(A) Membrane potential recordings from a pair of B110-B19 neurons expressing TES at soma-soma synapses. 
Vertical scale bars equal 20 mV. Horizontal scale bars equal 0.5 s. Note: current was injected into neuron B110. (B) 
Membrane potential recordings from a pair of B110-B19 neurons expressing primarily electrical coupling following 1 
day of synaptogenesis. This pair expressed mixed electrical and chemical synapses following 5 days of formation. 
Note the extended duration of the PSP at 5 days. Vertical scale bars equal 20 mV. Horizontal scale bars equal 1 s. (C) 
Histograms represent electrical coupling coefficients (ECC) from soma-soma TES connections at 1 and 5 days. ECCs 
were reduced and significantly different at day 5 of connectivity (*; p<0.05, Student’s t-test). (D) Histograms 
represent spontaneous release rates at soma-soma TES connections at 1 and 5 days. Rates were significantly different 
and reduced at 5 days of connectivity (*; p<0.05). (E) Histograms represent the strength (amplitude) of evoked 
postsynaptic potentials (PSP) at soma-soma TES connections at 1 and 5 days. PSP amplitudes were significantly 
different and strengthened at 5 days of connectivity (*; p<0.05).
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average ECC above 0.3 (n=29) that was significant greater than coupling on day 5 

(n=19; p<0.005; Fig. 21C). At day 1, just as in early NMJ formation, mPSP frequency 

was high (Fig. 21D) when the strength of evoked ACh release was low (Fig. 21E), as 

determined by analysis of PSP amplitude. Both mPSP rate and PSP amplitude were 

significantlydifferent between day 1 and day 5 (Fig. 21D and E; mPSP rate, p<0.005; 

PSP amplitude, p<0.05). 

It is important to note that cholinergic signaling at central Helisoma synapses 

within the buccal ganglia is inhibitory (Szabo et al., 2004), unlike the excitatory effects 

of ACh at NMJs (Turner et al., 2011). To determine to what extent spontaneous, 

inhibitory mPSPs were present very early during cell-cell contact, soma-soma synapses 

were examined between 1 and 6h following cell pairing in culture. As seen in Figure 

22A-C, ACh-mediated mPSPs and evoked PSPs are mediated by a chloride conductance, 

since use of potassium acetate (KAc) electrodes reverses the sign of these events 

recorded at B110-B19 synapses or following pressure application of ACh onto the 

postsynaptic B19. With KAc-filled electrodes, virtually no mIPSPs were detected in the 

early hours of synaptogenesis at FES. Spontaneous release rates in KAc electrode 

preparations (n=4) were significantly lower than rates in potassium chloride (KCl) 

electrode penetrated cell pairs (n=3; p<0.05; Fig. 22E). Thus, it is unlikely that such low 

levels of relatively ineffective IPSPs would have much impact on early FES. To be 

certain, we used the dynamin inhibitor, dynasore (Dyna) to block the endocytosis 

pathway and disrupt all vesicle-mediated signaling early in synaptogenesis. Neurons 

