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ABSTRACT 

 

The multiobjective genetic algorithm can be used to optimize two conflicting objectives, 

oil production and polymer utility factor in polymer flood design. This approach 

provides a set of optimal solutions which can be considered as trade-off curve (Pareto 

front) to maximize oil production while preserving polymer performance. Then an 

optimal polymer flood design can be considered from post-optimization analysis. A 2D 

synthetic example, and a 3D field-scale application, accounting for geologic uncertainty, 

showed that beyond the optimal design, a relatively minor increase in oil production 

requires much more polymer injection and the polymer utility factor increases 

substantially. 
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CHAPTER I 

INTRODUCTION AND STUDY OBJECTIVES 

1.1 Introduction 

Waterflooding is the most widely used oil recovery method after primary depletion. The 

popularity of the method hinges on the economic feasibility and ease of implementation. 

However, the presence of heterogeneities and adverse mobility contrasts leads to viscous 

fingering and poor sweep efficiency, resulting in reduced oil recovery. Mobility control 

by polymer flood is one of the attractive methods to overcome this problem to increase 

oil recovery (Lake, 1989).  

The successful implementation of a polymer flood requires thorough 

understanding of influences of design parameters on polymer flood performance. The 

optimal slug size and concentration are controlled by economic limit, but are generally 

high. In terms of polymer flood initiation time, early implementation is an important 

criterion for success (Al-Sofi and Blunt, 2011) 

Sensitivity analysis is the conventional approach to analyze the impact of control 

variables on objectives. Pope et al. (1979) used a compositional simulator to analyze the 

effect of chemical properties and control variables on oil recovery. Each parameter was 

analyzed separately by the sensitivity analysis framework. DeHekker et al. (1986) 

designed polymer control parameters in Byron and North Oregon basin field by using 

laboratory results from radial core flooding. The optimal polymer concentration and slug 

size were determined from sensitivity plot where oil recovery was found to increase with 
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more injected polymer. Barua et al. (1986) proposed an economic assessment framework 

for EOR projects using analytical models. Sensitivity analyses of chemical slug size and 

pattern area were analyzed by spider plot around the optimal design. Anderson et al. 

(2006) used a multiphase multicomponent chemical flood simulator (UTCHEM) to 

perform sensitivity studies of chemical control parameters. Apart from NPV, chemical 

efficiency was analyzed to be an indicator of chemical usage performance. Abedi and 

Algharaib (2012) performed polymer flood reservoir simulation study to analyze the 

effects of control parameters: polymer concentration, polymer slug size and salt 

concentration, on oil recovery. Even though, the sensitivity analysis is common for 

various studies, this method only provides a relation between single control variable to a 

single objective. 

Over the past few years, many authors have proposed approaches to optimize 

profit and polymer efficiency. An adjoint method can maximize the net present value 

(NPV) of polymer flood simulations by computing gradients with respect to design 

parameters from a single simulation run (Doren et al., 2011). Streamline simulation has 

shown that the polymer utility factor (UF) gives a good indication of polymer efficiency 

(Clemens et al., 2011). The UF is a mass of polymer injected per volume of oil 

produced. Streamline simulation can also be used for rate optimization (Sharma et al., 

2011), which focuses on arrival time equalization (Datta-Gupta and King, 2007). A 

major advantage of this approach is the analytical computation of sensitivities which 

makes it computationally efficient and suitable for large field cases. 
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 For the viability of polymer flood projects, the two critical measures, production 

gain and polymer efficiency, should be considered simultaneously. To optimize multiple 

objectives, an optimization approach that has drawn much attention recently is 

multiobjective optimization (MOO) (Deb et al., 2002; Srinivas and Deb, 1994). This 

method evaluates fitness by the dominance relationship instead of fitness measures as in 

the ordinary single-objective optimization approaches. The algorithm generates a set of 

optimal solutions which represent the appropriate compromise between multiple 

objectives which is called the Pareto optimal solutions (or Pareto front).  

Many authors have demonstrated benefits of multiobjective optimization over the 

conventional single objective in various applications. For history matching, the 

multiobjective approach provides improved overall match of the data than the single 

objective as it avoids arbitrary weighting factors between matching variables (Ferraro 

and Verga, 2009; Sayyafzadeh et al., 2012). The approach preserves variation among the 

population and provides more reliable uncertainty quantification than the single-

objective approach (Hajizadeh et al., 2011; Han et al., 2010; Mohamed et al., 2011; Park 

et al., 2013; Schulze-Riegert et al., 2007). For example, the trapping efficiency of CO2 

storage in the saline aquifer can be optimized using the concept of Pareto optimality 

(Nghiem et al., 2009). The concept offers a detailed insight into the effect of operating 

conditions on residual gas and solubility trapping. The reduced-order model for reservoir 

simulation has also been used to generate Pareto front between maximizing cumulative 

oil production and minimizing cumulative water injection (Cardoso, 2009). The result 

shows the trade-off between cumulative oil production and cumulative water injection. 
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To address geologic uncertainty, optimization is performed with multiple 

realizations. An adjoint method can maximize the expected value of NPV from multiple 

realizations by optimizing production/injection rates (Van Essen et al., 2009). The 

genetic algorithm (GA) is also used to search the optimal location with fitness evaluated 

from multiple geologic models (Morales et al., 2011). The multiple realization approach 

has also been used for well-path design in gas-condensate field (Schulze-riegert et al., 

2011). Alhuthali et al. (2008) used streamlines to optimize production/injection rate. The 

geological uncertainty is considered from the stochastic-optimization framework based 

on the combination of the expected value and variance of a performance measure from 

multiple realizations. 

This study provides an approach to design and optimize the polymer flood 

considering both production improvement and polymer efficiency. We coupled the 

streamline-based rate optimization from previous work (Sharma et al., 2011) with one 

class of MOO, nondominated sorting genetic algorithm (NSGA), to optimize polymer 

concentration and slug size. This approach provides a comprehensive understanding 

between maximizing oil production and preserving polymer efficiency presented as a 

compromised trade-off curve. The trade-off curve generated from multiple realizations is 

used to account for geologic uncertainty. The post-optimization decision can be made 

from the trade-off curve to select the optimal design. 
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1.2 Objectives 

Our goal here is to provide an approach to design and optimize polymer flood that 

considers both production improvement and polymer efficiency. We coupled the 

streamline-based rate optimization (Sharma et al., 2011) with the multiobjective genetic 

algorithm to optimize polymer concentration and slug size. This approach provides a 

comprehensive understanding between maximizing oil production and preserving 

polymer efficiency presenting as a compromised trade-off curve. Geologic uncertainty is 

accounted by generating average trade-off curve from multiple realizations. Post-

optimization decision can be made from the trade-off curve to the select optimal design. 

In brief, the objectives of this study are: 

 We will extend the previous study from Sharma et al. (2011) to incorporate more 

influencing parameters as polymer concentration and slug size to polymer flood 

optimization. 

 We will use a multiobjective genetic algorithm to generate a set of optimal 

solutions representing a trade-off between production improvement and polymer 

performance. 

 We will demonstrate applications of this approach through a five-spot synthetic 

case, and a 3D field-scale case accounting for geologic uncertainty. 
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1.3 Software Prototype 

The primary deliverable of this work will be an optimization software implementing a 

derivative free approach with various algorithms including design of experiment, self-

adaptive proxy, and genetic algorithm. The software is designed to work for both single 

objective and multiobjective problems. Additionally, the software works in parallel 

environment which significantly increase calculation efficiency of the genetic algorithm. 

The software is developed in MATLAB with parallel computing toolbox. It is 

designed to be user friendly and allows for easy enhancement. The applications 

presented in this study have been carried out using this software. 
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CHAPTER II 

MATHEMATICAL FORMULATION 

 

In this section, we discuss the mathematical formulation of two important approaches 

from the core of this work that are streamline-based rate optimization and multiobjective 

optimization including the genetic algorithm. 

