
INFERENCE FOR CLUSTERED MIXED OUTCOMES FROM A

MULTIVARIATE GENERALIZED LINEAR MIXED MODEL

A Dissertation

by

HSIANG-CHUN CHEN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Thomas E. Wehrly
Committee Members, Jeffrey D. Hart

Huiyan Sang
Dominique Lord

Department Head, Simon J. Sheather

August 2013

Major Subject: Statistics

Copyright 2013 Hsiang-Chun Chen



ABSTRACT

Multivariate generalized linear mixed models (MGLMM) are used for jointly mod-

eling the clustered mixed outcomes obtained when there are two or more responses

repeatedly measured on each individual in scientific studies. The relationship among

these responses is often of interest. In the clustered mixed data, the correlation

could be present between repeated measurements either within the same observer or

between different observers on the same subjects. This study proposes a series of in-

dices, namely, intra, inter and total correlation coefficients, to measure the correlation

under various circumstances of observations from a multivariate generalized linear

model, especially for joint modeling of clustered count and continuous outcomes.

Bayesian methods are widely used techniques for analyzing MGLMM. The need

for noninformative priors arises when there is insufficient prior information on the

model parameters. Another aim of this study is to propose an approximate uniform

shrinkage prior for the random effect variance components in the Bayesian analysis

for the MGLMM. This prior is an extension of the approximate uniform shrinkage

prior. This prior is easy to apply and is shown to possess several nice properties.

The methods are illustrated in terms of both a simulation study and a case example.
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1. INTRODUCTION

Clustered mixed outcomes arise in scientific studies such as longitudinal trials

when there is more than one response repeatedly measured on each individual. Meth-

ods have been proposed for modeling the clustered mixed outcomes. The multivariate

generalized linear mixed model (MGLMM) is one of the most widely used models for

accommodating these measurements when they are assumed to independently follow

distributions in the exponential family, depending on fixed effects and subject-specific

correlated random effects (An et al., 2009; Coull and Agresti, 2000; Gueorguieva,

2001; Gueorguieva and Agresti, 2001; McCulloch, 2008). Approaches such as the

adaptive Gaussian-Hermite quadrature, Monte Carlo EM algorithm, generalized es-

timating equations approach, and penalized quasi-likelihood have been developed for

maximum likelihood estimation in MGLMM.

Assessing agreement between multiple measurements taken by several observers

on the same subject is of interest because it evaluates the interaction of different

observers and whether one can be substituted by the other. The two observers can

be interchangeable if they have perfect correlation and perfect agreement.

Nevertheless, it is very common that multivariate outcomes with discrete and con-

tinuous components are observed. Measurements from different observers or methods

under this situation usually have extremely different values. For example, the num-

ber of tumors and the blood pressure of patients in a clinical study are in discrete and

continuous scales, respectively. Since measurements are taken on different scales, it

is not appropriate to use the intra correlation coefficient or the concordance corre-

lation coefficient to measure the agreement between observers. The problem arises

when there is a need to assess the interchangeability or relationship of observers
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using extremely different scales, especially in qualitative and quantitative scales, re-

spectively. Instead of agreement, the correlation between the mixed outcomes is of

particular interest. Various types of correlation could be present, including the corre-

lation between measurements taken by the same observers on different subjects and

the correlation between measurements from different observers for a given subject.

These relationships may attribute to the intra-observer variability or inter-observer

variability. Furthermore, the measurements might not follow a normal distribution,

which violates the assumption for inference using the concordance correlation co-

efficient. Situations may arise in which repeated measurements are taken for each

method, such as in clinical trials and longitudinal studies. One of the main goals of

this study is to develop a series of correlation coefficients to investigate the corre-

lation between clustered mixed measurements under multivariate generalized linear

mixed model. Multivariate clustered mixed outcomes are considered in this study.

Correlations between measurements in the multivariate clustered mixed outcomes are

assumed to be present either on the same observers or on different observers within

subjects when each of the different observers produce replicated measurements on

each subject. Subject-specific models for discrete and continuous measurements in

the exponential family are accommodated using the MGLMM. Assume each of the

different observers produces replicated measurements on each subject. Based on this

model, three indices for measuring the consistency between clustered mixed out-

comes are proposed, including the intra correlation coefficient (intra-CC), the inter

correlation coefficient (inter-CC), and the total correlation coefficient (total-CC).

The intra-CC measures the correlation among multiple measurements from the same

observer. The inter-CC coefficient measures the correlation among multiple mea-

surements from different observers based on the average of multiple measurements.

The total-CC measures the correlation among multiple measurements from different

2



observers based on individual measurements.

Generalized linear mixed models can be viewed as hierarchical models containing

two stages. Therefore, a Bayesian approach (Gelman, 2006; Tierney, 1994; Zeger and

Karim, 1991) has been widely used in estimating the joint posterior distributions of

the fixed-effect parameters and the variance components of the random effects. Sev-

eral assumptions for the prior distribution on the fixed effect parameters and the

variance components of random effects have been studied. The standard noninfor-

mative prior, or Jeffreys prior (Tiao and Tan, 1965), is one of the most widely used

assumption in the Bayesian approach. The drawback for using the Jeffreys prior

is that it may lead to an improper joint posterior distribution for fixed effects and

variance component of the random effect (Ibrahim and Laud, 1991; Natarajan and

McCulloch, 1995).

For univariate generalized linear mixed model, Natarajan and Kass (2000) in-

troduced the approximate uniform shrinkage prior as an alternative prior for the

variance component of the random effects. The main idea of the approximate uni-

form shrinkage prior is that the weight of the prior mean used in the approximate

shrinkage estimate is assumed to be componentwise uniformly distributed. Then us-

ing the transformation theorem, we can find the distribution of the variance structure

of random effect. This prior has been shown to possess several desirable properties.

When the clustered mixed outcomes are considered, MGLMM is applied and

the random effects are assumed to follow a multivariate normal distribution. The

inverse Wishart distribution is one of the most widely used prior distribution for the

covariance matrix of the random effects since the inverse Wishart distribution is the

conjugate prior of the multivariate normal distribution (Dunson, 2000). However, the

estimation is very sensitive to the choice of the scale matrix in the prior distribution.

Therefore, the need of noninformative priors arises when there is insufficient prior
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information on the model parameters. Another goal of this dissertation is to propose

an approximate uniform shrinkage prior for the random effect variance components

in the Bayesian analysis for the MGLMM.

The rest of this dissertation is organized as follows. In Chapter 2, we introduce

the multivariate generalized linear mixed model and give a brief literature review. A

series of indices, namely, intra, inter and total correlation coefficients, to measure the

correlation under various circumstances in a multivariate generalized linear model,

especially for joint modeling of clustered count and continuous outcomes, is developed

in Chapter 3. We demonstrate the methodology with a simulation study. A case

example is provided to illustrate the use of these proposed indices. In Chapter 4,

an approximate uniform shrinkage prior for a multivariate generalized linear mixed

model is introduced. The results of simulation studies are compared with those

based on other widely used priors. Some concluding remarks are given in Chapter 5.

Mathematical details are given in the Appendix.

4



2. LITERATURE REVIEW

The univariate generalized linear mixed model (GLMM) and the multivariate gen-

eralized linear mixed model (MGLMM) are briefly reviewed in Sections 2.1 and 2.2.

The Bayesian methods for GLMM and MGLMM are also discussed. The literature

review of previous research about the two studies in this dissertation are provided in

Sections 2.3 and 2.4.

2.1 Generalized Linear Mixed Model

Consider data composed of N subjects and Ti repeated measurements within

the i-th subject. Let yit be the t-th univariate measurement on the i-th subject.

Conditional on a subject-specific random effect bi, {yi1, · · · , yiTi
} is assumed to in-

dependently follow a distribution with density in the exponential family

f(yit|bi) ∝ exp

{
yitθit − a(θit)

ϕ

}

where the dispersion parameter ϕ is assumed known, and θit is the canonical param-

eter. The conditional mean is µit = E(yit|bi) = a′(θit), and the conditional variance

is υit = Var(yit|bi) = ϕa′′(θit). Also, assume that the conditional mean is related to

the linear form of predictors by the link function :

g(µit) = xT
itβ + zTitbi = β1x1,it + · · ·+ βpxp,it + bi1z1,it + · · ·+ biqzq,it,

where g(·) is a monotonic differentiable link function, xit = (x1,it, · · · , xp,it)
T is a

vector of covariates, β = (β1, · · · , βp)
T is a vector of fixed effect parameters, and

zit = (z1,it, · · · , zq,it)T is a vector of covariates corresponding to the random effect bi =

5



(bi1, · · · , biq)T . The random effect bi is shared by repeated measurements within the

same subject. Assume that bi has a multivariate normal distribution with mean 0 and

covariance matrix D. The aforementioned model is known as the generalized linear

mixed model, or GLMM (Breslow and Clayton, 1993; Zeger and Karim, 1991). The

normal linear mixed model is a special case of GLMM when yit independently follows

a normal distribution conditional on the random effects bi and the link function is

the identity function.

The likelihood for the parameter β and D is

L(β,D) ∝
N∏
i=1

|D|−
1
2

∫
exp

{
Ti∑
t=1

yitθit − a(θit)

ϕ
− 1

2
bTi D

−1bi

}
π(β)dbi.

However, the maximum likelihood estimates cannot be simplified or evaluated in

closed form. Because of the complexity of the likelihood in GLMM, several numerical

integration methods such as Gauss-Hermite quadrature or the Bayesian approach

have been proposed for analyzing data in GLMM.

2.2 Multivariate Generalized Linear Mixed Model

The multivariate generalized linear mixed model (MGLMM) can accommodate

clustered data when measurements are repeatedly observed from two or more ob-

servers on each subject. Consider data comprising N subjects and Ti repeated

measurements within the i-th subject, measured by L observers. Measurements

for different subjects are assumed to be independent, and the numbers of repli-

cations differ from subject to subject. Let the measurement for the i-th subject

be Yi = (Y T
i1 , · · · , Y T

iL)
T , where Y T

ij = (Yij1, · · · , YijTi
)T are repeated measurements

from the j-th observer, j = 1, . . . , L. Assume that given the random effects bi,

{Yij1, · · · , YijTi
} are conditionally independent given observer j and subject i, and

6



Yijt has density fj(·) in the exponential family. Let µij = (µij1, · · · , µijTi
)T be the

conditional mean of Yijt = (Yij1, · · · , YijTi
)T given the random effects bi. Covariates

are X = (X1, · · · , XN)
T , where Xi = (x1,i11, · · · , xp1,i1Ti

, · · · , x1,iL1, · · · , xpL,iLTi
)T

are the covariates for the i-th subject. Assume the model has correlated random

effects which follow a multivariate normal distribution. The multivariate generalized

linear model is defined by the following :

Yi1t|bi1 is from a particular distribution F1 in the exponential family

with mean µi1t and density exp

{
yi1tθi1t − a1(θi1t)

ϕ1

}
...

YiLt|biL is from a particular distribution FL in the exponential family

with mean µiLt and density exp

{
yiLtθiLt − aL(θiLt)

ϕL

}
g1(µi1t) = xT

i1tβ1 + zTi1tbi1

...

gL(µiLt) = xT
iLtβL + zTiLtbiL

bi =(bi1, · · · biL) ∼ iid multivariate normal(0, D)

where for j = 1, . . . , L, the dispersion parameters ϕj is assumed known; θijt is the

canonical parameter; gj(·) is the link function; xijt = (x1,ijt, · · · , xpj ,ijt)
T is a vector

of covariates; βj = (βj1, · · · , βjpj)
T is a vector of fixed effect parameters; zijt =

(z1,ijt, · · · , zq,ijt)T is a vector of covariates corresponding to the random effects bij =

(b1,ij, · · · , bq,ij)T ; D = [σij]i=1,··· ,L;j=1,··· ,L is the covariance matrix. The conditional

means are µijt = E(yijt|bij) = a′j(θijt), and the conditional variances are υijt =

Var(yijt|bij) = ϕja
′′
j (θijt).

Similar to GLMM, the maximum likelihood estimates of MGLMM cannot be

7



solved in closed form. Various approximate methods have been developed, such as

the Bayesian approach, penalized quasi-likelihood, Monte Carlo EM algorithms, and

maximum likelihood estimation, for model fitting of the MGLMM (Gueorguieva,

2001).

2.3 Assessing Correlation in Generalized Linear Mixed Model

A number of measurements of agreement among multiple measurements taken by

several observers or methods have been proposed. Cohen’s kappa statistics (Cohen,

1960) and weighted kappa statistics (Cohen, 1968) are used for assessing agreement

among observers when the measurements are categorical. The intra correlation co-

efficient (ICC) (Pearson et al., 1901) and concordance correlation coefficient (CCC)

(Lin, 1989) are two of the most widely applied indices for assessing the agreement

between observers for continuous data. The ICC has been shown to be equivalent to

a particular specification of the CCC (Carrasco and Jover, 2003). The concordance

correlation coefficient was used to measure the agreement between two variables, Y1

and Y2 and was defined as

ρc = 1− E{(Y1 − Y2)
2}

σ2
Y1

+ σ2
Y2

+ (µY1 − µY2)
2
=

2ρσY1σY2

σ2
Y1

+ σ2
Y2

+ (µY1 − µY2)
2

where µY1 and µY2 are the means for the two variables, σ2
Y1

and σ2
Y2

are the corre-

sponding variances, and ρ is the correlation coefficient between the two variables.

The CCC was extended to application on categorical data (King and Chinchilli,

2001) as

ρg =

{
EFY1

FY2
g(Y1 − Y2)− EFY1

FY2
g(Y1 + Y2)

}
−
{
EFY1Y2

g(Y1 − Y2)− EFY1Y2
g(Y1 + Y2)

}
EFY1

FY2
g(Y1 − Y2)− EFY1

FY2
g(Y1 + Y2) +

1
2EFY1Y2

{g(2Y1) + g(2Y2)}

where g(·) is a convex function of distance defined on the real line and g(Y1 − Y2) is
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an integrable function with respect to FY1Y2 .

An extended concordance correlation coefficient (Barnhart et al., 2002; King and

Chinchilli, 2001) was defined to assess the amount of agreement among more than

two observers. The CCC and ICC were both extended for assessing the repeated

measurements such as longitudinal data in a clinical study (Carrasco et al., 2009;

King et al., 2007a,b).

The intra-CCC, inter-CCC and total-CCC (Barnhart et al., 2005; Lin et al., 2007)

were proposed to measure the intra, inter and total agreement among replicated

measurements by using several observers, respectively. Consider the model

yijt = µ+ αi + βj + γij + eijt

where yijt, t = 1, · · · , T , are replicated measurements given the subject i and the

observer j. They proposed a series of indices for assessing agreement, precision and

accuracy when there were multiple observers each with multiple readings. Among

them, the intra, inter, and total precisions were defined as

ρintraj =
Cov(yijt, yijt′)√
Var(yijt)Var(yijt′)

=
σ2
α + σ2

γ

σ2
α + σ2

γ + σ2
e

ρinter =
Cov(ȳij·, ȳij′·)√
Var(ȳij·)Var(ȳij′·)

=
σ2
α

σ2
α + σ2

γ + σ2
e/m

ρtotal =
Cov(yijt, yij′t′)√
Var(yijt)Var(yij′t′)

=
σ2
α

σ2
α + σ2

γ + σ2
e

However, inference based on the above measures of correlation assume that both

random effects and the residuals are normally distributed, which is sometimes not

appropriate. The CCC was extended (Carrasco, 2010; Carrasco and Jover, 2005) for

assessing the agreement for data from any distribution of the exponential family in
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terms of the generalized linear mixed model. Let bij be the random effects consisting

of variabilities such as the subject, observer, and subject by observer interaction

effects. The conditional distribution of Y = {yijt} given the covariates X and b, are

assumed to follow a distribution from the exponential family. The conditional mean

of Y given b is E(Yijt|bij) = µij = g−1(λi+αi+βj +γij) and the conditional variance

of Y given b is Var(Yijt|bij) = ϕh(µij). Also assume that the random effect b follows a

multivariate normal distribution. The intra, inter and total generalized concordance

correlation coefficients are defined as

ρintraGCCC,j =
Cov(yijt, yijt′)

Var(yijt)
=

Var(µij)

Var(µij) + E{ϕh(µij)}

ρinterGCCC =
Cov(ȳij·, ȳij′·)

Var(ȳij·)
=

Cov(µij, µij′)

Var(µij) + E{ϕh(µij)}/m

ρtotalGCCC =
Cov(yijt, yij′t′)

Var(yijt)
=

Cov(µij, µij′)

Var(µij) + E{ϕh(µij)}

All indices mentioned above can be used to measure agreement and evaluate

whether the observers or methods are interchangeable when the observers are as-

sumed to follow identical distributions. However, for clustered mixed outcome data,

measurements may be taken on extremely different scales. As a result, indices are

needed to measure the consistency among clustered mixed outcomes.

2.4 Bayesian Method for the Generalized Linear Mixed Model

The Bayesian approach is a very popular method used in the analysis of the

GLMM. The GLMM can be thought as a two-stage hierarchical model. The mea-

surements conditional on given subject-specific random effects are assumed to follow

a particular distribution from the exponential family at the first stage, while the

random effects are assumed to follow a multivariate normal distribution at the sec-

ond stage. There is a need of the specification of the prior distribution for the fixed
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effect parameters β and the random effect variance components D. We assume that

β and D are independent of each other in this study. When there is no subjective

prior information about β, the most widely used noninformative prior assumption for

the fixed effect coefficient is the improper uniform distribution, which will be used

throughout this study. However, various noninformative prior distributions for the

variance components of the random effects, D, have been suggested in the previous

literature, including Jeffreys prior, a proper conjugate prior and the approximate

uniform shrinkage prior.

The standard noninformative prior, or a Jeffreys prior, π(D) ∝ |D|− q+1
2 (Tiao and

Tan, 1965; Zeger and Karim, 1991) is one of the most widely used prior assumptions

in the Bayesian approach. It is obtained by applying Jeffreys rule to the second-

stage random effect distribution. The posterior distribution of D corresponding to a

Jeffreys prior follows an inverse Wishart distribution with scale matrix S =
∑N

i=1 bib
T
i

and degrees of freedom N , IW (N,S). The advantage of choosing the Jeffreys prior

is that the posterior distribution is specified and easy to implement, however the

disadvantage is that it may lead to an improper joint posterior distribution for β

and D (Ibrahim and Laud, 1991; Natarajan and McCulloch, 1995).

Another popular choice of the prior distribution is a proper conjugate prior. The

inverse Wishart distribution with scale matrix Ψ and degrees of freedom λ, IW (λ,Ψ),

is a conjugate prior for D. Since a univariate specialization of the inverse Wishart

distribution is the inverse gamma distribution, the prior reduces to an inverse gamma

distribution when the dimension of D is one. The most popular choice is to set λ = q

and Ψ = qD0, where D0 is the prior guess of D (Spiegelhalter et al., 1996). The

advantage of this conjugate prior is that it is computationally easy to implement,

while the disadvantage is that the estimation results can be very sensitive to the

choices of D0 (Natarajan and Kass, 2000).
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Natarajan and Kass (2000) introduced the approximate uniform shrinkage prior

as an alternative prior for D. It is a generalization of the uniform shrinkage prior pro-

posed by Strawderman (1971). The main idea in the approximate uniform shrinkage

prior is induced by placing a componentwise uniform distribution on the weight

given to the prior mean in the approximate shrinkage estimate of the random effects.

Specifically, the approximate shrinkage estimate b̂i has the form

b̂i = DZT
i (W

−1
i + ZiDZT

i )
−1(y∗i −Xβ̂) = Si0q + (1− Si)DZT

i Wi(y
∗
i −Xβ̂),

where y∗i is a working dependent variable and Wi is the GLM weight matrix obtained

by replacing b∗ with 0. The weight Si = (D−1 + ZT
i WiZi)

−1ZT
i WiZi is a function

of D and varies with i. Thus by replacing the individual weights with the average

across the cluster, they define the overall weight matrix

S =

(
D−1 +

1

N

N∑
i=1

ZT
i WiZi

)−1(
1

N

N∑
i=1

ZT
i WiZi

)
.

Assume S is componentwise uniformly distributed, then using the transformation

theorem, we can find the distribution of D,

πus(D) ∝

∣∣∣∣∣I +
(

1

N

N∑
i=1

ZT
i WiZi

)
D

∣∣∣∣∣
−q−1

which is the approximate uniform shrinkage prior. The advantage of the approximate

uniform shrinkage prior is that it is proper, the corresponding posterior distribution

under some situations is proper, and the calculation is quite simple.

The Bayesian approach can also be used for MGLMM. The fixed effect param-

eters β and the random effect variance components D are assumed to be a priori
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independent. The prior distribution assumptions of the fixed effect parameters β

and the variance of the random effects D are needed in the Bayesian approach. One

of the most widely used prior distributions for β is uniform. However, there are

several choices of prior distribution for D.

One of the most widely used prior distribution assumptions of the variance com-

ponents of random effects is inverse Wishart distribution (Dunson, 2000). Assume

the prior distribution of D is inverse Wishart(m,Ψ), then the posterior distribution

of D is inverse Wishart(m+N,Ψ+S), where S =
∑N

i=1 bib
T
i . Thus, it is a conjugate

prior for the covariance matrix of a multivariate normal distribution. However, the

estimation is very sensitive to the choice of the scale matrix Ψ in the prior inverse

Wishart distribution. Therefore, the need of an objective prior arises in the multi-

variate case. In this dissertation, we will modify and extend the approximate uniform

shrinkage prior proposed by Natarajan and Kass for the MGLMM.
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3. ASSESSING CORRELATION OF CLUSTERED MIXED OUTCOMES

FROM A MULTIVARIATE GENERALIZED LINEAR MIXED MODEL

3.1 Introduction

The classic concordance correlation coefficient measures the agreement between

two variables. In recent studies, concordance correlation coefficients have been gener-

alized to deal with responses from a distribution from the exponential family using the

univariate generalized linear mixed model. Multivariate data arise when responses

on the same unit are measured repeatedly by several observers. The relationship

among these responses is often of interest. In clustered mixed data, the correlation

could be present between repeated measurements either within the same observer or

between different observers on the same subjects. Indices for measuring such associ-

ation are needed. Therefore, we propose a series of indices, namely, intra, inter and

total correlation coefficients to measure the correlation under various circumstances

in a multivariate generalized linear model, especially for joint modeling of clustered

count and continuous outcomes. The proposed indices are natural extensions of the

concordance correlation coefficient.