B110 and B19 were treated with 80µM Dyna as single cells for 24h and then paired. 
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Figure 22. Miniature PSPs are inhibitory during FES and are blocked by dynamin and gap junction inhibitors. (A) Membrane 
potential recordings from a pair of B110-B19 neurons at forming electrical synapses (FES) between soma-soma contacts, using 1.5 
M KCl electrodes. Note the spontaneous mPSPs (arrow head) and evoked PSPs are depolarizing (arrow). Vertical scale bars equal 20 
mV. Horizontal scale bars equal 1 s. Note: current was injected into neuron B110. (B) Membrane potential recordings from a pair of 
B110-B19 neurons at forming electrical synapses (FES) between soma-soma contacts using 1.5 M KAc electrodes. Note the evoked 
PSP is hyperpolarizing (arrow), when electrical coupling is low. Vertical scale bars equal 20 mV. Horizontal scale bars equal 1 s. 
Note: current was injected into neuron B110. (C) Membrane potential recordings, using a 1.5 M KAc electrode, from a B19 neuron 
alone in cell culture. Note the vertical bar in lower traces designates the time of ACh pressure injection onto the neuron. Vertical 
scale bars equal 20 mV. Horizontal scale bars equal 0.5 s. (D) Membrane potential recordings, using a 1.5 M KCl electrode, from a 
B19 neuron alone in cell culture. Note the vertical bar in lower traces designates the time of ACh pressure injection onto the neuron. 
Vertical scale bars equal 20 mV. Horizontal scale bars equal 0.5 s. (E) Histograms represent spontaneous release rates at soma-soma 
TES connections at 1-6h of contact recorded with KCl or KAc electrodes. Rates were significantly different (*; p<0.05, Student’s t-
test). (F) Histograms represent spontaneous release rates at soma-soma TES connections at 1-6h of contact recorded with KCl 
electrodes. TES connections were recorded at control (CTL) and dynasore (Dnya; 80µM)-treated synapses. Rates were significantly 
different and reduced when treated with Dyna (*; p<0.05). (G) Histograms represent spontaneous release rates at soma-soma TES 
connections at 4h of contact recorded with KCl electrodes. TES connections were recorded at control (CTL) and AGA-treated 
synapses. Spontaneous release rates were significantly different and reduced in AGA-treated TES pairs (*; p<0.05).
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Synaptic physiology was then assayed during the first hours of contact. Treatment of 

B110-B19 soma-soma synapses with Dyna (n=3) completely abolished spontaneous 

release compared to control, DMSO-treated synapses (n=4; p<0.05; Fig 22F). Electrical 

coupling was not detected at either control or Dyna-treated synapses (data not shown). 

Interestingly, although electrical coupling was typically weak or absent during the first 

hours of cell-cell contact, treatmentof these soma-soma synapses with AGA, a gap 

junction inhibitor, caused a reduction in spontaneous release rate. At B110-B19 synapses 

treated with AGA (n=14), the number of mPSPs detected per minute was significantly 

lower than that recorded from untreated control synapses (n=15; p<0.01; Fig. 22G). 

It is clear that processes of electrical and chemical synaptogenesis in identified 

neurons influence each other and that that these interactions vary depending on the 

neural network context (i.e., previous synaptic history; Szabo et al., 2007). Therefore, 

simple 3-cell TES-centered neural network were again used to determine if cholinergic 

antagonism during ongoing TES would alter nTES and nCCS at the newly forming 

synapses. In fact, treatment with 10µM curare (CUR) of the central B110-B19 synapse 

had no effect on emerging nTES (p=0.24; Fig. 23A). On the contrary, however, nCCS 

emerging at CUR-treated TES networks was abolished. Evoked release, present in over 

60% of synapses emerging at untreated networks (n=8), was completely absent at new 

B110 contacts with a CUR-treated, TES-centered network (n=5; p<0.02; Fig. 23B). 
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Figure 23. Curare treatment during TES formation has no effect on new electrical 
synaptogenesis (nTES), but blocks new chemical synaptogenesis (nCCS). (A) 
Histograms represent electrical coupling coefficients (ECC) at TES-centered networks 
from either controls (CTL) and curare (CUR)-treated networks. ECCs were not 
significantly different. (B) Histograms represent the percentage of preparations with new 
cholinergic chemical synapses (nCCS) at TES-centered networks either in control (CTL) 
or CUR-treated. Inset traces represent recordings of membrane potential of B110 and 
B19 neurons at CUR-treated newly forming network connections. Vertical scale bars 
equal 10 mV. Horizontal scale bars equal 2 s. 
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Discussion 

 

