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ABSTRACT 

 

The state of the art of modeling fluid flow in shale gas reservoirs is dominated by 

dual porosity models that divide the reservoirs into matrix blocks that significantly 

contribute to fluid storage and fracture networks which principally control flow capacity. 

However, recent extensive microscopic studies reveal that there exist massive micro- 

and nano- pore systems in shale matrices. Because of this, the actual flow mechanisms in 

shale reservoirs are considerably more complex than can be simulated by the 

conventional dual porosity models and Darcy’s Law. Therefore, a model capturing 

multiple pore scales and flow can provide a better understanding of complex flow 

mechanisms occurring in these reservoirs. 

Through the use of a unique simulator, this research work establishes a micro-

scale multiple-porosity model for fluid flow in shale reservoirs by capturing the 

dynamics occurring in three separate porosity systems: organic matter (mainly kerogen); 

inorganic matter; and natural fractures. Inorganic and organic portions of shale matrix 

are treated as sub-blocks with different attributes, such as wettability and pore structures. 

In the organic matter or kerogen, gas desorption and diffusion are the dominant physics. 

Since the flow regimes are sensitive to pore size, the effects of smaller pores (mainly 

nanopores and picopores) and larger pores (mainly micropores and nanopores) in 

kerogen are incorporated in the simulator. The separate inorganic sub-blocks mainly 

contribute to the ability to better model dynamic water behavior. The multiple porosity 

model is built upon a unique tool for simulating general multiple porosity systems in 
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which several porosity systems may be tied to each other through arbitrary transfer 

functions and connectivities. This new model will allow us to better understand complex 

flow mechanisms and in turn to extend simulation to the reservoir scale including 

hydraulic fractures through upscaling techniques. 
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NOMENCLATURE 

 

mf
A     Total contact area between the matrix bulk and the fracture system, m2 

gC      Gas compressibility, 1/Pa 

D      Gas diffusion coefficient, m2/second 

mfd      Nodal distance between the matrix bulk and the fracture system, m 

g      Gravitational acceleration vector, m2/s 

GDC      Gas drainage capacity, kg/s/Pa 

K      Media permeability, m2 

appK      Apparent permeability within matrix, m2 

fK      Fracture permeability, m2 

gM      Gas Molecular weight, g/mole 

N      Grid number 

P      Pressure, Pa 

fP      Average pressure in fracture, Pa 

LP      Langmuir pressure, Pa 

mP      Average pressure in matrix bulk, Pa 

aq      Mass of gas adsorbed on unit volume of media, kg/m3 

fq      Total rate flowing from matrix system into fracture system, kg/s 

t      Time, second 
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TOC      Weight Percentage of Total Organic Carbon, wt% 

LV      Langmuir volume, m3/kg 

stdV      Molar volume of gas at standard condition (273.15 K and 101.325 Pa), 

m3/mole 

z      Distance in the gravitational direction, m 

g      Gas density, kg/m3 

stdg _      Gas density at standard condition (273.15 K and 101.325 Pa), kg/m3 

s      Skeleton density of porous media, kg/m3 

g      Gas viscosity, Pasecond 

mf      Average gas viscosity in the micro-scale model, Pasecond 

      Porosity, dimensionless 

      Fracture aperture, m 
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CHAPTER I  

INTRODUCTION 

 

1.1  Problem Statement 

A major problem in simulation of gas flow in shale gas reservoirs is the existence 

of complex porosity systems. Those pore systems are in organic matter(kerogen), 

inorganic matter, natural fractures and hydraulic fractures (Wang and Reed 2009). The 

distribution of those different porosity systems is not well understood; a proper model 

beyond the traditional Dual Porosity or Dual Permeability Models is necessary to 

characterize the complex pore connectivities in shale gas reservoirs. 

Another challenge in simulation of gas flow in shale gas reservoirs is the 

dominant physics occurring in such reservoirs. Shale gas reservoirs are unconventional 

because the gas storage and flow are controlled by multiple mechanisms. With a large 

quantity of nanometer-sized pores in shale, natural gas may be stored in terms of free gas 

as well as adsorbed gas. In such tight formations Darcy flow is insufficient to support 

significant gas flow, allowing diffusion and slippage flow to take on a more dominant 

role. Therefore, a well-designed model incorporating the dominant physical processes 

should add to our ability to evaluate the influences of different mechanisms on gas 

production in shale reservoirs. 

The last issue is how to bridge mechanisms occurring at the micro-scale with a 

reservoir-scale model. Physics under small scales can be quantitatively analyzed, but the 

accuracy under macro-scales will be greatly reduced or even disappear without a proper 
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treatment. In shale gas reservoirs, there exist different fluid storage and flow 

mechanisms. Preservation of these dynamics in a macro-scale model is also important. 

Most of the work about shale gas simulation available in the literature is focused 

on modeling the complexities of mechanisms in shale gas reservoirs or modeling shale 

gas through traditional Dual Porosity or Dual Permeability Models, yet neither cannot 

reasonably interpret the flow behavior of gas in shale. This study attempts to solve the 

above problems and it proposes novel approaches to characterize and simulate the 

complexities in shale gas reservoirs. 

 

1.2  Background and Literature Review 

The development of unconventional resource plays in North America has 

benefited from the technology advancements such as horizontal well drilling and 

hydraulic fracturing, and it has achieved great success towards satisfy the growing 

energy demand. The organic shale formations that provide the basis of much 

unconventional oil and gas production continue as an enigma as far as understanding 

production characteristics are concerned. Therefore, many investigators have been 

inspired to establish suitable models to characterize fluid flow in shale, encountering 

great challenges along the way. 