This chapter is structured as follows. A series of the measurements for the mul-

tivariate generalized linear mixed model for joint modeling of clustered mixed out-

comes are proposed in Section 3.2. Extensions of the proposed correlations among

multiple observers are defined in Section 3.3. In Section 3.4, we show examples of

bivariate and trivariate models. Simulation studies of evaluating the proposed cor-

relation are included in Section 3.5. The relationship among the proposed indices

is investigated. We illustrate the application of the proposed indices using one case

example in Section 3.6. Finally the conclusions are stated in Section 3.7.
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3.2 Method

The scenario of bivariate clustered mixed data from two different observers for

N subjects is considered. An interesting case is where the measurement from one

observer is discrete and the measurement from the other observer is continuous. A

multivariate generalized linear model can be used to fit bivariate clustered mixed data

with the assumption of joint multivariate random effects. Conditional on random

effects, yi1t and yi2t are assumed independent. The multivariate generalized linear

model is defined as follows :

Yi1t|bi1 is from a particular distribution F1 in the exponential family

with mean µi1t and density exp

{
yi1tθi1t − a1(θi1t)

ϕ1

}
Yi2t|bi2 is from a particular distribution F2 in the exponential family

with mean µi2t and density exp

{
yi2tθi2t − a2(θi2t)

ϕ2

}
g1(µi1t) = xT

i1tβ1 + zTi1tbi1

g2(µi2t) = xT
i2tβ2 + zTi2tbi2

bi =(bi1, bi2) ∼ iid multivariate normal(0, D)

where the dispersion parameters ϕ1 and ϕ2 are assumed known, θi1t and θi2t are the

canonical parameters, g1(·) and g2(·) are link functions, xi1t = (x1,i1t, · · · , xp1,i1t)
T and

xi2t = (x1,i2t, · · · , xp2,i2t)
T are vectors of covariates, β1 = (β11, · · · , β1p1)

T and β2 =

(β21, · · · , β2p2)
T are vectors of fixed effect parameters, and zi1t = (z1,i1t, · · · , zq,i1t)T

and zi2t = (z1,i2t, · · · , zq,i2t)T are vectors of covariates corresponding to the random

effects bi1 = (b1,i1, · · · , bq,i1)T and bi2 = (b1,i2, · · · , bq,i2)T .

The bivariate generalized linear mixed model is equivalent to two separate uni-

variate GLMMs when the correlations between the random effects are zero. The
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multivariate Rasch model and the multivariate binomial-logit normal model are both

special cases of the above model (Gueorguieva and Agresti, 2001). Based on this

model, the marginal means and variances of the measurement Yijt are found to be

E(Yijt) = E{E(Yijt|bi)} = E(µijt)

Var(Yijt) = E{Var(Yijt|bi)}+Var{E(Yijt|bi)} = E{ϕjhj(µijt)}+Var(µijt)

where ϕj is the dispersion parameter and hj(·) is the corresponding variance function

for Fj(·). Based on this model, a series of correlation coefficients are defined in the

next few subsections.

3.2.1 Intra correlation coefficient (Intra-CC)

The intra correlation coefficient (abbreviated intra-CC) measures the linear rela-

tionship among multiple measurements from a given observer on a subject. In other

words, it assesses the intra-observer correlation. For a given observer j, the intra-CC

is defined as the correlation between any two replications t and t′ measured by the

same observer j on a subject. The intra-CC of the j-th observer and i-th subject is

written as

ρintra,i,j =
Cov(Yijt, Yijt′)√
Var(Yijt)Var(Yijt′)

.

In the proposed model, the covariance of different replicates from j-th observer

on i-th subject is

Cov(Yijt, Yijt′)

= E{Cov(Yijt, Yijt′|bi)}+ Cov{E(Yijt|bi),E(Yijt′|bi)}

= Cov(µijt, µijt′)

since for each observer j, Yijt and Yijt′ are conditionally independent given the random
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effects bi. As a result, the intra-CC for the j-th observer can be expressed using the

marginal variance and covariance as

ρintra,i,j =
Cov(µijt, µijt′)√

[E{ϕjhj(µijt)}+Var(µijt)] [E{ϕjhj(µijt′)}+Var(µijt′)]
.

Note that both Cov(µijt, µijt′) and E{ϕjhj(µijt)} + Var(µijt) can be expressed in

terms of E(µijt) and E(µijt′), hence ρ
intra,i,j defined above can be expressed as a ratio

of two functions: Kintra
N and Kintra

D , or,

ρintra,i,j =
Kintra

N {E(µijt),E(µijt′)}
Kintra

D {E(µijt),E(µijt′)}
.

Since E(µijt) depends on the covariates X, E(µijt) varies not only from subject to

subject but also from replicate to replicate, and so does the intra-CC. Therefore,

an overall intra-CC is obtained by replacing E(µijt) and E(µijt′) with their marginal

expectation over X, µ∗
j = EX {E(µijt)}. That is,

ρintra,j =
Kintra

N

(
µ∗
j , µ

∗
j

)
Kintra

D

(
µ∗
j , µ

∗
j

) .
Based on this model, the marginal expectations over X can be shown equal to

µ∗
j = EX{E(µijt)} = EX

{
g−1
j (xT

ijtβj + zTijtbij)
}

If the log links are used, only random intercept is considered (q = 1), and the

covariates X are independently and identically distributed having standard normal

distributions, then µ∗
j = exp(β2

j1/2+· · ·+β2
jpj

/2+σ2
bj
/2). If a covariate is a categorical

variable, then the correlations should be calculated separately over the levels of the

variable.
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3.2.2 Inter correlation coefficient (Inter-CC)

The inter correlation coefficient (abbreviated inter-CC) measures the linear rela-

tionship among different observers based on the average of replicated measurements

when more than one measurement are observed from a subject. The inter-CC is

defined as the correlation between the averages of multiple replicated measurements

from each observer on the same subject and is used to measure the inter-observer

correlation. Let Y ij· denote the arithmetic mean of replicated measurements from

the i-th subject given by the j-th observer. Then the inter-CC of the ith subject is

defined as

ρinter,i =
Cov(Y i1·, Y i2·)√
Var(Y i1·)Var(Y i2·)

where Cov(Y i1·, Y i2·) is the marginal covariance of averages of replicated measure-

ments taken from two different observers on the same subject, and Var(Y i1·) and

Var(Y i2·) are the marginal variances of the average of replicated measurements taken

from first and second observer on the i-th subject, respectively. The inter-CC de-

pends on the number of replications since it is a measurement in terms of the averages

of replicated measurements taken by each observer.

Based on the proposed model, we know that the marginal covariance of the

averages is

Cov(Y i1·, Y i2·) =
1

T 2
i

Ti∑
t=1

Ti∑
t′=1

Cov(Yi1t, Yi2t′)

=
1

T 2
i

Ti∑
t=1

Ti∑
t′=1

[E {Cov(Yi1t, Yi2t′|bi)}+ Cov {E(Yi1t|bi),E(Yi2t′|bi)}]

=
1

T 2
i

Ti∑
t=1

Ti∑
t′=1

Cov(µi1t, µi2t′)
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since Yi1t and Yi2t′ are assumed to be conditionally independent given the random

effects. The marginal variance of the average is

Var(Y ij·) = E{Var(Y ij·|bi)}+Var{E(Y ij·|bi)}

=

Ti∑
t=1

E{ϕjhj(µijt)}

T 2
i

+

Var

(
Ti∑
t=1

µijt

)
T 2
i

where j = 1, 2. Combining the above equations gives

ρinter,i =

Ti∑
t=1

Ti∑
t′=1

Cov(µi1t, µi2t′)√√√√[ Ti∑
t=1

E{ϕ1h1(µi1t)}+Var

(
Ti∑
t=1

µi1t

)][
Ti∑

t′=1

E{ϕ2h2(µi2t′)}+Var

(
Ti∑

t′=1

µi2t′

)] .

It can be shown that the inter-CC is a ratio of functions of

Ti∑
t=1

E(µi1t) and

Ti∑
t=1

E(µi2t). That is,

ρinter,i =

Kinter
N,1,2

{
Ti∑
t=1

E(µi1t),

Ti∑
t=1

E(µi2t)

}

Kinter
D,1,2

{
Ti∑
t=1

E(µi1t),

Ti∑
t=1

E(µi2t)

}

which depends on the covariates X as well as the numbers of replicates for each

subject.

An overall inter-CC is obtained by replacing

Ti∑
t=1

E(µi1t) and

Ti∑
t=1

E(µi2t) with T ∗µ∗
1

and T ∗µ∗
2, where T ∗ =

∑N
i=1 Ti

N
and µ∗

j = EX {E(µijt)} is the marginal expectation

over X defined in the previous subsection, j = 1, 2. In other words, the overall
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inter-CC is

ρinter =
Kinter

N,1,2 (T
∗µ∗

1, T
∗µ∗

2)

Kinter
D,1,2 (T

∗µ∗
1, T

∗µ∗
2)
.

If all subjects have the same number of replicates, T , for all i, then T ∗ = Ti = T .

3.2.3 Total correlation coefficient (Total-CC)

The total correlation coefficient (abbreviated total-CC) measures the linear re-

lationship among different observers based on individual measurements. It can be

viewed as an intraclass correlation between any measurements from each observer

on the same subjects, which is equal to the proportion of subject variability over the

total variability. The total-CC of the ith subject is defined as

ρtotal,i =
Cov(Yi1t, Yi2t′)√
Var(Yi1t)Var(Yi2t′)

where Cov(Yi1t, Yi2t′) is the marginal covariance of measurements taken from two

different observers on the same subjects, and Var(Yi1t) and Var(Yi2t′) are the marginal

variances of individual measurements. The value of the total-CC is independent of

the number of replications.

Based on the proposed model, since Yi1t and Yi2t′ are assumed to be condition-

ally independent given the random effects, the covariance of any measurement from

different observer on the same subjects can be expressed as

Cov(Yi1t, Yi2t′) = E {Cov(Yi1t, Yi2t′|bi)}+Cov {E(Yi1t|bi),E(Yi2t′|bi)} = Cov(µi1t, µi2t′).

The total-CC can be written using the expressions of the marginal variance and
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covariance as

ρtotal =
Cov(µi1t, µi2t′)√

[E{ϕ1h1(µi1t)}+Var(µi1t)] [E{ϕ2h2(µi2t′)}+Var(µi2t′)]
.

The total-CC defined above can be shown to be a ratio of functions of E(µi1t)

and E(µi2t′), which vary across different covariates X. That is,

ρtotal =
Ktotal

N,1,2 {E(µi1t),E(µi2t′)}
Ktotal

D,1,2 {E(µi1t),E(µi2t′)}
.

An overall total-CC is obtained by replacing E(µi1t) and E(µi2t′) with their

marginal expectations over X, µ∗
1 = EX {E(µi1t)} and µ∗

2 = EX {E(µi2t)}, which

are shown in the previous subsections. In other words, the overall total-CC is

ρtotal =
Ktotal

N,1,2 (µ
∗
1, µ

∗
2)

Ktotal
D,1,2 (µ

∗
1, µ

∗
2)
.

3.2.4 Properties

The intra-CC, inter-CC and total-CC possess several notable properties. First,

the values of intra-CC, inter-CC and total-CC are always scaled between −1 and

1, and increase as the within-subject variability increases. Secondly, according to

the definition of inter-CC and total-CC, the value of inter-CC is always greater

than or equal to the value of total-CC, and the inter-CC reduces to the total-CC

when there is only one replicate from the same observer on each subject. Thirdly,

when the covariances between the conditional means are zero, then the inter-CC and

total-CC are both equal to zero. In other words, when the subject-specific random

effects are uncorrelated with each other, there is no correlation between different

observers. However, the inter-CC and total-CC are not necessarily equal to ±1 when
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the correlation between the conditional means are ±1. Moreover, only the inter-

CC depends on the number of replications, while the intra-CC and total-CC are

independent of the number of replications.

Several previous proposed indices in measuring agreement are special cases of the

intra-CC, inter-CC and total-CC proposed in this study. If the observers are identi-

cally distributed, then the intra-CC, inter-CC and total-CC reduce to the generalized

intra CCC, inter CCC and total CCC proposed by Carrasco (2010). Since the mea-

surements are from particular distributions in the exponential family in GLMM, the

normal linear mixed model with identity link is a special case of GLMM. When the

observers are independent identically normally distributed with identity link func-

tions, the intra-CC, inter-CC and total-CC turn out to be equivalent to the intra,

inter and total precision index proposed by Lin et al. (2007). Under this circum-

stance, the total-CC further reduces to the CCC proposed by Lin (1989) when there

is only one replicate of each subject. In summary, these former proposed indices for

assessing agreement are special cases of the indices proposed in this study.

3.2.5 Estimation and inference

Based on the definition of intra-CC, inter-CC and total-CC, these indices are

functions of the marginal expectation of µijt, µ
∗
j = EX {E(µijt)}. Let θ denote the

set of the fixed-effect parameters, the variance components of the random effects

in the generalized linear mixed model, and possible additional model parameters in

the fitted distribution. Then µ∗
j = EX {E(µijt)} can be expressed as functions of θ

and thus intra-CC, inter-CC and total-CC can also be expressed as functions of θ.

Therefore, the sample estimates of θ can be substituted for θ to construct estimators

of the intra-CC, inter-CC and total-CC. To obtain these sample estimates, the model

is fitted by maximum likelihood methods. Since the conditional distributions are non-
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normal and the link functions are non-linear, the maximum likelihood estimation

does not have a closed form. Numerical methods such as the adaptive Gaussian-

Hermite quadrature or Monte Carlo EM algorithm (Gueorguieva, 2001) can be used

to approximate the maximum likelihood estimate. Since the intra-CC, inter-CC and

total-CC can all be expressed as ratios of smooth functions of θ, the estimators of

the intra-CC, inter-CC and total-CC can be expressed as ratios of smooth functions

of the MLE of θ. Specifically, the intra-CC, inter-CC and total-CC are estimated by

ρ̂intra,j =
Kintra,j

N (µ̂∗
1, µ̂

∗
2)

Kintra,j
D (µ̂∗

1, µ̂
∗
2)

ρ̂inter =
Kinter

N,1,2 (T
∗µ̂∗

1, T
∗µ̂∗

2)

Kinter
D,1,2 (T

∗µ̂∗
1, T

∗µ̂∗
2)

ρ̂total =
Ktotal

N,1,2 (µ̂
∗
1, µ̂

∗
2)

Ktotal
D,1,2 (µ̂

∗
1, µ̂

∗
2)

where µ̂∗
j = EX {E(µ̂ijt)} and T ∗ =

∑N
i=1 Ti

N
.

Since the estimator of intra-CC, inter-CC or total-CC, say ρ̂, is a function of θ̂,

the standard error of ρ̂ is therefore a function of the standard error of θ̂ and so is

the variance of ρ̂. Hence, the variance of estimated intra-CC, inter-CC and total-

CC can be approximated by applying the delta method. Thus, the variance of ρ̂ is

Var(ρ̂) = d′Σd, where d is the vector of derivatives of the index ρ with respect to

each element of θ, and Σ is the covariance matrix of θ̂. The covariance matrix of θ̂

can be approximated using the inverse of the Fisher’s information matrix.

The maximum likelihood estimate θ̂ can be assumed to have a normal distribu-

tion asymptotically. Therefore, using the transformation theory of functions of an

asymptotically normal vector (Serfling, 1980), the estimator ρ̂ is a consistent estima-

tor of ρ and has an asymptotic normal distribution with mean E(ρ̂) = ρ and variance
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Var(ρ̂) = d′Σd. That is,

ρ̂ ∼ AN(ρ, d′Σd).

Statistical inference concerning ρ can further be obtained. By assuming asymp-

totic normality, the (1− α) confidence interval for each index ρ is estimated as

[ρ̂L, ρ̂U ] =
[
ρ̂− zα/2

√
d′Σd, ρ̂+ zα/2

√
d′Σd

]
.

These confidence intervals do not bound the values within the open interval (−1, 1).

The normal approximation may be improved by using Fisher’s Z-transformation,

Ẑ = tan−1(ρ̂) =
1

2
log

(
1 + ρ̂

1− ρ̂

)
.

The Z-transformation performs well for the ordinary Pearson’s correlation coeffi-

cients. Since Ẑ is a function of ρ̂, Ẑ can be shown to be asymptotically normally

distributed. Thus

Ẑ ∼ AN

(
1

2
log

(
1 + ρ

1− ρ

)
,
Var (ρ̂)

(1− ρ̂2)2

)
.

Moreover, by applying the Z-transformation, the (1 − α) confidence interval for

each index ρ is estimated as

[ρ̂Z,L, ρ̂Z,U ] =

[
exp(2ẐL)− 1

exp(2ẐL) + 1
,
exp(2ẐU)− 1

exp(2ẐU) + 1

]

where ẐL and ẐU are lower bound and upper bound of the (1−α) confidence interval

for Ẑ, i.e.,
(
ẐL, ẐU

)
= Ẑ ± zα/2

√
Var(Ẑ) and zα/2 is the (1 − α/2) percentile of a

standard normal distribution. In this study, we will also investigate whether the

Z-transformation improves the normality of these CC estimates.
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3.3 Extension to Correlations Among Multiple Observers

In a scientific study, it is frequently important to assess the relationship among

outcomes observed from more than two different observers. The correlation coeffi-

cients defined in the previous sections can be extended to evaluate such relationships.

According to the definition, the intra-CC measures the linear relationship among

multiple measurements from each observer. As a result, it applies when there are

more than two observers. Nonetheless, adjustments to the inter-CC and total-CC

are needed when there are more than two observers since the inter-CC and total-CC

measure the linear relationship among measurements from two different observers.

Assume that outcomes Yi = (Y T
i1 , Y

T
i2 , · · · , Y T

iL)
T are measurements from L ob-

servers on the i-th subject and L > 2. These measurements can be continuous or

discrete responses. One way to assess the relationship among L observers is to use

a matrix of pairwise coefficients, as defined in the previous section. Additionally, we

define the extended correlation coefficients in this section.

Let j = 1, . . . , L − 1 and k = 2, . . . , L index the pairwise combinations of the L

observers. The extended inter correlation coefficient and extended total correlation

coefficient are defined as follows :

ρinter,iE =

L∑
j,k
j<k

Cov(Y ij·, Y ik·)

L∑
j,k
j<k

√
Var(Y ij·)Var(Y ik·)
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and

ρtotal,iE =

L∑
j,k
j<k

Cov(Yijt, Yikt′)

L∑
j,k
j<k

√
Var(Yijt)Var(Yikt′)

.

An overall extended inter correlation coefficient and extended total correlation

coefficient are further defined as follows :

ρinterE =

L∑
j,k
j<k

Kinter
N,j,k

(
T ∗µ∗

j , T
∗µ∗

k

)
L∑
j,k
j<k

Kinter
D,j,k

(
T ∗µ∗

j , T
∗µ∗

k

)

and

ρtotalE =

L∑
j,k
j<k

Ktotal
N,j,k

(
µ∗
j , µ

∗
k

)
L∑
j,k
j<k

Ktotal
D,j,k

(
µ∗
j , µ

∗
k

)

where Kinter
N,j,k(·), Kinter

D,j,k(·), Ktotal
N,j,k(·) and Ktoal

D,j,k(·) are defined in the previous section.

Both of the extended inter-CC and extended total-CC are weighted averages of all

pairwise inter-CCs and total-CCs. Hence, the extended inter-CC and extended total-

CC are natural extensions of the inter-CC and total-CC. When L = 2, ρinterE = ρinter

and ρtotalE = ρtotal.

As a result, the estimates of the extended inter-CC and extended total-CC are
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obtained by replacing µ∗
j with its sample estimate µ̂∗

j , which can be expressed as

ρ̂interE =

L∑
j,k
j<k

Kinter
N,j,k

(
T ∗µ̂∗

j , T
∗µ̂∗

k

)
L∑
j,k
j<k

Kinter
D,j,k

(
T ∗µ̂∗

j , T
∗µ̂∗

k

)

and

ρ̂totalE =

L∑
j,k
j<k

Ktotal
N,j,k

(
µ̂∗
j , µ̂

∗
k

)
L∑
j,k
j<k

Ktotal
D,j,k

(
µ̂∗
j , µ̂

∗
k

) .

Let θ denote the set of the fixed-effect parameters, the variance components of

the random effects in the generalized linear mixed model, and possible additional

model parameters in the fitted distribution. As shown before, statistical inference

can be made using the result that θ̂ has a normal distribution asymptotically. Thus

ρ̂interE ∼ AN
(
ρinterE , dinter

′
Σ̂dinter

)

and

ρ̂totalE ∼ AN
(
ρtotalE , dtotal

′
Σ̂dtotal

)
where dinter is a vector of derivatives of ρinterE with respect to each element of θ, dtotal

is a vector of derivatives of the index ρtotalE with respect to each element of θ, and Σ

is the covariance matrix of θ̂.

The (1−α) confidence interval for extended inter-CC and extended total-CC are
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estimated as

[
ρ̂interE,L , ρ̂interE,U

]
=
[
ρ̂interE − zα/2

√
dinter′Σ̂dinter, ρ̂interE + zα/2

√
dinter′Σ̂dinter

]

and

[
ρ̂totalE,L , ρ̂totalE,U

]
=
[
ρ̂totalE − zα/2

√
dtotal′Σ̂dtotal, ρ̂totalE + zα/2

√
dtotal′Σ̂dtotal

]
.