 In Helisoma cultures, manipulation of electrical synapse formation alters subsequent 

formation of synapses. For instance, deprivation of trophic factors from the culture 

suppresses the formation of electrical synapses and subsequent chemical synapse 

formation occurs more rapidly in its absence (Szabo et al., 2004). However, trophic 

factor deprivation also leads to other dramatic cellular consequences, including 

alterations in ion channel expression (Haydon, 1988) and loss of neurite outgrowth 

(Wong et al., 1981). Furthermore, trophic factors induce changes in synaptic 

connectivity between regenerating Lymnaea pedal ganglion neurons (Woodin et al., 

2002). In Chapter II, I demonstrated that exogenous neuromodulators, specifically DA, 

enhanced or suppressed electrical synapse formation, depending on the network context, 

and that modulation impacted future synaptic outcomes of those networks. In the present 

studies, I determined, not with trophic factors or neuromodulators, but with antagonists 

directed at electrical synapses, the specific roles of gap junction coupling and inhibitory 

cholinergic signaling on electrical synaptogenesis at identified mixed synapses in cell 

culture. 

AGA and CBX, both derivatives of glycyrrhetinic acid, caused significant 

reduction in electrical coupling at FES. However, the impact of AGA on SES 

connections was greater than that induced at TES connections. The specific actions of 

glycyrrhetinic acid and its derivates are still poorly understood. However, it is speculated 

that both AGA and CBX either modifiy phosphorylation states of gap-junctional proteins 
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(Guan et al., 1996; Liang et al., 2008) or bind the junctinal proteins in the membrane 

(Goldberg et al., 1996), which lead to dysfunctional assembly/disassembly of gap 

junction plaques, and thereby, reductions in electrical synapse communication. Given the 

unknown composition of the gap junctions mediating electrical coupling at Helisoma 

synapses, it is reasonable to speculate that hemichannel composition at B19-B19 SES 

connections is different from that expressed at B110-B19 TES connections. The innexin 

proteins comprising the B110 hemichannel may therefore not be as sensitive to changes 

in AGA-induced alterations in junctional coupling. Its assembly may not be as 

drastically perturbed as a B19, leading to lesser impacts on TES (heterotypic 

connections) than on SES (homotypic connections). The identity of the innexins 

specifically expressed dramatically changes the outcome of electrical synapse formation, 

where ectopic expression and mutation of innexin proteins lead to altered functioning of 

electrical synapses formed between neurons (Firme et al., 2012). Contrary to previous 

reports using trophic factor deprivation protocols to alter electrical coupling (Szabo et 

al., 2004), AGA and CBX did not lead to an enhanced probability of chemical synapse 

formation. At SES connections, action potentials in B19 do not elicit neurotransmitter 

release unless the neurons receive contact-mediated cues from their anatomically 

appropriate muscle targets (Zoran et al., 1990; Zoran et al., 1991). In the case of nTES 

connections newly forming with an established network, the lack of change in chemical 

synapse formation is likely due to the decrease in electrical coupling together with the 

moderate levels of chemical neurotransmission that exist at these connections at 1-day of 

soma-soma contact.  
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An intriguing outcome of these studies was the finding that at SES and TES 

networks the overall profile of electrical coupling was significantly different in control 

versus CBX-treated networks. Consistent with previous data on Helisoma 3-cell 

networks (Szabo and Zoran, 2007), when extant SES or TES connections were coupled 

with ECC values higher than 0.2, formation of new electrical synapses had significant 

reductions in electrical coupling. Here, neuronal networks were created with 

manipulated central synapses where TES or SES connections were lowered with CBX 

treatment and the impact of that treatment on new synaptic connections was assessed. 

When coupling of SES-centered networks was reduced by CBX treatment to an ECC of 

less than 0.2, then nTES coupling is not significantly different from untreated controls. 