Shale is referred to as extraordinarily fine-grained sediments commonly showing 

fissility (Javadpour 2009). Loucks et al. (2012) systematically classified nanometer- to 

micrometer-sized pores in the shale matrix into interparticle pores and intraparticle pores 

associated with mineral particles and organic-matter pores within kerogen, respectively. 
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The organic matter has different physical properties from common rock constituents and 

could significantly affect gas storage and flow in shale. Curtis et al. (2010) found that 

mostly kerogen is scattered in inorganic minerals, and pores within it are basically round 

in cross-section, interestingly, with numerous small pores residing on the interior walls 

of larger pores. Due to their formation during the process of hydrocarbon generation, the 

pore networks in the organic matter in shale are mainly considered to be oil- or gas-wet 

(Odusina et al. 2011; Wang and Reed 2009). Experiments on Barnett Shale 

demonstrated that the both adsorbed gas and free gas stored in the shale matrix are 

linearly increased with the Total Organic Carbon(TOC) content (Wang and Reed 2009), 

and Javadpour (2009) also theoretically proposed that in addition to free gas storage in 

shale, gas could also be adsorbed on the surface of kerogen and dissolved within it. Hill 

et al. (2000) estimated that between 20 and 85 percent of gas in shale might be stored as 

adsorbed gas. All those features make organic matter in shale unique and lead us to 

accept the proposal that the porosity systems in organic-rich shale could be separated 

into four types: inorganic bulk, organic matter, natural fractures, and hydraulic fractures 

(Wang and Reed 2009). 

Due to the extremely low permeability (nano-Darcy scale) in the shale matrix, 

many investigators consider that Darcy flow is quite limited or even breaks down in 

shale with nanometer pore sizes. For this reason the validity of conventional dual 

porosity/permeability models has been frequently questioned. 

Instead, the flow mechanisms in such tight formations have been re-investigated 

and many innovative methods have been proposed. The Dual-Mechanism Approach 
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(Darcy flow and Fickian diffusion occur simultaneously in matrix) was introduced to 

characterize the gas flow in coal or shale formations (Clarkson et al. 2012; Ertekin et al. 

1986). Gas transport in such tight reservoirs is controlled by both pressure and 

concentration difference, and the effect of gas diffusion is considered as a dynamic gas 

slippage factor, which is composition, pressure and saturation dependent. Javadpour 

(2009) theoretically proposed the concept of apparent permeability through considering 

Knudsen diffusion, slippage flow and advection flow together, and the apparent 

permeability was further applied to pore scale modeling for shale gas (Shabro et al. 

2011; Shabro et al. 2012). Based on a unified Hagen-Poiseuille-type formula (Beskok 

and Karniadakis 1999), Civan (2010) and Ziarani and Aguilera (2012) proposed a 

method to calculate apparent permeability through the intrinsic permeability of porous 

media and the flow condition function, which is a function of Knudsen number. The 

validity of this latter model for different flow regimes requires further confirmation. 

However, even with this greater detail, these models may not be sufficient, due to the 

use of an undivided shale matrix. Even with a proper connectivity between different pore 

systems there remains little understanding of this aspect (Andrade et al. 2011). On the 

other hand, Hudson et al. (2012) categorized the shale reservoir into organic porosity, 

inorganic porosity, natural fractures and hydraulic fractures, and explored several tank 

models for connections between each pore system. Unfortunately, the modes to 

characterize the distribution of each continuum and the connections between those 

continua appear too regular to be realistic for shale reservoirs. Clearly, there remains a 

strong requirement to accurately model production from unconventional reservoirs based 
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on detailed physics of the process and the interaction among to different pore systems 

such that modeling uncertainty is reduced. 

 

1.3  Objectives and Procedures 

Inspired by those predecessors and relying on the wide petrophysical knowledge 

about shale that is available in the literature, this study considers that conventional dual 

porosity/permeability models are not sufficient to describe those complex physics and 

dynamics. This research aims to establish a micro-scale model of shale gas reservoirs 

with several aspects. 

(1) Due to the importance of organic matter in shale, TOC (Total Organic 

Carbon, wt%) will be an indispensable input parameter in the model. 

(2) The shale matrix bulk will be strictly separated into inorganic matrix and 

organic matrix, and fractures will be located surrounding the matrix bulk as a constant 

pressure boundary. 

(3) To further emphasize the organic matter in shale matrix, the existence of two 

types of porosity system distinguished in pore size in kerogen will be considered: 

organic matter with nanopores (average pore radii: 5 nm) and organic matter with 

micropores (average pore radii: 100nm). 

(4) A well-designed algorithm that recognizes the random distribution and 

arbitrary connections between different continua will be introduced. 

(5) Different mechanisms including Darcy flow, Fickian diffusion, free gas 

storage and Langmuir desorption will be considered in the micro-scale model. 
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(6) With the setup of this micro-scale model, the influences of those different 

mechanisms on the production of shale gas will be evaluated comprehensively. 

(7) Finally, an upscaling approach to extend to the micro-scale model to a 

reservoir scale model will be proposed. 

 

1.4  Organization of the Thesis 

This study is divided into five Chapters. Its basic outline is shown as follows: 

Chapter I briefly introduces the main challenges and the current methodologies 

to characterize gas flow in shale, and the main objectives and procedures to solve those 

problems in this research work; 

Chapter II focuses on the motivation to establish the micro-scale model and 

model descriptions; 

Chapter III mainly analyzes the influences of different mechanisms and important 

parameters on the gas production in shale, and also compares the micro-scale model with 

traditional Dual-Porosity model; 

Chapter IV states a different methodology to upscale the micro-scale model to 

reservoir-scale model, and several real field cases are presented as well. 

Chapter V finally concludes this research work, and provides some 

recommendations for future research. 
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CHAPTER II 

MODEL DESCRIPTION 

 

2.1  Physical Model 

 

 

Fig. 2.1—Dense natural fracture development in shale (King 2010) 
 

With the advances in experimental approaches, kerogen can be characterized as 

generally dispersed in inorganic minerals at the micrometer to nanometer scale. The 

width of natural fracture systems generally is less than 0.05 mm, as shown in Fig.2.1 

(King 2010); therefore, the simulation scale should be limited to micrometers at most if 

subdivision of the shale matrix is required (Fig. 2.2).  
                                                 
 Reprinted with permission from “Beyond Dual-Porosity Modeling for the Simulation of Complex Flow 
Mechanisms in Shale Reservoirs” by Yan B., Wang Y., Killough J., 2013. Paper presented at the SPE 
Reservoir Simulation Symposium (RSS 2013). Copyright 2013 by SPE. 
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                                                      (a)                                                     (b) 

 

(c) 

Fig. 2.2—Reconstruction of the Horn River sample (a) a 3-D matirx, (b) kerogen, 
(c) pore connectivity within matrix (Curtis et al. 2012). 
 