For ρ̂interE and ρ̂totalE , the normal approximation may be improved by using Fisher’s

Z-transformation,

Ẑinter
E = tan−1(ρ̂interE ) =

1

2
log

(
1 + ρ̂interE

1− ρ̂interE

)

and

Ẑtotal
E = tan−1(ρ̂totalE ) =

1

2
log

(
1 + ρ̂totalE

1− ρ̂totalE

)
.

By applying the Z-transformation, the (1−α) confidence interval for ρinterE and ρtotalE

can be developed as

[
ρ̂interE,Z,L, ρ̂

inter
E,Z,U

]
=

[
exp(2Ẑinter

E,L )− 1

exp(2Ẑinter
E,L ) + 1

,
exp(2Ẑinter

E,U )− 1

exp(2Ẑinter
E,U ) + 1

]

and [
ρ̂totalE,Z,L, ρ̂

total
E,Z,U

]
=

[
exp(2Ẑtotal

E,L )− 1

exp(2Ẑtotal
E,L ) + 1

,
exp(2Ẑtotal

E,U )− 1

exp(2Ẑtotal
E,U ) + 1

]

where Ẑinter
E,L and Ẑinter

E,U are the lower bound and upper bound of the (1−α) confidence

interval for Zinter
E ; Ẑtotal

E,L and Ẑtotal
E,U are the lower bound and upper bound of the

(1− α) confidence interval for Ztotal
E . In this study, we will also investigate whether

the Z-transformation improves the normality of these extended CC estimates.
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3.4 Illustrative Example

3.4.1 Joint modeling of Poisson-gamma bivariate outcomes

Let Yi = (Y T
i1 , Y

T
i2 )

T represent the bivariate outcomes measured from the i-th

subject, where Y T
i1 = (Yi11, · · · , Yi1Ti

)T and Y T
i2 = (Yi21, · · · , Yi2Ti

)T are the repeated

measurements from the first and second observer, respectively. Conditional on the

random effects bi, Yi1t is assumed to follow a Poisson distribution with mean µi1t

and variance µi1t, and Yi2t is assumed to follow a gamma distribution with mean µi2t

and variance µ2
i2t/ν. Yi1t and Yi2t are assumed to be conditionally independent given

the random effects. Let x1,ijt, . . . , xpj ,ijt be covariates of j-th observer on the i-th

subject. The link function between the linear predictors and the conditional mean of

either Yi1t and Yi2t is the natural logarithm. The model conditional on the correlated

random effects is as follows:

Yi1t|bi1 ∼ Poisson distribution with mean µi1t and variance µi1t

Yi2t|bi2 ∼ gamma distribution with mean µi2t and variance µ2
i2t/ν

log(µi1t) = β10 + β11x1,i1t + · · ·+ β1p1xp1,i1t + bi1

log(µi2t) = β20 + β21x1,i2t + · · ·+ β2p2xp2,i2t + bi2

bi = (bi1, bi2)
T ∼ iid multivariate normal (0, D)

where the covariance matrix D =

 σ2
b1 ρbσb1σb2

ρbσb1σb2 σ2
b2

.

Based on this model, we can compute the marginal expectations and variances

of the outcomes, and the marginal expectations and variances of the conditional

means. Derivation details are included in the Appendix. Define µ∗
1 = EX{E(µi1t)},

µ∗
2 = EX{E(µi2t)} and T ∗ =

∑N
i=1 Ti

N
. Then the overall intra-CC of the first observer
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and second observer are

ρintra,1 =
µ∗
1(e

σ2
b1 − 1)

1 + µ∗
1(e

σ2
b1 − 1)

and

ρintra,2 =
eσ

2
b2 − 1(

1 + 1
ν

)
eσ

2
b2 − 1

.

The overall inter-CC of the bivariate measurements is defined as

ρinter =
eρbσb1

σb2 − 1√{
1

T ∗µ∗
1
+
(
eσ

2
b1 − 1

)}{(
1 + 1

T ∗ν

)
eσ

2
b2 − 1

}
and the overall total-CC of the bivariate measurements is defined as

ρtotal =
eρbσb1

σb2 − 1√{
1
µ∗
1
+
(
eσ

2
b1 − 1

)}{(
1 + 1

ν

)
eσ

2
b2 − 1

} .

3.4.2 Joint modeling of Poisson-exponential-normal multivariate outcomes

Now consider the scenario of more than two observers measuring either discrete

outcomes or continuous outcomes. For simplicity, the situation of three observers

is investigated in this study. It is straightforward to extend this to models with

more than three observers. To reduce the complexity of the model, a joint model of

Poisson-exponential-normal multivariate outcomes is considered.

Let Yi = (Y T
i1 , Y

T
i2 , Y

T
i3 )

T represent the multivariate outcomes for the i-th subject,

where Y T
ij = (Yij1, · · · , YijTi

)T is the repeated measurement from the j-th observer.

Conditional on the random effects, Yi1t is assumed to be count outcomes and follow

a Poisson distribution, Yi2t is assumed to be continuous outcomes and follow an

exponential distribution, and Yi3t is assumed to be continuous outcomes and follow

a normal distribution with variance σ2
N . Assume that conditional on the random
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effects, Yi1t, Yi2t and Yi3t are conditionally pairwise independent. Let x1,ijt, . . . , xpj ,ijt

be covariates of the j-th observer on the i-th subject. The link functions among

the linear predictors and the conditional means of the measurements are logarithm,

logarithm and identity, respectively. Specifically, the model can be expressed as

Yi1t|bi1 ∼ Poisson distribution with mean µi1t and variance µi1t

Yi2t|bi2 ∼ exponential distribution with mean µi2t and variance µ2
i2t

Yi3t|bi3 ∼ normal distribution with mean µi3t and variance σ2
N

log(µi1t) = β10 + β11x1,i1t + · · ·+ β1p1xp1,i1t + bi1

log(µi2t) = β20 + β21x1,i2t + · · ·+ β2p2xp2,i2t + bi2

µi3t = β30 + β31x1,i3t + · · ·+ β3p3xp3,i3t + bi3

bi = (bi1, bi2, bi3)
T ∼ iid multivariate normal(0, D)

where the covariance matrix D =


σ2
b1

ρb12σb1σb2 ρb13σb1σb3

ρb12σb1σb2 σ2
b2

ρb23σb2σb3

ρb13σb1σb3 ρb23σb2σb3 σ2
b3

.

Details of the derivations are provided in the Appendix. Let µ∗
1 = EX{E(µi1t)},

µ∗
2 = EX{E(µi2t)} and T ∗ =

∑N
i=1 Ti

N
. Then the overall extended intra-CCs of the

first, second and third observer are

ρintra,1E =
µ∗
1(e

σ2
b1 − 1)

1 + µ∗
1(e

σ2
b1 − 1)

,

ρintra,2E =
eσ

2
b2 − 1

2(eσ
2
b2 − 1)

,

and

ρintra,3E =
σ2
b3

σ2
bN

+ σ2
b3

.
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An overall extended inter correlation coefficient is defined as ρinterE = NI∗/DI∗,

where

NI∗ = µ∗
1µ

∗
2(e

ρb12σb1σb2 − 1) + µ∗
1ρb13σb1σb3e

σ2
b1
/2(|ρb13|−1) + µ∗

2ρb23σb2σb3e
σ2
b2
/2(|ρb23|−1)

and

DI∗ =

√{
µ∗
1

T ∗ + µ∗2
1 (eσ

2
b1 − 1)

}[
µ∗2
2

{(
1 +

1

T ∗ν

)
eσ

2
b2 − 1

}]

+

√{
µ∗
1

T ∗ + µ∗2
1 (eσ

2
b1 − 1)

}(
σ2
N

T ∗ + σ2
b3

)

+

√[
µ∗2
2

{(
1 +

1

T ∗ν

)
eσ

2
b2 − 1

}](
σ2
N

T ∗ + σ2
b3

)
.

Analogously, an overall extended inter correlation coefficient is defined as

ρtotalE = NT ∗/DT ∗, where

NT ∗ = µ∗
1µ

∗
2(e

ρb12σb1σb2 − 1) + µ∗
1ρb13σb1σb3e

σ2
b1
/2(|ρb13|−1) + µ∗

2ρb23σb2σb3e
σ2
b2
/2(|ρb23|−1)

and

DT ∗ =

√{
µ∗
1 + µ∗2

1 (eσ
2
b1 − 1)

}[
µ∗2
2

{(
1 +

1

ν

)
eσ

2
b2 − 1

}]
+

√{
µ∗
1 + µ∗2

1 (eσ
2
b1 − 1)

}(
σ2
N + σ2

b3

)
+

√[
µ∗2
2

{(
1 +

1

ν

)
eσ

2
b2 − 1

}] (
σ2
N + σ2

b3

)
.
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3.5 Simulation Study

Simulation studies are conducted to investigate the performance of estimated

correlation coefficients of clustered mixed data from a multivariate generalized linear

model. Consider the scenario that each subject is repeatedly measured by each

observer numerous times. Simulations are performed for three studies, illustrating

how we calculate the proposed correlation coefficients when there are two or three

different observers and evaluating how the estimates of each proposed correlation

coefficient are affected by the parameter settings. In the first simulation study,

included in Section 3.5.1, we investigate how the correlations of the subject-specific

random effects affect the estimates of the proposed correlation coefficients. In the

second simulation study, provided in Section 3.5.2, we investigate how the sample

size and the number of repeated measurements for each observer per subject affect

the estimates of the proposed correlation coefficients. In Section 3.5.3, a simulation

study of clustered mixed data from three observers is assessed. The performance of

these correlation coefficient estimates is evaluated in terms of the relative bias of the

point estimate, the relative bias of the standard error, the mean square error of the

estimates, the p-values of the Shapiro-Wilk test for normality, and the confidence

interval coverage rates.

3.5.1 Correlation estimates vs. correlation between random effects

In the first simulation study, the relationship between the correlation estimates

and the correlations of the random effects is of interest. Consider the bivariate mixed

outcomes Yi·t = (Yi1t, Yi2t) observed from i-th subject and t-th repetition. Two fixed

predictors, x1,ijt and x2,ijt, for each observer are generated independently from the

standard normal distribution for each subject. The random effects bi = (bi1, bi2)
T are

generated independently from a bivariate normal distribution with mean µ = 0 and
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covariance matrix

D =

 σ2
b1 ρbσb1σb2

ρbσb1σb2 σ2
b2

 .

Given the random effects bi, the measurements Yi1t and Yi2t are generated inde-

pendently from a Poisson distribution with mean µi1t, and a gamma distribution

with mean µi2t and variance µ2
i2t/ν, respectively, using the log links for those two

distributions. Specifically, the model is as follow:

Yi1t|bi1 ∼ Poisson distribution with mean µi1t and variance µi1t

Yi2t|bi2 ∼ gamma distribution with mean µi2t and variance µ2
i2t/ν

log(µi1t) = β10 + β11x1,i1t + β11x2,i1t + bi1

log(µi2t) = β20 + β21x1,i2t + β22x2,i2t + bi2

bi = (bi1, bi2)
T ∼ iid multivariate normal (0, D)

Repeated measurements samples are generated using the SAS IML procedure, and

are fitted by maximum likelihood using the adaptive Gaussian quadrature through

the SAS NLMIXED procedure. Simulations are performed for sample size ofN = 100

and T = 10 repeated measurements for each observer on each subject with two pa-

rameter settings. In the first setting of the parameter, we assume that there are

high within-observer variabilities. Specifically, the variances of the random effects

are set to be (σ2
b1
, σ2

b2
) = (1, 1). The second setting of the parameter assumes that

there are low within-observer variabilities. Specifically, the variances of the ran-

dom effects are set to be (σ2
b1
, σ2

b2
) = (0.25, 0.25). The fixed effects are set to be

(β10, β11, β12, β20, β21, β22) = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1), and the shape parameter in

the fitted gamma distribution is set to be ν = 20 in both cases.

In each run, fixed effect parameters, variance components, addition model param-
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eters in the conditional distributions, and then the proposed correlation coefficients

are estimated. The combinations of parameters and theoretical correlations are listed

in Table 3.1. It is built as the correlation between two random effects varies between

strong positive correlation (ρb = 0.9), moderately positive correlation (ρb = 0.5), no

correlation (ρb = 0), moderate negative correlation (ρb = −0.5) and strong negative

correlation (ρb = −0.9). The first five combinations correspond to a situation of high

within-observer variability, while the last five combinations correspond to a situation

of low within-observer variability. The first column presents the number of combi-

nations. The second and third columns present the number of parameter settings

and the correlations of the random effects used in the simulation, respectively. The

fourth, fifth, sixth, and seventh columns present theoretical intra-CC 1, theoretical

intra-CC 2, theoretical inter-CC and theoretical total-CC, respectively. As seen from

the table, the values of theoretical intra-CC 1, theoretical intra-CC 2 remain the same

over all combinations. Conversely, the values of theoretical inter-CC and theoretical

total-CC increases as the correlation of random effects ρb increases, and tends to the

limits which are not equal to 1. Both theoretical inter-CC and theoretical total-CC

are equal to zero when the random effects are independent (ρb=0).

Parameter Theoretical Theoretical Theoretical Theoretical
No. Setting Correlation Intra-CC 1 Intra-CC 2 Inter-CC Total-CC
1 1 -0.9 0.7598 0.9267 -0.3387 -0.2898
2 -0.5 0.7598 0.9267 -0.2246 -0.1921
3 0 0.7598 0.9267 0 0
4 0.5 0.7598 0.9267 0.3703 0.3168
5 0.9 0.7598 0.9267 0.8331 0.7128
6 2 -0.9 0.2643 0.8156 -0.6204 -0.3294
7 -0.5 0.2643 0.8156 -0.3618 -0.1921
8 0 0.2643 0.8156 0 0
9 0.5 0.2643 0.8156 0.4100 0.2177
10 0.9 0.2643 0.8156 0.7770 0.4125

Table 3.1: Simulated Combinations in Simulation Study 1.
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Table 3.2 summarizes the results based on a thousand simulation runs. The first

and second columns stand for the number of combinations and the index, respectively.

The third column presents the relative bias of the point estimate, which is calculated

by taking the difference between the mean of the estimates and the theoretical value

and dividing it by the theoretical value. The robustness of the estimates is evaluated

by the relative bias of the point estimate. The fourth column presents the relative

bias of the standard error, which is calculated by taking the difference between the

mean of the standard error and the standard deviations of estimates and dividing it

by the standard deviations of estimates. The precision of the estimates is evaluated

by the relative bias of the standard error. The fifth column presents the mean square

error (MSE) which is equal to the sum of the variance and the squared bias of the

estimate. MSE measures the accuracy and precision of the CC estimates. The sixth

and seventh columns shows the p-values in the Shapiro-Wilk normality test, which is

used to access the normal approximation of the raw estimates and the transformed

estimates. The 95% confidence intervals are built by assuming asymptotic normality

and by Fisher’s Z-transformation, respectively. The eighth and ninth columns in the

table show the coverage, which are reported by the percentage of times that 95%

confidence intervals included the true correlation coefficient. The performance of

95% confidence intervals is evaluated by the confidence interval coverages.

In the simulation considering different correlations between random effects, we

find that most of the point estimation and standard error estimation tend to be

smaller than expected. The relative biases of the point estimate are always less

than 6%. Almost all combinations yield good point estimates, while few of them

yield poor standard error estimates. Increasing the correlation between random

effects generally made little difference to the relative bias of the point estimates and

standard errors. These estimations are quite robust against the variability of each
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S.W. S.W.
Std Err P-value P-value CI CI

Est. Est. for for Coverage Coverage
Relative Relative Raw Trans. (Asym. (Z-

No. Index Bias % Bias % MSE Est. Est. normal)% trans.)%
1 Intra-CC 1 -1.23 -3.39 0.004143 <0.0001 0.0120 93.90 93.60

Intra-CC 2 -0.11 -1.65 0.000046 <0.0001 0.0301 95.30 94.90
Inter-CC 1.29 -0.59 0.001720 0.2293 0.3779 92.50 92.90
Total-CC 0.21 0.24 0.000647 <0.0001 <0.0001 92.10 91.90

2 Intra-CC 1 -2.16 -4.75 0.004742 <0.0001 0.0175 92.70 92.20
Intra-CC 2 -0.11 -5.83 0.000050 <0.0001 0.0009 94.30 94.00
Inter-CC 0.33 3.16 0.000834 0.6684 0.8764 96.50 96.20
Total-CC -0.87 1.50 0.000558 0.0007 0.0028 96.50 96.30

3 Intra-CC 1 -1.49 -1.19 0.004258 <0.0001 0.0051 95.10 94.10
Intra-CC 2 -0.11 -0.07 0.000045 <0.0001 0.0081 95.00 94.30
Inter-CC NA -0.87 0.003685 <0.0001 <0.0001 93.20 93.00
Total-CC NA -0.77 0.002649 <0.0001 <0.0001 93.30 93.00

4 Intra-CC 1 -1.05 -0.64 0.004081 <0.0001 0.0013 94.20 93.80
Intra-CC 2 -0.14 -2.94 0.000049 <0.0001 0.0106 94.40 93.20
Inter-CC 0.75 1.48 0.004986 0.9493 0.0326 94.20 95.20
Total-CC 0.26 2.42 0.003930 0.9672 0.1990 95.00 95.20

5 Intra-CC 1 -1.61 -0.42 0.004018 <0.0001 0.0035 94.40 93.40
Intra-CC 2 -0.14 -0.29 0.000046 <0.0001 0.0789 95.20 94.60
Inter-CC -0.18 -2.35 0.001098 0.0061 0.0009 94.10 95.10
Total-CC -0.94 -1.99 0.002185 0.0002 0.0845 95.00 94.60

6 Intra-CC 1 -2.01 0.30 0.002110 0.0431 0.0017 92.39 91.79
Intra-CC 2 -0.39 -1.13 0.000448 <0.0001 0.0044 94.89 94.80
Inter-CC -0.14 2.08 0.000586 0.0003 0.1708 95.60 95.39
Total-CC -1.19 0.02 0.000656 <0.0001 0.0003 94.59 94.29

7 Intra-CC 1 -1.64 -2.01 0.002306 0.0080 0.0003 92.30 91.80
Intra-CC 2 -0.44 -1.69 0.000456 <0.0001 0.0639 95.80 94.90
Inter-CC -1.84 -1.81 0.004233 <0.0001 0.0006 93.70 93.40
Total-CC -2.48 -1.97 0.001544 0.0064 0.0334 95.00 94.60

8 Intra-CC 1 -0.22 -6.07 0.002559 0.0207 0.0003 93.10 92.60
Intra-CC 2 -0.46 -3.18 0.000472 <0.0001 0.0949 95.20 95.00
Inter-CC NA -3.66 0.008752 0.7760 0.7862 94.10 94.30
Total-CC NA -3.50 0.002464 0.7874 0.7961 94.80 94.50

9 Intra-CC 1 -1.63 -0.89 0.002253 0.6565 0.2047 93.20 92.60
Intra-CC 2 -0.30 -3.28 0.000459 <0.0001 0.3026 95.60 94.50
Inter-CC 0.04 -4.51 0.007422 0.0411 0.6690 93.50 93.60
Total-CC -0.45 -3.60 0.002662 0.6463 0.3738 94.70 94.40

10 Intra-CC 1 -0.98 2.11 0.002033 0.0286 0.0013 94.48 94.18
Intra-CC 2 -0.29 -2.74 0.000454 <0.0001 0.2306 94.38 93.88
Inter-CC 0.27 0.76 0.001909 <0.0001 0.6512 94.08 95.59
Total-CC -0.16 2.94 0.001955 0.9822 0.8262 95.49 95.29

Table 3.2: The Relative Bias of the Point Estimate, the Relative Bias of the Standard
Errors, the Mean Square Error of the Estimates, P-value in Shapiro-Wilk Normality
Test, and the Confidence Interval Coverage Rate in Simulation Study 1.
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observer. As expected, the mean square errors are very small over all combinations,

again implying that correlation between random effects does not have a great effect on

the CC estimates. In addition, small p-values in Shapiro-Wilk normality tests imply

that the asymptotic approximation to normal distribution does not behave well, and

the approximation does not improve significantly when the Fisher’s Z-transformation

is applied. The coverage rates of the confidence intervals based on the raw estimates

and transformed estimates yield almost identical results and are close to nominal

coverage rate of confidence intervals. The coverage rates of the confidence intervals

based on the raw estimates are accurate compared to the nominal coverage rates in

most combinations, probably due to the slight underestimation of standard error.

The Z-transformed estimates do not give more accurate coverage rates. In summary,

using the Z-transformation does not appear to be beneficial. The main cause of this

behavior is that the distributions for some CC estimates are skewed.

3.5.2 Correlation estimates vs. sample size and number of replicates

In the second simulation study, we are interested in the relationship between

the correlation estimates and the sample size, as well as the number of repeated

measurements for each observer on each subject. Simulations are performed for small

(N = 10), moderate (N = 50), large (N = 100) and extra large sample sizes (N =

200), considering scenarios with five (T = 5), ten (T = 10), and twenty (T = 20)

repeated measurements for each observer per subject. Assume that there is a strong

positive correlation among random effects of each subject, a large within-observer

variability, and a small mean change among the measurements of each observer.

Specifically, the fixed effect parameters are set to be (β10, β11, β12, β20, β21, β22) =

(0.1, 0.1, 0.1, 0.1, 0.1, 0.1), the shape parameter in the fitted gamma distribution is
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set to be ν = 20, and the covariance matrix of the random effects is set to be

D =

 1 0.9

0.9 1

 .

The combinations generated are shown in Table 3.3. The first column presents the

number of combinations. The second and third columns present the sample size and

the number of replicates used in the simulation. The fourth, fifth, sixth and seventh

rows present the theoretical intra-CC 1, theoretical intra-CC 2, theoretical inter-CC

and theoretical total-CC, respectively. Notice that the values of theoretical intra-CC

1, theoretical intra-CC 2 and theoretical total-CC are same over all combinations,

while the values of theoretical inter-CC vary as the number of replicates.