In contrast, when SES coupling was high, as in controls, nTES coupling was 

significantly reduced. Also, when TES coupling was lowest following CBX treatment, 

then emerging nTES coupling was again high. Broadly, this supports the hypothesis that 

extreme high or low ECC values at central network synapses, whether SES or TES 

centered, are inversely correlated with the strength of electrical coupling at new synapses 

connecting with that network. Why does a threshold ECC of 0.2 impose influences on 

coupling at other synapses within a network and why do extremes in synaptic coupling 

accentuate these interactions? I suggest that cellular competition for electrical synaptic 

resources, such as the gap junction proteins, machinery for trafficking innexins, or the 

regulatory molecules that orchestrate their mobilization, modulation and turnover, exists 

between multiple developing synaptic sites. A resource threshold for electrical 

synaptogenesis would constitute a homeostatic mechanism similar to that regulating 
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neuronal excitability or cytosolic calcium set points; that is, when overall activity goes 

beyond high or low threshold values compensatory mechanisms are activated to 

maintain the physiological parameter within appropriate ranges (Turrigiano et al., 1994; 

Stellwagen and Malenka, 2006). In the case of SES, the construction and persistent 

maintenance of a strong central electrical synapse, may require a critical amount of finite 

resources, perhaps those necessary to signal with an ECC of 0.2 or greater. By contrast, 

when SES was significantly diminished with CBX or during normal TES progression, 

the ability to assemble gap junctions is equivalent and the competition results in equally 

weak coupling. The mechanisms underlying this hypothesized electrical synapse 

competition, however, remain to be determined. 

Much of the justification for proposing this synaptogenesis research drew upon 

previous studies implicating inverse relationships between chemical and electrical 

synapse formation (Szabo et al., 2004; Kandler and Thiels, 2005; Turner et al., 2011). In 

SES-centered networks, a low level of nTES coupling was accompanied by evoked 

chemical neurotransmission in 30% of synapses within 24h, consistent with this inverse 

relationship hypothesis. However, in TES networks treated with CBX, nTES at 

developing connections was strong (i.e., ECC greater than 0.2). Still, nCCS formation 

was robust with 60% of these electrically coupled connections possessing evoked 

neurotransmission. This result clearly demonstrates that the strength of electrical 

coupling at Helisoma motoneuronal mixed synapses is not necessarily a direct regulator 

of chemical synapse formation.  
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Although strong or weak electrical coupling at forming synapses is not an 

unavoidable determinant of chemical synaptic signaling, cholinergic transmission might 

still alter electrical synapse strength. Therefore, we disrupted cholinergic signaling with 

multiple nAChR antagonists to test this idea. Curare acts as a direct antagonist for 

nAChRs by binding competitively to the ACh binding site on the amino terminus (Hurst 

et al., 2013).  HEX is also a nAChR antagonist typically known for its ubiquitous 

receptor antagonism in mammalian autonomic ganglia, although it can also affect 

cholinergic transmission at NMJs (Bibevski et al., 2000). HEX had pronounced 

influences on the formation of mixed synapses. Interestingly. HEX treatment was 

associated with significant enhancement of electrical coupling during the first 24 hours 

of synaptogenesis. On the contrary, prolonged treatment with HEX for 5 days led to a 

significant depression of electrical coupling, specifically at SES connections. Thus, I 

found specific disruption of electrical coupling altered chemical synapse formation and 

specific inhibition of cholinergic signaling altered electrical synapse formation. 

However, the timing of treatment during the progression of synaptogenesis and identity 

of the network synapses being treated profoundly impacted the resulting synapse 

formation. These interactions, therefore, are influenced by multiple factors and 

complicated by the fact that inhibitory cholinergic transmission is largely absent from 