2.1 Streamline-Based Rate Optimization 

The goal of streamline-based rate optimization is to allocate production and injection 

rates for maximizing sweep efficiency. The formulation of this approach is based on 

equalizing the arrival times of injected fluid. The objective function consists of two 

terms (Taware et al., 2010).  

  ( )  ∑ ∑ [    ( )      ( )]
 
  

       

   

∑ ∑ [    ( )]
 

       

   

      

   

      

   

 ……………….(2.1) 

The sweep efficiency optimization can be achieved by minimizing the first term 

in Eq. 2.1 which denotes the misfit between the calculated waterfront arrival time at 

each producer and the average arrival time of producers in a specified group. Also,      

represents the calculated arrival time of well i, belonging to group m, and      represents 

average arrival time for the wells in group m. Minimizing the second term denotes 

reducing the magnitude of  arrival times, leading to production acceleration. The trade-

off between equalizing arrival time and production acceleration can be controlled by the  
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weight  . The arrival time is a function of vector q, which contains production/injection 

rates and has a dimension equal to the number of well rates to be optimized. 

The term   is defined as travel time of the waterfront from the injector to each 

producer. For calculation purposes, we compute the arrival time to a producer as the 

average of the time of flight of 20% of the fastest streamlines denoted by       . Time 

of flight of streamline l of producer i is represented as     . Thus, the arrival time to 

producer i will be computed as, 

     ( )  
 

      

∑      ( )

      

   

 ………………………………….…………………(2.2) 

The variable      is defined as (Datta-Gupta and King, 2007) 

      ∫  ( )  
 

 ………………………………………………………………...(2.3) 

where the integral is along the streamline trajectory, ∫  ( )  
 

 is the “slowness” defined 

as the reciprocal of the total interstitial velocity. 

  ( )  
 

| ( )|
 

 ( ) ( )

   

 …………….………………………………………(2.4) 

 

The average arrival time for group m (    ) is an arithmetic average of the arrival times 

of the wells in the group 

     ( )  
 

       

∑     ( )

       

   

 ……………….………………………………(2.5) 
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2.2 Genetic Algorithm 

The genetic algorithm (GA) is an adaptive heuristic optimization method that has been 

applied for many petroleum engineering problems. The idea of the GA comes from self-

adapting behaviors of living organisms. In other words, GA tries to replicate the 

concepts of natural evolution by mathematical concepts. The algorithm does not require 

estimation of gradients, but typically r equires multiple forward simulations to 

evaluate the fitness of populations. The control variables are codified to form 

chromosomes as representative of the characteristics of populations.  The fittest 

populations will be selected to transfer part of their chromosomes to reproduce offspring 

by the genetic operator: crossover and mutation. This process will be done iteratively 

and the population fitness will be improved over generations. The advantage of this 

method is the ability to search for the global optimal while the gradient-based 

optimization usually converges to a local solution. The following details of this section 

are a brief review of each step of the GA and the concept of the multiobjective GA. An 

overview of the GA workflow is summarized in Fig. 2.1. 
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Fig. 2.1—Overview of the GA workflow: initialization, population generation, and selection to keep 

the fittest populations. The optimal solution is obtained once the stopping criteria are reached. 

2.2.1 Initialization  

Initialization is the first step of the GA. Initial chromosomes are generated from a given 

range of control variables. Latin hypercube sampling (LHS) was implemented in this 

work to provide an efficient variable-sampling method from the given range. Unlike 

simple random sampling, this method ensures a full coverage of the range of each 

variable by maximally stratifying each marginal distribution (Yin et al., 2010). The steps 

for LHS sampling are as follows: 

1) Divide search in each variable into “N” intervals where “N” is the number of 

sampling points. 

2) Uniformly sample from each interval. 
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3) Randomly pair sampled variable values. 

To illustrate the process, 10 sample points from LHS design and the random 

process of two-variable space with are compared in Fig. 2.2. LHS design ensures the 

coverage of the initial population in the given range, but random samples might bias 

toward the local region and leave some regions unfilled. The locally distributed initial 

population will limit the GA search in later generation leading to a suboptimal solution. 

 

Fig. 2.2—Two-variable sampling with 10 initial points by (left) LHS design, (right) random sample. 

The result from LHS covers all grids of each variable while random samples left some regions 

unfilled. 

2.2.2 Multiobjective Fitness Evaluation 

After the initial population is generated, the iterative evolution process begins. The 

objective function is used to evaluate each proposed population by how well it provides 

a good solution to the problem. For reservoir study, most problems require more than 

one objective to evaluate fitness: history matching comprises multiple production 

misfits, such as, water cut, bottomhole pressure, and GOR; optimization has to consider 



12 
 

production improvement and operational efficiency simultaneously. Two approaches can 

be used to define fitness for the multiobjective problems: scalarization and Pareto-based 

(Park et al., 2013). 

Scalarization (Weighted-Sum) Method 

The scalarization method simplifies multiple objectives to the single objective by 

summing them using the weighting factor (  ). 

                    …………………………………………………….(2.7) 

However, appropriate weights for each objective are difficult to be determined, 

especially when they are in different scales, such as pressure misfit (psi) or total 

production (STB) (Yin et al., 2010).  We do not know which weights are the most 

appropriate to retrieve a satisfactory solution (Hajizadeh et al., 2011). To demonstrate 

the importance of the weighting factor, Eq. 2.8 shows the multiobjective problem with 

two objectives, f1, f2, and two variables, x1, x2. 

 

   2
2

2
12

2
2

2
11

55)(

)(

)(min





xxxf

xxxf

xf

 ………………………………………………………(2.8) 

with the weighted sum approach, the minimization objective of this problem is written as 

 )()()(min 2211 xfwxfwxf   …………………………...…………………….(2.9) 

The importance of weighting factors is shown in Fig. 2.3. With different weights, the 

optimal (minimal) solutions change. This issue becomes more critical in petroleum 
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engineering problems as they always have more dimensions of objectives and variables 

with different units.  

 

Fig. 2.3—Optimal solutions from different weights indicated by stars: the weighting factor has 

strong influence on the optimal result. Different weighting factors result in a changing optimal 

solution. 

 

Multiobjective (Pareto-Based) Method 

Pareto Optimality 

Instead of searching for the single optimal solution as in the conventional weighted sum 

method, the purpose of the multiobjective approach is to explore a set of optimal 

solutions that represents the compromised trade-off between multiple conflicting 

objectives. Within the optimal solutions, no objectives in the solution can be made better 

without making another objective worse. This concept is called Pareto optimality (or a 

Pareto front). 
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Fig. 2.4—Pareto optimal solutions (Pareto front) with two objectives: points A and B are Pareto 

optimal solutions, but point C is not a Pareto optimal solution.  

 

The example of Pareto optimality is illustrated in Fig. 2.4. In this example, we 

define two objectives, f1 and f2, for the minimization problem from the previous example 

(Eq. 2.8). The gray area represents the feasible solutions space for this problem. Let us 

consider point C. Now, we can find some solutions in the space that are superior to it in 

both objectives (for example, point A has both f1 and f2 lower than point C). In this 

situation, point C is not a Pareto optimal solution. At point A, we cannot find any 

solutions in the feasible region that are superior to it in both objectives. If we want to 

improve f2 from point A (minimize f2), we may consider moving it to point B. However, 

this move deteriorates f1 since f1 gets higher value. This behavior is the same for all 

points in the black line.  We call the solutions in the black line Pareto optimal solutions 

(or Pareto a front) for this problem. 
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NSGA-II Algorithm 

The Pareto front represents a set of optimal solutions for the multiobjective problem. 

However, practically, we cannot search the whole solution space and define the true 

Pareto front. Deb et al. (2002) introduced the NSGA-II algorithm, which uses the genetic 

algorithm framework to improve the optimality over multiple generations. The algorithm 

evaluates fitness by the dominant relationship instead of fitness measures as in the 

ordinary single-objective genetic algorithm. The domination concept defines levels of 

optimality by assigning several ranks to each population. Over generations, the NSGA-II 

algorithm minimizes ranks until all the members of the population become rank 1, which 

implies the Pareto optimality condition is reached. 