Number of Number of Theoretical Theoretical Theoretical Theoretical
No. Subjects Replicates Intra-CC 1 Intra-CC 2 Inter-CC Total-CC
1 10 5 0.7598 0.9267 0.8174 0.7128
2 10 0.7598 0.9267 0.8330 0.7128
3 20 0.7598 0.9267 0.8412 0.7128
4 50 5 0.7598 0.9267 0.8174 0.7128
5 10 0.7598 0.9267 0.8330 0.7128
6 20 0.7598 0.9267 0.8412 0.7128
7 100 5 0.7598 0.9267 0.8174 0.7128
8 10 0.7598 0.9267 0.8330 0.7128
9 20 0.7598 0.9267 0.8412 0.7128
10 200 5 0.7598 0.9267 0.8174 0.7128
11 10 0.7598 0.9267 0.8330 0.7128
12 20 0.7598 0.9267 0.8412 0.7128

Table 3.3: Simulated Combinations in Simulation Study 2.

The simulation results based on a thousand runs are reported in Table 3.4. Similar

to Table 3.2, the third column and fourth column present the relative biases of the

point estimates and standard errors, which evaluate the robustness and the precision

of the estimates, respectively. The relative biases of the estimates of the inter-CC and
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total-CC in combinations 3 and 8 are not defined because the theoretical correlations

are zero in these cases. The fifth column shows the mean square error and the sixth

column shows the p-values in the Shapiro-Wilk test for normality. The coverage rates

of 95% confidence intervals built by assuming asymptotic normality and by Fisher’s

Z-transformation are shown in the seventh and eighth columns.

These results indicate that most of CC estimates tend to underestimate. It can

also be found that the biases of CC estimates decrease as the number of subjects

increases. In other words, the CC estimates tend to be unbiased with larger sam-

ple. It is worth notice that for larger sample sizes, almost all CC estimates relative

biases are lower than 5%, which indicates that CC estimates are very close to the

theoretical values. Though the CC estimates are sensitive to the sample size, they

are not sensitive to the number of replicates. Differing the number of replicates does

not have noteworthy impact on the CC estimation. On the other hand, appreciable

differences are observed between the standard error and the standard deviation of the

estimates when the sample size is small. In most combinations, the standard error is

underestimated by the standard deviation of estimates. Similar to the relative bias

of the point estimate, the relative bias of the standard error decreases as the sample

size increases. The estimated mean standard errors are very close to the empirical

standard deviations when the sample size is greater than 50. However, the number of

replicates of each subject has no influence on the standard error estimates. As seen

in the table, MSE decreases as the sample size increases. MSE does not change as the

number of replicates increases. MSE has the same trend as the relative biases of the

point estimate and standard error since it is the combination of these measures. The

normal approximation of these estimates is evaluated in terms of the Shapiro-Wilk

normality test for both raw estimates and Z-transformed estimates. For all raw esti-

mates, the p-values in the Shapiro-Wilk normality test are very small, indicating the
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S.W. S.W.
Std Err P-value P-value CI CI

Est. Est. for for Coverage Coverage
Relative Relative Raw Trans. (Asym. (Z-

No. Index Bias % Bias % MSE Est. Est. normal)% trans.)%
1 Intra-CC 1 -10.5 -2.08 0.045412 <0.0001 <0.0001 86.0 83.4

Intra-CC 2 -1.31 -15.95 0.001357 <0.0001 <0.0001 91.2 87.3
Inter-CC -3.20 -3.14 0.020257 <0.0001 0.0012 89.1 89.9
Total-CC -7.00 -5.99 0.028688 <0.0001 0.1188 88.7 86.3

2 Intra-CC 1 -12.41 -15.25 0.051842 <0.0001 <0.0001 85.9 79.9
Intra-CC 2 -1.5 -20.75 0.001291 <0.0001 <0.0001 94.1 88.0
Inter-CC -1.85 -13.81 0.015465 <0.0001 <0.0001 88.6 91.2
Total-CC -7.68 -15.01 0.028289 <0.0001 0.3715 89.8 86.5

3 Intra-CC 1 -12.25 -6.61 0.043640 <0.0001 <0.0001 87.4 83.5
Intra-CC 2 -1.68 -21.53 0.001287 <0.0001 <0.0001 96.4 90.6
Inter-CC -0.79 -13.48 0.010901 <0.0001 <0.0001 86.3 92.8
Total-CC -7.39 -9.96 0.024037 <0.0001 0.0331 91.0 86.5

4 Intra-CC 1 -3.13 -5.63 0.010075 <0.0001 0.0069 92.3 91.7
Intra-CC 2 -0.16 -4.09 0.000130 <0.0001 0.0041 96.3 94.5
Inter-CC -0.25 -2.42 0.003215 <0.0001 <0.0001 93.0 94.6
Total-CC -1.46 -3.17 0.005179 <0.0001 0.0019 93.2 93.3

5 Intra-CC 1 -3.11 -8.36 0.009485 <0.0001 0.0009 91.0 89.9
Intra-CC 2 -0.28 -3.30 0.000106 <0.0001 <0.0001 96.8 95.9
Inter-CC -0.18 -1.48 0.002147 <0.0001 <0.0001 93.5 95.5
Total-CC -1.67 -5.51 0.004688 <0.0001 0.2998 93.9 92.9

6 Intra-CC 1 -3.18 -5.10 0.008403 <0.0001 <0.0001 92.1 90.9
Intra-CC 2 -0.29 -5.43 0.000098 <0.0001 <0.0001 95.0 92.8
Inter-CC -0.06 -0.76 0.001602 <0.0001 0.1332 94.1 95.9
Total-CC -1.73 -2.39 0.004047 <0.0001 0.3236 94.7 93.2

7 Intra-CC 1 -1.62 -2.54 0.004640 <0.0001 0.2406 94.4 94.0
Intra-CC 2 -0.10 -2.24 0.000061 <0.0001 0.0031 95.3 94.4
Inter-CC 0.14 0.11 0.001500 <0.0001 0.0143 94.3 95.2
Total-CC -0.52 1.80 0.002314 <0.0001 0.0737 94.6 95.4

8 Intra-CC 1 -1.50 -0.51 0.004003 <0.0001 0.0038 93.9 94.0
Intra-CC 2 -0.13 -2.10 0.000047 <0.0001 <0.0001 95.1 94.3
Inter-CC -0.10 -2.43 0.001091 <0.0001 0.0767 93.5 94.9
Total-CC -0.81 -0.92 0.002123 <0.0001 0.7810 94.9 93.8

9 Intra-CC 1 -1.13 -2.77 0.003804 <0.0001 0.0259 94.0 94.2
Intra-CC 2 -0.14 -3.31 0.000043 <0.0001 <0.0001 95.6 94.5
Inter-CC -0.10 -3.19 0.000849 <0.0001 0.0524 94.5 94.5
Total-CC -0.71 -3.15 0.001999 <0.0001 0.8074 93.9 94.2

10 Intra-CC 1 -0.87 -3.84 0.002367 <0.0001 0.3336 94.0 93.8
Intra-CC 2 -0.04 0.07 0.000028 0.0002 0.4347 95.5 95.1
Inter-CC -0.10 -6.45 0.000875 0.0236 0.0083 92.5 93.1
Total-CC -0.43 -6.52 0.001387 <0.0001 0.8045 93.7 93.6

11 Intra-CC 1 -0.76 0.74 0.001930 0.0232 0.0020 94.6 94.4
Intra-CC 2 -0.05 -1.16 0.000022 0.001 0.5379 95.1 94.9
Inter-CC -0.02 2.98 0.000488 0.0056 0.0092 95.2 95.9
Inter-CC -0.37 1.30 0.001006 0.1236 0.1076 95.6 95.8

12 Intra-CC 1 -0.75 2.79 0.001734 0.0141 0.0010 95.6 96.3
Intra-CC 2 -0.07 -0.26 0.000019 <0.0001 0.0912 95.4 95.2
Inter-CC 0.01 0.92 0.000388 0.0384 0.0205 94.5 95.7
Total-CC -0.38 1.46 0.000914 0.0973 0.5107 95.4 95.2

Table 3.4: The Relative Bias of the Point Estimate, the Relative Bias of the Standard
Errors, the Mean Square Error of the Estimates, P-value in Shapiro-Wilk Normality
Test, and the Confidence Interval Coverage Rate in Simulation Study 2.
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rejection of the normality assumption. However, for the Z-transformed estimates, p-

values increases as the sample size increases. The normal approximation is less likely

to be rejected with larger sample size. It appears that the Z-transformation signifi-

cantly improves the normal approximation in most combinations. Nevertheless, it is

well known that the normality test will detect even trivial deviations from normality

and usually give a significant result when the sample size is very large. Q-Q plots

and histograms are also built to analyze whether the normal assumption holds true.

They indicate that most of these CC estimates have symmetric and bell-shaped dis-

tributions, suggesting that the asymptotic approximation to normal is appropriate.

The coverage rates for both raw data and transformed data give very similar results.

The Z-transformation that attempts to improve the normal approximation does not

provide greater coverage rates. Both the raw estimates and Z-transformed estimates

underestimate the coverage rates in most combinations. This may be due to the fact

that the standard errors underestimate the standard deviations. The coverage rates

in many combinations do not reach 95 percent coverage and get worse as sample size

decreases. Nonetheless, the coverage rates in the combinations with larger samples

are above 90 percent.

It is noteworthy that when fitting the MGLMM, the optimization is not guaran-

teed to achieve convergence. With small sample and few replicates of each subject,

the model converge ratio among a thousand simulation runs is not as high as ex-

pected, but still has a high level of convergence. With the sample size N = 10 and

the number of replicates T = 5, the model converge ratio is around 73%. With the

sample size N = 10 and the number of replicates T = 10, the model converge ratio

is around 87%. Nevertheless, with larger sample size and more replicates of each

subject, the converge ratio rises to 100%.
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3.5.3 Extended correlation coefficients among multiple measurements

A simulation is conducted to assess the performance of the extended intra-CC,

inter-CC and total-CC. Measurements are from three different observers. The study

is carried out for different sample sizes (N = 50, 100) and different numbers of

replicated measurements (T = 10, 25) taken from each observer on each subject.

For each subject, the covariates x1,ijt and x2,ijt are generated independently from

the standard normal distribution, j = 1, 2, 3. The random effects bi = (bi1, bi2, bi3)
T

are generated from a trivariate normal distribution with mean zero and covariance

matrix D for each subject. Data is generated according to the correlated random

effects model as follow:

Yi1t|bi1 ∼ Poisson distribution with mean µi1t and variance µi1t

Yi2t|bi2 ∼ exponential distribution with mean µi2t and variance µ2
i2t

Yi3t|bi3 ∼ normal distribution with mean µi3t and variance σ2
N

log(µi1t) = β10 + β11x1,i1t + β12x2,i1t + bi1

log(µi2t) = β20 + β21x1,i2t + β22x2,i2t + bi2

µi3t = β30 + β31x1,i3t + β32x2,i3t + bi3

bi = (bi1, bi2, bi3)
T ∼ iid multivariate normal (0, D)

where D =


σ2
b1

ρb12σb1σb2 ρb13σb1σb3

ρb12σb1σb2 σ2
b2

ρb23σb2σb3

ρb13σb1σb3 ρb23σb2σb3 σ2
b3

.

For simplicity, the scale parameter in the normal distribution, σN , is set to be 1.

Simulation results are based on five hundred simulated datasets under each scenario

with the following parameter specifications are used: (β10, β11, β12, β20, β21, β22, β30,
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No. of No. of Theoretical Theoretical Theoretical Theoretical Theoretical
No. Sub. Rep. Intra-CC 1 Intra-CC 2 Intra-CC 3 Inter-CC Total-CC
1 50 10 0.7598 0.3873 0.5 0.6946 0.4022
2 25 0.7598 0.3873 0.5 0.7325 0.4022
3 100 10 0.7598 0.3873 0.5 0.6946 0.4022
4 25 0.7598 0.3873 0.5 0.7325 0.4022

Table 3.5: Simulated Combinations in Simulation Study 3.

β31, β32) = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), and the covariance matrix of the

random effects

D =


1 0.9 0.9

0.9 1 0.9

0.9 0.9 1


Table 3.5 summarizes the simulation combinations and the corresponding true

values. Only the extended inter-CCs are sensitive to the number of replicates. All

others would remain the same for all scenarios.

The point estimates and standard error of the extend intra-CC, inter-CC and

total-CC are calculated in each simulation run. The corresponding relative bias of

the point estimate, the relative bias of the standard error, the mean square error,

the p-values in the normality test and the coverage rate of 95% confidence intervals

built by assuming asymptotic normality and by Fishers Z-transformation based on

five hundred runs are reported in Table 3.6. There results demonstrate that there

are very slight bias in the point estimates of the extend intra-CCs, inter-CC and

total-CC. It tends underestimate more seriously when the sample size is smaller.

The corresponding relative biases of the standard error are not too big under all sce-

narios. MSEs in all combination are very small, indicating the estimations are good

in both accuracy and precision. The p-values of normality test show that the nor-

mal approximations is more appropriate when the sample size is larger. The normal

44



S.W. S.W.
Std Err P-value P-value CI CI

Est. Est. for for Coverage Coverage
Relative Relative Raw Trans. (Asym. (Z-

No. Index Bias % Bias % MSE Est. Est. normal)% trans.)%
1 Intra-CC 1 -2.72 -4.86 0.008669 <0.0001 0.0063 92.5 90.6

Intra-CC 2 -2.00 -3.89 0.001089 0.0001 0.0013 93.7 92.3
Intra-CC 3 -1.50 -0.03 0.003042 0.0418 0.5015 93.7 94.1
Inter-CC -0.07 -3.79 0.001645 0.0121 0.9955 93.7 93.7
Total-CC -1.57 -5.33 0.002107 0.0340 0.3547 93.3 92.1

2 Intra-CC 1 -3.41 -4.60 0.008284 <0.0001 0.0113 91.8 91.6
Intra-CC 2 -2.59 -1.43 0.000978 0.0026 0.0257 94.6 93.2
Intra-CC 3 -3.10 -8.26 0.003389 0.0109 0.1960 91.0 90.2
Inter-CC 0.14 0.24 0.000872 0.0002 0.1186 94.8 94.8
Total-CC -2.48 -4.73 0.001939 0.1091 0.5832 93.2 92.4

3 Intra-CC 1 -0.76 3.39 0.003577 0.0005 0.0081 96.6 95.6
Intra-CC 2 -0.55 5.62 0.000422 0.0501 0.1121 95.6 95.0
Intra-CC 3 -0.66 4.79 0.001380 0.0053 0.0938 95.2 95.0
Inter-CC 0.70 0.30 0.000730 0.0297 0.5195 94.4 94.8
Total-CC 0.27 5.27 0.000847 0.6893 0.7224 96.2 96.6

4 Intra-CC 1 -0.62 -0.12 0.003461 0.0020 0.0819 94.8 95.0
Intra-CC 2 -0.81 -2.44 0.000446 0.0003 0.0018 94.2 94.0
Intra-CC 3 -1.02 -3.26 0.001458 0.0037 0.0975 94.2 92.4
Inter-CC 0.19 -0.79 0.000428 0.0159 0.4556 94.8 94.8
Total-CC -0.40 -1.24 0.000863 0.0243 0.1804 94.8 95.2

Table 3.6: The Relative Bias of the Point Estimate, the Relative Bias of the Standard
Errors, the Mean Square Error of the Estimates, P-value in Shapiro-Wilk Normality
Test, and the Confidence Interval Coverage Rate in Simulation Study 3.

approximation is improved when the Z-transformation is applied. The confidence

interval coverage rates for raw estimates and Z-transformed estimate are very close

to the nominal coverage. In summary, the extend intra-CC, inter-CC and total-CC

perform very well in multivariate generalized linear mixed model when the sample

size is moderately large, which is consistent with the result in Section 3.5.2.

3.6 Case Example : Data From The Osteoarthritis Initiative

The data used to illustrate the methods introduced in the previous sections come

from the Osteoarthritis Initiative (OAI) database, which is available for public access

at http://www.oai.ucsf.edu/ and described in detail by McCulloch (2008). OAI is a

cohort study of the causations of knee osteoarthritis for more than four thousand peo-
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ple aged 45 and above. Briefly, persons at high risk for developing knee osteoarthritis

are observed at baseline, 12 months, 24 months, 36 months and 48 months, resulting

in five measurements per individual. The outcomes investigated here are the Western

Ontario and McMaster Universities (WOMAC) disability scores and the number of

workdays missed. WOMAC is a numeric score used to rate patients’ pain, stiffness,

and physical function with hip and/or knee osteoarthritis, while the number of days

of missed work due to knee pain, aching or stiffness in the past 3 months is a count

variable. In this study, we use the average of the WOMAC scores for the left and

right knee as the final WOMAC score. We restrict our study to the complete data,

which reduces our data to 1499 individuals. The primary objective of the study is to

investigate the relationship between the WOMAC score and the number of days of

missed work in the past 3 months. The scatter plot of these two outcomes is given

in Figure 3.1, indicating that they seem to be uncorrelated.
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Figure 3.1: Scatter Plot of OAI Data.
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Male Female
intraclass CC 1 0.3646 0.3720
intraclass CC 2 0.0060 0.0265
sample inter CC 0.1590 0.1305
sample total CC 0.0857 0.0697

Table 3.7: Sample Correlation for Male and Female in OAI Data.

The intraclass correlation coefficients, the sample correlation coefficients based

on the average of replicated measurements, and the sample correlation coefficients

based on individual measurements for male and female are presented in Table 3.7,

showing that these two outcomes are not highly correlated.

Three predictors under consideration are the age, sex and body mass index (BMI).

Age and BMI are continuous variables, while sex is a categorical variable. We assume

that these covariates are independent, and the covariates age and BMI are normally

distributed. Same as McCulloch, we jointly model the log transformation of the

WOMAC scores plus one and the number of days of missed work in the past 3

months. However, to consider overdispersion in the count data, negative binomial

distribution is used. Thus, the multivariate generalized linear mixed model of normal-

negative binomial distributions is fitted with age, sex and BMI as fixed effects, and

subject as random effect. More specifically, the model is given by

WOMACi1t|bi ∼ normal with mean µi1t and variance σ2
N

MISSWi2t|bi ∼ negative binomial with mean µi2t and variance µi2t

(
1 +

1

δN

)
µi1t = β10 + β11AGEit + β12SEX i + β13BMI it + bi1

log(µi2t) = β20 + β21AGEit + β22SEX i + β23BMI it + bi2

bi = (bi1, bi2)
T ∼ iid multivariate normal(0, D)
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WOMAC MISSW

Std Std
Effects Para. Est. Err Para. Est. Err
Fixed effect parameters
Intercept β10 -0.4511 0.1845 β20 -10.9993 1.8395
AGE β11 -0.0024 0.0026 β21 -0.0261 0.0247
SEX β12 0.2100 0.0390 β22 0.2211 0.3532
BMI β13 0.0513 0.0038 β23 0.2284 0.0361
Covariance structure parameters

σb1 0.6365 0.0165 σb2 3.3212 0.2925
ρb 0.5103 0.0526
σN 0.8079 0.0148 δ 0.0581 0.0090

Table 3.8: Parameter Estimates and Standard Errors of MGLMM for OAI Data.

where the covariance matrix D =

 σ2
b1 ρbσb1σb2

ρbσb1σb2 σ2
b2

.

Using the NLMIXED procedure in SAS, the parameter estimates and standard

errors are given in Table 3.8. The estimate of ρb is 0.5103, indicating that there is a

moderate positive correlation between the subject-specific random effects.

Since sex is a categorical variable, the marginal expectation of the conditional

mean over the covariates should be calculated in different genders separately. Thus

the intra-CC, inter-CC and total-CC are estimated in different genders. The esti-

mated CCs, standard errors, and corresponding 95% confidence intervals are reported

in Table 3.9. Since sex effect is not significant for MISSW, the CC estimates for dif-

ferent genders based on the normal-negative binomial model are almost identical.

For both males and females, the estimated inter-CC and total-CC are very close to

zero, which means that the two outcomes are not strongly correlated though there is

a moderate positive correlation between the subject-specific random effects. These

results are consistent with what we expected from the scatter plot. The values of

the estimated inter-CC and total-CC are lower than the sample inter-CC and total-
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Male Female

Std Std
Index Estimate Error 95% CI Estimate Error 95% CI
Intra-CC 1 0.3340 0.0127 (0.3090 , 0.3590) 0.3340 0.0127 (0.3090 , 0.3590)
Intra-CC 2 0.0549 0.0080 (0.0391 , 0.0706) 0.0549 0.0080 (0.0391 , 0.0706)
Inter-CC 0.0002 0.0003 (-0.0003, 0.0007) 0.0002 0.0003 (-0.0003, 0.0007)
Total-CC 0.0001 0.0001 (-0.0001, 0.0002) 0.0001 0.0001 (-0.0001, 0.0002)

Table 3.9: Estimated CC for Male and Female in OAI Data.

CC. In conclusion, there is no strong association between the Western Ontario and

McMaster Universities (WOMAC) disability scores and the numbers of workdays

missed in the past 3 months.

3.7 Conclusion

In this study, three different types of correlation coefficients which measure var-

ious linear relationship between replicated measurements from different observers

are proposed. The intra-CC measures the within-observer correlation, the inter-CC

measures the between-observer correlation, and the total-CC measures the overall

correlation. These indices are very useful for measuring correlation in clustered

mixed data. The intra-CC, inter-CC and total-CC proposed in this study give more

flexibility since they allow negative correlations, and can be extended when there

exist more than two observers.
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4. APPROXIMATE UNIFORM SHRINKAGE PRIOR FOR A MULTIVARIATE

GENERALIZED LINEAR MIXED MODEL

4.1 Introduction

The multivariate generalized linear mixed models (MGLMM) are used for jointly

modeling the clustered mixed outcomes obtained when there is more than one re-

sponse repeatedly measured on each individual in scientific studies. The Bayesian

methods are widely used techniques for analyzing MGLMM. The need of nonin-

formative priors arises when there is insufficient prior information on the model

parameters. The main purpose of this study is to propose an approximate uniform

shrinkage prior for the random effect variance components in the Bayesian analysis

for the MGLMM. This prior is an extension of the approximate uniform shrinkage

prior proposed by Natarajan and Kass (2000).