B19, and highly variable from B110, with regard to excitation-secretion coupling 

strength, spontaneous release rates, and percent preparations with evoked release. What 

are the cellular mechanisms then that link these synaptogenic processes?  
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Central cholinergic neurotransmission at Helisoma motoneuron-to-motoneuron 

synapses is inhibitory at normal resting potentials. I have demonstrated here membrane 

potential changes in response to ACh application consistent with a chloride-dependent 

conductance. Therefore, as observed for other mollusks, nAChRs at these synapses 

likely mediate inhibitory voltage changes via ACh-activated chloride currents. This 

finding, taken together with synapse formation results, suggest that electrical and 

chemical synapses may indirectly interact to potentiate or depress each other through 

their modulation of synaptic membrane potential. Chemical synaptic regulation of 

electrical coupling occurs at glutamatergic synapses via membrane potential-dependent 

signaling. Glutamate and its associated depolarization of membrane potential lead to 

NMDA receptor activation at goldfish Mauthner cell synapses. NMDA associated 

calcium influx activates calcium-calmodulin dependent kinase II (CaMKII), which in 

turn, leads to potentiation of electrical coupling at these synapses (Pereda et al., 1998). 

In rat hypothalamus, NMDA receptor activation leads to downregulation of gap-

junctional coupling, whereas antagonism of NMDA receptors causes persistence of 

coupling (Arumugam et al., 2005). It is, therefore, difficult to predict the action of ACh-

activated chloride channels in Helisoma neurons, since the reversal potential of these 

channels is likely close or slightly more negative than the resting potential. In other 

words, their activation could be excitatory or inhibitory at different times depending on 

the cell’s membrane potential. Regardless of the sign of the potential, ACh-activated 

membrane voltage changes would certainly alter voltage-dependent calcium currents at 

the synapse, thereby providing a mechanism for calcium-dependent modulation of gap 
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junctions. Currently, though, this is speculation at best and the true interaction between 

chemical neurotransmission and electrical coupling here and in the field of synaptic 

physiology remains unknown (Belousov and Fontes, 2012).  

The impact of gap junction coupling and cholinergic signaling inhibitors was 

greatest during early phases of synapse formation near the TES versus SES bifurcation 

point (Fig. 1) and when the inversion between electrical and chemical communication 

was at its peak. Also at this time, Helisoma neurons had high levels of spontaneous 

release and low levels of action potential-evoked chemical transmission (Fig. 8), 

suggesting a special relationship between spontaneous release and electrical coupling. 

Complete blockade of vesicle-mediated release mechanisms with a dynamin inhibitor, 

dynasore, had no potentiating effect on electrical coupling. Dynamin inhibitors have 

been shown to strengthen electrical synaptic connectivity (Flores et al., 2012). Reduction 

of electrical coupling with AGA caused a significant reduction of mPSPs at TES mixed 

synapses. Similarly, striatal neurons of CX36 knockout mice have reduced levels of 

spontaneous inhibitory and excitatory synaptic transmission (Cummings et al., 2008). 

Still, the mechanism of such interactions remains a mystery 

Synaptogenesis is a complex interaction between neurons and targets, even in the 

simplest of configurations involving factors from targets to neurons and neurons to 

targets. At mixed electrical and chemical synapses, where multiple types of information 

must be received and regulated, the process is even more complex. Identified neuronal 

cultures of Helisoma motor neurons provide a simple model for assessing synaptic 

interactions between these two forms of synaptic communication. It is clear that neuron-
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specific synaptogenic strategies have a major influence on how synapses are formed 

(Zoran and Poyer, 1996) and this is likely a widely transferrable principle, as gap 

junction-mediated synapses are likely regulated at the level of individual plaques within 

a neuron via large regulatory complexes that link cellular signaling pathways to 

electrotonic intercellular communication (Belousov and Fontes, 2012). Neuron-specific 

strategies for synapse formation do not, however, entirely account for the plasticity in 

synapse formation reported here. At simple 3-cell neuronal networks, in addition to 

neuron-specific strategies, there appear to be network-specific factors that guide synaptic 

outcomes and these are dependent on the emergent nature of synaptic interactions 

existing within those networks. Further investigation of the mechanisms regulating such 

complex and emergent synaptic properties is needed, if we are to determine how these 

synaptic interactions regulate synaptogenesis in more complex neural networks, such as 

those of the developing or regenerating central nervous system of mammals.
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CHAPTER V 