Mathematically, to illustrate the dominance concept, “A” is said to dominate “B” 

if the two points satisfy the following condition: 

      )()(:,...,2,1    )()(:,...,2,1 bfafnjbfafni jjii   ……………........(2.10) 

This means “A” dominates “B” when all objectives from “A” are not more than “B” and 

at least one objective from “A” is less than “B.”  The example of the dominance concept 

is shown in Fig. 2.5. The figure on the left illustrates a situation when “A” dominates 

“B” since both objective values of “A” are less than “B.” The figure on the right 

illustrates a situation when “A” does not dominate “B” since one of the objectives, f2, of 

“A” is more than “B.” 
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Fig. 2.5—Example of domination concept: (left) “A” dominates “B” since both objective values of 

“A” are less than “B.” (right) “A” does not dominate “B” since objective f2 of “A” is more than “B.”  

 

The NSGA-II algorithm defines levels of optimality from the nondominated 

solution as rank “1”. Next, the algorithm removes all the rank “1” points out of the space 

and defines the nondominated solution from the remaining points as rank “2.” This 

process is repeated and rank “N+1” is defined until the last population. Fig. 2.6 shows 

the ranking example of 10 populations from the NSGA-II algorithm.  
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Fig. 2.6—Example ranking result from NSGA-II algorithm: Rank 1 populations are nondominated 

solutions. Rank 2 populations become nondominated when all rank 1 populations are removed.  

 

The purpose of the ranking is to obtain a set of solutions as close as possible to 

the true Pareto front. In addition to this main purpose, the NSGA-II algorithm keeps the 

diversity of the solutions simultaneously by imposing a secondary objective called 

crowding distance (Srinivas and Deb, 1994). The crowding distance is a measure of how 

close an individual is to its neighbors (Eq. 2.11). The large crowding distance results in 

better diversity.  

                   ∑ (
      

           

     
      

)

          

   

 ……………..………………(2.11) 

At this point, all populations will be sorted by rank and crowding distance. First, 

they are sorted by rank. The populations with the same rank will be sorted by the 

crowding distance. The best population has low rank and high crowding distance. 
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2.2.3 Reproduction and Genetic Operator 

Parent Selection by Tournament Pool 

Once the populations are sorted, some of them are selected to produce offspring. This 

selection is done by tournament pool Fig. 2.7. First, two members are selected with 

uniform probability distribution. Next, they finesses are compared and only the best one 

is selected to be kept in the parent pool. The operation is repeated until the parent pool is 

filled with the specified number. In this work, the size of the parent pool is half of the 

size of the population pool. 

 

Fig. 2.7—Tournament selection process: two populations are compared and only the best one is 

selected to the parent pool. 

 

Offspring Reproduction 

The selected parents will transfer part of their chromosomes (genomes) to reproduce 

offspring. Conventionally, the chromosomes are represented by binary codes (Nasrabadi 

et al., 2012). However, the coding of our variables is in continuous space which has 

difficulty with the conventional binary coding concept. In this work we used simulated 
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binary operator which has similar behavior to binary-coded GA , but works with 

continuous space (Deb and Agrawal, 1995; Deb et al., 2002). 

Simulated Binary Crossover 

Crossover is the key process of the genetic algorithm. It replicates the behavior of the 

living organism to recombine genomes from two parents to produce offspring. The 

assumption behind this operation is that recombination of fit parents will produce better 

offspring. The operation starts from a random selection of a number    between 0 and 1; 

then calculation of the weighting factor,   (Eq. 2.12 and Eq. 2.13). 

   (  )  (   )
 

                ……………………………………………..(2.12) 
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             …………………………………...…..(2.13) 

where   is a distribution index for crossover.    is a weighting factor for     genome. 

Then this weighting factor,   , will be used to produce two offspring genomes (Eq. 2.14 

and  Eq. 2.15). 
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where      is the    child with     genome .      and      are selected parents with 

   genome. 
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Polynomial Mutation 

The mutation operator is used to randomly alter values of some genomes from a single 

parent. This process is similar to “asexual” influence of a single population. Mutation is 

a vital function to search for global optimal solutions since it increases diversity of the 

population pool. With the crossover only, the solution will converge to a suboptimal 

solution close to the fittest population found in each generation. The rate of 

crossover/mutation can be controlled by crossover probability. In most of the cases, the 

crossover probability is around 90%. For highly nonlinear problems, the crossover 

operator becomes less efficient, and the probability should be altered to give more focus 

on the mutation process. 

Similar to the crossover operator, this polynomial mutation works for the 

continuous variable space. The operation starts from a random selection of a number     

between 0 and 1; then calculation of a weighting factor,    (Eq. 2.16 and Eq. 2.17). 

    (   )
 

                   ……….………………………………….(2.16) 

      [ (    )]
 

                   ……………….…………………...(2.17) 

where    is a distribution index for mutation.    the a weighting factor for     genome. 

Next, this weighting factor,   , will be used to update a genome in a selected parent in 

Eq.2.18. 

       (  
    

 )   ……………………………………………………….(2.18) 
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where    is the child at     genome and    is the selected parent.   
  and    

  are upper 

and lower bounds for     genome. 

2.2.4 Selection Process 

After offspring population is generated, their fitness will be evaluated. Next, they will be 

combined with all populations from the previous generation in the intermediate pool. For 

example, if we have N populations from the previous generation and the genetic operator 

generates N offspring, now the intermediate pool has 2N population size. Then, all 

populations in this pool will be sorted (single objective: by weighted objective, 

multiobjective: by rank and crowding distance). The only fittest N populations will be 

kept for the next generation. The following flowchart (Fig.2.8) summarizes the 

workflow of the reproduction and selection process. 
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Fig. 2.8—Summary of reproduction and selection steps: populations from the previous generation 

are used to produce offspring. The intermediate pool collects all previous populations and offspring 

and selects them based on their fitness for the next generation. 

2.2.5 Demonstration of the Workflow 

The multiobjective problem from Eq.2.8 was re-analyzed using the multiobjective 

genetic algorithm framework. Initial populations were generated using LHS Parameters 

in a range of [-10,10] with 200 samples (Fig. 2.9). The LHS ensures diversity throughout 

the variable space resulting in wide spread in the objective space.  
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Fig. 2.9—Two variables sampling with LHS: variable space (x1,x2) (left), objective space (f1, f2) 

(right). Initial populations are widely spread throughout both variable and objective spaces.  

 

The NSGA-II algorithm was applied to the initial population. The primary 

objective of the algorithm is to move the population close to the Pareto front by the 

domination concept. Average rank of all populations is reduced over generations until all 

populations become rank one (Fig. 2.10-left). In addition to rank, crowding distance is 

considered as a secondary objective in the process to increase diversity among the 

populations.  Variance of crowding distance is considered to monitor improvement of 

the population distribution (Fig. 2.10-middle). The later generations provides a 

reduction in the variance of crowding distance which implies populations become more 

uniformly distributed.  
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Fig. 2.10—Performance measures of NSGA-II algorithm. (Left) rank average reduces until all 

becomes 1. (Middle) Variance of crowding distance reduces indicate population becomes more 

uniform. (Right) Normalized hyper volume tracks movement of populations to Pareto front. 

 

To track the movement of the population to the Pareto front, we applied the 

hyper volume concept (Li, 2012) to measure the overall moved distance from the initial 

generation. The hyper volume is a summation of volume of each population to a 

reference point in objective space (Eq. 2.19). The reference point is assumed to be the 

worst population (high rank and low crowding distance) from the initial generation.  

               ∑ (                         ) 

            

   

  …………………….(2.19) 

The populations in the later generation are moved away from the reference point 

to be closer to the Pareto front resulting in higher hyper volume. The hyper volume can 

be used as a qualitative measure to track the movement by normalizing the value with 

hyper volume from the initial generation (Eq. 2.20). 
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(            ) 
  ……………………….……….(2.20) 

In this analytical example, the NSGA-II algorithm was run for 20 generations to 

clearly demonstrate the effect of these three performance measures. The improvement is 

relatively small after all populations have become rank one in generation#6 since the 

normalized hyper volume (Fig. 2.10-right) becomes stable. After this generation, only 

the variance of crowding distance is improved (Fig. 2.10-left). The result from initial 

generation, generation#6, and generation#20 are shown in figure 2.11. A clear trend of 

Pareto front can be acquired from generation#6 where all populations become rank one. 