Within a micrometer scale model, the interaction of the shale matrix and natural 

fractures can be sufficiently characterized. However, the validity of the micro-scale 

model work must be well-established before applying any upscaling approaches. Curtis 

et al. (2012) stated that in the shale matrix small pores (radii in 3 to 6 nm, hereafter 

referred to as “nanopores” ) predominate in the amount of pores but those larger pores 

(radii in 100 nm, hereafter referred to as “micropores”) contribute most of the pore 

volume (Fig. 2.3). It is further proposed that the organic grids with nanopores could only 

connect to the organic grids with micropores. Therefore, any other pore systems in shale 
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should communicate with the organic matrix merely through those organic grids with 

micropores. This follows the observation from petrophysical data that in porous kerogen 

small pores penetrate the walls of larger pores (Fig. 2.4). Additional evidence indicates 

that the shale matrices are surrounded by natural fractures as pathways to connect with 

hydraulic fractures or the wellbore, and fractures are explicitly simulated with fine grids 

in the micro-scale. 

 

 

Fig. 2.3—(A) Pore-size distribution estimated from the Horn River reconstruction 
indicating that small pores dominate in number; (B) Volumetric 
contribution of the same pores with peak at 100 nm (Curtis et al. 2012). 
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Fig. 2.4—BSE images of a region of kerogen with varying pore sizes (Curtis et al. 
2010). 
 

Therefore, there exist four different continua in the micro-scale model: 

(1) Nano: organic matrix grid with nanopores with high porosity; 

(2) Micro: organic matrix grid with micropores with high porosity as well; 

(3) Inorg: inorganic matrix grid with very low porosity; 

(4) Frac: natural fracture grid surrounding shale matrix grids to communicate 

with induced fractures and the wellbore. 
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Fig. 2.5—Schematic of micro-scale multiple porosity model 
 

The distribution and connections of those pore systems are a challenge for any 

simulation model. Because kerogen with nanopores has been assumed to be only 

connected to kerogen with micropores, in a Cartesian coordinate system, an organic 

matrix unit in the micro-scale model is designed such that one “Nano” cubic grid is 

surrounded by six “Micro” cubic grids on its six faces. A typical model with a single 

organic matrix unit is shown in Fig.2.5. This is a 6×6×6 grid system for instance, with 

one Organic Matrix Unit randomly distributed in shale matrix core surrounded by a layer 

of natural fracture grids. 

Further, in the shale matrix the amount of those organic matrix units is controlled 

by the weight percentage of TOC and the properties of each medium from petrophysical 

data, shown as Equation (2.1), and the rest of the matrix grids are “Inorg” grids. 

%100
)1()1()1(

)1()1(







inorginorginorgnanonanonanomicromicromicro

nanonanonanomicromicromicro

NNN

NN
TOC




    (2.1) 
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Fig.2.6—A sample mesh map for the micro-scale model with TOC 7.0 wt% 
 

In order to achieve that kerogen grids could be dispersed within inorganic 

minerals, the locations of those organic matrix units are computed through a rigorous 

Monte Carlo Algorithm based on the grid number computed from Equation (2.1). 

Therefore, those organic grids (including “Micro” grids and “Nano” grids) and inorganic 

grids are randomly distributed within the shale matrix bulk. A sample mesh map based 

on the above algorithm is shown as Fig. 2.6. In Fig. 2.6, the cuboid is the matrix bulk, 

those green cross structures are actually the organic matrix units, and the empty space is 

for the inorganic minerals for a better resolution. From the figure it can be observed that 

organic grids are randomly distributed in the matrix bulk. Most of organic grids are well 

connected to each other. Some are isolated from others; however, generally the mesh 

map shows a great connectivity within the kerogen system making the mesh comparable 

to the physical map from Fig. 2.2. 
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2.2  Mathematical Model 

Among the four continua listed above, in the inorganic minerals or fracture 

system, free gas is the only storage mechanism for gas. Besides, gas adsorption is 

assumed to only occur in organic grids (kerogen). Any pressure drop within the kerogen 

will induce gas molecules to be desorbed from the kergen surface. Therefore, the 

desorption process will actually increase the gas accumulation within the organic grids 

in this model. This phenomenon is taken into account in the simulator used in this work 

through terms of Langmuir isothermal function as Equation (2.2) (Civan et al. 2011; Cui 

et al. 2009; Freeman et al. 2012; Shabro et al. 2011). 

 
PP
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PP
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V
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L
stdgs

L

L

std

g

sa





 _                                                               (2.2) 

Because “Nano” grids can only connect to “Micro” grids as previously assumed, 

there are likely to be seven connections in total, shown as the following, 

(1) MicroMicro  

(2) NanoMicro   

(3) InorgMicro   

(4) FracMicro   

(5) InorgInorg   

(6) FracInorg   

(7) FracFrac   

In those different connections, Fickian diffusion and Darcy flow is conditionally 

considered based on the actual flow mechanisms. In kerogen there are many nanopores 
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with small sizes very close to the size of methane molecule. Some investigators applied 

the Knudsen number to define the flow regimes and concluded that under such 

circumstances, conventional Darcy’s law is problematic (Javadpour et al. 2007). For that 

reason it is assumed that free gas or desorbed gas flows across the connection between 

organic matter with nanopores and organic matter with micropores only through Fickian 

diffusion. Both Fickian diffusion and Darcy flow coexist in the connections between 

organic grids with micropores; however, there is only Darcy flow in any other 

connections elsewhere. From these assumptions it follows that a general formula of the 

mass balance equation for a single gas phase isothermal system can be written as 

follows(Yan et al. 2013a), 
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The first term in Equation (2.3) refers to the flux due to only Fickian diffusion, 

only Darcy flow or both mechanisms acting in parallel(Ertekin et al. 1986). The right 

hand side represents the accumulation of compressed gas in all of the grids as well as the 

accumulation of desorbed gas in organic grid blocks. 