GENERAL DISCUSSION AND CONCLUSION 

 

The basis for this dissertation research was the hypothesis that modulation of 

developing electrical synapses leads to predictable changes in the formation of synaptic 

connections within known neural networks. The persistence or transience of electrical 

connections, SES or TES, respectively, produced different modulatory effects and 

generated varying synaptic outcomes on new connections developing within the neural 

networks that harbor them. The utility of the Helisoma cell culture system as the basis 

for testing these and other key hypotheses revolve squarely around its ease of 

manipulation and access, down to the identifiable nature of its specific individual 

neurons. This allows for the creation of highly specific cell-cell contacts that permit 

knowledge of neuronal history and synaptogenic characteristics prior to the 

establishment and modulation of network interactions. The study of individual synaptic 

interactions and the rules that govern those interactions are used to form hypotheses 

about synaptic interactions between larger, less tractable neural networks. There is 

promising evidence that analysis of activity in a large network can be predicted through 

more focal interactions around any given cell (Nirenberg and Victor, 2007). Additionally 

the practicality of population monitoring of activity in neural ensembles continues to get 

more efficient (Grewe and Helchem, 2009; Peterka et al., 2011), however, even at 

relatively simple and reduced systems the interactions governing network physiology are 

not strictly stereotyped or even definitively characterized in most instances. Therefore, in 
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this dissertation I set out to characterize those interactions, such as the regulatory 

interaction between chemical and electrical components at mixed synapses and 

modulation of forming electrical synapses (FES) and their influence not only with new 

emerging electrical synapses (nTES), but with new cholinergic chemical synapses 

(nCCS) at sites of mixed neural communication.  

A question examined throughout this dissertation was the regulatory interaction 

between chemical neurotransmission and electrical coupling. At certain mixed synapses 

glutamatergic signaling and associated activity-dependent postsynaptic changes result in 

dual potentiation of electrical and chemical synaptic strength (Pereda et al., 1998), while 

at other synaptic connections chemical interactions result in an inverse 

potentiation/depression at synaptic sites (Arumugam et al., 2005; Szabo et al., 2004). I 

present findings that at temporally and phenotypically controlled synaptic pairs chemical 

synapses may be potentiated or weakened in response to changes in electrical coupling. 

For instance, short-term reduction in electrical coupling (within the first 24h of contact) 

at FES of B110-B19 connections is correlated with a decrease in spontaneous release of 

neurotransmitter. Thus, electrical coupling may be important for presynaptic release of 

neurotransmitter, assembly of presynaptic machinery or recruitment of vesicles, a notion 

earlier advocated by Neunuebel and Zoran (2005). They showed that in trophic-factor 

deprived neuronal cultures that the absence of FES caused poor recruitment of vesicles 

to the synaptic membrane. Chemical neurotransmission develops more readily at mixed 

synapses when electrical coupling is low, but it does not form as efficaciously. 
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The exact regulatory contribution of gap-junctional intercellular communication 

to the regulation of chemical synaptic transmission is unknown. However, several 

hypotheses have been put forward. Electrical synapses, through coordination of 

biochemical signaling, hold nearby chemical synapses in a ready, but silent state by 

conductance of regulatory second messengers like Ca2+ or IP3 (Kandler and Katz, 1995, 

1998). Additionally, a less studied function of gap junctions is it’s role in cell-adhesion, 

where connections to cytoskeletal proteins and signaling complexes link cell-to-cell 

cytoplasm events. Elias et al. (2007) describe a procedure whereby migration of neurons 

into the cerebral cortex of rodents is mediated by adhesive properties of gap junctions. 

Lastly, passage of ionic currents across gap junctions, the definitive properties of 

electrical synapses, might underlie regulation of chemical synapse formation at these 

mixed connections, as activity-dependent mechanisms are well-known for their role in 

refinement of neural circuits (Zhang and Poo, 2001).  