Beyond this point, the populations become more uniform, but the trend of the Pareto 

front is still the same. 

 

Fig. 2.11—Objective space of three generations: (Left) Initial generation has widely spread 

populations. (Middle) Genearation#6, all populations become rank#1 and a clear trend of Pareto 

front is acquired. (Right) Generation#20, populations become more uniformly distributed with the 

same trend of Pareto front. 

 

After the Pareto front is reached, post-optimization decision will be performed to 

select the optimal trade-off solution. The MSE algorithm (Ma, 2008) is used to select the 
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trade-off point. The idea behind this algorithm is to search the solution with the smallest 

square error from the other solutions around it which result in a point around the ramp-

up of a curve. The trade-off optimal point is selected from the MSE algorithm (Fig. 

2.12-left). This optimal trade-off represents a compromised solution between the two 

objectives in the objective space (Fig. 2.12-right).  

 

Fig. 2.12—(Left) Relation between square error and f1, the smallest error point is selected as a 

trade-off optimal point. (Right) Illustration of the trade-off optimal (red point) and single objective 

optimization (blue and green points). The trade-off optimal represents a compromised solution 

between the two objectives. 

 

The three optimal solutions from (Fig. 2.12-right) illustrate optimization with 

different focuses. The blue and the green points represent an optimization with focus to 

minimize f1 and f2 respectively. These solutions only satisfy small value of the focused 

objective, but provide the unfavorable objective for the other. The point in the middle 
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represents the trade-off optimal solution. The solution does not provide the smallest 

value for either f1 and f2, but it represents a compromised solution between them. 

In the variable space, the distribution of the variable after optimization is limited 

in a range of 0 to 5 (Fig. 2.13). The two dimensional distribution plots show a clear trend 

of the optimal population density (Fig. 2.14). The optimal solution to minimize f1 and f2 

are close to the edge of optimal solution (0, 0) and (5, 5) respectively while the trade-off 

optimal solution provides variable in between them. The combination of the variables in 

the optimal space provides population in the Pareto front.  

 

Fig. 2.13—Histogram of optimal variables, x1 and x2. The variables are limited in a range of 0 to 5.  
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Fig. 2.14—Two dimensional distribution plots in variable space. (Left) Scatter plot of initial 

population (gray) and optimal populations (black) with three optimal point. (Right) Two 

dimensional histogram. Both of the plots show optimal populations are limited in a range of 0 to 5 

with a clear trend. 
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CHAPTER III  

POLYMER FLOOD PERFORMANCE MEASURE OPTIMIZATION 

 

In this chapter, we propose a new approach for polymer flood optimization that 

considers both production improvement and polymer performance. This work expands 

the scope of rate optimization study (Sharma et al., 2011) to consider more control 

variables for polymer flood: concentration and slug size. The two algorithms from the 

previous chapter are coupled. First, the streamline-based rate optimization allocates 

production/Injection rate among all wells which capture effects of reservoir 

heterogeneity. Next, the multiobjective genetic algorithm (NSGA-II) optimizes polymer 

concentration and slug size and presents the result as a compromised trade-off curve 

between production gain and utility factor. The application of this approach will be 

demonstrated with three cases: a five-spot synthetic model, a 3D field-scale polymer 

flood, and optimization under geologic uncertainty. Advantages of the analysis under 

multiobjective framework over the single-objective approach will be discussed at the end 

of this chapter. 

3.1 Model and Objective Formulation 

3.1.1 Polymer Properties  

Recovery improvement by waterflooding often results in viscous fingering from adverse 

mobility ratio.  Mobility control by polymer injection decrease mobility of injected water 
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by increase of water viscosity and decrease in rock permeability to water (Lake, 1989). 

However, the oil permeability remains unaffected. These effects result in more favorable 

fraction flow curve and more efficient sweep efficiency. Ultimately, oil recovery is 

increased and water production is decreased. 

Properties of the polymers in this work are representative of partially hydrolyzed 

polyacrylamides (HPAM) that’s frequently used in field applications. To simplify the 

multicomponent behavior, we simulated ECLIPSE black oil simulation with tabulated 

polymer properties as follows. 

Water Viscosity 

The viscosity of water is modified when a polymer is present in the solution. In this 

work, we assume the polymer solution and water are fully mixed in each grid block. The 

viscosity of a polymer solution is inputted as a relation between viscosity multiplier and 

polymer concentration (Cp) (Fig. 3.1). This term is used to multiply pure water viscosity 

(Eq. 3.1) to make it more viscous resulting in a favorable mobility ratio. 

       (  )     ……………………………………………………………(3.1) 
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Fig. 3.1—Viscosity multiplier, M (Cp) at various Cp: higher polymer concentration results in a more 

viscous fluid 

 

Polymer Adsorption 

Adsorption is treated as an instantaneous effect in the model. The effect of polymer 

adsorption is to create a stripped water bank at the leading edge of the slug. This water 

bank has mobility lower than the injected polymer solution and reduces the efficiency of 

polymer flood. 

In this study, the adsorption effect is treated as a relation between the saturated 

concentration of polymer adsorbed by rock formation and the polymer concentration 

(Fig. 3.2). This effect is considered a reversible process; thus, the polymer adsorption is 

retraced whenever the local polymer concentration in the solution decreases. 
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Fig. 3.2—Polymer adsorption at various concentrations for HPAM polymer: rock absorbs more 

polymer at higher concentration 

 

Permeability Reduction  

A further effect of adsorption is a reduction in the permeability of the rock to the passage 

of polymer mixed water. This relation is directly related to the amount of adsorbed 

polymer and can be defined as a permeability reduction factor (Rk) which can be 

calculated by Eq. 3.2 

 

        (       )
  

 

  
     ………………………………………………(3.2) 

 

RRF is the residual resistance factor which equal to 3.0 for this study.   
  denotes 

adsorbed polymer concentration in the rock, and   
     is maximum adsorbed 

concentration that is defined as adsorption at 2500 ppm in this work. 
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Dead Pore Volume 

The dead pore volume represents the fraction of the total pore volume that is 

inaccessible to the polymer solution. This causes the polymer solution to travel faster 

than inactive tracer. In this study, a constant value of 0.2 is used as dead pore volume. 

3.1.2 Performance Measures (Variable, Objective) 

Objective Function 

The conventional way to measure success of a polymer flood project is by production 

improvement, which is the difference between cumulative oil production in case 

polymer is injected and cumulative oil production in case of no polymer injection (Eq. 

3.3). This objective is a standard objective in many petroleum engineering problems. 

The more production gain indicates success of the project 

 

       (                      )    (                         ) ……(3.3) 

 

For polymer flood project, polymer utility factor (UF) is an indirect measurement 

(Clemens et al., 2011; Sharma et al., 2011). The polymer utility factor is a ratio between 

injected polymer and production improvement (Eq. 3.4). The UF implies efficiency of 

polymer usage. Large UF means the project requires large amounts of polymer for 1 

STB of oil gain. In contrast, small UF indicates the project is efficient since it only 

requires small amounts of polymer for 1 STB of oil gain. 
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 ……………………………………………......(3.4) 

 

This study considers these two objectives simultaneously. A successful project 

should have high     and small UF at the same time. However, in practice, these two 

requirements cannot be satisfied in chorus since high     always comes with the cost of 

poor efficiency (high UF). Sensitivity analysis of these objectives was run with varied 

polymer concentration (Fig. 3.3). The increasing polymer concentration provides more 

    and increases UF (poor performance). These two objectives are called conflicting 

objectives because both of them cannot be optimized simultaneously.  

 

Fig. 3.3—Sensitivity analysis of     and UF with increasing polymer concentration: both objectives 

increase with increasing concentration. 