In the micro-scale model, Equation (2.3) is solved by a fully implicit iterative 

algorithm. Real gas properties are computed as a function of pressure under isothermal 

conditions through the Peng-Robinson equation of state in the model. There are natural 

fracture grids surrounding those matrix grids and set as a constant pressure boundary for 

the whole system. Therefore, gas in the shale matrix will spontaneously flow into the 

natural fracture system until the average pressure in the matrix decreases to the same 
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level of that in natural fracture system. Because the fracture grids are explicitly 

described in this model, the fracture permeability is related to fracture aperture as cubic 

law (Hoteit and Firoozabadi 2006). 
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2
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2.3  Conclusions 

This chapter presents a micro-scale model with quad-porosity for shale gas 

reservoirs. The model is linked with petrophysical data through the TOC content. The 

connections between different porosity systems are approached through arbitrary 

connectivities in a random grid system. Further, mechanisms including Darcy flow, 

Fickian diffusion, and Langmuir desorption are included in the model. 
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CHAPTER III 

RESULTS ANALYSIS 

 

3.1  Introduction 

The dimensions of the micro-scale system are 482 µm ×482 µm ×92 µm divided 

into 50 grids ×50 grids ×11 grids, in total 27,500 grids. Generally, the length of each 

matrix cub is 10 µm and the fracture aperture is 1 µm. The TOC value is typically 12.50 

wt%, and other media properties are presented in Table 3.1 below. Note that the mesh 

data, TOC content and data in Table 3.1 are used in the following parts of this section as 

the default if not specified. Based on Equation (2.1) the organic grid number is 5243 (the 

ratio of the “Micro” grid number to the “Nano” grid number is constantly 6:1). Because 

the gas mass within such a fine scale model is in the magnitude of 10-10 kg, the drainage 

process is very short (0.001 to 0.1 seconds) and at the later period of the drainage 

process the gas in place is an important constraint on gas drainage rate. Therefore, to 

better compare the significance of different mechanisms on gas flow, a parameter 

analogous to “Productivity Index” is defined here, which is now called as “Gas Drainage 

Capacity into the Fracture System (GDC)”. 

 
fm

f

PP

q
GDC


                                                                                                (3.1) 

 

                                                 
 Reprinted with permission from “Beyond Dual-Porosity Modeling for the Simulation of Complex Flow 
Mechanisms in Shale Reservoirs” by Yan B., Wang Y., Killough J., 2013. Paper presented at the SPE 
Reservoir Simulation Symposium (RSS 2013). Copyright 2013 by SPE. 
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3.2  Effect of Desorption 

To evaluate the effect of the gas desorption in kerogen on gas flow in shale, 

diffusion in the kerogen is temporarily deactivated such that Darcy flow is the only flow 

mechanism. The Langmuir pressure for both “Micro” and “Nano” grids are taken as 

1,500 psi (Hudson et al. 2012), and with a different Langmuir volume of methane in the 

kerogen, the adsorption isotherm curve can be changed significantly causing the 

corresponding Adsorbed Gas Weight Percentage (hereafter referred to as “AGWP”) to 

vary. To reasonably analyze the effect of desorption, the AGWP value should be 

controlled within a realistic range. All parameters in Table 3.1 are applied here and 

Table 3.2 lists the Langmuir adsorption parameter of different organic grids for five 

different cases. 

 

Table 3.1—Description of medium properties for the micro-scale modeling 
Medium Type “Frac” “Inorg” “Micro” “Nano” 
Media Density(g/cc) ---- 2.6 1.35 1.40 
Media Porosity 1.00 0.02 0.2 0.25 
Media Permeability (mD) 84.40 5.0×10-5 5.0×10-5 0.0 
Media Pressure (MPa) 8.6 17.2 
Media Temperature (K) 373.15 

Note the density of inorganic bulk and organic matter in shale is estimated from 
Passey et al. (2010). 

 

Fig. 3.1 compares the cumulative gas rate curves for the five cases. The figure 

shows that in the early period of the gas drainage process, there is little difference among 

those cases because initially free gas in the pores mainly supports the gas drainage. 
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However, at the later period of time, the effect of desorption in kerogen becomes 

significant so that the cumulative gas rate could increase with increasing AGWP. Using 

Case 1 without desorption as a base case, the increase of the ultimate cumulative gas rate 

into the natural fracture system for Cases 2 to 5 is 10.3%, 13.47%, 16.62% and 19.77% 

respectively.  

 

 

Fig. 3.1—Cumulative gas rate curves for five cases with different adsorbed gas 
weight percentage 
 

Fig. 3.2 exhibits the change of average pressure in the matrix bulk with time. The 

effect of desorption helps to maintain the pressure within the matrix bulk, but not 

substantially. It is worth to note that since in this model it is assumed that there is no 

Darcy flow within the Organic “Nano” grids and with here diffusion nullified as well, 
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Case 1: AGWP =     0.00%

Case 2: AGWP =   16.35%

Case 3: AGWP =    20.28%

Case 4: AGWP =    23.85%

Case 5: AGWP =    27.12%

 AGWP = Adsorbed Gas Weight Percentage
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the average pressure will not decline to the level in the fracture grids during the period 

simulated.  

 

Table 3.2—Adsorption parameters for each case to evaluate desorption in shale (no 
diffusion) 

Case NO.      in Micro 
(scf/ton) 

     in Micro 
(psi) 

     in Nano 
(scf/ton) 

     in 
Nano (psi) 

AGWP 
(%) 

1 0 0 0 0 0.00 
2 325 1500 375 1500 16.35 
3 425 1500 475 1500 20.28 
4 525 1500 575 1500 23.85 
5 625 1500 675 1500 27.12 
 

 

Fig. 3.2—Average pressure curves for five cases with different adsorbed gas weight 
percentage 
 

Fig. 3.3 compares the curves of gas drainage capacity (defined in Equation (3.1)) 

with time in a semi-log plot for the five cases, and through calculation it shows that 
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during the range of 0 to 0.004 seconds, on average 90% of total producible gas is drained 

into fracture system. Desorption only improves gas drainage capacity maximally about 