The rest of this chapter is organized as follows. In Section 4.2, the approximate

uniform shrinkage prior for multivariate generalized linear mixed model is derived.

Illustrative examples are also provided in this section. Section 4.3 presents properties

of the approximate uniform shrinkage prior distribution and its corresponding poste-

rior distribution. Section 4.4 explains how the posterior simulation is performed. In

Section 4.5, the performance of the approximate uniform shrinkage prior is evaluated

by a simulation study. A case example is provided to illustrate the application of the

approximate uniform shrinkage prior in Section 4.6. Lastly, Section 4.7 concludes

with implications for future research.
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4.2 Approximate Uniform Shrinkage Prior for MGLMM

4.2.1 Model

The MGLMM model in the Chapter 2 can be re-expressed as:

y∗|b∗ ∼
N∏
i=1

Ti∏
t=1

exp

{
L∑

j=1

yijtθijt − aj(θijt)

ϕj

}

g∗(µ∗) = X∗β∗ + Z∗b∗

b∗ ∼ N(0, D∗).

Here the multivariate measurements are expressed as

y∗ = (y111, · · · , yN1TN
, · · · , y1L1, · · · , yNLTN

)T ; the conditional mean can be expressed

as µ∗ = (µ111, · · · , µN1TN
, · · · , µ1L1, · · · , µNLTN

)T ; the link function g∗ can be ex-

pressed as g∗(t) = (g1(t111), · · · , g1(tN1TN
), · · · , gL(t1L1), · · · , gL(tNLTN

))T ; the fixed

effect parameter can be expressed as β∗ = (β11, · · · , β1p1 , · · · , βLpL)
T ; the covariate

matrix can be rewritten as X∗ =
⊕L

j=1X
∗
j = diag(X∗

1 , · · · , X∗
L), where X

∗
j is the ma-

trix of covariates for the j-th observer and
⊕

is the direct sum; the known random

effects design matrix can be expressed as Z∗ =
⊕L

j=1

⊕N
i=1 Z

∗
ij, where Z

∗
ij is the design

matrix; the random effects can be expressed as b∗ = (b1,11, · · · , bq,11, · · · , bq,N1, · · · ,

b1,1L, · · · , bq,1L, · · · , bq,NL)
T ; the covariance matrix of the random effect is D∗ =

[D∗
ij]i=1,··· ,L;j=1,··· ,L, where D∗

ij =
⊕N

k=1 σij. We assume the prior distribution of β

is uniform distribution in this study.
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4.2.2 Motivation

We will later show that the weight matrix for the prior mean of the random effect

in the approximate uniform shrinkage estimate of the random effect is equal to

S =

(
D−1 +

1

N

N∑
i=1

ZT
i WZi

)−1(
1

N

N∑
i=1

ZT
i WZi

)

where D is the covariance matrix of the random effect, W is the GLM weight matrix

(McCullagh and Nelder, 1989), and Zi is the design matrix for the random effects of

subject i. S defined above is a function of D. To obtain the approximate uniform

shrinkage prior, we assume that πS(s) is componentwise uniformly distributed. Then

using the transformation theorem, we find that D has probability density function,

πD(D) ∝

∣∣∣∣∣ILq +
(

1

N

N∑
i=1

ZT
i WZi

)
D

∣∣∣∣∣
−2q−1

.

This is defined as the approximate uniform shrinkage prior forD. Since only positive-

semidefinite matrix can be a covariance matrix, we define the approximate uniform

shrinkage prior distribution on real-valued positive-definite matrices.

4.2.3 Derivation of weight matrix

The weight matrix S is obtained by finding the approximate uniform shrinkage

estimate b̂∗ (Breslow and Clayton, 1993), which can be derived from the likelihood

function for the parameters β and D :

L(β,D) ∝ |D|−
N
2

∫
exp

[
−

L∑
j=1

∑N
i=1

∑Ti

t=1 {yijtθijt − aj(θijt)}
2ϕj

− 1

2

N∑
i=1

bTi D
−1bi

]
db.

Since the quasi-likelihood method generates efficient estimators without making
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precise distribution assumptions, it is considered here to estimate the parameters in

the above model. The integrated quasi-likelihood function is

L(β,D) ∝ |D∗|−
1
2

∫
exp

{
−

L∑
j=1

∑N
i=1

∑Ti

t=1 dj(yijt;µijt)

2ϕj

− 1

2
b∗TD−1b∗

}
db

where dj(y;µ) = −2
∫ µ

y
y−µ
a′′j (u)

du is the quasi-deviance function (McCullagh and Nelder,

1989). Then the log quasi-likelihood function is

ql(β,D) ≈ −1

2
log |D∗|+ log

∫
e−κ(b∗)db∗

where κ(b∗) =
∑L

j=1

∑N
i=1

∑Ti
t=1 dj(yijt;µijt)

2ϕj
+ 1

2
b∗TD−1b∗.

Laplace’s method can be used for approximation of the higher dimensional inte-

gral in the likelihood based on second-order Taylor series expansion, which gives

ql(β,D) ≈ −1

2
log |INLq + Z∗TW ∗Z∗D∗| −

L∑
j=1

∑N
i=1

∑Ti

t=1 d1(yijt;µijt)

2ϕj

− 1

2
b̃∗

T
D−1b̃∗

where b̃∗ = b̃(α, θ) is chosen such that κ′(b̃∗) = 0 and

W ∗ = diag
(
[ϕ1a

′′
1(µ111){g′1(µ111)}2]−1

, · · · , [ϕLa
′′
L(µN1TN

){g′1(µNLTN
)}2]−1

)
is the di-

agonal block GLM weight matrix.

Since ql(β,D) may not result in a closed form solution and cannot be used to esti-

mate the variance-covariance structure, the penalized quasi-likelihood (PQL) (Bres-

low and Clayton, 1993; Green, 1987) is developed. Assuming that the GLM iterative

weights vary very slowly as a function of the mean, the penalized quasi-likelihood is

defined by adding a penalty function to the quasi-likelihood of the form −1
2
b∗TD−1b∗.
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Therefore, the penalized quasi-likelihood is equal to

PQL = −
L∑

j=1

∑N
i=1

∑Ti

t=1 dj(yijt;µijt)

2ϕj

− 1

2
b∗TD−1b∗.

The maximum penalized quasi-likelihood equations are implemented by differen-

tiating PQL with respect to β∗ and b∗. Using Fisher scoring algorithm, these score

equations are modified to an iterative weighted least squares problem (Green, 1987;

Harville, 1977) :

X∗TW ∗X∗ X∗TW ∗Z∗D∗

Z∗TW ∗X∗ I + Z∗TW ∗Z∗D∗


β∗

ν

 =

X∗TW ∗Y 0∗

Z∗TW ∗Y 0∗


where b∗ = D∗ν, Y 0∗ is the working vector and W ∗ is the diagonal block GLM

weight matrix obtained by replacing b∗ with 0. Solving this equation, we can get

β̂∗ =
(
X∗TV ∗−1X∗)−1

X∗TV ∗−1Y 0∗ and b̂∗ = D∗Z∗TV ∗−1(Y 0∗−X∗β̂∗), where V ∗ =

W ∗−1 + Z∗D∗Z∗T . Under this model, the prior mean of b∗ is a vector of zeros, 0,

and a frequentist estimate of b∗ is D∗Z∗TW ∗(Y 0∗ −X∗β̂∗) . Thus the approximate

shrinkage estimate b∗ can be expressed as a weighted average of its prior mean and

frequentist estimate and has the form

b̂∗ = D∗Z∗T (W ∗−1 + Z∗D∗Z∗T )−1
(Y 0∗ −X∗β̂∗)

= S∗ · 0 + (INLq − S∗) ·D∗Z∗TW ∗(Y 0∗ −X∗β̂∗)

where S∗ =
(
D∗−1 + Z∗TW ∗Z∗)−1

Z∗TW ∗Z∗ is the weight given to the approximate

shrinkage estimate and the k-th row in S∗ denotes the weights on the prior mean

of the k-th element of b∗. S∗ amounts to a shrinkage factor, and the approximate

shrinkage estimate shrinks the frequentist estimate toward the prior mean.
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Notice that the weight matrix S∗ is a NLq×NLq block matrix comprising weights

for every subject and its dimensionality depends on the number of subjects, which

may result in high-dimensional problems. Therefore, we define an overall weight

matrix

S =

(
D−1 +

1

N

N∑
i=1

ZT
i WZi

)−1(
1

N

N∑
i=1

ZT
i WZi

)
.

4.2.4 Illustrative examples: bivariate and trivariate cases

To illustrate the approximate uniform shrinkage prior, a bivariate clustered mixed

model with random intercept, a bivariate clustered mixed model with both random

intercept and random slope, and a trivariate clustered mixed model with random

intercept are considered. The detailed derivations of their approximate uniform

shrinkage priors are provided in the Appendix. The extension to higher dimensional

models or models with more than one random slope is quite straightforward.

Example 1: a bivariate clustered mixed model with random intercept

For simplicity, a bivariate clustered mixed model with random intercept is taken into

account first. A bivariate clustered mixed model, where the responses are assumed to

be conditionally independent from a Poisson distribution and a gamma distribution,

is given below :

Yi1t|bi1 ∼ Poisson distribution with mean µi1t and variance µi1t

Yi2t|bi2 ∼ gamma distribution with mean µi2t and variance µ2
i2t/ν

log(µi1t) = β10 + β11x1,i1t + · · ·+ β1p1xp1,i1t + bi1

log(µi2t) = β20 + β21x1,i2t + · · ·+ β2p2xp2,i2t + bi2

bi = (bi1, bi2)
T ∼ iid multivariate normal (0, D)
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where D = [σij]i=1,2; j=1,2, i = 1, · · · , N and t = 1, · · · , Ti. Therefore, the approxi-

mate uniform shrinkage prior is

πD(D) ∝

{[
1 +

1

N

N∑
i=1

(
Ti∑
t=1

µi1t

)
σ11

][
1 +

1

N

N∑
i=1

Tiν · σ22

]

−

[
1

N

N∑
i=1

(
Ti∑
t=1

µi1t

)
· 1

N

N∑
i=1

Tiν · σ2
12

]}−3

.

Example 2: a bivariate clustered mixed model with both random inter-

cept and random slope

Consider the bivariate clustered mixed model with both random intercept and ran-

dom slope as follows :

Yi1t|bi1 ∼ Poisson distribution with mean µi1t and variance µi1t

Yi2t|bi2 ∼ gamma distribution with mean µi2t and variance µ2
i2t/ν

log(µi1t) = β10 + β11x1,i1t + · · ·+ β1p1xp1,i2t + bi10 + bi11zit

log(µi2t) = β20 + β21x1,i2t + · · ·+ β2p2xp2,i2t + bi20 + bi21zit

bi = (bi10, bi11, bi20, bi21)
T ∼ iid multivariate normal (0, D)

where D = [σij]i=1,··· ,4; j=1,··· ,4, i = 1, · · · , N and t = 1, · · · , Ti. In this case, the

approximate uniform shrinkage prior can be shown to be

πD(D) ∝

∣∣∣∣∣∣∣∣∣


1 + 1

N

∑N
i=1 S1(i)σ11

1
N

∑N
i=1 S1(i)σ12

1
N

∑N
i=1 S1(i)σ13

1
N

∑N
i=1 S1(i)σ14

1
N

∑N
i=1 S2(i)σ21 1 + 1

N

∑N
i=1 S2(i)σ22

1
N

∑N
i=1 S2(i)σ23

1
N

∑N
i=1 S2(i)σ24

1
N

∑N
i=1 Tiνσ31

1
N

∑N
i=1 Tiνσ32 1 + 1

N

∑N
i=1 Tiνσ33

1
N

∑N
i=1 Tiνσ34

1
N

∑N
i=1 Tiz

2
i1tνσ41

1
N

∑N
i=1 Tiz

2
i1tνσ42

1
N

∑N
i=1 Tiz

2
i1tνσ43 1 + 1

N

∑N
i=1 Tiz

2
i1tνσ44


∣∣∣∣∣∣∣∣∣
−5

where S1(i) =
∑Ti

t=1 µi1t and S2(i) =
∑Ti

t=1 z
2
i1tµi1t.
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Example 3: a trivariate clustered mixed model with random intercept

Assume measurements are repeatedly taken from three different observers, and as-

sume measurements from the observers follow a Poisson, gamma and normal distri-

bution, respectively. The model is shown below :

Yi1t|bi1 ∼ Poisson distribution with mean µi1t and variance µi1t

Yi2t|bi2 ∼ gamma distribution with mean µi2t and variance µ2
i2t/ν

Yi3t|bi3 ∼ normal distribution with mean µi3t and variance σ2
N

log(µi1t) = β10 + β11x1,it + · · ·+ β1p2xp1,it + bi1

log(µi2t) = β20 + β21x1,it + · · ·+ β2p2xp2,it + bi2

µi3t = β30 + β31x1,it + · · ·+ β3p3xp3,it + bi3

bi = (bi1, bi2, bi3)
T ∼ iid multivariate normal (0, D)

where D = [σij]i=1,··· ,3; j=1,··· ,3, i = 1, · · · , N and t = 1, · · · , Ti. Therefore, the

approximate uniform shrinkage prior is

πD(D) ∝

∣∣∣∣∣∣∣∣∣∣


1 + 1

N

∑N
i=1 S1(i)σ11

1
N

∑N
i=1 S1(i)σ12

1
N

∑N
i=1 S1(i)σ13

1
N

∑N
i=1 Tiνσ21 1 + 1

N

∑N
i=1 Tiνσ22

1
N

∑N
i=1 Tiνσ23

1
N

∑N
i=1 Ti

1
σ2
N
σ31

1
N

∑N
i=1 Ti

1
σ2
N
σ32 1 + 1

N

∑N
i=1 Ti

1
σ2
N
σ33


∣∣∣∣∣∣∣∣∣∣

−3

where S1(i) =
∑Ti

t=1 µi1t.

4.3 Properties of the Approximate Uniform Shrinkage Prior

Several properties of the approximate uniform shrinkage prior will be shown in

this section. First, we prove that the approximate uniform shrinkage prior distribu-

tion proposed in Section 4.2 is a probability density function. Furthermore, Natara-

jan and Kass (2000) have shown that in the univariate GLMM, the approximate
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uniform shrinkage prior is proper and leads to a proper posterior under some circum-

stances. In this section, we will show the extended approximate uniform shrinkage

in the multivariate GLMM is prior. We will also define sufficient conditions where

the corresponding posterior is proper. Some of the following proofs adjust the proofs

in the appendix in Natarajan and Kass.

Theorem 1. The approximate uniform shrinkage prior in the MGLMM is a proba-

bility density function.

Proof. It has been shown in Section 4.2 that the approximate uniform shrinkage prior

is

πD(D) ∝

∣∣∣∣∣ILq +
(

1

N

N∑
i=1

ZT
i WZi

)
D

∣∣∣∣∣
−2q−1

where each matrix D is a positive definite matrix.

Denote πD(D) = C |ILq + AD|−2q−1, where C is a constant and

A = 1
N

∑N
i=1 Z

T
i WZi. Since A is a positive diagonal matrix, there exists a diagonal

matrix A1/2 such that A = (A1/2)2 and (A1/2)T = A1/2. For any column vector x of

Lq real numbers and y = A1/2x, xT (A1/2)TDA1/2x = yTDy > 0 since D is positive

definite. Thus A1/2DA1/2 is positive definite and thus ILq + A1/2DA1/2 is positive

definite, i.e.,
∣∣ILq + A1/2DA1/2

∣∣ > 0. According to Sylvester’s determinant theorem,

|ILq + AD| =
∣∣ILq + A1/2DA1/2

∣∣ > 0. Hence, |ILq + AD|−2q−1 > 0.

Let C = (
∫
|ILq + AD|−2q−1 dD)−1, a positive constant. C is finite since∫

πD(D)dD < ∞, which will be proved in Theorem 2. Therefore,
∫
πD(D)dD = 1.

In addition, it can be seen that πD(D) = C |ILq + AD|−2q−1 > 0. Therefore πD(D)

is a probability density function.

Theorem 2. The approximate uniform shrinkage prior in the MGLMM is proper.

Proof. Consider the weight matrix S given to the prior mean in the shrinkage es-
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timate, which is defined in the previous section. Let R={ S: all principal minors

are less than one} and R1= {S: all first-order and second-order principal minors are

positive and less than one}, then R is a subset of R1. Hence,

∫
R

dS <

∫
R1

dS

=

∫ 1

0

· · ·
∫ 1

0

∏
i<j

∫
I
(
s2i,j ≤ si,isj,j

)
dsi,jds1,1 · · · ds2N,2N

= 2
2N(N−1)

2

2N∏
i=1

∫
s

2N−1
2

i,i dsi,i < ∞

Thus, a uniform prior for S is integrable. Then the approximate uniform shrinkage

prior πD(D) is integrable. That is,
∫
πD(D)dD < ∞. Therefore, we can conclude

that the approximate uniform shrinkage prior in the MGLMM is proper.

Theorem 3. Assume the data follows a MGLMM. Also assume that β and D are a

priori independent, and the prior distribution of β is uniform. If there exists p full

rank vectors xT
k , where k = 1, · · · , p, such that

L =

∫ ∫ ∏
k

∫ ∞

−∞

∫ ∞

−∞
f(yk|r1,k, r2,k, b)dr1,kdr2,kf(b|D)dbπ(D)dD < ∞,

where r1,k = xT
k β1 and r2,k = xT

k β2, then the posterior distribution corresponding to

the approximate uniform shrinkage prior for D is proper.

Proof. First we can show that the marginal probability density function of the data

m(y) is finite. Assume there exist r1,k = xT
k β1 and r2,k = xT

k β2 for any p full rank

design vectors, then the Jacobian of the transformation is |J | = (det(X∗))−1, where
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X∗ is a p× p full rank matrix with rows xT
k . Then,

m(y) =

∫ ∫ ∫ N∏
i=1

2∏
j=1

Ti∏
t=1

f(yijt|β, bi)f(bi|D)dbidβπD(D)dD

∝|J |
∫ ∫ ∫ ∫

f(yk|rk, b)dr1,kdr2,kf(bi|D)dbiπD(D)dD

∝ L < ∞

Notice that the second equation holds since individual components in the likelihood

are bounded and thus can be ignored. Hence, m(y) is bounded above. Since the

joint posterior distribution π(β,D) is proper if and only ifm(y) is finite, the posterior

distribution corresponding to the approximate uniform shrinkage prior forD is proper

when the prior distribution for β is uniform.

Corollary 4. The posterior distribution corresponding to the uniform prior for β

and the approximate uniform shrinkage prior for D is proper if measurements of each

observer are assumed to follow, but not limited to, any of the following distributional

families: Poisson distribution with canonical link when yk corresponding to the full

rank xT
k are nonzero, gamma distribution with canonical link or log link, and Gaussian

distribution and inverse Gaussian distribution with canonical link.

Proof. First, assume the measurements are from a joint model of Poisson distribu-

tion with log link and gamma distribution with log link, then log(µ1,k) = xT
k β1 +

zT1,kb1,k and log(µ2,k) = xT
k β2 + zT2,kb2,k. Let r1,k = xT

k β1 and r2,k = xT
k β2, then

f(yk|r1,k, r2,k, bk) ∝ exp[− exp(r1,k+zT1,kb1,k)+y1,k(r1,k+zT1,kb1,k)−νy2,k exp{−(r2,k+

zT2,kb2,k)}− ν(r2,k + zT2,kb2,k)], where ν is the shape parameter in the gamma distribu-
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tion. Thus,

I =

∫ ∫ ∏
k

∫ ∞

−∞

∫ ∞

−∞
f(yk|rk, b)dr1,kdr2,kf(b|D)dbπ(D)dD

∝
∫ ∫ ∏

k

∫ ∞

−∞

∫ ∞

−∞
exp[− exp(r1,k + zT1,kb1,k) + y1,k(r1,k + zT1,kb1,k)

− νy2,k exp{−(r2,k + zT2,kb2,k)} − ν(r2,k + zT2,kb2,k)]dr1,kdr2,kf(b|D)dbπ(D)dD

∝
∫ ∫ ∏

k

∫ ∞

0

∫ ∞

0

exp{−s1,k + y1,k log(s1,k)} exp{−νy2,ks2,k + ν log(s2,k)}s1,ks2,k

ds1,kds2,kf(b|D)dbπ(D)dD

=

∫ ∫ ∏
k

∫ ∞

0

e−s1,ks
y1,k+1

1,k ds1,k

∫ ∞

0

e−νy2,ks2,ksν+1
2,k ds2,kf(b|D)dbπ(D)dD

where the transformation s1,k = exp(r1,k + zT1,kb1,k) and s2,k = exp{−(r2,k + zT2,kb2,k)}

are made in the last two equations. Then I is finite when yi2t are all nonzero. Thus,

the corresponding posterior distribution is proper.

The posterior distributions for measurements from a joint model of above men-

tioned distributions can be shown to be proper analogously.

4.4 Posterior Distributions Simulation

In this section the Markov chain Monte Carlo (MCMC) algorithm is outlined for

estimating the joint posterior distribution of fixed effect parameters and the variance

components of random effects. MCMC for univariate GLMM has been discussed in

several studies. For a detailed illustration of the approach, we refer to Zeger and

Karim (1991).

Suppose that all observations in the data set are independent. Assume that β and

D are a priori independent. Since MGLMM can be viewed as a hierarchical Bayesian

model, the Bayesian inference is obtained by estimating the full distribution of each

variable conditioned on all other variables. That is, we sample from f(β|y, b), f(D|b)
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and f(bi|β,D, y), respectively. The posterior distributions of β, D, and bi are given

as follows :

f(β|y, b) ∝

{
N∏
i=1

L∏
j=1

Ti∏
t=1

f(yijt|β, bi)

}
π(β)

f(D|b) ∝

{
N∏
i=1

L∏
j=1

f(bij|D)

}
π(D)

f(bi|y, β,D) ∝

{
L∏

j=1

Ti∏
t=1

f(yijt|β, bi)

}
exp

(
−1

2
bTi D

−1bi

)

Gibbs sampling can be used in estimating these desired posterior distributions.