It is also clear that chemical synaptic transmission, through some mechanism, 

regulates junctional coupling, as demonstrated by work using curare and 

hexamethonium. If transmission of chemical signals is an important regulatory agent for 

electrical synapses, it seems most reasonable it works through either changes in calcium-

dependent signaling or subthreshold voltage-dependent changes in electrical coupling. 

Given that chemical synapses formed between Helisoma motor neurons in culture are 

entirely inhibitory through the ACh-mediated activation of chloride channels, it is 

unlikely that chemical neurotransmission, at least at resting membrane potentials, causes 

voltage-dependent calcium fluxes. However chemically-mediated inhibitory currents 
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produce shunting effects on junctional conductance. In the inferior olive, chemical 

synapses between olivary cells reduce electrical synchrony by introducing 

hyperpolarizing currents near the site of electrical synaptic transmission (De Zeeuw, 

1998). Similar shunting effects could be occurring in chemical/electrical synaptic 

interactions in Helisoma, especially given that a similar phenomenon is seen in the 

gastropod Navanax (Spira et al., 1976), although the functional implications depend on 

the timing of current activation and its proximity to the junctional site. Subthreshold 

voltage changes could also be effective at directly altering electrical coupling through 

changes in voltage-dependent conductance state. In Bukauskas et al. (2002) changes in 

transjuctional voltage induced charge selectivity through the junctional pore. Therefore, 

small amplitude hyperpolarization induced by cholinergic neurotransmission between 

Helisoma neurons might alter the conductance state and introduce selectivity in the 

conductance of the intercellular channel.  

The first 24 hours of synaptic contact were intriguing with regard to regulation of 

emerging electrical synapses, where treatment with hexamethonium yielded large 

increases in electrical coupling. This time corresponds to the presence of pronounced 

spontaneous synaptic potentials, but with relatively little ability to evoke release of 

neurotransmitter. This would suggest that hexamethonium-mediated increases in first-

day coupling are not likely a product of evoked ACh release. Therefore, to determine if a 

direct interaction was present between spontaneous release and electrical synapses, I 

manipulated the vesicle recycling pathway in the first few hours contact, but saw no 

evidence of upregulation of electrical coupling. It is entirely possible that neurons are 
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incapable of building electrical synapses in the first few hours of contact. However, two 

ideas make it reasonable to hypothesize their presence in the absence of endocytosis and 

hence any chemical signaling: 1) Electrical synapses can be constructed and 

deconstructed in hours; and 2) B110-B19 synapses do form strong coupling as early as 

12h post contact (Szabo et al., 2004). 

An unexpected but intriguing finding was that electrical coupling either at a 

synapse or in a network appeared to display forms of self-regulation to maintain 

coupling within a certain range. This was particularly evident at SES- and TES-centered 

networks using CBX-treated manipulation of electrical coupling. At these neuronal 

networks moderate coupling at a central synapse (around 0.1 ECC) resulted in similar 

coupling at all electrical synapses. However, central synapses with much higher 

electrical coupling, in excess of 0.3 ECC, maintained an unbalanced electrical coupling 

between synapses. It is interesting to note that this balancing interaction may also occur 

when central synapses have excessively low coupling (~0.05 ECC), but this seems to be 

variable. While forming, both TES and SES show higher coupling during 

pharmacological inhibition of chemical synapses using HEX. Subsequently by day 5 of 

treatment those same synapses have the lowest coupling values in HEX-treated pairs. 

Interestingly, in vivo the transient nature of B4-B5 synapses was dependent on the 

presence of coupling between the two B5s (Bulloch and Kater, 1981). In the absence of 

that coupling, B4-B5 electrical connections were maintained roughly twice as long, 

suggesting that balancing of coupling inputs may even be important to the regulation of 

the expression of electrical synapses. It is possible, particularly at the network level, that 
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balancing of electrical coupling could be the outcome of a form of resource competition. 