16.7% (in Case 5 with AGWP = 27.12%). Therefore, desorption increases gas drainage 

capacity during the later times but its influence is not considerable; the main contribution 

of desorption to gas production in shale is that it increases the cumulative gas rate from 

shale after pressure starts depletion. This is caused by the adsorption model applied here 

and the way it affects the gas flow in shale. As part of accumulation term and with the 

same unit as gas density,    in Equations (2.2) and (2.3) should be evaluated in a time or 

pressure scale similar to gas density, which is, 

 
t

P

PP

PV

t

P
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Pt

q

L
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
















2__ )(

)(                                    (3.2) 

 

 

Fig. 3.3—Gas drainage capacity curves for five cases with different adsorbed gas 
weight percentage 
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Case 1 : AGWP = 0.00%

Case 2 : AGWP = 16.35%

Case 3 : AGWP = 20.28%

Case 4 : AGWP = 23.85%

Case 5 : AGWP = 27.12%

Gas Drainage Capacity = Gas Drainage Rate / (Average Pressure in Matrix - Pressure in Nature Fracture)
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Equation (3.2) implies that as pressure decreases with producing time, the effect 

of desorption on gas accumulation in kerogen increases significantly with given 

properties in the system and pressure drop. 

 

3.3  Effect of Diffusion 

To better evaluate the effect of diffusion, the Langmuir adsorption parameters are 

set to zero so that only free gas resides in shale matrix. The mesh system and the 

parameters listed in Table 3.1 are still used. According to Hoteit et al. (2006), the 

diffusion coefficient in gas phase is in the range of 8.7×10-4 m2/sec, so the gas diffusion 

coefficients of organic grids are here set in the range of 10-8 to 10-4 m2/sec to conduct the 

sensitivity analysis. In a fashion similar to the analysis of desorption process, if the 

diffusion coefficient in the “Nano” grids is zero, gas within those grids cannot be drained 

out and the average pressure in the matrix cannot reach the pressure in the fracture 

system outside. Table 3.3 enumerates the diffusion coefficients in organic grids for five 

cases. Note that diffusion is hypothesized to only occur in kerogen. 

 

Table 3.3—Diffusion coefficients for each case to evaluate diffusion in kerogen (no 
desorption) 

Case 
NO. 

Dv (Diffusion Coefficient in “Vug”) 
(m2/sec) 

Dn (Diffusion Coefficient in “Nano”) 
(m2/sec) 

6 0.00 0.00 
7 7.09×10-7 4.43×10-8 
8 7.09×10-6 4.43×10-7 
9 7.09×10-5 4.43×10-6 
10 7.09×10-4 4.43×10-5 
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Fig. 3.4 shows the relationship of cumulative gas rate into the fracture system 

with time. The comparison shows that there is little difference in the ultimate cumulative 

gas rate for those cases considering diffusion. The greater the diffusion coefficients the 

faster the cumulative rate curves reach the peak level. As previously claimed, without 

considering diffusion the gas stored in “Nano” grids can never be produced. Comparing 

to the ultimate cumulative rate of Case 7 to 10, there is a significant decrease of about 

15% on average of that in Case 6 (base case) which neglects diffusion in kerogen. In 

Fig. 3.5, the above observations could be further confirmed: diffusion could accelerate 

the pressure drop within the matrix bulk, and Case 6 consequentially maintains a little 

higher average pressure because of more gas left in those “Nano” grids. Finally, in Fig. 

3.6 it can be concluded that diffusion greatly increases the gas drainage capacity into 

fracture system, especially at the later time of production or at a lower average pressure 

in shale matrix. 
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Fig. 3.4—Cumulative rate curves for cases with different diffusion coefficients in 
kerogen 
 

 

Fig. 3.5—Average pressure curves for cases with different diffusion coefficients in 
kerogen 
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Fig. 3.6—Gas drainage capacity curves for five cases with different diffusion 
coefficients in kerogen 
 

3.4  Comparison with Dual Porosity Model 

With the same mesh system as above, a Dual Porosity Model with homogeneous 

matrix grids is established to compare with the Micro-Scale Model considering diffusion 

and desorption, and still keep the initial pressure in matrix bulk at 17.2 MPa, pressure in 

fracture system constant at 8.6 MPa and temperature in the system constant at 373.15 

Kelvin. Tables 3.4 through 3.6 list the parameters related to each medium in each case. 
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Case 6: Dm = 0.0 m2/sec, Dn = 0.0 m2/sec

Case 7: Dm = 7.09e-7 m2/sec, Dn = 4.43e-8 m2/sec

Case 8: Dm = 7.09e-6 m2/sec, Dn = 4.43e-7 m2/sec

Case 9: Dm = 7.09e-5 m2/sec, Dn = 4.43e-6 m2/sec

Case 10: Dm = 7.09e-4 m2/sec, Dn = 4.43e-5 m2/sec

Gas Drainage Capacity = Gas Drainage Rate / (Average Pressure in Matrix - Pressure in Natural Fracture)
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Table 3.4—Parameters for dual porosity model (AGWP: 0.00%) 
Medium Type Natural Fracture Shale Matrix 
Media Density(g/cc) ---- 2.20 
MediaPorosity(fraction) 1.00 6.73% 
Media Permeability(mD) 84.40 5.0×10-5 
Media Diffusivity (m2/sec) 0.00 0.00 

Note: the pore volume in the Dual Porosity Model is the same as that in the Micro-Scale 
Model. 

 

Table 3.5—Parameters for the micro-scale model considering diffusion (AGWP: 
0.00%) 

Medium Type “Frac” “Inorg” “Micro” “Nano” 
Media Density(g/cc) ---- 2.60 1.35 1.40 
Media Porosity(fraction) 1.00 2.0% 20.0% 25.0% 
Media Permeability(mD) 84.40 5.0×10-5 5.0×10-5 0.00 
Media Diffusivity (m2/sec) 0.00 0.00 7.09×10-5 4.43×10-6 

 

Table 3.6—Parameters for the micro-scale model considering diffusion and 
desorption (AGWP: 18.36%) 

Medium Type “Frac” “Inorg” “Micro” “Nano” 
Media Density(g/cc) ---- 2.60 1.35 1.40 
Media Porosity(fraction) 1.00 2.0% 20.0% 25.0% 
Media Permeability(mD) 84.40 5.0×10-5 5.0×10-5 0.00 
Media Diffusivity (m2/sec) 0.00 0.00 7.09×10-5 4.43×10-6 
Langmuir Volume(scf/ton) 0.00 0.00 375 425 
Langmuir Pressure(psi) 0.00 0.00 1500 1500 

 

Fig. 3.7 shows the cumulative gas rate flowing into natural fracture system for 

each case. With the same gas in place, the Micro-Scale Model only considering diffusion 

could reach the cumulative rate plateau much earlier than Dual Porosity Model, and the 
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ultimate gas recovery is almost the same. The Micro-Scale Model considering both 

diffusion and desorption could have on average 12.0% more ultimate cumulative gas rate 

than those of another two cases. The deviations of these three curves also indicate that 

Darcy flow, diffusion and desorption occur sequentially in the micro-scale model.  