 

Polymer Flood Control Variable 

The control variables in the polymer flood project are polymer concentration (Cp), slug 

size, and initiation time. Al-Sofi and Blunt (2011) studied the effect of these parameters 
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and concluded that optimal slug size and concentration are controlled by economic limit, 

but the project always gains benefits from early initiation. This study implemented this 

idea by initializing polymer flood at the beginning of the simulation and leaving the 

other two variables, Cp and slug size, as control variables for the optimization process. 

3.1.3 Two-Stage Optimization Workflow 

The optimization workflow comprised of two stages: rate optimization and polymer 

flood optimization (Fig. 10). First, the heterogeneity of the reservoirs is accounted using 

streamline-based rate optimization by allocating production and injection rates. Next, the 

NSGA-II is coupled with the rate-optimized model to focus on polymer control 

variables. The result is represented as a compromised trade-off curve between 

production improvement (   ) and polymer utility factor (UF). The validation of this 

coupling is analyzed in Appendix A. 

 

Fig. 3.4—Two-stage coupling optimization workflow: Streamline and NSGA-II 
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3.2 Application 

In this section, we demonstrate the robustness of the approach by three cases: a 2D five-

spot, a 3D field-scale polymer flood model, and optimization under geologic uncertainty. 

3.2.1 Five-Spot Example 

The 2D synthetic reservoir model (50x50x1 grid) has 4 producers on each corner and 

one injector at the center representing a five-spot pattern. The model has a fixed porosity 

of 0.225, initial water saturation of 0.18, initial pressure of 4,000 psia and spatially 

heterogeneous permeability with high-permeability streak in NE-SW direction (Fig. 

3.5). The reservoir is produced under injection/production rates constraints (Table 3.1). 

 

Fig. 3.5—2D five-spot example: permeability distribution and well location 
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Table 3.1—Five-spot model production constraints 

Constraints Limit 
Maximum field production rate 405 RB/D 
Maximum field injection rate 405 RB/D 
Maximum well production rate 250 RB/D 
Minimum bottom hole pressure (producer) 1,000 psia 
Maximum bottom hole pressure (injector) 7,000 psia 

 

Rate Optimization 

A high permeability streak connects the injector to producer P2 and P4 (Fig. 3.5) leading 

to preferential fluid movement and early water breakthrough from these wells. The 

streamline-based rate optimization method overcomes this problem by reallocating 

production rate to equalize arrival time from all producers. After optimization, 

production rates from the wells in the preferential path (P2, P4) are reduced and the rates 

are relocated to increase production from other wells (P1, P3) (Fig. 3.6). 

 

Fig. 3.6—Production rate allocation to each producer with streamline-based method 
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The benefits of this method are illustrated by comparing oil saturation map over 

time from two cases: (I) base case with equal production rates from all wells and (II) the 

streamline-based rate optimization (Fig. 3.7). With the optimization, the water front 

shows more uniform movement. Therefore, water breakthrough is delayed, oil 

production increased, and field sweep efficiency improved. 

 

Fig. 3.7—Oil saturation map of the two cases: I) Base case with equal production rates and II) 

Optimized case by the streamlines method: optimized case delays water breakthrough results in less 

oil saturation left in the reservoir. 

 

Result in Objective Space 

Once the production and injection rates are optimized, the next step is designing optimal 

polymer-flood control parameters. Polymer concentration is varied in a range of 1 to 

2000 ppm and slug size is considered in terms of injection duration from 1 to 20 years. 

The NSGA-II algorithm is performed to search optimal combination of these parameters 

to generate a trade-off curve between     and UF. 
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Fig 3.8—NSGA-II algorithm generates a trade-off relation between UF and     (2D five-spot 

model): gray dots are nonoptimal solutions, black dots are Pareto optimal solutions. 

 

Each population in the objective space represents result from a combination of Cp 

and slug size. During the initial generation, the populations spread throughout the 

objective space as in the gray dots (Fig.3.8). The dominance relationship in the NSGA-II 

algorithm selects populations with low domination ranking and moves them close to the 

Pareto front (black dots). The stopping criterion is reached when all the populations 

become rank one, which implies all populations are close to Pareto front. 

The Pareto front represents a compromised trade-off between the two objectives. 

The result will be used as a decision tool to determine an optimal trade-off between 

production gain and polymer efficiency. To illustrate the benefits of this trade-off curve 

on post-optimization decision, three different optimal points are selected (Fig 3.9). The 

leftmost point with the lowest value of UF is representative of optimization with the 

main focus on preserving polymer efficiency. The rightmost point with the largest     
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is representative of optimization with the main focus on maximizing production. The \ 

point in between represents a trade-off optimal solution was picked from the MSE 

algorithm.  The trade-off optimal point is considered as a compromised solution between 

production improvement and polymer efficiency. The control variables for these three 

points are summarized in Table 3.2. 

 

Fig. 3.9—Three optimal points with different focuses (2D five-spot model): (left) minimizing UF, 

(right) maximizing    , and (middle) the trade-off optimal point represents a  compromised 

solution between efficiency and production. 

 

Table 3.2—Control variables for three optimal points (2D five-spot case) 

Optimal point Cp, ppm Slug size, year 
Minimize UF (focus on efficiency) 778 1 
Trade-off optimal 1,812 10 
Maximize     (focus on production) 2,000 16 

 

In a comparison of cumulative oil production, cumulative polymer injected, and 

polymer utility factor from the three optimal points (Fig 3.10), the polymer efficiency 
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optimization gives the smallest UF and requires very small amounts of polymer 

injection. However, the cumulative oil production from this case is 35% less than the 

trade-off optimal point. In contrast, maximizing production gives the largest amount of 

cumulative oil production, but with the highest polymer UF. In this case, the increment 

is only 5% and it requires 68% more polymer injection from the trade-off optimal point.  

 

Fig. 3.10—Cumulative oil production, cumulative polymer injection, and UF from the three optimal 

points (2D five-spot model) 

 

The 2D maps of oil saturation and polymer concentration at 2.5 years and at the 

end of the simulation (20 years) demonstrate differences between the three optimal 

points (Fig. 3.11). The increasing amount of injected polymer from the minimized UF 

case to trade-off optimal reduces large amount of remaining oil. However, increasing 

polymer beyond this point to focus only on maximized production case does not give a 

big difference in the remaining oil. In contrast, there is increased amounts of trapped 

polymer in the reservoir. These results clearly demonstrate that polymer injection 

beyond the optimal design is inefficient since much more polymer is required to bring 

about a relatively small increase oil production. 
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Fig. 3.11—2D map from three optimal points (left), oil Saturation maps (right), polymer 

concentration maps. Increasing polymer beyond the optimal design results in much more trapped 

polymer with small improvements in remaining oil-in-place.  

 

Result in Variable Space 

For the variable space, most of the Pareto optimal solutions have concentration 

higher than 1000 ppm with slug size ranging between 0 to 10 years (Fig 3.12). The two 

dimensional distribution plot shows most of the optimal populations have high 

concentrations and the higher concentration tends to have the larger slug size (Fig 3.13). 

This behavior is consistent with the small production/injection rates for this synthetic 

case. The wells are still capable of handling increasing pressure drop due to more 

viscous fluid. With the larger rate, the optimal polymer concentration is expected to be 

affected by high polymer concentration. 
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Fig. 3.12—Histogram of optimal variables, polymer concentration and slug size. Most of the 

populations have high concentrations with intermediate slug size.  

 

 

Fig. 3.13—Two dimensional distribution plots in variable space.  Higher polymer concentration 

tends to have higher slug size. The trade-off optimal solution is shown in the middle among all the 

solutions. 
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3.2.2 Field-Scale Polymer Flood Optimization 

The reservoir model in this example corresponds to the Goldsmith San Andres Unit 

(GSAU) in the Goldsmith field (Jasek et al., 1998). To our knowledge, no polymer 

flooding was carried out in this field. Nevertheless, the highly heterogeneous 

permeability and complex well system makes it a good candidate for illustrating our 

approach. The 3D model (58x53x10) contains 31 producers and 11 injectors with 21 

years of production history (Fig. 3.14) 

 

Fig. 3.14—Goldsmith GSAU field: complexity of the field makes it appropriate for large scale field 

demonstration. 