Given the full conditional distributions, samples are iteratively generated and col-

lected after convergence to gain the empirical distribution and compute the posterior

summaries of interest.

Rejection sampling with normal proposal distribution based on maximum likeli-

hood estimation can be used to sample from the posterior of the fixed effects coef-

ficients βs and the random effects bi. However, the main computational difficulty is

that the posterior is no longer inverse Wishart distribution when the approximate

uniform shrinkage prior is used. Methods such as the Metropolis-Hastings algorithm

can be adopted here to generate realizations from f(D|b) and the inverse Wishart

distribution can be chosen as the proposal distribution.

4.5 Simulation Study

A simulation study is conducted in this section to evaluate the performance of

the approximate uniform shrinkage prior. Independent bivariate mixed outcomes

are considered. First for each subject, the fixed covariates xi1 and xi2 are generated

independently and identically from a standard normal distribution, and the random

effects bi = (bi1, bi2)
T are generated independently from a bivariate normal distribu-
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tion with mean 0 and covariance matrix D. Then given the random effect bi, the

measurements Yi1t and Yi2t are generated independently from a Poisson distribution

with mean µi1t and a gamma distribution with mean µi2t and variance µ2
i2t/ν, respec-

tively. For simplicity, the shape parameter in the fitted gamma distribution is set to

be ν = 1, which produces an exponential distribution. The multivariate generalized

linear model with the natural logarithm as the link functions is considered. That is,

we consider the following model :

Yi1t|bi1 ∼ Poisson distribution with mean µi1t

Yi2t|bi2 ∼ exponential distribution with mean µi2t

log(µi1t) = β10 + β11x1,i1t + β12x2,i1t + bi1

log(µi2t) = β20 + β21x1,i2t + β22x2,i2t + bi2

bi = (bi1, bi2)
T ∼ iid multivariate normal (0, D)

where D = [σij]i=1,2; j=1,2, i = 1, · · · , N and t = 1, · · · , Ti. The situation may arise

when two measurements are observed from each subject repeatedly in a longitudinal

study. In this study, we consider that each dataset consists of N = 50 or N = 100

clusters of size Ti = 1 or Ti = 7, respectively. The true values of the fixed effect

parameters are set to be β = (β10, β11, β12, β20, β21, β22) = (0.5, 0.3, 0.7, 0.5, 0.3, 0.7).

The covariance matrix of the random effects is set to be

D =

 1 0.9

0.9 1

 ,

which implies the strongly positive correlated random effects.

Assume an improper uniform prior distribution is placed on the fixed effect pa-

rameters β. The variance components of the random effects, D, is assumed to have an
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approximate uniform shrinkage prior. In addition, the common Bayesian conjugate

priors are also considered for comparison. The priors for the variance of the random

effect used here are inverse Wishart (2, 2I) and inverse Wishart (2, 2D). The simula-

tion studies are implemented using the MCMC procedure in SAS software. For each

situation, 500 MCMC runs are performed, each run consisting of 10000 iterations

after a burn-in of 3000 iterations. Moreover, only every 20th sample is collected.

Bayesian inferences are based on the 500 samples generated from the full posterior

distribution.

For each situation, the posterior summaries for each fixed effect parameters β and

variance components D are shown in Table 4.1, Table 4.2, Table 4.3 and Table 4.4,

respectively. In each table, the posterior mean is the average of 500 posterior means;

the posterior standard deviation is the average of 500 posterior standard deviations;

the standard error of posterior means is the standard error of 500 posterior means;

the relative bias is the ratio of the difference between the posterior mean and the true

value to the true value; HPD interval width is the average of 95% highest posterior

density interval widths in 500 simulations; the coverage rate is the percentage of

times that 95% HPD interval includes the true value.

As seen in these tables, most of the Bayesian estimates tend to estimate the

true value very well, especially when there are more replicates within each subject.

The posterior means are more sensitive to the number of replicates than to the

sample size. Posterior estimates with approximate uniform shrinkage prior have

the lowest bias among the three priors in many situations. On the other hand,

there is no significant difference between the standard error of posterior means and

average posterior standard deviations under all situations. Both the standard error

of posterior means and the average posterior standard deviations decrease not only

as the sample size increases but also as the number of replicates increases. The
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SE of HPE
True Post Post Post Relative Interval

Parameter Method Value Mean Sd Mean Bias Width Coverage
β10 AUS 0.5 0.4726 0.1014 0.1035 -5.50 % 0.3868 91.20 %

IW(2, 2I) 0.5 0.4918 0.1043 0.1027 -1.60 % 0.3983 93.40 %
IW(2, 2D) 0.5 0.4966 0.1032 0.1043 -0.70 % 0.3932 93.60 %

β11 AUS 0.3 0.3016 0.0227 0.0227 0.50 % 0.0873 95.00 %
IW(2, 2I) 0.3 0.3019 0.0228 0.0228 0.60 % 0.0876 95.00 %
IW(2, 2D) 0.3 0.3019 0.0227 0.0229 0.60 % 0.0871 94.20 %

β12 AUS 0.7 0.7002 0.0233 0.0240 0.00 % 0.0896 93.80 %
IW(2, 2I) 0.7 0.7006 0.0234 0.0240 0.10 % 0.0899 94.60 %
IW(2, 2D) 0.7 0.7005 0.0233 0.0241 0.10 % 0.0898 94.00 %

β20 AUS 0.5 0.4805 0.1024 0.1066 -3.90 % 0.3928 91.80 %
IW(2, 2I) 0.5 0.4958 0.1060 0.1049 -0.80 % 0.4069 94.00 %
IW(2, 2D) 0.5 0.5006 0.1046 0.1070 0.10 % 0.4005 93.20 %

β21 AUS 0.3 0.3006 0.0414 0.0414 0.20 % 0.1592 94.20 %
IW(2, 2I) 0.3 0.3005 0.0419 0.0418 0.20 % 0.1606 94.40 %
IW(2, 2D) 0.3 0.3004 0.0414 0.0412 0.10 % 0.1594 93.20 %

β22 AUS 0.7 0.6974 0.0413 0.0388 -0.40 % 0.1589 95.40 %
IW(2, 2I) 0.7 0.6980 0.0417 0.0391 -0.30 % 0.1605 95.80 %
IW(2, 2D) 0.7 0.6977 0.0412 0.0387 -0.30 % 0.1586 96.20 %

D11 AUS 1.0 1.0081 0.1626 0.1623 0.80 % 0.6122 94.40 %
IW(2, 2I) 1.0 1.0515 0.1710 0.1627 5.20 % 0.6445 95.60 %
IW(2, 2D) 1.0 1.0366 0.1676 0.1616 3.70 % 0.6306 95.80 %

D12 AUS 0.9 0.8981 0.1465 0.1427 -0.20 % 0.5534 93.80 %
IW(2, 2I) 0.9 0.8866 0.1508 0.1425 -1.50 % 0.5699 94.40 %
IW(2, 2D) 0.9 0.9264 0.1515 0.1429 2.90 % 0.5727 95.60 %

D22 AUS 1.0 0.9905 0.1637 0.1609 -0.90 % 0.6175 93.60 %
IW(2, 2I) 1.0 1.0437 0.1721 0.1598 4.40 % 0.6496 96.20 %
IW(2, 2D) 1.0 1.0211 0.1679 0.1602 2.10 % 0.6349 95.80 %

Table 4.1: Simulation Results for Fixed Effect Parameters and the Variance Com-
ponents of the Random Effects When Each Dataset Consists of 100 Clusters of Size
7.

approximate uniform shrinkage prior usually has the smallest HPD interval width,

resulting in the lower 95% HPD interval coverage probabilities. This may be due to

that its posterior standard deviations are smaller than the other priors. It indicates

that the approximate uniform shrinkage prior tends to be more conservative than

the other two priors. Since almost all of the coverage probabilities are higher than
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SE of HPE
True Post Post Post Relative Interval

Parameter Method Value Mean Sd Mean Bias Width Coverage
β10 AUS 0.5 0.4495 0.1476 0.1506 -10.10 % 0.5662 93.60 %

IW(2, 2I) 0.5 0.4573 0.1480 0.1459 -8.60 % 0.5677 95.00 %
IW(2, 2D) 0.5 0.4744 0.1453 0.1448 -5.10 % 0.5572 95.40 %

β11 AUS 0.3 0.2964 0.1295 0.1366 -1.20 % 0.4982 94.00 %
IW(2, 2I) 0.3 0.3047 0.1349 0.1423 1.60 % 0.5187 93.20 %
IW(2, 2D) 0.3 0.3007 0.1319 0.1383 0.20 % 0.5072 92.80 %

β12 AUS 0.7 0.6905 0.1328 0.1255 -1.40 % 0.5105 96.00 %
IW(2, 2I) 0.7 0.7108 0.1384 0.1315 1.50 % 0.5327 95.00 %
IW(2, 2D) 0.7 0.7062 0.1360 0.1293 0.90 % 0.5223 95.80 %

β20 AUS 0.5 0.4689 0.1570 0.1559 -6.20 % 0.6043 93.80 %
IW(2, 2I) 0.5 0.4573 0.1595 0.1554 -8.50 % 0.6148 94.40 %
IW(2, 2D) 0.5 0.4896 0.1558 0.1539 -2.10 % 0.5997 94.60 %

β21 AUS 0.3 0.2885 0.1539 0.1610 -3.80 % 0.5935 93.80 %
IW(2, 2I) 0.3 0.2910 0.1583 0.1631 -3.00 % 0.6104 92.80 %
IW(2, 2D) 0.3 0.2927 0.1542 0.1632 -2.40 % 0.5941 92.20 %

β22 AUS 0.7 0.6831 0.1537 0.1477 -2.40 % 0.5923 93.80 %
IW(2, 2I) 0.7 0.6906 0.1590 0.1489 -1.30 % 0.6131 94.60 %
IW(2, 2D) 0.7 0.6943 0.1547 0.1510 -0.80 % 0.5967 94.60 %

D11 AUS 1.0 1.0848 0.2535 0.2720 8.50 % 0.9358 90.00 %
IW(2, 2I) 1.0 1.1381 0.2704 0.2561 13.80 % 1.0028 94.00 %
IW(2, 2D) 1.0 1.0923 0.2540 0.2458 9.20 % 0.9443 93.20 %

D12 AUS 0.9 0.8855 0.2214 0.2273 -1.60 % 0.8341 90.20 %
IW(2, 2I) 0.9 0.8051 0.2273 0.2183 -10.60 % 0.8619 89.60 %
IW(2, 2D) 0.9 0.9459 0.2272 0.2143 5.10 % 0.8592 95.60 %

D22 AUS 1.0 1.0781 0.3091 0.3153 7.80 % 1.1325 93.40 %
IW(2, 2I) 1.0 1.1777 0.3289 0.2917 17.80 % 1.2264 96.00 %
IW(2, 2D) 1.0 1.0815 0.2969 0.2641 8.20 % 1.1047 96.80 %

Table 4.2: Simulation Results for Fixed Effect Parameters and the Variance Com-
ponents of the Random Effects When Each Dataset Consists of 100 Clusters of Size
1.

90%, the approximate uniform shrinkage prior still seems competitive.

Posterior inferences can also be evaluated in terms of the squared error risks.

Hence, in order to assess the accuracy and the precision of the estimators of β, D and

bi, Table 4.5 reports the risks E
{
(β̂ − β)T (β̂ − β)

}
, E
{
(D̂11 −D11)

2
}
, E
{
(D̂12 −D12)

2
}
,
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SE of HPE
True Post Post Post Relative Interval

Parameter Method Value Mean Sd Mean Bias Width Coverage
β10 AUS 0.5 0.4478 0.1445 0.1565 -10.40 % 0.5513 89.60 %

IW(2, 2I) 0.5 0.4874 0.1498 0.1583 -2.50 % 0.5736 92.40 %
IW(2, 2D) 0.5 0.4927 0.1489 0.1535 -1.50 % 0.5701 92.60 %

β11 AUS 0.3 0.2993 0.0321 0.0328 -0.20 % 0.1235 93.60 %
IW(2, 2I) 0.3 0.2996 0.0324 0.0329 -0.10 % 0.1249 94.20 %
IW(2, 2D) 0.3 0.2995 0.0323 0.0329 -0.20 % 0.1246 95.00 %

β12 AUS 0.7 0.7000 0.0333 0.0323 0.00 % 0.1281 95.00 %
IW(2, 2I) 0.7 0.7005 0.0334 0.0323 0.10 % 0.1288 94.60 %
IW(2, 2D) 0.7 0.7004 0.0333 0.0324 0.10 % 0.1283 94.80 %

β20 AUS 0.5 0.4629 0.1462 0.1589 -7.40 % 0.5613 89.00 %
IW(2, 2I) 0.5 0.4970 0.1527 0.1601 -0.60 % 0.5869 93.00 %
IW(2, 2D) 0.5 0.4997 0.1515 0.1567 -0.10 % 0.5831 93.80 %

β21 AUS 0.3 0.3005 0.0584 0.0600 0.20 % 0.2251 92.60 %
IW(2, 2I) 0.3 0.3002 0.0597 0.0600 0.10 % 0.2299 94.80 %
IW(2, 2D) 0.3 0.3005 0.0587 0.0600 0.20 % 0.2259 94.00 %

β22 AUS 0.7 0.6971 0.0587 0.0572 -0.40 % 0.2261 93.60 %
IW(2, 2I) 0.7 0.6975 0.0599 0.0579 -0.40 % 0.2305 95.40 %
IW(2, 2D) 0.7 0.6974 0.0590 0.0570 -0.40 % 0.2263 93.40 %

D11 AUS 1.0 1.0106 0.2334 0.2285 1.10 % 0.8627 93.60 %
IW(2, 2I) 1.0 1.0916 0.2551 0.2303 9.20 % 0.9394 96.20 %
IW(2, 2D) 1.0 1.0681 0.2482 0.2254 6.80 % 0.9147 95.60 %

D12 AUS 0.9 0.9000 0.2102 0.2118 0.00 % 0.7793 91.60 %
IW(2, 2I) 0.9 0.8844 0.2211 0.2130 -1.70 % 0.8196 93.80 %
IW(2, 2D) 0.9 0.9529 0.2252 0.2127 5.90 % 0.8316 94.80 %

D22 AUS 1.0 0.9987 0.2365 0.2402 -0.10 % 0.8742 91.20 %
IW(2, 2I) 1.0 1.0930 0.2571 0.2399 9.30 % 0.9489 95.40 %
IW(2, 2D) 1.0 1.0591 0.2507 0.2375 5.90 % 0.9242 94.60 %

Table 4.3: Simulation Results for Fixed Effect Parameters and the Variance Com-
ponents of the Random Effects When Each Dataset Consists of 50 Clusters of Size
7.

E
{
(D̂22 −D22)

2
}
,
∑N

i=1E

{(
b̂i1 − bi1

)2}
and

∑N
i=1E

{(
b̂i2 − bi2

)2}
.

The approximate uniform shrinkage prior has similar risks to the inverse Wishart

(2, 2I) prior and inverse Wishart (2, 2D) when estimating β, D and bi. The risks of

β and Ds decrease as the sample size increases or the number of replicates increases.
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SE of HPE
True Post Post Post Relative Interval

Parameter Method Value Mean Sd Mean Bias Width Coverage
β10 AUS 0.5 0.3995 0.2204 0.2444 -20.10 % 0.8460 90.20 %

IW(2, 2I) 0.5 0.4333 0.2177 0.2311 -13.30 % 0.8348 91.80 %
IW(2, 2D) 0.5 0.4554 0.2107 0.2207 -8.90 % 0.8078 92.00 %

β11 AUS 0.3 0.2934 0.1889 0.1990 -2.20 % 0.7301 91.20 %
IW(2, 2I) 0.3 0.3079 0.1995 0.2135 2.60 % 0.7695 92.00 %
IW(2, 2D) 0.3 0.3064 0.1954 0.2040 2.10 % 0.7529 91.40 %

β12 AUS 0.7 0.6905 0.1902 0.1911 -1.40 % 0.7316 93.40 %
IW(2, 2I) 0.7 0.7300 0.2050 0.2067 4.30 % 0.7906 94.00 %
IW(2, 2D) 0.7 0.7261 0.1980 0.2041 3.70 % 0.7650 94.20 %

β20 AUS 0.5 0.4672 0.2257 0.2375 -6.60 % 0.8678 91.00 %
IW(2, 2I) 0.5 0.4755 0.2316 0.2344 -4.90 % 0.8948 92.20 %
IW(2, 2D) 0.5 0.5050 0.2242 0.2316 1.00 % 0.8635 93.00 %

β21 AUS 0.3 0.2859 0.2240 0.2235 -4.70 % 0.8632 93.80 %
IW(2, 2I) 0.3 0.2943 0.2328 0.2310 -1.90 % 0.8980 93.80 %
IW(2, 2D) 0.3 0.2960 0.2253 0.2264 -1.30 % 0.8691 92.80 %

β22 AUS 0.7 0.6756 0.2235 0.2205 -3.50 % 0.8644 94.40 %
IW(2, 2I) 0.7 0.6901 0.2312 0.2249 -1.40 % 0.8918 93.60 %
IW(2, 2D) 0.7 0.6984 0.2236 0.2234 -0.20 % 0.8637 93.00 %

D11 AUS 1.0 1.1432 0.4039 0.3937 14.30 % 1.4477 92.60 %
IW(2, 2I) 1.0 1.2143 0.4234 0.3542 21.40 % 1.5150 97.40 %
IW(2, 2D) 1.0 1.1490 0.3872 0.3214 14.90 % 1.3922 97.60 %

D12 AUS 0.9 0.8647 0.3262 0.3159 -3.90 % 1.2198 91.80 %
IW(2, 2I) 0.9 0.7644 0.3354 0.2973 -15.10 % 1.2570 90.40 %
IW(2, 2D) 0.9 0.9735 0.3370 0.2870 8.20 % 1.2486 96.40 %

D22 AUS 1.0 1.1339 0.4570 0.4174 13.40 % 1.6389 93.60 %
IW(2, 2I) 1.0 1.2570 0.4890 0.3876 25.70 % 1.7599 98.00 %
IW(2, 2D) 1.0 1.1372 0.4301 0.3390 13.70 % 1.5455 97.60 %

Table 4.4: Simulation Results for Fixed Effect Parameters and the Variance Com-
ponents of the Random Effects When Each Dataset Consists of 50 Clusters of Size
1.

But the risks of bis decreases as the sample size decreases or the number of replicates

increases. In conclusion, the approximate uniform shrinkage prior has a good overall

performance in the simulation study.
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Method β D11 D12 D22 b·1 b·2
N = 100 m = 7

AUS 0.0287 0.0259 0.0202 0.0259 7.7441 10.8635
IW(2, 2I) 0.0270 0.0285 0.0203 0.0269 7.7257 10.8783
IW(2, 2D) 0.0275 0.0272 0.0211 0.0259 7.6974 10.8110

N = 100 m = 1

AUS 0.1329 0.0810 0.0518 0.1053 34.0333 39.5811
IW(2, 2I) 0.1354 0.0845 0.0566 0.1165 34.4263 41.3977
IW(2, 2D) 0.1306 0.0688 0.0479 0.0763 33.7481 38.6195

N = 50 m = 7

AUS 0.0627 0.0522 0.0448 0.0576 4.6146 6.1263
IW(2, 2I) 0.0598 0.0613 0.0455 0.0661 4.5986 6.1725
IW(2, 2D) 0.0571 0.0554 0.0479 0.0598 4.4571 5.9452

N = 50 m = 1

AUS 0.3023 0.1752 0.1008 0.1918 18.7341 21.8448
IW(2, 2I) 0.3062 0.1711 0.1066 0.2160 19.1468 23.2090
IW(2, 2D) 0.2890 0.1253 0.0876 0.1335 18.3096 20.8748

Table 4.5: Risk for β, D11, D12, D22, b·1, and b·2.

4.6 Case Example : Data From The Osteoarthritis Initiative

To illustrate the methodology, we considered an osteoarthritis data from the

Osteoarthritis Initiative (OAI) database, which is available for public access at

http://www.oai.ucsf.edu/ and is described in detail by McCulloch (2008). Osteoarthri-

tis Initiative is a cohort study of the determinants of knee osteoarthritis for people

aged 45 and above. The data were collected from persons at high risk for developing

knee osteoarthritis at baseline, 12 months, 24 months, 36 months and 48 months,

resulting in five measurements per individual. We restrict our study to the complete

data, which reduces our data to 1499 individuals. The outcomes of interest are the

Western Ontario and McMaster Universities (WOMAC) disability scores and the

numbers of workdays missed in past 3 months. WOMAC is a numeric score used

to assess pain, stiffness, and physical function in patients with hip and/or knee os-
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teoarthritis, while the number of days of missed work due to knee pain, aching or

stiffness in past 3 months is a count variable. In this study, we use the average of

WOMAC for left knee and right knee as the WOMAC score. The predictor variables

of primary interest in this study are the age, sex and body mass index (BMI), where

age and BMI are continuous variables, and sex is a categorical variable.

To accommodate such a clustered mixed outcome data, we consider a multivari-

ate generalized linear mixed model with subject-specific random effects. Assume

that conditional on the random effects, the WOMAC disability scores follow a nor-

mal distribution and the numbers of workdays missed in the past 3 months follow

a negative binomial distribution since negative binomial distribution can be used to

accommodate overdispersion in count data. The dispersion parameter in the nega-

tive binomial distribution is the inverse of its shape parameter, say δN . The negative

binomial distribution approaches a Poisson distribution when the overdispersion pa-

rameter approaches infinity, i.e., when δN approaches zero. The normal means and

Poisson means are related to the covariates via the identity link and logarithm link,

respectively. More specifically, the data are accommodated by the following model :

WOMACi1t|bi1 ∼ normal
(
µi1t, σ

2
N

)
MISSWi2t|bi2 ∼ negative binomial (µi2t, δN)

µi1t = β10 + β11AGEit + β12SEX i + β13BMI it + bi1

log(µi2t) = β20 + β21AGEit + β22SEX i + β23BMI it + bi2

bi = (bi1, bi2)
T ∼ iid multivariate normal (0, D)

where D = [σij]i=1,2; j=1,2, i = 1, · · · , N and t = 1, · · · , T . In this case, N = 1499

and T = 5.