 

 

Fig. 3.7—Cumulative gas rate curves to compare micro-scale model with 
conventional dual porosity model 
 

In Fig. 3.8, the two Micro-Scale Models only cost almost half of the time to 

decrease the average pressure in the matrix bulk to the pressure in fracture system 

comparing to the conventional Dual Porosity Model, and the desorption in the kerogen 

could moderately maintain the pressure in the matrix bulk.  
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Fig. 3.8—Average pressure curves to compare micro-scale model with conventional 
dual porosity model 
 

 

Fig. 3.9—Gas drainage capacity curves to compare micro-scale model with 
conventional dual porosity model 
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Fig. 3.9 exhibits the curves of gas drainage capacity changing with time for the 

three models, and it is very clear that through diffusion the Micro-Scale Model maintains 

a much greater gas drainage capacity than the Dual Porosity Model, and desorption 

actually has little or even no effect to increase this parameter. 

 

3.5  Effect of Organic Grids (Kerogen) Distribution in Shale Matrix 

To obtain an obvious effect of the random distribution for the organic grids, here 

TOC content in the shale matrix is set constant at 7.0% (constant number of organic 

grids). However, the dimensions of the system are still 482 µm ×482 µm ×92 µm 

divided into 50 grids ×50 grids ×11 grids, with fracture aperture 1 µm and matrix cube 

length 10 µm; in the system the temperature is constant at 373.15 Kelvin, the initial 

pressure in the matrix bulk is 17.2 MPa and the pressure in natural fracture system 

maintains at 8.6 MPa. Other parameters related to each medium are from Table 3.6, but 

because of the lower TOC content here, the AGWP is now decreased to about 15.8%. 

Five mesh systems (Case 11 to 15) with different kerogen random distribution (different 

random seed for each case) are generated and coupled into the simulator. 

Fig. 3.10 to Fig. 3.12 respectively show the cumulative gas rates into the natural 

fracture system, the average pressure in the matrix bulk and the gas drainage capacity for 

the five cases. From these figures, it can be observed that the five series of curves 

overlap completely. The maximum differences between the five cases for the three 

different plots are respectively 0.19%, 0.0252% and 0.3%, which can be almost 
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neglected. Therefore, it is concluded that the random distribution modes of kerogen with 

a given TOC value cannot impact the global gas flow behavior in shale. 

 

 

Fig. 3.10—Cumulative gas rate curves for five cases with different kerogen 
distribution modes 

 

Fig. 3.11—Average pressure curves for five cases with different kerogen 
distribution modes 
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Fig. 3.12—Gas drainage capacity curves for five cases with different kerogen 
distribution modes 
 

Fig. 3.13 is a sample matrix grids map in each layer for Case 11. The organic 

grids (white grids) are randomly distributed within the inorganic grids (black grids), and 

in space it is like a cluster of kerogen evenly distributed within the inorganic minerals. 

Moreover, a pressure map for the matrix bulk corresponding to this mesh map is shown 

in Fig. 3.14. Through comparison of the two maps, the pressure map matches perfectly 

with the distribution of organic grids. In the pressure maps of layers 4, 5 and 6 in the 

matrix, which are actually the inner part of the matrix bulk in a three dimensional view, 

the pressure within organic grids (shallow red) are on average lower than that of 

inorganic grids (dark red) because of the well developed and connected kerogen system 

compared to inorganic minerals nearby. However, in pressure maps of other matrix 

layers which are the outer part the shale matrix, the pressure in organic grids is much 

higher than that in inorganic grids. This is partly because of the desorption effect in 
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kerogen and partly because of the poor connectivity of kerogen at the tail end of the 

kerogen cluster compared to that of the inner organic grids. 

 

 

Fig. 3.13—Matrix grids map distribution for 9 layers of matrix in Case 11 with 
TOC 7.0 wt% 
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Fig. 3.14—Pressure map for 9 layers of matrix in vertical direction  
 

3.6  Effect of TOC Content in Shale Matrix 
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MPa and the pressure in natural fracture system maintains at 8.6 MPa. Besides, the 

parameters in Table 3.6 for each medium are still applied. Under the initial condition in 
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the system, the AGWP in shale matrix are respectively 11.09%, 15.00% and 18.21% for 

the three cases with an increase trend in TOC content. 

 

 

Fig. 3.15—Cumulative gas rate curves for cases with different TOC value 
 

 

Fig. 3.16—Average pressure curves for cases with different TOC value 
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Fig. 3.17—Gas drainage capacity curves for cases with different TOC value 
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18 (12.00 wt% TOC) could respectively ultimately release 1.4 and 2.1 times more gas 

into the fracture system than Case 16 (3.00 wt% TOC). Meanwhile, because of greater 

gas in place for cases with higher TOC content, to keep mass conservative the average 

pressure in matrix bulk stays slightly higher (Fig. 3.16). Moreover, diffusion could only 
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occur in the organic matrix and thus an increase in TOC value will magnify the gas 

drainage capacity due to the significantly increasing effect of diffusion in kerogen, 

which is exhibited in Fig. 3.17. 

 

3.7  Conclusions 

With the setup of the micro-scale model, this chapter analyzes the influences of 

main mechanisms on gas flow in shale in the micro-scale model. Desorption increases 

gas in place but has little to do with the gas drainage capacity; however, diffusion greatly 

enhances gas flow capacity but not ultimate gas recovery. The comparison between the 

micro-scale model and Dual Porosity Model shows that other mechanisms besides Darcy 

flow cannot be neglected. Further, it also demonstrates that the random distribution of 

kerogen grids is a reasonable approach to characterize kerogen distribution in shale. 