 

First, the arrival time was optimized by streamlines to counteract the 

heterogeneity effects. Sharma et al. (2011) optimized this field’s control with the base 

case production/injection rates from the the actual field history during the first 21 years 

of water flooding (Fig. 3.15). Wells production and pressure constraints are imposed 

during optimization (Table 3.3). 
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Fig. 3.15—Field production/injection history. Maximum production/injection rate: 4000 RB/D (first 

8 years), 8000 RB/D (next 13 years). 

 

Table 3.3—Field-scale model production constraints 

Constraints Limit 
Maximum field production rate (fist 8 year) 4,000 RB/D 
Maximum field production rate (next 13 year) 8,000 RB/D 
Maximum well production rate 1,200 RB/D 
Maximum well injection rate 900 RB/D 
Minimum bottom hole pressure (producer) 1,000 psia 
Maximum bottom hole pressure (injector) 4,500 psia 

 

Result in Objective Space 

The rate-optimized model is coupled with the NSGA-II for polymer flood optimization 

(Fig. 3.16) with the identical polymer properties and ranges from the previous case. As 

before, the Pareto front represents a compromised trade-off between the two objectives. 

The post-optimization decision was made from the Pareto front. Three different points 
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with different focuses: (I) minimizing UF, (II) maximizing    , and (III) a trade-off 

optimal point, were picked from the Pareto front (Fig. 3.17 and Table 3.4). 

 

Fig. 3.16—NSGA-II algorithm generates a trade-off relation between UF and     (field-scale 

model): gray dots are nonoptimal solutions, black dots are Pareto optimal solutions. 
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Fig. 3.17—Three optimal points with different focuses (field-scale model): (left) minimizing UF, 

(right) maximizing    , and (middle) the trade-off optimal point represents the compromised 

solution between efficiency and production. 

 

Table 3.4—Control variables for three optimal points 

(field-scale model) 

Optimal point Cp, ppm Slug size, year 
Minimize UF  
(focus on efficiency) 

114 7 

Trade-off optimal 1115 15 
Maximize      
(focus on production) 

1256 20 

 

Injecting polymer beyond the trade-off optimal point would be inefficient, and 

resulting in relatively marginal increase in oil recovery (Fig. 3.18). Focusing only on 

maximizing oil production results in poor polymer efficiency, which requires 56% more 

total injected polymer for only 5% improvement from the trade-off optimal solution. 
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Fig. 3.18—Cumulative oil production, cumulative polymer injection, and UF from three different 

optimal points (field-scale model) 

 

Beyond the optimal design, much more injected polymers are trapped in the 

reservoir (Fig. 3.19-right) without significant change in remaining oil in place (Fig. 

3.19-left). The same conclusions can be drawn from both the 2D five-spot model and the 

field-scale model, which prove the benefits and robustness of this approach over the 

conventional single-objective approach. 
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Fig. 3.19—2D map from three optimal points: (left) oil Saturation maps, (right) polymer 

concentration maps: injecting polymer beyond the optimal design gives small change in remaining 

oil saturation, but the amount of polymer trapped in the reservoir increases drastically. 

 

Result in Variable Space 

In the variable space, most of the optimal solutions have polymer concentration around 

600 to 1,300 ppm and none of them has concentration exceeding 1,300 ppm (Fig. 3.20-

left). The majority of the optimal solutions have slug size around 5 to 15 years (Fig. 

3.20-right). Higher concentration tends to have higher slug size (Fig. 3.21). Since this 

field-scale example has higher field production rate and restricted bottomhole pressure 

control, injection with very high polymer concentration becomes unfavorable since the 

more viscous fluid introduce higher pressure drop.  
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Fig. 3.20—Histogram of optimal variables, polymer concentration and slug size. No population has 

polymer concentration exceed 1,300 ppm.  

 

 

Fig. 3.21—Two dimensional distribution plots in variable space.  Higher polymer concentration 

tends to have higher slug size. The trade-off optimal solution is in the middle among all the 

solutions. 
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Advantages to Engineering Decision 

The result from multiobjective approach is compared to the conventional single 

objective optimization approach. Conventionally, the optimization is done based on the 

single objective, NPV without considering the production efficiency. However, the NPV 

depends on some economic assumption such as oil price. The change in economic 

assumption affects an optimal solution. In the favorable economic condition, oil price is 

very high and NPV increases regardless of low operational efficiency. In contrast, in an 

unfavorable economic condition, oil price is not high and the efficiency gains more 

attention. 

In this case, we simply assume oil price and polymer operating cost in two 

scenarios, high oil price and low oil price (Table 3.5). The Pareto front from Goldsmith 

field (Fig. 3.17) is analyzed under these two scenarios. For the high oil price scenario, 

the highest NPV can be acquired at the highest UF solution (Fig. 3.22). The trade-off 

optimal point gives slightly lower than the highest NPV and it is located in the ramp-

down slope of the plot. However, under the low oil price scenario, the highest NPV 

solution under favorable economic condition becomes deteriorated. In contrast, the 

trade-off optimal solution provides better NPV. 

Table 3.5—Economic assumptions 

Scenario 
Oil price 
$/STB 

Polymer operating 
cost, $/lb 

High oil price 75 5 
Low oil price 30 5 
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Fig. 3.22—NPV result of the two scenarios, high and low oil price. The highest NPV point from the 

high oil price scenario is not an optimal solution in the low oil price scenario. The optimal trade-off 

point provides a good NPV result in both cases. 

 

Generally, the economic factor such as NPV is a good objective of optimization. 

The multiobjective optimization provides another interpretation to the problem 

considering economic, and performance simultaneously. The decision considering these 

two factors together can be made with more confidence. 

3.2.3 Geologic Uncertainty 

We demonstrated application of our approach using multiple realizations to address 

geologic uncertainty. Multiple porosity distributions were generated using sequential 

gaussian simulation (SGS). Then, the permeability field was generated via logarithmic 

permeability-porosity correlation (Fig. 3.23). 
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Fig. 3.23—30 porosity realizations from SGS with high porosity channel in NW-SE direction 

 

Five realizations were selected randomly to be optimized with our approach. The 

streamline-based rate optimization was carried out using the expected value under the 

risk neutral condition (Alhuthali et al., 2008). The domination concept of NSGA-II is 

still the same as single realization optimization except that the objective values were 

calculated from the expected value (Eq. 3.5 and Eq. 3.6). 

       
 ∑     

            

   

 ……………………………………………………(3.5) 

 

       ∑    

            

   

 …………………………………………………………(3.6) 
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The other 25 realizations were considered as blind models. These models were 

optimized with our approach individually. The Pareto front results from multiple 

realizations was compared to the Pareto fronts from the blind models (Fig. 3.24). 

 

Fig. 3.24—Workflow to compare optimization under geologic uncertainty with blind realizations. 

The expected Pareto front from five realizations is compared with multiple blinds realizations. 

 

The Pareto fronts generated from the blind realizations can be biased toward 

extreme pessimistic or optimistic results. An inappropriate design might be picked from 

the post-optimization decision from the biased Pareto front. The average Pareto front 

from multiple realizations is a good representative to capture geologic uncertainty from 

multiple outcomes (Fig. 3.25). More robust decision can be made from this Pareto front. 
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Fig. 3.25—Pareto fronts calculated from the average value and multiple individual blind 

realizations: The average Pareto front is a good representative to capture geologic uncertainty. 
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CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

In this paper, we have proposed a technique to explore the trade-off relationship between 

cumulative oil production and polymer efficiency in polymer flood projects. The 

multiobjective-framework approach can be used as an effective tool for production 

optimization. The major findings in the proposed approach are as follows: 

• The multiobjective genetic algorithm can generate a set of optimal solutions 

which represent an appropriate compromise for maximizing oil production while 

maintaining low polymer utility factor. 