Assume that the prior for the fixed effect coefficients βs is uniform, the prior
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for the variance σ2
N of the normal distribution is inverse gamma(αN , βN), and the

prior for the overdispersion parameter δN of the negative binomial distribution is

inverse gamma(αD, βD). We set αN = 10, βN = 1, αD = 100, and βD = 1 in

this study. Since the inverse gamma distribution is the conjugate prior for the

variance in normal distribution, then the posterior distribution of σ2
N is inverse

gamma

(
NT
2

+ αN ,
∑N

i=1

∑Ti
t=1(yi1t−µi1t)

2

2
+ βN

)
. However, unlike σ2

N , it is difficult to

directly sample from the posterior distribution of δN so that sampling techniques are

needed.

We set the prior for the variance components of the random effects to be either

the approximate uniform shrinkage prior or the inverse Wishart(2, 2I). Under the

circumstances, the approximate uniform shrinkage prior for D is

πD(D) ∝

{[
1 +

σ11

N

N∑
i=1

ni

σ2
N

][
1 +

σ22

N

N∑
i=1

(
Ti∑
t=1

δNµ
b
i2t

δN + µb
i2t

)]
−[(σ12

N

)2 N∑
i=1

Ti

σ2
N

N∑
i=1

(
ni∑
t=1

δNµ
b
i2t

δN + µb
i2t

)]}−3

.

Analysis is based on 500 samples obtained from one single chain retaining ev-

ery 20th simulation iteration in 10000 iterations after a burn-in of 2000 iterations.

The posterior simulation results, including the posterior means, the posterior stan-

dard deviations and the 95% highest probability density intervals, are presented in

Table 4.6. For comparative purposes, data are also fitted by maximum likelihood us-

ing adaptive Gaussian quadrature. The estimates of parameters and their standard

deviations and 95% confidence interval are also reported.
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Most Bayesian estimates using approximate uniform shrinkage prior have similar

values with the Bayesian estimates using inverse Wishart prior and maximum like-

lihood estimates using adaptive Gaussian quadrature, but those estimates are very

different for σ22. The age effect is not a significant in both WOMAC disability scores

and the numbers of workdays missed in past 3 months, the sex effect is significant

only for WOMAC disability scores, the BMI effect is significant in both WOMAC

disability scores and the numbers of workdays missed in past 3 months. The subject-

specific random effects are significant and there are moderate correlation between the

two measurements.

4.7 Conclusion

A need for noninformative priors arises when there is insufficient prior information

on the model parameters. In this study, we introduced an approximate uniform

shrinkage prior in the multivariate generalized linear mixed model. This prior can

be reduced to the approximate uniform shrinkage prior proposed by Natarajan and

Kass in the univariate case.

In this study we have shown that the approximate uniform shrinkage prior is not

only easy to implement, but also possess several desirable properties. This prior is

proper and leads to a proper posterior distribution for numerous common distribu-

tions under MGLMM.
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5. SUMMARY AND FUTURE RESEARCH

Studies of clustered data, such as repeated measurements in a longitudinal study,

become more and more common in scientific research. Multiple measurements for

each subject are often taken repeatedly in either a quantitative or qualitative scale by

different observers. Under this circumstance, multivariate generalized linear models

can accommodate such clustered mixed data from two or more observers by joint

modeling the multivariate outcomes.

Investigating the relationship among measurements from different observers on

the given subject and the relationship among measurements taken by the same ob-

server on different subjects is useful and important in scientific studies. It would

be useful to have indices to assess the association and consistency between clustered

mixed data. In this study, three different types of correlation coefficients which

measure various linear relationship between replicated measurements from different

observers are proposed. The intra-CC measures the within-observer correlation, the

inter-CC measures the between-observer correlation, and the total-CC measures the

overall correlation. These indices are natural extensions of the intra-CC, inter-CC

and total-CC proposed by Lin et al. (2007) and Carrasco (2010), and are very useful

for measuring consistency in clustered mixed data. A cluster mixed data is consid-

ered in this study and is modelled by a multivariate generalized linear mixed model.

The estimates of these indices are obtained from the maximum likelihood estimates

for the parameters of the underlying distributions. Confidence intervals and further

statistical inference are derived based on the assuming asymptotic normality of these

estimates. When there are more than two observers, the extended intra-CC, inter-

CC and total-CC are defined and are the weighted averages of all pairwise inter-CC
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and total-CC.

Since these CC estimates are developed in terms of the sample estimates of the

fixed effect parameters, the variance components of the random effects, and possible

additional model parameters in the conditional distributions in the MGLMM, the

precision and accuracy of these CC estimates are associated to the appropriateness

of the model and the approximation to the likelihood. However, maximum likelihood

inference for MGLMM is very complicated due to the fact that the link function may

be non-linear. Several methods are proposed to solve the estimation and inference in

MGLMM, such as the adaptive Gaussian-Hermite quadrature, Monte Carlo EM al-

gorithm, generalized estimating equations approach, and penalized quasi-likelihood.

Therefore, the approximation to the likelihood also influence these CC estimates. In

addition, the results from the simulation study imply that the bias grows when the

number of subjects is smaller. These CC estimates are robust especially for large

sample sizes and are not sensitive to the number of replicates. As a result of an in-

crease in correlation between random effects of observers, a larger value of inter-CC

and total-CC would exist.

The disadvantage of CCC in the past researches is that it cannot produce neg-

ative values since it is expressed in terms of variance components. However, the

intra-CC, inter-CC and total-CC proposed in this study allow negative correlations.

They give more flexibility in modeling. Furthermore, clustered mixed data is fitted

by MGLMM in this study, where the distributional assumption is required. Nonpara-

metric methods for evaluating the correlation can be investigated in future research.

In the Bayesian approach to GLMM, the choices of prior distribution may greatly

influence inferences, especially when the number of subjects is small. Noninformative

priors are needed when there is insufficient prior information on the model param-

eters. In this study, we introduced the approximate uniform shrinkage prior in the
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multivariate generalized linear mixed model. This prior is obtained by placing a uni-

form distribution on the weight given to the prior mean in the approximate shrinkage

estimate of the random effects, and then transforming it to find the distribution of

the variance components of the random effects. It is noteworthy to mention that

when two observers are assumed to be independent and identically distributed or

when there is only one observer, then the MGLMM reduces to an ordinary GLMM,

thus the proposed approximate uniform shrinkage prior reduces to the approximate

uniform shrinkage prior proposed by Natarajan and Kass (2000).

In this study we have shown that the approximate uniform shrinkage prior is

not only easy to implement, but also possess several attractive properties. This

prior is proper and leads to a proper posterior distribution for numerous common

distributions under MGLMM. In addition to bivariate generalized linear mixed model

with random intercept, we have shown that the approximate uniform shrinkage prior

can be applied to more complicated models, such as bivariate generalized linear mixed

model with both random intercept and random slope and the trivariate generalized

linear mixed model with random intercept. The extension to higher dimensional

models is quite straightforward. This prior is very flexible in diverse models.

Simulation studies are conducted to evaluate the performance of the approximate

uniform shrinkage prior. The methodology is also illustrated through an analysis of

real world data in the osteoarthritis study. This prior seems to perform as well

as the commonly used prior, inverse Wishart prior, and even better under some

circumstances. However, the disadvantage of this prior is that the computation time

is longer than the inverse Wishart prior.

In conclusion, the proposed CC estimates and the approximate uniform shrinkage

prior are both very useful in the multivariate generalized linear mixed model. More

complicated model structure can be considered in future research.

76



REFERENCES

An, L., Nkurunziza, S., Fung, K. Y., Krewski, D., and Luginaah, I. (2009), “Shrink-

age estimation in general linear models,” Computational Statistics & Data Analy-

sis, 53, 2537–2549.

Barnhart, H. X., Haber, M., and Song, J. L. (2002), “Overall concordance correlation

coefficient for evaluating agreement among multiple observers,” Biometrics, 58,

1020–1027.

Barnhart, H. X., Song, J. L., and Haber, M. J. (2005), “Assessing intra, inter and

total agreement with replicated readings,” Statistics in Medicine, 24, 1371–1384.

Breslow, N. E. and Clayton, D. G. (1993), “Approximate inference in generalized

linear mixed models,” Journal of the American Statistical Association, 88, 9–25.

Carrasco, J. L. (2010), “A generalized concordance correlation coefficient based on

the variance components generalized linear mixed models for overdispersed count

data,” Biometrics, 66, 897–904.

Carrasco, J. L. and Jover, L. (2003), “Estimating the generalized concordance cor-

relation coefficient through variance components,” Biometrics, 59, 849–858.

— (2005), “Concordance correlation coefficient applied to discrete data,” Statistics

in Medicine, 24, 4021–4034.

Carrasco, J. L., King, T. S., and Chinchilli, V. M. (2009), “The concordance correla-

tion coefficient for repeated measures estimated by variance components,” Journal

of Biopharmaceutical Statistics, 19, 90–105.

77



Cohen, J. (1960), “A coefficient of agreement for nominal scales,” Educational and

Psychological Measurement, 20, 37–46.

— (1968), “Weighted kappa - nominal scale agreement with provision for scaled

disagreement or partial credit,” Psychological Bulletin, 70, 213–220.

Coull, B. A. and Agresti, A. (2000), “Random effects modeling of multiple binomial

responses using the multivariate binomial logit-normal distribution,” Biometrics,

56, 73–80.

Dunson, D. B. (2000), “Bayesian latent variable models for clustered mixed out-

comes,” Journal of the Royal Statistical Society Series B-Statistical Methodology,

62, 355–366.

Gelman, A. (2006), “Prior distributions for variance parameters in hierarchical mod-

els,” Bayesian Analysis, 1, 515–533.

Green, P. J. (1987), “Penalized likelihood for general semiparametric regression-

models,” International Statistical Review, 55, 245–259.

Gueorguieva, R. (2001), “A multivariate generalized linear mixed model for joint

modelling of clustered outcomes in the exponential family,” Statistical Modelling,

1, 177–193.

Gueorguieva, R. V. and Agresti, A. (2001), “A correlated probit model for joint

modeling of clustered binary and continuous responses,” Journal of the American

Statistical Association, 96, 1102–1112.

Harville, D. A. (1977), “Maximum likelihood approaches to variance component esti-

mation and to related problems,” Journal of the American Statistical Association,

72, 320–338.

78



Ibrahim, J. G. and Laud, P. W. (1991), “On Bayesian analysis of generalized linear

models using Jeffreys’s prior,” Journal of the American Statistical Association, 86,

981–986.

King, T. S. and Chinchilli, V. M. (2001), “A generalized concordance correlation

coefficient for continuous and categorical data,” Statistics in Medicine, 20, 2131–

2147.

King, T. S., Chinchilli, V. M., and Carrasco, J. L. (2007a), “A repeated measures

concordance correlation coefficient,” Statistics in Medicine, 26, 3095–3113.

King, T. S., Chinchilli, V. M., Wang, K. L., and Carrasco, J. L. (2007b), “A class

of repeated measures concordance correlation coefficients,” Journal of Biopharma-

ceutical Statistics, 17, 653–672.

Lin, L., Hedayat, A. S., and Wu, W. (2007), “A unified approach for assessing agree-

ment for continuous and categorical data,” Journal of Biopharmaceutical Statistics,

17, 629–652.

Lin, L. I. (1989), “A concordance correlation-coefficient to evaluate reproducibility,”

Biometrics, 45, 255–268.

McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, London: Chap-

man and Hall.

McCulloch, C. (2008), “Joint modelling of mixed outcome types using latent vari-

ables,” Statistical Methods in Medical Research, 17, 53–73.

Natarajan, R. and Kass, R. E. (2000), “Reference Bayesian methods for generalized

linear mixed models,” Journal of the American Statistical Association, 95, 227–

237.

79



Natarajan, R. and McCulloch, C. E. (1995), “A note on the existence of the posterior

distribution for a class of mixed models for binomial responses,” Biometrika, 82,

639–643.

Pearson, K., Lee, A., Warren, E., Fry, A., and Fawcett, C. D. (1901), “Mathematical

contributions to the theory of evolution. IX. On the principle of homotyposis and

its relation to heredity, to the variability of individual, and to that of the race.

Part I. Homotyposis in the vegetable kingdom,” Philosophical Transactions of the

Royal Society of London Series a-Containing Papers of a Mathematical or Physical

Character, 197, 285–379.

Serfling, R. J. (1980), Approximation Theorems of Mathematical Statistics, Wiley

series in probability and mathematical statistics, New York, N.Y.: Wiley.

Spiegelhalter, D. J., Thomas, A., Best, N. G., and Gilks, W. R. (1996), “BUGS 0.5 .

Bayesian inference using Gibbs sampling,” Cambridge: Medical Research Council

Biostatistics Unit.

Strawderman, W. E. (1971), “Proper Bayes minimax estimators of multivariate nor-

mal mean,” Annals of Mathematical Statistics, 42, 385.

Tiao, G. C. and Tan, W. Y. (1965), “Bayesian analysis of random-effect models in

analysis of variance I posterior distribution of variance components,” Biometrika,

52, 37.

Tierney, L. (1994), “Markov chains for exploring posterior distributions,” Annals of

Statistics, 22, 1701–1728.

Zeger, S. L. and Karim, M. R. (1991), “Generalized linear-models with random effects

80



- a Gibbs sampling approach,” Journal of the American Statistical Association, 86,

79–86.

81



APPENDIX A

ASSESSING CORRELATION OF CLUSTERED MIXED OUTCOMES FROM A

MULTIVARIATE GENERALIZED LINEAR MIXED MODEL

A.1 Derivation of correlations in joint modeling of Poisson-gamma bivariate

outcomes

Based on the model proposed in Section 3.4.1, we can compute the marginal mean

and variance of the outcomes, and the covariate of the conditional means (McCulloch,

2008). The marginal means for Yi1t and Yi2t are

E(Yi1t) = E{E(Yi1t|bi1)} = eβ10+β11x1,i1t+···+β1p1xp1,i1t
+σ2

b1
/2

E(Yi2t) = E{E(Yi2t|bi2)} = eβ20+β21x1,i2t+···+β2p2xp2,i2t
+σ2

b2
/2

and the marginal variances of Yi1t and Yi2t are

Var(Yi1t) = E{Var(Yi1t|bi1)}+Var{E(Yi1t|bi1)}

= eβ10+β11x1,i1t+···+β1p1xp1,i1t
+σ2

b1
/2 + e2(β10+β11x1,i1t+···+β1p1xp1,i1t)

(
e2σ

2
1 − eσ

2
1

)
Var(Yi2t) = E{Var(Yi2t|bi2)}+Var{E(Yi2t|bi2)}

= e2(β20+β21x1,i2t+···+β2p2xp2,i2t
+σ2

b2
)/ν + e2(β20+β21x1,i2t+···+β2p2xp2,i2t)

(
e2σ

2
2 − eσ

2
2

)
.

This is due to the fact that if Z ∼ N(0, σ2), then E
(
eZ
)
= eσ

2/2 and Var
(
eZ
)
=

e2σ
2 − eσ

2
.

Moreover, the covariances of the conditional means of the first and second ob-
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server can be developed as

Cov(µi1t, µi1t′) = eβ10+β11x1,i1t+···+β1p1xp1,i1teβ10+β11x1,i1t′+···+β1p1xp1,i1t
′
(
e2σ

2
b1 − eσ

2
b1

)
= E(µi1t) E(µi1t′)

(
eσ

2
b1 − 1

)
Cov(µi2t, µi2t′) = eβ20+β21x1,i2t+···+β2p2xp2,i2teβ20+β21x1,i2t′+···+β2p2xp2,i2t

′
(
e2σ

2
b2 − eσ

2
b2

)
= E(µi2t) E(µi2t′)

(
eσ

2
b2 − 1

)
The covariance of the conditional means of the first and second observer is

Cov(µi1t, µi2t′) = eβ10+β11x1,i1t+···+β1p1xp1,i1t
+β20+β21x1,i2t+···+β2p2xp2,i2t Cov(ebi1 , ebi2)

To calculate the covariance in the final term, we rewrite the two random effects

in terms of three i.i.d. standard normal variables Zis as

bi1 = σb1

{
Z1

√
1− |ρb|+ Z3

√
|ρb|
}

bi2 = σb2

{
Z2

√
1− |ρb|+ Z3 sgn(ρb)

√
|ρb|
}
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The covariance in the final term can be written as

Cov(ebi1 , ebi2) =E(ebi1ebi2)− E(ebi1) E(ebi2)

− E

{
e
σb1

(
Z1

√
1−|ρb|+Z3

√
|ρb|

)}
E

{
e
σb2

(
Z2

√
1−|ρb|+Z3sgn(ρb)

√
|ρb|

)}
=E

{
e
Z1

(
σb1

√
1−|ρb|

)}
E

{
e
Z2

(
σb2

√
1−|ρb|

)}
×
[
E

{
e
Z3

(
σb1

√
|ρb|+σb2

sgn(ρb)
√

|ρb|
)}

−E

{
e
Z3

(
σb1

√
|ρb|

)}
E

{
e
Z3

(
σb2

sgn(ρb)
√

|ρb|
)}]

=e

(
σb1

√
1−|ρb|

)2
/2
e

(
σb2

√
1−|ρb|

)2
/2

×
{
e

(
σb1

√
|ρb|+σb2

sgn(ρb)
√

|ρb|
)2

/2 − e

(
σb1

√
|ρb|

)2
/2
e

(
σb2

sgn(ρb)
√

|ρb|
)2

/2

}
=eσ

2
b1
/2eσ

2
b2
/2 (eρbσb1

σb2 − 1) .

Thus the covariance of the conditional means is

Cov(µi1t, µi2t′) = exp (β10 + β11x1,i1t + · · ·+ β1p1xp1,i1t + β20 + β21x1,i2t + · · ·

+β2p2xp2,i2t + σ2
b1
/2 + σ2

b2
/2
)
× (eρbσb1σb2 − 1) ,

which can further be expressed in terms of E(µi1t) and E(µi2t) as

Cov(µi1t, µi2t′) = E(µi1t) E(µi2t′) (e
ρbσb1

σb2 − 1) .

Therefore, the intra-CC of the measurements from the first observer is

ρintra,i,1 =
E(µi1t) E(µi1t′)

(
eσ

2
b1 − 1

)
√{

E(µi1t) + E(µi1t)2
(
eσ

2
b1 − 1

)}{
E(µi1t′) + E(µi1t′)2

(
eσ

2
b1 − 1

)}
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and the intra-CC of the measurements from the second observer is

ρintra,i,2 =
E(µi2t) E(µi2t′)

(
eσ

2
b2 − 1

)
√[

E(µi2t)2
{(

1 + 1
ν

)
eσ

2
b2 − 1

}] [
E(µi2t′)2

{(
1 + 1

ν

)
eσ

2
b2 − 1

}] .

To obtain overall intra-CCs for first and second observers, we replace E(µi1t)

and E(µi2t) with the marginal expectations over X, µ∗
1 = EX{E(µi1t)} and µ∗

2 =

EX{E(µi2t)}. Hence, the overall intra-CCs are

ρintra,1 =
µ∗
1(e

σ2
b1 − 1)

1 + µ∗
1(e

σ2
b1 − 1)

and

ρintra,2 =
eσ

2
b2 − 1(

1 + 1
ν

)
eσ

2
b2 − 1

.

Also notice that

Var

(
Ti∑
t=1

µi1t

)
=

(
Ti∑
t=1

eβ10+β11x1,i1t+···+β1p1xp1,i1t
+bi1

)2 (
e2σ

2
b1 − eσ

2
b1

)

=

{
Ti∑
t=1

E(µi1t)

}2 (
eσ

2
b1 − 1

)
.

Similarly,

Var

(
Ti∑

t′=1

µi2t′

)
=

{
Ti∑

t′=1

E(µi2t′)

}2 (
eσ

2
b2 − 1

)
.

In addition,

E
(
µ2
i2t′

)
= e2(β20+β21x1,i2t+···+β2p2xp2,i2t

)e2σ
2
b2 = {E(µi2t′)}2 eσ

2
b2 .

Combining the above equations, the inter-CC of the bivariate measurements is
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equal to

ρinter =

Ti∑
t=1

Ti∑
t′=1

E(µi1t) E(µi2t′ ) (e
ρbσb1

σb2 − 1)√√√√√
 Ti∑
t=1

E(µi1t) +


Ti∑
t=1

E(µi1t)


2 (

e
σ2
b1 − 1

) e
σ2
b2

ν

Ti∑
t′=1

E(µi2t′ )
2 +


Ti∑

t′=1

E(µi2t′ )


2 (

e
σ2
b2 − 1

)
.

We replace

Ti∑
t=1

E(µi1t) and

Ti∑
t=1

E(µi2t) with T ∗µ∗
1 and T ∗µ∗

2, and an overall inter-

CC is defined as

ρinter =
eρbσb1

σb2 − 1√{
1

T ∗µ∗
1
+
(
eσ

2
b1 − 1

)}{(
1 + 1

T ∗ν

)
eσ

2
b2 − 1

}

where T ∗ =
∑N

i=1 Ti

N
. If all subjects have the same number of replicates, T , for all i,

then T ∗ = Ti = T .

The total-CC of the bivariate measurements is

ρtotal =
E(µi1t) E(µi2t′) (e

ρbσb1
σb2 − 1)√{

E(µi1t) + E(µi1t)2(e
σ2
b1 − 1)

}[
E(µi2t′)2

{
(1 + 1

ν
)eσ

2
b2 − 1

}] .