In this instance the timing and strength of the synapse might be important in dictating 

which connection preferentially receives the finite resources. The building and 

trafficking of hemichannels is a particularly attractive suggestion. It is known that 

production of hemichannels is largely an ER-golgi process and that the construction of 

an electrical synapse is dependent on directional trafficking to the synapse. Even if the 

construction of hemichannels doesn’t constitute a finite resource they may still compete 

for those hemichannels once they are constructed and directed to needed synaptic sites. 

Exogenous application of DA is capable of initiating the full three phase feeding 

behavior (Quinlan and Murphy, 1996). Feeding stimulants that induced the tri-phasic 

feeding behavior activate neuron N1a, a phase 1 dopaminergic interneuron, which 

subsequently initiates feeding. Exogenous DA application at neuronal networks, might 

therefore, represent a similar mechanism by which the snail nervous system modulates 

its own existing or developing synapses. Neuromodulation via DA was shown to act 

either directly (TES) or indirectly (SES) to manipulate certain biophysical aspects of 

electrical coupling. DA was previously shown to suppress neuronal activity of some 

buccal neurons via activation of D2-like receptors that gate K+ channels to open (Zhong 

et al., 2012). This provides a potential non-junctional means of modulating B19-B19 

synapses. This would act to alter functional signaling compartments within the network 

and produce a variety of complex input-output patterns depending on the modulated 

state of the junction. This is particularly useful because dopamine is suggested to be an 

intrinsically used modulator of buccal central pattern generation and therefore may 
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define the chemical/electrical interaction in vivo. Although in a simple invertebrate 

feeding network this might not be critical, however, in systems such as the mammalian 

CNS this could be vital in fine-tuning of sensory inputs and decision-making associated 

with complex motor outputs.  

Synchronization of synaptic signaling is a critical and universally accepted role 

of gap-junctional intercellular communication. However, electrical synapses are not the 

only means of achieving synchronization. Combined with the challenging nature of 

pharmacological agents against junctional coupling, this has made attributing synchrony 

to gap junctions, at least in a clinical sense, trying. The especially useful thing about this 

model network system is that it is unlikely that synchrony can be attributed to anything, 

but coupling through gap junctions. Thus, there is utility to examine effects of synaptic 

coupling on broader network coupling, without the need to penetrate neurons using 

intracellular electrophysiology. These data could also indicate the nature of coupling in 

feeding circuits of Helisoma and how those circuits are used to produce feeding 

behaviors. B19 in vivo is strongly dye-coupled to other S3 motor neurons, B17 and B18 

(Szabo, unpublished), suggesting that the entire output of phase 3 motor activity is 

synchronized via gap junctions to ensure that behavioral outputs occur with high fidelity.  

Synaptic interactions even in a simple 3-cell neuronal network vastly increase the 

complexity of synaptic outcomes of the network that are not strictly related neuron-

specific strategies. In fact, even pairwise interactions are not solely competent of 

explaining modulation of chemical/electrical synapses at mixed connections. Take for 

instance three scenarios: 1) In a network where nTES is significantly lower than its 
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central SES counterpart, chemical synapses appear with a higher probability; 2) In a 

network where nTES is significantly higher than its central counterpart, such as a CBX-

treated TES-centered network, no difference in chemical formation is seen; 3) In 

networks where all coupling is relatively low, when the central SES is treated with DA, 

there is a larger presence of nCCS, without DA-induced modifications to postsynaptic 

sensitivity for neurotransmitter. Taken together, these data demonstrate that multiple sets 

of rules govern neuronal network formation and are likely to include, neuronal strategies 

in the formation of chemical synapses, either constrained or promiscuous, interactions 

between chemical/electrical components at a synapse and network-specific historical 

influences. Therefore, there are at least 3 layers of regulation that interact in a complex 

fashion to govern synapse formation and these principles might sufficiently describe 

broader network activity within much larger neural networks.  
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