• Instead of relying on conventional single-objective production optimization, the 

multiobjective approach provides more comprehensive understanding between 

production improvement and operational efficiency. The optimal polymer flood 

design can be selected from the trade-off curve. Beyond the optimal design, 

much more polymer injection is required to produce a relatively minor increase 

in oil production, and the polymer utility factor increases substantially. 

• The robustness and practical feasibility of our proposed approach have been 

demonstrated using the synthetic model and the field-scale reservoir model. 

Stochastic optimization was also implemented to take geologic uncertainty into 

consideration. The trade-off curve from the stochastic approach is representative 
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of multiple realizations since it can avoid extreme optimistic and pessimistic 

results. 

4.2 Recommendations 

Several recommendations that could improve the performance of the multiobjective 

performance measure approach are listed below: 

• The current work coupled two algorithms separately under the assumption that 

the result from the first stage (rate optimization via streamlines method) would 

not have strong influence on the second stage (multiobjective polymer flood 

optimization). However, the change in polymer control parameters affects 

mobility field and alter the results from the rate optimization. An improvement 

can be made to seamlessly couple these two steps. 

• In this work, we have made an assumption that all wells in the model share same 

polymer control variables (polymer concentration and slug size) for simplicity. 

Practically, different controls can be assigned to each individual well. The 

objectives can be improved by imposing more control variables. However, the 

trend of Pareto front is expected to be the same. 

• The idea of multiobjective optimization is applicable for other types of EOR 

project. For example, it can be used to optimize ASP or CO2 flooding. The 

appropriate performance measure objectives are required for new EOR types. 
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NOMENCLATURE 

 

Chapter II 

p(q)  Scalar objective function, t2, sq day 

q  Total fluid rate vector, L3/t, B/D [m3/d] 

t  Arrival time vector, t, day(s) 

ti,m  Arrival time at producer i which belongs to group m, t, day(s) 

td,m  Desired arrival time for group m, t, day(s) 

η Norm weight trade-off between equalizing arrival time and production 

acceleration 

      Time of flight of streamlines l belongs to producer i 

Nprod,m  Number of production well(s) in group m 

Ngroup  Number of group(s) 

LHS  Latin Hypercube Sampling 

GA  Genetic Algorithm 

NSGA  Nondominated sorting genetic algorithm 

wi  Weighting factor for scalarization method 

fi  Objective function i  

    Random number at     genome for crossover operation 

    Weighting factor at     genome for crossover operation 
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    Distribution index for crossover operation 

      Child i at      genome 

    Selected parent at     genome 

  
    

   Upper and lower limit of     genome 

    Weighting factor at     genome for mutation operation 

Chapter III 

      Viscosity of water solution with polymer, cp 

    Viscosity of pure water, cp  

    Polymer concentration, ppm 

 (  )  Viscosity multiplier 

RRF  Residual resistance factor 

    Permeability reduction factor 

  
   Absorbed polymer concentration in rock, ppm 

  
        Maximum absorbed polymer concentration in rock, ppm 

     Cumulative oil gain from polymer injection, stb 

    Polymer Utility factor, lb/stb 

      
  Average cumulative oil gain from multiple realizations 

       Average polymer utility factor from multiple reaizations 

             Number of realizations 
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APPENDIX A 

VALIDATION OF THE TWO-STAGE COUPLING OPTIMZATION 

 
The coupling between the two methods preserves the efficiency of each algorithm. The 

streamline-based rate optimization works efficiently with analytical sensitivity 

calculation. The population-based method such as NSGA-II fits with a small number of 

control variables which is only two (Cp and slug size). However, optimizing polymer 

control variables may change the mobility field, which changes the rate optimization 

result. To observe this effect, we performed the rate optimization on the synthetic five-

spot model with different polymer concentrations (Fig. A.1 ). 

 
Fig. A.1—Rate optimization result with different polymer concentrations: changing concentration 

only slightly affects rate optimization results. 

The streamline-based rate optimization was run with three different polymer 

concentrations: 0 ppm, 500 ppm, and 1,000 ppm. The production rate from the wells in 

high-permeability streak (P2, P4) are reduced to equalize arrival time with wells with 

low-permeability path (P1, P3) . Different polymer concentrations change field mobility 
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and results in small changes in rate optimization result (Fig.A.1). The results from 

different concentrations are very close and fluctuate around the same range since the 

main control factor of mobility is permeability heterogeneity. The optimized rates from 

different concentration still follow the permeability streak trend. This analysis confirms 

the concept of two-stage optimization and allows the genetic algorithm to rely on the 

single result from streamline-based rate optimization. 
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APPENDIX B 

DETAILS ON STREAMLINE-BASED RATE OPTIMIZATION 

B.1 Optimization after Breakthrough 

The optimization is carried out after water breakthrough at a well by incorporating 

penalized term into the calculated arrival time in order to prevent allocating high 

production rates to the high water-cut wells. The arrival time is modified to incorporate 

water-cut as follows:  

     
 ( )      ( )  (       

)
 

 …………………………………………(B.1) 

 

If the water cut is zero, the modified arrival time is the same as the original 

arrival time. When the water cut at the well is greater than zero, the original arrival time 

will be reduced based on the level of water-cut. The extent of reduction can be 

controlled by the exponent term,  . As a consequence, the rate allocation to wells with 

high water-cut will be lowered. 

A similar modification is done to the arrival time after polymer breakthrough 

based on producing polymer concentration at the well as follows. 

     
  ( )      

 ( )  (         
)
 

 …………………………………………(B.2) 
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where 

        
 

                             

                                       
  ………………(B.3) 

 

For gas breakthrough, the well GOR is incorporated to the arrival time as follows 

     
 ( )      ( )  (         

)
 

 …………………………………………(B.4) 

 

where 

        
 

        

                     
 ……………………………………(B.5) 

B.2 Accounting for Geologic Uncertainty 

Geologic uncertainty is accounted by considering the objective function in Eq. B.6 as 

expected value from multiple realizations. The standard deviation is incorporated as a 

penalized term.  

  ( )   [ ( )]    [ ( )] ………………………………………………..(B.6) 

 

The variable r is the risk coefficient that weights the trade-off between the 

expected value and the standard deviation. A positive r means that the decision-maker is 

risk adverse; thus, the optimization will not only minimize the expected value but also 

minimize variance of arrival time from all realization i.e. all realizations perform equally 

well. However, this will lower that level of optimality that could be reached. A negative 
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r means decision-maker is risk prone and has inverse effect from positive r, while a zero 

risk coefficient indicates that the decision is risk neutral. 

B.3 Objective Function Minimization 

Analytical Sensitivity Calculation 

To minimize the objective function, the sensitivity matrix     is needed to be computed 

as follows: 

     
     ( )

   
 ………………………………………………………………(B.7) 

 

Combining Eq.  2.2 and Eq. B.7     can be written as 

     
 

      
∑

     ( )

   

      

   

  ……………………………………………………(B.8) 

 

Using the chain rule, the partial differential term can be written as 

 
     ( )

   
 

     

      

      

   
  ………………………………………………………(B.9) 

 

The first term      

      
 represents the change in time of flight along individual streamlines 

connected to the producer i because of changes in the total flowrate along streamlines. If 
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we assume that the streamlines do not shift because of small perturbations in the well 

rate, then this term can be computed analytically using Eq. 2.3 and Eq.2.4 as 

 
     

      
 ∫

  ( )

      
   ∫

 

      
 
 ( ) ( )

     
  

 

  
    

     
 

 …………………(B.10) 

 

The second term in Eq. B.9,       

   
, represents the change in the total production rate 

along a streamline connected to producer i because of a change in the total rate of well j. 

Recall that well j can be either a producer or an injector. 