Finally, because TOC controls the weight percentage of organic carbon in shale, the 

effect of TOC on gas production in shale is through a superposition of both diffusion and 

desorption occurring in kerogen. 
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CHAPTER IV 

UPSCALING METHOD 

 

4.1  Apparent Permeability 

The comprehensive work in the previous session is limited in micro-scale 

simulation for qualitative analysis. It could not be used for reservoir scale simulation 

unless it is upscaled. Besides, the scale so far is within the range of a matrix bulk 

subdivided by tens of thousands of gridblocks surrounded by natural fracture grids 

outside; therefore, it is a transient behavior we could observe. To make the work friendly 

to commercial simulators, here the apparent permeability (    , shown in Equation 

(4.1)) is calculated for the system similar to Darcian permeability, which is now 

approximated as an average behavior within the matrix bulk considering the different 

mechanisms coupled in the micro-scale model(Yan et al. 2013b; Yan et al. 2013a), 

 



mffm

mfmff

app
APP

dq
K

)(


                                                                                  (4.1) 

In this part, TOC content in shale matrix is set constant as 10.0 wt%. The 

dimensions of the model are divided into 32 grids × 32 grids × 32 grids, with 5268 

organic grids and 32,678 grids in total. Organic grids are randomly distributed within 

matrix and fracture grids encircle the matrix cubic bulk. Fracture aperture is constantly 

set as 1 µm, but the size of matrix grid is varied from 10 µm to 1 m. Initial pressure in 

                                                 
 Reprinted with permission from “Beyond Dual-Porosity Modeling for the Simulation of Complex Flow 
Mechanisms in Shale Reservoirs” by Yan B., Wang Y., Killough J., 2013. Paper presented at the SPE 
Reservoir Simulation Symposium (RSS 2013). Copyright 2013 by SPE. 
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matrix is set as 17.2 MPa, and pressure in natural fracture is 8.6 MPa, with temperature 

373.15 Kelvin everywhere in the system. Medium properties are from Table 3.6, but 

diffusion coefficients or Langmuir Parameters are respectively nullified to analyze the 

effect of diffusion, desorption and Darcy flow on apparent permeability in Equation 

(4.1).  

 

 

Fig. 4.1—Apparent permeability as a function of pressure with different matrix 
grids size 
 

Three series of cases with different matrix size are simulated through the micro-

scale model, and the results are plotted in Figs. 4.1 and 4.2. In Fig. 4.1, at the early 

period of pressure drop, the apparent permeability of those different cases are almost 

overlapped because of the domination of Darcy flow in the system; gradually those cases 
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considering diffusion would maintain a much higher      than the cases neglecting 

diffusion which finally decline to the level of the intrinsic permeability (50 nanoDarcies) 

within the “Micro” or “Inorg” grids. On the other hand, desorption does not affect the 

apparent permeability at all because there is no difference between cases considering 

desorption and diffusion and cases considering diffusion. The results depicted in Fig. 4.1 

also indicate that matrix size does not change the apparent permeability in any cases 

plotted. This sets a solid foundation to extend the previous micro-scale model to a 

reservoir model later. In Fig. 4.2, the apparent permeability ratio of cases considering 

diffusion (and desorption) to cases only considering Darcy flow increases with the 

pressure decrease in the matrix cube bulk. The results are comparable to the results of 

the tube model considering Knudsen diffusion, advection and slip flow from Javadpour 

(2009). Meanwhile, it further demonstrates that desorption has neglectable effect on the 

apparent permeability through the comparison of the two cases in Fig. 4.2. 
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Fig. 4.2—Apparent permeability ratio (base case: Darcy flow only) as a function of 
pressure 
 

To exclude the likelihood that the apparent permeability is dominated by the 

fixed natural fracture permeability above, here the effect of fracture permeability on the 

apparent permeability is analyzed. Based on the smallest model (matrix grid size: 10 µm 

and fracture grid size: 1 µm) when evaluating the apparent permeability considering 

diffusion, Darcy flow and desorption, here the fracture permeability is changed from 

0.844 mD to 8.44 D with any parameters else in the system the same. The result of the 

apparent permeability is shown in Fig. 4.3. As shown in the figure, with five fracture 

permeabilities in significantly different magnitudes, the curves for apparent 

permeabilities versus pressure have no difference and overlap one another. Therefore, 

the permeability from Equation (4.1) is virtually the average permeability for the total 
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matrix bulk including inorganic and organic grids. It does account the shape factor effect 

for matrix because the matrix size cannot change it at all. 

 

 

Fig. 4.3—Apparent permeability as a function of pressure with different fracture 
permeability 
 

4.2  Upscaling with a Triple Permeability Simulation 

For the results of the above modeling effort to be useful, the dynamic apparent 

permeability is further upscaled to a realistic single well model in a commercial 

simulator (Coats et al. 2003) with multiple fractures are shown in Fig. 4.4. As shown in 

the figure, the well is approximately 5000 feet long with five hydraulic fractures 

distributed each 1000 feet along the well’s length. The width of the simulation model is 

3000 feet with a constant reservoir thickness of 500 feet. The first level grid is a three-

dimensional system with 30 blocks in the x-direction, 60 blocks in the y-direction, and 
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10 blocks in the z-direction for a total of 18,000 cells. Local grid refinement is further 

utilized to better capture the hydraulic fractures by reducing the grid in the y-direction to 

approximately 5 feet at the fracture locations as shown in Fig. 4.5. Three separate 

porosity systems are simulated here – fracture including hydraulic and natural fractures, 

organic matrix (kerogen), and finally inorganic matrix. Since the hydraulic fractures and 

the natural fractures exist at separate grid locations, a single porosity type is used for 

those fractures. Static permeabilities in the matrix are varied over a range of 50 to 2500 

nanodarcies as described below. To capture the dynamic permeability effect of Fig. 4.1, 

pressure-dependent modifications are made to a case which causes the apparent matrix 

permeability to vary with average matrix block pressures similar to that shown in Fig. 