Analogously, an overall total-CC is given by replacing E(µi1t) and E(µi2t) with

their marginal expectations over X, µ∗
1 = EX{E(µi1t)} and µ∗

2 = EX{E(µi2t)}, and

can be expressed as

ρtotal =
eρbσb1

σb2 − 1√{
1
µ∗
1
+
(
eσ

2
b1 − 1

)}{(
1 + 1

ν

)
eσ

2
b2 − 1

} .
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A.2 Derivation of correlations in joint modeling of Poisson-exponential-normal

multivariate outcomes

Based on the model proposed in Section 3.4.2, we can compute the marginal

means and variances of these outcomes, and the covariances of the conditional means.

The marginal means for Yi1t, Yi2t and Yi3t are

E(Yi1t) = E{E(Yi1t|bi1)} = eβ10+β11x1,i1t+···+β1p1xp1,i1t
+σ2

b1
/2

E(Yi2t) = E{E(Yi2t|bi2)} = eβ20+β21x1,i2t+···+β2p2xp2,i2t
+σ2

b2
/2

E(Yi3t) = E{E(Yi3t|bi3)} = β30 + β31x1,i3t + · · ·+ β3p3xp3,i3t

The marginal variances of Yi1t, Yi2t and Yi3t are

Var(Yi1t) = E{Var(Yi1t|bi1)}+Var{E(Yi1t|bi1)}

= eβ10+β11x1,i1t+···+β1p1xp1,i1t
+σ2

b1
/2 + e2(β10+β11x1,i1t+···+β1p1xp1,i1t

)
(
e2σ

2
1 − eσ

2
1

)
= E(µi1t) + E(µi1t)

2
(
eσ

2
b1 − 1

)
Var(Yi2t) = E{Var(Yi2t|bi2)}+Var{E(Yi2t|bi2)}

= e2(β20+β21x1,i2t+···+β2p2xp2,i2t
+σ2

b2
) + e2(β20+β21x1,i2t+···+β2p2xp2,i2t

)
(
e2σ

2
2 − eσ

2
2

)
= E(µi2t)

2
(
2eσ

2
b2 − 1

)
Var(Yi3t) = E{Var(Yi3t|bi3)}+Var{E(Yi3t|bi3)}

= σ2
N + σ2

b3

Moreover, the covariances of the conditional means of the first, second and third
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observer can be developed as

Cov(µi1t, µi1t′) = eβ10+β11x1,i1t+···+β1p1xp1,i1teβ10+β11x1,i1t′+···+β1p1xp1,i1t
′
(
e2σ

2
b1 − eσ

2
b1

)
= E(µi1t) E(µi1t′)

(
eσ

2
b1 − 1

)
Cov(µi2t, µi2t′) = eβ20+β21x1,i2t+···+β2p2xp2,i2teβ20+β21x2,i2t′+···+β2p2xp2,i2t

′+
(
e2σ

2
b2 − eσ

2
b2

)
= E(µi2t) E(µi2t′)

(
eσ

2
b2 − 1

)
Cov(µi3t, µi3t′) = Cov (bi3, bi3) = σ2

b3

Similar to the result in the previous section, we can show that Cov(ebi1 , bi2) =

ρb12σb1σb2e
σ2
b1
|ρb12 |/2. The covariances of the conditional means of the different ob-

servers are

Cov(µi1t, µi2t′) = eβ10+β11x1,i1t+···+β1p1xp1,i1t
+β20+β21x1,i2t+···+β2p2xp2,i2t Cov(ebi1 , ebi2)

= E(µi1t) E(µi2t′) (e
ρb12σb1

σb2 − 1)

Cov(µi1t, µi3t′) = eβ10+β11x1,i1t+···+β1p1xp1,i1t Cov(ebi1 , bi3)

= eβ10+β11x1,i1t+···+β1p1xp1,i1tρb13σb1σb3e
σ2
b1
|ρb13 |/2

= E(µi1t)ρb13σb1σb3e
σ2
b1
/2(|ρb13 |−1)

Cov(µi2t, µi3t′) = eβ20+β21x1,i2t+···+β2p2xp2,i2tρb23σb2σb3e
σ2
b2
|ρb23 |/2

= E(µi2t)ρb23σb2σb3e
σ2
b2
/2(|ρb23 |−1)

Therefore, the extended intra-CC of the first observer is

ρintra,i,1E =
E(µi1t) E(µi1t′)

(
eσ

2
b1 − 1

)
√{

E(µi1t) + E(µi1t)2
(
eσ

2
b1 − 1

)}{
E(µi1t′) + E(µi1t′)2

(
eσ

2
b1 − 1

)} .
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The extended intra-CC of the second observer is

ρintra,i,2E =
E(µi2t) E(µi2t′)

(
eσ

2
b2 − 1

)
√{

E(µi2t)2
(
2eσ

2
b2 − 1

)}{
E(µi2t′)2

(
2eσ

2
b2 − 1

)} .

The extended intra-CC of the third observer is

ρintra,i,3E =
σ2
b3

σ2
N + σ2

b3

.

To obtain overall extended intra-CCs, the expectations of conditional means

above are replaced by the marginal expectations over X, µ∗
1 = EX{E(µi1t)}, µ∗

2 =

EX{E(µi2t)} and µ∗
3 = EX{E(µi3t)}. Hence the overall extended intra-CCs are

ρintra,1E =
µ∗
1(e

σ2
b1 − 1)

1 + µ∗
1(e

σ2
b1 − 1)

ρintra,2E =
eσ

2
b2 − 1

2eσ
2
b2 − 1

ρintra,3E =
σ2
b3

σ2
N + σ2

b3

Notice that for the third observer,

Ti∑
t=1

E{ϕ3h3(µi3t)} = Tiσ
2
N and Var

(
Ti∑
t=1

µi3t

)
=

Var

(
Ti∑
t=1

bi3

)
= T 2

i σ
2
b3
.

The extended inter-CC is equal to ρinterE = NI/DI, where

NI =

Ti∑
t=1

Ti∑
t′=1

E(µi1t) E(µi2t′) (e
ρb12σb1

σb2 − 1) + Ti

Ti∑
t=1

E(µi1t)ρb13σb1σb3e
σ2
b1
/2(|ρb13 |−1)

+ Ti

Ti∑
t=1

E(µi2t)ρb23σb2σb3e
σ2
b2
/2(|ρb23 |−1)
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and

DI =

√√√√√
 Ti∑

t=1

E(µi1t) +

{
Ti∑
t=1

E(µi1t)

}2 (
eσ

2
b1 − 1

)

×

√√√√√
eσ2

b2

Ti∑
t′=1

E(µi2t′)
2 +

{
Ti∑

t′=1

E(µi2t′)

}2 (
eσ

2
b2 − 1

)

+

√√√√√
 Ti∑

t=1

E(µi1t) +

{
Ti∑
t=1

E(µi1t)

}2 (
eσ

2
b1 − 1

) (Tiσ2
N + T 2

i σ
2
b3

)

+

√√√√√
eσ2

b2

Ti∑
t′=1

E(µi2t′)
2 +

{
Ti∑

t′=1

E(µi2t′)

}2 (
eσ

2
b2 − 1

) (Tiσ2
N + T 2

i σ
2
b3

)
.

We replace

Ti∑
t=1

E(µi1t) and

Ti∑
t=1

E(µi2t) with T ∗µ∗
1 and T ∗µ∗

2. The overall extended

inter-CC is defined as ρinterE = NI∗/DI∗, where

NI∗ =µ∗
1µ

∗
2 (e

ρb12σb1
σb2 − 1) + µ∗

1ρb13σb1σb3e
σ2
b1
/2(|ρb13 |−1) + µ∗

2ρb23σb2σb3e
σ2
b2
/2(|ρb23 |−1)

and

DI∗ =

√{
µ∗
1

T ∗ + µ∗2
1 (eσ

2
b1 − 1)

}[
µ∗2
2

{(
1 +

1

T ∗

)
eσ

2
b2 − 1

}]

+

√{
µ∗
1

T ∗ + µ∗2
1 (eσ

2
b1 − 1)

}(
σ2
N

T ∗ + σ2
b3

)

+

√[
µ∗2
2

{(
1 +

1

T ∗

)
eσ

2
b2 − 1

}](
σ2
N

T ∗ + σ2
b3

)
.
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The extended total-CC can be expressed as ρtotalE = NT/DT , where

NT =E(µi1t) E(µi2t′) (e
ρb12σb1

σb2 − 1) + E(µi1t)ρb13σb1σb3e
σ2
b1
/2(|ρb13 |−1)

+ E(µi2t)ρb23σb2σb3e
σ2
b2
/2(|ρb23 |−1)

and

DT =

√{
E(µi1t) + E(µi1t)2

(
eσ

2
b1 − 1

)}{
E(µi2t)2

(
2eσ

2
b2 − 1

)}
+

√{
E(µi1t) + E(µi1t)2(e

σ2
b1 − 1)

}(
σ2
N + σ2

b3

)
+

√{
E(µi2t)2

(
2eσ

2
b2 − 1

)} (
σ2
N + σ2

b3

)
.

An overall total-CC is given by replacing E(µi1t) and E(µi2t) with the marginal

expectation over X, µ∗
1 = EX{E(µi1t)} and µ∗

2 = EX{E(µi2t)}, and is defined as

ρtotalE = NT ∗/DT ∗, where

NT ∗ =µ∗
1µ

∗
2 (e

ρb12σb1
σb2 − 1) + µ∗

1ρb13σb1σb3e
σ2
b1
/2(|ρb13 |−1) + µ∗

2ρb23σb2σb3e
σ2
b2
/2(|ρb23 |−1)

and

DT ∗ =

√{
µ∗
1 + µ∗2

1 (eσ
2
b1 − 1)

}{
µ∗2
2

(
2eσ

2
b2 − 1

)}
+

√{
µ∗
1 + µ∗2

1 (eσ
2
b1 − 1)

}(
σ2
N + σ2

b3

)
+

√{
µ∗2
2

(
2eσ

2
b2 − 1

)} (
σ2
N + σ2

b3

)
.

A.3 Derivation of correlations in OAI example

Now consider the normal-negative binomial model. The marginal mean and vari-

ance for Yi1t are shown in the previous subsections. Given the random effects bi2,
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Yi2t is assumed to be from negative binomial distribution with mean µi2t and vari-

ance µi2t

(
1 + 1

δN

)
, where δN is the shape parameter. Then the marginal mean and

variance of Yi2t are

E(Yi2t) =E{E(Yi2t|bi2)} = eβ20+β21x1,it+β22x2,it+σ2
b2
/2

Var(Yi2t) =E{Var(Yi2t|bi2)}+Var{E(Yi2t|bi2)}

=eβ20+β21x1,it+β22x2,it+σ2
b2
/2 + e2(β20+β21x1,it+β22x2,it+σ2

b2
)/δN

+ e2(β20+β21x1,it+β22x2,it)
(
e2σ

2
2 − eσ

2
2

)
=E(µi2t) + E(µi2t)

2

{(
1 +

1

δN

)
eσ

2
2 − 1

}

Furthermore, notice that

Ti∑
t=1

E{ϕ2h2(µi2t)} =

Ti∑
t=1

E(µi2t) +

Ti∑
t=1

1

δN
E(µ2

i2t),

Var

(
Ti∑
t=1

µi2t

)
=

{
Ti∑
t=1

E(µi2t)

}2 (
eσ

2
b2 − 1

)
, and E (µ2

i2t′) = e2(β20+β21x1,it+β22x2,it)e2σ
2
b2

= {E(µi2t′)}2 eσ
2
b2 .

Therefore, the intra-CC of the first observer is

ρintra,i,1 =
σ2
b3

σ2
N + σ2

b3

and the intra-CC of the second observer is

ρintra,i,2 =
E(µi2t) E(µi2t′)

(
eσ

2
b2 − 1

)
√[

E(µi2t) + E(µi2t)2
{
(1 + 1

δN
)eσ

2
2 − 1

}] [
E(µi2t′) + E(µi2t′)2

{
(1 + 1

δN
)eσ

2
2 − 1

}] .

Thus, the overall intra-CC 1 and intra-CC 2 are

ρintra,1 =
σ2
b3

σ2
N + σ2

b3

and ρintra,2 =
µ∗
2(e

σ2
b2 − 1)

1 + µ∗
2

{(
1 + 1

δN

)
eσ

2
b2 − 1

} ,
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respectively, where µ∗
2 = EX{E(µi2t)}. The inter-CC and total-CC are

ρinter =

Ti∑
t=1

Ti∑
t′=1

E(µi2t′ )ρb12σb1σb2e
σ2
b2

/2(|ρb12 |−1)

√√√√√(
Tiσ2

N + T 2
i σ

2
b1

) Ti∑
t=1

E(µi2t) +

Ti∑
t=1

1

δN
[E(µi2t′ )]

2 e
σ2
b2 +


Ti∑
t=1

E(µi2t′ )


2 (

e
σ2
b2 − 1

)

and

ρtotal =
E(µi2t′)ρb12σb1σb2e

σ2
b2
/2(|ρb12 |−1)√(

σ2
N + σ2

b1

){
E(µi2t′) +

1
δN

{E(µi2t′)}2 eσ
2
b2 + {E(µi2t′)}2

(
eσ

2
b2 − 1

)] .

Thus, overall inter-CC and total-CC are

ρinter =
ρb12σb1σb2e

σ2
b2
/2(|ρb12 |−1)√(

σ2
N

T ∗ + σ2
b1

){
1

T ∗µ∗
2
+ (1 + 1

T ∗δN
)eσ

2
b2 − 1

}
and

ρtotal =
ρb12σb1σb2e

σ2
b2
/2(|ρb12 |−1)√(

σ2
N + σ2

b1

){
1
µ∗
2
+ (1 + 1

δN
)eσ

2
b2 − 1

} .
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APPENDIX B

APPROXIMATE UNIFORM SHRINKAGE PRIOR FOR A MULTIVARIATE

GENERALIZED LINEAR MIXED MODEL

B.1 Derivation of illustrative examples

Example 1: a bivariate clustered mixed model with random intercept

To obtain the approximate uniform shrinkage prior, the GLM weighted matrix is

required. Since conditional on the random effects bi1, Yi1t is assumed to follow a

Poisson distribution, then wi1t = [ϕ1a
′′
1(µi1t){g′1(µi1t)}2]−1 =

{
µi1t

(
1

µi1t

)2}−1

= µi1t.

Similarly, conditional on the random effects bi2, Yi2t is assumed to follow a gamma dis-

tribution, then wi2t = [ϕ2a
′′
2(µi2t){g′2(µi2t)}2]−1 =

{
µi2t

2

ν

(
1

µi2t

)2}−1

= ν. Therefore,

the GLM weight matrix for the i-th subject is W ∗
i = diag(µi11, · · · , µi1Ti

, ν, · · · , ν).

Furthermore, the random effects design matrix for the i-th subject is Z∗
i = Ji

⊕
Ji,

where Ji = (1, · · · , 1)T . Therefore, the approximate uniform shrinkage prior can be

shown as

πD(D) ∝

∣∣∣∣∣I2 +
(

1

N

N∑
i=1

ZT
i WiZi

)
D

∣∣∣∣∣
−3

=

∣∣∣∣∣∣∣
1 + 1

N

∑N
i=1

(∑Ti

t=1 µi1t

)
· σ11

1
N

∑N
i=1

(∑Ti

t=1 µi1t

)
· σ12

1
N

∑N
i=1 Tiν · σ12 1 + 1

N

∑N
i=1 Tiν · σ22


∣∣∣∣∣∣∣
−3

=

{[
1 +

1

N

N∑
i=1

(
Ti∑
t=1

µi1t

)
· σ11

][
1 +

1

N

N∑
i=1

Tiν · σ22

]

−

[
1

N

N∑
i=1

(
Ti∑
t=1

µi1t

)
· 1

N

N∑
i=1

Tiν · σ2
12

]}−3

.
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Example 2: a bivariate clustered mixed model with both random intercept

and random slope

In this case, the GLM weight matrix and the random effects design matrix for the

i-th subject are W ∗
i = diag(µi11, · · · , µi1Ti

, ν, · · · , ν) and Z∗
i = Gi,1

⊕
Gi,2, where

Gi,j =

 1 · · · 1

zij1 · · · zijTi

T

. Thus, the approximate uniform shrinkage prior is shown as

πD(D) ∝

∣∣∣∣∣I4 +
(

1

N

N∑
i=1

ZT
i WiZi

)
D

∣∣∣∣∣
−5

=

∣∣∣∣∣∣∣∣∣


1 + 1

N

∑N
i=1 S1(i)σ11

1
N

∑N
i=1 S1(i)σ12

1
N

∑N
i=1 S1(i)σ13

1
N

∑N
i=1 S1(i)σ14

1
N

∑N
i=1 S2(i)σ21 1 + 1

N

∑N
i=1 S2(i)σ22

1
N

∑N
i=1 S2(i)σ23

1
N

∑N
i=1 S2(i)σ24

1
N

∑N
i=1 Tiνσ31

1
N

∑N
i=1 Tiνσ32 1 + 1

N

∑N
i=1 Tiνσ33

1
N

∑N
i=1 Tiνσ34

1
N

∑N
i=1 Tiz

2
i1tνσ41

1
N

∑N
i=1 Tiz

2
i1tνσ42

1
N

∑N
i=1 Tiz

2
i1tνσ43 1 + 1

N

∑N
i=1 Tiz

2
i1tνσ44


∣∣∣∣∣∣∣∣∣
−5

where S1(i) =
∑Ti

t=1 µi1t and S2(i) =
∑Ti

t=1 z
2
i1tµi1t.

Example 3: a trivariate clustered mixed model with random intercept

Conditional on the random effects bi3, the measurements Yi3t from normal distribu-

tion are also considered in additional to the measurements from Poisson distribution

and gamma distribution. Then wi3t = [ϕ3a
′′
3(µi3t){g′3(µi3t)}2]−1 = (σ2

N · 12)−1
= 1

σ2
N
.

Under this circumstance, the GLM weight matrix and the random effects design

matrix for the i-th subject are W ∗
i = diag(µi11, · · · , µi1Ti

, ν, · · · , ν, 1/σ2
N , · · · , 1/σ2

N)

and Z∗
i = Ji

⊕
Ji

⊕
Ji, where Ji = (1, · · · , 1)T . Therefore, the approximate uniform

shrinkage prior is

πD(D) ∝
∣∣∣I3 + ( 1

N

∑N
i=1 Z

T
i WiZi

)
D
∣∣∣−3

=

∣∣∣∣∣∣∣∣∣∣


1 + 1

N

∑N
i=1

(∑Ti

t=1 µi1t

)
· σ11

1
N

∑N
i=1

(∑Ti

t=1 µi1t

)
· σ12

1
N

∑N
i=1

(∑Ti

t=1 µi1t

)
· σ13

1
N

∑N
i=1 Tiν · σ21 1 + 1

N

∑N
i=1 Tiν · σ22

1
N

∑N
i=1 Tiν · σ23

1
N

∑N
i=1 Ti

1
σ2
N
· σ31

1
N

∑N
i=1 Ti

1
σ2
N
· σ32 1 + 1

N

∑N
i=1 Ti

1
σ2
N
· σ33


∣∣∣∣∣∣∣∣∣∣

−3

.
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B.2 Derivation of posterior distribution in the OAI example

In the normal-negative binomial model, the posterior distribution of σ2
N is

f(σ2
N |b, β,D, y) ∝

{
N∏
i=1

Ti∏
t=1

f(yi1t|b, β,D)

}
π(σ2

N )

∝ (σ2
N )−

∑N
i Ti
2 exp

(
−
∑N

i=1

∑Ti
t=1(yi1t − µi1t)

2

2σ2
N

)
· (σ2

N )−αN−1 exp

(
−βN
σ2
N

)
,

which implies the posterior distribution of σ2
N follows an inverse gamma(∑N

i=1 Ti

2
+ αN ,

∑N
i=1

∑Ti
t=1(yi1t−µi1t)

2

2
+ βN

)
.

Similarly, the posterior distribution of δN is

f(δN |b, β,D, y) ∝

{
N∏
i=1

Ti∏
t=1

f(yi2t|b, β,D)

}
π(δN )

∝

{
N∏
i=1

Ti∏
t=1

Γ(yi2t + δN )

Γ(yi2t + 1)Γ(δN )

(
δN

δi2t + µi2t

)δN
(

µi2t

δN + µi2t

)yi2t
}

· δ−αD−1
N exp

(
−βD
δN

)

Conditional on the random effects bi2, Yi2t is assumed to follow a negative bi-

nomial distribution and the diagonal element of GLM weighted matrix is wi2t =

[ϕ2a
′′
2(µi2t){g′2(µi2t)}2]−1 =

{
µi2t

(
1 + µi2t

δN

)(
1

µi2t

)2}−1

= δNµi2t

δN+µi2t
. Therefore, the ap-

proximate uniform shrinkage prior of D in the normal-negative binomial model is

πD(D) ∝

∣∣∣∣∣I2 +
(

1

N

N∑
i=1

ZT
i WiZi

)
D

∣∣∣∣∣
−3

=

∣∣∣∣∣∣∣
 1 + 1

N

∑N
i=1

(
Ti · 1

σ2
N

)
· σ11 1

N

∑N
i=1

(
Ti · 1

σ2
N

)
· σ12

1
N

∑N
i=1

(∑Ti
t=1

δNµi2t

δN+µi2t

)
· σ12 1 + 1

N

∑N
i=1

(∑Ti
t=1

δNµi2t

δN+µi2t

)
· σ22


∣∣∣∣∣∣∣
−3

=

[{
1 +

σ11
N

N∑
i=1

Ti

σ2
N

}{
1 +

σ22
N

N∑
i=1

(
Ti∑
t=1

δNµi2t

δN + µi2t

)}

−

{(σ12
N

)2 N∑
i=1

Ti

σ2
N

N∑
i=1

(
Ti∑
t=1

δNµi2t

δN + µi2t

)}]−3

.
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