Case 1: j is a Producer 

This term will be vanished for     because of the assumption that streamlines do not 

shift for small perturbation in other producers’ well rate. Then we have 

             ………………………………………………………………(B.11) 

 

 
      

   
 

 

     
 ………………………………………………………………..(B.12) 

 

Then the sensitivity from Eq. B.7  in case     will be defined as 

 
     

    
  

     

 

…………………………………………………………(B.13) 

           ………………………………………………………….(B.14) 
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Case 2: j is an Injector 

With similar assumptions, the sensitivity with respect to injector rate can be written as 

      
∑       

        

   

        
               (                                ) .........(B.15) 

 

                     (                             ) …….........................(B.16) 

 

         is the number of the fastest streamlines connecting a producer i to an injector j. 

Similarly,        represents Time of Flight of the connected streamlines. 

Jacobian, Gradient and Hessian matrix 

Jacobian matrix 

The Jacobian matrix is given by the following expression 

       ……………………………………………………………………..(B.17) 

 

where e is the vector of arrival time residuals at all producing wells in all groups. Recall 

from objective function Eq. 2.1, we have two terms. For the first term, equalizing arrival 

time, a single element of e corresponding to producer i in group m is given by, 

          ( )      ( ) …………………………………………………(B.18) 

 

From Eq. 2.5, substitute     ( ) 
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∑     ( )

       

   

     ( ) …………………………………..(B.19) 

 

The Jacobian matrix becomes 

         [
 

      
∑    

      

   

]      ……………………………………..(B.20) 

 

Where        is number of wells in a group. Every element in sensitivity matrix S is 

given by Eq. B.13 and Eq. B.14 

For the second term, the production acceleration can be written as 

          ( ) ………………………………………………………………(B.21) 

 

The Jacobian matrix becomes 

             ……………………………………………………………..(B.22) 

 

Gradient and Hessian 

The Gradient and Hessian matrix can be calculated from Jacobian matrix (J) and 

residual vector (e) as follows: 

       ……………………………………………………………………(B.23) 
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       ……………………………………………………………………...(B.24) 

 

Minimization Algorithm 

To minimize the objective function, we use the sequential quadratic programming (SQP) 

algorithm which is one of the widely used algorithms for nonlinear constrained 

optimization.  The main concept behind it is to formulate the problem into a series of 

quadratic programming (QP) sub-problems and iteratively update Gradient and Hessian 

matrix. In this work, the QP sub-problems are solved with a MATLAB optimization 

toolbox. 

 

   
  

     
 

 
       

 
Subject to 
 

          

      

……………………………………………………(B.25) 

 

where                 are matrixes to restrict production rate constraints. 
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APPENDIX C 

IMPROVING CALCULATION EFFICIENCY OF GENETIC ALGORITHM 

 

The genetic algorithm is a robust approach to search the global optimal solution. 

However, one of the disadvantages of GA is computational efficiency. GA requires a 

large number of simulation runs to update the whole populations. This problem becomes 

more critical when GA is coupled with reservoir simulation, which requires an expensive 

calculation, especially for field-scale models. In this work, we implement approaches to 

speed-up GA calculation, parallel computing and dynamic response surface. The 

following details briefly discuss about workflow of these approaches. 

C.1 Parallel Computing 

The calculation bottleneck of GA is the step to evaluate objective function. Each 

population has to queue up for the simulation run sequentially. However, the simulation 

input and output of each simulation does not relate to each other. In other word, this 

process can be run separately by parallel computing concept. 

Parallel Computing Workflow 

Instead of using a single core to run simulations, the parallel concept uses multiple cores 

to perform the work simultaneously and combine the results after all populations are 

evaluated (Fig. C.1). In this work, the MATLAB parallel computing toolbox is used 

with maximum number of cores as four. 
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Fig. C.1—Separated worker from parallel computing: multiple simulation can be run 

simultaneously resulting in more efficient calculation. 

Illustration of Efficiency 

To demonstrate the benefits of the parallel run with the conventional sequential run, 

required time to complete 150 simulations were compared (Fig. C.2). The parallel run 

required 18 minutes while the single core used 62 minutes to finish the work which 

means the parallel can complete the job with 3.4 times faster. 
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Fig. C.2—Time required to complete 150 simulations: the parallel computing is 3.4 times faster than 

the sequential run. 

 

The parallel computing workflow is implemented in this research’s GA code. This 

implementation helps many following researches to speed-up calculation and allows 

more number of populations to be evaluated. 

C.2 Dynamic Response Surface Construction by Kriging Estimation 

Every generation, the GA produces new populations and all of the newly generated 

population have to be evaluated their fitness.  

Generally, all populations in GA require reservoir simulation for objective 

evaluation. This process can be improved by using the results from early-generation 

populations to estimate fitness without running simulation. The approximated fitness 

will be used as pre-conditioner proxy to check whether the new populations require 

simulation or not. If the proxy response indicates poor fitness and the populations are 
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expected to be removed, the populations are rejected without running simulations (Fig. 

C.3). 

 

Fig.  C.3—Workflow of proxy checks: (left) the conventional GA need to run simulation for all 

populations, (right) proxy gives feedback whether the population requires simulation run or not. 

 

Response Surface by Kriging Estimation 

In this work, we use response surface constructed by kriging estimation. The kriging 

estimation is done by the MATLAB toolbox, DACE (Design and Analysis of Computer 

Experiments). DACE constructs a kriging approximation model based on populations 

that have been evaluated and use the model to calculate response at unknown points. 

More number of points near kriging location results in smaller estimation error (Fig. 

C.4). 
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Fig. C.4—(left) true response, (middle) kriging response and (right) error from kriging estimation: 

More number of data in central area results in smaller estimation error. 

 

Tolerance Estimation by Cross Validation 

The results from kriging estimation can only be used as an approximated value since it 

has error associate with the estimation. Using the result directly is risky as it might lead 

to wrong rejection. In this study, we use the cross validation concept to estimate error 

tolerances. The tolerances will be subtracted from the approximated results to ensure the 

populations are rejected properly. 

To illustrate this process, Fig. C.5 shows example of 5 known data points (black 

dots) to estimate one unknown point (star). First, kriging is used to estimate value of the 

unknown point. Next, one of the five known points is removed and kriging surface is 

constructed from the remaining four points. The estimated and the true values of the 

removed point are compared and the estimated error is stored as tolerance. This process 

is repeated for every known point in the kriging site. 
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Fig. C.5—Workflow of the cross validation: the kriging results and true results from known points 

are compared and the errors are stored as tolerances. 

The tolerance will be subtracted from fitness to make “the best possible estimation” 

(Fig. C.6). The large tolerance drastically reduces the estimated fitness. Conversely, the 

small tolerance slightly reduces the estimated fitness. Users can select the level of 

tolerance based on their certainty on the response surface.  
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Fig. C.6—Proxy estimated value will be subtracted by tolerance: larger tolerance drastically reduces 

the estimated objective value. 

The results cross validation become more accurate with more data. For GA, the amount 

of known data point increase in later generation which improve the efficiency of this 

proxy model. 

Acceptance Criteria: Single Objective 

The subtracted value will be compared with the poorest population from the previous 

generation (the one with the highest value). If it has a larger value than the poorest 

population, it will be rejected (Fig. C.7a). Accepted points for simulation run are 

required to have smaller value than the poorest population (Fig. C.7b&c). 
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Fig. C.7—Acceptance criteria to compare with the poorest value from previous generation: (a) the 

proposed point is rejected if it has the larger value (b & c) the proposed point is accepted if it has the 

smaller value. 

Acceptance Criteria: Multiple Objectives 

This approach can expand to the multiobjective problem. First, multiple proxies are 

constructed to estimate each objective and tolerance individually (Fig C.8). The proxy 

results with tolerances will be compared with results from the previous generation by the 

domination concept instead of the conventional fitness value. The proposed point will be 

rejected if it has the lowest rank (Fig C.9a). If it has a chance to dominate some 

populations, it will be accepted for the simulation run (Fig C.9b&c). 
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Fig. C.8—Proxy estimated value in multiobjective space. The objective values are subtracted with 

tolerance for all dimensions. 

 

Fig. C.9—Acceptance criteria for the multiobjective problem: the proposed point will be accepted if 

it dominates some points from the previous generation (b&c) 

 

 

 