4.1. Desorption in kerogen is treated using the technique of Seldle and Arri (1990). 

Parameters for the desorption are the same as those discussed above to yield an AGWP 

about 20%. The well is simulated with a maximum rate of 10 MMSCF/d and a minimum 

bottom-hole pressure of 1247 psia (about 8.6MPa). Initial reservoir properties are 15% 

water saturation and an initial reservoir pressure of 2495 psia (17.2MPa). Gas properties 

are derived from correlations for a dry gas. The porosity of the natural fractures is 

limited to the refined grid area of the stimulated reservoir volume as shown in Fig. 4.4. 

Similarly the hydraulic fracture is confined to a single set of grid blocks extending from 

the well with a fracture half-length of 1200 feet. Hydraulic fracture permeability and 

porosity are set to 500md and 0.9, respectively while for the natural fractures values of 

10,000 nanoDarcies and 0.02 are used for the permeability and porosity. 
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Fig. 4.4—Single Horizontal well with multiple fractures used for upscaled triple 
permeability simulations 
 

 

Fig. 4.5—Triple permeability simulation model showing fine grid detail 
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Simulations are performed with a triple permeability model in which all 

fractures, inorganic, and organic pore systems are allowed to flow among themselves 

and between different porosity types. This is different from a MINC or multiple-porosity 

model in which only the fluids in the fractures are allowed to flow in the fracture 

network. The well is produced for 30 years with the results shown in Fig. 4.6 to Fig. 4.8. 

 

 

Fig. 4.6—Comparison of different matrix treatments for single horizontal well case 
 

Fig. 4.6 shows the results of three different simulations. The black line represents 

the case in which the apparent permeability of the matrix is dynamically modified with 

average matrix block pressure as described above. The green line represents the case for 

a static apparent permeability of 500 nanodarcies (lower limit) and the red line 
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represents the static case for 2500 nanodarcies (upper limit). The results in Fig. 4.6 

indicate that, as expected, the dynamic permeability case falls between the maximum 

and minimum static permeability cases. The dynamic results are closer to the minimum 

static case due to the rapid falloff in the apparent permeability with average matrix 

pressure as shown in Fig. 4.1 from the micro-scale model.  

Fig. 4.7 shows the additional results of a low permeability (50 nanodarcies, 

intrinsic permeability in shale matrix), non-diffusive case. Also presented is a triple 

porosity case with dynamic apparent permeability in which only the fracture fluids are 

allowed to flow among other fractures. The blue line for the 50nd matrix permeability is 

slightly higher than the triple porosity (not permeability) results shown in pink. This 

indicates that even without diffusive flow, intra-matrix flow has some contribution to the 

production. The results for the triple porosity case in Fig. 4.7 show much lower gas 

production when compared to the triple permeability cases indicating that intra-matrix 

flow is an important part of the mechanism that must be captured when diffusion in 

organic matter is considered in the transport process. 

The results of Fig. 4.7 tend to indicate that given certain characteristics of the 

shale matrix, it might be possible to simulate the gas production process simply by using 

a static permeability intermediate to the maximum and minimum static values. 

Unfortunately, this does not appear to be the case as shown in Fig. 4.8 in which a single 

static value (875 nanoDarcy) cannot model the entire time period of the simulation. 

Simulation times to achieve these results were moderate taking only a few 

minutes of CPU time per 20 year simulation. 
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Fig. 4.7—Comparison of static and dynamic permeability treatments in single 
horizontal well simulation 
 

 

Fig. 4.8—Comparison of static and dynamic permeability treatments in single 
horizontal well simulation 
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4.3  Conclusions 

This Chapter establishes a workflow to upscale the micro-scale model to a 

realistic reservoir model. Through analysis, the apparent permeability defined in this 

research work has little to do with desorption, fracture permeability and matrix size, but 

is related to average matrix pressure, matrix permeability and diffusion. Through 

applying the dynamic apparent permeability curve in a realistic reservoir model, 

diffusion, Darcy flow and transient effect between matrix and fracture could be taken 

into account. 

 

  



 

47 

 

CHAPTER V 

CONCLUSIONS 

 

The research work focuses on the three main issues proposed in Chapter I, and 

establishes a complete workflow from micro-scale to reservoir scale simulation. The 

main conclusions for the research work are shown as follows. 

(1) A Micro-Scale Model with natural fractures and shale matrix subdivided into 

three random distributed continua and considering Darcy flow, Fickian 

diffusion and desorption in kerogen shows results which are consistent with 

existing data. 

(2) With a considerable adsorbed gas weight percentage in shale matrix, gas 

desorption from kerogen provides more gas in place and sustains a much 

greater cumulative gas rate and slightly higher average matrix pressure, 

however, desorption does little to improve the gas drainage capacity (similar 

to productivity index) and does not influence the apparent permeability 

defined in this research work. 

(3) Diffusion cannot be neglected and is crucial to produce gas in the nanopores 

in kerogen. Diffusion is fairly effective in enhancing the gas drainage 

capacity and the apparent permeability.  

(4) Darcy flow, diffusion and desorption occur sequentially in the Micro-Scale 

Model. The latter two mechanisms are strengthened at the later time or lower 
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average pressure in the matrix bulk because Darcy flow and free gas release 

dominate the early period.  

(5) The difference between the Micro-Scale Model and a traditional Dual 

Porosity Model with the same pore volume is significant: the former takes 

into account diffusion and desorption so that the system becomes more 

producible with subsequent faster pressure drop.  

(6) With a constant TOC content in shale, different random distributions of 

kerogen have a neglectable difference in the global gas flow behavior from 

the shale matrix bulk to the natural fractures.  

(7) Higher TOC content in the shale effectively increases gas in place due to 

more adsorbed gas and free gas. Higher TOC content also magnifies the 

effect of diffusion in the kerogen. 

(8) The apparent permeability is related to matrix pressure, matrix permeability, 

diffusion and Darcy flow, but has little to do with fracture permeability, 

matrix grid size, and desorption. 

(9) Upscaling to a reservoir scale model with multiple fractures shows results 

which indicate that a triple permeability model allowing intra-matrix flow is 

required to adequately simulate the gas recovery observed in the micro-scale 

models. Dynamic apparent permeability in the matrix is indispensable in 

correctly simulating the micro-scopic effects. 
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